aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-18 16:28:32 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-18 16:28:32 +0000
commit143dc8842bdf66dce27f5892a0dfff2c916ddca7 (patch)
treea603bf19c226bdb1736ebad56ce87262ccc3c247 /src/share
parent6896410ee29bde89bf25c5f126a76a755a810e94 (diff)
downloadopen-axiom-143dc8842bdf66dce27f5892a0dfff2c916ddca7.tar.gz
* algebra/catdef.spad.pamphlet (DifferentialModule): Tidy.
(DifferentialModuleExtension): Likewise. (PartialDifferentialModule): New.
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase3382
-rw-r--r--src/share/algebra/category.daase6608
-rw-r--r--src/share/algebra/compress.daase1345
-rw-r--r--src/share/algebra/interp.daase10686
-rw-r--r--src/share/algebra/operation.daase32277
5 files changed, 27160 insertions, 27138 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 826b5d14..244761b0 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2279591 . 3485856132)
+(2279911 . 3485863922)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4457 . T) (-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4453 . T) (-4458 . T) (-4452 . T))
+((-4459 . T) (-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4455 . T) (-4460 . T) (-4454 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3027)
+(-32 R -3003)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))
+((|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)))
+((|HasAttribute| |#1| (QUOTE -4462)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3027 UP UPUP -1444)
+(-40 -3003 UP UPUP -2703)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4453 |has| (-418 |#2|) (-373)) (-4458 |has| (-418 |#2|) (-373)) (-4452 |has| (-418 |#2|) (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-418 |#2|) (QUOTE (-146))) (|HasCategory| (-418 |#2|) (QUOTE (-148))) (|HasCategory| (-418 |#2|) (QUOTE (-359))) (-3763 (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-378))) (-3763 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3763 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3763 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-359))))) (-3763 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -650) (QUOTE (-575)))) (-3763 (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))))
-(-41 R -3027)
+((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3739 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3739 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3739 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3739 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3739 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3739 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))))
+(-41 R -3003)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -441) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -103,34 +103,34 @@ NIL
(-43 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-316))))
+((|HasCategory| |#1| (QUOTE (-317))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4457 |has| |#1| (-567)) (-4455 . T) (-4454 . T))
-((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567))))
+((-4459 |has| |#1| (-568)) (-4457 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4460 . T) (-4461 . T))
-((-3763 (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|))))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))))
+((-4462 . T) (-4463 . T))
+((-3739 (-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|))))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575)))))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4457 . T))
+((-4459 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3027)
+(-54 |Base| R -3003)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-61 -1777)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-61 -1811)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -1777)
+(-62 -1811)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -1777)
+(-63 -1811)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -1777)
+(-64 -1811)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -1777)
+(-65 -1811)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1777)
+(-66 -1811)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -1777)
+(-67 -1811)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -1777)
+(-68 -1811)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1777)
+(-69 -1811)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -1777)
+(-70 -1811)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -1777)
+(-71 -1811)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -1777)
+(-72 -1811)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -1777)
+(-73 -1811)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -1777)
+(-74 -1811)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,66 +236,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -1777)
+(-77 -1811)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -1777)
+(-78 -1811)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -1777)
+(-79 -1811)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1777)
+(-80 -1811)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1777)
+(-81 -1811)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -1777)
+(-82 -1811)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1777)
+(-83 -1811)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1777)
+(-84 -1811)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1777)
+(-85 -1811)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1777)
+(-86 -1811)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -1777)
+(-87 -1811)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -1777)
+(-88 -1811)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -1777)
+(-89 -1811)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-90 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))))
+((|HasCategory| |#1| (QUOTE (-374))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4460 . T))
+((-4462 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4460 . T) ((-4462 "*") . T) (-4461 . T) (-4457 . T) (-4455 . T) (-4454 . T) (-4453 . T) (-4458 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4448 . T) (-4456 . T) (-4459 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4447 . T))
+((-4462 . T) ((-4464 "*") . T) (-4463 . T) (-4459 . T) (-4457 . T) (-4456 . T) (-4455 . T) (-4460 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4458 . T) (-4461 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4449 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4457 . T))
+((-4459 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4462 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4464 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4460 . T))
+((-4462 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4461 . T))
+((-4463 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3763 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146)))))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3739 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -318) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -392,22 +392,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-116 -3027 UP)
+(-116 -3003 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-117 |#1|) (QUOTE (-924))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-117 |#1|) (QUOTE (-1039))) (|HasCategory| (-117 |#1|) (QUOTE (-831))) (-3763 (|HasCategory| (-117 |#1|) (QUOTE (-831))) (|HasCategory| (-117 |#1|) (QUOTE (-861)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-117 |#1|) (QUOTE (-1169))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -318) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -295) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-316))) (|HasCategory| (-117 |#1|) (QUOTE (-556))) (|HasCategory| (-117 |#1|) (QUOTE (-861))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-924)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-117 |#1|) (QUOTE (-926))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1041))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (-3739 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1171))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-926)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
(-119 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)))
+((|HasAttribute| |#1| (QUOTE -4463)))
(-120 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -418,15 +418,15 @@ NIL
NIL
(-122 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-123 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-124)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
(-125 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -434,20 +434,20 @@ NIL
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130)))))) (-3763 (-12 (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1117)))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-130) (QUOTE (-1117))) (|HasCategory| (-130) (LIST (QUOTE -318) (QUOTE (-130))))))
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-3739 (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1119)))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -470,13 +470,13 @@ NIL
NIL
(-135)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4462 "*") . T))
+(((-4464 "*") . T))
NIL
-(-136 |minix| -2831 S T$)
+(-136 |minix| -2809 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -2831 R)
+(-137 |minix| -2809 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -498,8 +498,8 @@ NIL
NIL
(-142)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4460 . T) (-4450 . T) (-4461 . T))
-((-3763 (-12 (|HasCategory| (-145) (QUOTE (-378))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-145) (QUOTE (-378))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))))
+((-4462 . T) (-4452 . T) (-4463 . T))
+((-3739 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))))
(-143 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4457 . T))
+((-4459 . T))
NIL
(-147 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -522,9 +522,9 @@ NIL
NIL
(-148)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-149 -3027 UP UPUP)
+(-149 -3003 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -535,14 +535,14 @@ NIL
(-151 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasAttribute| |#1| (QUOTE -4460)))
+((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasAttribute| |#1| (QUOTE -4462)))
(-152 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-153 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4455 . T) (-4454 . T) (-4457 . T))
+((-4457 . T) (-4456 . T) (-4459 . T))
NIL
(-154)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -564,7 +564,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-159 R -3027)
+(-159 R -3003)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -595,10 +595,10 @@ NIL
(-166 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1220))) (|HasCategory| |#2| (QUOTE (-1077))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4456)) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-567))))
+((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))))
(-167 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4453 -3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4456 |has| |#1| (-6 -4456)) (-4459 |has| |#1| (-6 -4459)) (-3501 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 -3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4458 |has| |#1| (-6 -4458)) (-4461 |has| |#1| (-6 -4461)) (-3477 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-168 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4453 -3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4456 |has| |#1| (-6 -4456)) (-4459 |has| |#1| (-6 -4459)) (-3501 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-359))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-3763 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-359)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-924))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-924))))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1220)))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (QUOTE (-1077))) (-12 (|HasCategory| |#1| (QUOTE (-1077))) (|HasCategory| |#1| (QUOTE (-1220)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasAttribute| |#1| (QUOTE -4456)) (|HasAttribute| |#1| (QUOTE -4459)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-359)))))
+((-4455 -3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4458 |has| |#1| (-6 -4458)) (-4461 |has| |#1| (-6 -4461)) (-3477 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3739 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-926))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-926))))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4461)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-360)))))
(-172 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -626,7 +626,7 @@ NIL
NIL
(-174)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-175)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -634,7 +634,7 @@ NIL
NIL
(-176 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4462 "*") . T) (-4453 . T) (-4458 . T) (-4452 . T) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") . T) (-4455 . T) (-4460 . T) (-4454 . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-177)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -651,7 +651,7 @@ NIL
(-180 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-967 |#2|) (LIST (QUOTE -898) (|devaluate| |#1|))))
+((|HasCategory| (-969 |#2|) (LIST (QUOTE -899) (|devaluate| |#1|))))
(-181 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -688,7 +688,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-190 R -3027)
+(-190 R -3003)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -796,23 +796,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-217 -3027 UP UPUP R)
+(-217 -3003 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-218 -3027 FP)
+(-218 -3003 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-219)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3763 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146)))))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3739 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146)))))
(-220)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-221 R -3027)
+(-221 R -3003)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -826,19 +826,19 @@ NIL
NIL
(-224 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-225 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-226 R -3027)
+(-226 R -3003)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-227)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3493 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-3468 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-228)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -846,19 +846,19 @@ NIL
NIL
(-229 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))) (|HasAttribute| |#1| (QUOTE (-4462 "*"))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4464 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
(-230 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-231 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4461 . T))
+((-4463 . T))
NIL
(-232 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-4457 . T))
+((-4459 . T))
NIL
(-233 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -870,7 +870,7 @@ NIL
NIL
(-235 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
(-236 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -882,36 +882,36 @@ NIL
NIL
(-238)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-4457 . T))
+((-4459 . T))
NIL
(-239 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)))
+((|HasAttribute| |#1| (QUOTE -4462)))
(-240 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4461 . T))
+((-4463 . T))
NIL
(-241)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-242 S -2831 R)
+(-242 S -2809 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4457)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-1117))))
-(-243 -2831 R)
+((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4459)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119))))
+(-243 -2809 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T))
+((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
NIL
-(-244 -2831 A B)
+(-244 -2809 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-245 -2831 R)
+(-245 -2809 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-373))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (-3763 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| |#2| (QUOTE (-238))) (-3763 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066))))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-378)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3763 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-737)))) (-3763 (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasAttribute| |#2| (QUOTE -4457)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))))
+((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3739 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-3739 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3739 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-3739 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
(-246)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -922,7 +922,7 @@ NIL
NIL
(-248)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4453 . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
(-249 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -930,4263 +930,4271 @@ NIL
NIL
(-250 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
(-251 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-252 |vl| R)
+(-252 R)
+((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
+((-4457 . T) (-4456 . T))
+NIL
+(-253 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-924))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-253)
+(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-926))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-254)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
NIL
-(-254)
+(-255)
((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}.")))
NIL
NIL
-(-255)
+(-256)
((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}.")))
NIL
NIL
-(-256 |n| R M S)
+(-257 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4457 -3763 (-3224 (|has| |#4| (-1066)) (|has| |#4| (-238))) (|has| |#4| (-6 -4457)) (-3224 (|has| |#4| (-1066)) (|has| |#4| (-913 (-1194))))) (-4454 |has| |#4| (-1066)) (-4455 |has| |#4| (-1066)) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#4| (QUOTE (-373))) (-3763 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (QUOTE (-1066)))) (-3763 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-373)))) (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (QUOTE (-804))) (-3763 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1066)))) (|HasCategory| |#4| (QUOTE (-238))) (-3763 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1066))))) (-3763 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#4| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-378)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-737)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-804)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-861)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1117))))) (-3763 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1066))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-737))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-804))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -650) (QUOTE (-575))))) (-3763 (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1066))))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575))))) (-3763 (|HasCategory| |#4| (QUOTE (-1066))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (QUOTE (-1117)))) (-3763 (|HasAttribute| |#4| (QUOTE -4457)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1066)))) (-12 (|HasCategory| |#4| (QUOTE (-1066))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1194))))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))))
-(-257 |n| R S)
+((-4459 -3739 (-3200 (|has| |#4| (-1068)) (|has| |#4| (-238))) (|has| |#4| (-6 -4459)) (-3200 (|has| |#4| (-1068)) (|has| |#4| (-915 (-1196))))) (-4456 |has| |#4| (-1068)) (-4457 |has| |#4| (-1068)) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#4| (QUOTE (-374))) (-3739 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1068)))) (-3739 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-3739 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (|HasCategory| |#4| (QUOTE (-238))) (-3739 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068))))) (-3739 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#4| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1119))))) (-3739 (-12 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1068))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-3739 (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068))))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-3739 (|HasCategory| |#4| (QUOTE (-1068))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1119)))) (-3739 (|HasAttribute| |#4| (QUOTE -4459)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))))
+(-258 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4457 -3763 (-3224 (|has| |#3| (-1066)) (|has| |#3| (-238))) (|has| |#3| (-6 -4457)) (-3224 (|has| |#3| (-1066)) (|has| |#3| (-913 (-1194))))) (-4454 |has| |#3| (-1066)) (-4455 |has| |#3| (-1066)) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#3| (QUOTE (-373))) (-3763 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3763 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373)))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-804))) (-3763 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (|HasCategory| |#3| (QUOTE (-238))) (-3763 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066))))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#3| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-378)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-737)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-804)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-3763 (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-3763 (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117)))) (-3763 (|HasAttribute| |#3| (QUOTE -4457)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194))))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))))
-(-258 A R S V E)
+((-4459 -3739 (-3200 (|has| |#3| (-1068)) (|has| |#3| (-238))) (|has| |#3| (-6 -4459)) (-3200 (|has| |#3| (-1068)) (|has| |#3| (-915 (-1196))))) (-4456 |has| |#3| (-1068)) (-4457 |has| |#3| (-1068)) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-374))) (-3739 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3739 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3739 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (QUOTE (-238))) (-3739 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119))))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-3739 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-3739 (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (-3739 (|HasAttribute| |#3| (QUOTE -4459)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))))
+(-259 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-238))))
-(-259 R S V E)
+(-260 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-260 S)
+(-261 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
-(-261)
+(-262)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-262 R |Ex|)
+(-263 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-263)
+(-264)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-264 R)
+(-265 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-265 |Ex|)
+(-266 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-266)
+(-267)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-267)
+(-268)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-268 S)
+(-269 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-269)
+(-270)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-270 S R)
+(-271 S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-237))))
-(-271 R)
+((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-237))))
+(-272 R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
-(-272 R S V)
+(-273 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#3| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-273 A S)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-274 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-274 S)
+(-275 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-275)
+(-276)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-276)
+(-277)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-277)
+(-278)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-278)
+(-279)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-279)
+(-280)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-280)
+(-281)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-281)
+(-282)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-282)
+(-283)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-283)
+(-284)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-284 R -3027)
+(-285 R -3003)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-285 R -3027)
+(-286 R -3003)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-286 |Coef| UTS ULS)
+(-287 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))))
-(-287 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-288 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))))
-(-288)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-289)
((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
-(-289)
+(-290)
((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}.")))
NIL
NIL
-(-290 A S)
+(-291 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))))
-(-291 S)
+((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))))
+(-292 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4461 . T))
+((-4463 . T))
NIL
-(-292 S)
+(-293 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-293)
+(-294)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-294 |Coef| UTS)
+(-295 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-295 S T$)
+(-296 S T$)
((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}.")))
NIL
NIL
-(-296 S |Dom| |Im|)
+(-297 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)))
-(-297 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4463)))
+(-298 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-298 S R |Mod| -1745 -4167 |exactQuo|)
+(-299 S R |Mod| -1880 -3343 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-299)
+(-300)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4453 . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-300)
+(-301)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-301 R)
+(-302 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-302 S R)
+(-303 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-303 S)
+(-304 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4457 -3763 (|has| |#1| (-1066)) (|has| |#1| (-484))) (-4454 |has| |#1| (-1066)) (-4455 |has| |#1| (-1066)))
-((|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-737)))) (|HasCategory| |#1| (QUOTE (-484))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-1117)))) (-3763 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1129)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-311))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-484)))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737)))) (-3763 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-737))))
-(-304 |Key| |Entry|)
+((-4459 -3739 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4456 |has| |#1| (-1068)) (-4457 |has| |#1| (-1068)))
+((|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1119)))) (-3739 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-3739 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-3739 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-738))))
+(-305 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-305)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-306)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-306 -3027 S)
+(-307 -3003 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-307 E -3027)
+(-308 E -3003)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
-(-308 A B)
+(-309 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-309)
+(-310)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-310 S)
+(-311 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-1066))))
-(-311)
+((|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1068))))
+(-312)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-312 R1)
+(-313 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-313 R1 R2)
+(-314 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-314)
+(-315)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-315 S)
+(-316 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-316)
+(-317)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-317 S R)
+(-318 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-318 R)
+(-319 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-319 -3027)
+(-320 -3003)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-320)
+(-321)
((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'.")))
NIL
NIL
-(-321)
+(-322)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-322 R FE |var| |cen|)
+(-323 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-924))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-1039))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (-3763 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-1169))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -318) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (LIST (QUOTE -295) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1271) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-316))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-556))) (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-924))) (|HasCategory| $ (QUOTE (-146)))) (-3763 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1271 |#1| |#2| |#3| |#4|) (QUOTE (-924))) (|HasCategory| $ (QUOTE (-146))))))
-(-323 R S)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1041))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (-3739 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1171))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| $ (QUOTE (-146)))) (-3739 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| $ (QUOTE (-146))))))
+(-324 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-324 R FE)
+(-325 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-325 R)
+(-326 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4457 -3763 (-12 (|has| |#1| (-567)) (-3763 (|has| |#1| (-1066)) (|has| |#1| (-484)))) (|has| |#1| (-1066)) (|has| |#1| (-484))) (-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) ((-4462 "*") |has| |#1| (-567)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-567)) (-4452 |has| |#1| (-567)))
-((-3763 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-567))) (-3763 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (QUOTE (-1066))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))))) (-3763 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-1129)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))))) (-3763 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-1129)))) (-3763 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))))) (-3763 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-1066)))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1129))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-326 R -3027)
+((-4459 -3739 (-12 (|has| |#1| (-568)) (-3739 (|has| |#1| (-1068)) (|has| |#1| (-485)))) (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) ((-4464 "*") |has| |#1| (-568)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-568)) (-4454 |has| |#1| (-568)))
+((-3739 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3739 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-21))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-1068))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3739 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3739 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1131)))) (-3739 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3739 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-327 R -3003)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
-(-327)
+(-328)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-328 FE |var| |cen|)
+(-329 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))))
-(-329 M)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+(-330 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-330 E OV R P)
+(-331 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-331 S)
+(-332 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4455 . T) (-4454 . T))
-((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-803))))
-(-332 S E)
+((-4457 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-804))))
+(-333 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-333 S)
+(-334 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-782) (QUOTE (-803))))
-(-334 S R E)
+((|HasCategory| (-783) (QUOTE (-804))))
+(-335 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))))
-(-335 R E)
+((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))))
+(-336 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-336 S)
+(-337 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-337 S -3027)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-338 S -3003)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-378))))
-(-338 -3027)
+((|HasCategory| |#2| (QUOTE (-379))))
+(-339 -3003)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-339)
+(-340)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
NIL
NIL
-(-340 E)
+(-341 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-341)
+(-342)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}")))
NIL
NIL
-(-342)
+(-343)
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-343 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-344 S -3027 UP UPUP R)
+(-345 S -3003 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-345 -3027 UP UPUP R)
+(-346 -3003 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-346 -3027 UP UPUP R)
+(-347 -3003 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-347 S R)
+(-348 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-348 R)
+((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-349 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-349 |basicSymbols| |subscriptedSymbols| R)
+(-350 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-389)))) (|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-350 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-351 S -3027 UP UPUP)
+(-352 S -3003 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-373))))
-(-352 -3027 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374))))
+(-353 -3003 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4453 |has| (-418 |#2|) (-373)) (-4458 |has| (-418 |#2|) (-373)) (-4452 |has| (-418 |#2|) (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-353 |p| |extdeg|)
+(-354 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| (-925 |#1|) (QUOTE (-146))) (|HasCategory| (-925 |#1|) (QUOTE (-378)))) (|HasCategory| (-925 |#1|) (QUOTE (-148))) (|HasCategory| (-925 |#1|) (QUOTE (-378))) (|HasCategory| (-925 |#1|) (QUOTE (-146))))
-(-354 GF |defpol|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146))))
+(-355 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146))))
-(-355 GF |extdeg|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-356 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146))))
-(-356 GF)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-357 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-357 F1 GF F2)
+(-358 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-358 S)
+(-359 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-359)
+(-360)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-360 R UP -3027)
+(-361 R UP -3003)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-361 |p| |extdeg|)
+(-362 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| (-925 |#1|) (QUOTE (-146))) (|HasCategory| (-925 |#1|) (QUOTE (-378)))) (|HasCategory| (-925 |#1|) (QUOTE (-148))) (|HasCategory| (-925 |#1|) (QUOTE (-378))) (|HasCategory| (-925 |#1|) (QUOTE (-146))))
-(-362 GF |uni|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146))))
+(-363 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146))))
-(-363 GF |extdeg|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-364 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146))))
-(-364 |p| |n|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-365 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| (-925 |#1|) (QUOTE (-146))) (|HasCategory| (-925 |#1|) (QUOTE (-378)))) (|HasCategory| (-925 |#1|) (QUOTE (-148))) (|HasCategory| (-925 |#1|) (QUOTE (-378))) (|HasCategory| (-925 |#1|) (QUOTE (-146))))
-(-365 GF |defpol|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146))))
+(-366 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146))))
-(-366 -3027 GF)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-367 -3003 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-367 GF)
+(-368 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-368 -3027 FP FPP)
+(-369 -3003 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-369 GF |n|)
+(-370 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-146))))
-(-370 R |ls|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146))))
+(-371 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-371 S)
+(-372 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-372 S)
+(-373 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-373)
+(-374)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-374 |Name| S)
+(-375 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-375 S)
+(-376 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-376 S R)
+(-377 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-567))))
-(-377 R)
+((|HasCategory| |#2| (QUOTE (-568))))
+(-378 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4457 |has| |#1| (-567)) (-4455 . T) (-4454 . T))
+((-4459 |has| |#1| (-568)) (-4457 . T) (-4456 . T))
NIL
-(-378)
+(-379)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-379 S R UP)
+(-380 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-373))))
-(-380 R UP)
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374))))
+(-381 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-381 S A R B)
+(-382 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-382 A S)
+(-383 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))))
-(-383 S)
+((|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))))
+(-384 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4460 . T))
+((-4462 . T))
NIL
-(-384 |VarSet| R)
+(-385 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4455 . T) (-4454 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4457 . T) (-4456 . T))
NIL
-(-385 S V)
+(-386 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-386 S R)
+(-387 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))
-(-387 R)
+((|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))
+(-388 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
-(-388 |Par|)
+(-389 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-389)
+(-390)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4443 . T) (-4451 . T) (-3493 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4445 . T) (-4453 . T) (-3468 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-390 |Par|)
+(-391 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-391 R S)
+(-392 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-392 R |Basis|)
+(-393 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-393)
+(-394)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-394)
+(-395)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-395 R S)
+(-396 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
((|HasCategory| |#1| (QUOTE (-174))))
-(-396 S)
+(-397 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-397 S)
+(-398 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-861))))
-(-398)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-399)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-399)
+(-400)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-400)
+(-401)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-401 |n| |class| R)
+(-402 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-402)
+(-403)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-403 -3027 UP UPUP R)
+(-404 -3003 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-404 S)
+(-405 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-405)
+(-406)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-406)
+(-407)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
-(-407)
+(-408)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-408)
+(-409)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-409 -1777 |returnType| -4223 |symbols|)
+(-410 -1811 |returnType| -4200 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-410 -3027 UP)
-((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
+(-411 -3003 UP)
+((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-411 R)
+(-412 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-412 S)
+(-413 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-413)
+(-414)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-414 S)
+(-415 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4451)))
-(-415)
+((|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4453)))
+(-416)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3493 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-3468 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-416 R S)
+(-417 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-417 A B)
+(-418 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-418 S)
+(-419 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4447 -12 (|has| |#1| (-6 -4458)) (|has| |#1| (-463)) (|has| |#1| (-6 -4447))) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-831))) (-3763 (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-861)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-556))) (-12 (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4447)) (|HasCategory| |#1| (QUOTE (-463)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-419 S R UP)
+((-4449 -12 (|has| |#1| (-6 -4460)) (|has| |#1| (-464)) (|has| |#1| (-6 -4449))) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-832))) (-3739 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-862)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4449)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-420 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-420 R UP)
+(-421 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-421 A S)
+(-422 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-422 S)
+((|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-423 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-423 R1 F1 U1 A1 R2 F2 U2 A2)
+(-424 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-424 R -3027 UP A)
+(-425 R -3003 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-425 R -3027 UP A |ibasis|)
+(-426 R -3003 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1055) (|devaluate| |#2|))))
-(-426 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1057) (|devaluate| |#2|))))
+(-427 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-427 S R)
+(-428 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))))
-(-428 R)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-429 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4457 |has| |#1| (-567)) (-4455 . T) (-4454 . T))
+((-4459 |has| |#1| (-568)) (-4457 . T) (-4456 . T))
NIL
-(-429 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -318) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -295) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1239))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-1239)))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-463))))
(-430 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1241))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1241)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464))))
+(-431 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-431 R FE |x| |cen|)
+(-432 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-432 R A S B)
+(-433 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-433 R FE |Expon| UPS TRAN |x|)
+(-434 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-434 S A R B)
+(-435 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-435 A S)
+(-436 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-378))))
-(-436 S)
+((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))))
+(-437 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4460 . T) (-4450 . T) (-4461 . T))
+((-4462 . T) (-4452 . T) (-4463 . T))
NIL
-(-437 R -3027)
+(-438 R -3003)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-438 R E)
+(-439 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4447 -12 (|has| |#1| (-6 -4447)) (|has| |#2| (-6 -4447))) (-4454 . T) (-4455 . T) (-4457 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#2| (QUOTE -4447))))
-(-439 R -3027)
+((-4449 -12 (|has| |#1| (-6 -4449)) (|has| |#2| (-6 -4449))) (-4456 . T) (-4457 . T) (-4459 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4449)) (|HasAttribute| |#2| (QUOTE -4449))))
+(-440 R -3003)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-440 S R)
+(-441 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-1129))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))))
-(-441 R)
+((|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))))
+(-442 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4457 -3763 (|has| |#1| (-1066)) (|has| |#1| (-484))) (-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) ((-4462 "*") |has| |#1| (-567)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-567)) (-4452 |has| |#1| (-567)))
+((-4459 -3739 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) ((-4464 "*") |has| |#1| (-568)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-568)) (-4454 |has| |#1| (-568)))
NIL
-(-442 R -3027)
+(-443 R -3003)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-443 R -3027)
+(-444 R -3003)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-444 R -3027)
+(-445 R -3003)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-445)
+(-446)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-446 R -3027 UP)
+(-447 R -3003 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-48)))))
-(-447)
+((|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-48)))))
+(-448)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-448)
+(-449)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-449 |f|)
+(-450 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-450)
+(-451)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-451)
+(-452)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-452)
+(-453)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-453 UP)
+(-454 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-454 R UP -3027)
+(-455 R UP -3003)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-455 R UP)
+(-456 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-456 R)
+(-457 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-415))))
-(-457)
+((|HasCategory| |#1| (QUOTE (-416))))
+(-458)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-458 |Dom| |Expon| |VarSet| |Dpol|)
+(-459 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-459 |Dom| |Expon| |VarSet| |Dpol|)
+(-460 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-460 |Dom| |Expon| |VarSet| |Dpol|)
+(-461 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-461 |Dom| |Expon| |VarSet| |Dpol|)
+(-462 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))))
-(-462 S)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-463 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-463)
+(-464)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-464 R |n| |ls| |gamma|)
+(-465 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4457 |has| (-418 (-967 |#1|)) (-567)) (-4455 . T) (-4454 . T))
-((|HasCategory| (-418 (-967 |#1|)) (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| (-418 (-967 |#1|)) (QUOTE (-567))))
-(-465 |vl| R E)
+((-4459 |has| (-419 (-969 |#1|)) (-568)) (-4457 . T) (-4456 . T))
+((|HasCategory| (-419 (-969 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-969 |#1|)) (QUOTE (-568))))
+(-466 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-924))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-466 R BP)
+(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-926))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-467 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-467 OV E S R P)
+(-468 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-468 E OV R P)
+(-469 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-469 R)
+(-470 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-470 R FE)
+(-471 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-471 RP TP)
+(-472 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-472 |vl| R IS E |ff| P)
+(-473 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-473 E V R P Q)
+(-474 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-474 R E |VarSet| P)
+(-475 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-475 S R E)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-476 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-476 R E)
+(-477 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-477)
+(-478)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-478)
+(-479)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-479)
+(-480)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-480 S R E)
+(-481 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-481 R E)
+(-482 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-482 |lv| -3027 R)
+(-483 |lv| -3003 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-483 S)
+(-484 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-484)
+(-485)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-485 |Coef| |var| |cen|)
+(-486 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))))
-(-486 |Key| |Entry| |Tbl| |dent|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+(-487 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))))
-(-487 R E V P)
+((-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))))
+(-488 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-488)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-489)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-489)
+(-490)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-490 |Key| |Entry| |hashfn|)
+(-491 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-491)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-492)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-492 |vl| R)
+(-493 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-924))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-493 -2831 S)
+(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-926))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-494 -2809 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-373))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (-3763 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| |#2| (QUOTE (-238))) (-3763 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066))))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-378)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3763 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-737)))) (-3763 (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasAttribute| |#2| (QUOTE -4457)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))))
-(-494)
+((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3739 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-3739 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3739 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-3739 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
+(-495)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-495 S)
+(-496 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-496 -3027 UP UPUP R)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-497 -3003 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-497 BP)
+(-498 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-498)
+(-499)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3763 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146)))))
-(-499 A S)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3739 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146)))))
+(-500 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-500 S)
+((|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-501 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-501 S)
+(-502 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-502)
+(-503)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-503 S)
+(-504 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-504)
+(-505)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-505 -3027 UP |AlExt| |AlPol|)
+(-506 -3003 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-506)
+(-507)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| $ (QUOTE (-1066))) (|HasCategory| $ (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-507 S |mn|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-508 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-508 R |mnRow| |mnCol|)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-509 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-509 K R UP)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-510 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-510 R UP -3027)
+(-511 R UP -3003)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-511 |mn|)
+(-512 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -318) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-112) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-112) (QUOTE (-1117))) (|HasCategory| (-112) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-512 K R UP L)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-513 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-513)
+(-514)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-514 R Q A B)
+(-515 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-515 -3027 |Expon| |VarSet| |DPoly|)
+(-516 -3003 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-1194)))))
-(-516 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1196)))))
+(-517 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-517)
+(-518)
((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-518 A S)
+(-519 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-519 A S)
+(-520 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-520 A S)
+(-521 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-521 A S)
+(-522 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-522 A S)
+(-523 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-523 A S)
+(-524 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-524 S A B)
+(-525 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-525 A B)
+(-526 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-526 S E |un|)
+(-527 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-803))))
-(-527 S |mn|)
+((|HasCategory| |#2| (QUOTE (-804))))
+(-528 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-528)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-529)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-529 |p| |n|)
+(-530 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| (-592 |#1|) (QUOTE (-146))) (|HasCategory| (-592 |#1|) (QUOTE (-378)))) (|HasCategory| (-592 |#1|) (QUOTE (-148))) (|HasCategory| (-592 |#1|) (QUOTE (-378))) (|HasCategory| (-592 |#1|) (QUOTE (-146))))
-(-530 R |mnRow| |mnCol| |Row| |Col|)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146))))
+(-531 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-531 S |mn|)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-532 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-532 R |Row| |Col| M)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-533 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4461)))
-(-533 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4463)))
+(-534 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4461)))
-(-534 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4463)))
+(-535 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))) (|HasAttribute| |#1| (QUOTE (-4462 "*"))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-535)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4464 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-536)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-536)
+(-537)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-537 S)
+(-538 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-538)
+(-539)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-539 GF)
+(-540 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-540)
+(-541)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-541 R)
+(-542 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-542 |Varset|)
+(-543 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-543 K -3027 |Par|)
+(-544 K -3003 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-544)
+(-545)
NIL
NIL
NIL
-(-545)
+(-546)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-546 R)
+(-547 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-547)
+(-548)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-548 |Coef| UTS)
+(-549 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-549 K -3027 |Par|)
+(-550 K -3003 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-550 R BP |pMod| |nextMod|)
+(-551 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-551 OV E R P)
+(-552 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-552 K UP |Coef| UTS)
+(-553 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-553 |Coef| UTS)
+(-554 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-554 R UP)
+(-555 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-555 S)
+(-556 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-556)
+(-557)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-557)
+(-558)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-558)
+(-559)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-559)
+(-560)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-560)
+(-561)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-561 |Key| |Entry| |addDom|)
+(-562 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-562 R -3027)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-563 R -3003)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-563 R0 -3027 UP UPUP R)
+(-564 R0 -3003 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-564)
+(-565)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-565 R)
+(-566 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3493 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-3468 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-566 S)
+(-567 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-567)
+(-568)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-568 R -3027)
+(-569 R -3003)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-569 I)
+(-570 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-570)
+(-571)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-571 R -3027 L)
+(-572 R -3003 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -667) (|devaluate| |#2|))))
-(-572)
+((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|))))
+(-573)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-573 -3027 UP UPUP R)
+(-574 -3003 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-574 -3027 UP)
+(-575 -3003 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-575)
+(-576)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4442 . T) (-4448 . T) (-4452 . T) (-4447 . T) (-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4444 . T) (-4450 . T) (-4454 . T) (-4449 . T) (-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-576)
+(-577)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-577 R -3027 L)
+(-578 R -3003 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -667) (|devaluate| |#2|))))
-(-578 R -3027)
+((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|))))
+(-579 R -3003)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-1156)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-640)))))
-(-579 -3027 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641)))))
+(-580 -3003 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-580 S)
+(-581 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-581 -3027)
+(-582 -3003)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-582 R)
+(-583 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3493 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-3468 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-583)
+(-584)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-584 R -3027)
+(-585 R -3003)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-293))) (|HasCategory| |#2| (QUOTE (-640))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-293)))) (|HasCategory| |#1| (QUOTE (-567))))
-(-585 -3027 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568))))
+(-586 -3003 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-586 R -3027)
+(-587 R -3003)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-587)
+(-588)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-588)
+(-589)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-589)
+(-590)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-590)
+(-591)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-591 |p| |unBalanced?|)
+(-592 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-592 |p|)
+(-593 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-378))))
-(-593)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379))))
+(-594)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-594 R -3027)
+(-595 R -3003)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-595 E -3027)
+(-596 E -3003)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-596)
+(-597)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-597 -3027)
+(-598 -3003)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4455 . T) (-4454 . T))
-((|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-1194)))))
-(-598 I)
+((-4457 . T) (-4456 . T))
+((|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-1196)))))
+(-599 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-599 GF)
+(-600 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-600 R)
+(-601 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-148))))
-(-601)
+(-602)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-602 R E V P TS)
+(-603 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-603)
+(-604)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-604 |mn|)
+(-605 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (-3763 (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117)))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))))
-(-605 E V R P)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3739 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))))
+(-606 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-606 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))) (|HasCategory| (-575) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))))
(-607 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))))
+(-608 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4462 "*") |has| |#1| (-567)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-567))))
-(-608)
+(((-4464 "*") |has| |#1| (-568)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-568))))
+(-609)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-609 A B)
+(-610 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-610 A B C)
+(-611 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-611 R -3027 FG)
+(-612 R -3003 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-612 S)
+(-613 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-613 R |mn|)
+(-614 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-614 S |Index| |Entry|)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-615 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#3| (QUOTE (-1117))))
-(-615 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#3| (QUOTE (-1119))))
+(-616 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-616)
+(-617)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-617)
+(-618)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-618 R A)
+(-619 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4457 -3763 (-3224 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))) (-4455 . T) (-4454 . T))
-((-3763 (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|))))
-(-619 |Entry|)
+((-4459 -3739 (-3200 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4457 . T) (-4456 . T))
+((-3739 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))))
+(-620 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| (-1176) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-620 S |Key| |Entry|)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| (-1178) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-621 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-621 |Key| |Entry|)
+(-622 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4461 . T))
+((-4463 . T))
NIL
-(-622 R S)
+(-623 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-623 S)
+(-624 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))))
-(-624 S)
+((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))))
+(-625 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-625 S)
+(-626 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-626 -3027 UP)
+(-627 -3003 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-627 S)
+(-628 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-628)
+(-629)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-629 S)
+(-630 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-630 S R)
+(-631 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-631 R)
+(-632 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-632 A R S)
+(-633 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-859))))
-(-633 R -3027)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-860))))
+(-634 R -3003)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-634 R UP)
+(-635 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4453 . T) (-4457 . T))
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-635 R E V P TS ST)
+((-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4455 . T) (-4459 . T))
+((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-636 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-636 OV E Z P)
+(-637 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-637)
+(-638)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-638 |VarSet| R |Order|)
+(-639 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-639 R |ls|)
+(-640 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-640)
+(-641)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-641 R -3027)
+(-642 R -3003)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-642 |lv| -3027)
+(-643 |lv| -3003)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-643)
+(-644)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3179) (QUOTE (-52))))))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-52) (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -318) (QUOTE (-52))))) (|HasCategory| (-1176) (QUOTE (-861))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (QUOTE (-1117))))
-(-644 S R)
+((-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -3153) (QUOTE (-52))))))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1178) (QUOTE (-862))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (QUOTE (-1119))))
+(-645 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))))
-(-645 R)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-646 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4455 . T) (-4454 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4457 . T) (-4456 . T))
NIL
-(-646 R A)
+(-647 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4457 -3763 (-3224 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))) (-4455 . T) (-4454 . T))
-((-3763 (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -428) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -377) (|devaluate| |#1|))))
-(-647 R FE)
+((-4459 -3739 (-3200 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4457 . T) (-4456 . T))
+((-3739 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))))
+(-648 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-648 R)
+(-649 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-649 S R)
+(-650 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3213 (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-373))))
-(-650 R)
+((-3189 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374))))
+(-651 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-651 S)
+(-652 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-652 A B)
+(-653 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-653 A B)
+(-654 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-654 A B C)
+(-655 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-655 S)
+(-656 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-656 T$)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-657 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-657 S)
+(-658 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-658 S)
+(-659 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-659 R)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-660 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-660 S E |un|)
+(-661 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-661 A S)
+(-662 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)))
-(-662 S)
+((|HasAttribute| |#1| (QUOTE -4463)))
+(-663 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-663 R -3027 L)
+(-664 R -3003 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-664 A)
+(-665 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373))))
-(-665 A M)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-666 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373))))
-(-666 S A)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-667 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))))
-(-667 A)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-668 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-668 -3027 UP)
+(-669 -3003 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-669 A -3902)
+(-670 A -1957)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373))))
-(-670 A L)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-671 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-671 S)
+(-672 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-672)
+(-673)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-673 M R S)
+(-674 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4455 . T) (-4454 . T))
-((|HasCategory| |#1| (QUOTE (-802))))
-(-674 R)
+((-4457 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-803))))
+(-675 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-675 |VarSet| R)
+(-676 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4455 . T) (-4454 . T))
-((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-174))))
-(-676 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4457 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174))))
+(-677 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-677 S)
+(-678 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-678 -3027)
+(-679 -3003)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-679 -3027 |Row| |Col| M)
+(-680 -3003 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-680 R E OV P)
+(-681 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-681 |n| R)
+(-682 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4457 . T) (-4460 . T) (-4454 . T) (-4455 . T))
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-567))) (-3763 (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-682)
+((-4459 . T) (-4462 . T) (-4456 . T) (-4457 . T))
+((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-3739 (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-683)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-683 |VarSet|)
+(-684 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-684 A S)
+(-685 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-685 S)
+(-686 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-686 R)
+(-687 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-687)
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-688)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-688 |VarSet|)
+(-689 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-689 A)
+(-690 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-690 A C)
+(-691 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-691 A B C)
+(-692 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-692)
+(-693)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-693 A)
+(-694 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-694 A C)
+(-695 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-695 A B C)
+(-696 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-696 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-697 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-697 S R |Row| |Col|)
+(-698 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-567))))
-(-698 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))))
+(-699 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
-(-699 R |Row| |Col| M)
+(-700 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))))
-(-700 R)
-((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4460 . T) (-4461 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-567))) (|HasAttribute| |#1| (QUOTE (-4462 "*"))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))))
(-701 R)
+((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
+((-4462 . T) (-4463 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4464 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-702 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-702 T$)
+(-703 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-703 S -3027 FLAF FLAS)
+(-704 S -3003 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-704 R Q)
+(-705 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-705)
+(-706)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4453 . T) (-4458 |has| (-710) (-373)) (-4452 |has| (-710) (-373)) (-3501 . T) (-4459 |has| (-710) (-6 -4459)) (-4456 |has| (-710) (-6 -4456)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-710) (QUOTE (-148))) (|HasCategory| (-710) (QUOTE (-146))) (|HasCategory| (-710) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-710) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-710) (QUOTE (-378))) (|HasCategory| (-710) (QUOTE (-373))) (-3763 (|HasCategory| (-710) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-238))) (|HasCategory| (-710) (QUOTE (-237))) (-3763 (-12 (|HasCategory| (-710) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (LIST (QUOTE -915) (QUOTE (-1194))))) (-3763 (|HasCategory| (-710) (QUOTE (-373))) (|HasCategory| (-710) (QUOTE (-359)))) (|HasCategory| (-710) (QUOTE (-359))) (|HasCategory| (-710) (LIST (QUOTE -295) (QUOTE (-710)) (QUOTE (-710)))) (|HasCategory| (-710) (LIST (QUOTE -318) (QUOTE (-710)))) (|HasCategory| (-710) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-710)))) (|HasCategory| (-710) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-710) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-710) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-710) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (-3763 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-373))) (|HasCategory| (-710) (QUOTE (-359)))) (|HasCategory| (-710) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-710) (QUOTE (-1039))) (|HasCategory| (-710) (QUOTE (-1220))) (-12 (|HasCategory| (-710) (QUOTE (-1019))) (|HasCategory| (-710) (QUOTE (-1220)))) (-3763 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-373))) (-12 (|HasCategory| (-710) (QUOTE (-359))) (|HasCategory| (-710) (QUOTE (-924))))) (-3763 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (-12 (|HasCategory| (-710) (QUOTE (-373))) (|HasCategory| (-710) (QUOTE (-924)))) (-12 (|HasCategory| (-710) (QUOTE (-359))) (|HasCategory| (-710) (QUOTE (-924))))) (|HasCategory| (-710) (QUOTE (-556))) (-12 (|HasCategory| (-710) (QUOTE (-1077))) (|HasCategory| (-710) (QUOTE (-1220)))) (|HasCategory| (-710) (QUOTE (-1077))) (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924))) (-3763 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-373)))) (-3763 (-12 (|HasCategory| (-710) (QUOTE (-238))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (QUOTE (-237)))) (-3763 (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-567)))) (-12 (|HasCategory| (-710) (QUOTE (-237))) (|HasCategory| (-710) (QUOTE (-373)))) (-12 (|HasCategory| (-710) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-373)))) (-12 (|HasCategory| (-710) (QUOTE (-238))) (|HasCategory| (-710) (QUOTE (-373)))) (-12 (|HasCategory| (-710) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-710) (QUOTE (-373)))) (|HasCategory| (-710) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-710) (QUOTE (-567))) (|HasAttribute| (-710) (QUOTE -4459)) (|HasAttribute| (-710) (QUOTE -4456)) (-12 (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (LIST (QUOTE -915) (QUOTE (-1194)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-146)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-710) (QUOTE (-316))) (|HasCategory| (-710) (QUOTE (-924)))) (|HasCategory| (-710) (QUOTE (-359)))))
-(-706 S)
+((-4455 . T) (-4460 |has| (-711) (-374)) (-4454 |has| (-711) (-374)) (-3477 . T) (-4461 |has| (-711) (-6 -4461)) (-4458 |has| (-711) (-6 -4458)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-3739 (|HasCategory| (-711) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-3739 (-12 (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1196))))) (-3739 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-3739 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1041))) (|HasCategory| (-711) (QUOTE (-1222))) (-12 (|HasCategory| (-711) (QUOTE (-1021))) (|HasCategory| (-711) (QUOTE (-1222)))) (-3739 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-926))))) (-3739 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-926)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-926))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1079))) (|HasCategory| (-711) (QUOTE (-1222)))) (|HasCategory| (-711) (QUOTE (-1079))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926))) (-3739 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-374)))) (-3739 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-3739 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4461)) (|HasAttribute| (-711) (QUOTE -4458)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1196)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-146)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-360)))))
+(-707 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4461 . T))
+((-4463 . T))
NIL
-(-707 U)
+(-708 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-708)
+(-709)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-709 OV E -3027 PG)
+(-710 OV E -3003 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-710)
+(-711)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3493 . T) (-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-3468 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-711 R)
+(-712 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-712)
+(-713)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4459 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4461 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-713 S D1 D2 I)
+(-714 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-714 S)
+(-715 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-715 S)
+(-716 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-716 S T$)
+(-717 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-717 S -3428 I)
+(-718 S -3404 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-718 E OV R P)
+(-719 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-719 R)
+(-720 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-720 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-721 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-721)
+(-722)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-722 R |Mod| -1745 -4167 |exactQuo|)
+(-723 R |Mod| -1880 -3343 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-723 R |Rep|)
+(-724 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-724 IS E |ff|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-725 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-725 R M)
+(-726 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T))
+((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-726 R |Mod| -1745 -4167 |exactQuo|)
+(-727 R |Mod| -1880 -3343 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-727 S R)
+(-728 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-728 R)
+(-729 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-729 -3027)
+(-730 -3003)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-730 S)
+(-731 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-731)
+(-732)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-732 S)
+(-733 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-733)
+(-734)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-734 S R UP)
+(-735 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-359))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))))
-(-735 R UP)
+((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))))
+(-736 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4453 |has| |#1| (-373)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 |has| |#1| (-374)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-736 S)
+(-737 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-737)
+(-738)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-738 -3027 UP)
+(-739 -3003 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-739 |VarSet| E1 E2 R S PR PS)
+(-740 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-740 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-741 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-741 E OV R PPR)
+(-742 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-742 |vl| R)
+(-743 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-924))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-875 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-743 E OV R PRF)
+(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-926))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-744 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-744 E OV R P)
+(-745 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-745 R S M)
+(-746 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-746 R M)
+(-747 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-861))))
-(-747 S)
+((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-862))))
+(-748 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4450 . T) (-4461 . T))
+((-4452 . T) (-4463 . T))
NIL
-(-748 S)
+(-749 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4460 . T) (-4450 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-749)
+((-4462 . T) (-4452 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-750)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-750 S)
+(-751 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-751 |Coef| |Var|)
+(-752 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4455 . T) (-4454 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-752 OV E R P)
+(-753 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-753 E OV R P)
+(-754 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-754 S R)
+(-755 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-755 R)
+(-756 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-756)
+(-757)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-757)
+(-758)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-758)
+(-759)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-759)
+(-760)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-760)
+(-761)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-761)
+(-762)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-762)
+(-763)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-763)
+(-764)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-764)
+(-765)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-765)
+(-766)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-766)
+(-767)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-767)
+(-768)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-768)
+(-769)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-769)
+(-770)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-770)
+(-771)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-771 S)
+(-772 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-772)
+(-773)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-773 S)
+(-774 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-774)
+(-775)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-775 |Par|)
+(-776 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-776 -3027)
+(-777 -3003)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-777 P -3027)
+(-778 P -3003)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-778 T$)
+(-779 T$)
NIL
NIL
NIL
-(-779 UP -3027)
+(-780 UP -3003)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-780)
+(-781)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-781 R)
+(-782 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-782)
+(-783)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4462 "*") . T))
+(((-4464 "*") . T))
NIL
-(-783 R -3027)
+(-784 R -3003)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-784 S)
+(-785 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-785)
+(-786)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-786 R |PolR| E |PolE|)
+(-787 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-787 R E V P TS)
+(-788 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-788 -3027 |ExtF| |SUEx| |ExtP| |n|)
+(-789 -3003 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-789 BP E OV R P)
+(-790 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-790 |Par|)
+(-791 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-791 R |VarSet|)
+(-792 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3213 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3213 (|HasCategory| |#1| (QUOTE (-556)))) (-3213 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3213 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-575))))) (-3213 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-1194)))) (-3213 (|HasCategory| |#1| (LIST (QUOTE -1009) (QUOTE (-575))))))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-792 R S)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-3189 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-3189 (|HasCategory| |#1| (QUOTE (-557)))) (-3189 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-3189 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-3189 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-3189 (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-793 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-793 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-794 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-795 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))
-(-795 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-796 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-796 S)
+(-797 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-174))))
-(-797)
+((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-174))))
+(-798)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-798)
+(-799)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-799)
+(-800)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-800)
+(-801)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-801 |Curve|)
+(-802 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-802)
+(-803)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-803)
+(-804)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-804)
+(-805)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-805)
+(-806)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-806)
+(-807)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-807 S R)
+(-808 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1077))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-378))))
-(-808 R)
+((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))))
+(-809 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-809 -3763 R OS S)
+(-810 -3739 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-810 R)
+(-811 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (-3763 (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-1077))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1016 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-811)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-3739 (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-812)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-812 R -3027 L)
+(-813 R -3003 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-813 R -3027)
+(-814 R -3003)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-814)
+(-815)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-815 R -3027)
+(-816 R -3003)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-816)
+(-817)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-817 -3027 UP UPUP R)
+(-818 -3003 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-818 -3027 UP L LQ)
+(-819 -3003 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-819)
+(-820)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-820 -3027 UP L LQ)
+(-821 -3003 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-821 -3027 UP)
+(-822 -3003 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-822 -3027 L UP A LO)
+(-823 -3003 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-823 -3027 UP)
+(-824 -3003 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-824 -3027 LO)
+(-825 -3003 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-825 -3027 LODO)
+(-826 -3003 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-826 -2831 S |f|)
+(-827 -2809 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4454 |has| |#2| (-1066)) (-4455 |has| |#2| (-1066)) (-4457 |has| |#2| (-6 -4457)) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-373))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (-3763 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1066)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (|HasCategory| |#2| (QUOTE (-238))) (-3763 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066))))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-378)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-804))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3763 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-737)))) (-3763 (|HasCategory| |#2| (QUOTE (-1066))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-1117)))) (|HasAttribute| |#2| (QUOTE -4457)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))))
-(-827 R)
+((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3739 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-3739 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3739 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-738)))) (-3739 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
+(-828 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-829 (-1194)) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-828 |Kernels| R |var|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-829 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4462 "*") |has| |#2| (-373)) (-4453 |has| |#2| (-373)) (-4458 |has| |#2| (-373)) (-4452 |has| |#2| (-373)) (-4457 . T) (-4455 . T) (-4454 . T))
-((|HasCategory| |#2| (QUOTE (-373))))
-(-829 S)
+(((-4464 "*") |has| |#2| (-374)) (-4455 |has| |#2| (-374)) (-4460 |has| |#2| (-374)) (-4454 |has| |#2| (-374)) (-4459 . T) (-4457 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-374))))
+(-830 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-830 S)
+(-831 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-861))))
-(-831)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-832)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-832)
+(-833)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-833)
+(-834)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-834)
+(-835)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-835)
+(-836)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-836)
+(-837)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-837 R)
+(-838 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-838 P R)
+(-839 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238))))
-(-839)
+(-840)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-840)
+(-841)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-841 S)
+(-842 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4460 . T) (-4450 . T) (-4461 . T))
+((-4462 . T) (-4452 . T) (-4463 . T))
NIL
-(-842)
+(-843)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-843 R S)
+(-844 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-844 R)
+(-845 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4457 |has| |#1| (-859)))
-((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-556))))
-(-845 A S)
+((-4459 |has| |#1| (-860)))
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3739 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557))))
+(-846 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-846 S)
+(-847 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-847 R)
+(-848 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T))
+((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-848)
+(-849)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-849)
+(-850)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-850)
+(-851)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-851)
+(-852)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-852)
+(-853)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-853 R S)
+(-854 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-854 R)
+(-855 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4457 |has| |#1| (-859)))
-((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-21))) (-3763 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-556))))
-(-855)
+((-4459 |has| |#1| (-860)))
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3739 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557))))
+(-856)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-856 -2831 S)
+(-857 -2809 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-857)
+(-858)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-858 S)
+(-859 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-859)
+(-860)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-860 S)
+(-861 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-861)
+(-862)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-862 S R)
+(-863 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))))
-(-863 R)
+((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))))
+(-864 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-864 R C)
+(-865 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567))))
-(-865 R |sigma| -3592)
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))))
+(-866 R |sigma| -3568)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-373))))
-(-866 |x| R |sigma| -3592)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
+(-867 |x| R |sigma| -3568)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-373))))
-(-867 R)
+((-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374))))
+(-868 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))
-(-868)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-869)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-869)
+(-870)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-870 S)
+(-871 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-871)
+(-872)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-872)
+(-873)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-873)
+(-874)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-874)
+(-875)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-875 |VariableList|)
+(-876 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-876)
+(-877)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-877 R |vl| |wl| |wtlevel|)
+(-878 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))))
-(-878 R PS UP)
+((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))))
+(-879 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-879 R |x| |pt|)
+(-880 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-880 |p|)
+(-881 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-881 |p|)
+(-882 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-882 |p|)
+(-883 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-881 |#1|) (QUOTE (-924))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-881 |#1|) (QUOTE (-146))) (|HasCategory| (-881 |#1|) (QUOTE (-148))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-881 |#1|) (QUOTE (-1039))) (|HasCategory| (-881 |#1|) (QUOTE (-831))) (-3763 (|HasCategory| (-881 |#1|) (QUOTE (-831))) (|HasCategory| (-881 |#1|) (QUOTE (-861)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-881 |#1|) (QUOTE (-1169))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| (-881 |#1|) (QUOTE (-237))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-881 |#1|) (QUOTE (-238))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -318) (LIST (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (LIST (QUOTE -295) (LIST (QUOTE -881) (|devaluate| |#1|)) (LIST (QUOTE -881) (|devaluate| |#1|)))) (|HasCategory| (-881 |#1|) (QUOTE (-316))) (|HasCategory| (-881 |#1|) (QUOTE (-556))) (|HasCategory| (-881 |#1|) (QUOTE (-861))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-881 |#1|) (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-881 |#1|) (QUOTE (-924)))) (|HasCategory| (-881 |#1|) (QUOTE (-146)))))
-(-883 |p| PADIC)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-882 |#1|) (QUOTE (-926))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-148))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-882 |#1|) (QUOTE (-1041))) (|HasCategory| (-882 |#1|) (QUOTE (-832))) (-3739 (|HasCategory| (-882 |#1|) (QUOTE (-832))) (|HasCategory| (-882 |#1|) (QUOTE (-862)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-1171))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-237))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-882 |#1|) (QUOTE (-238))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -882) (|devaluate| |#1|)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (QUOTE (-317))) (|HasCategory| (-882 |#1|) (QUOTE (-557))) (|HasCategory| (-882 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-926)))) (|HasCategory| (-882 |#1|) (QUOTE (-146)))))
+(-884 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-831))) (-3763 (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-861))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-884 S T$)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-832))) (-3739 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-885 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))))
-(-885)
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))))
+(-886)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-886)
+(-887)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-887)
+(-888)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-888 CF1 CF2)
+(-889 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-889 |ComponentFunction|)
+(-890 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-890 CF1 CF2)
+(-891 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-891 |ComponentFunction|)
+(-892 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-892)
+(-893)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-893 CF1 CF2)
+(-894 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-894 |ComponentFunction|)
+(-895 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-895)
+(-896)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-896 R)
+(-897 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-897 R S L)
+(-898 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-898 S)
+(-899 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-899 |Base| |Subject| |Pat|)
+(-900 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3213 (|HasCategory| |#2| (QUOTE (-1066)))) (-3213 (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (-12 (|HasCategory| |#2| (QUOTE (-1066))) (-3213 (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))
-(-900 R A B)
+((-12 (-3189 (|HasCategory| |#2| (QUOTE (-1068)))) (-3189 (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (-3189 (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))
+(-901 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-901 R S)
+(-902 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-902 R -3428)
+(-903 R -3404)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-903 R S)
+(-904 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-904 R)
+(-905 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-905 |VarSet|)
+(-906 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-906 UP R)
+(-907 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-907 A T$ S)
+(-908 A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-908 T$ S)
+(-909 T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-909)
+(-910)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-910 UP -3027)
+(-911 UP -3003)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-911)
+(-912)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-912)
+(-913)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-913 S)
+(-914 R S)
+((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
+((-4457 . T) (-4456 . T))
+NIL
+(-915 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-914 A S)
+(-916 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-915 S)
+(-917 S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-916 S)
+(-918 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-917 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-919 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-918 S)
+(-920 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-919 S)
+(-921 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-920 S)
+(-922 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4457 . T))
-((-3763 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-861))))
-(-921 R E |VarSet| S)
+((-4459 . T))
+((-3739 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862))))
+(-923 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-922 R S)
+(-924 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-923 S)
+(-925 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-146))))
-(-924)
+(-926)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-925 |p|)
+(-927 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-378))))
-(-926 R0 -3027 UP UPUP R)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379))))
+(-928 R0 -3003 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-927 UP UPUP R)
+(-929 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-928 UP UPUP)
+(-930 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-929 R)
+(-931 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-930 R)
+(-932 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-931 E OV R P)
+(-933 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-932)
+(-934)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-933 -3027)
+(-935 -3003)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-934 R)
+(-936 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-935)
+(-937)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-936)
+(-938)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4462 "*") . T))
+(((-4464 "*") . T))
NIL
-(-937 -3027 P)
+(-939 -3003 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-938 |xx| -3027)
+(-940 |xx| -3003)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-939 R |Var| |Expon| GR)
+(-941 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-940 S)
+(-942 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-941)
+(-943)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-942)
+(-944)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-943)
+(-945)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-944 R -3027)
+(-946 R -3003)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-945)
+(-947)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-946 S A B)
+(-948 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-947 S R -3027)
+(-949 S R -3003)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-948 I)
+(-950 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-949 S E)
+(-951 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-950 S R L)
+(-952 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-951 S E V R P)
+(-953 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -898) (|devaluate| |#1|))))
-(-952 R -3027 -3428)
+((|HasCategory| |#3| (LIST (QUOTE -899) (|devaluate| |#1|))))
+(-954 R -3003 -3404)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-953 -3428)
+(-955 -3404)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-954 S R Q)
+(-956 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-955 S)
+(-957 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-956 S R P)
+(-958 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-957)
+(-959)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-958 R)
+(-960 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-959 |lv| R)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-961 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-960 |TheField| |ThePols|)
+(-962 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-859))))
-(-961 R S)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-963 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-962 |x| R)
+(-964 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-963 S R E |VarSet|)
+(-965 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-924))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#4| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#4| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#4| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))))
-(-964 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-926))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))))
+(-966 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-965 E V R P -3027)
+(-967 E V R P -3003)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-966 E |Vars| R P S)
+(-968 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-967 R)
+(-969 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1194) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-968 E V R P -3027)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-970 E V R P -3003)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-463))))
-(-969)
+((|HasCategory| |#3| (QUOTE (-464))))
+(-971)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-970)
+(-972)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-971 R L)
+(-973 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-972 A B)
+(-974 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-973 S)
+(-975 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-974)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-976)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-975 -3027)
+(-977 -3003)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-976 I)
+(-978 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-977)
+(-979)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-978 R E)
+(-980 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4458)))
-(-979 A B)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4460)))
+(-981 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4457 -12 (|has| |#2| (-484)) (|has| |#1| (-484))))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804))))) (-12 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-484)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-737))))) (-12 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-378)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#1| (QUOTE (-804))) (|HasCategory| |#2| (QUOTE (-804))))) (-12 (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-737)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861)))))
-(-980)
+((-4459 -12 (|has| |#2| (-485)) (|has| |#1| (-485))))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862)))))
+(-982)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-981 T$)
+(-983 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-982 T$)
+(-984 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-983 S T$)
+(-985 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-984)
+(-986)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-985 S)
+(-987 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
-(-986 R |polR|)
+(-988 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-463))))
-(-987)
+((|HasCategory| |#1| (QUOTE (-464))))
+(-989)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-988)
+(-990)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-989 S |Coef| |Expon| |Var|)
+(-991 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-990 |Coef| |Expon| |Var|)
+(-992 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-991)
+(-993)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-992 S R E |VarSet| P)
+(-994 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-567))))
-(-993 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-568))))
+(-995 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4460 . T))
+((-4462 . T))
NIL
-(-994 R E V P)
+(-996 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-316)))) (|HasCategory| |#1| (QUOTE (-463))))
-(-995 K)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-464))))
+(-997 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-996 |VarSet| E RC P)
+(-998 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-997 R)
+(-999 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-998 R1 R2)
+(-1000 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-999 R)
+(-1001 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-1000 K)
+(-1002 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-1001 R E OV PPR)
+(-1003 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-1002 K R UP -3027)
+(-1004 K R UP -3003)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1003 |vl| |nv|)
+(-1005 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-1004 R |Var| |Expon| |Dpoly|)
+(-1006 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-316)))))
-(-1005 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))))
+(-1007 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1006)
+(-1008)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-1007 A B R S)
+(-1009 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-1008 A S)
+(-1010 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-1169))))
-(-1009 S)
+((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1171))))
+(-1011 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1010 |n| K)
+(-1012 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1011)
+(-1013)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1012 S)
+(-1014 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
-(-1013 S R)
+(-1015 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1077))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-299))))
-(-1014 R)
+((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-300))))
+(-1016 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4453 |has| |#1| (-299)) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 |has| |#1| (-300)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1015 QR R QS S)
+(-1017 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1016 R)
+(-1018 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4453 |has| |#1| (-299)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -295) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-1077))) (|HasCategory| |#1| (QUOTE (-556))))
-(-1017 S)
+((-4455 |has| |#1| (-300)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-557))))
+(-1019 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1018 S)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1020 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1019)
+(-1021)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1020 -3027 UP UPUP |radicnd| |n|)
+(-1022 -3003 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4453 |has| (-418 |#2|) (-373)) (-4458 |has| (-418 |#2|) (-373)) (-4452 |has| (-418 |#2|) (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-418 |#2|) (QUOTE (-146))) (|HasCategory| (-418 |#2|) (QUOTE (-148))) (|HasCategory| (-418 |#2|) (QUOTE (-359))) (-3763 (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))) (|HasCategory| (-418 |#2|) (QUOTE (-378))) (-3763 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3763 (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (QUOTE (-359)))) (-3763 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-359))))) (-3763 (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -650) (QUOTE (-575)))) (-3763 (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 |#2|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-237))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (QUOTE (-238))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))) (-12 (|HasCategory| (-418 |#2|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-418 |#2|) (QUOTE (-373)))))
-(-1021 |bb|)
+((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3739 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3739 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3739 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3739 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3739 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3739 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))))
+(-1023 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-575) (QUOTE (-924))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-148))) (|HasCategory| (-575) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-1039))) (|HasCategory| (-575) (QUOTE (-831))) (-3763 (|HasCategory| (-575) (QUOTE (-831))) (|HasCategory| (-575) (QUOTE (-861)))) (|HasCategory| (-575) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-1169))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| (-575) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| (-575) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| (-575) (QUOTE (-237))) (|HasCategory| (-575) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| (-575) (QUOTE (-238))) (|HasCategory| (-575) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| (-575) (LIST (QUOTE -525) (QUOTE (-1194)) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -318) (QUOTE (-575)))) (|HasCategory| (-575) (LIST (QUOTE -295) (QUOTE (-575)) (QUOTE (-575)))) (|HasCategory| (-575) (QUOTE (-316))) (|HasCategory| (-575) (QUOTE (-556))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-575) (LIST (QUOTE -650) (QUOTE (-575)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-575) (QUOTE (-924)))) (|HasCategory| (-575) (QUOTE (-146)))))
-(-1022)
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3739 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146)))))
+(-1024)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1023)
+(-1025)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1024 RP)
+(-1026 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1025 S)
+(-1027 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1026 A S)
+(-1028 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-1117))))
-(-1027 S)
+((|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-1119))))
+(-1029 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1028 S)
+(-1030 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1029)
+(-1031)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4453 . T) (-4458 . T) (-4452 . T) (-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4457 . T))
+((-4455 . T) (-4460 . T) (-4454 . T) (-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4459 . T))
NIL
-(-1030 R -3027)
+(-1032 R -3003)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1031 R -3027)
+(-1033 R -3003)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1032 -3027 UP)
+(-1034 -3003 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1033 -3027 UP)
+(-1035 -3003 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1034 S)
+(-1036 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1035 F1 UP UPUP R F2)
+(-1037 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1036)
+(-1038)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1037 |Pol|)
+(-1039 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1038 |Pol|)
+(-1040 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1039)
+(-1041)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1040)
+(-1042)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1041 |TheField|)
+(-1043 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4453 . T) (-4458 . T) (-4452 . T) (-4455 . T) (-4454 . T) ((-4462 "*") . T) (-4457 . T))
-((-3763 (|HasCategory| (-418 (-575)) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-418 (-575)) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-418 (-575)) (LIST (QUOTE -1055) (QUOTE (-575)))))
-(-1042 -3027 L)
+((-4455 . T) (-4460 . T) (-4454 . T) (-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4459 . T))
+((-3739 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (QUOTE (-576)))))
+(-1044 -3003 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1043 S)
+(-1045 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1117))))
-(-1044 R E V P)
+((|HasCategory| |#1| (QUOTE (-1119))))
+(-1046 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1045 R)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1047 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4462 "*"))))
-(-1046 R)
+((|HasAttribute| |#1| (QUOTE (-4464 "*"))))
+(-1048 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-316))))
-(-1047 S)
+((-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))))
+(-1049 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1048)
+(-1050)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1049 S)
+(-1051 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1050 S)
+(-1052 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1051 -3027 |Expon| |VarSet| |FPol| |LFPol|)
+(-1053 -3003 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1052)
+(-1054)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1194))) (LIST (QUOTE |:|) (QUOTE -3179) (QUOTE (-52))))))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-52) (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -318) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-1194) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1053)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (QUOTE (-1196))) (LIST (QUOTE |:|) (QUOTE -3153) (QUOTE (-52))))))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-1196) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1055)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1054 A S)
+(-1056 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1055 S)
+(-1057 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1056 Q R)
+(-1058 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1057)
+(-1059)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1058 UP)
+(-1060 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1059 R)
+(-1061 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1060 R)
+(-1062 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1061 T$)
+(-1063 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1062 T$)
+(-1064 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1063 R |ls|)
+(-1065 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| (-791 |#1| (-875 |#2|)) (QUOTE (-1117))) (|HasCategory| (-791 |#1| (-875 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -791) (|devaluate| |#1|) (LIST (QUOTE -875) (|devaluate| |#2|)))))) (|HasCategory| (-791 |#1| (-875 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-791 |#1| (-875 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| (-875 |#2|) (QUOTE (-378))) (|HasCategory| (-791 |#1| (-875 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1064)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1119))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -876) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-876 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1066)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1065 S)
+(-1067 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1066)
+(-1068)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4457 . T))
+((-4459 . T))
NIL
-(-1067 |xx| -3027)
+(-1069 |xx| -3003)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1068 S)
+(-1070 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds if \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1069 S |m| |n| R |Row| |Col|)
+(-1071 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-316))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (QUOTE (-567))) (|HasCategory| |#4| (QUOTE (-174))))
-(-1070 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174))))
+(-1072 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4460 . T) (-4455 . T) (-4454 . T))
+((-4462 . T) (-4457 . T) (-4456 . T))
NIL
-(-1071 |m| |n| R)
+(-1073 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4460 . T) (-4455 . T) (-4454 . T))
-((|HasCategory| |#3| (QUOTE (-174))) (-3763 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (QUOTE (-316))) (|HasCategory| |#3| (QUOTE (-567))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1072 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4462 . T) (-4457 . T) (-4456 . T))
+((|HasCategory| |#3| (QUOTE (-174))) (-3739 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1074 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1073 R)
+(-1075 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1074 S T$)
+(-1076 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1117))))
-(-1075)
+((|HasCategory| |#1| (QUOTE (-1119))))
+(-1077)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1076 S)
+(-1078 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1077)
+(-1079)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1078 |TheField| |ThePolDom|)
+(-1080 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1079)
+(-1081)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4448 . T) (-4452 . T) (-4447 . T) (-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4450 . T) (-4454 . T) (-4449 . T) (-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1080)
+(-1082)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1194))) (LIST (QUOTE |:|) (QUOTE -3179) (QUOTE (-52))))))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-52) (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| (-52) (QUOTE (-1117))) (|HasCategory| (-52) (LIST (QUOTE -318) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (QUOTE (-1117))) (|HasCategory| (-1194) (QUOTE (-861))) (|HasCategory| (-52) (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-52) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1081 S R E V)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (QUOTE (-1196))) (LIST (QUOTE |:|) (QUOTE -3153) (QUOTE (-52))))))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (QUOTE (-1119))) (|HasCategory| (-1196) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1083 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -1009) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-1194)))))
-(-1082 R E V)
+((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1196)))))
+(-1084 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-1083)
+(-1085)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1084 S |TheField| |ThePols|)
+(-1086 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1085 |TheField| |ThePols|)
+(-1087 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1086 R E V P TS)
+(-1088 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1087 S R E V P)
+(-1089 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1088 R E V P)
+(-1090 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1089 R E V P TS)
+(-1091 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1090)
+(-1092)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1091)
+(-1093)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1092 |f|)
+(-1094 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1093 |Base| R -3027)
+(-1095 |Base| R -3003)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1094 |Base| R -3027)
+(-1096 |Base| R -3003)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1095 R |ls|)
+(-1097 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1096 UP SAE UPA)
+(-1098 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1097 R UP M)
+(-1099 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4453 |has| |#1| (-373)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-359))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-359)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-359)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-359)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-359))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-359)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194))))))
-(-1098 UP SAE UPA)
+((-4455 |has| |#1| (-374)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))))
+(-1100 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1099)
+(-1101)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1100)
+(-1102)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1101 S)
+(-1103 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1102)
+(-1104)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1103 R)
+(-1105 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1104 R)
+(-1106 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1105 (-1194)) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1105 S)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1107 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1106 R S)
+(-1108 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-859))))
-(-1107)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-1109)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1108 R S)
+(-1110 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1109 S)
+(-1111 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1111 |#1|) (QUOTE (-1117))))
-(-1110 S)
+((|HasCategory| (-1113 |#1|) (QUOTE (-1119))))
+(-1112 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1111 S)
+(-1113 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1117))))
-(-1112 S L)
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1119))))
+(-1114 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1113)
+(-1115)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1114 A S)
+(-1116 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1115 S)
+(-1117 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4450 . T))
+((-4452 . T))
NIL
-(-1116 S)
+(-1118 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1117)
+(-1119)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1118 |m| |n|)
+(-1120 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1119 S)
+(-1121 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4460 . T) (-4450 . T) (-4461 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-378))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-1120 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4462 . T) (-4452 . T) (-4463 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-1122 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1121)
+(-1123)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1122 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1124 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1123 R FS)
+(-1125 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1124 R E V P TS)
+(-1126 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1125 R E V P TS)
+(-1127 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1126 R E V P)
+(-1128 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1127)
+(-1129)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1128 S)
+(-1130 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1129)
+(-1131)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1130 |dimtot| |dim1| S)
+(-1132 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4454 |has| |#3| (-1066)) (-4455 |has| |#3| (-1066)) (-4457 |has| |#3| (-6 -4457)) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#3| (QUOTE (-373))) (-3763 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3763 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-804))) (-3763 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-378))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575)))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (QUOTE (-1117)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-1066)))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (|HasCategory| |#3| (QUOTE (-238))) (-3763 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066))))) (-3763 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194)))))) (|HasCategory| |#3| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-378)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-737)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-804)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-861)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-737))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-804))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (|HasCategory| (-575) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1194))))) (-3763 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-737)))) (-3763 (|HasCategory| |#3| (QUOTE (-1066))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575)))))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#3| (QUOTE (-1117)))) (|HasAttribute| |#3| (QUOTE -4457)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1066)))) (-12 (|HasCategory| |#3| (QUOTE (-1066))) (|HasCategory| |#3| (LIST (QUOTE -913) (QUOTE (-1194))))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#3| (QUOTE (-1117))) (|HasCategory| |#3| (LIST (QUOTE -318) (|devaluate| |#3|)))))
-(-1131 R |x|)
+((-4456 |has| |#3| (-1068)) (-4457 |has| |#3| (-1068)) (-4459 |has| |#3| (-6 -4459)) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#3| (QUOTE (-374))) (-3739 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3739 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3739 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (QUOTE (-238))) (-3739 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-3739 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119))))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3739 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-738)))) (-3739 (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (|HasAttribute| |#3| (QUOTE -4459)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))))
+(-1133 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-463))))
-(-1132)
+((|HasCategory| |#1| (QUOTE (-464))))
+(-1134)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1133 R -3027)
+(-1135 R -3003)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1134 R)
+(-1136 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1135)
+(-1137)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1136)
+(-1138)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1137)
+(-1139)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4448 . T) (-4452 . T) (-4447 . T) (-4458 . T) (-4459 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4450 . T) (-4454 . T) (-4449 . T) (-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1138 S)
+(-1140 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4460 . T) (-4461 . T))
+((-4462 . T) (-4463 . T))
NIL
-(-1139 S |ndim| R |Row| |Col|)
+(-1141 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-373))) (|HasAttribute| |#3| (QUOTE (-4462 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
-(-1140 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4464 "*"))) (|HasCategory| |#3| (QUOTE (-174))))
+(-1142 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4460 . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4462 . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1141 R |Row| |Col| M)
+(-1143 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1142 R |VarSet|)
+(-1144 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1143 |Coef| |Var| SMP)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1145 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-373))))
-(-1144 R E V P)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))))
+(-1146 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1145 UP -3027)
+(-1147 UP -3003)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1146 R)
+(-1148 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1147 R)
+(-1149 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1148 R)
+(-1150 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1149 S A)
+(-1151 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-861))))
-(-1150 R)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-1152 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1151 R)
+(-1153 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1152)
+(-1154)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1153)
+(-1155)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1154)
+(-1156)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1155)
+(-1157)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1156)
+(-1158)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1157 V C)
+(-1159 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1158 V C)
+(-1160 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -318) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1157 |#1| |#2|) (QUOTE (-1117)))) (|HasCategory| (-1157 |#1| |#2|) (QUOTE (-1117))) (-3763 (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -318) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1157 |#1| |#2|) (QUOTE (-1117))))) (|HasCategory| (-1157 |#1| |#2|) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1159 |ndim| R)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119))) (-3739 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119))))) (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1161 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4457 . T) (-4449 |has| |#2| (-6 (-4462 "*"))) (-4460 . T) (-4454 . T) (-4455 . T))
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-316))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-373))) (-3763 (|HasAttribute| |#2| (QUOTE (-4462 "*"))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
-(-1160 S)
+((-4459 . T) (-4451 |has| |#2| (-6 (-4464 "*"))) (-4462 . T) (-4456 . T) (-4457 . T))
+((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-374))) (-3739 (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+(-1162 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1161)
+(-1163)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1162 R E V P TS)
+(-1164 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1163 R E V P)
+(-1165 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1164 S)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1166 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1165 A S)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1167 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1166 S)
+(-1168 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1167 |Key| |Ent| |dent|)
+(-1169 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))))
-(-1168)
+((-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))))
+(-1170)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1169)
+(-1171)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1170 |Coef|)
+(-1172 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1171 S)
+(-1173 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1172 A B)
+(-1174 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1173 A B C)
+(-1175 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1174 S)
+(-1176 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4461 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1175)
+((-4463 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1177)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1176)
+(-1178)
NIL
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| (-145) (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| (-145) (QUOTE (-1117))) (|HasCategory| (-145) (LIST (QUOTE -318) (QUOTE (-145))))))
-(-1177 |Entry|)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))))
+(-1179 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#1|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (QUOTE (-1117))) (|HasCategory| (-1176) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1178 A)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#1|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (QUOTE (-1119))) (|HasCategory| (-1178) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1180 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))
-(-1179 |Coef|)
+((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-1181 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1180 |Coef|)
+(-1182 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1181 R UP)
+(-1183 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-316))))
-(-1182 |n| R)
+((|HasCategory| |#1| (QUOTE (-317))))
+(-1184 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1183 S1 S2)
+(-1185 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1184)
+(-1186)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1185 |Coef| |var| |cen|)
+(-1187 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4462 "*") -3763 (-3224 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-831))) (|has| |#1| (-174)) (-3224 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-924)))) (-4453 -3763 (-3224 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-831))) (|has| |#1| (-567)) (-3224 (|has| |#1| (-373)) (|has| (-1192 |#1| |#2| |#3|) (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasCategory| (-575) (QUOTE (-1129))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1192) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1192 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1186 R -3027)
+(((-4464 "*") -3739 (-3200 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-3200 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-926)))) (-4455 -3739 (-3200 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-3200 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1188 R -3003)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1187 R)
+(-1189 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1188 R S)
+(-1190 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1189 E OV R P)
+(-1191 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1190 R)
+(-1192 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#1| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1191 |Coef| |var| |cen|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1193 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))))
-(-1192 |Coef| |var| |cen|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+(-1194 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|)))) (|HasCategory| (-782) (QUOTE (-1129))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))))
-(-1193)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+(-1195)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1194)
+(-1196)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1195 R)
+(-1197 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1196 R)
+(-1198 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-6 -4458)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-463))) (-12 (|HasCategory| (-988) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasAttribute| |#1| (QUOTE -4458)))
-(-1197)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-990) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4460)))
+(-1199)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1198)
+(-1200)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1199)
+(-1201)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1200 N)
+(-1202 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1201 N)
+(-1203 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1202)
+(-1204)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1203 R)
+(-1205 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1204)
+(-1206)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1205 S)
+(-1207 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1206 S)
+(-1208 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1207 |Key| |Entry|)
+(-1209 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4460 . T) (-4461 . T))
-((-12 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -318) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4169) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3179) (|devaluate| |#2|)))))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#2| (QUOTE (-1117)))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -625) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1117))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1117))) (-3763 (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#2| (LIST (QUOTE -624) (QUOTE (-873)))) (|HasCategory| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1208 S)
+((-4462 . T) (-4463 . T))
+((-12 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4147) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3153) (|devaluate| |#2|)))))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3739 (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1210 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1209 R)
+(-1211 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1210 S |Key| |Entry|)
+(-1212 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1211 |Key| |Entry|)
+(-1213 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4461 . T))
+((-4463 . T))
NIL
-(-1212 |Key| |Entry|)
+(-1214 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1213)
+(-1215)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1214 S)
+(-1216 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1215)
+(-1217)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1216)
+(-1218)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1217 R)
+(-1219 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1218)
+(-1220)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1219 S)
+(-1221 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1220)
+(-1222)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1221 S)
+(-1223 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1117))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1222 S)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1224 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1223)
+(-1225)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1224 R -3027)
+(-1226 R -3003)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1225 R |Row| |Col| M)
+(-1227 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1226 R -3027)
+(-1228 R -3003)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -625) (LIST (QUOTE -904) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -898) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -898) (|devaluate| |#1|)))))
-(-1227 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -899) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -899) (|devaluate| |#1|)))))
+(-1229 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-378))))
-(-1228 R E V P)
+((|HasCategory| |#4| (QUOTE (-379))))
+(-1230 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1229 |Coef|)
+(-1231 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-373))))
-(-1230 |Curve|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))))
+(-1232 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1231)
+(-1233)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1232 S)
+(-1234 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1233 -3027)
+((|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1235 -3003)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1234)
+(-1236)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1235)
+(-1237)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1236 S)
+(-1238 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-861))))
-(-1237)
+((|HasCategory| |#1| (QUOTE (-862))))
+(-1239)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1238 S)
+(-1240 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1239)
+(-1241)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1240)
+(-1242)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1241)
+(-1243)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1242)
+(-1244)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1243)
+(-1245)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1244 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1246 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1245 |Coef|)
+(-1247 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1246 S |Coef| UTS)
+(-1248 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-373))))
-(-1247 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-374))))
+(-1249 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1248 |Coef| UTS)
+(-1250 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146))))) (-3763 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-148))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasCategory| (-575) (QUOTE (-1129))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861))))) (-3763 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-1194)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -295) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -525) (QUOTE (-1194)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-924))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-316)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146))))))
-(-1249 |Coef| |var| |cen|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-3739 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-3739 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-926))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))))
+(-1251 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4462 "*") -3763 (-3224 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-831))) (|has| |#1| (-174)) (-3224 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-924)))) (-4453 -3763 (-3224 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-831))) (|has| |#1| (-567)) (-3224 (|has| |#1| (-373)) (|has| (-1277 |#1| |#2| |#3|) (-924)))) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|)))))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-575)) (|devaluate| |#1|))))) (|HasCategory| (-575) (QUOTE (-1129))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373))))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1169))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -295) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -318) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -525) (QUOTE (-1194)) (LIST (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-575))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-316))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-924))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1250 ZP)
+(((-4464 "*") -3739 (-3200 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-3200 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-926)))) (-4455 -3739 (-3200 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-3200 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1252 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1251 R S)
+(-1253 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-859))))
-(-1252 S)
+((|HasCategory| |#1| (QUOTE (-860))))
+(-1254 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1117))))
-(-1253 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1119))))
+(-1255 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1254 R Q UP)
+(-1256 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1255 R UP)
+(-1257 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1256 R UP)
+(-1258 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1257 R U)
+(-1259 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1258 |x| R)
+(-1260 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4462 "*") |has| |#2| (-174)) (-4453 |has| |#2| (-567)) (-4456 |has| |#2| (-373)) (-4458 |has| |#2| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-924))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-567)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-389)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-389))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -898) (QUOTE (-575)))) (|HasCategory| |#2| (LIST (QUOTE -898) (QUOTE (-575))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-389)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -625) (LIST (QUOTE -904) (QUOTE (-575)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-547))))) (|HasCategory| |#2| (LIST (QUOTE -650) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (QUOTE (-575)))) (-3763 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| |#2| (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (-3763 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1194)))) (|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasCategory| |#2| (QUOTE (-463))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (-3763 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-924)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-1259 R PR S PS)
+(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4458 |has| |#2| (-374)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3739 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3739 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3739 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-1261 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1260 S R)
+(-1262 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-463))) (|HasCategory| |#2| (QUOTE (-567))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1169))))
-(-1261 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1171))))
+(-1263 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4456 |has| |#1| (-373)) (-4458 |has| |#1| (-6 -4458)) (-4455 . T) (-4454 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-1262 S |Coef| |Expon|)
+(-1264 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1129))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2882) (LIST (|devaluate| |#2|) (QUOTE (-1194))))))
-(-1263 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2858) (LIST (|devaluate| |#2|) (QUOTE (-1196))))))
+(-1265 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1264 RC P)
+(-1266 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1265 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1267 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1266 |Coef|)
+(-1268 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1267 S |Coef| ULS)
+(-1269 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1268 |Coef| ULS)
+(-1270 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1269 |Coef| ULS)
+(-1271 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))))
-(-1270 |Coef| |var| |cen|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+(-1272 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4458 |has| |#1| (-373)) (-4452 |has| |#1| (-373)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#1| (QUOTE (-174))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575))) (|devaluate| |#1|)))) (|HasCategory| (-418 (-575)) (QUOTE (-1129))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-3763 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-567)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -418) (QUOTE (-575)))))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))))
-(-1271 R FE |var| |cen|)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3739 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+(-1273 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4462 "*") |has| (-1270 |#2| |#3| |#4|) (-174)) (-4453 |has| (-1270 |#2| |#3| |#4|) (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-174))) (-3763 (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575)))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -1055) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| (-1270 |#2| |#3| |#4|) (LIST (QUOTE -1055) (QUOTE (-575)))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-373))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-463))) (|HasCategory| (-1270 |#2| |#3| |#4|) (QUOTE (-567))))
-(-1272 A S)
+(((-4464 "*") |has| (-1272 |#2| |#3| |#4|) (-174)) (-4455 |has| (-1272 |#2| |#3| |#4|) (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-174))) (-3739 (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-568))))
+(-1274 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4461)))
-(-1273 S)
+((|HasAttribute| |#1| (QUOTE -4463)))
+(-1275 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1274 |Coef1| |Coef2| UTS1 UTS2)
+(-1276 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1275 S |Coef|)
+(-1277 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-1220))) (|HasSignature| |#2| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4388) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1194))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#2| (QUOTE (-373))))
-(-1276 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasSignature| |#2| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1850) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))))
+(-1278 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1277 |Coef| |var| |cen|)
+(-1279 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4462 "*") |has| |#1| (-174)) (-4453 |has| |#1| (-567)) (-4454 . T) (-4455 . T) (-4457 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasCategory| |#1| (QUOTE (-567))) (-3763 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -913) (QUOTE (-1194)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-782)) (|devaluate| |#1|)))) (|HasCategory| (-782) (QUOTE (-1129))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasSignature| |#1| (LIST (QUOTE -2882) (LIST (|devaluate| |#1|) (QUOTE (-1194)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-782))))) (|HasCategory| |#1| (QUOTE (-373))) (-3763 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-575)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1220))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasSignature| |#1| (LIST (QUOTE -4388) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1194))))) (|HasSignature| |#1| (LIST (QUOTE -1606) (LIST (LIST (QUOTE -655) (QUOTE (-1194))) (|devaluate| |#1|)))))))
-(-1278 |Coef| UTS)
+(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3739 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2858) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3739 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -1850) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1634) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+(-1280 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1279 -3027 UP L UTS)
+(-1281 -3003 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-567))))
-(-1280)
+((|HasCategory| |#1| (QUOTE (-568))))
+(-1282)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1281 |sym|)
+(-1283 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1282 S R)
+(-1284 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-737))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1283 R)
+((|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1285 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4461 . T) (-4460 . T))
+((-4463 . T) (-4462 . T))
NIL
-(-1284 A B)
+(-1286 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1285 R)
+(-1287 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4461 . T) (-4460 . T))
-((-3763 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|))))) (-3763 (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-547)))) (-3763 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-575) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-737))) (|HasCategory| |#1| (QUOTE (-1066))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1066)))) (|HasCategory| |#1| (LIST (QUOTE -624) (QUOTE (-873)))) (-12 (|HasCategory| |#1| (QUOTE (-1117))) (|HasCategory| |#1| (LIST (QUOTE -318) (|devaluate| |#1|)))))
-(-1286)
+((-4463 . T) (-4462 . T))
+((-3739 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3739 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3739 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))))
+(-1288)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1287)
+(-1289)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1288)
+(-1290)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1289)
+(-1291)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1290)
+(-1292)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1291 A S)
+(-1293 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1292 S)
+(-1294 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4455 . T) (-4454 . T))
+((-4457 . T) (-4456 . T))
NIL
-(-1293 R)
+(-1295 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1294 K R UP -3027)
+(-1296 K R UP -3003)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1295)
+(-1297)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1296)
+(-1298)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1297 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1299 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4455 |has| |#1| (-174)) (-4454 |has| |#1| (-174)) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))))
-(-1298 R E V P)
+((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))))
+(-1300 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4461 . T) (-4460 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#4| (LIST (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1117))) (|HasCategory| |#1| (QUOTE (-567))) (|HasCategory| |#3| (QUOTE (-378))) (|HasCategory| |#4| (LIST (QUOTE -624) (QUOTE (-873)))))
-(-1299 R)
+((-4463 . T) (-4462 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))))
+(-1301 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4454 . T) (-4455 . T) (-4457 . T))
+((-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1300 |vl| R)
+(-1302 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4457 . T) (-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4453)))
-(-1301 R |VarSet| XPOLY)
+((-4459 . T) (-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4455)))
+(-1303 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1302 |vl| R)
+(-1304 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T))
+((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-1303 S -3027)
+(-1305 S -3003)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-378))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
-(-1304 -3027)
+((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
+(-1306 -3003)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4452 . T) (-4458 . T) (-4453 . T) ((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
-(-1305 |VarSet| R)
+(-1307 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -728) (LIST (QUOTE -418) (QUOTE (-575))))) (|HasAttribute| |#2| (QUOTE -4453)))
-(-1306 |vl| R)
+((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4455)))
+(-1308 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T))
+((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T))
NIL
-(-1307 R)
+(-1309 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4453 |has| |#1| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4453)))
-(-1308 R E)
+((-4455 |has| |#1| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4455)))
+(-1310 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4457 . T) (-4458 |has| |#1| (-6 -4458)) (-4453 |has| |#1| (-6 -4453)) (-4455 . T) (-4454 . T))
-((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-373))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4453)))
-(-1309 |VarSet| R)
+((-4459 . T) (-4460 |has| |#1| (-6 -4460)) (-4455 |has| |#1| (-6 -4455)) (-4457 . T) (-4456 . T))
+((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4455)))
+(-1311 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4453 |has| |#2| (-6 -4453)) (-4455 . T) (-4454 . T) (-4457 . T))
-((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4453)))
-(-1310)
+((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T))
+((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4455)))
+(-1312)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1311 A)
+(-1313 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1312 R |ls| |ls2|)
+(-1314 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1313 R)
+(-1315 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1314 |p|)
+(-1316 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4462 "*") . T) (-4454 . T) (-4455 . T) (-4457 . T))
+(((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
NIL
NIL
@@ -5204,4 +5212,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2279571 2279576 2279581 2279586) (-2 NIL 2279551 2279556 2279561 2279566) (-1 NIL 2279531 2279536 2279541 2279546) (0 NIL 2279511 2279516 2279521 2279526) (-1314 "ZMOD.spad" 2279320 2279333 2279449 2279506) (-1313 "ZLINDEP.spad" 2278386 2278397 2279310 2279315) (-1312 "ZDSOLVE.spad" 2268331 2268353 2278376 2278381) (-1311 "YSTREAM.spad" 2267826 2267837 2268321 2268326) (-1310 "YDIAGRAM.spad" 2267460 2267469 2267816 2267821) (-1309 "XRPOLY.spad" 2266680 2266700 2267316 2267385) (-1308 "XPR.spad" 2264475 2264488 2266398 2266497) (-1307 "XPOLY.spad" 2264030 2264041 2264331 2264400) (-1306 "XPOLYC.spad" 2263349 2263365 2263956 2264025) (-1305 "XPBWPOLY.spad" 2261786 2261806 2263129 2263198) (-1304 "XF.spad" 2260249 2260264 2261688 2261781) (-1303 "XF.spad" 2258692 2258709 2260133 2260138) (-1302 "XFALG.spad" 2255740 2255756 2258618 2258687) (-1301 "XEXPPKG.spad" 2254991 2255017 2255730 2255735) (-1300 "XDPOLY.spad" 2254605 2254621 2254847 2254916) (-1299 "XALG.spad" 2254265 2254276 2254561 2254600) (-1298 "WUTSET.spad" 2250104 2250121 2253911 2253938) (-1297 "WP.spad" 2249303 2249347 2249962 2250029) (-1296 "WHILEAST.spad" 2249101 2249110 2249293 2249298) (-1295 "WHEREAST.spad" 2248772 2248781 2249091 2249096) (-1294 "WFFINTBS.spad" 2246435 2246457 2248762 2248767) (-1293 "WEIER.spad" 2244657 2244668 2246425 2246430) (-1292 "VSPACE.spad" 2244330 2244341 2244625 2244652) (-1291 "VSPACE.spad" 2244023 2244036 2244320 2244325) (-1290 "VOID.spad" 2243700 2243709 2244013 2244018) (-1289 "VIEW.spad" 2241380 2241389 2243690 2243695) (-1288 "VIEWDEF.spad" 2236581 2236590 2241370 2241375) (-1287 "VIEW3D.spad" 2220542 2220551 2236571 2236576) (-1286 "VIEW2D.spad" 2208433 2208442 2220532 2220537) (-1285 "VECTOR.spad" 2207107 2207118 2207358 2207385) (-1284 "VECTOR2.spad" 2205746 2205759 2207097 2207102) (-1283 "VECTCAT.spad" 2203650 2203661 2205714 2205741) (-1282 "VECTCAT.spad" 2201361 2201374 2203427 2203432) (-1281 "VARIABLE.spad" 2201141 2201156 2201351 2201356) (-1280 "UTYPE.spad" 2200785 2200794 2201131 2201136) (-1279 "UTSODETL.spad" 2200080 2200104 2200741 2200746) (-1278 "UTSODE.spad" 2198296 2198316 2200070 2200075) (-1277 "UTS.spad" 2193243 2193271 2196763 2196860) (-1276 "UTSCAT.spad" 2190722 2190738 2193141 2193238) (-1275 "UTSCAT.spad" 2187845 2187863 2190266 2190271) (-1274 "UTS2.spad" 2187440 2187475 2187835 2187840) (-1273 "URAGG.spad" 2182113 2182124 2187430 2187435) (-1272 "URAGG.spad" 2176750 2176763 2182069 2182074) (-1271 "UPXSSING.spad" 2174395 2174421 2175831 2175964) (-1270 "UPXS.spad" 2171691 2171719 2172527 2172676) (-1269 "UPXSCONS.spad" 2169450 2169470 2169823 2169972) (-1268 "UPXSCCA.spad" 2168021 2168041 2169296 2169445) (-1267 "UPXSCCA.spad" 2166734 2166756 2168011 2168016) (-1266 "UPXSCAT.spad" 2165323 2165339 2166580 2166729) (-1265 "UPXS2.spad" 2164866 2164919 2165313 2165318) (-1264 "UPSQFREE.spad" 2163280 2163294 2164856 2164861) (-1263 "UPSCAT.spad" 2161067 2161091 2163178 2163275) (-1262 "UPSCAT.spad" 2158560 2158586 2160673 2160678) (-1261 "UPOLYC.spad" 2153600 2153611 2158402 2158555) (-1260 "UPOLYC.spad" 2148532 2148545 2153336 2153341) (-1259 "UPOLYC2.spad" 2148003 2148022 2148522 2148527) (-1258 "UP.spad" 2145109 2145124 2145496 2145649) (-1257 "UPMP.spad" 2144009 2144022 2145099 2145104) (-1256 "UPDIVP.spad" 2143574 2143588 2143999 2144004) (-1255 "UPDECOMP.spad" 2141819 2141833 2143564 2143569) (-1254 "UPCDEN.spad" 2141028 2141044 2141809 2141814) (-1253 "UP2.spad" 2140392 2140413 2141018 2141023) (-1252 "UNISEG.spad" 2139745 2139756 2140311 2140316) (-1251 "UNISEG2.spad" 2139242 2139255 2139701 2139706) (-1250 "UNIFACT.spad" 2138345 2138357 2139232 2139237) (-1249 "ULS.spad" 2128129 2128157 2129074 2129503) (-1248 "ULSCONS.spad" 2119263 2119283 2119633 2119782) (-1247 "ULSCCAT.spad" 2117000 2117020 2119109 2119258) (-1246 "ULSCCAT.spad" 2114845 2114867 2116956 2116961) (-1245 "ULSCAT.spad" 2113077 2113093 2114691 2114840) (-1244 "ULS2.spad" 2112591 2112644 2113067 2113072) (-1243 "UINT8.spad" 2112468 2112477 2112581 2112586) (-1242 "UINT64.spad" 2112344 2112353 2112458 2112463) (-1241 "UINT32.spad" 2112220 2112229 2112334 2112339) (-1240 "UINT16.spad" 2112096 2112105 2112210 2112215) (-1239 "UFD.spad" 2111161 2111170 2112022 2112091) (-1238 "UFD.spad" 2110288 2110299 2111151 2111156) (-1237 "UDVO.spad" 2109169 2109178 2110278 2110283) (-1236 "UDPO.spad" 2106662 2106673 2109125 2109130) (-1235 "TYPE.spad" 2106594 2106603 2106652 2106657) (-1234 "TYPEAST.spad" 2106513 2106522 2106584 2106589) (-1233 "TWOFACT.spad" 2105165 2105180 2106503 2106508) (-1232 "TUPLE.spad" 2104651 2104662 2105064 2105069) (-1231 "TUBETOOL.spad" 2101518 2101527 2104641 2104646) (-1230 "TUBE.spad" 2100165 2100182 2101508 2101513) (-1229 "TS.spad" 2098764 2098780 2099730 2099827) (-1228 "TSETCAT.spad" 2085891 2085908 2098732 2098759) (-1227 "TSETCAT.spad" 2073004 2073023 2085847 2085852) (-1226 "TRMANIP.spad" 2067370 2067387 2072710 2072715) (-1225 "TRIMAT.spad" 2066333 2066358 2067360 2067365) (-1224 "TRIGMNIP.spad" 2064860 2064877 2066323 2066328) (-1223 "TRIGCAT.spad" 2064372 2064381 2064850 2064855) (-1222 "TRIGCAT.spad" 2063882 2063893 2064362 2064367) (-1221 "TREE.spad" 2062457 2062468 2063489 2063516) (-1220 "TRANFUN.spad" 2062296 2062305 2062447 2062452) (-1219 "TRANFUN.spad" 2062133 2062144 2062286 2062291) (-1218 "TOPSP.spad" 2061807 2061816 2062123 2062128) (-1217 "TOOLSIGN.spad" 2061470 2061481 2061797 2061802) (-1216 "TEXTFILE.spad" 2060031 2060040 2061460 2061465) (-1215 "TEX.spad" 2057177 2057186 2060021 2060026) (-1214 "TEX1.spad" 2056733 2056744 2057167 2057172) (-1213 "TEMUTL.spad" 2056288 2056297 2056723 2056728) (-1212 "TBCMPPK.spad" 2054381 2054404 2056278 2056283) (-1211 "TBAGG.spad" 2053431 2053454 2054361 2054376) (-1210 "TBAGG.spad" 2052489 2052514 2053421 2053426) (-1209 "TANEXP.spad" 2051897 2051908 2052479 2052484) (-1208 "TALGOP.spad" 2051621 2051632 2051887 2051892) (-1207 "TABLE.spad" 2050032 2050055 2050302 2050329) (-1206 "TABLEAU.spad" 2049513 2049524 2050022 2050027) (-1205 "TABLBUMP.spad" 2046316 2046327 2049503 2049508) (-1204 "SYSTEM.spad" 2045544 2045553 2046306 2046311) (-1203 "SYSSOLP.spad" 2043027 2043038 2045534 2045539) (-1202 "SYSPTR.spad" 2042926 2042935 2043017 2043022) (-1201 "SYSNNI.spad" 2042108 2042119 2042916 2042921) (-1200 "SYSINT.spad" 2041512 2041523 2042098 2042103) (-1199 "SYNTAX.spad" 2037718 2037727 2041502 2041507) (-1198 "SYMTAB.spad" 2035786 2035795 2037708 2037713) (-1197 "SYMS.spad" 2031809 2031818 2035776 2035781) (-1196 "SYMPOLY.spad" 2030816 2030827 2030898 2031025) (-1195 "SYMFUNC.spad" 2030317 2030328 2030806 2030811) (-1194 "SYMBOL.spad" 2027820 2027829 2030307 2030312) (-1193 "SWITCH.spad" 2024591 2024600 2027810 2027815) (-1192 "SUTS.spad" 2021639 2021667 2023058 2023155) (-1191 "SUPXS.spad" 2018922 2018950 2019771 2019920) (-1190 "SUP.spad" 2015642 2015653 2016415 2016568) (-1189 "SUPFRACF.spad" 2014747 2014765 2015632 2015637) (-1188 "SUP2.spad" 2014139 2014152 2014737 2014742) (-1187 "SUMRF.spad" 2013113 2013124 2014129 2014134) (-1186 "SUMFS.spad" 2012750 2012767 2013103 2013108) (-1185 "SULS.spad" 2002521 2002549 2003479 2003908) (-1184 "SUCHTAST.spad" 2002290 2002299 2002511 2002516) (-1183 "SUCH.spad" 2001972 2001987 2002280 2002285) (-1182 "SUBSPACE.spad" 1994087 1994102 2001962 2001967) (-1181 "SUBRESP.spad" 1993257 1993271 1994043 1994048) (-1180 "STTF.spad" 1989356 1989372 1993247 1993252) (-1179 "STTFNC.spad" 1985824 1985840 1989346 1989351) (-1178 "STTAYLOR.spad" 1978459 1978470 1985705 1985710) (-1177 "STRTBL.spad" 1976964 1976981 1977113 1977140) (-1176 "STRING.spad" 1976373 1976382 1976387 1976414) (-1175 "STRICAT.spad" 1976161 1976170 1976341 1976368) (-1174 "STREAM.spad" 1973079 1973090 1975686 1975701) (-1173 "STREAM3.spad" 1972652 1972667 1973069 1973074) (-1172 "STREAM2.spad" 1971780 1971793 1972642 1972647) (-1171 "STREAM1.spad" 1971486 1971497 1971770 1971775) (-1170 "STINPROD.spad" 1970422 1970438 1971476 1971481) (-1169 "STEP.spad" 1969623 1969632 1970412 1970417) (-1168 "STEPAST.spad" 1968857 1968866 1969613 1969618) (-1167 "STBL.spad" 1967383 1967411 1967550 1967565) (-1166 "STAGG.spad" 1966458 1966469 1967373 1967378) (-1165 "STAGG.spad" 1965531 1965544 1966448 1966453) (-1164 "STACK.spad" 1964888 1964899 1965138 1965165) (-1163 "SREGSET.spad" 1962592 1962609 1964534 1964561) (-1162 "SRDCMPK.spad" 1961153 1961173 1962582 1962587) (-1161 "SRAGG.spad" 1956296 1956305 1961121 1961148) (-1160 "SRAGG.spad" 1951459 1951470 1956286 1956291) (-1159 "SQMATRIX.spad" 1949038 1949056 1949954 1950041) (-1158 "SPLTREE.spad" 1943590 1943603 1948474 1948501) (-1157 "SPLNODE.spad" 1940178 1940191 1943580 1943585) (-1156 "SPFCAT.spad" 1938987 1938996 1940168 1940173) (-1155 "SPECOUT.spad" 1937539 1937548 1938977 1938982) (-1154 "SPADXPT.spad" 1929134 1929143 1937529 1937534) (-1153 "spad-parser.spad" 1928599 1928608 1929124 1929129) (-1152 "SPADAST.spad" 1928300 1928309 1928589 1928594) (-1151 "SPACEC.spad" 1912499 1912510 1928290 1928295) (-1150 "SPACE3.spad" 1912275 1912286 1912489 1912494) (-1149 "SORTPAK.spad" 1911824 1911837 1912231 1912236) (-1148 "SOLVETRA.spad" 1909587 1909598 1911814 1911819) (-1147 "SOLVESER.spad" 1908115 1908126 1909577 1909582) (-1146 "SOLVERAD.spad" 1904141 1904152 1908105 1908110) (-1145 "SOLVEFOR.spad" 1902603 1902621 1904131 1904136) (-1144 "SNTSCAT.spad" 1902203 1902220 1902571 1902598) (-1143 "SMTS.spad" 1900475 1900501 1901768 1901865) (-1142 "SMP.spad" 1897950 1897970 1898340 1898467) (-1141 "SMITH.spad" 1896795 1896820 1897940 1897945) (-1140 "SMATCAT.spad" 1894905 1894935 1896739 1896790) (-1139 "SMATCAT.spad" 1892947 1892979 1894783 1894788) (-1138 "SKAGG.spad" 1891910 1891921 1892915 1892942) (-1137 "SINT.spad" 1890850 1890859 1891776 1891905) (-1136 "SIMPAN.spad" 1890578 1890587 1890840 1890845) (-1135 "SIG.spad" 1889908 1889917 1890568 1890573) (-1134 "SIGNRF.spad" 1889026 1889037 1889898 1889903) (-1133 "SIGNEF.spad" 1888305 1888322 1889016 1889021) (-1132 "SIGAST.spad" 1887690 1887699 1888295 1888300) (-1131 "SHP.spad" 1885618 1885633 1887646 1887651) (-1130 "SHDP.spad" 1873821 1873848 1874330 1874429) (-1129 "SGROUP.spad" 1873429 1873438 1873811 1873816) (-1128 "SGROUP.spad" 1873035 1873046 1873419 1873424) (-1127 "SGCF.spad" 1866174 1866183 1873025 1873030) (-1126 "SFRTCAT.spad" 1865104 1865121 1866142 1866169) (-1125 "SFRGCD.spad" 1864167 1864187 1865094 1865099) (-1124 "SFQCMPK.spad" 1858804 1858824 1864157 1864162) (-1123 "SFORT.spad" 1858243 1858257 1858794 1858799) (-1122 "SEXOF.spad" 1858086 1858126 1858233 1858238) (-1121 "SEX.spad" 1857978 1857987 1858076 1858081) (-1120 "SEXCAT.spad" 1855759 1855799 1857968 1857973) (-1119 "SET.spad" 1854083 1854094 1855180 1855219) (-1118 "SETMN.spad" 1852533 1852550 1854073 1854078) (-1117 "SETCAT.spad" 1851855 1851864 1852523 1852528) (-1116 "SETCAT.spad" 1851175 1851186 1851845 1851850) (-1115 "SETAGG.spad" 1847724 1847735 1851155 1851170) (-1114 "SETAGG.spad" 1844281 1844294 1847714 1847719) (-1113 "SEQAST.spad" 1843984 1843993 1844271 1844276) (-1112 "SEGXCAT.spad" 1843140 1843153 1843974 1843979) (-1111 "SEG.spad" 1842953 1842964 1843059 1843064) (-1110 "SEGCAT.spad" 1841878 1841889 1842943 1842948) (-1109 "SEGBIND.spad" 1841636 1841647 1841825 1841830) (-1108 "SEGBIND2.spad" 1841334 1841347 1841626 1841631) (-1107 "SEGAST.spad" 1841048 1841057 1841324 1841329) (-1106 "SEG2.spad" 1840483 1840496 1841004 1841009) (-1105 "SDVAR.spad" 1839759 1839770 1840473 1840478) (-1104 "SDPOL.spad" 1837092 1837103 1837383 1837510) (-1103 "SCPKG.spad" 1835181 1835192 1837082 1837087) (-1102 "SCOPE.spad" 1834334 1834343 1835171 1835176) (-1101 "SCACHE.spad" 1833030 1833041 1834324 1834329) (-1100 "SASTCAT.spad" 1832939 1832948 1833020 1833025) (-1099 "SAOS.spad" 1832811 1832820 1832929 1832934) (-1098 "SAERFFC.spad" 1832524 1832544 1832801 1832806) (-1097 "SAE.spad" 1829994 1830010 1830605 1830740) (-1096 "SAEFACT.spad" 1829695 1829715 1829984 1829989) (-1095 "RURPK.spad" 1827354 1827370 1829685 1829690) (-1094 "RULESET.spad" 1826807 1826831 1827344 1827349) (-1093 "RULE.spad" 1825047 1825071 1826797 1826802) (-1092 "RULECOLD.spad" 1824899 1824912 1825037 1825042) (-1091 "RTVALUE.spad" 1824634 1824643 1824889 1824894) (-1090 "RSTRCAST.spad" 1824351 1824360 1824624 1824629) (-1089 "RSETGCD.spad" 1820729 1820749 1824341 1824346) (-1088 "RSETCAT.spad" 1810665 1810682 1820697 1820724) (-1087 "RSETCAT.spad" 1800621 1800640 1810655 1810660) (-1086 "RSDCMPK.spad" 1799073 1799093 1800611 1800616) (-1085 "RRCC.spad" 1797457 1797487 1799063 1799068) (-1084 "RRCC.spad" 1795839 1795871 1797447 1797452) (-1083 "RPTAST.spad" 1795541 1795550 1795829 1795834) (-1082 "RPOLCAT.spad" 1774901 1774916 1795409 1795536) (-1081 "RPOLCAT.spad" 1753974 1753991 1774484 1774489) (-1080 "ROUTINE.spad" 1749857 1749866 1752621 1752648) (-1079 "ROMAN.spad" 1749185 1749194 1749723 1749852) (-1078 "ROIRC.spad" 1748265 1748297 1749175 1749180) (-1077 "RNS.spad" 1747168 1747177 1748167 1748260) (-1076 "RNS.spad" 1746157 1746168 1747158 1747163) (-1075 "RNG.spad" 1745892 1745901 1746147 1746152) (-1074 "RNGBIND.spad" 1745052 1745066 1745847 1745852) (-1073 "RMODULE.spad" 1744817 1744828 1745042 1745047) (-1072 "RMCAT2.spad" 1744237 1744294 1744807 1744812) (-1071 "RMATRIX.spad" 1743061 1743080 1743404 1743443) (-1070 "RMATCAT.spad" 1738640 1738671 1743017 1743056) (-1069 "RMATCAT.spad" 1734109 1734142 1738488 1738493) (-1068 "RLINSET.spad" 1733664 1733675 1734099 1734104) (-1067 "RINTERP.spad" 1733552 1733572 1733654 1733659) (-1066 "RING.spad" 1733022 1733031 1733532 1733547) (-1065 "RING.spad" 1732500 1732511 1733012 1733017) (-1064 "RIDIST.spad" 1731892 1731901 1732490 1732495) (-1063 "RGCHAIN.spad" 1730475 1730491 1731377 1731404) (-1062 "RGBCSPC.spad" 1730256 1730268 1730465 1730470) (-1061 "RGBCMDL.spad" 1729786 1729798 1730246 1730251) (-1060 "RF.spad" 1727428 1727439 1729776 1729781) (-1059 "RFFACTOR.spad" 1726890 1726901 1727418 1727423) (-1058 "RFFACT.spad" 1726625 1726637 1726880 1726885) (-1057 "RFDIST.spad" 1725621 1725630 1726615 1726620) (-1056 "RETSOL.spad" 1725040 1725053 1725611 1725616) (-1055 "RETRACT.spad" 1724468 1724479 1725030 1725035) (-1054 "RETRACT.spad" 1723894 1723907 1724458 1724463) (-1053 "RETAST.spad" 1723706 1723715 1723884 1723889) (-1052 "RESULT.spad" 1721766 1721775 1722353 1722380) (-1051 "RESRING.spad" 1721113 1721160 1721704 1721761) (-1050 "RESLATC.spad" 1720437 1720448 1721103 1721108) (-1049 "REPSQ.spad" 1720168 1720179 1720427 1720432) (-1048 "REP.spad" 1717722 1717731 1720158 1720163) (-1047 "REPDB.spad" 1717429 1717440 1717712 1717717) (-1046 "REP2.spad" 1707087 1707098 1717271 1717276) (-1045 "REP1.spad" 1701283 1701294 1707037 1707042) (-1044 "REGSET.spad" 1699080 1699097 1700929 1700956) (-1043 "REF.spad" 1698415 1698426 1699035 1699040) (-1042 "REDORDER.spad" 1697621 1697638 1698405 1698410) (-1041 "RECLOS.spad" 1696404 1696424 1697108 1697201) (-1040 "REALSOLV.spad" 1695544 1695553 1696394 1696399) (-1039 "REAL.spad" 1695416 1695425 1695534 1695539) (-1038 "REAL0Q.spad" 1692714 1692729 1695406 1695411) (-1037 "REAL0.spad" 1689558 1689573 1692704 1692709) (-1036 "RDUCEAST.spad" 1689279 1689288 1689548 1689553) (-1035 "RDIV.spad" 1688934 1688959 1689269 1689274) (-1034 "RDIST.spad" 1688501 1688512 1688924 1688929) (-1033 "RDETRS.spad" 1687365 1687383 1688491 1688496) (-1032 "RDETR.spad" 1685504 1685522 1687355 1687360) (-1031 "RDEEFS.spad" 1684603 1684620 1685494 1685499) (-1030 "RDEEF.spad" 1683613 1683630 1684593 1684598) (-1029 "RCFIELD.spad" 1680799 1680808 1683515 1683608) (-1028 "RCFIELD.spad" 1678071 1678082 1680789 1680794) (-1027 "RCAGG.spad" 1675999 1676010 1678061 1678066) (-1026 "RCAGG.spad" 1673854 1673867 1675918 1675923) (-1025 "RATRET.spad" 1673214 1673225 1673844 1673849) (-1024 "RATFACT.spad" 1672906 1672918 1673204 1673209) (-1023 "RANDSRC.spad" 1672225 1672234 1672896 1672901) (-1022 "RADUTIL.spad" 1671981 1671990 1672215 1672220) (-1021 "RADIX.spad" 1668805 1668819 1670351 1670444) (-1020 "RADFF.spad" 1666544 1666581 1666663 1666819) (-1019 "RADCAT.spad" 1666139 1666148 1666534 1666539) (-1018 "RADCAT.spad" 1665732 1665743 1666129 1666134) (-1017 "QUEUE.spad" 1665080 1665091 1665339 1665366) (-1016 "QUAT.spad" 1663568 1663579 1663911 1663976) (-1015 "QUATCT2.spad" 1663188 1663207 1663558 1663563) (-1014 "QUATCAT.spad" 1661358 1661369 1663118 1663183) (-1013 "QUATCAT.spad" 1659279 1659292 1661041 1661046) (-1012 "QUAGG.spad" 1658106 1658117 1659247 1659274) (-1011 "QQUTAST.spad" 1657874 1657883 1658096 1658101) (-1010 "QFORM.spad" 1657492 1657507 1657864 1657869) (-1009 "QFCAT.spad" 1656194 1656205 1657394 1657487) (-1008 "QFCAT.spad" 1654487 1654500 1655689 1655694) (-1007 "QFCAT2.spad" 1654179 1654196 1654477 1654482) (-1006 "QEQUAT.spad" 1653737 1653746 1654169 1654174) (-1005 "QCMPACK.spad" 1648483 1648503 1653727 1653732) (-1004 "QALGSET.spad" 1644561 1644594 1648397 1648402) (-1003 "QALGSET2.spad" 1642556 1642575 1644551 1644556) (-1002 "PWFFINTB.spad" 1639971 1639993 1642546 1642551) (-1001 "PUSHVAR.spad" 1639309 1639329 1639961 1639966) (-1000 "PTRANFN.spad" 1635436 1635447 1639299 1639304) (-999 "PTPACK.spad" 1632524 1632534 1635426 1635431) (-998 "PTFUNC2.spad" 1632347 1632361 1632514 1632519) (-997 "PTCAT.spad" 1631602 1631612 1632315 1632342) (-996 "PSQFR.spad" 1630909 1630933 1631592 1631597) (-995 "PSEUDLIN.spad" 1629795 1629805 1630899 1630904) (-994 "PSETPK.spad" 1615228 1615244 1629673 1629678) (-993 "PSETCAT.spad" 1609148 1609171 1615208 1615223) (-992 "PSETCAT.spad" 1603042 1603067 1609104 1609109) (-991 "PSCURVE.spad" 1602025 1602033 1603032 1603037) (-990 "PSCAT.spad" 1600808 1600837 1601923 1602020) (-989 "PSCAT.spad" 1599681 1599712 1600798 1600803) (-988 "PRTITION.spad" 1598379 1598387 1599671 1599676) (-987 "PRTDAST.spad" 1598098 1598106 1598369 1598374) (-986 "PRS.spad" 1587660 1587677 1598054 1598059) (-985 "PRQAGG.spad" 1587095 1587105 1587628 1587655) (-984 "PROPLOG.spad" 1586667 1586675 1587085 1587090) (-983 "PROPFUN2.spad" 1586290 1586303 1586657 1586662) (-982 "PROPFUN1.spad" 1585688 1585699 1586280 1586285) (-981 "PROPFRML.spad" 1584256 1584267 1585678 1585683) (-980 "PROPERTY.spad" 1583744 1583752 1584246 1584251) (-979 "PRODUCT.spad" 1581426 1581438 1581710 1581765) (-978 "PR.spad" 1579818 1579830 1580517 1580644) (-977 "PRINT.spad" 1579570 1579578 1579808 1579813) (-976 "PRIMES.spad" 1577823 1577833 1579560 1579565) (-975 "PRIMELT.spad" 1575904 1575918 1577813 1577818) (-974 "PRIMCAT.spad" 1575531 1575539 1575894 1575899) (-973 "PRIMARR.spad" 1574536 1574546 1574714 1574741) (-972 "PRIMARR2.spad" 1573303 1573315 1574526 1574531) (-971 "PREASSOC.spad" 1572685 1572697 1573293 1573298) (-970 "PPCURVE.spad" 1571822 1571830 1572675 1572680) (-969 "PORTNUM.spad" 1571597 1571605 1571812 1571817) (-968 "POLYROOT.spad" 1570446 1570468 1571553 1571558) (-967 "POLY.spad" 1567781 1567791 1568296 1568423) (-966 "POLYLIFT.spad" 1567046 1567069 1567771 1567776) (-965 "POLYCATQ.spad" 1565164 1565186 1567036 1567041) (-964 "POLYCAT.spad" 1558634 1558655 1565032 1565159) (-963 "POLYCAT.spad" 1551442 1551465 1557842 1557847) (-962 "POLY2UP.spad" 1550894 1550908 1551432 1551437) (-961 "POLY2.spad" 1550491 1550503 1550884 1550889) (-960 "POLUTIL.spad" 1549432 1549461 1550447 1550452) (-959 "POLTOPOL.spad" 1548180 1548195 1549422 1549427) (-958 "POINT.spad" 1547018 1547028 1547105 1547132) (-957 "PNTHEORY.spad" 1543720 1543728 1547008 1547013) (-956 "PMTOOLS.spad" 1542495 1542509 1543710 1543715) (-955 "PMSYM.spad" 1542044 1542054 1542485 1542490) (-954 "PMQFCAT.spad" 1541635 1541649 1542034 1542039) (-953 "PMPRED.spad" 1541114 1541128 1541625 1541630) (-952 "PMPREDFS.spad" 1540568 1540590 1541104 1541109) (-951 "PMPLCAT.spad" 1539648 1539666 1540500 1540505) (-950 "PMLSAGG.spad" 1539233 1539247 1539638 1539643) (-949 "PMKERNEL.spad" 1538812 1538824 1539223 1539228) (-948 "PMINS.spad" 1538392 1538402 1538802 1538807) (-947 "PMFS.spad" 1537969 1537987 1538382 1538387) (-946 "PMDOWN.spad" 1537259 1537273 1537959 1537964) (-945 "PMASS.spad" 1536269 1536277 1537249 1537254) (-944 "PMASSFS.spad" 1535236 1535252 1536259 1536264) (-943 "PLOTTOOL.spad" 1535016 1535024 1535226 1535231) (-942 "PLOT.spad" 1529939 1529947 1535006 1535011) (-941 "PLOT3D.spad" 1526403 1526411 1529929 1529934) (-940 "PLOT1.spad" 1525560 1525570 1526393 1526398) (-939 "PLEQN.spad" 1512850 1512877 1525550 1525555) (-938 "PINTERP.spad" 1512472 1512491 1512840 1512845) (-937 "PINTERPA.spad" 1512256 1512272 1512462 1512467) (-936 "PI.spad" 1511865 1511873 1512230 1512251) (-935 "PID.spad" 1510835 1510843 1511791 1511860) (-934 "PICOERCE.spad" 1510492 1510502 1510825 1510830) (-933 "PGROEB.spad" 1509093 1509107 1510482 1510487) (-932 "PGE.spad" 1500710 1500718 1509083 1509088) (-931 "PGCD.spad" 1499600 1499617 1500700 1500705) (-930 "PFRPAC.spad" 1498749 1498759 1499590 1499595) (-929 "PFR.spad" 1495412 1495422 1498651 1498744) (-928 "PFOTOOLS.spad" 1494670 1494686 1495402 1495407) (-927 "PFOQ.spad" 1494040 1494058 1494660 1494665) (-926 "PFO.spad" 1493459 1493486 1494030 1494035) (-925 "PF.spad" 1493033 1493045 1493264 1493357) (-924 "PFECAT.spad" 1490715 1490723 1492959 1493028) (-923 "PFECAT.spad" 1488425 1488435 1490671 1490676) (-922 "PFBRU.spad" 1486313 1486325 1488415 1488420) (-921 "PFBR.spad" 1483873 1483896 1486303 1486308) (-920 "PERM.spad" 1479680 1479690 1483703 1483718) (-919 "PERMGRP.spad" 1474450 1474460 1479670 1479675) (-918 "PERMCAT.spad" 1473111 1473121 1474430 1474445) (-917 "PERMAN.spad" 1471643 1471657 1473101 1473106) (-916 "PENDTREE.spad" 1470984 1470994 1471272 1471277) (-915 "PDSPC.spad" 1469797 1469807 1470974 1470979) (-914 "PDSPC.spad" 1468608 1468620 1469787 1469792) (-913 "PDRING.spad" 1468450 1468460 1468588 1468603) (-912 "PDEPROB.spad" 1467465 1467473 1468440 1468445) (-911 "PDEPACK.spad" 1461505 1461513 1467455 1467460) (-910 "PDECOMP.spad" 1460975 1460992 1461495 1461500) (-909 "PDECAT.spad" 1459331 1459339 1460965 1460970) (-908 "PDDOM.spad" 1458769 1458782 1459321 1459326) (-907 "PDDOM.spad" 1458205 1458220 1458759 1458764) (-906 "PCOMP.spad" 1458058 1458071 1458195 1458200) (-905 "PBWLB.spad" 1456646 1456663 1458048 1458053) (-904 "PATTERN.spad" 1451185 1451195 1456636 1456641) (-903 "PATTERN2.spad" 1450923 1450935 1451175 1451180) (-902 "PATTERN1.spad" 1449259 1449275 1450913 1450918) (-901 "PATRES.spad" 1446834 1446846 1449249 1449254) (-900 "PATRES2.spad" 1446506 1446520 1446824 1446829) (-899 "PATMATCH.spad" 1444703 1444734 1446214 1446219) (-898 "PATMAB.spad" 1444132 1444142 1444693 1444698) (-897 "PATLRES.spad" 1443218 1443232 1444122 1444127) (-896 "PATAB.spad" 1442982 1442992 1443208 1443213) (-895 "PARTPERM.spad" 1440990 1440998 1442972 1442977) (-894 "PARSURF.spad" 1440424 1440452 1440980 1440985) (-893 "PARSU2.spad" 1440221 1440237 1440414 1440419) (-892 "script-parser.spad" 1439741 1439749 1440211 1440216) (-891 "PARSCURV.spad" 1439175 1439203 1439731 1439736) (-890 "PARSC2.spad" 1438966 1438982 1439165 1439170) (-889 "PARPCURV.spad" 1438428 1438456 1438956 1438961) (-888 "PARPC2.spad" 1438219 1438235 1438418 1438423) (-887 "PARAMAST.spad" 1437347 1437355 1438209 1438214) (-886 "PAN2EXPR.spad" 1436759 1436767 1437337 1437342) (-885 "PALETTE.spad" 1435729 1435737 1436749 1436754) (-884 "PAIR.spad" 1434716 1434729 1435317 1435322) (-883 "PADICRC.spad" 1431957 1431975 1433128 1433221) (-882 "PADICRAT.spad" 1429865 1429877 1430086 1430179) (-881 "PADIC.spad" 1429560 1429572 1429791 1429860) (-880 "PADICCT.spad" 1428109 1428121 1429486 1429555) (-879 "PADEPAC.spad" 1426798 1426817 1428099 1428104) (-878 "PADE.spad" 1425550 1425566 1426788 1426793) (-877 "OWP.spad" 1424790 1424820 1425408 1425475) (-876 "OVERSET.spad" 1424363 1424371 1424780 1424785) (-875 "OVAR.spad" 1424144 1424167 1424353 1424358) (-874 "OUT.spad" 1423230 1423238 1424134 1424139) (-873 "OUTFORM.spad" 1412622 1412630 1423220 1423225) (-872 "OUTBFILE.spad" 1412040 1412048 1412612 1412617) (-871 "OUTBCON.spad" 1411046 1411054 1412030 1412035) (-870 "OUTBCON.spad" 1410050 1410060 1411036 1411041) (-869 "OSI.spad" 1409525 1409533 1410040 1410045) (-868 "OSGROUP.spad" 1409443 1409451 1409515 1409520) (-867 "ORTHPOL.spad" 1407928 1407938 1409360 1409365) (-866 "OREUP.spad" 1407381 1407409 1407608 1407647) (-865 "ORESUP.spad" 1406682 1406706 1407061 1407100) (-864 "OREPCTO.spad" 1404539 1404551 1406602 1406607) (-863 "OREPCAT.spad" 1398686 1398696 1404495 1404534) (-862 "OREPCAT.spad" 1392723 1392735 1398534 1398539) (-861 "ORDSET.spad" 1391895 1391903 1392713 1392718) (-860 "ORDSET.spad" 1391065 1391075 1391885 1391890) (-859 "ORDRING.spad" 1390455 1390463 1391045 1391060) (-858 "ORDRING.spad" 1389853 1389863 1390445 1390450) (-857 "ORDMON.spad" 1389708 1389716 1389843 1389848) (-856 "ORDFUNS.spad" 1388840 1388856 1389698 1389703) (-855 "ORDFIN.spad" 1388660 1388668 1388830 1388835) (-854 "ORDCOMP.spad" 1387125 1387135 1388207 1388236) (-853 "ORDCOMP2.spad" 1386418 1386430 1387115 1387120) (-852 "OPTPROB.spad" 1385056 1385064 1386408 1386413) (-851 "OPTPACK.spad" 1377465 1377473 1385046 1385051) (-850 "OPTCAT.spad" 1375144 1375152 1377455 1377460) (-849 "OPSIG.spad" 1374798 1374806 1375134 1375139) (-848 "OPQUERY.spad" 1374347 1374355 1374788 1374793) (-847 "OP.spad" 1374089 1374099 1374169 1374236) (-846 "OPERCAT.spad" 1373555 1373565 1374079 1374084) (-845 "OPERCAT.spad" 1373019 1373031 1373545 1373550) (-844 "ONECOMP.spad" 1371764 1371774 1372566 1372595) (-843 "ONECOMP2.spad" 1371188 1371200 1371754 1371759) (-842 "OMSERVER.spad" 1370194 1370202 1371178 1371183) (-841 "OMSAGG.spad" 1369982 1369992 1370150 1370189) (-840 "OMPKG.spad" 1368598 1368606 1369972 1369977) (-839 "OM.spad" 1367571 1367579 1368588 1368593) (-838 "OMLO.spad" 1366996 1367008 1367457 1367496) (-837 "OMEXPR.spad" 1366830 1366840 1366986 1366991) (-836 "OMERR.spad" 1366375 1366383 1366820 1366825) (-835 "OMERRK.spad" 1365409 1365417 1366365 1366370) (-834 "OMENC.spad" 1364753 1364761 1365399 1365404) (-833 "OMDEV.spad" 1359062 1359070 1364743 1364748) (-832 "OMCONN.spad" 1358471 1358479 1359052 1359057) (-831 "OINTDOM.spad" 1358234 1358242 1358397 1358466) (-830 "OFMONOID.spad" 1356357 1356367 1358190 1358195) (-829 "ODVAR.spad" 1355618 1355628 1356347 1356352) (-828 "ODR.spad" 1355262 1355288 1355430 1355579) (-827 "ODPOL.spad" 1352551 1352561 1352891 1353018) (-826 "ODP.spad" 1340890 1340910 1341263 1341362) (-825 "ODETOOLS.spad" 1339539 1339558 1340880 1340885) (-824 "ODESYS.spad" 1337233 1337250 1339529 1339534) (-823 "ODERTRIC.spad" 1333242 1333259 1337190 1337195) (-822 "ODERED.spad" 1332641 1332665 1333232 1333237) (-821 "ODERAT.spad" 1330256 1330273 1332631 1332636) (-820 "ODEPRRIC.spad" 1327293 1327315 1330246 1330251) (-819 "ODEPROB.spad" 1326550 1326558 1327283 1327288) (-818 "ODEPRIM.spad" 1323884 1323906 1326540 1326545) (-817 "ODEPAL.spad" 1323270 1323294 1323874 1323879) (-816 "ODEPACK.spad" 1309936 1309944 1323260 1323265) (-815 "ODEINT.spad" 1309371 1309387 1309926 1309931) (-814 "ODEIFTBL.spad" 1306766 1306774 1309361 1309366) (-813 "ODEEF.spad" 1302257 1302273 1306756 1306761) (-812 "ODECONST.spad" 1301794 1301812 1302247 1302252) (-811 "ODECAT.spad" 1300392 1300400 1301784 1301789) (-810 "OCT.spad" 1298528 1298538 1299242 1299281) (-809 "OCTCT2.spad" 1298174 1298195 1298518 1298523) (-808 "OC.spad" 1295970 1295980 1298130 1298169) (-807 "OC.spad" 1293491 1293503 1295653 1295658) (-806 "OCAMON.spad" 1293339 1293347 1293481 1293486) (-805 "OASGP.spad" 1293154 1293162 1293329 1293334) (-804 "OAMONS.spad" 1292676 1292684 1293144 1293149) (-803 "OAMON.spad" 1292537 1292545 1292666 1292671) (-802 "OAGROUP.spad" 1292399 1292407 1292527 1292532) (-801 "NUMTUBE.spad" 1291990 1292006 1292389 1292394) (-800 "NUMQUAD.spad" 1279966 1279974 1291980 1291985) (-799 "NUMODE.spad" 1271320 1271328 1279956 1279961) (-798 "NUMINT.spad" 1268886 1268894 1271310 1271315) (-797 "NUMFMT.spad" 1267726 1267734 1268876 1268881) (-796 "NUMERIC.spad" 1259840 1259850 1267531 1267536) (-795 "NTSCAT.spad" 1258348 1258364 1259808 1259835) (-794 "NTPOLFN.spad" 1257899 1257909 1258265 1258270) (-793 "NSUP.spad" 1250852 1250862 1255392 1255545) (-792 "NSUP2.spad" 1250244 1250256 1250842 1250847) (-791 "NSMP.spad" 1246474 1246493 1246782 1246909) (-790 "NREP.spad" 1244852 1244866 1246464 1246469) (-789 "NPCOEF.spad" 1244098 1244118 1244842 1244847) (-788 "NORMRETR.spad" 1243696 1243735 1244088 1244093) (-787 "NORMPK.spad" 1241598 1241617 1243686 1243691) (-786 "NORMMA.spad" 1241286 1241312 1241588 1241593) (-785 "NONE.spad" 1241027 1241035 1241276 1241281) (-784 "NONE1.spad" 1240703 1240713 1241017 1241022) (-783 "NODE1.spad" 1240190 1240206 1240693 1240698) (-782 "NNI.spad" 1239085 1239093 1240164 1240185) (-781 "NLINSOL.spad" 1237711 1237721 1239075 1239080) (-780 "NIPROB.spad" 1236252 1236260 1237701 1237706) (-779 "NFINTBAS.spad" 1233812 1233829 1236242 1236247) (-778 "NETCLT.spad" 1233786 1233797 1233802 1233807) (-777 "NCODIV.spad" 1232002 1232018 1233776 1233781) (-776 "NCNTFRAC.spad" 1231644 1231658 1231992 1231997) (-775 "NCEP.spad" 1229810 1229824 1231634 1231639) (-774 "NASRING.spad" 1229406 1229414 1229800 1229805) (-773 "NASRING.spad" 1229000 1229010 1229396 1229401) (-772 "NARNG.spad" 1228352 1228360 1228990 1228995) (-771 "NARNG.spad" 1227702 1227712 1228342 1228347) (-770 "NAGSP.spad" 1226779 1226787 1227692 1227697) (-769 "NAGS.spad" 1216440 1216448 1226769 1226774) (-768 "NAGF07.spad" 1214871 1214879 1216430 1216435) (-767 "NAGF04.spad" 1209273 1209281 1214861 1214866) (-766 "NAGF02.spad" 1203342 1203350 1209263 1209268) (-765 "NAGF01.spad" 1199103 1199111 1203332 1203337) (-764 "NAGE04.spad" 1192803 1192811 1199093 1199098) (-763 "NAGE02.spad" 1183463 1183471 1192793 1192798) (-762 "NAGE01.spad" 1179465 1179473 1183453 1183458) (-761 "NAGD03.spad" 1177469 1177477 1179455 1179460) (-760 "NAGD02.spad" 1170216 1170224 1177459 1177464) (-759 "NAGD01.spad" 1164509 1164517 1170206 1170211) (-758 "NAGC06.spad" 1160384 1160392 1164499 1164504) (-757 "NAGC05.spad" 1158885 1158893 1160374 1160379) (-756 "NAGC02.spad" 1158152 1158160 1158875 1158880) (-755 "NAALG.spad" 1157693 1157703 1158120 1158147) (-754 "NAALG.spad" 1157254 1157266 1157683 1157688) (-753 "MULTSQFR.spad" 1154212 1154229 1157244 1157249) (-752 "MULTFACT.spad" 1153595 1153612 1154202 1154207) (-751 "MTSCAT.spad" 1151689 1151710 1153493 1153590) (-750 "MTHING.spad" 1151348 1151358 1151679 1151684) (-749 "MSYSCMD.spad" 1150782 1150790 1151338 1151343) (-748 "MSET.spad" 1148740 1148750 1150488 1150527) (-747 "MSETAGG.spad" 1148585 1148595 1148708 1148735) (-746 "MRING.spad" 1145562 1145574 1148293 1148360) (-745 "MRF2.spad" 1145132 1145146 1145552 1145557) (-744 "MRATFAC.spad" 1144678 1144695 1145122 1145127) (-743 "MPRFF.spad" 1142718 1142737 1144668 1144673) (-742 "MPOLY.spad" 1140189 1140204 1140548 1140675) (-741 "MPCPF.spad" 1139453 1139472 1140179 1140184) (-740 "MPC3.spad" 1139270 1139310 1139443 1139448) (-739 "MPC2.spad" 1138916 1138949 1139260 1139265) (-738 "MONOTOOL.spad" 1137267 1137284 1138906 1138911) (-737 "MONOID.spad" 1136586 1136594 1137257 1137262) (-736 "MONOID.spad" 1135903 1135913 1136576 1136581) (-735 "MONOGEN.spad" 1134651 1134664 1135763 1135898) (-734 "MONOGEN.spad" 1133421 1133436 1134535 1134540) (-733 "MONADWU.spad" 1131451 1131459 1133411 1133416) (-732 "MONADWU.spad" 1129479 1129489 1131441 1131446) (-731 "MONAD.spad" 1128639 1128647 1129469 1129474) (-730 "MONAD.spad" 1127797 1127807 1128629 1128634) (-729 "MOEBIUS.spad" 1126533 1126547 1127777 1127792) (-728 "MODULE.spad" 1126403 1126413 1126501 1126528) (-727 "MODULE.spad" 1126293 1126305 1126393 1126398) (-726 "MODRING.spad" 1125628 1125667 1126273 1126288) (-725 "MODOP.spad" 1124293 1124305 1125450 1125517) (-724 "MODMONOM.spad" 1124024 1124042 1124283 1124288) (-723 "MODMON.spad" 1120726 1120742 1121445 1121598) (-722 "MODFIELD.spad" 1120088 1120127 1120628 1120721) (-721 "MMLFORM.spad" 1118948 1118956 1120078 1120083) (-720 "MMAP.spad" 1118690 1118724 1118938 1118943) (-719 "MLO.spad" 1117149 1117159 1118646 1118685) (-718 "MLIFT.spad" 1115761 1115778 1117139 1117144) (-717 "MKUCFUNC.spad" 1115296 1115314 1115751 1115756) (-716 "MKRECORD.spad" 1114900 1114913 1115286 1115291) (-715 "MKFUNC.spad" 1114307 1114317 1114890 1114895) (-714 "MKFLCFN.spad" 1113275 1113285 1114297 1114302) (-713 "MKBCFUNC.spad" 1112770 1112788 1113265 1113270) (-712 "MINT.spad" 1112209 1112217 1112672 1112765) (-711 "MHROWRED.spad" 1110720 1110730 1112199 1112204) (-710 "MFLOAT.spad" 1109240 1109248 1110610 1110715) (-709 "MFINFACT.spad" 1108640 1108662 1109230 1109235) (-708 "MESH.spad" 1106422 1106430 1108630 1108635) (-707 "MDDFACT.spad" 1104633 1104643 1106412 1106417) (-706 "MDAGG.spad" 1103924 1103934 1104613 1104628) (-705 "MCMPLX.spad" 1099355 1099363 1099969 1100170) (-704 "MCDEN.spad" 1098565 1098577 1099345 1099350) (-703 "MCALCFN.spad" 1095687 1095713 1098555 1098560) (-702 "MAYBE.spad" 1094971 1094982 1095677 1095682) (-701 "MATSTOR.spad" 1092279 1092289 1094961 1094966) (-700 "MATRIX.spad" 1090983 1090993 1091467 1091494) (-699 "MATLIN.spad" 1088327 1088351 1090867 1090872) (-698 "MATCAT.spad" 1080056 1080078 1088295 1088322) (-697 "MATCAT.spad" 1071657 1071681 1079898 1079903) (-696 "MATCAT2.spad" 1070939 1070987 1071647 1071652) (-695 "MAPPKG3.spad" 1069854 1069868 1070929 1070934) (-694 "MAPPKG2.spad" 1069192 1069204 1069844 1069849) (-693 "MAPPKG1.spad" 1068020 1068030 1069182 1069187) (-692 "MAPPAST.spad" 1067335 1067343 1068010 1068015) (-691 "MAPHACK3.spad" 1067147 1067161 1067325 1067330) (-690 "MAPHACK2.spad" 1066916 1066928 1067137 1067142) (-689 "MAPHACK1.spad" 1066560 1066570 1066906 1066911) (-688 "MAGMA.spad" 1064350 1064367 1066550 1066555) (-687 "MACROAST.spad" 1063929 1063937 1064340 1064345) (-686 "M3D.spad" 1061649 1061659 1063307 1063312) (-685 "LZSTAGG.spad" 1058887 1058897 1061639 1061644) (-684 "LZSTAGG.spad" 1056123 1056135 1058877 1058882) (-683 "LWORD.spad" 1052828 1052845 1056113 1056118) (-682 "LSTAST.spad" 1052612 1052620 1052818 1052823) (-681 "LSQM.spad" 1050805 1050819 1051199 1051250) (-680 "LSPP.spad" 1050340 1050357 1050795 1050800) (-679 "LSMP.spad" 1049190 1049218 1050330 1050335) (-678 "LSMP1.spad" 1047008 1047022 1049180 1049185) (-677 "LSAGG.spad" 1046677 1046687 1046976 1047003) (-676 "LSAGG.spad" 1046366 1046378 1046667 1046672) (-675 "LPOLY.spad" 1045320 1045339 1046222 1046291) (-674 "LPEFRAC.spad" 1044591 1044601 1045310 1045315) (-673 "LO.spad" 1043992 1044006 1044525 1044552) (-672 "LOGIC.spad" 1043594 1043602 1043982 1043987) (-671 "LOGIC.spad" 1043194 1043204 1043584 1043589) (-670 "LODOOPS.spad" 1042124 1042136 1043184 1043189) (-669 "LODO.spad" 1041508 1041524 1041804 1041843) (-668 "LODOF.spad" 1040554 1040571 1041465 1041470) (-667 "LODOCAT.spad" 1039220 1039230 1040510 1040549) (-666 "LODOCAT.spad" 1037884 1037896 1039176 1039181) (-665 "LODO2.spad" 1037157 1037169 1037564 1037603) (-664 "LODO1.spad" 1036557 1036567 1036837 1036876) (-663 "LODEEF.spad" 1035359 1035377 1036547 1036552) (-662 "LNAGG.spad" 1031506 1031516 1035349 1035354) (-661 "LNAGG.spad" 1027617 1027629 1031462 1031467) (-660 "LMOPS.spad" 1024385 1024402 1027607 1027612) (-659 "LMODULE.spad" 1024153 1024163 1024375 1024380) (-658 "LMDICT.spad" 1023440 1023450 1023704 1023731) (-657 "LLINSET.spad" 1022998 1023008 1023430 1023435) (-656 "LITERAL.spad" 1022904 1022915 1022988 1022993) (-655 "LIST.spad" 1020639 1020649 1022051 1022078) (-654 "LIST3.spad" 1019950 1019964 1020629 1020634) (-653 "LIST2.spad" 1018652 1018664 1019940 1019945) (-652 "LIST2MAP.spad" 1015555 1015567 1018642 1018647) (-651 "LINSET.spad" 1015334 1015344 1015545 1015550) (-650 "LINEXP.spad" 1014472 1014482 1015324 1015329) (-649 "LINDEP.spad" 1013281 1013293 1014384 1014389) (-648 "LIMITRF.spad" 1011209 1011219 1013271 1013276) (-647 "LIMITPS.spad" 1010112 1010125 1011199 1011204) (-646 "LIE.spad" 1008128 1008140 1009402 1009547) (-645 "LIECAT.spad" 1007604 1007614 1008054 1008123) (-644 "LIECAT.spad" 1007108 1007120 1007560 1007565) (-643 "LIB.spad" 1005321 1005329 1005767 1005782) (-642 "LGROBP.spad" 1002674 1002693 1005311 1005316) (-641 "LF.spad" 1001629 1001645 1002664 1002669) (-640 "LFCAT.spad" 1000688 1000696 1001619 1001624) (-639 "LEXTRIPK.spad" 996191 996206 1000678 1000683) (-638 "LEXP.spad" 994194 994221 996171 996186) (-637 "LETAST.spad" 993893 993901 994184 994189) (-636 "LEADCDET.spad" 992291 992308 993883 993888) (-635 "LAZM3PK.spad" 990995 991017 992281 992286) (-634 "LAUPOL.spad" 989595 989608 990495 990564) (-633 "LAPLACE.spad" 989178 989194 989585 989590) (-632 "LA.spad" 988618 988632 989100 989139) (-631 "LALG.spad" 988394 988404 988598 988613) (-630 "LALG.spad" 988178 988190 988384 988389) (-629 "KVTFROM.spad" 987913 987923 988168 988173) (-628 "KTVLOGIC.spad" 987425 987433 987903 987908) (-627 "KRCFROM.spad" 987163 987173 987415 987420) (-626 "KOVACIC.spad" 985886 985903 987153 987158) (-625 "KONVERT.spad" 985608 985618 985876 985881) (-624 "KOERCE.spad" 985345 985355 985598 985603) (-623 "KERNEL.spad" 984000 984010 985129 985134) (-622 "KERNEL2.spad" 983703 983715 983990 983995) (-621 "KDAGG.spad" 982812 982834 983683 983698) (-620 "KDAGG.spad" 981929 981953 982802 982807) (-619 "KAFILE.spad" 980892 980908 981127 981154) (-618 "JORDAN.spad" 978721 978733 980182 980327) (-617 "JOINAST.spad" 978415 978423 978711 978716) (-616 "JAVACODE.spad" 978281 978289 978405 978410) (-615 "IXAGG.spad" 976414 976438 978271 978276) (-614 "IXAGG.spad" 974402 974428 976261 976266) (-613 "IVECTOR.spad" 973172 973187 973327 973354) (-612 "ITUPLE.spad" 972333 972343 973162 973167) (-611 "ITRIGMNP.spad" 971172 971191 972323 972328) (-610 "ITFUN3.spad" 970678 970692 971162 971167) (-609 "ITFUN2.spad" 970422 970434 970668 970673) (-608 "ITFORM.spad" 969777 969785 970412 970417) (-607 "ITAYLOR.spad" 967771 967786 969641 969738) (-606 "ISUPS.spad" 960208 960223 966745 966842) (-605 "ISUMP.spad" 959709 959725 960198 960203) (-604 "ISTRING.spad" 958797 958810 958878 958905) (-603 "ISAST.spad" 958516 958524 958787 958792) (-602 "IRURPK.spad" 957233 957252 958506 958511) (-601 "IRSN.spad" 955205 955213 957223 957228) (-600 "IRRF2F.spad" 953690 953700 955161 955166) (-599 "IRREDFFX.spad" 953291 953302 953680 953685) (-598 "IROOT.spad" 951630 951640 953281 953286) (-597 "IR.spad" 949431 949445 951485 951512) (-596 "IRFORM.spad" 948755 948763 949421 949426) (-595 "IR2.spad" 947783 947799 948745 948750) (-594 "IR2F.spad" 946989 947005 947773 947778) (-593 "IPRNTPK.spad" 946749 946757 946979 946984) (-592 "IPF.spad" 946314 946326 946554 946647) (-591 "IPADIC.spad" 946075 946101 946240 946309) (-590 "IP4ADDR.spad" 945632 945640 946065 946070) (-589 "IOMODE.spad" 945154 945162 945622 945627) (-588 "IOBFILE.spad" 944515 944523 945144 945149) (-587 "IOBCON.spad" 944380 944388 944505 944510) (-586 "INVLAPLA.spad" 944029 944045 944370 944375) (-585 "INTTR.spad" 937411 937428 944019 944024) (-584 "INTTOOLS.spad" 935166 935182 936985 936990) (-583 "INTSLPE.spad" 934486 934494 935156 935161) (-582 "INTRVL.spad" 934052 934062 934400 934481) (-581 "INTRF.spad" 932476 932490 934042 934047) (-580 "INTRET.spad" 931908 931918 932466 932471) (-579 "INTRAT.spad" 930635 930652 931898 931903) (-578 "INTPM.spad" 929020 929036 930278 930283) (-577 "INTPAF.spad" 926884 926902 928952 928957) (-576 "INTPACK.spad" 917258 917266 926874 926879) (-575 "INT.spad" 916706 916714 917112 917253) (-574 "INTHERTR.spad" 915980 915997 916696 916701) (-573 "INTHERAL.spad" 915650 915674 915970 915975) (-572 "INTHEORY.spad" 912089 912097 915640 915645) (-571 "INTG0.spad" 905822 905840 912021 912026) (-570 "INTFTBL.spad" 899851 899859 905812 905817) (-569 "INTFACT.spad" 898910 898920 899841 899846) (-568 "INTEF.spad" 897295 897311 898900 898905) (-567 "INTDOM.spad" 895918 895926 897221 897290) (-566 "INTDOM.spad" 894603 894613 895908 895913) (-565 "INTCAT.spad" 892862 892872 894517 894598) (-564 "INTBIT.spad" 892369 892377 892852 892857) (-563 "INTALG.spad" 891557 891584 892359 892364) (-562 "INTAF.spad" 891057 891073 891547 891552) (-561 "INTABL.spad" 889575 889606 889738 889765) (-560 "INT8.spad" 889455 889463 889565 889570) (-559 "INT64.spad" 889334 889342 889445 889450) (-558 "INT32.spad" 889213 889221 889324 889329) (-557 "INT16.spad" 889092 889100 889203 889208) (-556 "INS.spad" 886595 886603 888994 889087) (-555 "INS.spad" 884184 884194 886585 886590) (-554 "INPSIGN.spad" 883632 883645 884174 884179) (-553 "INPRODPF.spad" 882728 882747 883622 883627) (-552 "INPRODFF.spad" 881816 881840 882718 882723) (-551 "INNMFACT.spad" 880791 880808 881806 881811) (-550 "INMODGCD.spad" 880279 880309 880781 880786) (-549 "INFSP.spad" 878576 878598 880269 880274) (-548 "INFPROD0.spad" 877656 877675 878566 878571) (-547 "INFORM.spad" 874855 874863 877646 877651) (-546 "INFORM1.spad" 874480 874490 874845 874850) (-545 "INFINITY.spad" 874032 874040 874470 874475) (-544 "INETCLTS.spad" 874009 874017 874022 874027) (-543 "INEP.spad" 872547 872569 873999 874004) (-542 "INDE.spad" 872276 872293 872537 872542) (-541 "INCRMAPS.spad" 871697 871707 872266 872271) (-540 "INBFILE.spad" 870769 870777 871687 871692) (-539 "INBFF.spad" 866563 866574 870759 870764) (-538 "INBCON.spad" 864853 864861 866553 866558) (-537 "INBCON.spad" 863141 863151 864843 864848) (-536 "INAST.spad" 862802 862810 863131 863136) (-535 "IMPTAST.spad" 862510 862518 862792 862797) (-534 "IMATRIX.spad" 861455 861481 861967 861994) (-533 "IMATQF.spad" 860549 860593 861411 861416) (-532 "IMATLIN.spad" 859154 859178 860505 860510) (-531 "ILIST.spad" 857812 857827 858337 858364) (-530 "IIARRAY2.spad" 857200 857238 857419 857446) (-529 "IFF.spad" 856610 856626 856881 856974) (-528 "IFAST.spad" 856224 856232 856600 856605) (-527 "IFARRAY.spad" 853717 853732 855407 855434) (-526 "IFAMON.spad" 853579 853596 853673 853678) (-525 "IEVALAB.spad" 852984 852996 853569 853574) (-524 "IEVALAB.spad" 852387 852401 852974 852979) (-523 "IDPO.spad" 852185 852197 852377 852382) (-522 "IDPOAMS.spad" 851941 851953 852175 852180) (-521 "IDPOAM.spad" 851661 851673 851931 851936) (-520 "IDPC.spad" 850599 850611 851651 851656) (-519 "IDPAM.spad" 850344 850356 850589 850594) (-518 "IDPAG.spad" 850091 850103 850334 850339) (-517 "IDENT.spad" 849741 849749 850081 850086) (-516 "IDECOMP.spad" 846980 846998 849731 849736) (-515 "IDEAL.spad" 841929 841968 846915 846920) (-514 "ICDEN.spad" 841118 841134 841919 841924) (-513 "ICARD.spad" 840309 840317 841108 841113) (-512 "IBPTOOLS.spad" 838916 838933 840299 840304) (-511 "IBITS.spad" 838119 838132 838552 838579) (-510 "IBATOOL.spad" 835096 835115 838109 838114) (-509 "IBACHIN.spad" 833603 833618 835086 835091) (-508 "IARRAY2.spad" 832591 832617 833210 833237) (-507 "IARRAY1.spad" 831636 831651 831774 831801) (-506 "IAN.spad" 829859 829867 831452 831545) (-505 "IALGFACT.spad" 829462 829495 829849 829854) (-504 "HYPCAT.spad" 828886 828894 829452 829457) (-503 "HYPCAT.spad" 828308 828318 828876 828881) (-502 "HOSTNAME.spad" 828116 828124 828298 828303) (-501 "HOMOTOP.spad" 827859 827869 828106 828111) (-500 "HOAGG.spad" 825141 825151 827849 827854) (-499 "HOAGG.spad" 822198 822210 824908 824913) (-498 "HEXADEC.spad" 820203 820211 820568 820661) (-497 "HEUGCD.spad" 819238 819249 820193 820198) (-496 "HELLFDIV.spad" 818828 818852 819228 819233) (-495 "HEAP.spad" 818220 818230 818435 818462) (-494 "HEADAST.spad" 817753 817761 818210 818215) (-493 "HDP.spad" 806088 806104 806465 806564) (-492 "HDMP.spad" 803302 803317 803918 804045) (-491 "HB.spad" 801553 801561 803292 803297) (-490 "HASHTBL.spad" 800023 800054 800234 800261) (-489 "HASAST.spad" 799739 799747 800013 800018) (-488 "HACKPI.spad" 799230 799238 799641 799734) (-487 "GTSET.spad" 798169 798185 798876 798903) (-486 "GSTBL.spad" 796688 796723 796862 796877) (-485 "GSERIES.spad" 794001 794028 794820 794969) (-484 "GROUP.spad" 793274 793282 793981 793996) (-483 "GROUP.spad" 792555 792565 793264 793269) (-482 "GROEBSOL.spad" 791049 791070 792545 792550) (-481 "GRMOD.spad" 789620 789632 791039 791044) (-480 "GRMOD.spad" 788189 788203 789610 789615) (-479 "GRIMAGE.spad" 781078 781086 788179 788184) (-478 "GRDEF.spad" 779457 779465 781068 781073) (-477 "GRAY.spad" 777920 777928 779447 779452) (-476 "GRALG.spad" 776997 777009 777910 777915) (-475 "GRALG.spad" 776072 776086 776987 776992) (-474 "GPOLSET.spad" 775526 775549 775754 775781) (-473 "GOSPER.spad" 774795 774813 775516 775521) (-472 "GMODPOL.spad" 773943 773970 774763 774790) (-471 "GHENSEL.spad" 773026 773040 773933 773938) (-470 "GENUPS.spad" 769319 769332 773016 773021) (-469 "GENUFACT.spad" 768896 768906 769309 769314) (-468 "GENPGCD.spad" 768482 768499 768886 768891) (-467 "GENMFACT.spad" 767934 767953 768472 768477) (-466 "GENEEZ.spad" 765885 765898 767924 767929) (-465 "GDMP.spad" 762941 762958 763715 763842) (-464 "GCNAALG.spad" 756864 756891 762735 762802) (-463 "GCDDOM.spad" 756040 756048 756790 756859) (-462 "GCDDOM.spad" 755278 755288 756030 756035) (-461 "GB.spad" 752804 752842 755234 755239) (-460 "GBINTERN.spad" 748824 748862 752794 752799) (-459 "GBF.spad" 744591 744629 748814 748819) (-458 "GBEUCLID.spad" 742473 742511 744581 744586) (-457 "GAUSSFAC.spad" 741786 741794 742463 742468) (-456 "GALUTIL.spad" 740112 740122 741742 741747) (-455 "GALPOLYU.spad" 738566 738579 740102 740107) (-454 "GALFACTU.spad" 736739 736758 738556 738561) (-453 "GALFACT.spad" 726928 726939 736729 736734) (-452 "FVFUN.spad" 723951 723959 726918 726923) (-451 "FVC.spad" 723003 723011 723941 723946) (-450 "FUNDESC.spad" 722681 722689 722993 722998) (-449 "FUNCTION.spad" 722530 722542 722671 722676) (-448 "FT.spad" 720827 720835 722520 722525) (-447 "FTEM.spad" 719992 720000 720817 720822) (-446 "FSUPFACT.spad" 718892 718911 719928 719933) (-445 "FST.spad" 716978 716986 718882 718887) (-444 "FSRED.spad" 716458 716474 716968 716973) (-443 "FSPRMELT.spad" 715340 715356 716415 716420) (-442 "FSPECF.spad" 713431 713447 715330 715335) (-441 "FS.spad" 707699 707709 713206 713426) (-440 "FS.spad" 701745 701757 707254 707259) (-439 "FSINT.spad" 701405 701421 701735 701740) (-438 "FSERIES.spad" 700596 700608 701225 701324) (-437 "FSCINT.spad" 699913 699929 700586 700591) (-436 "FSAGG.spad" 699030 699040 699869 699908) (-435 "FSAGG.spad" 698109 698121 698950 698955) (-434 "FSAGG2.spad" 696852 696868 698099 698104) (-433 "FS2UPS.spad" 691343 691377 696842 696847) (-432 "FS2.spad" 690990 691006 691333 691338) (-431 "FS2EXPXP.spad" 690115 690138 690980 690985) (-430 "FRUTIL.spad" 689069 689079 690105 690110) (-429 "FR.spad" 682692 682702 688000 688069) (-428 "FRNAALG.spad" 677961 677971 682634 682687) (-427 "FRNAALG.spad" 673242 673254 677917 677922) (-426 "FRNAAF2.spad" 672698 672716 673232 673237) (-425 "FRMOD.spad" 672108 672138 672629 672634) (-424 "FRIDEAL.spad" 671333 671354 672088 672103) (-423 "FRIDEAL2.spad" 670937 670969 671323 671328) (-422 "FRETRCT.spad" 670448 670458 670927 670932) (-421 "FRETRCT.spad" 669825 669837 670306 670311) (-420 "FRAMALG.spad" 668173 668186 669781 669820) (-419 "FRAMALG.spad" 666553 666568 668163 668168) (-418 "FRAC.spad" 663559 663569 663962 664135) (-417 "FRAC2.spad" 663164 663176 663549 663554) (-416 "FR2.spad" 662500 662512 663154 663159) (-415 "FPS.spad" 659315 659323 662390 662495) (-414 "FPS.spad" 656158 656168 659235 659240) (-413 "FPC.spad" 655204 655212 656060 656153) (-412 "FPC.spad" 654336 654346 655194 655199) (-411 "FPATMAB.spad" 654098 654108 654326 654331) (-410 "FPARFRAC.spad" 652949 652966 654088 654093) (-409 "FORTRAN.spad" 651455 651498 652939 652944) (-408 "FORT.spad" 650404 650412 651445 651450) (-407 "FORTFN.spad" 647574 647582 650394 650399) (-406 "FORTCAT.spad" 647258 647266 647564 647569) (-405 "FORMULA.spad" 644732 644740 647248 647253) (-404 "FORMULA1.spad" 644211 644221 644722 644727) (-403 "FORDER.spad" 643902 643926 644201 644206) (-402 "FOP.spad" 643103 643111 643892 643897) (-401 "FNLA.spad" 642527 642549 643071 643098) (-400 "FNCAT.spad" 641122 641130 642517 642522) (-399 "FNAME.spad" 641014 641022 641112 641117) (-398 "FMTC.spad" 640812 640820 640940 641009) (-397 "FMONOID.spad" 640477 640487 640768 640773) (-396 "FMONCAT.spad" 637630 637640 640467 640472) (-395 "FM.spad" 637325 637337 637564 637591) (-394 "FMFUN.spad" 634355 634363 637315 637320) (-393 "FMC.spad" 633407 633415 634345 634350) (-392 "FMCAT.spad" 631075 631093 633375 633402) (-391 "FM1.spad" 630432 630444 631009 631036) (-390 "FLOATRP.spad" 628167 628181 630422 630427) (-389 "FLOAT.spad" 621481 621489 628033 628162) (-388 "FLOATCP.spad" 618912 618926 621471 621476) (-387 "FLINEXP.spad" 618634 618644 618902 618907) (-386 "FLINEXP.spad" 618300 618312 618570 618575) (-385 "FLASORT.spad" 617626 617638 618290 618295) (-384 "FLALG.spad" 615272 615291 617552 617621) (-383 "FLAGG.spad" 612314 612324 615252 615267) (-382 "FLAGG.spad" 609257 609269 612197 612202) (-381 "FLAGG2.spad" 607982 607998 609247 609252) (-380 "FINRALG.spad" 606043 606056 607938 607977) (-379 "FINRALG.spad" 604030 604045 605927 605932) (-378 "FINITE.spad" 603182 603190 604020 604025) (-377 "FINAALG.spad" 592303 592313 603124 603177) (-376 "FINAALG.spad" 581436 581448 592259 592264) (-375 "FILE.spad" 581019 581029 581426 581431) (-374 "FILECAT.spad" 579545 579562 581009 581014) (-373 "FIELD.spad" 578951 578959 579447 579540) (-372 "FIELD.spad" 578443 578453 578941 578946) (-371 "FGROUP.spad" 577090 577100 578423 578438) (-370 "FGLMICPK.spad" 575877 575892 577080 577085) (-369 "FFX.spad" 575252 575267 575593 575686) (-368 "FFSLPE.spad" 574755 574776 575242 575247) (-367 "FFPOLY.spad" 566017 566028 574745 574750) (-366 "FFPOLY2.spad" 565077 565094 566007 566012) (-365 "FFP.spad" 564474 564494 564793 564886) (-364 "FF.spad" 563922 563938 564155 564248) (-363 "FFNBX.spad" 562434 562454 563638 563731) (-362 "FFNBP.spad" 560947 560964 562150 562243) (-361 "FFNB.spad" 559412 559433 560628 560721) (-360 "FFINTBAS.spad" 556926 556945 559402 559407) (-359 "FFIELDC.spad" 554503 554511 556828 556921) (-358 "FFIELDC.spad" 552166 552176 554493 554498) (-357 "FFHOM.spad" 550914 550931 552156 552161) (-356 "FFF.spad" 548349 548360 550904 550909) (-355 "FFCGX.spad" 547196 547216 548065 548158) (-354 "FFCGP.spad" 546085 546105 546912 547005) (-353 "FFCG.spad" 544877 544898 545766 545859) (-352 "FFCAT.spad" 538050 538072 544716 544872) (-351 "FFCAT.spad" 531302 531326 537970 537975) (-350 "FFCAT2.spad" 531049 531089 531292 531297) (-349 "FEXPR.spad" 522766 522812 530805 530844) (-348 "FEVALAB.spad" 522474 522484 522756 522761) (-347 "FEVALAB.spad" 521967 521979 522251 522256) (-346 "FDIV.spad" 521409 521433 521957 521962) (-345 "FDIVCAT.spad" 519473 519497 521399 521404) (-344 "FDIVCAT.spad" 517535 517561 519463 519468) (-343 "FDIV2.spad" 517191 517231 517525 517530) (-342 "FCTRDATA.spad" 516199 516207 517181 517186) (-341 "FCPAK1.spad" 514766 514774 516189 516194) (-340 "FCOMP.spad" 514145 514155 514756 514761) (-339 "FC.spad" 504152 504160 514135 514140) (-338 "FAXF.spad" 497123 497137 504054 504147) (-337 "FAXF.spad" 490146 490162 497079 497084) (-336 "FARRAY.spad" 488296 488306 489329 489356) (-335 "FAMR.spad" 486432 486444 488194 488291) (-334 "FAMR.spad" 484552 484566 486316 486321) (-333 "FAMONOID.spad" 484220 484230 484506 484511) (-332 "FAMONC.spad" 482516 482528 484210 484215) (-331 "FAGROUP.spad" 482140 482150 482412 482439) (-330 "FACUTIL.spad" 480344 480361 482130 482135) (-329 "FACTFUNC.spad" 479538 479548 480334 480339) (-328 "EXPUPXS.spad" 476371 476394 477670 477819) (-327 "EXPRTUBE.spad" 473659 473667 476361 476366) (-326 "EXPRODE.spad" 470819 470835 473649 473654) (-325 "EXPR.spad" 465994 466004 466708 467003) (-324 "EXPR2UPS.spad" 462116 462129 465984 465989) (-323 "EXPR2.spad" 461821 461833 462106 462111) (-322 "EXPEXPAN.spad" 458622 458647 459254 459347) (-321 "EXIT.spad" 458293 458301 458612 458617) (-320 "EXITAST.spad" 458029 458037 458283 458288) (-319 "EVALCYC.spad" 457489 457503 458019 458024) (-318 "EVALAB.spad" 457061 457071 457479 457484) (-317 "EVALAB.spad" 456631 456643 457051 457056) (-316 "EUCDOM.spad" 454205 454213 456557 456626) (-315 "EUCDOM.spad" 451841 451851 454195 454200) (-314 "ESTOOLS.spad" 443687 443695 451831 451836) (-313 "ESTOOLS2.spad" 443290 443304 443677 443682) (-312 "ESTOOLS1.spad" 442975 442986 443280 443285) (-311 "ES.spad" 435790 435798 442965 442970) (-310 "ES.spad" 428511 428521 435688 435693) (-309 "ESCONT.spad" 425304 425312 428501 428506) (-308 "ESCONT1.spad" 425053 425065 425294 425299) (-307 "ES2.spad" 424558 424574 425043 425048) (-306 "ES1.spad" 424128 424144 424548 424553) (-305 "ERROR.spad" 421455 421463 424118 424123) (-304 "EQTBL.spad" 419927 419949 420136 420163) (-303 "EQ.spad" 414732 414742 417519 417631) (-302 "EQ2.spad" 414450 414462 414722 414727) (-301 "EP.spad" 410776 410786 414440 414445) (-300 "ENV.spad" 409454 409462 410766 410771) (-299 "ENTIRER.spad" 409122 409130 409398 409449) (-298 "EMR.spad" 408410 408451 409048 409117) (-297 "ELTAGG.spad" 406664 406683 408400 408405) (-296 "ELTAGG.spad" 404882 404903 406620 406625) (-295 "ELTAB.spad" 404357 404370 404872 404877) (-294 "ELFUTS.spad" 403744 403763 404347 404352) (-293 "ELEMFUN.spad" 403433 403441 403734 403739) (-292 "ELEMFUN.spad" 403120 403130 403423 403428) (-291 "ELAGG.spad" 401091 401101 403100 403115) (-290 "ELAGG.spad" 398999 399011 401010 401015) (-289 "ELABOR.spad" 398345 398353 398989 398994) (-288 "ELABEXPR.spad" 397277 397285 398335 398340) (-287 "EFUPXS.spad" 394053 394083 397233 397238) (-286 "EFULS.spad" 390889 390912 394009 394014) (-285 "EFSTRUC.spad" 388904 388920 390879 390884) (-284 "EF.spad" 383680 383696 388894 388899) (-283 "EAB.spad" 381956 381964 383670 383675) (-282 "E04UCFA.spad" 381492 381500 381946 381951) (-281 "E04NAFA.spad" 381069 381077 381482 381487) (-280 "E04MBFA.spad" 380649 380657 381059 381064) (-279 "E04JAFA.spad" 380185 380193 380639 380644) (-278 "E04GCFA.spad" 379721 379729 380175 380180) (-277 "E04FDFA.spad" 379257 379265 379711 379716) (-276 "E04DGFA.spad" 378793 378801 379247 379252) (-275 "E04AGNT.spad" 374643 374651 378783 378788) (-274 "DVARCAT.spad" 371533 371543 374633 374638) (-273 "DVARCAT.spad" 368421 368433 371523 371528) (-272 "DSMP.spad" 365795 365809 366100 366227) (-271 "DSEXT.spad" 365097 365107 365785 365790) (-270 "DSEXT.spad" 364306 364318 364996 365001) (-269 "DROPT.spad" 358265 358273 364296 364301) (-268 "DROPT1.spad" 357930 357940 358255 358260) (-267 "DROPT0.spad" 352787 352795 357920 357925) (-266 "DRAWPT.spad" 350960 350968 352777 352782) (-265 "DRAW.spad" 343836 343849 350950 350955) (-264 "DRAWHACK.spad" 343144 343154 343826 343831) (-263 "DRAWCX.spad" 340614 340622 343134 343139) (-262 "DRAWCURV.spad" 340161 340176 340604 340609) (-261 "DRAWCFUN.spad" 329693 329701 340151 340156) (-260 "DQAGG.spad" 327871 327881 329661 329688) (-259 "DPOLCAT.spad" 323220 323236 327739 327866) (-258 "DPOLCAT.spad" 318655 318673 323176 323181) (-257 "DPMO.spad" 310451 310467 310589 310802) (-256 "DPMM.spad" 302260 302278 302385 302598) (-255 "DOMTMPLT.spad" 302031 302039 302250 302255) (-254 "DOMCTOR.spad" 301786 301794 302021 302026) (-253 "DOMAIN.spad" 300873 300881 301776 301781) (-252 "DMP.spad" 298133 298148 298703 298830) (-251 "DLP.spad" 297485 297495 298123 298128) (-250 "DLIST.spad" 296064 296074 296668 296695) (-249 "DLAGG.spad" 294481 294491 296054 296059) (-248 "DIVRING.spad" 294023 294031 294425 294476) (-247 "DIVRING.spad" 293609 293619 294013 294018) (-246 "DISPLAY.spad" 291799 291807 293599 293604) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2279891 2279896 2279901 2279906) (-2 NIL 2279871 2279876 2279881 2279886) (-1 NIL 2279851 2279856 2279861 2279866) (0 NIL 2279831 2279836 2279841 2279846) (-1316 "ZMOD.spad" 2279640 2279653 2279769 2279826) (-1315 "ZLINDEP.spad" 2278706 2278717 2279630 2279635) (-1314 "ZDSOLVE.spad" 2268651 2268673 2278696 2278701) (-1313 "YSTREAM.spad" 2268146 2268157 2268641 2268646) (-1312 "YDIAGRAM.spad" 2267780 2267789 2268136 2268141) (-1311 "XRPOLY.spad" 2267000 2267020 2267636 2267705) (-1310 "XPR.spad" 2264795 2264808 2266718 2266817) (-1309 "XPOLY.spad" 2264350 2264361 2264651 2264720) (-1308 "XPOLYC.spad" 2263669 2263685 2264276 2264345) (-1307 "XPBWPOLY.spad" 2262106 2262126 2263449 2263518) (-1306 "XF.spad" 2260569 2260584 2262008 2262101) (-1305 "XF.spad" 2259012 2259029 2260453 2260458) (-1304 "XFALG.spad" 2256060 2256076 2258938 2259007) (-1303 "XEXPPKG.spad" 2255311 2255337 2256050 2256055) (-1302 "XDPOLY.spad" 2254925 2254941 2255167 2255236) (-1301 "XALG.spad" 2254585 2254596 2254881 2254920) (-1300 "WUTSET.spad" 2250424 2250441 2254231 2254258) (-1299 "WP.spad" 2249623 2249667 2250282 2250349) (-1298 "WHILEAST.spad" 2249421 2249430 2249613 2249618) (-1297 "WHEREAST.spad" 2249092 2249101 2249411 2249416) (-1296 "WFFINTBS.spad" 2246755 2246777 2249082 2249087) (-1295 "WEIER.spad" 2244977 2244988 2246745 2246750) (-1294 "VSPACE.spad" 2244650 2244661 2244945 2244972) (-1293 "VSPACE.spad" 2244343 2244356 2244640 2244645) (-1292 "VOID.spad" 2244020 2244029 2244333 2244338) (-1291 "VIEW.spad" 2241700 2241709 2244010 2244015) (-1290 "VIEWDEF.spad" 2236901 2236910 2241690 2241695) (-1289 "VIEW3D.spad" 2220862 2220871 2236891 2236896) (-1288 "VIEW2D.spad" 2208753 2208762 2220852 2220857) (-1287 "VECTOR.spad" 2207427 2207438 2207678 2207705) (-1286 "VECTOR2.spad" 2206066 2206079 2207417 2207422) (-1285 "VECTCAT.spad" 2203970 2203981 2206034 2206061) (-1284 "VECTCAT.spad" 2201681 2201694 2203747 2203752) (-1283 "VARIABLE.spad" 2201461 2201476 2201671 2201676) (-1282 "UTYPE.spad" 2201105 2201114 2201451 2201456) (-1281 "UTSODETL.spad" 2200400 2200424 2201061 2201066) (-1280 "UTSODE.spad" 2198616 2198636 2200390 2200395) (-1279 "UTS.spad" 2193563 2193591 2197083 2197180) (-1278 "UTSCAT.spad" 2191042 2191058 2193461 2193558) (-1277 "UTSCAT.spad" 2188165 2188183 2190586 2190591) (-1276 "UTS2.spad" 2187760 2187795 2188155 2188160) (-1275 "URAGG.spad" 2182433 2182444 2187750 2187755) (-1274 "URAGG.spad" 2177070 2177083 2182389 2182394) (-1273 "UPXSSING.spad" 2174715 2174741 2176151 2176284) (-1272 "UPXS.spad" 2172011 2172039 2172847 2172996) (-1271 "UPXSCONS.spad" 2169770 2169790 2170143 2170292) (-1270 "UPXSCCA.spad" 2168341 2168361 2169616 2169765) (-1269 "UPXSCCA.spad" 2167054 2167076 2168331 2168336) (-1268 "UPXSCAT.spad" 2165643 2165659 2166900 2167049) (-1267 "UPXS2.spad" 2165186 2165239 2165633 2165638) (-1266 "UPSQFREE.spad" 2163600 2163614 2165176 2165181) (-1265 "UPSCAT.spad" 2161387 2161411 2163498 2163595) (-1264 "UPSCAT.spad" 2158880 2158906 2160993 2160998) (-1263 "UPOLYC.spad" 2153920 2153931 2158722 2158875) (-1262 "UPOLYC.spad" 2148852 2148865 2153656 2153661) (-1261 "UPOLYC2.spad" 2148323 2148342 2148842 2148847) (-1260 "UP.spad" 2145429 2145444 2145816 2145969) (-1259 "UPMP.spad" 2144329 2144342 2145419 2145424) (-1258 "UPDIVP.spad" 2143894 2143908 2144319 2144324) (-1257 "UPDECOMP.spad" 2142139 2142153 2143884 2143889) (-1256 "UPCDEN.spad" 2141348 2141364 2142129 2142134) (-1255 "UP2.spad" 2140712 2140733 2141338 2141343) (-1254 "UNISEG.spad" 2140065 2140076 2140631 2140636) (-1253 "UNISEG2.spad" 2139562 2139575 2140021 2140026) (-1252 "UNIFACT.spad" 2138665 2138677 2139552 2139557) (-1251 "ULS.spad" 2128449 2128477 2129394 2129823) (-1250 "ULSCONS.spad" 2119583 2119603 2119953 2120102) (-1249 "ULSCCAT.spad" 2117320 2117340 2119429 2119578) (-1248 "ULSCCAT.spad" 2115165 2115187 2117276 2117281) (-1247 "ULSCAT.spad" 2113397 2113413 2115011 2115160) (-1246 "ULS2.spad" 2112911 2112964 2113387 2113392) (-1245 "UINT8.spad" 2112788 2112797 2112901 2112906) (-1244 "UINT64.spad" 2112664 2112673 2112778 2112783) (-1243 "UINT32.spad" 2112540 2112549 2112654 2112659) (-1242 "UINT16.spad" 2112416 2112425 2112530 2112535) (-1241 "UFD.spad" 2111481 2111490 2112342 2112411) (-1240 "UFD.spad" 2110608 2110619 2111471 2111476) (-1239 "UDVO.spad" 2109489 2109498 2110598 2110603) (-1238 "UDPO.spad" 2106982 2106993 2109445 2109450) (-1237 "TYPE.spad" 2106914 2106923 2106972 2106977) (-1236 "TYPEAST.spad" 2106833 2106842 2106904 2106909) (-1235 "TWOFACT.spad" 2105485 2105500 2106823 2106828) (-1234 "TUPLE.spad" 2104971 2104982 2105384 2105389) (-1233 "TUBETOOL.spad" 2101838 2101847 2104961 2104966) (-1232 "TUBE.spad" 2100485 2100502 2101828 2101833) (-1231 "TS.spad" 2099084 2099100 2100050 2100147) (-1230 "TSETCAT.spad" 2086211 2086228 2099052 2099079) (-1229 "TSETCAT.spad" 2073324 2073343 2086167 2086172) (-1228 "TRMANIP.spad" 2067690 2067707 2073030 2073035) (-1227 "TRIMAT.spad" 2066653 2066678 2067680 2067685) (-1226 "TRIGMNIP.spad" 2065180 2065197 2066643 2066648) (-1225 "TRIGCAT.spad" 2064692 2064701 2065170 2065175) (-1224 "TRIGCAT.spad" 2064202 2064213 2064682 2064687) (-1223 "TREE.spad" 2062777 2062788 2063809 2063836) (-1222 "TRANFUN.spad" 2062616 2062625 2062767 2062772) (-1221 "TRANFUN.spad" 2062453 2062464 2062606 2062611) (-1220 "TOPSP.spad" 2062127 2062136 2062443 2062448) (-1219 "TOOLSIGN.spad" 2061790 2061801 2062117 2062122) (-1218 "TEXTFILE.spad" 2060351 2060360 2061780 2061785) (-1217 "TEX.spad" 2057497 2057506 2060341 2060346) (-1216 "TEX1.spad" 2057053 2057064 2057487 2057492) (-1215 "TEMUTL.spad" 2056608 2056617 2057043 2057048) (-1214 "TBCMPPK.spad" 2054701 2054724 2056598 2056603) (-1213 "TBAGG.spad" 2053751 2053774 2054681 2054696) (-1212 "TBAGG.spad" 2052809 2052834 2053741 2053746) (-1211 "TANEXP.spad" 2052217 2052228 2052799 2052804) (-1210 "TALGOP.spad" 2051941 2051952 2052207 2052212) (-1209 "TABLE.spad" 2050352 2050375 2050622 2050649) (-1208 "TABLEAU.spad" 2049833 2049844 2050342 2050347) (-1207 "TABLBUMP.spad" 2046636 2046647 2049823 2049828) (-1206 "SYSTEM.spad" 2045864 2045873 2046626 2046631) (-1205 "SYSSOLP.spad" 2043347 2043358 2045854 2045859) (-1204 "SYSPTR.spad" 2043246 2043255 2043337 2043342) (-1203 "SYSNNI.spad" 2042428 2042439 2043236 2043241) (-1202 "SYSINT.spad" 2041832 2041843 2042418 2042423) (-1201 "SYNTAX.spad" 2038038 2038047 2041822 2041827) (-1200 "SYMTAB.spad" 2036106 2036115 2038028 2038033) (-1199 "SYMS.spad" 2032129 2032138 2036096 2036101) (-1198 "SYMPOLY.spad" 2031136 2031147 2031218 2031345) (-1197 "SYMFUNC.spad" 2030637 2030648 2031126 2031131) (-1196 "SYMBOL.spad" 2028140 2028149 2030627 2030632) (-1195 "SWITCH.spad" 2024911 2024920 2028130 2028135) (-1194 "SUTS.spad" 2021959 2021987 2023378 2023475) (-1193 "SUPXS.spad" 2019242 2019270 2020091 2020240) (-1192 "SUP.spad" 2015962 2015973 2016735 2016888) (-1191 "SUPFRACF.spad" 2015067 2015085 2015952 2015957) (-1190 "SUP2.spad" 2014459 2014472 2015057 2015062) (-1189 "SUMRF.spad" 2013433 2013444 2014449 2014454) (-1188 "SUMFS.spad" 2013070 2013087 2013423 2013428) (-1187 "SULS.spad" 2002841 2002869 2003799 2004228) (-1186 "SUCHTAST.spad" 2002610 2002619 2002831 2002836) (-1185 "SUCH.spad" 2002292 2002307 2002600 2002605) (-1184 "SUBSPACE.spad" 1994407 1994422 2002282 2002287) (-1183 "SUBRESP.spad" 1993577 1993591 1994363 1994368) (-1182 "STTF.spad" 1989676 1989692 1993567 1993572) (-1181 "STTFNC.spad" 1986144 1986160 1989666 1989671) (-1180 "STTAYLOR.spad" 1978779 1978790 1986025 1986030) (-1179 "STRTBL.spad" 1977284 1977301 1977433 1977460) (-1178 "STRING.spad" 1976693 1976702 1976707 1976734) (-1177 "STRICAT.spad" 1976481 1976490 1976661 1976688) (-1176 "STREAM.spad" 1973399 1973410 1976006 1976021) (-1175 "STREAM3.spad" 1972972 1972987 1973389 1973394) (-1174 "STREAM2.spad" 1972100 1972113 1972962 1972967) (-1173 "STREAM1.spad" 1971806 1971817 1972090 1972095) (-1172 "STINPROD.spad" 1970742 1970758 1971796 1971801) (-1171 "STEP.spad" 1969943 1969952 1970732 1970737) (-1170 "STEPAST.spad" 1969177 1969186 1969933 1969938) (-1169 "STBL.spad" 1967703 1967731 1967870 1967885) (-1168 "STAGG.spad" 1966778 1966789 1967693 1967698) (-1167 "STAGG.spad" 1965851 1965864 1966768 1966773) (-1166 "STACK.spad" 1965208 1965219 1965458 1965485) (-1165 "SREGSET.spad" 1962912 1962929 1964854 1964881) (-1164 "SRDCMPK.spad" 1961473 1961493 1962902 1962907) (-1163 "SRAGG.spad" 1956616 1956625 1961441 1961468) (-1162 "SRAGG.spad" 1951779 1951790 1956606 1956611) (-1161 "SQMATRIX.spad" 1949358 1949376 1950274 1950361) (-1160 "SPLTREE.spad" 1943910 1943923 1948794 1948821) (-1159 "SPLNODE.spad" 1940498 1940511 1943900 1943905) (-1158 "SPFCAT.spad" 1939307 1939316 1940488 1940493) (-1157 "SPECOUT.spad" 1937859 1937868 1939297 1939302) (-1156 "SPADXPT.spad" 1929454 1929463 1937849 1937854) (-1155 "spad-parser.spad" 1928919 1928928 1929444 1929449) (-1154 "SPADAST.spad" 1928620 1928629 1928909 1928914) (-1153 "SPACEC.spad" 1912819 1912830 1928610 1928615) (-1152 "SPACE3.spad" 1912595 1912606 1912809 1912814) (-1151 "SORTPAK.spad" 1912144 1912157 1912551 1912556) (-1150 "SOLVETRA.spad" 1909907 1909918 1912134 1912139) (-1149 "SOLVESER.spad" 1908435 1908446 1909897 1909902) (-1148 "SOLVERAD.spad" 1904461 1904472 1908425 1908430) (-1147 "SOLVEFOR.spad" 1902923 1902941 1904451 1904456) (-1146 "SNTSCAT.spad" 1902523 1902540 1902891 1902918) (-1145 "SMTS.spad" 1900795 1900821 1902088 1902185) (-1144 "SMP.spad" 1898270 1898290 1898660 1898787) (-1143 "SMITH.spad" 1897115 1897140 1898260 1898265) (-1142 "SMATCAT.spad" 1895225 1895255 1897059 1897110) (-1141 "SMATCAT.spad" 1893267 1893299 1895103 1895108) (-1140 "SKAGG.spad" 1892230 1892241 1893235 1893262) (-1139 "SINT.spad" 1891170 1891179 1892096 1892225) (-1138 "SIMPAN.spad" 1890898 1890907 1891160 1891165) (-1137 "SIG.spad" 1890228 1890237 1890888 1890893) (-1136 "SIGNRF.spad" 1889346 1889357 1890218 1890223) (-1135 "SIGNEF.spad" 1888625 1888642 1889336 1889341) (-1134 "SIGAST.spad" 1888010 1888019 1888615 1888620) (-1133 "SHP.spad" 1885938 1885953 1887966 1887971) (-1132 "SHDP.spad" 1874141 1874168 1874650 1874749) (-1131 "SGROUP.spad" 1873749 1873758 1874131 1874136) (-1130 "SGROUP.spad" 1873355 1873366 1873739 1873744) (-1129 "SGCF.spad" 1866494 1866503 1873345 1873350) (-1128 "SFRTCAT.spad" 1865424 1865441 1866462 1866489) (-1127 "SFRGCD.spad" 1864487 1864507 1865414 1865419) (-1126 "SFQCMPK.spad" 1859124 1859144 1864477 1864482) (-1125 "SFORT.spad" 1858563 1858577 1859114 1859119) (-1124 "SEXOF.spad" 1858406 1858446 1858553 1858558) (-1123 "SEX.spad" 1858298 1858307 1858396 1858401) (-1122 "SEXCAT.spad" 1856079 1856119 1858288 1858293) (-1121 "SET.spad" 1854403 1854414 1855500 1855539) (-1120 "SETMN.spad" 1852853 1852870 1854393 1854398) (-1119 "SETCAT.spad" 1852175 1852184 1852843 1852848) (-1118 "SETCAT.spad" 1851495 1851506 1852165 1852170) (-1117 "SETAGG.spad" 1848044 1848055 1851475 1851490) (-1116 "SETAGG.spad" 1844601 1844614 1848034 1848039) (-1115 "SEQAST.spad" 1844304 1844313 1844591 1844596) (-1114 "SEGXCAT.spad" 1843460 1843473 1844294 1844299) (-1113 "SEG.spad" 1843273 1843284 1843379 1843384) (-1112 "SEGCAT.spad" 1842198 1842209 1843263 1843268) (-1111 "SEGBIND.spad" 1841956 1841967 1842145 1842150) (-1110 "SEGBIND2.spad" 1841654 1841667 1841946 1841951) (-1109 "SEGAST.spad" 1841368 1841377 1841644 1841649) (-1108 "SEG2.spad" 1840803 1840816 1841324 1841329) (-1107 "SDVAR.spad" 1840079 1840090 1840793 1840798) (-1106 "SDPOL.spad" 1837412 1837423 1837703 1837830) (-1105 "SCPKG.spad" 1835501 1835512 1837402 1837407) (-1104 "SCOPE.spad" 1834654 1834663 1835491 1835496) (-1103 "SCACHE.spad" 1833350 1833361 1834644 1834649) (-1102 "SASTCAT.spad" 1833259 1833268 1833340 1833345) (-1101 "SAOS.spad" 1833131 1833140 1833249 1833254) (-1100 "SAERFFC.spad" 1832844 1832864 1833121 1833126) (-1099 "SAE.spad" 1830314 1830330 1830925 1831060) (-1098 "SAEFACT.spad" 1830015 1830035 1830304 1830309) (-1097 "RURPK.spad" 1827674 1827690 1830005 1830010) (-1096 "RULESET.spad" 1827127 1827151 1827664 1827669) (-1095 "RULE.spad" 1825367 1825391 1827117 1827122) (-1094 "RULECOLD.spad" 1825219 1825232 1825357 1825362) (-1093 "RTVALUE.spad" 1824954 1824963 1825209 1825214) (-1092 "RSTRCAST.spad" 1824671 1824680 1824944 1824949) (-1091 "RSETGCD.spad" 1821049 1821069 1824661 1824666) (-1090 "RSETCAT.spad" 1810985 1811002 1821017 1821044) (-1089 "RSETCAT.spad" 1800941 1800960 1810975 1810980) (-1088 "RSDCMPK.spad" 1799393 1799413 1800931 1800936) (-1087 "RRCC.spad" 1797777 1797807 1799383 1799388) (-1086 "RRCC.spad" 1796159 1796191 1797767 1797772) (-1085 "RPTAST.spad" 1795861 1795870 1796149 1796154) (-1084 "RPOLCAT.spad" 1775221 1775236 1795729 1795856) (-1083 "RPOLCAT.spad" 1754294 1754311 1774804 1774809) (-1082 "ROUTINE.spad" 1750177 1750186 1752941 1752968) (-1081 "ROMAN.spad" 1749505 1749514 1750043 1750172) (-1080 "ROIRC.spad" 1748585 1748617 1749495 1749500) (-1079 "RNS.spad" 1747488 1747497 1748487 1748580) (-1078 "RNS.spad" 1746477 1746488 1747478 1747483) (-1077 "RNG.spad" 1746212 1746221 1746467 1746472) (-1076 "RNGBIND.spad" 1745372 1745386 1746167 1746172) (-1075 "RMODULE.spad" 1745137 1745148 1745362 1745367) (-1074 "RMCAT2.spad" 1744557 1744614 1745127 1745132) (-1073 "RMATRIX.spad" 1743381 1743400 1743724 1743763) (-1072 "RMATCAT.spad" 1738960 1738991 1743337 1743376) (-1071 "RMATCAT.spad" 1734429 1734462 1738808 1738813) (-1070 "RLINSET.spad" 1733984 1733995 1734419 1734424) (-1069 "RINTERP.spad" 1733872 1733892 1733974 1733979) (-1068 "RING.spad" 1733342 1733351 1733852 1733867) (-1067 "RING.spad" 1732820 1732831 1733332 1733337) (-1066 "RIDIST.spad" 1732212 1732221 1732810 1732815) (-1065 "RGCHAIN.spad" 1730795 1730811 1731697 1731724) (-1064 "RGBCSPC.spad" 1730576 1730588 1730785 1730790) (-1063 "RGBCMDL.spad" 1730106 1730118 1730566 1730571) (-1062 "RF.spad" 1727748 1727759 1730096 1730101) (-1061 "RFFACTOR.spad" 1727210 1727221 1727738 1727743) (-1060 "RFFACT.spad" 1726945 1726957 1727200 1727205) (-1059 "RFDIST.spad" 1725941 1725950 1726935 1726940) (-1058 "RETSOL.spad" 1725360 1725373 1725931 1725936) (-1057 "RETRACT.spad" 1724788 1724799 1725350 1725355) (-1056 "RETRACT.spad" 1724214 1724227 1724778 1724783) (-1055 "RETAST.spad" 1724026 1724035 1724204 1724209) (-1054 "RESULT.spad" 1722086 1722095 1722673 1722700) (-1053 "RESRING.spad" 1721433 1721480 1722024 1722081) (-1052 "RESLATC.spad" 1720757 1720768 1721423 1721428) (-1051 "REPSQ.spad" 1720488 1720499 1720747 1720752) (-1050 "REP.spad" 1718042 1718051 1720478 1720483) (-1049 "REPDB.spad" 1717749 1717760 1718032 1718037) (-1048 "REP2.spad" 1707407 1707418 1717591 1717596) (-1047 "REP1.spad" 1701603 1701614 1707357 1707362) (-1046 "REGSET.spad" 1699400 1699417 1701249 1701276) (-1045 "REF.spad" 1698735 1698746 1699355 1699360) (-1044 "REDORDER.spad" 1697941 1697958 1698725 1698730) (-1043 "RECLOS.spad" 1696724 1696744 1697428 1697521) (-1042 "REALSOLV.spad" 1695864 1695873 1696714 1696719) (-1041 "REAL.spad" 1695736 1695745 1695854 1695859) (-1040 "REAL0Q.spad" 1693034 1693049 1695726 1695731) (-1039 "REAL0.spad" 1689878 1689893 1693024 1693029) (-1038 "RDUCEAST.spad" 1689599 1689608 1689868 1689873) (-1037 "RDIV.spad" 1689254 1689279 1689589 1689594) (-1036 "RDIST.spad" 1688821 1688832 1689244 1689249) (-1035 "RDETRS.spad" 1687685 1687703 1688811 1688816) (-1034 "RDETR.spad" 1685824 1685842 1687675 1687680) (-1033 "RDEEFS.spad" 1684923 1684940 1685814 1685819) (-1032 "RDEEF.spad" 1683933 1683950 1684913 1684918) (-1031 "RCFIELD.spad" 1681119 1681128 1683835 1683928) (-1030 "RCFIELD.spad" 1678391 1678402 1681109 1681114) (-1029 "RCAGG.spad" 1676319 1676330 1678381 1678386) (-1028 "RCAGG.spad" 1674174 1674187 1676238 1676243) (-1027 "RATRET.spad" 1673534 1673545 1674164 1674169) (-1026 "RATFACT.spad" 1673226 1673238 1673524 1673529) (-1025 "RANDSRC.spad" 1672545 1672554 1673216 1673221) (-1024 "RADUTIL.spad" 1672301 1672310 1672535 1672540) (-1023 "RADIX.spad" 1669125 1669139 1670671 1670764) (-1022 "RADFF.spad" 1666864 1666901 1666983 1667139) (-1021 "RADCAT.spad" 1666459 1666468 1666854 1666859) (-1020 "RADCAT.spad" 1666052 1666063 1666449 1666454) (-1019 "QUEUE.spad" 1665400 1665411 1665659 1665686) (-1018 "QUAT.spad" 1663888 1663899 1664231 1664296) (-1017 "QUATCT2.spad" 1663508 1663527 1663878 1663883) (-1016 "QUATCAT.spad" 1661678 1661689 1663438 1663503) (-1015 "QUATCAT.spad" 1659599 1659612 1661361 1661366) (-1014 "QUAGG.spad" 1658426 1658437 1659567 1659594) (-1013 "QQUTAST.spad" 1658194 1658203 1658416 1658421) (-1012 "QFORM.spad" 1657812 1657827 1658184 1658189) (-1011 "QFCAT.spad" 1656514 1656525 1657714 1657807) (-1010 "QFCAT.spad" 1654807 1654820 1656009 1656014) (-1009 "QFCAT2.spad" 1654499 1654516 1654797 1654802) (-1008 "QEQUAT.spad" 1654057 1654066 1654489 1654494) (-1007 "QCMPACK.spad" 1648803 1648823 1654047 1654052) (-1006 "QALGSET.spad" 1644881 1644914 1648717 1648722) (-1005 "QALGSET2.spad" 1642876 1642895 1644871 1644876) (-1004 "PWFFINTB.spad" 1640291 1640313 1642866 1642871) (-1003 "PUSHVAR.spad" 1639629 1639649 1640281 1640286) (-1002 "PTRANFN.spad" 1635756 1635767 1639619 1639624) (-1001 "PTPACK.spad" 1632843 1632854 1635746 1635751) (-1000 "PTFUNC2.spad" 1632665 1632680 1632833 1632838) (-999 "PTCAT.spad" 1631920 1631930 1632633 1632660) (-998 "PSQFR.spad" 1631227 1631251 1631910 1631915) (-997 "PSEUDLIN.spad" 1630113 1630123 1631217 1631222) (-996 "PSETPK.spad" 1615546 1615562 1629991 1629996) (-995 "PSETCAT.spad" 1609466 1609489 1615526 1615541) (-994 "PSETCAT.spad" 1603360 1603385 1609422 1609427) (-993 "PSCURVE.spad" 1602343 1602351 1603350 1603355) (-992 "PSCAT.spad" 1601126 1601155 1602241 1602338) (-991 "PSCAT.spad" 1599999 1600030 1601116 1601121) (-990 "PRTITION.spad" 1598697 1598705 1599989 1599994) (-989 "PRTDAST.spad" 1598416 1598424 1598687 1598692) (-988 "PRS.spad" 1587978 1587995 1598372 1598377) (-987 "PRQAGG.spad" 1587413 1587423 1587946 1587973) (-986 "PROPLOG.spad" 1586985 1586993 1587403 1587408) (-985 "PROPFUN2.spad" 1586608 1586621 1586975 1586980) (-984 "PROPFUN1.spad" 1586006 1586017 1586598 1586603) (-983 "PROPFRML.spad" 1584574 1584585 1585996 1586001) (-982 "PROPERTY.spad" 1584062 1584070 1584564 1584569) (-981 "PRODUCT.spad" 1581744 1581756 1582028 1582083) (-980 "PR.spad" 1580136 1580148 1580835 1580962) (-979 "PRINT.spad" 1579888 1579896 1580126 1580131) (-978 "PRIMES.spad" 1578141 1578151 1579878 1579883) (-977 "PRIMELT.spad" 1576222 1576236 1578131 1578136) (-976 "PRIMCAT.spad" 1575849 1575857 1576212 1576217) (-975 "PRIMARR.spad" 1574854 1574864 1575032 1575059) (-974 "PRIMARR2.spad" 1573621 1573633 1574844 1574849) (-973 "PREASSOC.spad" 1573003 1573015 1573611 1573616) (-972 "PPCURVE.spad" 1572140 1572148 1572993 1572998) (-971 "PORTNUM.spad" 1571915 1571923 1572130 1572135) (-970 "POLYROOT.spad" 1570764 1570786 1571871 1571876) (-969 "POLY.spad" 1568099 1568109 1568614 1568741) (-968 "POLYLIFT.spad" 1567364 1567387 1568089 1568094) (-967 "POLYCATQ.spad" 1565482 1565504 1567354 1567359) (-966 "POLYCAT.spad" 1558952 1558973 1565350 1565477) (-965 "POLYCAT.spad" 1551760 1551783 1558160 1558165) (-964 "POLY2UP.spad" 1551212 1551226 1551750 1551755) (-963 "POLY2.spad" 1550809 1550821 1551202 1551207) (-962 "POLUTIL.spad" 1549750 1549779 1550765 1550770) (-961 "POLTOPOL.spad" 1548498 1548513 1549740 1549745) (-960 "POINT.spad" 1547336 1547346 1547423 1547450) (-959 "PNTHEORY.spad" 1544038 1544046 1547326 1547331) (-958 "PMTOOLS.spad" 1542813 1542827 1544028 1544033) (-957 "PMSYM.spad" 1542362 1542372 1542803 1542808) (-956 "PMQFCAT.spad" 1541953 1541967 1542352 1542357) (-955 "PMPRED.spad" 1541432 1541446 1541943 1541948) (-954 "PMPREDFS.spad" 1540886 1540908 1541422 1541427) (-953 "PMPLCAT.spad" 1539966 1539984 1540818 1540823) (-952 "PMLSAGG.spad" 1539551 1539565 1539956 1539961) (-951 "PMKERNEL.spad" 1539130 1539142 1539541 1539546) (-950 "PMINS.spad" 1538710 1538720 1539120 1539125) (-949 "PMFS.spad" 1538287 1538305 1538700 1538705) (-948 "PMDOWN.spad" 1537577 1537591 1538277 1538282) (-947 "PMASS.spad" 1536587 1536595 1537567 1537572) (-946 "PMASSFS.spad" 1535554 1535570 1536577 1536582) (-945 "PLOTTOOL.spad" 1535334 1535342 1535544 1535549) (-944 "PLOT.spad" 1530257 1530265 1535324 1535329) (-943 "PLOT3D.spad" 1526721 1526729 1530247 1530252) (-942 "PLOT1.spad" 1525878 1525888 1526711 1526716) (-941 "PLEQN.spad" 1513168 1513195 1525868 1525873) (-940 "PINTERP.spad" 1512790 1512809 1513158 1513163) (-939 "PINTERPA.spad" 1512574 1512590 1512780 1512785) (-938 "PI.spad" 1512183 1512191 1512548 1512569) (-937 "PID.spad" 1511153 1511161 1512109 1512178) (-936 "PICOERCE.spad" 1510810 1510820 1511143 1511148) (-935 "PGROEB.spad" 1509411 1509425 1510800 1510805) (-934 "PGE.spad" 1501028 1501036 1509401 1509406) (-933 "PGCD.spad" 1499918 1499935 1501018 1501023) (-932 "PFRPAC.spad" 1499067 1499077 1499908 1499913) (-931 "PFR.spad" 1495730 1495740 1498969 1499062) (-930 "PFOTOOLS.spad" 1494988 1495004 1495720 1495725) (-929 "PFOQ.spad" 1494358 1494376 1494978 1494983) (-928 "PFO.spad" 1493777 1493804 1494348 1494353) (-927 "PF.spad" 1493351 1493363 1493582 1493675) (-926 "PFECAT.spad" 1491033 1491041 1493277 1493346) (-925 "PFECAT.spad" 1488743 1488753 1490989 1490994) (-924 "PFBRU.spad" 1486631 1486643 1488733 1488738) (-923 "PFBR.spad" 1484191 1484214 1486621 1486626) (-922 "PERM.spad" 1479998 1480008 1484021 1484036) (-921 "PERMGRP.spad" 1474768 1474778 1479988 1479993) (-920 "PERMCAT.spad" 1473429 1473439 1474748 1474763) (-919 "PERMAN.spad" 1471961 1471975 1473419 1473424) (-918 "PENDTREE.spad" 1471302 1471312 1471590 1471595) (-917 "PDSPC.spad" 1470115 1470125 1471292 1471297) (-916 "PDSPC.spad" 1468926 1468938 1470105 1470110) (-915 "PDRING.spad" 1468768 1468778 1468906 1468921) (-914 "PDMOD.spad" 1468584 1468596 1468736 1468763) (-913 "PDEPROB.spad" 1467599 1467607 1468574 1468579) (-912 "PDEPACK.spad" 1461639 1461647 1467589 1467594) (-911 "PDECOMP.spad" 1461109 1461126 1461629 1461634) (-910 "PDECAT.spad" 1459465 1459473 1461099 1461104) (-909 "PDDOM.spad" 1458903 1458916 1459455 1459460) (-908 "PDDOM.spad" 1458339 1458354 1458893 1458898) (-907 "PCOMP.spad" 1458192 1458205 1458329 1458334) (-906 "PBWLB.spad" 1456780 1456797 1458182 1458187) (-905 "PATTERN.spad" 1451319 1451329 1456770 1456775) (-904 "PATTERN2.spad" 1451057 1451069 1451309 1451314) (-903 "PATTERN1.spad" 1449393 1449409 1451047 1451052) (-902 "PATRES.spad" 1446968 1446980 1449383 1449388) (-901 "PATRES2.spad" 1446640 1446654 1446958 1446963) (-900 "PATMATCH.spad" 1444837 1444868 1446348 1446353) (-899 "PATMAB.spad" 1444266 1444276 1444827 1444832) (-898 "PATLRES.spad" 1443352 1443366 1444256 1444261) (-897 "PATAB.spad" 1443116 1443126 1443342 1443347) (-896 "PARTPERM.spad" 1441124 1441132 1443106 1443111) (-895 "PARSURF.spad" 1440558 1440586 1441114 1441119) (-894 "PARSU2.spad" 1440355 1440371 1440548 1440553) (-893 "script-parser.spad" 1439875 1439883 1440345 1440350) (-892 "PARSCURV.spad" 1439309 1439337 1439865 1439870) (-891 "PARSC2.spad" 1439100 1439116 1439299 1439304) (-890 "PARPCURV.spad" 1438562 1438590 1439090 1439095) (-889 "PARPC2.spad" 1438353 1438369 1438552 1438557) (-888 "PARAMAST.spad" 1437481 1437489 1438343 1438348) (-887 "PAN2EXPR.spad" 1436893 1436901 1437471 1437476) (-886 "PALETTE.spad" 1435863 1435871 1436883 1436888) (-885 "PAIR.spad" 1434850 1434863 1435451 1435456) (-884 "PADICRC.spad" 1432091 1432109 1433262 1433355) (-883 "PADICRAT.spad" 1429999 1430011 1430220 1430313) (-882 "PADIC.spad" 1429694 1429706 1429925 1429994) (-881 "PADICCT.spad" 1428243 1428255 1429620 1429689) (-880 "PADEPAC.spad" 1426932 1426951 1428233 1428238) (-879 "PADE.spad" 1425684 1425700 1426922 1426927) (-878 "OWP.spad" 1424924 1424954 1425542 1425609) (-877 "OVERSET.spad" 1424497 1424505 1424914 1424919) (-876 "OVAR.spad" 1424278 1424301 1424487 1424492) (-875 "OUT.spad" 1423364 1423372 1424268 1424273) (-874 "OUTFORM.spad" 1412756 1412764 1423354 1423359) (-873 "OUTBFILE.spad" 1412174 1412182 1412746 1412751) (-872 "OUTBCON.spad" 1411180 1411188 1412164 1412169) (-871 "OUTBCON.spad" 1410184 1410194 1411170 1411175) (-870 "OSI.spad" 1409659 1409667 1410174 1410179) (-869 "OSGROUP.spad" 1409577 1409585 1409649 1409654) (-868 "ORTHPOL.spad" 1408062 1408072 1409494 1409499) (-867 "OREUP.spad" 1407515 1407543 1407742 1407781) (-866 "ORESUP.spad" 1406816 1406840 1407195 1407234) (-865 "OREPCTO.spad" 1404673 1404685 1406736 1406741) (-864 "OREPCAT.spad" 1398820 1398830 1404629 1404668) (-863 "OREPCAT.spad" 1392857 1392869 1398668 1398673) (-862 "ORDSET.spad" 1392029 1392037 1392847 1392852) (-861 "ORDSET.spad" 1391199 1391209 1392019 1392024) (-860 "ORDRING.spad" 1390589 1390597 1391179 1391194) (-859 "ORDRING.spad" 1389987 1389997 1390579 1390584) (-858 "ORDMON.spad" 1389842 1389850 1389977 1389982) (-857 "ORDFUNS.spad" 1388974 1388990 1389832 1389837) (-856 "ORDFIN.spad" 1388794 1388802 1388964 1388969) (-855 "ORDCOMP.spad" 1387259 1387269 1388341 1388370) (-854 "ORDCOMP2.spad" 1386552 1386564 1387249 1387254) (-853 "OPTPROB.spad" 1385190 1385198 1386542 1386547) (-852 "OPTPACK.spad" 1377599 1377607 1385180 1385185) (-851 "OPTCAT.spad" 1375278 1375286 1377589 1377594) (-850 "OPSIG.spad" 1374932 1374940 1375268 1375273) (-849 "OPQUERY.spad" 1374481 1374489 1374922 1374927) (-848 "OP.spad" 1374223 1374233 1374303 1374370) (-847 "OPERCAT.spad" 1373689 1373699 1374213 1374218) (-846 "OPERCAT.spad" 1373153 1373165 1373679 1373684) (-845 "ONECOMP.spad" 1371898 1371908 1372700 1372729) (-844 "ONECOMP2.spad" 1371322 1371334 1371888 1371893) (-843 "OMSERVER.spad" 1370328 1370336 1371312 1371317) (-842 "OMSAGG.spad" 1370116 1370126 1370284 1370323) (-841 "OMPKG.spad" 1368732 1368740 1370106 1370111) (-840 "OM.spad" 1367705 1367713 1368722 1368727) (-839 "OMLO.spad" 1367130 1367142 1367591 1367630) (-838 "OMEXPR.spad" 1366964 1366974 1367120 1367125) (-837 "OMERR.spad" 1366509 1366517 1366954 1366959) (-836 "OMERRK.spad" 1365543 1365551 1366499 1366504) (-835 "OMENC.spad" 1364887 1364895 1365533 1365538) (-834 "OMDEV.spad" 1359196 1359204 1364877 1364882) (-833 "OMCONN.spad" 1358605 1358613 1359186 1359191) (-832 "OINTDOM.spad" 1358368 1358376 1358531 1358600) (-831 "OFMONOID.spad" 1356491 1356501 1358324 1358329) (-830 "ODVAR.spad" 1355752 1355762 1356481 1356486) (-829 "ODR.spad" 1355396 1355422 1355564 1355713) (-828 "ODPOL.spad" 1352685 1352695 1353025 1353152) (-827 "ODP.spad" 1341024 1341044 1341397 1341496) (-826 "ODETOOLS.spad" 1339673 1339692 1341014 1341019) (-825 "ODESYS.spad" 1337367 1337384 1339663 1339668) (-824 "ODERTRIC.spad" 1333376 1333393 1337324 1337329) (-823 "ODERED.spad" 1332775 1332799 1333366 1333371) (-822 "ODERAT.spad" 1330390 1330407 1332765 1332770) (-821 "ODEPRRIC.spad" 1327427 1327449 1330380 1330385) (-820 "ODEPROB.spad" 1326684 1326692 1327417 1327422) (-819 "ODEPRIM.spad" 1324018 1324040 1326674 1326679) (-818 "ODEPAL.spad" 1323404 1323428 1324008 1324013) (-817 "ODEPACK.spad" 1310070 1310078 1323394 1323399) (-816 "ODEINT.spad" 1309505 1309521 1310060 1310065) (-815 "ODEIFTBL.spad" 1306900 1306908 1309495 1309500) (-814 "ODEEF.spad" 1302391 1302407 1306890 1306895) (-813 "ODECONST.spad" 1301928 1301946 1302381 1302386) (-812 "ODECAT.spad" 1300526 1300534 1301918 1301923) (-811 "OCT.spad" 1298662 1298672 1299376 1299415) (-810 "OCTCT2.spad" 1298308 1298329 1298652 1298657) (-809 "OC.spad" 1296104 1296114 1298264 1298303) (-808 "OC.spad" 1293625 1293637 1295787 1295792) (-807 "OCAMON.spad" 1293473 1293481 1293615 1293620) (-806 "OASGP.spad" 1293288 1293296 1293463 1293468) (-805 "OAMONS.spad" 1292810 1292818 1293278 1293283) (-804 "OAMON.spad" 1292671 1292679 1292800 1292805) (-803 "OAGROUP.spad" 1292533 1292541 1292661 1292666) (-802 "NUMTUBE.spad" 1292124 1292140 1292523 1292528) (-801 "NUMQUAD.spad" 1280100 1280108 1292114 1292119) (-800 "NUMODE.spad" 1271454 1271462 1280090 1280095) (-799 "NUMINT.spad" 1269020 1269028 1271444 1271449) (-798 "NUMFMT.spad" 1267860 1267868 1269010 1269015) (-797 "NUMERIC.spad" 1259974 1259984 1267665 1267670) (-796 "NTSCAT.spad" 1258482 1258498 1259942 1259969) (-795 "NTPOLFN.spad" 1258033 1258043 1258399 1258404) (-794 "NSUP.spad" 1250986 1250996 1255526 1255679) (-793 "NSUP2.spad" 1250378 1250390 1250976 1250981) (-792 "NSMP.spad" 1246608 1246627 1246916 1247043) (-791 "NREP.spad" 1244986 1245000 1246598 1246603) (-790 "NPCOEF.spad" 1244232 1244252 1244976 1244981) (-789 "NORMRETR.spad" 1243830 1243869 1244222 1244227) (-788 "NORMPK.spad" 1241732 1241751 1243820 1243825) (-787 "NORMMA.spad" 1241420 1241446 1241722 1241727) (-786 "NONE.spad" 1241161 1241169 1241410 1241415) (-785 "NONE1.spad" 1240837 1240847 1241151 1241156) (-784 "NODE1.spad" 1240324 1240340 1240827 1240832) (-783 "NNI.spad" 1239219 1239227 1240298 1240319) (-782 "NLINSOL.spad" 1237845 1237855 1239209 1239214) (-781 "NIPROB.spad" 1236386 1236394 1237835 1237840) (-780 "NFINTBAS.spad" 1233946 1233963 1236376 1236381) (-779 "NETCLT.spad" 1233920 1233931 1233936 1233941) (-778 "NCODIV.spad" 1232136 1232152 1233910 1233915) (-777 "NCNTFRAC.spad" 1231778 1231792 1232126 1232131) (-776 "NCEP.spad" 1229944 1229958 1231768 1231773) (-775 "NASRING.spad" 1229540 1229548 1229934 1229939) (-774 "NASRING.spad" 1229134 1229144 1229530 1229535) (-773 "NARNG.spad" 1228486 1228494 1229124 1229129) (-772 "NARNG.spad" 1227836 1227846 1228476 1228481) (-771 "NAGSP.spad" 1226913 1226921 1227826 1227831) (-770 "NAGS.spad" 1216574 1216582 1226903 1226908) (-769 "NAGF07.spad" 1215005 1215013 1216564 1216569) (-768 "NAGF04.spad" 1209407 1209415 1214995 1215000) (-767 "NAGF02.spad" 1203476 1203484 1209397 1209402) (-766 "NAGF01.spad" 1199237 1199245 1203466 1203471) (-765 "NAGE04.spad" 1192937 1192945 1199227 1199232) (-764 "NAGE02.spad" 1183597 1183605 1192927 1192932) (-763 "NAGE01.spad" 1179599 1179607 1183587 1183592) (-762 "NAGD03.spad" 1177603 1177611 1179589 1179594) (-761 "NAGD02.spad" 1170350 1170358 1177593 1177598) (-760 "NAGD01.spad" 1164643 1164651 1170340 1170345) (-759 "NAGC06.spad" 1160518 1160526 1164633 1164638) (-758 "NAGC05.spad" 1159019 1159027 1160508 1160513) (-757 "NAGC02.spad" 1158286 1158294 1159009 1159014) (-756 "NAALG.spad" 1157827 1157837 1158254 1158281) (-755 "NAALG.spad" 1157388 1157400 1157817 1157822) (-754 "MULTSQFR.spad" 1154346 1154363 1157378 1157383) (-753 "MULTFACT.spad" 1153729 1153746 1154336 1154341) (-752 "MTSCAT.spad" 1151823 1151844 1153627 1153724) (-751 "MTHING.spad" 1151482 1151492 1151813 1151818) (-750 "MSYSCMD.spad" 1150916 1150924 1151472 1151477) (-749 "MSET.spad" 1148874 1148884 1150622 1150661) (-748 "MSETAGG.spad" 1148719 1148729 1148842 1148869) (-747 "MRING.spad" 1145696 1145708 1148427 1148494) (-746 "MRF2.spad" 1145266 1145280 1145686 1145691) (-745 "MRATFAC.spad" 1144812 1144829 1145256 1145261) (-744 "MPRFF.spad" 1142852 1142871 1144802 1144807) (-743 "MPOLY.spad" 1140323 1140338 1140682 1140809) (-742 "MPCPF.spad" 1139587 1139606 1140313 1140318) (-741 "MPC3.spad" 1139404 1139444 1139577 1139582) (-740 "MPC2.spad" 1139050 1139083 1139394 1139399) (-739 "MONOTOOL.spad" 1137401 1137418 1139040 1139045) (-738 "MONOID.spad" 1136720 1136728 1137391 1137396) (-737 "MONOID.spad" 1136037 1136047 1136710 1136715) (-736 "MONOGEN.spad" 1134785 1134798 1135897 1136032) (-735 "MONOGEN.spad" 1133555 1133570 1134669 1134674) (-734 "MONADWU.spad" 1131585 1131593 1133545 1133550) (-733 "MONADWU.spad" 1129613 1129623 1131575 1131580) (-732 "MONAD.spad" 1128773 1128781 1129603 1129608) (-731 "MONAD.spad" 1127931 1127941 1128763 1128768) (-730 "MOEBIUS.spad" 1126667 1126681 1127911 1127926) (-729 "MODULE.spad" 1126537 1126547 1126635 1126662) (-728 "MODULE.spad" 1126427 1126439 1126527 1126532) (-727 "MODRING.spad" 1125762 1125801 1126407 1126422) (-726 "MODOP.spad" 1124427 1124439 1125584 1125651) (-725 "MODMONOM.spad" 1124158 1124176 1124417 1124422) (-724 "MODMON.spad" 1120860 1120876 1121579 1121732) (-723 "MODFIELD.spad" 1120222 1120261 1120762 1120855) (-722 "MMLFORM.spad" 1119082 1119090 1120212 1120217) (-721 "MMAP.spad" 1118824 1118858 1119072 1119077) (-720 "MLO.spad" 1117283 1117293 1118780 1118819) (-719 "MLIFT.spad" 1115895 1115912 1117273 1117278) (-718 "MKUCFUNC.spad" 1115430 1115448 1115885 1115890) (-717 "MKRECORD.spad" 1115034 1115047 1115420 1115425) (-716 "MKFUNC.spad" 1114441 1114451 1115024 1115029) (-715 "MKFLCFN.spad" 1113409 1113419 1114431 1114436) (-714 "MKBCFUNC.spad" 1112904 1112922 1113399 1113404) (-713 "MINT.spad" 1112343 1112351 1112806 1112899) (-712 "MHROWRED.spad" 1110854 1110864 1112333 1112338) (-711 "MFLOAT.spad" 1109374 1109382 1110744 1110849) (-710 "MFINFACT.spad" 1108774 1108796 1109364 1109369) (-709 "MESH.spad" 1106556 1106564 1108764 1108769) (-708 "MDDFACT.spad" 1104767 1104777 1106546 1106551) (-707 "MDAGG.spad" 1104058 1104068 1104747 1104762) (-706 "MCMPLX.spad" 1099489 1099497 1100103 1100304) (-705 "MCDEN.spad" 1098699 1098711 1099479 1099484) (-704 "MCALCFN.spad" 1095821 1095847 1098689 1098694) (-703 "MAYBE.spad" 1095105 1095116 1095811 1095816) (-702 "MATSTOR.spad" 1092413 1092423 1095095 1095100) (-701 "MATRIX.spad" 1091117 1091127 1091601 1091628) (-700 "MATLIN.spad" 1088461 1088485 1091001 1091006) (-699 "MATCAT.spad" 1080190 1080212 1088429 1088456) (-698 "MATCAT.spad" 1071791 1071815 1080032 1080037) (-697 "MATCAT2.spad" 1071073 1071121 1071781 1071786) (-696 "MAPPKG3.spad" 1069988 1070002 1071063 1071068) (-695 "MAPPKG2.spad" 1069326 1069338 1069978 1069983) (-694 "MAPPKG1.spad" 1068154 1068164 1069316 1069321) (-693 "MAPPAST.spad" 1067469 1067477 1068144 1068149) (-692 "MAPHACK3.spad" 1067281 1067295 1067459 1067464) (-691 "MAPHACK2.spad" 1067050 1067062 1067271 1067276) (-690 "MAPHACK1.spad" 1066694 1066704 1067040 1067045) (-689 "MAGMA.spad" 1064484 1064501 1066684 1066689) (-688 "MACROAST.spad" 1064063 1064071 1064474 1064479) (-687 "M3D.spad" 1061783 1061793 1063441 1063446) (-686 "LZSTAGG.spad" 1059021 1059031 1061773 1061778) (-685 "LZSTAGG.spad" 1056257 1056269 1059011 1059016) (-684 "LWORD.spad" 1052962 1052979 1056247 1056252) (-683 "LSTAST.spad" 1052746 1052754 1052952 1052957) (-682 "LSQM.spad" 1050939 1050953 1051333 1051384) (-681 "LSPP.spad" 1050474 1050491 1050929 1050934) (-680 "LSMP.spad" 1049324 1049352 1050464 1050469) (-679 "LSMP1.spad" 1047142 1047156 1049314 1049319) (-678 "LSAGG.spad" 1046811 1046821 1047110 1047137) (-677 "LSAGG.spad" 1046500 1046512 1046801 1046806) (-676 "LPOLY.spad" 1045454 1045473 1046356 1046425) (-675 "LPEFRAC.spad" 1044725 1044735 1045444 1045449) (-674 "LO.spad" 1044126 1044140 1044659 1044686) (-673 "LOGIC.spad" 1043728 1043736 1044116 1044121) (-672 "LOGIC.spad" 1043328 1043338 1043718 1043723) (-671 "LODOOPS.spad" 1042258 1042270 1043318 1043323) (-670 "LODO.spad" 1041642 1041658 1041938 1041977) (-669 "LODOF.spad" 1040688 1040705 1041599 1041604) (-668 "LODOCAT.spad" 1039354 1039364 1040644 1040683) (-667 "LODOCAT.spad" 1038018 1038030 1039310 1039315) (-666 "LODO2.spad" 1037291 1037303 1037698 1037737) (-665 "LODO1.spad" 1036691 1036701 1036971 1037010) (-664 "LODEEF.spad" 1035493 1035511 1036681 1036686) (-663 "LNAGG.spad" 1031640 1031650 1035483 1035488) (-662 "LNAGG.spad" 1027751 1027763 1031596 1031601) (-661 "LMOPS.spad" 1024519 1024536 1027741 1027746) (-660 "LMODULE.spad" 1024287 1024297 1024509 1024514) (-659 "LMDICT.spad" 1023574 1023584 1023838 1023865) (-658 "LLINSET.spad" 1023132 1023142 1023564 1023569) (-657 "LITERAL.spad" 1023038 1023049 1023122 1023127) (-656 "LIST.spad" 1020773 1020783 1022185 1022212) (-655 "LIST3.spad" 1020084 1020098 1020763 1020768) (-654 "LIST2.spad" 1018786 1018798 1020074 1020079) (-653 "LIST2MAP.spad" 1015689 1015701 1018776 1018781) (-652 "LINSET.spad" 1015468 1015478 1015679 1015684) (-651 "LINEXP.spad" 1014606 1014616 1015458 1015463) (-650 "LINDEP.spad" 1013415 1013427 1014518 1014523) (-649 "LIMITRF.spad" 1011343 1011353 1013405 1013410) (-648 "LIMITPS.spad" 1010246 1010259 1011333 1011338) (-647 "LIE.spad" 1008262 1008274 1009536 1009681) (-646 "LIECAT.spad" 1007738 1007748 1008188 1008257) (-645 "LIECAT.spad" 1007242 1007254 1007694 1007699) (-644 "LIB.spad" 1005455 1005463 1005901 1005916) (-643 "LGROBP.spad" 1002808 1002827 1005445 1005450) (-642 "LF.spad" 1001763 1001779 1002798 1002803) (-641 "LFCAT.spad" 1000822 1000830 1001753 1001758) (-640 "LEXTRIPK.spad" 996325 996340 1000812 1000817) (-639 "LEXP.spad" 994328 994355 996305 996320) (-638 "LETAST.spad" 994027 994035 994318 994323) (-637 "LEADCDET.spad" 992425 992442 994017 994022) (-636 "LAZM3PK.spad" 991129 991151 992415 992420) (-635 "LAUPOL.spad" 989729 989742 990629 990698) (-634 "LAPLACE.spad" 989312 989328 989719 989724) (-633 "LA.spad" 988752 988766 989234 989273) (-632 "LALG.spad" 988528 988538 988732 988747) (-631 "LALG.spad" 988312 988324 988518 988523) (-630 "KVTFROM.spad" 988047 988057 988302 988307) (-629 "KTVLOGIC.spad" 987559 987567 988037 988042) (-628 "KRCFROM.spad" 987297 987307 987549 987554) (-627 "KOVACIC.spad" 986020 986037 987287 987292) (-626 "KONVERT.spad" 985742 985752 986010 986015) (-625 "KOERCE.spad" 985479 985489 985732 985737) (-624 "KERNEL.spad" 984134 984144 985263 985268) (-623 "KERNEL2.spad" 983837 983849 984124 984129) (-622 "KDAGG.spad" 982946 982968 983817 983832) (-621 "KDAGG.spad" 982063 982087 982936 982941) (-620 "KAFILE.spad" 981026 981042 981261 981288) (-619 "JORDAN.spad" 978855 978867 980316 980461) (-618 "JOINAST.spad" 978549 978557 978845 978850) (-617 "JAVACODE.spad" 978415 978423 978539 978544) (-616 "IXAGG.spad" 976548 976572 978405 978410) (-615 "IXAGG.spad" 974536 974562 976395 976400) (-614 "IVECTOR.spad" 973306 973321 973461 973488) (-613 "ITUPLE.spad" 972467 972477 973296 973301) (-612 "ITRIGMNP.spad" 971306 971325 972457 972462) (-611 "ITFUN3.spad" 970812 970826 971296 971301) (-610 "ITFUN2.spad" 970556 970568 970802 970807) (-609 "ITFORM.spad" 969911 969919 970546 970551) (-608 "ITAYLOR.spad" 967905 967920 969775 969872) (-607 "ISUPS.spad" 960342 960357 966879 966976) (-606 "ISUMP.spad" 959843 959859 960332 960337) (-605 "ISTRING.spad" 958931 958944 959012 959039) (-604 "ISAST.spad" 958650 958658 958921 958926) (-603 "IRURPK.spad" 957367 957386 958640 958645) (-602 "IRSN.spad" 955339 955347 957357 957362) (-601 "IRRF2F.spad" 953824 953834 955295 955300) (-600 "IRREDFFX.spad" 953425 953436 953814 953819) (-599 "IROOT.spad" 951764 951774 953415 953420) (-598 "IR.spad" 949565 949579 951619 951646) (-597 "IRFORM.spad" 948889 948897 949555 949560) (-596 "IR2.spad" 947917 947933 948879 948884) (-595 "IR2F.spad" 947123 947139 947907 947912) (-594 "IPRNTPK.spad" 946883 946891 947113 947118) (-593 "IPF.spad" 946448 946460 946688 946781) (-592 "IPADIC.spad" 946209 946235 946374 946443) (-591 "IP4ADDR.spad" 945766 945774 946199 946204) (-590 "IOMODE.spad" 945288 945296 945756 945761) (-589 "IOBFILE.spad" 944649 944657 945278 945283) (-588 "IOBCON.spad" 944514 944522 944639 944644) (-587 "INVLAPLA.spad" 944163 944179 944504 944509) (-586 "INTTR.spad" 937545 937562 944153 944158) (-585 "INTTOOLS.spad" 935300 935316 937119 937124) (-584 "INTSLPE.spad" 934620 934628 935290 935295) (-583 "INTRVL.spad" 934186 934196 934534 934615) (-582 "INTRF.spad" 932610 932624 934176 934181) (-581 "INTRET.spad" 932042 932052 932600 932605) (-580 "INTRAT.spad" 930769 930786 932032 932037) (-579 "INTPM.spad" 929154 929170 930412 930417) (-578 "INTPAF.spad" 927018 927036 929086 929091) (-577 "INTPACK.spad" 917392 917400 927008 927013) (-576 "INT.spad" 916840 916848 917246 917387) (-575 "INTHERTR.spad" 916114 916131 916830 916835) (-574 "INTHERAL.spad" 915784 915808 916104 916109) (-573 "INTHEORY.spad" 912223 912231 915774 915779) (-572 "INTG0.spad" 905956 905974 912155 912160) (-571 "INTFTBL.spad" 899985 899993 905946 905951) (-570 "INTFACT.spad" 899044 899054 899975 899980) (-569 "INTEF.spad" 897429 897445 899034 899039) (-568 "INTDOM.spad" 896052 896060 897355 897424) (-567 "INTDOM.spad" 894737 894747 896042 896047) (-566 "INTCAT.spad" 892996 893006 894651 894732) (-565 "INTBIT.spad" 892503 892511 892986 892991) (-564 "INTALG.spad" 891691 891718 892493 892498) (-563 "INTAF.spad" 891191 891207 891681 891686) (-562 "INTABL.spad" 889709 889740 889872 889899) (-561 "INT8.spad" 889589 889597 889699 889704) (-560 "INT64.spad" 889468 889476 889579 889584) (-559 "INT32.spad" 889347 889355 889458 889463) (-558 "INT16.spad" 889226 889234 889337 889342) (-557 "INS.spad" 886729 886737 889128 889221) (-556 "INS.spad" 884318 884328 886719 886724) (-555 "INPSIGN.spad" 883766 883779 884308 884313) (-554 "INPRODPF.spad" 882862 882881 883756 883761) (-553 "INPRODFF.spad" 881950 881974 882852 882857) (-552 "INNMFACT.spad" 880925 880942 881940 881945) (-551 "INMODGCD.spad" 880413 880443 880915 880920) (-550 "INFSP.spad" 878710 878732 880403 880408) (-549 "INFPROD0.spad" 877790 877809 878700 878705) (-548 "INFORM.spad" 874989 874997 877780 877785) (-547 "INFORM1.spad" 874614 874624 874979 874984) (-546 "INFINITY.spad" 874166 874174 874604 874609) (-545 "INETCLTS.spad" 874143 874151 874156 874161) (-544 "INEP.spad" 872681 872703 874133 874138) (-543 "INDE.spad" 872410 872427 872671 872676) (-542 "INCRMAPS.spad" 871831 871841 872400 872405) (-541 "INBFILE.spad" 870903 870911 871821 871826) (-540 "INBFF.spad" 866697 866708 870893 870898) (-539 "INBCON.spad" 864987 864995 866687 866692) (-538 "INBCON.spad" 863275 863285 864977 864982) (-537 "INAST.spad" 862936 862944 863265 863270) (-536 "IMPTAST.spad" 862644 862652 862926 862931) (-535 "IMATRIX.spad" 861589 861615 862101 862128) (-534 "IMATQF.spad" 860683 860727 861545 861550) (-533 "IMATLIN.spad" 859288 859312 860639 860644) (-532 "ILIST.spad" 857946 857961 858471 858498) (-531 "IIARRAY2.spad" 857334 857372 857553 857580) (-530 "IFF.spad" 856744 856760 857015 857108) (-529 "IFAST.spad" 856358 856366 856734 856739) (-528 "IFARRAY.spad" 853851 853866 855541 855568) (-527 "IFAMON.spad" 853713 853730 853807 853812) (-526 "IEVALAB.spad" 853118 853130 853703 853708) (-525 "IEVALAB.spad" 852521 852535 853108 853113) (-524 "IDPO.spad" 852319 852331 852511 852516) (-523 "IDPOAMS.spad" 852075 852087 852309 852314) (-522 "IDPOAM.spad" 851795 851807 852065 852070) (-521 "IDPC.spad" 850733 850745 851785 851790) (-520 "IDPAM.spad" 850478 850490 850723 850728) (-519 "IDPAG.spad" 850225 850237 850468 850473) (-518 "IDENT.spad" 849875 849883 850215 850220) (-517 "IDECOMP.spad" 847114 847132 849865 849870) (-516 "IDEAL.spad" 842063 842102 847049 847054) (-515 "ICDEN.spad" 841252 841268 842053 842058) (-514 "ICARD.spad" 840443 840451 841242 841247) (-513 "IBPTOOLS.spad" 839050 839067 840433 840438) (-512 "IBITS.spad" 838253 838266 838686 838713) (-511 "IBATOOL.spad" 835230 835249 838243 838248) (-510 "IBACHIN.spad" 833737 833752 835220 835225) (-509 "IARRAY2.spad" 832725 832751 833344 833371) (-508 "IARRAY1.spad" 831770 831785 831908 831935) (-507 "IAN.spad" 829993 830001 831586 831679) (-506 "IALGFACT.spad" 829596 829629 829983 829988) (-505 "HYPCAT.spad" 829020 829028 829586 829591) (-504 "HYPCAT.spad" 828442 828452 829010 829015) (-503 "HOSTNAME.spad" 828250 828258 828432 828437) (-502 "HOMOTOP.spad" 827993 828003 828240 828245) (-501 "HOAGG.spad" 825275 825285 827983 827988) (-500 "HOAGG.spad" 822332 822344 825042 825047) (-499 "HEXADEC.spad" 820337 820345 820702 820795) (-498 "HEUGCD.spad" 819372 819383 820327 820332) (-497 "HELLFDIV.spad" 818962 818986 819362 819367) (-496 "HEAP.spad" 818354 818364 818569 818596) (-495 "HEADAST.spad" 817887 817895 818344 818349) (-494 "HDP.spad" 806222 806238 806599 806698) (-493 "HDMP.spad" 803436 803451 804052 804179) (-492 "HB.spad" 801687 801695 803426 803431) (-491 "HASHTBL.spad" 800157 800188 800368 800395) (-490 "HASAST.spad" 799873 799881 800147 800152) (-489 "HACKPI.spad" 799364 799372 799775 799868) (-488 "GTSET.spad" 798303 798319 799010 799037) (-487 "GSTBL.spad" 796822 796857 796996 797011) (-486 "GSERIES.spad" 794135 794162 794954 795103) (-485 "GROUP.spad" 793408 793416 794115 794130) (-484 "GROUP.spad" 792689 792699 793398 793403) (-483 "GROEBSOL.spad" 791183 791204 792679 792684) (-482 "GRMOD.spad" 789754 789766 791173 791178) (-481 "GRMOD.spad" 788323 788337 789744 789749) (-480 "GRIMAGE.spad" 781212 781220 788313 788318) (-479 "GRDEF.spad" 779591 779599 781202 781207) (-478 "GRAY.spad" 778054 778062 779581 779586) (-477 "GRALG.spad" 777131 777143 778044 778049) (-476 "GRALG.spad" 776206 776220 777121 777126) (-475 "GPOLSET.spad" 775660 775683 775888 775915) (-474 "GOSPER.spad" 774929 774947 775650 775655) (-473 "GMODPOL.spad" 774077 774104 774897 774924) (-472 "GHENSEL.spad" 773160 773174 774067 774072) (-471 "GENUPS.spad" 769453 769466 773150 773155) (-470 "GENUFACT.spad" 769030 769040 769443 769448) (-469 "GENPGCD.spad" 768616 768633 769020 769025) (-468 "GENMFACT.spad" 768068 768087 768606 768611) (-467 "GENEEZ.spad" 766019 766032 768058 768063) (-466 "GDMP.spad" 763075 763092 763849 763976) (-465 "GCNAALG.spad" 756998 757025 762869 762936) (-464 "GCDDOM.spad" 756174 756182 756924 756993) (-463 "GCDDOM.spad" 755412 755422 756164 756169) (-462 "GB.spad" 752938 752976 755368 755373) (-461 "GBINTERN.spad" 748958 748996 752928 752933) (-460 "GBF.spad" 744725 744763 748948 748953) (-459 "GBEUCLID.spad" 742607 742645 744715 744720) (-458 "GAUSSFAC.spad" 741920 741928 742597 742602) (-457 "GALUTIL.spad" 740246 740256 741876 741881) (-456 "GALPOLYU.spad" 738700 738713 740236 740241) (-455 "GALFACTU.spad" 736873 736892 738690 738695) (-454 "GALFACT.spad" 727062 727073 736863 736868) (-453 "FVFUN.spad" 724085 724093 727052 727057) (-452 "FVC.spad" 723137 723145 724075 724080) (-451 "FUNDESC.spad" 722815 722823 723127 723132) (-450 "FUNCTION.spad" 722664 722676 722805 722810) (-449 "FT.spad" 720961 720969 722654 722659) (-448 "FTEM.spad" 720126 720134 720951 720956) (-447 "FSUPFACT.spad" 719026 719045 720062 720067) (-446 "FST.spad" 717112 717120 719016 719021) (-445 "FSRED.spad" 716592 716608 717102 717107) (-444 "FSPRMELT.spad" 715474 715490 716549 716554) (-443 "FSPECF.spad" 713565 713581 715464 715469) (-442 "FS.spad" 707833 707843 713340 713560) (-441 "FS.spad" 701879 701891 707388 707393) (-440 "FSINT.spad" 701539 701555 701869 701874) (-439 "FSERIES.spad" 700730 700742 701359 701458) (-438 "FSCINT.spad" 700047 700063 700720 700725) (-437 "FSAGG.spad" 699164 699174 700003 700042) (-436 "FSAGG.spad" 698243 698255 699084 699089) (-435 "FSAGG2.spad" 696986 697002 698233 698238) (-434 "FS2UPS.spad" 691477 691511 696976 696981) (-433 "FS2.spad" 691124 691140 691467 691472) (-432 "FS2EXPXP.spad" 690249 690272 691114 691119) (-431 "FRUTIL.spad" 689203 689213 690239 690244) (-430 "FR.spad" 682826 682836 688134 688203) (-429 "FRNAALG.spad" 678095 678105 682768 682821) (-428 "FRNAALG.spad" 673376 673388 678051 678056) (-427 "FRNAAF2.spad" 672832 672850 673366 673371) (-426 "FRMOD.spad" 672242 672272 672763 672768) (-425 "FRIDEAL.spad" 671467 671488 672222 672237) (-424 "FRIDEAL2.spad" 671071 671103 671457 671462) (-423 "FRETRCT.spad" 670582 670592 671061 671066) (-422 "FRETRCT.spad" 669959 669971 670440 670445) (-421 "FRAMALG.spad" 668307 668320 669915 669954) (-420 "FRAMALG.spad" 666687 666702 668297 668302) (-419 "FRAC.spad" 663693 663703 664096 664269) (-418 "FRAC2.spad" 663298 663310 663683 663688) (-417 "FR2.spad" 662634 662646 663288 663293) (-416 "FPS.spad" 659449 659457 662524 662629) (-415 "FPS.spad" 656292 656302 659369 659374) (-414 "FPC.spad" 655338 655346 656194 656287) (-413 "FPC.spad" 654470 654480 655328 655333) (-412 "FPATMAB.spad" 654232 654242 654460 654465) (-411 "FPARFRAC.spad" 653082 653099 654222 654227) (-410 "FORTRAN.spad" 651588 651631 653072 653077) (-409 "FORT.spad" 650537 650545 651578 651583) (-408 "FORTFN.spad" 647707 647715 650527 650532) (-407 "FORTCAT.spad" 647391 647399 647697 647702) (-406 "FORMULA.spad" 644865 644873 647381 647386) (-405 "FORMULA1.spad" 644344 644354 644855 644860) (-404 "FORDER.spad" 644035 644059 644334 644339) (-403 "FOP.spad" 643236 643244 644025 644030) (-402 "FNLA.spad" 642660 642682 643204 643231) (-401 "FNCAT.spad" 641255 641263 642650 642655) (-400 "FNAME.spad" 641147 641155 641245 641250) (-399 "FMTC.spad" 640945 640953 641073 641142) (-398 "FMONOID.spad" 640610 640620 640901 640906) (-397 "FMONCAT.spad" 637763 637773 640600 640605) (-396 "FM.spad" 637458 637470 637697 637724) (-395 "FMFUN.spad" 634488 634496 637448 637453) (-394 "FMC.spad" 633540 633548 634478 634483) (-393 "FMCAT.spad" 631208 631226 633508 633535) (-392 "FM1.spad" 630565 630577 631142 631169) (-391 "FLOATRP.spad" 628300 628314 630555 630560) (-390 "FLOAT.spad" 621614 621622 628166 628295) (-389 "FLOATCP.spad" 619045 619059 621604 621609) (-388 "FLINEXP.spad" 618767 618777 619035 619040) (-387 "FLINEXP.spad" 618433 618445 618703 618708) (-386 "FLASORT.spad" 617759 617771 618423 618428) (-385 "FLALG.spad" 615405 615424 617685 617754) (-384 "FLAGG.spad" 612447 612457 615385 615400) (-383 "FLAGG.spad" 609390 609402 612330 612335) (-382 "FLAGG2.spad" 608115 608131 609380 609385) (-381 "FINRALG.spad" 606176 606189 608071 608110) (-380 "FINRALG.spad" 604163 604178 606060 606065) (-379 "FINITE.spad" 603315 603323 604153 604158) (-378 "FINAALG.spad" 592436 592446 603257 603310) (-377 "FINAALG.spad" 581569 581581 592392 592397) (-376 "FILE.spad" 581152 581162 581559 581564) (-375 "FILECAT.spad" 579678 579695 581142 581147) (-374 "FIELD.spad" 579084 579092 579580 579673) (-373 "FIELD.spad" 578576 578586 579074 579079) (-372 "FGROUP.spad" 577223 577233 578556 578571) (-371 "FGLMICPK.spad" 576010 576025 577213 577218) (-370 "FFX.spad" 575385 575400 575726 575819) (-369 "FFSLPE.spad" 574888 574909 575375 575380) (-368 "FFPOLY.spad" 566150 566161 574878 574883) (-367 "FFPOLY2.spad" 565210 565227 566140 566145) (-366 "FFP.spad" 564607 564627 564926 565019) (-365 "FF.spad" 564055 564071 564288 564381) (-364 "FFNBX.spad" 562567 562587 563771 563864) (-363 "FFNBP.spad" 561080 561097 562283 562376) (-362 "FFNB.spad" 559545 559566 560761 560854) (-361 "FFINTBAS.spad" 557059 557078 559535 559540) (-360 "FFIELDC.spad" 554636 554644 556961 557054) (-359 "FFIELDC.spad" 552299 552309 554626 554631) (-358 "FFHOM.spad" 551047 551064 552289 552294) (-357 "FFF.spad" 548482 548493 551037 551042) (-356 "FFCGX.spad" 547329 547349 548198 548291) (-355 "FFCGP.spad" 546218 546238 547045 547138) (-354 "FFCG.spad" 545010 545031 545899 545992) (-353 "FFCAT.spad" 538183 538205 544849 545005) (-352 "FFCAT.spad" 531435 531459 538103 538108) (-351 "FFCAT2.spad" 531182 531222 531425 531430) (-350 "FEXPR.spad" 522899 522945 530938 530977) (-349 "FEVALAB.spad" 522607 522617 522889 522894) (-348 "FEVALAB.spad" 522100 522112 522384 522389) (-347 "FDIV.spad" 521542 521566 522090 522095) (-346 "FDIVCAT.spad" 519606 519630 521532 521537) (-345 "FDIVCAT.spad" 517668 517694 519596 519601) (-344 "FDIV2.spad" 517324 517364 517658 517663) (-343 "FCTRDATA.spad" 516332 516340 517314 517319) (-342 "FCPAK1.spad" 514899 514907 516322 516327) (-341 "FCOMP.spad" 514278 514288 514889 514894) (-340 "FC.spad" 504285 504293 514268 514273) (-339 "FAXF.spad" 497256 497270 504187 504280) (-338 "FAXF.spad" 490279 490295 497212 497217) (-337 "FARRAY.spad" 488429 488439 489462 489489) (-336 "FAMR.spad" 486565 486577 488327 488424) (-335 "FAMR.spad" 484685 484699 486449 486454) (-334 "FAMONOID.spad" 484353 484363 484639 484644) (-333 "FAMONC.spad" 482649 482661 484343 484348) (-332 "FAGROUP.spad" 482273 482283 482545 482572) (-331 "FACUTIL.spad" 480477 480494 482263 482268) (-330 "FACTFUNC.spad" 479671 479681 480467 480472) (-329 "EXPUPXS.spad" 476504 476527 477803 477952) (-328 "EXPRTUBE.spad" 473792 473800 476494 476499) (-327 "EXPRODE.spad" 470952 470968 473782 473787) (-326 "EXPR.spad" 466127 466137 466841 467136) (-325 "EXPR2UPS.spad" 462249 462262 466117 466122) (-324 "EXPR2.spad" 461954 461966 462239 462244) (-323 "EXPEXPAN.spad" 458755 458780 459387 459480) (-322 "EXIT.spad" 458426 458434 458745 458750) (-321 "EXITAST.spad" 458162 458170 458416 458421) (-320 "EVALCYC.spad" 457622 457636 458152 458157) (-319 "EVALAB.spad" 457194 457204 457612 457617) (-318 "EVALAB.spad" 456764 456776 457184 457189) (-317 "EUCDOM.spad" 454338 454346 456690 456759) (-316 "EUCDOM.spad" 451974 451984 454328 454333) (-315 "ESTOOLS.spad" 443820 443828 451964 451969) (-314 "ESTOOLS2.spad" 443423 443437 443810 443815) (-313 "ESTOOLS1.spad" 443108 443119 443413 443418) (-312 "ES.spad" 435923 435931 443098 443103) (-311 "ES.spad" 428644 428654 435821 435826) (-310 "ESCONT.spad" 425437 425445 428634 428639) (-309 "ESCONT1.spad" 425186 425198 425427 425432) (-308 "ES2.spad" 424691 424707 425176 425181) (-307 "ES1.spad" 424261 424277 424681 424686) (-306 "ERROR.spad" 421588 421596 424251 424256) (-305 "EQTBL.spad" 420060 420082 420269 420296) (-304 "EQ.spad" 414865 414875 417652 417764) (-303 "EQ2.spad" 414583 414595 414855 414860) (-302 "EP.spad" 410909 410919 414573 414578) (-301 "ENV.spad" 409587 409595 410899 410904) (-300 "ENTIRER.spad" 409255 409263 409531 409582) (-299 "EMR.spad" 408543 408584 409181 409250) (-298 "ELTAGG.spad" 406797 406816 408533 408538) (-297 "ELTAGG.spad" 405015 405036 406753 406758) (-296 "ELTAB.spad" 404490 404503 405005 405010) (-295 "ELFUTS.spad" 403877 403896 404480 404485) (-294 "ELEMFUN.spad" 403566 403574 403867 403872) (-293 "ELEMFUN.spad" 403253 403263 403556 403561) (-292 "ELAGG.spad" 401224 401234 403233 403248) (-291 "ELAGG.spad" 399132 399144 401143 401148) (-290 "ELABOR.spad" 398478 398486 399122 399127) (-289 "ELABEXPR.spad" 397410 397418 398468 398473) (-288 "EFUPXS.spad" 394186 394216 397366 397371) (-287 "EFULS.spad" 391022 391045 394142 394147) (-286 "EFSTRUC.spad" 389037 389053 391012 391017) (-285 "EF.spad" 383813 383829 389027 389032) (-284 "EAB.spad" 382089 382097 383803 383808) (-283 "E04UCFA.spad" 381625 381633 382079 382084) (-282 "E04NAFA.spad" 381202 381210 381615 381620) (-281 "E04MBFA.spad" 380782 380790 381192 381197) (-280 "E04JAFA.spad" 380318 380326 380772 380777) (-279 "E04GCFA.spad" 379854 379862 380308 380313) (-278 "E04FDFA.spad" 379390 379398 379844 379849) (-277 "E04DGFA.spad" 378926 378934 379380 379385) (-276 "E04AGNT.spad" 374776 374784 378916 378921) (-275 "DVARCAT.spad" 371666 371676 374766 374771) (-274 "DVARCAT.spad" 368554 368566 371656 371661) (-273 "DSMP.spad" 365928 365942 366233 366360) (-272 "DSEXT.spad" 365230 365240 365918 365923) (-271 "DSEXT.spad" 364439 364451 365129 365134) (-270 "DROPT.spad" 358398 358406 364429 364434) (-269 "DROPT1.spad" 358063 358073 358388 358393) (-268 "DROPT0.spad" 352920 352928 358053 358058) (-267 "DRAWPT.spad" 351093 351101 352910 352915) (-266 "DRAW.spad" 343969 343982 351083 351088) (-265 "DRAWHACK.spad" 343277 343287 343959 343964) (-264 "DRAWCX.spad" 340747 340755 343267 343272) (-263 "DRAWCURV.spad" 340294 340309 340737 340742) (-262 "DRAWCFUN.spad" 329826 329834 340284 340289) (-261 "DQAGG.spad" 328004 328014 329794 329821) (-260 "DPOLCAT.spad" 323353 323369 327872 327999) (-259 "DPOLCAT.spad" 318788 318806 323309 323314) (-258 "DPMO.spad" 310584 310600 310722 310935) (-257 "DPMM.spad" 302393 302411 302518 302731) (-256 "DOMTMPLT.spad" 302164 302172 302383 302388) (-255 "DOMCTOR.spad" 301919 301927 302154 302159) (-254 "DOMAIN.spad" 301006 301014 301909 301914) (-253 "DMP.spad" 298266 298281 298836 298963) (-252 "DMEXT.spad" 298133 298143 298234 298261) (-251 "DLP.spad" 297485 297495 298123 298128) (-250 "DLIST.spad" 296064 296074 296668 296695) (-249 "DLAGG.spad" 294481 294491 296054 296059) (-248 "DIVRING.spad" 294023 294031 294425 294476) (-247 "DIVRING.spad" 293609 293619 294013 294018) (-246 "DISPLAY.spad" 291799 291807 293599 293604) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index d15cee09..b7593426 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1148 +1,1148 @@
-(203171 . 3485856138)
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-((((-575)) . T) (($) -3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T))
+(203171 . 3485863928)
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+((((-576)) . T) (($) -3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-575)) . T))
-((($ $) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2| |#2|) . T) ((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))))
+((((-576)) . T))
+((($ $) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))))
((($) . T))
(((|#1|) . T))
-((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#2|) . T))
-((($) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-(|has| |#1| (-924))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((($) . T) (((-418 (-575))) . T))
+((($) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+(|has| |#1| (-926))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((($) . T) (((-419 (-576))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-145)) . T))
-((((-547)) . T) (((-1176)) . T) (((-227)) . T) (((-389)) . T) (((-904 (-389))) . T))
-(((|#1|) . T))
-((((-227)) . T) (((-873)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
-((($ $) . T) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1| |#1|) . T))
-(-3763 (|has| |#1| (-831)) (|has| |#1| (-861)))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
-((((-873)) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(|has| |#1| (-859))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-325 |#1|)) . T) (((-575)) . T) (($) . T))
+((((-548)) . T) (((-1178)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T))
+(((|#1|) . T))
+((((-227)) . T) (((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((($ $) . T) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T))
+(-3739 (|has| |#1| (-832)) (|has| |#1| (-862)))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
+((((-874)) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-860))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-326 |#1|)) . T) (((-576)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-((((-575)) . T) (((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T))
-((((-873)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
+((((-576)) . T) (((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-874)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
(((|#4|) . T))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T))
-((((-873)) . T))
-((((-873)) |has| (-1111 |#1|) (-1117)))
-((((-873)) . T) (((-1199)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-874)) . T))
+((((-874)) |has| (-1113 |#1|) (-1119)))
+((((-874)) . T) (((-1201)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1199)) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-(-3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(((|#2| (-493 (-2869 |#1|) (-782))) . T))
-((((-1194)) -3763 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194)))))
-(((|#1| (-542 (-1194))) . T))
-(((#0=(-881 |#1|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-((((-1176)) . T) (((-973 (-130))) . T) (((-873)) . T))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(|has| |#4| (-378))
-(|has| |#3| (-378))
-(((|#1|) . T))
-((((-1194)) . T))
-((((-517)) . T))
-((((-881 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-1201)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+(-3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(((|#2| (-494 (-2845 |#1|) (-783))) . T))
+((((-1196)) -3739 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196)))))
+(((|#1| (-543 (-1196))) . T))
+(((#0=(-882 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+((((-1178)) . T) (((-975 (-130))) . T) (((-874)) . T))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(|has| |#4| (-379))
+(|has| |#3| (-379))
+(((|#1|) . T))
+((((-1196)) . T))
+((((-518)) . T))
+((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-567))
-((((-575)) . T) (((-418 (-575))) -3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-((((-2 (|:| -4317 |#1|) (|:| -1658 |#2|))) . T))
+(|has| |#1| (-568))
+((((-576)) . T) (((-419 (-576))) -3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-2 (|:| -4308 |#1|) (|:| -2273 |#2|))) . T))
((($) . T))
-((((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1194)) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-1194)) . T))
-((((-575)) . T) (($) . T))
-((((-592 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
+((((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1196)) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-1196)) . T))
+((((-576)) . T) (($) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) . T) (((-575)) . T) (($) . T))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-(|has| |#1| (-1117))
-(((|#1|) . T))
-((((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((((-117 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T))
-(((|#2|) . T) (((-575)) . T) ((|#6|) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+(|has| |#1| (-1119))
+(((|#1|) . T))
+((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+(((|#2|) . T) (((-576)) . T) ((|#6|) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
((($) . T))
(((|#2|) . T))
((($) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T))
-((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
((($ $) . T))
((($) . T))
-((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-378))
+(|has| |#1| (-379))
(((|#1|) . T))
-((((-873)) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T))
+((((-874)) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((((-575)) . T))
-((((-873)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((((-576)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(|has| |#1| (-567))
-(((|#1|) . T) (((-575)) . T) (($) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(|has| |#1| (-1117))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(|has| |#1| (-1117))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(|has| |#1| (-859))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(|has| |#1| (-568))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(|has| |#1| (-1119))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(|has| |#1| (-1119))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(|has| |#1| (-860))
(((|#1| |#1|) . T))
-((($) . T) (((-418 (-575))) . T))
+((($) . T) (((-419 (-576))) . T))
(((|#1|) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-575) (-130)) . T))
-((((-873)) . T))
-((($) . T) (((-418 (-575))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-576) (-130)) . T))
+((((-874)) . T))
+((($) . T) (((-419 (-576))) . T))
((((-130)) . T))
-(|has| |#4| (-804))
-(|has| |#4| (-804))
-(|has| |#3| (-804))
-(|has| |#3| (-804))
+(|has| |#4| (-805))
+(|has| |#4| (-805))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
(((|#1| |#2|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-1199)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1201)) . T))
(((|#1| |#2|) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))) (((-1194) |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-525 (-1194) |#2|))))
-(|has| |#1| (-1117))
-(|has| |#1| (-1117))
-((((-575)) . T) (((-418 (-575))) . T))
-(((|#1| (-1194) (-1105 (-1194)) (-542 (-1105 (-1194)))) . T))
-((((-575) |#1|) . T))
-((((-575)) . T))
-((((-575)) . T))
-((((-925 |#1|)) . T))
-(((|#1| (-542 |#2|)) . T))
-((((-575)) . T))
-((((-575)) . T))
-(((|#1|) . T))
-(|has| |#2| (-1066))
-(((|#1| (-782)) . T))
-(|has| |#2| (-804))
-(|has| |#2| (-804))
+(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1196) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1196) |#2|))))
+(|has| |#1| (-1119))
+(|has| |#1| (-1119))
+((((-576)) . T) (((-419 (-576))) . T))
+(((|#1| (-1196) (-1107 (-1196)) (-543 (-1107 (-1196)))) . T))
+((((-576) |#1|) . T))
+((((-576)) . T))
+((((-576)) . T))
+((((-927 |#1|)) . T))
+(((|#1| (-543 |#2|)) . T))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) . T))
+(|has| |#2| (-1068))
+(((|#1| (-783)) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1176) |#1|) . T))
-((((-1252 (-575)) $) . T) (((-575) (-130)) . T))
+((((-1178) |#1|) . T))
+((((-1254 (-576)) $) . T) (((-576) (-130)) . T))
(((|#1|) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(((|#3| (-782)) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(((|#3| (-783)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) (((-418 (-575))) . T))
+((($) . T) (((-419 (-576))) . T))
((($) . T))
((($) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-((((-418 (-575))) . T) (($) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-419 (-576))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-1117))
-((((-418 (-575))) . T) (((-575)) . T))
-((((-575)) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#2|) . T))
-((((-1194) |#2|) |has| |#2| (-525 (-1194) |#2|)) ((|#2| |#2|) |has| |#2| (-318 |#2|)))
-((((-418 (-575))) . T) (((-575)) . T))
-((((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1099)) . T) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))
+(|has| |#1| (-1119))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#2|) . T))
+((((-1196) |#2|) |has| |#2| (-526 (-1196) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|)))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))
(((|#1|) . T) (($) . T))
-((((-575)) . T))
-((((-575)) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
-((((-575)) . T))
-((((-575)) . T))
-((((-418 (-575))) . T) (($) . T))
-(((#0=(-710) (-1190 #0#)) . T))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-373))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-((($) -3763 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237))))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
+((((-576)) . T))
+((((-576)) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+((((-576)) . T))
+((((-576)) . T))
+((((-419 (-576))) . T) (($) . T))
+(((#0=(-711) (-1192 #0#)) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-374))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+((($) -3739 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
(((|#1| |#2|) . T))
-((((-873)) . T))
+((((-874)) . T))
(((|#1|) . T))
-((((-1176) |#1|) . T))
+((((-1178) |#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
(((|#3| |#3|) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#1|) . T))
-(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-575) |#1|) . T))
-((((-873)) . T))
-((((-171 (-227))) |has| |#1| (-1039)) (((-171 (-389))) |has| |#1| (-1039)) (((-547)) |has| |#1| (-625 (-547))) (((-1190 |#1|)) . T) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#2|) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-(|has| |#1| (-373))
-((((-873)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-576) |#1|) . T))
+((((-874)) . T))
+((((-171 (-227))) |has| |#1| (-1041)) (((-171 (-390))) |has| |#1| (-1041)) (((-548)) |has| |#1| (-626 (-548))) (((-1192 |#1|)) . T) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+(|has| |#1| (-374))
+((((-874)) . T))
((($) . T))
((($) . T))
((((-130)) . T))
-(-12 (|has| |#4| (-238)) (|has| |#4| (-1066)))
-(-12 (|has| |#3| (-238)) (|has| |#3| (-1066)))
-((($) -3763 (|has| |#2| (-238)) (|has| |#2| (-237))))
-(|has| |#4| (-1066))
-(|has| |#3| (-1066))
-((((-873)) . T) (((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-(|has| |#1| (-567))
-((((-575)) -3763 (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117))) (|has| |#4| (-1066))) ((|#4|) |has| |#4| (-1117)) (((-418 (-575))) -12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))
-((((-575)) -3763 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066))) ((|#3|) |has| |#3| (-1117)) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(|has| |#1| (-567))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#1|) . T))
-(|has| |#1| (-567))
-((((-875 |#1|)) . T))
-(|has| |#1| (-567))
-(|has| |#1| (-567))
+(-12 (|has| |#4| (-238)) (|has| |#4| (-1068)))
+(-12 (|has| |#3| (-238)) (|has| |#3| (-1068)))
+((($) -3739 (|has| |#2| (-238)) (|has| |#2| (-237))))
+(|has| |#4| (-1068))
+(|has| |#3| (-1068))
+((((-874)) . T) (((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(((|#2|) . T) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+(|has| |#1| (-568))
+((((-576)) -3739 (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (|has| |#4| (-1068))) ((|#4|) |has| |#4| (-1119)) (((-419 (-576))) -12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))
+((((-576)) -3739 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1119)) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(|has| |#1| (-568))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#1|) . T))
+(|has| |#1| (-568))
+((((-876 |#1|)) . T))
+(|has| |#1| (-568))
+(|has| |#1| (-568))
(((|#2|) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1099)) . T))
-((((-710)) . T))
-(((|#1|) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1105 (-1194))) . T))
-(-12 (|has| |#1| (-1019)) (|has| |#1| (-1220)))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-418 (-575))) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
-(-12 (|has| |#1| (-1117)) (|has| |#2| (-1117)))
-((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T))
-(((|#4| |#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-1066))))
-(((|#3| |#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T))
+((((-711)) . T))
+(((|#1|) . T))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1107 (-1196))) . T))
+(-12 (|has| |#1| (-1021)) (|has| |#1| (-1222)))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+(-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
+(((|#4| |#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068))))
+(((|#3| |#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))))
(((|#2|) . T))
(((|#1|) . T))
-((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575)))))
-((((-873)) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+((((-874)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -4317 |#1|) (|:| -1658 |#2|))) . T) (((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))))
-(((|#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-1066))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))))
-((((-2 (|:| -4317 |#1|) (|:| -1658 |#2|))) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
-((((-655 |#1|)) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((((-418 $) (-418 $)) |has| |#2| (-567)) (($ $) . T) ((|#2| |#2|) . T))
-((($ (-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-924))
-((((-1176) (-52)) . T))
-((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T))
-((((-547)) . T) (((-227)) . T) (((-389)) . T) (((-904 (-389))) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
+((((-2 (|:| -4308 |#1|) (|:| -2273 |#2|))) . T) (((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))))
+(((|#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))))
+((((-2 (|:| -4308 |#1|) (|:| -2273 |#2|))) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-656 |#1|)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T))
+((($ (-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-926))
+((((-1178) (-52)) . T))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T))
+((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
(((|#1|) |has| |#1| (-174)))
-(((|#1| $) |has| |#1| (-295 |#1| |#1|)))
-((((-873)) . T))
-((((-873)) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-(|has| |#1| (-861))
-(((|#2|) . T) (((-575)) . T) (((-830 |#1|)) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-1117))
-((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) . T) (((-1199)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((((-1199)) . T))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-874)) . T))
+((((-874)) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+(|has| |#1| (-862))
+(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1119))
+((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) . T) (((-1201)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((((-1201)) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(|has| |#1| (-238))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1| (-542 (-829 (-1194)))) . T))
-(((|#1| (-988)) . T))
-((((-575)) . T) ((|#2|) . T))
-((((-1194)) . T))
-(((#0=(-881 |#1|) $) |has| #0# (-295 #0# #0#)))
-((((-575) |#4|) . T))
-((((-575) |#3|) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| (-543 (-830 (-1196)))) . T))
+(((|#1| (-990)) . T))
+((((-576)) . T) ((|#2|) . T))
+((((-1196)) . T))
+(((#0=(-882 |#1|) $) |has| #0# (-296 #0# #0#)))
+((((-576) |#4|) . T))
+((((-576) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1169))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-(|has| (-1271 |#1| |#2| |#3| |#4|) (-146))
-(|has| (-1271 |#1| |#2| |#3| |#4|) (-148))
+(|has| |#1| (-1171))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+(|has| (-1273 |#1| |#2| |#3| |#4|) (-146))
+(|has| (-1273 |#1| |#2| |#3| |#4|) (-148))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))))
+((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1117))
-((((-1176) |#1|) . T))
+(|has| |#1| (-1119))
+((((-1178) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((((-1142 |#1| (-1194))) . T) (((-575)) . T) (((-829 (-1194))) . T) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-1194)) . T))
-(|has| |#2| (-378))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-1144 |#1| (-1196))) . T) (((-576)) . T) (((-830 (-1196))) . T) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-1196)) . T))
+(|has| |#2| (-379))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1066)))
-((((-873)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-(((|#1|) . T))
-((((-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((#0=(-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) #0#) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))))
-((((-873)) . T))
-((((-575) |#1|) . T))
-((((-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547)))) (((-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389))))) (((-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575))))))
+(((|#2|) |has| |#2| (-1068)))
+((((-874)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+(((|#1|) . T))
+((((-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((#0=(-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) #0#) |has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))))
+((((-874)) . T))
+((((-576) |#1|) . T))
+((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))))
((($) . T))
-((((-873)) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
+((((-874)) . T))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
-((((-873)) . T))
-(|has| (-1270 |#2| |#3| |#4|) (-148))
-(|has| (-1270 |#2| |#3| |#4|) (-146))
-(((|#2|) |has| |#2| (-1117)) (((-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+((((-874)) . T))
+(|has| (-1272 |#2| |#3| |#4|) (-148))
+(|has| (-1272 |#2| |#3| |#4|) (-146))
+(((|#2|) |has| |#2| (-1119)) (((-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))))
(((|#1|) . T))
-(|has| |#1| (-1117))
-((((-873)) . T))
+(|has| |#1| (-1119))
+((((-874)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
(((|#1|) . T))
((($) . T))
-((((-575) |#1|) . T))
+((((-576) |#1|) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
-((((-873)) |has| |#1| (-1117)))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237))))
-(-3763 (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-925 |#1|)) . T))
-((((-418 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-575) |#1|)))
-((((-418 (-575))) . T) (($) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
+((((-874)) |has| |#1| (-1119)))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237))))
+(-3739 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-927 |#1|)) . T))
+((((-419 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-576) |#1|)))
+((((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-(|has| |#1| (-373))
-(-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-373))
-(|has| |#1| (-15 * (|#1| (-782) |#1|)))
-((((-575)) . T))
-((((-575)) . T))
-((((-1159 |#2| (-418 (-967 |#1|)))) . T) (((-418 (-967 |#1|))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+(|has| |#1| (-374))
+(-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+((((-576)) . T))
+((((-576)) . T))
+((((-1161 |#2| (-419 (-969 |#1|)))) . T) (((-419 (-969 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
(((|#1|) . T))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-((((-873)) . T))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+((((-874)) . T))
(((|#2|) . T))
-(-3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-((((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((($) |has| |#1| (-567)) (((-575)) . T))
-(|has| |#2| (-804))
-(|has| |#2| (-804))
-((((-1277 |#1| |#2| |#3|)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1281 |#2|)) . T) (((-1277 |#1| |#2| |#3|)) . T) (((-1249 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T))
-(((|#1|) . T))
-((((-1194)) -12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))))
-(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-831)))
-(-3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567)))
-(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((($ $) |has| |#1| (-567)) ((|#1| |#1|) . T))
-((($ (-1194)) -3763 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194)))))
-(((#0=(-710) (-1190 #0#)) . T))
-((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-873)) . T) (((-1285 |#4|)) . T))
-((((-873)) . T) (((-1285 |#3|)) . T))
-((((-592 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((($) . T) (((-418 (-575))) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) . T))
-((((-873)) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
+(-3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)) (((-576)) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+((((-1279 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1283 |#2|)) . T) (((-1279 |#1| |#2| |#3|)) . T) (((-1251 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T))
+(((|#1|) . T))
+((((-1196)) -12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))))
+(((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+(-3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568)))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T))
+((($ (-1196)) -3739 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196)))))
+(((#0=(-711) (-1192 #0#)) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T) (((-1287 |#4|)) . T))
+((((-874)) . T) (((-1287 |#3|)) . T))
+((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
((($) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((#1=(-1277 |#1| |#2| |#3|) #1#) |has| |#1| (-373)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-(((|#3|) |has| |#3| (-1066)))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-(|has| (-1111 |#1|) (-1117))
-(((|#2| (-830 |#1|)) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T))
-((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1279 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+(((|#3|) |has| |#3| (-1068)))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(|has| (-1113 |#1|) (-1119))
+(((|#2| (-831 |#1|)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
(((|#2|) . T) ((|#6|) . T))
-(|has| |#1| (-373))
-((((-575)) . T) ((|#2|) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+(|has| |#1| (-374))
+((((-576)) . T) ((|#2|) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
(((|#2|) . T) ((|#6|) . T))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-418 $) (-418 $)) |has| |#1| (-567)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((#0=(-1099) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-873)) . T))
-((((-925 |#1|)) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((#0=(-1101) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-874)) . T))
+((((-927 |#1|)) . T))
((((-145)) . T))
((((-145)) . T))
((((-245 |#1| |#2|) |#2|) . T))
-((((-873)) . T))
-(((|#3|) |has| |#3| (-1117)) (((-575)) -12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+((((-874)) . T))
+(((|#3|) |has| |#3| (-1119)) (((-576)) -12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#1|) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
-(|has| |#1| (-373))
-((((-1199)) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
+(|has| |#1| (-374))
+((((-1201)) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
((($) . T))
-((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|)))
-(|has| |#2| (-831))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-859))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
+((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(|has| |#2| (-832))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-860))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
(((|#1| |#2|) . T))
-((((-1194)) -12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))))
-((((-1176) |#1|) . T))
-(((|#1| |#2| |#3| (-542 |#3|)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((((-873)) . T))
-((((-418 (-575))) . T))
-(((|#1|) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-((((-418 (-575))) . T))
-(|has| |#1| (-378))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-575)) . T))
-((((-575)) . T))
-(((|#1|) . T) (((-575)) . T))
-(-3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-(-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))
-((((-1194) #0=(-881 |#1|)) |has| #0# (-525 (-1194) #0#)) ((#0# #0#) |has| #0# (-318 #0#)))
-(((|#1|) . T))
-((((-575) |#4|) . T))
-((((-575) |#3|) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-(|has| |#2| (-1066))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-((((-418 (-575))) . T) (((-575)) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
+((((-1196)) -12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))))
+((((-1178) |#1|) . T))
+(((|#1| |#2| |#3| (-543 |#3|)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-874)) . T))
+((((-419 (-576))) . T))
+(((|#1|) . T))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+((((-419 (-576))) . T))
+(|has| |#1| (-379))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) . T) (((-576)) . T))
+(-3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))
+((((-1196) #0=(-882 |#1|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#)))
+(((|#1|) . T))
+((((-576) |#4|) . T))
+((((-576) |#3|) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(|has| |#2| (-1068))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((((-575)) . T))
-((((-575)) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((((-575)) -3763 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066))) ((|#2|) |has| |#2| (-1117)) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-576)) . T))
+((((-576)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-576)) -3739 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-418 (-575))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-((($) . T) (((-418 (-575))) . T))
-(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-(((|#1|) |has| |#1| (-567)))
-((((-575) |#4|) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((((-575) |#3|) . T))
-((((-873)) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((((-873)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-575) |#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((($) . T) (((-419 (-576))) . T))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+(((|#1|) |has| |#1| (-568)))
+((((-576) |#4|) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-576) |#3|) . T))
+((((-874)) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-874)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-576) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1194) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1196) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) |has| |#2| (-174)) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-(((|#2| |#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))))
+((($) -3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+(((|#2| |#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))))
((((-145)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-378)) (|has| |#2| (-378)))
-((((-873)) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))))
+(-12 (|has| |#1| (-379)) (|has| |#2| (-379)))
+((((-874)) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))))
(((|#1|) . T))
-((((-873)) . T))
-(|has| |#1| (-1117))
+((((-874)) . T))
+(|has| |#1| (-1119))
(|has| $ (-148))
-((((-1199)) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) (((-575)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) . T))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-((($) -3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-(|has| |#1| (-373))
-(-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-373))
-(|has| |#1| (-15 * (|#1| (-782) |#1|)))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((((-873)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(-3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(((|#2| (-542 (-875 |#1|))) . T))
-((((-873)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-592 |#1|)) . T))
+((((-1201)) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+((($) -3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+(|has| |#1| (-374))
+(-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(-3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(((|#2| (-543 (-876 |#1|))) . T))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-593 |#1|)) . T))
((($) . T))
-((((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
+((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
(((|#1|) . T) (($) . T))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
-((((-1192 |#1| |#2| |#3|)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) ((|#1|) |has| |#1| (-174)))
-((((-1281 |#2|)) . T) (((-1192 |#1| |#2| |#3|)) . T) (((-1185 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-1194 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174)))
+((((-1283 |#2|)) . T) (((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
(((|#4|) . T))
(((|#3|) . T))
-((((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T))
-((((-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))))
-(-3763 (|has| |#2| (-238)) (|has| |#2| (-237)))
+((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T))
+((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))))
+(-3739 (|has| |#2| (-238)) (|has| |#2| (-237)))
(((|#1|) . T))
-((((-875 |#1|)) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) ((|#3|) . T))
+((((-876 |#1|)) . T))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) ((|#3|) . T))
((($) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-575)) . T) (((-418 (-575))) -3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T))
-((((-575) |#2|) . T))
-((((-873)) . T))
-((($) . T) (((-575)) . T) ((|#2|) . T) (((-418 (-575))) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-576)) . T) (((-419 (-576))) -3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T))
+((((-576) |#2|) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((#1=(-1192 |#1| |#2| |#3|) #1#) |has| |#1| (-373)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
-(((|#2|) |has| |#2| (-1066)))
-(|has| |#1| (-1117))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1194 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+(((|#2|) |has| |#2| (-1068)))
+(|has| |#1| (-1119))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1|) |has| |#1| (-174)) (($) . T))
(((|#1|) . T))
-(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((((-873)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($ (-875 |#1|)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($ (-876 |#1|)) . T))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
((($ |#2|) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1099)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T))
((($) . T))
-(((#0=(-1099) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1105 (-1194))) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1117)) (((-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T))
-(((|#2|) |has| |#1| (-373)))
-(((|#2|) |has| |#1| (-373)))
-((((-575) |#1|) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T))
-((((-873)) . T))
-((((-418 |#2|) |#3|) . T))
-(((|#1| (-418 (-575))) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-873)) . T) (((-1199)) . T))
+(((#0=(-1101) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1107 (-1196))) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1119)) (((-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
+(((|#2|) |has| |#1| (-374)))
+(((|#2|) |has| |#1| (-374)))
+((((-576) |#1|) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+((((-874)) . T))
+((((-419 |#2|) |#3|) . T))
+(((|#1| (-419 (-576))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T) (((-1201)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-1199)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-(((|#2| |#3| (-875 |#1|)) . T))
-((((-1194)) |has| |#2| (-913 (-1194))))
-(((|#1|) . T))
-(((|#1| (-542 |#2|) |#2|) . T))
-(((|#1| (-782) (-1099)) . T))
-((((-418 (-575))) |has| |#2| (-373)) (($) . T))
-(((|#1| (-542 (-1105 (-1194))) (-1105 (-1194))) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
+((((-1201)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#2| |#3| (-876 |#1|)) . T))
+((((-1196)) |has| |#2| (-915 (-1196))))
+(((|#1|) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+(((|#1| (-783) (-1101)) . T))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T))
+(((|#1| (-543 (-1107 (-1196))) (-1107 (-1196))) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
(((|#2|) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
(((|#1|) . T))
(((|#2|) . T))
-((((-1016 |#1|)) . T) (((-575)) . T) ((|#1|) . T) (((-418 (-575))) -3763 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))
-(|has| |#2| (-1066))
-(|has| |#2| (-804))
-(|has| |#2| (-804))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((((-905 |#1|)) . T) (((-830 |#1|)) . T))
-((((-830 (-1194))) . T))
+((((-1018 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3739 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))
+(|has| |#2| (-1068))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-906 |#1|)) . T) (((-831 |#1|)) . T))
+((((-831 (-1196))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-655 (-936))) . T) (((-873)) . T))
-((((-418 (-575))) . T) (((-873)) . T))
-((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-656 (-938))) . T) (((-874)) . T))
+((((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
(|has| |#1| (-238))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((($ $) . T) (((-575) |#1|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((($ $) . T) (((-576) |#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-1277 |#1| |#2| |#3|) $) -12 (|has| (-1277 |#1| |#2| |#3|) (-295 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))) (($ $) . T) (((-575) |#1|) . T))
-((($ $) . T) (((-418 (-575)) |#1|) . T))
-((((-782) |#1|) . T) (($ $) . T))
-(((|#1|) . T))
-((($ (-1194)) . T))
-((((-1157 |#1| |#2|)) |has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-(((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-(((|#1|) . T))
-((((-1194)) -3763 (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194))))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-1279 |#1| |#2| |#3|) $) -12 (|has| (-1279 |#1| |#2| |#3|) (-296 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T))
+((($ $) . T) (((-419 (-576)) |#1|) . T))
+((((-783) |#1|) . T) (($ $) . T))
+(((|#1|) . T))
+((($ (-1196)) . T))
+((((-1159 |#1| |#2|)) |has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+(((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+(((|#1|) . T))
+((((-1196)) -3739 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196))))))
(((|#1| |#2|) . T))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
(((|#2|) . T))
-((((-873)) -3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-624 (-873))) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((-1285 |#2|)) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T) (($) . T))
+((((-874)) -3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1287 |#2|)) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-575)) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-(|has| |#1| (-1117))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-575) (-145)) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))))
-((((-575)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-575)) . T))
-((($) |has| |#1| (-567)) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-575)) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066)))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066)))
-((($) . T) (((-575)) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T))
-(((|#2|) |has| |#1| (-373)))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+((((-576)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+(|has| |#1| (-1119))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-576) (-145)) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))))
+((((-576)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-576)) . T))
+((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068)))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068)))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#2|) |has| |#1| (-374)))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-1199)) . T))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1| (-542 #0=(-1194)) #0#) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-1201)) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1| (-543 #0=(-1196)) #0#) . T))
(((|#1|) . T) (($) . T))
-((((-575)) . T))
-(((#0=(-418 (-967 |#1|)) #0#) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(|has| |#1| (-1117))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(|has| |#1| (-1117))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
+((((-576)) . T))
+(((#0=(-419 (-969 |#1|)) #0#) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(|has| |#1| (-1119))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(|has| |#1| (-1119))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-(-3763 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237)))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-418 (-967 |#1|))) . T))
+(-3739 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-419 (-969 |#1|))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-575)) . T) (($) . T))
+(((|#1|) . T) (((-576)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-873)) . T))
-((((-873)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1066)) (((-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))
+((((-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-874)) . T))
+((((-874)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1068)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))
(((|#1| |#2|) . T))
-(|has| |#3| (-1066))
-(|has| |#3| (-804))
-(|has| |#3| (-804))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#2|) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
+(|has| |#3| (-1068))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
(((|#2|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1| (-1174 |#1|)) |has| |#1| (-859)))
-((((-575) |#2|) . T))
-(|has| |#1| (-1117))
-(((|#1|) . T))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-1169)))
-((((-418 (-575))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((($) . T) (((-418 (-575))) . T))
-(|has| |#1| (-1117))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| (-1176 |#1|)) |has| |#1| (-860)))
+((((-576) |#2|) . T))
+(|has| |#1| (-1119))
+(((|#1|) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-1171)))
+((((-419 (-576))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-1119))
(((|#2|) . T))
-((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575)))))
-(((|#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373))))
-((((-873)) . T))
-(((|#1|) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-924)))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-924)))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+(((|#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374))))
+((((-874)) . T))
+(((|#1|) . T))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-926)))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-926)))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
(((|#2|) . T))
(((|#2|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-924)))
-((($ $) . T) ((#0=(-1194) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-829 (-1194)) |#1|) . T) ((#1# $) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-924)))
-((((-575) |#2|) . T))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066))))
-((((-575) |#1|) . T))
-(|has| (-418 |#2|) (-148))
-(|has| (-418 |#2|) (-146))
-(((|#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))))
-(|has| |#1| (-38 (-418 (-575))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-418 (-575))) . T))
-((((-873)) . T))
-(|has| |#1| (-567))
-(|has| |#1| (-567))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-873)) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-(|has| |#1| (-38 (-418 (-575))))
-((((-399) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#2| (-1169))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-((((-873)) . T) (((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-1234)) . T) (((-873)) . T) (((-1199)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926)))
+((($ $) . T) ((#0=(-1196) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1196)) |#1|) . T) ((#1# $) . T))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-926)))
+((((-576) |#2|) . T))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))
+((((-576) |#1|) . T))
+(|has| (-419 |#2|) (-148))
+(|has| (-419 |#2|) (-146))
+(((|#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+(|has| |#1| (-568))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-874)) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-400) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#2| (-1171))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-874)) . T) (((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-1236)) . T) (((-874)) . T) (((-1201)) . T))
((((-117 |#1|)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-(((|#1|) . T))
-((((-399) (-1176)) . T))
-(|has| |#1| (-567))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+(((|#1|) . T))
+((((-400) (-1178)) . T))
+(|has| |#1| (-568))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
(((|#2|) . T))
-((((-782) (-1199)) . T))
-((((-873)) . T))
-((((-830 |#1|)) . T))
+((((-783) (-1201)) . T))
+((((-874)) . T))
+((((-831 |#1|)) . T))
((($) . T))
(((|#2|) |has| |#2| (-174)))
-((((-1194) (-52)) . T))
+((((-1196) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-567))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-568))
(((|#1|) |has| |#1| (-174)))
-((((-655 |#1|)) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#2|) |has| |#2| (-318 |#2|)))
-(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-(((|#1|) . T))
-(((|#1| (-1190 |#1|)) . T))
+((((-656 |#1|)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#2|) |has| |#2| (-319 |#2|)))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1|) . T))
+(((|#1| (-1192 |#1|)) . T))
(|has| $ (-148))
(((|#2|) . T))
((($) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-(|has| |#2| (-378))
-(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+(|has| |#2| (-379))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
(((|#1| |#2|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-((((-873)) . T))
-((((-1192 |#1| |#2| |#3|) $) -12 (|has| (-1192 |#1| |#2| |#3|) (-295 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))) (($ $) . T) (((-575) |#1|) . T))
-((($ $) . T) (((-418 (-575)) |#1|) . T))
-((((-782) |#1|) . T) (($ $) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((#0=(-1277 |#1| |#2| |#3|) #0#) -12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))) (((-1194) #0#) -12 (|has| (-1277 |#1| |#2| |#3|) (-525 (-1194) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))))
-(-12 (|has| |#1| (-1117)) (|has| |#2| (-1117)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-575)) . T) (($) . T))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) . T) (((-575)) . T) ((|#2|) . T))
-((((-575)) . T) (($) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-((((-418 (-575))) . T) (((-575)) . T))
-((((-575) (-145)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((((-874)) . T))
+((((-1194 |#1| |#2| |#3|) $) -12 (|has| (-1194 |#1| |#2| |#3|) (-296 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T))
+((($ $) . T) (((-419 (-576)) |#1|) . T))
+((((-783) |#1|) . T) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((#0=(-1279 |#1| |#2| |#3|) #0#) -12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1196) #0#) -12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+(-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-576)) . T) (($) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576) (-145)) . T))
((((-145)) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
((((-112)) . T))
-((((-547)) |has| |#1| (-625 (-547))) (((-227)) . #0=(|has| |#1| (-1039))) (((-389)) . #0#))
-((((-873)) . T))
-(((|#1|) . T))
-((((-1199)) . T))
-(|has| |#1| (-831))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) ((|#1|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#2|) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
-(|has| |#1| (-567))
-(|has| |#1| (-861))
-((($) . T) (((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T))
-(|has| |#1| (-924))
-(((|#1|) . T))
-(|has| |#1| (-1117))
-((((-873)) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1| (-1285 |#1|) (-1285 |#1|)) . T))
-((((-575) (-145)) . T) (((-1252 (-575)) $) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1041))) (((-390)) . #0#))
+((((-874)) . T))
+(((|#1|) . T))
+((((-1201)) . T))
+(|has| |#1| (-832))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
+(|has| |#1| (-568))
+(|has| |#1| (-862))
+((($) . T) (((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T))
+(|has| |#1| (-926))
+(((|#1|) . T))
+(|has| |#1| (-1119))
+((((-874)) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| (-1287 |#1|) (-1287 |#1|)) . T))
+((((-576) (-145)) . T) (((-1254 (-576)) $) . T))
((($) . T))
-(|has| |#4| (-1066))
-(|has| |#3| (-1066))
-((((-1199)) . T) (((-873)) . T))
-((((-1199)) . T))
-((((-873)) . T))
-(|has| |#1| (-1117))
-(((|#1| (-988)) . T))
+(|has| |#4| (-1068))
+(|has| |#3| (-1068))
+((((-1201)) . T) (((-874)) . T))
+((((-1201)) . T))
+((((-874)) . T))
+(|has| |#1| (-1119))
+(((|#1| (-990)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(|has| |#2| (-804))
-(|has| |#2| (-804))
-(-12 (|has| |#1| (-484)) (|has| |#2| (-484)))
-(|has| |#2| (-1066))
-((($) . T) (((-575)) . T) (((-881 |#1|)) . T) (((-418 (-575))) . T))
-(((|#1|) . T))
-(|has| |#2| (-804))
-(|has| |#2| (-804))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+(-12 (|has| |#1| (-485)) (|has| |#2| (-485)))
+(|has| |#2| (-1068))
+((($) . T) (((-576)) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(-12 (|has| |#1| (-804)) (|has| |#2| (-804)))
-(-12 (|has| |#1| (-804)) (|has| |#2| (-804)))
-(-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-575)) . T))
+(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-873)) . T))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)))
-(|has| |#1| (-359))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-418 (-575))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-418 (-575))) . T))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T))
-(|has| |#1| (-839))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
-(|has| |#1| (-1117))
-(((|#1| $) |has| |#1| (-295 |#1| |#1|)))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((($) |has| |#1| (-567)))
-(((|#2|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1117)))
-(((|#3|) |has| |#3| (-1117)))
-(|has| |#3| (-378))
-((($) |has| |#1| (-567)) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-575)) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)))
+(|has| |#1| (-360))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+(|has| |#1| (-840))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
+(|has| |#1| (-1119))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)))
+(((|#2|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1119)))
+(((|#3|) |has| |#3| (-1119)))
+(|has| |#3| (-379))
+((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+((((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
(((|#2|) . T))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1| |#1|) |has| |#1| (-174)))
-(|has| |#2| (-373))
+(|has| |#2| (-374))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((((-418 (-575))) . T) (((-575)) . T))
-((($) -3763 (|has| |#2| (-238)) (|has| |#2| (-237))))
-((($ (-875 |#1|)) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ |#3|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
-((($) . T) (((-575)) . T))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
+((((-419 (-576))) . T) (((-576)) . T))
+((($) -3739 (|has| |#2| (-238)) (|has| |#2| (-237))))
+((($ (-876 |#1|)) . T))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ |#3|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((($) . T) (((-576)) . T))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
((((-145)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))))
((((-145)) . T))
((((-145)) . T))
-((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#) ((|#2|) . T) (((-575)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T))
(((|#1| |#2| |#3|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068)))
(((|#1|) |has| |#1| (-174)))
(|has| $ (-148))
(|has| $ (-148))
-((((-1199)) . T))
+((((-1201)) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-1117))
-((((-873)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-484)) (|has| |#1| (-567)) (|has| |#1| (-1066)) (|has| |#1| (-1129)))
-((($ $) |has| |#1| (-295 $ $)) ((|#1| $) |has| |#1| (-295 |#1| |#1|)))
-(((|#1| (-418 (-575))) . T))
-(((|#1|) . T))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-1194)) . T))
-(|has| |#1| (-567))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(|has| |#1| (-567))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-873)) . T))
+(|has| |#1| (-1119))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131)))
+((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+(((|#1| (-419 (-576))) . T))
+(((|#1|) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-1196)) . T))
+(|has| |#1| (-568))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-575) (-418 (-967 |#1|))) . T))
+((((-576) (-419 (-969 |#1|))) . T))
(((|#2|) . T) (($) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(((|#2| (-245 (-2869 |#1|) (-782)) (-875 |#1|)) . T))
-(((|#1| (-542 |#3|) |#3|) . T))
+(((|#2| (-245 (-2845 |#1|) (-783)) (-876 |#1|)) . T))
+(((|#1| (-543 |#3|) |#3|) . T))
(|has| |#1| (-146))
-(((#0=(-418 (-575)) #0#) |has| |#2| (-373)) (($ $) . T))
-((((-881 |#1|)) . T))
-((((-881 |#1|)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T))
+((((-882 |#1|)) . T))
+((((-882 |#1|)) . T))
(|has| |#1| (-148))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((((-873)) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-874)) . T))
(|has| |#1| (-146))
-((((-418 (-575))) |has| |#2| (-373)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(-3763 (|has| |#1| (-359)) (|has| |#1| (-378)))
-((((-1159 |#2| |#1|)) . T) ((|#1|) . T))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(-3739 (|has| |#1| (-360)) (|has| |#1| (-379)))
+((((-1161 |#2| |#1|)) . T) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))
-(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(|has| |#3| (-804))
-(|has| |#3| (-804))
-((((-873)) . T))
+(-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))
+(((|#2|) . T) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
+((((-874)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-710)) . T))
-(|has| |#2| (-1066))
-(|has| |#1| (-567))
+((((-711)) . T))
+(|has| |#2| (-1068))
+(|has| |#1| (-568))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -1152,624 +1152,624 @@
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-1194) (-52)) . T))
-((((-1021 10)) . T) (((-418 (-575))) . T) (((-873)) . T))
-((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
+((((-1196) (-52)) . T))
+((((-1023 10)) . T) (((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
(((|#1|) . T))
-((((-1021 16)) . T) (((-418 (-575))) . T) (((-873)) . T))
-((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
-(((|#1| (-575)) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-1023 16)) . T) (((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+(((|#1| (-576)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-((((-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))) (((-1099)) . T))
+((((-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))) (((-1101)) . T))
(((|#1|) . T))
-(((|#3|) . T) (((-623 $)) . T))
-(((|#1| (-418 (-575))) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+(((|#3|) . T) (((-624 $)) . T))
+(((|#1| (-419 (-576))) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-575)) -3763 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066))) ((|#2|) |has| |#2| (-1117)) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-576)) -3739 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-(((#0=(-1192 |#1| |#2| |#3|) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))) (((-1194) #0#) -12 (|has| (-1192 |#1| |#2| |#3|) (-525 (-1194) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))))
-((((-873)) . T))
-((((-873)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(((#0=(-1194 |#1| |#2| |#3|) #0#) -12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1196) #0#) -12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+((((-874)) . T))
+((((-874)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))))
-((((-873)) . T))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) |has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))))
+((((-874)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((((-1194) (-52)) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
+((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-1196) (-52)) . T))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
(((|#3|) . T))
-((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-839))
-((($) . T) (((-575)) . T) ((|#1|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
-((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(|has| (-1111 |#1|) (-1117))
-(((|#2| |#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373))))
-((((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))))
-((((-575)) . T))
-((((-1199)) . T))
-((((-782)) . T))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-840))
+((($) . T) (((-576)) . T) ((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| (-1113 |#1|) (-1119))
+(((|#2| |#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374))))
+((((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))))
+((((-576)) . T))
+((((-1201)) . T))
+((((-783)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-567))
-((((-575)) . T))
+(|has| |#1| (-568))
+((((-576)) . T))
(((|#2|) . T))
-((((-873)) . T))
-(((|#1| (-418 (-575)) (-1099)) . T))
+((((-874)) . T))
+(((|#1| (-419 (-576)) (-1101)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#1| (-567))
-((((-575)) . T))
+(|has| |#1| (-568))
+((((-576)) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
-((((-418 (-575))) . T) (($) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
-((($) . T) (((-418 (-575))) . T))
-((((-1199)) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
-((((-575)) . T))
+((((-419 (-576))) . T) (($) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((($) . T) (((-419 (-576))) . T))
+((((-1201)) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((((-576)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((($ (-1194)) -3763 (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194))))))
-((((-575)) . T))
-((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-904 (-575))) . T) (((-904 (-389))) . T) (((-547)) . T) (((-1194)) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
+((($ (-1196)) -3739 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196))))))
+((((-576)) . T))
+((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-905 (-576))) . T) (((-905 (-390))) . T) (((-548)) . T) (((-1196)) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
((($) . T))
(((|#1|) . T))
-((((-873)) . T))
-(-3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
+((((-874)) . T))
+(-3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) |has| |#2| (-174)) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-((((-881 |#1|)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117)))
-(-12 (|has| |#3| (-238)) (|has| |#3| (-1066)))
-(|has| |#2| (-1169))
-(((#0=(-52)) . T) (((-2 (|:| -4169 (-1194)) (|:| -3179 #0#))) . T))
+((($) -3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-882 |#1|)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119)))
+(-12 (|has| |#3| (-238)) (|has| |#3| (-1068)))
+(|has| |#2| (-1171))
+(((#0=(-52)) . T) (((-2 (|:| -4147 (-1196)) (|:| -3153 #0#))) . T))
(((|#1| |#2|) . T))
-(|has| |#3| (-1066))
-(((|#1| (-575) (-1099)) . T))
-((((-875 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| (-418 (-575)) (-1099)) . T))
-((((-1194)) . T))
-((($) -3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((($) -3763 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237))))
-((((-575) |#2|) . T))
-((($ (-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
+(|has| |#3| (-1068))
+(((|#1| (-576) (-1101)) . T))
+((((-876 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| (-419 (-576)) (-1101)) . T))
+((((-1196)) . T))
+((($) -3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((($) -3739 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))))
+((((-576) |#2|) . T))
+((($ (-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-378))
+(|has| |#2| (-379))
(((|#1| |#1|) . T))
-((((-873)) . T))
-((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|)))
-(-12 (|has| |#1| (-378)) (|has| |#2| (-378)))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
+((((-874)) . T))
+((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(-12 (|has| |#1| (-379)) (|has| |#2| (-379)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
(((|#1|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-(|has| |#1| (-359))
-((((-575)) -3763 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066))) ((|#3|) |has| |#3| (-1117)) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+(|has| |#1| (-360))
+((((-576)) -3739 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1119)) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))
(((|#1|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#4|) . T))
-(((|#4|) . T) (((-873)) . T))
-(((|#3|) . T) ((|#2|) . T) (((-575)) . T) ((|#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-737)) (|has| |#4| (-1066))) (($) |has| |#4| (-1066)))
-(((|#2|) . T) (((-575)) . T) ((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066)))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-(|has| |#1| (-567))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-873)) . T))
+(((|#4|) . T) (((-874)) . T))
+(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068)))
+(((|#2|) . T) (((-576)) . T) ((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+(|has| |#1| (-568))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-874)) . T))
(((|#1| |#2|) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-924)))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-924)))
-((((-418 (-575))) . T) (((-575)) . T))
-((((-575)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-926)))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-926)))
+((((-419 (-576))) . T) (((-576)) . T))
+((((-576)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
((($) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-873)) . T))
-(((|#3| |#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))))
-(|has| |#1| (-1039))
-((((-873)) . T))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))))
-((((-575) (-112)) . T))
-((((-1199)) . T))
-(((|#1|) |has| |#1| (-318 |#1|)))
-((((-1199)) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((((-1194) $) |has| |#1| (-525 (-1194) $)) (($ $) |has| |#1| (-318 $)) ((|#1| |#1|) |has| |#1| (-318 |#1|)) (((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)))
-((((-1194)) |has| |#1| (-913 (-1194))))
-(-3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-359)))
+((((-874)) . T))
+(((|#1|) . T))
+((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+(((|#3| |#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))))
+(|has| |#1| (-1041))
+((((-874)) . T))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))))
+((((-576) (-112)) . T))
+((((-1201)) . T))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-1201)) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-1196) $) |has| |#1| (-526 (-1196) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)))
+((((-1196)) |has| |#1| (-915 (-1196))))
+(-3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((($) . T))
-((((-399) |#1|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-(|has| |#1| (-1117))
-(((|#2|) . T) (((-873)) . T))
-((((-873)) . T))
+((((-400) |#1|) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-1119))
+(((|#2|) . T) (((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
-((((-925 |#1|)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
+((((-927 |#1|)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
(((|#1| |#2|) . T))
((($) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
(((|#1| |#1|) . T))
-(((#0=(-881 |#1|)) |has| #0# (-318 #0#)))
-((((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-1055 (-418 (-575))))) ((|#1|) . T))
+(((#0=(-882 |#1|)) |has| #0# (-319 #0#)))
+((((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-804))
-(|has| |#2| (-804))
-(((|#1|) . T))
-(-12 (|has| |#1| (-804)) (|has| |#2| (-804)))
-(-12 (|has| |#1| (-804)) (|has| |#2| (-804)))
-(|has| |#2| (-1066))
-((($) . T) (((-575)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+(|has| |#2| (-805))
+(|has| |#2| (-805))
+(((|#1|) . T))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(-12 (|has| |#1| (-805)) (|has| |#2| (-805)))
+(|has| |#2| (-1068))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1220))
-(((#0=(-575) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-((((-418 (-575))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1066)))
-(((|#4|) |has| |#4| (-1066)))
-(((|#3|) |has| |#3| (-1066)))
-(((|#3|) |has| |#3| (-1066)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(|has| |#1| (-373))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T))
-((($ $) . T) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1| |#1|) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-547)) |has| |#3| (-625 (-547))))
-((((-700 |#3|)) . T) (((-873)) . T))
+(|has| |#1| (-1222))
+(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1068)))
+(((|#4|) |has| |#4| (-1068)))
+(((|#3|) |has| |#3| (-1068)))
+(((|#3|) |has| |#3| (-1068)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(|has| |#1| (-374))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-548)) |has| |#3| (-626 (-548))))
+((((-701 |#3|)) . T) (((-874)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-859))
-(|has| |#1| (-859))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-575) |#3|) . T))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-576) |#3|) . T))
(((|#2|) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
((($) . T))
-(((#0=(-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) #0#) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1099)) . T))
+(((#0=(-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) #0#) |has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T))
((($) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1117)))
-((((-873)) -3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-624 (-873))) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((-1285 |#2|)) . T))
+(((|#2|) |has| |#2| (-1119)))
+((((-874)) -3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1287 |#2|)) . T))
((($) . T))
-((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-1176) (-52)) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1178) (-52)) . T))
(((|#2|) |has| |#2| (-174)))
-((($) -3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) |has| |#2| (-174)) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-((((-873)) . T))
+((($) -3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-874)) . T))
(((|#2|) . T))
-((($) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T))
-((($) . T) (((-575)) . T))
-((((-575) (-145)) . T))
-((((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((|#1| |#2|) . T))
-((((-418 (-575))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-873)) . T))
-((((-925 |#1|)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-859))
-((($) -3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-(|has| |#1| (-373))
+((($) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T))
+((($) . T) (((-576)) . T))
+((((-576) (-145)) . T))
+((((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((|#1| |#2|) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-874)) . T))
+((((-927 |#1|)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-860))
+((($) -3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+(|has| |#1| (-374))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-859))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-1194)) |has| |#1| (-913 (-1194))))
-(|has| |#1| (-859))
-((((-517)) . T))
-(((|#1| (-1194)) . T))
-(((|#1| (-1285 |#1|) (-1285 |#1|)) . T))
-((((-873)) . T) (((-1199)) . T))
+(|has| |#1| (-860))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-1196)) |has| |#1| (-915 (-1196))))
+(|has| |#1| (-860))
+((((-518)) . T))
+(((|#1| (-1196)) . T))
+(((|#1| (-1287 |#1|) (-1287 |#1|)) . T))
+((((-874)) . T) (((-1201)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1199)) . T))
-(|has| |#1| (-1117))
-(((|#1| (-1194) (-829 (-1194)) (-542 (-829 (-1194)))) . T))
-((((-418 (-967 |#1|))) . T))
-((((-547)) . T))
-((((-873)) . T))
+((((-1201)) . T))
+(|has| |#1| (-1119))
+(((|#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) . T))
+((((-419 (-969 |#1|))) . T))
+((((-548)) . T))
+((((-874)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) (((-1252 (-575)) $) . T) ((|#1| |#2|) . T))
+((((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) (((-1254 (-576)) $) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#2| (-428 |#1|))
-(|has| |#2| (-428 |#1|))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-547)) |has| |#1| (-625 (-547))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))))
-((((-873)) . T))
-((((-881 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-517)) . T))
-((((-517)) . T))
-((((-1194)) -3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066)))))
-((((-1194)) -3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))))
-(|has| |#1| (-567))
-(-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)))
-((((-881 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#2| (-1066))
-((((-1176) |#1|) . T))
-(|has| |#1| (-1169))
-((((-973 |#1|)) . T))
-(((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1| |#1|) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-575))) (((-575)) |has| |#1| (-1055 (-575))) (((-1194)) |has| |#1| (-1055 (-1194))) ((|#1|) . T))
+(|has| |#2| (-429 |#1|))
+(|has| |#2| (-429 |#1|))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))))
+((((-874)) . T))
+((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#2|) . T) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-518)) . T))
+((((-518)) . T))
+((((-1196)) -3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))))
+((((-1196)) -3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))))
+(|has| |#1| (-568))
+(-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)))
+((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#2| (-1068))
+((((-1178) |#1|) . T))
+(|has| |#1| (-1171))
+((((-975 |#1|)) . T))
+(((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-576))) (((-576)) |has| |#1| (-1057 (-576))) (((-1196)) |has| |#1| (-1057 (-1196))) ((|#1|) . T))
((($) . T))
((($) . T))
-((((-575) |#2|) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
-((((-575)) |has| |#1| (-898 (-575))) (((-389)) |has| |#1| (-898 (-389))))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-575)) . T))
-((((-655 |#4|)) . T) (((-873)) . T))
-((((-547)) |has| |#4| (-625 (-547))))
-((((-547)) |has| |#4| (-625 (-547))))
-((((-873)) . T) (((-655 |#4|)) . T))
-((($) |has| |#1| (-859)))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) (((-575)) . T) (($) . T) ((|#1|) . T))
-((((-575)) -3763 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066))) ((|#2|) |has| |#2| (-1117)) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-655 |#4|)) . T) (((-873)) . T))
-((((-547)) |has| |#4| (-625 (-547))))
-(((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T))
-((((-1194)) |has| (-418 |#2|) (-913 (-1194))))
+((((-576) |#2|) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390))))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-576)) . T))
+((((-656 |#4|)) . T) (((-874)) . T))
+((((-548)) |has| |#4| (-626 (-548))))
+((((-548)) |has| |#4| (-626 (-548))))
+((((-874)) . T) (((-656 |#4|)) . T))
+((($) |has| |#1| (-860)))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T))
+((((-576)) -3739 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-656 |#4|)) . T) (((-874)) . T))
+((((-548)) |has| |#4| (-626 (-548))))
+(((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((((-1196)) |has| (-419 |#2|) (-915 (-1196))))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
((($) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237))))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
((($) . T))
((($) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
((($) . T))
((($) . T))
-((((-873)) -3763 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-624 (-873))) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-378)) (|has| |#3| (-737)) (|has| |#3| (-804)) (|has| |#3| (-861)) (|has| |#3| (-1066)) (|has| |#3| (-1117))) (((-1285 |#3|)) . T))
+((((-874)) -3739 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-874))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) (((-1287 |#3|)) . T))
(((|#2|) . T))
-((((-575) |#2|) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#2| |#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))))
-(((|#2|) . T) (((-575)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((|#2|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-1176) (-1194) (-575) (-227) (-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-873)) . T))
-((((-575) (-112)) . T))
-(((|#1|) . T))
-((((-873)) . T))
+((((-576) |#2|) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#2| |#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))))
+(((|#2|) . T) (((-576)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((|#2|) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1178) (-1196) (-576) (-227) (-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
+((((-576) (-112)) . T))
+(((|#1|) . T))
+((((-874)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-874)) . T))
((((-112)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((($) . T) (((-418 (-575))) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((($) . T) (((-419 (-576))) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))))
(|has| $ (-148))
-((((-418 |#2|)) . T))
-((((-418 (-575))) |has| #0=(-418 |#2|) (-1055 (-418 (-575)))) (((-575)) |has| #0# (-1055 (-575))) ((#0#) . T))
+((((-419 |#2|)) . T))
+((((-419 (-576))) |has| #0=(-419 |#2|) (-1057 (-419 (-576)))) (((-576)) |has| #0# (-1057 (-576))) ((#0#) . T))
(((|#2| |#2|) . T))
-((((-873)) . T))
+((((-874)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
(((|#1|) . T))
(|has| |#2| (-238))
-((((-873)) . T) (((-1199)) . T))
+((((-874)) . T) (((-1201)) . T))
(((|#2|) . T))
-((((-1199)) . T))
-((((-1194) (-52)) . T))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-905 |#1|)) . T) ((|#2|) . T) (((-575)) . T) (((-830 |#1|)) . T))
+((((-1201)) . T))
+((((-1196) (-52)) . T))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-906 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T))
(((|#1| |#1|) . T))
-((((-1194)) |has| |#2| (-913 (-1194))))
+((((-1196)) |has| |#2| (-915 (-1196))))
((((-130)) . T))
-((((-575) (-112)) . T) (((-1252 (-575)) $) . T))
-(|has| |#1| (-567))
+((((-576) (-112)) . T) (((-1254 (-576)) $) . T))
+(|has| |#1| (-568))
(((|#2|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-575)) . T) (((-830 (-1194))) . T))
+(((|#1|) . T) (((-576)) . T) (((-831 (-1196))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
(((|#3|) . T))
-(|has| |#1| (-38 (-418 (-575))))
-((((-575)) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-(((|#1|) . T))
-((((-1021 2)) . T) (((-418 (-575))) . T) (((-873)) . T))
-((((-547)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-1016 |#1|)) . T) ((|#1|) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-829 (-1194))) . T))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1190 |#1|)) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+(((|#1|) . T))
+((((-1023 2)) . T) (((-419 (-576))) . T) (((-874)) . T))
+((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1018 |#1|)) . T) ((|#1|) . T))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-830 (-1196))) . T))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1192 |#1|)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-861))
-(((|#1|) . T) (((-575)) . T) (($) . T))
+(|has| |#1| (-862))
+(((|#1|) . T) (((-576)) . T) (($) . T))
(((|#2|) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-575) |#2|) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((((-873)) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-576) |#2|) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-874)) . T))
(((|#2|) . T))
-((((-575) |#3|) . T))
+((((-576) |#3|) . T))
(((|#2|) . T))
-((((-873)) . T))
-(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))
-(-3763 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (-12 (|has| |#1| (-373)) (|has| |#2| (-237))))
-(|has| |#1| (-38 (-418 (-575))))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
+((((-874)) . T))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))
+(-3739 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#2| (-373))
-(((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#2| (-374))
+(((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
(((|#2|) . T))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(|has| |#1| (-1117))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-1119))
(((|#1|) |has| |#1| (-174)))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-1176) (-52)) . T))
-(((|#1|) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($ (-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))) (($ (-1099)) . T))
-(|has| |#1| (-38 (-418 (-575))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-1178) (-52)) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($ (-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))) (($ (-1101)) . T))
+(|has| |#1| (-38 (-419 (-576))))
(((|#2|) |has| |#2| (-174)))
(((|#2|) . T))
(((|#1|) . T))
-((((-575)) -3763 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) ((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)))
-((((-575) |#3|) . T))
-((((-575) (-145)) . T))
+((((-576)) -3739 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)))
+((((-576) |#3|) . T))
+((((-576) (-145)) . T))
((((-145)) . T))
-((((-873)) . T))
-((((-1199)) . T))
+((((-874)) . T))
+((((-1201)) . T))
((((-112)) . T))
(|has| |#1| (-148))
(((|#1|) . T))
(|has| |#1| (-146))
((($) . T))
-(|has| |#1| (-567))
-((((-575)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+(|has| |#1| (-568))
+((((-576)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#1|) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
((((-145)) . T))
-((((-873)) . T))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
-((((-1194) (-52)) . T) (((-1176) (-52)) . T))
+((((-874)) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-1196) (-52)) . T) (((-1178) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#1| |#2|) . T))
-(-3763 (|has| |#2| (-238)) (|has| |#2| (-237)))
-((((-1252 (-575)) $) . T) (((-575) (-145)) . T))
-(((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(|has| |#1| (-861))
-(((|#2| (-782) (-1099)) . T))
+(-3739 (|has| |#2| (-238)) (|has| |#2| (-237)))
+((((-1254 (-576)) $) . T) (((-576) (-145)) . T))
+(((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#1| (-862))
+(((|#2| (-783) (-1101)) . T))
(((|#1| |#2|) . T))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))
-(|has| |#1| (-802))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
-((((-1194)) -3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))
+(|has| |#1| (-803))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
+((((-1196)) -3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))))
(((|#1|) |has| |#1| (-174)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3763 (|has| |#1| (-148)) (-12 (|has| |#1| (-373)) (|has| |#2| (-148))))
-(-3763 (|has| |#1| (-146)) (-12 (|has| |#1| (-373)) (|has| |#2| (-146))))
+(-3739 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148))))
+(-3739 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146))))
(((|#4|) . T))
(|has| |#1| (-146))
-((((-1176) |#1|) . T))
+((((-1178) |#1|) . T))
(|has| |#1| (-148))
(((|#1|) . T))
-((((-575)) . T))
-((((-873)) . T))
-((((-575)) . T))
+((((-576)) . T))
+((((-874)) . T))
+((((-576)) . T))
(((|#1| |#2|) . T))
-((((-873)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+((((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#3|) . T))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) (((-575)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-(((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))) (((-973 |#1|)) . T))
-(|has| |#1| (-859))
-(|has| |#1| (-859))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-973 |#1|)) . T))
-(((|#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-737))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737))))
-(|has| |#2| (-373))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+(((|#1|) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))) (((-975 |#1|)) . T))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-975 |#1|)) . T))
+(((|#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738))))
+(|has| |#2| (-374))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-737)) (|has| |#4| (-1066))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066))))
-(((|#2|) |has| |#2| (-1066)))
-(((|#2|) |has| |#2| (-1066)))
-((((-1176) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))
-(((|#2| (-905 |#1|)) . T))
+(((|#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1068))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))))
+(((|#2|) |has| |#2| (-1068)))
+(((|#2|) |has| |#2| (-1068)))
+((((-1178) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))
+(((|#2| (-906 |#1|)) . T))
((($) . T))
-((($ (-875 |#1|)) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T))
-((((-399) (-1176)) . T))
-((($ (-1194)) . T))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) -3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-624 (-873))) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117))) (((-1285 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -4169 (-1176)) (|:| -3179 #0#))) . T))
-(((|#1|) . T))
-((((-873)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
+((($ (-876 |#1|)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T))
+((((-400) (-1178)) . T))
+((($ (-1196)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) -3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1287 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -4147 (-1178)) (|:| -3153 #0#))) . T))
+(((|#1|) . T))
+((((-874)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
((((-145)) . T))
(|has| |#2| (-146))
-((((-575)) . T))
+((((-576)) . T))
(|has| |#2| (-148))
-(|has| |#1| (-484))
-(-3763 (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
-(|has| |#1| (-373))
-((((-873)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((($) |has| |#1| (-567)))
-((((-1199)) . T))
-(|has| |#1| (-859))
-(|has| |#1| (-859))
-((((-873)) . T))
+(|has| |#1| (-485))
+(-3739 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
+(|has| |#1| (-374))
+((((-874)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)))
+((((-1201)) . T))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+((((-874)) . T))
(((|#2|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#2|) . T) (((-575)) . T) (((-830 |#1|)) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1194)) |has| |#1| (-913 (-1194))))
+((((-1196)) |has| |#1| (-915 (-1196))))
(((|#2| |#2|) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-873)) . T))
-(|has| |#1| (-1117))
-(((|#2| (-493 (-2869 |#1|) (-782)) (-875 |#1|)) . T))
-((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#))
-(((|#1| (-542 (-1194)) (-1194)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+(|has| |#1| (-1119))
+(((|#2| (-494 (-2845 |#1|) (-783)) (-876 |#1|)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#))
+(((|#1| (-543 (-1196)) (-1196)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1783,2387 +1783,2387 @@
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-1194) (-52)) . T))
-((((-418 (-575)) |#1|) . T) (($ $) . T))
-(((|#1| (-575)) . T))
-((((-925 |#1|)) . T))
-(((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))) (($) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))))
-((((-1194)) -3763 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))))
-(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-(|has| |#1| (-861))
-(|has| |#1| (-861))
-((((-575) |#2|) . T))
-((($) . T) (((-575)) . T) ((|#1|) . T))
-((((-873)) . T))
-((((-575)) . T))
-(|has| |#1| (-861))
-((((-700 |#2|)) . T) (((-873)) . T))
-((((-1277 |#1| |#2| |#3|)) -12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-1196) (-52)) . T))
+((((-419 (-576)) |#1|) . T) (($ $) . T))
+(((|#1| (-576)) . T))
+((((-927 |#1|)) . T))
+(((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))) (($) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))))
+((((-1196)) -3739 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))))
+(((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+(|has| |#1| (-862))
+(|has| |#1| (-862))
+((((-576) |#2|) . T))
+((($) . T) (((-576)) . T) ((|#1|) . T))
+((((-874)) . T))
+((((-576)) . T))
+(|has| |#1| (-862))
+((((-701 |#2|)) . T) (((-874)) . T))
+((((-1279 |#1| |#2| |#3|)) -12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
(|has| |#1| (-238))
(((|#1| |#2|) . T))
-((((-418 (-967 |#1|))) . T))
-((((-988)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
+((((-419 (-969 |#1|))) . T))
+((((-990)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
(((|#1|) |has| |#1| (-174)))
-(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373))))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(-3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-924)))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374))))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(-3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-926)))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
((($ |#2|) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1099)) . T))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-((((-575) |#2|) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373))))
-(|has| |#1| (-359))
-(((|#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))
-(((|#2|) . T) (((-575)) . T))
-((($) . T) (((-418 (-575))) . T))
-((((-575) (-112)) . T))
-(|has| |#1| (-831))
-(|has| |#1| (-831))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)))
-(|has| |#1| (-859))
-(|has| |#1| (-859))
-(|has| |#1| (-859))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-575)) . T) (($) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-1194)) |has| |#1| (-913 (-1194))) (((-1099)) . T))
-(((|#1|) . T))
-(|has| |#1| (-859))
-(((#0=(-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) #0#) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(|has| |#1| (-1117))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-576) |#2|) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374))))
+(|has| |#1| (-360))
+(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))
+(((|#2|) . T) (((-576)) . T))
+((($) . T) (((-419 (-576))) . T))
+((((-576) (-112)) . T))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T))
+(((|#1|) . T))
+(|has| |#1| (-860))
+(((#0=(-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) #0#) |has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(|has| |#1| (-1119))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-((((-1159 |#2| (-418 (-967 |#1|)))) . T) (((-418 (-967 |#1|))) . T) (((-575)) . T))
+((((-1161 |#2| (-419 (-969 |#1|)))) . T) (((-419 (-969 |#1|))) . T) (((-576)) . T))
(((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
-((($) . T) (((-575)) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T))
+((($) . T) (((-576)) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-542 |#2|) |#2|) . T))
-((((-873)) . T))
-((((-145)) . T) (((-873)) . T))
-((((-575) |#1|) . T))
-(((|#1| (-782) (-1099)) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+((((-874)) . T))
+((((-145)) . T) (((-874)) . T))
+((((-576) |#1|) . T))
+(((|#1| (-783) (-1101)) . T))
(((|#3|) . T))
((((-145)) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) -3763 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))) ((|#1|) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) -3739 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))) ((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
((((-145)) . T))
-((((-1194)) -3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117)))
+((((-1196)) -3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119)))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(((|#4|) |has| |#4| (-373)))
-(((|#3|) |has| |#3| (-373)))
+(((|#4|) |has| |#4| (-374)))
+(((|#3|) |has| |#3| (-374)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-373)))
-((((-873)) . T))
-((((-873)) . T))
-((((-875 |#1|)) . T))
+(((|#2|) |has| |#1| (-374)))
+((((-874)) . T))
+((((-874)) . T))
+((((-876 |#1|)) . T))
(((|#2|) . T))
-(((|#1| (-1190 |#1|)) . T))
-((((-1099)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((($) . T) ((|#1|) . T) (((-418 (-575))) . T) (((-575)) |has| |#1| (-650 (-575))))
+(((|#1| (-1192 |#1|)) . T))
+((((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-651 (-576))))
((($) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((($) |has| |#1| (-567)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((($) |has| |#1| (-568)))
(((|#2|) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) . T))
-((($) |has| |#1| (-859)))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(|has| |#1| (-924))
-((((-1194)) . T))
-((((-873)) . T))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-575) |#2|) . T))
-((($ (-1194)) -3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066)))))
-((($ (-1194)) -3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237))))
-((($) |has| |#1| (-378)))
-((($) |has| |#1| (-378)))
-((($) |has| |#1| (-378)))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) . T))
+((($) |has| |#1| (-860)))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-926))
+((((-1196)) . T))
+((((-874)) . T))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-576) |#2|) . T))
+((($ (-1196)) -3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068)))))
+((($ (-1196)) -3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237))))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
(((|#1| |#2|) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-924)))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((#0=(-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) #0#) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-924)))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-926)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((#0=(-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) #0#) |has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-926)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373))))
-(|has| |#1| (-861))
-(|has| |#1| (-567))
-((((-592 |#1|)) . T))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374))))
+(|has| |#1| (-862))
+(|has| |#1| (-568))
+((((-593 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-831))) (-12 (|has| |#1| (-373)) (|has| |#2| (-861))))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-((((-925 |#1|)) . T))
-(((|#1| (-507 |#1| |#3|) (-507 |#1| |#2|)) . T))
+(-3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862))))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-927 |#1|)) . T))
+(((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-782)) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
-((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T) (((-418 (-575))) . T) (($) . T))
-((((-683 |#1|)) . T))
+(((|#1| (-783)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T))
+((((-684 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-547)) . T))
-((((-873)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-873)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((((-1199)) . T))
-((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T) (((-575)) . T))
-(((|#3|) . T) (((-575)) . T) (((-623 $)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-548)) . T))
+((((-874)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((((-1201)) . T))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T))
+(((|#3|) . T) (((-576)) . T) (((-624 $)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
-(-3763 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-378)) (|has| |#3| (-737)) (|has| |#3| (-804)) (|has| |#3| (-861)) (|has| |#3| (-1066)) (|has| |#3| (-1117)))
-(|has| |#2| (-1066))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
-(|has| |#1| (-1220))
-(|has| |#1| (-1220))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117)))
-(|has| |#1| (-1220))
-(|has| |#1| (-1220))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T) ((#1=(-418 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((($) . T) (((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T))
+(-3739 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119)))
+(|has| |#2| (-1068))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
+(|has| |#1| (-1222))
+(|has| |#1| (-1222))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119)))
+(|has| |#1| (-1222))
+(|has| |#1| (-1222))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((((-1176) (-52)) . T))
-(|has| |#1| (-1117))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-1178) (-52)) . T))
+(|has| |#1| (-1119))
(((|#1|) |has| |#1| (-174)) (($) . T))
-(-3763 (|has| |#2| (-831)) (|has| |#2| (-861)))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-575)) . T) (($) . T))
-((((-782)) . T))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-359)))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-((((-873)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(|has| |#2| (-924))
-(|has| |#1| (-373))
-(((|#2|) |has| |#2| (-1117)))
-((($) . T) (((-575)) . T))
+(-3739 (|has| |#2| (-832)) (|has| |#2| (-862)))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T))
+((((-783)) . T))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(|has| |#2| (-926))
+(|has| |#1| (-374))
+(((|#2|) |has| |#2| (-1119)))
+((($) . T) (((-576)) . T))
((($) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-547)) . T) (((-418 (-1190 (-575)))) . T) (((-227)) . T) (((-389)) . T))
-((((-389)) . T) (((-227)) . T) (((-873)) . T))
-(|has| |#1| (-924))
-(|has| |#1| (-924))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-829 (-1194))) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-(|has| |#1| (-924))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737))))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-924)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-548)) . T) (((-419 (-1192 (-576)))) . T) (((-227)) . T) (((-390)) . T))
+((((-390)) . T) (((-227)) . T) (((-874)) . T))
+(|has| |#1| (-926))
+(|has| |#1| (-926))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-830 (-1196))) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+(|has| |#1| (-926))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738))))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-926)))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-((((-1192 |#1| |#2| |#3|)) -12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-924)))
-((((-873)) . T))
-((((-873)) . T))
+((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+((((-1194 |#1| |#2| |#3|)) -12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926)))
+((((-874)) . T))
+((((-874)) . T))
((($ $) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((($) -3763 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (-12 (|has| |#1| (-373)) (|has| |#2| (-237)))))
-((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))
-((((-988)) . T))
-((((-988)) . T) (((-873)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((($) -3739 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((((-990)) . T))
+((((-990)) . T) (((-874)) . T))
((($ $) . T))
-((((-575) (-112)) . T))
+((((-576) (-112)) . T))
((($) . T))
(((|#1|) . T))
((((-112)) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567)))
-((((-575)) . T))
-(((|#1| (-575)) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568)))
+((((-576)) . T))
+(((|#1| (-576)) . T))
((($) . T))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
(((|#1|) . T))
-((((-575)) . T))
+((((-576)) . T))
(((|#1| |#2|) . T))
-((((-1194)) |has| |#1| (-1066)))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-873)) . T))
-(((|#1|) . T))
-(((|#1| (-575)) . T))
-(((|#1| (-1277 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(((|#1| (-418 (-575))) . T))
-(((|#1| (-1249 |#1| |#2| |#3|)) . T))
-(((|#1| (-782)) . T))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(|has| |#1| (-1117))
-(((|#1|) . T))
-((((-1176) |#1|) . T))
+((((-1196)) |has| |#1| (-1068)))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
+(((|#1|) . T))
+(((|#1| (-576)) . T))
+(((|#1| (-1279 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(((|#1| (-419 (-576))) . T))
+(((|#1| (-1251 |#1| |#2| |#3|)) . T))
+(((|#1| (-783)) . T))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(|has| |#1| (-1119))
+(((|#1|) . T))
+((((-1178) |#1|) . T))
((($) . T))
(|has| |#2| (-148))
(|has| |#2| (-146))
-(((|#1| (-542 (-829 (-1194))) (-829 (-1194))) . T))
-((((-873)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1066)))
-((((-575) (-112)) . T) (((-1252 (-575)) $) . T))
-((((-873)) |has| |#1| (-1117)))
-(((|#1|) . T) (((-575)) . T) (($) . T))
-((((-575)) . T))
-((((-575)) . T))
-(((|#1|) . T))
-((((-575)) . T))
-((((-575)) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-359)))
-((((-873)) . T))
+(((|#1| (-543 (-830 (-1196))) (-830 (-1196))) . T))
+((((-874)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1068)))
+((((-576) (-112)) . T) (((-1254 (-576)) $) . T))
+((((-874)) |has| |#1| (-1119)))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) . T))
+((((-576)) . T))
+((((-576)) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-360)))
+((((-874)) . T))
(|has| |#1| (-148))
(((|#3|) . T))
-((((-873)) . T))
-(|has| |#3| (-1066))
-((($) -3763 (|has| |#2| (-238)) (|has| |#2| (-237))))
-((((-1270 |#2| |#3| |#4|)) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T))
-((((-873)) . T))
-((((-48)) -12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (((-623 $)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) -3763 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-418 (-967 |#1|))) |has| |#1| (-567)) (((-967 |#1|)) |has| |#1| (-1066)) (((-1194)) . T))
+((((-874)) . T))
+(|has| |#3| (-1068))
+((($) -3739 (|has| |#2| (-238)) (|has| |#2| (-237))))
+((((-1272 |#2| |#3| |#4|)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T))
+((((-874)) . T))
+((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) -3739 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-419 (-969 |#1|))) |has| |#1| (-568)) (((-969 |#1|)) |has| |#1| (-1068)) (((-1196)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-782)) . T))
-(((|#1|) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-318 |#1|)))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-((((-575)) |has| |#1| (-898 (-575))) (((-389)) |has| |#1| (-898 (-389))))
-(((|#1|) . T))
-((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))
-(((|#1|) . T))
-(|has| |#1| (-567))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-(((|#1|) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) |has| |#1| (-174)))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)) ((|#1|) . T))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
+(((|#1| (-783)) . T))
+(((|#1|) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390))))
+(((|#1|) . T))
+((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))
+(((|#1|) . T))
+(|has| |#1| (-568))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+(((|#1|) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174)))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
(((|#1|) |has| |#1| (-174)))
-((((-873)) . T))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T))
-(((|#1|) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (((-575)) . T) (($) . T))
-(((|#3|) |has| |#3| (-1117)))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373))))
-((((-1270 |#2| |#3| |#4|)) . T))
+((((-874)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#1|) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1119)))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374))))
+((((-1272 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-831))
-(|has| |#1| (-831))
-(((|#1| (-575) (-1099)) . T))
-((($) |has| |#1| (-318 $)) ((|#1|) |has| |#1| (-318 |#1|)))
-(|has| |#1| (-859))
-(|has| |#1| (-859))
-(((|#1| (-575) (-1099)) . T))
-(-3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(((|#1| (-418 (-575)) (-1099)) . T))
-(((|#1| (-782) (-1099)) . T))
-(|has| |#1| (-861))
-(((#0=(-925 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T))
+(|has| |#1| (-832))
+(|has| |#1| (-832))
+(((|#1| (-576) (-1101)) . T))
+((($) |has| |#1| (-319 $)) ((|#1|) |has| |#1| (-319 |#1|)))
+(|has| |#1| (-860))
+(|has| |#1| (-860))
+(((|#1| (-576) (-1101)) . T))
+(-3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(((|#1| (-419 (-576)) (-1101)) . T))
+(((|#1| (-783) (-1101)) . T))
+(|has| |#1| (-862))
+(((#0=(-927 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
(((|#2|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-1117))
-((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-(|has| |#1| (-1117))
-((((-418 (-575))) |has| |#2| (-373)) (($) . T) (((-575)) . T))
-((((-575)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))))
-(((|#1|) . T))
-(|has| |#1| (-1117))
-((((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) ((|#2|) |has| |#1| (-373)))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117)))
-((((-700 (-349 (-2893) (-2893 (QUOTE X) (QUOTE HESS)) (-710)))) . T))
+(|has| |#1| (-1119))
+((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-1119))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T))
+((((-576)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))))
+(((|#1|) . T))
+(|has| |#1| (-1119))
+((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374)))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119)))
+((((-701 (-350 (-2869) (-2869 (QUOTE X) (QUOTE HESS)) (-711)))) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) . T))
-(((|#1| |#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))))
-(((|#1|) . T))
-((((-575)) . T))
-((((-575)) . T))
-(((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))))
-(((|#2|) |has| |#2| (-373)))
-(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-373)) (((-575)) |has| |#1| (-650 (-575))))
-(|has| |#1| (-861))
-(((|#1|) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(((|#1|) . T) (((-575)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T))
+(((|#1| |#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))))
+(((|#1|) . T))
+((((-576)) . T))
+((((-576)) . T))
+(((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))))
+(((|#2|) |has| |#2| (-374)))
+(((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576))))
+(|has| |#1| (-862))
+(((|#1|) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(((|#1|) . T) (((-576)) . T))
(((|#2|) . T))
-((((-575)) . T) ((|#3|) . T))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-924)))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((((-873)) . T))
-((((-873)) . T))
-((($ (-1194)) -3763 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))))
-((((-575)) -3763 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) ((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)))
-((((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
-((((-873)) . T))
+((((-576)) . T) ((|#3|) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) |has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-926)))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-874)) . T))
+((((-874)) . T))
+((($ (-1196)) -3739 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))))
+((((-576)) -3739 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)))
+((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-874)) . T))
((($) |has| |#1| (-238)))
-(|has| |#1| (-38 (-418 (-575))))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
((($) . T))
(|has| |#1| (-238))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-859))
-(((|#1| (-575)) . T))
+(|has| |#1| (-860))
+(((|#1| (-576)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1192 |#1| |#2| |#3|)) . T))
+(((|#1| (-1194 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-418 (-575))) . T))
+(((|#1| (-419 (-576))) . T))
(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T))
-(((|#1| (-1185 |#1| |#2| |#3|)) . T))
-(((|#1| (-782)) . T))
+(((|#1| (-1187 |#1| |#2| |#3|)) . T))
+(((|#1| (-783)) . T))
(((|#1|) . T))
-((((-418 (-967 |#1|))) . T))
+((((-419 (-969 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
-((((-418 (-967 |#1|))) . T))
+((((-419 (-969 |#1|))) . T))
(((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
(((|#1|) |has| |#1| (-174)))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-575)) . T) ((|#1|) . T) (($) . T) (((-418 (-575))) . T) (((-1194)) |has| |#1| (-1055 (-1194))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1196)) |has| |#1| (-1057 (-1196))))
(((|#1| |#2|) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) -3763 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))) ((|#1|) . T))
-(-3763 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066))))
-(-3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) -3739 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))) ((|#1|) . T))
+(-3739 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))
+(-3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))
((((-145)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(((|#1|) . T))
-(|has| |#2| (-1066))
-(((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-575)) . T))
-((((-873)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#1|) . T))
+(|has| |#2| (-1068))
+(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-576)) . T))
+((((-874)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
((($ |#2|) . T))
-(|has| (-418 |#2|) (-238))
-((((-655 |#1|)) . T))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((($ (-1281 |#2|)) . T) (($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))))
-(|has| |#1| (-924))
-(((|#2|) |has| |#2| (-1066)))
-(((|#2|) |has| |#2| (-1066)))
-(|has| |#1| (-373))
+(|has| (-419 |#2|) (-238))
+((((-656 |#1|)) . T))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))))
+(|has| |#1| (-926))
+(((|#2|) |has| |#2| (-1068)))
+(((|#2|) |has| |#2| (-1068)))
+(|has| |#1| (-374))
((($) . T))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
(((|#1|) |has| |#1| (-174)))
-((($ (-875 |#1|)) . T))
+((($ (-876 |#1|)) . T))
(((|#1| |#1|) . T))
-((((-881 |#1|)) . T))
-((((-873)) . T))
+((((-882 |#1|)) . T))
+((((-874)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1117)))
+(((|#2|) |has| |#2| (-1119)))
(((|#1|) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((((-655 $)) . T) (((-1176)) . T) (((-1194)) . T) (((-575)) . T) (((-227)) . T) (((-873)) . T))
-((((-575)) -3763 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) ((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066)))
-((((-418 (-575))) . T) (((-575)) . T) (((-623 $)) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-656 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T))
+((((-576)) -3739 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) ((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)))
+((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T))
(((|#1|) . T))
-((((-873)) . T))
+((((-874)) . T))
((($) . T))
-(((|#1| (-542 |#2|) |#2|) . T))
-((((-873)) . T))
-(((|#1| (-575) (-1099)) . T))
-((((-925 |#1|)) . T))
-((((-873)) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+((((-874)) . T))
+(((|#1| (-576) (-1101)) . T))
+((((-927 |#1|)) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-418 (-575)) (-1099)) . T))
-(((|#1| (-782) (-1099)) . T))
-(((#0=(-418 |#2|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-575)) -3763 (|has| (-418 (-575)) (-1055 (-575))) (|has| |#1| (-1055 (-575)))) (((-418 (-575))) . T))
-(((|#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) . T))
+(((|#1| (-419 (-576)) (-1101)) . T))
+(((|#1| (-783) (-1101)) . T))
+(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-576)) -3739 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))) (((-419 (-576))) . T))
+(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
(|has| |#2| (-238))
-(((|#2| (-542 (-875 |#1|)) (-875 |#1|)) . T))
-((((-873)) . T))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
+(((|#2| (-543 (-876 |#1|)) (-876 |#1|)) . T))
+((((-874)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
(((|#1| |#3|) . T))
-((((-873)) . T))
-(((|#1|) |has| |#1| (-174)) (((-967 |#1|)) . T) (((-575)) . T))
+((((-874)) . T))
+(((|#1|) |has| |#1| (-174)) (((-969 |#1|)) . T) (((-576)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-710)) . T))
-((((-710)) . T))
+((((-711)) . T))
+((((-711)) . T))
(((|#2|) |has| |#2| (-174)))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)))
-((((-575)) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-((((-112)) |has| |#1| (-1117)) (((-873)) -3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)) (|has| |#1| (-1117))))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)))
+((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+((((-112)) |has| |#1| (-1119)) (((-874)) -3739 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-1194)) -3763 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-710)) . T) (((-418 (-575))) . T) (((-575)) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-1196)) -3739 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T))
(((|#1| |#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-575) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-((((-389)) . T))
-((((-710)) . T))
-((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#))
+((($) . T) (((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-576) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+((((-390)) . T))
+((((-711)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#))
(((|#1|) |has| |#1| (-174)))
-((((-418 (-967 |#1|))) . T))
+((((-419 (-969 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#3|) |has| |#3| (-1066)))
-(|has| |#2| (-924))
-(|has| |#1| (-924))
-(|has| |#1| (-373))
-(((|#3|) |has| |#3| (-1066)))
+(((|#3|) |has| |#3| (-1068)))
+(|has| |#2| (-926))
+(|has| |#1| (-926))
+(|has| |#1| (-374))
+(((|#3|) |has| |#3| (-1068)))
((($) . T))
-((((-1194)) |has| |#2| (-913 (-1194))))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-484))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-373))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-484)) (|has| |#1| (-567)) (|has| |#1| (-1066)) (|has| |#1| (-1129)))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-359))))
+((((-1196)) |has| |#2| (-915 (-1196))))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-485))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-374))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131)))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))))
((((-117 |#1|)) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-359))
+(|has| |#1| (-360))
((((-145)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-((($) . T) (((-575)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(((|#2|) . T) (((-873)) . T))
-(((|#2|) . T) (((-873)) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-861))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((($) . T) (((-576)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#2|) . T) (((-874)) . T))
+(((|#2|) . T) (((-874)) . T))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-862))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-575)) . T))
+((($) . T) (((-576)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) ((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
(((|#2|) . T))
-(|has| |#1| (-15 * (|#1| (-575) |#1|)))
+(|has| |#1| (-15 * (|#1| (-576) |#1|)))
(((|#3|) . T))
((((-117 |#1|)) . T))
-(|has| |#1| (-378))
-(-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-861))
-(|has| |#1| (-15 * (|#1| (-782) |#1|)))
-(((|#2|) . T) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
+(|has| |#1| (-379))
+(-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-862))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-575)) . T))
-((((-575)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-873)) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))) (((-389)) . #0=(|has| |#1| (-1039))) (((-227)) . #0#))
-(((|#1|) |has| |#1| (-373)))
-(((|#1|) |has| |#1| (-373)))
-((((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((($ $) . T) (((-623 $) $) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-((($) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T))
-((($) -3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) ((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-1066))) (((-418 (-575))) |has| |#1| (-567)) (((-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))
-((($) . T) (((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-389)) . T) (((-575)) . T) (((-418 (-575))) . T))
-((((-1194)) -3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))))
-((((-655 (-791 |#1| (-875 |#2|)))) . T) (((-873)) . T))
-((((-547)) |has| (-791 |#1| (-875 |#2|)) (-625 (-547))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-389)) . T))
+((((-576)) . T))
+((((-576)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#1| (-1041))) (((-227)) . #0#))
+(((|#1|) |has| |#1| (-374)))
+(((|#1|) |has| |#1| (-374)))
+((((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((($ $) . T) (((-624 $) $) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+((($) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T))
+((($) -3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-1068))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))
+((($) . T) (((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T))
+((((-1196)) -3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))))
+((((-656 (-792 |#1| (-876 |#2|)))) . T) (((-874)) . T))
+((((-548)) |has| (-792 |#1| (-876 |#2|)) (-626 (-548))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-390)) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))
+(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))
(((|#1|) |has| |#1| (-174)))
-((((-873)) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-924)))
+((((-874)) . T))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-926)))
(((|#1|) . T))
((($) . T))
-((($) |has| |#1| (-567)) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-((((-782)) . T))
-(|has| |#1| (-1117))
-((((-575)) -3763 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066))) ((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))) (($) |has| |#2| (-1066)))
-((((-873)) . T))
-((((-1194)) . T) (((-873)) . T))
-((((-575)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
-((((-418 (-575))) . T) (((-575)) . T) (((-623 $)) . T))
+((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+((((-783)) . T))
+(|has| |#1| (-1119))
+((((-576)) -3739 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)))
+((((-874)) . T))
+((((-1196)) . T) (((-874)) . T))
+((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T))
(|has| |#1| (-146))
(|has| |#1| (-148))
-((((-575)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))) (($) . T))
-((((-575)) . T))
+((((-576)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T))
+((((-576)) . T))
((($) . T))
-(|has| |#1| (-373))
-(-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-148)) (|has| |#1| (-373))) (|has| |#1| (-148)))
-(-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146)))
-(|has| |#1| (-373))
+(|has| |#1| (-374))
+(-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148)))
+(-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146)))
+(|has| |#1| (-374))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
(|has| |#1| (-238))
-(|has| |#1| (-373))
+(|has| |#1| (-374))
(((|#3|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-575)) |has| |#2| (-650 (-575))) ((|#2|) . T))
-((((-575) |#1|) |has| |#2| (-428 |#1|)))
-((((-575) |#1|) |has| |#2| (-428 |#1|)))
-(((|#2|) . T) (($) . T) (((-575)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T))
+((((-576) |#1|) |has| |#2| (-429 |#1|)))
+((((-576) |#1|) |has| |#2| (-429 |#1|)))
+(((|#2|) . T) (($) . T) (((-576)) . T))
(((|#2|) . T))
-((((-418 (-575))) . #0=(|has| |#2| (-373))) (($) . #0#))
-((((-418 (-575))) |has| |#2| (-373)) (($) . T))
-(|has| |#1| (-1117))
-((((-1159 |#2| |#1|)) . T) ((|#1|) . T) (((-575)) . T))
+((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#))
+((((-419 (-576))) |has| |#2| (-374)) (($) . T))
+(|has| |#1| (-1119))
+((((-1161 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T))
(((|#1| |#2|) . T))
-((((-575)) . T) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))
-((((-1194)) -3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))))
-(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-(((|#2|) . T) (($) . T) (((-575)) . T))
-(((|#1|) . T) (($) . T) (((-575)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117)))
-((((-873)) . T))
-((((-575)) . T))
-(-3763 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))))
-(((|#1| $) |has| |#1| (-295 |#1| |#1|)))
-((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T))
-((((-967 |#1|)) . T) (((-873)) . T))
+((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))
+((((-1196)) -3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(((|#2|) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (($) . T) (((-576)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119)))
+((((-874)) . T))
+((((-576)) . T))
+(-3739 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T))
+((((-969 |#1|)) . T) (((-874)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-299)) (|has| |#1| (-373))) ((#0=(-418 (-575)) #0#) |has| |#1| (-373)))
-((((-967 |#1|)) . T))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
+(((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374)))
+((((-969 |#1|)) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
((($) . T))
-((((-575) |#1|) . T))
-((((-1194)) |has| (-418 |#2|) (-913 (-1194))))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-299)) (|has| |#1| (-373))) (((-418 (-575))) |has| |#1| (-373)))
-((((-547)) |has| |#2| (-625 (-547))))
-((((-700 |#2|)) . T) (((-873)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-((((-881 |#1|)) . T))
+((((-576) |#1|) . T))
+((((-1196)) |has| (-419 |#2|) (-915 (-1196))))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374)))
+((((-548)) |has| |#2| (-626 (-548))))
+((((-701 |#2|)) . T) (((-874)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+((((-882 |#1|)) . T))
(((|#1|) |has| |#1| (-174)))
-(-3763 (|has| |#4| (-804)) (|has| |#4| (-861)))
-(-3763 (|has| |#3| (-804)) (|has| |#3| (-861)))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((($) . T) (((-575)) . T) ((|#2|) . T))
-(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373))))
-(((|#2|) |has| |#2| (-1066)))
-(((|#2|) |has| |#2| (-1066)))
+(-3739 (|has| |#4| (-805)) (|has| |#4| (-862)))
+(-3739 (|has| |#3| (-805)) (|has| |#3| (-862)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374))))
+(((|#2|) |has| |#2| (-1068)))
+(((|#2|) |has| |#2| (-1068)))
(((|#3|) . T))
((($) . T))
(((|#1|) . T))
-((((-418 |#2|)) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737))))
+((((-419 |#2|)) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738))))
(((|#1|) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))))
-(((|#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))))
+(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (($) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-1239)))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (($) . T))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-1241)))
((($) . T))
-((((-418 (-575))) |has| #0=(-418 |#2|) (-1055 (-418 (-575)))) (((-575)) |has| #0# (-1055 (-575))) ((#0#) . T))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-(((|#1| (-782)) . T))
-(|has| |#1| (-861))
-(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-((((-575)) . T))
-(|has| |#1| (-38 (-418 (-575))))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(|has| |#1| (-859))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-575) $) . T) (((-655 (-575)) $) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-359))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-1176)) . T) (((-517)) . T) (((-227)) . T) (((-575)) . T))
-((((-873)) . T))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-(-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-15 * (|#1| (-782) |#1|)))
-(((|#2|) . T) (((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1099)) . T) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))
+((((-419 (-576))) |has| #0=(-419 |#2|) (-1057 (-419 (-576)))) (((-576)) |has| #0# (-1057 (-576))) ((#0#) . T))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+(((|#1| (-783)) . T))
+(|has| |#1| (-862))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+((((-576)) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) |has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(|has| |#1| (-860))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-576) $) . T) (((-656 (-576)) $) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-360))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-1178)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T))
+((((-874)) . T))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+(-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-15 * (|#1| (-783) |#1|)))
+(((|#2|) . T) (((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))
(((|#1| |#2|) . T))
((((-145)) . T))
-((((-791 |#1| (-875 |#2|))) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(|has| |#1| (-1220))
-((((-873)) . T))
+((((-792 |#1| (-876 |#2|))) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(|has| |#1| (-1222))
+((((-874)) . T))
(((|#1|) . T))
-(-3763 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-378)) (|has| |#3| (-737)) (|has| |#3| (-804)) (|has| |#3| (-861)) (|has| |#3| (-1066)) (|has| |#3| (-1117)))
-((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)))
+(-3739 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119)))
+((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)))
(((|#2|) . T))
(((|#2|) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-((((-925 |#1|)) . T))
-((($) -3763 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066)))))
-((($) -3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-927 |#1|)) . T))
+((($) -3739 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))
+((($) -3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))
((($) . T))
-((((-418 (-967 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-1194)) -3763 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))))
-((((-547)) |has| |#4| (-625 (-547))))
-(|has| |#1| (-859))
-((((-873)) . T) (((-655 |#4|)) . T))
-(|has| |#1| (-1117))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) |has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))))
-(|has| |#1| (-373))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737))))
-((((-683 |#1|)) . T))
-(((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-737)) (|has| |#3| (-1066))))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
+((((-419 (-969 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1196)) -3739 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))))
+((((-548)) |has| |#4| (-626 (-548))))
+(|has| |#1| (-860))
+((((-874)) . T) (((-656 |#4|)) . T))
+(|has| |#1| (-1119))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) |has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))))
+(|has| |#1| (-374))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738))))
+((((-684 |#1|)) . T))
+(((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-148)) (|has| |#1| (-373))) (|has| |#1| (-148)))
-(-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146)))
+(-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148)))
+(-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146)))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(|has| |#1| (-859))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-860))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-1117))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T) (((-575)) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1119))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-576)) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T))
(|has| |#2| (-146))
(|has| |#2| (-148))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-1117))
-((((-575)) . T) ((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-575)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1119))
+((((-576)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-576)) . T))
(((|#2|) . T))
-((((-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
+((((-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-373)))
-((((-418 |#2|)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|)))
-(((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373))))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((((-325 |#1|)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#2|) |has| |#2| (-373)))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
+(((|#3|) |has| |#3| (-374)))
+((((-419 |#2|)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-326 |#1|)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#2|) |has| |#2| (-374)))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
(((|#2|) . T))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)))
-(((#0=(-791 |#1| (-875 |#2|)) #0#) |has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237))))
-((((-575)) . T) (($) . T))
-((((-875 |#1|)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)))
+(((#0=(-792 |#1| (-876 |#2|)) #0#) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237))))
+((((-576)) . T) (($) . T))
+((((-876 |#1|)) . T))
(((|#2|) |has| |#2| (-174)))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
-((((-1194)) |has| |#1| (-913 (-1194))) (((-1099)) . T))
-((((-1194)) |has| |#1| (-913 (-1194))) (((-1105 (-1194))) . T))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-((($ (-1194)) -3763 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(|has| |#1| (-38 (-418 (-575))))
-(((|#4|) |has| |#4| (-1066)) (((-575)) -12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066))))
-(((|#3|) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066))))
+((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T))
+((((-1196)) |has| |#1| (-915 (-1196))) (((-1107 (-1196))) . T))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+((($ (-1196)) -3739 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(|has| |#1| (-38 (-419 (-576))))
+(((|#4|) |has| |#4| (-1068)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068))))
+(((|#3|) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))
(|has| |#1| (-146))
(|has| |#1| (-148))
((($ $) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)) (|has| |#1| (-1117)))
-(|has| |#1| (-567))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119)))
+(|has| |#1| (-568))
(((|#2|) . T))
-((((-575)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+((((-576)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
-((((-592 |#1|)) . T))
+((((-593 |#1|)) . T))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-873)) . T))
-(((|#2|) |has| |#2| (-6 (-4462 "*"))))
+((((-874)) . T))
+(((|#2|) |has| |#2| (-6 (-4464 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#3|) . T))
((($) . T))
-(((|#2|) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#3|) . T) (((-575)) . T))
-((((-1270 |#2| |#3| |#4|)) . T) (((-575)) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-48)) -12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (((-575)) -3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))) (|has| |#1| (-1066))) ((|#1|) . T) (((-623 $)) . T) (($) |has| |#1| (-567)) (((-418 (-575))) -3763 (|has| |#1| (-567)) (|has| |#1| (-1055 (-418 (-575))))) (((-418 (-967 |#1|))) |has| |#1| (-567)) (((-967 |#1|)) |has| |#1| (-1066)) (((-1194)) . T))
-((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T))
-((($) . T) (((-117 |#1|)) . T) (((-418 (-575))) . T))
-((((-1142 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((((-1190 |#1|)) . T) (((-1099)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((((-1142 |#1| (-1194))) . T) (((-1105 (-1194))) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-1194)) . T))
-(|has| |#1| (-1117))
+(((|#2|) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#3|) . T) (((-576)) . T))
+((((-1272 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (((-576)) -3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))) (|has| |#1| (-1068))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -3739 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-576))))) (((-419 (-969 |#1|))) |has| |#1| (-568)) (((-969 |#1|)) |has| |#1| (-1068)) (((-1196)) . T))
+((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T))
+((((-1144 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((((-1192 |#1|)) . T) (((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((((-1144 |#1| (-1196))) . T) (((-1107 (-1196))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-1196)) . T))
+(|has| |#1| (-1119))
((($) . T))
-(|has| |#1| (-1117))
-((((-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))) (((-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389)))))
+(|has| |#1| (-1119))
+((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390)))))
(((|#1| |#2|) . T))
-((((-1194) |#1|) . T))
+((((-1196) |#1|) . T))
(((|#4|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-1194) (-52)) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T))
-((((-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) . T))
-((((-873)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-378)) (|has| |#2| (-737)) (|has| |#2| (-804)) (|has| |#2| (-861)) (|has| |#2| (-1066)) (|has| |#2| (-1117)))
-(((#0=(-1271 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-418 (-575)) #0#) |has| |#1| (-567)) (($ $) |has| |#1| (-567)))
-((($) |has| |#1| (-15 * (|#1| (-575) |#1|))))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1| $) |has| |#1| (-295 |#1| |#1|)))
-((((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-567)) (($) |has| |#1| (-567)))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T))
-(|has| |#1| (-373))
-((($) |has| |#1| (-859)) (((-575)) -3763 (|has| |#1| (-21)) (|has| |#1| (-859))))
-((($) -3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))
-((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))
-((($) |has| |#1| (-15 * (|#1| (-782) |#1|))))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1196) (-52)) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T))
+((((-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T))
+((((-874)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119)))
+(((#0=(-1273 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568)))
+((($) |has| |#1| (-15 * (|#1| (-576) |#1|))))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1| $) |has| |#1| (-296 |#1| |#1|)))
+((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568)))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+(|has| |#1| (-374))
+((($) |has| |#1| (-860)) (((-576)) -3739 (|has| |#1| (-21)) (|has| |#1| (-860))))
+((($) -3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((($) |has| |#1| (-15 * (|#1| (-783) |#1|))))
(|has| |#1| (-146))
(|has| |#1| (-148))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((((-418 (-575))) . T) (($) . T))
-(((|#3|) |has| |#3| (-373)))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-((((-1194)) . T))
-((($) . T) (((-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575)))) (((-575)) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#3|) |has| |#3| (-374)))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+((((-1196)) . T))
+((($) . T) (((-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
(((|#2| |#3|) . T))
-(-3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(((|#1| (-542 |#2|)) . T))
-(((|#1| (-782)) . T))
-(((|#1| (-542 (-1105 (-1194)))) . T))
+(-3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(((|#1| (-543 |#2|)) . T))
+(((|#1| (-783)) . T))
+(((|#1| (-543 (-1107 (-1196)))) . T))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
-(|has| |#2| (-924))
-(-3763 (|has| |#2| (-804)) (|has| |#2| (-861)))
-((((-873)) . T))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737))))
-(((|#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-737)) (|has| |#2| (-1066))))
-((($ (-1194)) -3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))))
-((($ $) . T) ((#0=(-1270 |#2| |#3| |#4|) #0#) . T) ((#1=(-418 (-575)) #1#) |has| #0# (-38 (-418 (-575)))))
-((((-925 |#1|)) . T))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-831)))
-((((-575)) . T) (($) . T) (((-418 (-575))) . T))
-((((-873)) . T))
-((($) . T) (((-575)) . T))
+(|has| |#2| (-926))
+(-3739 (|has| |#2| (-805)) (|has| |#2| (-862)))
+((((-874)) . T))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738))))
+(((|#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))))
+((($ (-1196)) -3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))))
+((($ $) . T) ((#0=(-1272 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576)))))
+((((-927 |#1|)) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+((((-576)) . T) (($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T))
((($) . T))
-(-3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)) (|has| |#1| (-567)))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
+(-3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373)) (|has| |#1| (-359)))
-(-3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T))
+((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374)) (|has| |#1| (-360)))
+(-3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-874)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) . T))
+(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T))
(((|#2|) . T))
-(|has| |#2| (-373))
-(|has| |#1| (-861))
+(|has| |#2| (-374))
+(|has| |#1| (-862))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-575)) . T))
+((((-576)) . T))
(((|#1|) . T))
-((((-873)) . T))
+((((-874)) . T))
(((|#2|) |has| |#2| (-174)))
-(|has| |#1| (-1117))
+(|has| |#1| (-1119))
(((|#1|) |has| |#1| (-174)))
(((|#2|) . T))
(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T) (((-575)) . T) (($) . T))
-(((|#3|) . T) (((-575)) . T) (($) . T))
-((((-418 $) (-418 $)) |has| |#1| (-567)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-831))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T) (($) . T))
+(((|#3|) . T) (((-576)) . T) (($) . T))
+((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-832))
((($) . T))
(((|#4|) . T))
((($) . T))
-((($ (-1194)) -3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))))
-((((-873)) . T))
-(((|#1| (-542 (-1194))) . T))
+((($ (-1196)) -3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))))
+((((-874)) . T))
+(((|#1| (-543 (-1196))) . T))
((($ $) . T))
(((|#1|) |has| |#1| (-174)))
((($) . T))
-((((-873)) . T))
+((((-874)) . T))
(((|#2|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
(((|#2|) . T))
-(((|#2|) -3763 (|has| |#2| (-6 (-4462 "*"))) (|has| |#2| (-174))))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(|has| |#2| (-924))
-(|has| |#1| (-924))
-((($) -3763 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))))
+(((|#2|) -3739 (|has| |#2| (-6 (-4464 "*"))) (|has| |#2| (-174))))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(|has| |#2| (-926))
+(|has| |#1| (-926))
+((($) -3739 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))))
(((|#2|) |has| |#2| (-174)))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((((-873)) . T))
-((((-873)) . T))
-((((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-575)) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T))
+((($) . T) (((-576)) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-873)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-874)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-575)) . T))
-(((|#1| (-418 (-575))) . T))
+((($) . T) (((-576)) . T))
+(((|#1| (-419 (-576))) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-299)) (|has| |#1| (-373)))
+(-3739 (|has| |#1| (-300)) (|has| |#1| (-374)))
((((-145)) . T))
-((((-575)) |has| #0=(-418 |#2|) (-650 (-575))) ((#0#) . T) (((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-859))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-860))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-189)) . T) (((-873)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-189)) . T) (((-874)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))) (((-904 (-575))) |has| |#1| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#1| (-625 (-904 (-389)))))
-((((-1194) (-52)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))))
+((((-1196) (-52)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($ (-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-655 (-145))) . T) (((-1176)) . T))
-((((-873)) . T))
-((((-1176)) . T))
-((((-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((|#1| |#1|) |has| |#1| (-318 |#1|)))
-(|has| |#1| (-861))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((($) -3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))
-((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))
-((((-873)) . T))
-(((|#2|) |has| |#2| (-373)))
-((((-873)) . T))
-((($) |has| |#1| (-15 * (|#1| (-782) |#1|))))
-((((-547)) |has| |#4| (-625 (-547))))
+((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-656 (-145))) . T) (((-1178)) . T))
+((((-874)) . T))
+((((-1178)) . T))
+((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|)))
+(|has| |#1| (-862))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((($) -3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((((-874)) . T))
+(((|#2|) |has| |#2| (-374)))
+((((-874)) . T))
+((($) |has| |#1| (-15 * (|#1| (-783) |#1|))))
+((((-548)) |has| |#4| (-626 (-548))))
(((|#2|) . T))
-((((-873)) . T) (((-655 |#4|)) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T) (((-623 $)) . T))
-(|has| |#4| (-1066))
-(|has| |#3| (-1066))
-((((-1194) (-52)) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-(|has| |#1| (-924))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(|has| |#1| (-924))
-(((|#1|) . T) (((-575)) . T) (((-418 (-575))) . T) (($) . T))
+((((-874)) . T) (((-656 |#4|)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T))
+(|has| |#4| (-1068))
+(|has| |#3| (-1068))
+((((-1196) (-52)) . T))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+(|has| |#1| (-926))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(|has| |#1| (-926))
+(((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-873)) . T))
-((((-575)) . T))
-((($ (-1194)) -3763 (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))))
-(((#0=(-418 (-575)) #0#) . T) (($ $) . T))
-((((-418 (-575))) . T) (($) . T))
-(((|#1| (-418 (-575)) (-1099)) . T))
-(|has| |#1| (-1117))
-(|has| |#1| (-567))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(|has| |#1| (-831))
-(((#0=(-925 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T))
-((((-418 |#2|)) . T))
-(|has| |#1| (-859))
-((((-1221 |#1|)) . T) (((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) . T) ((#1=(-575) #1#) . T) (($ $) . T))
-((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#2|) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
+((((-874)) . T))
+((((-576)) . T))
+((($ (-1196)) -3739 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))))
+(((#0=(-419 (-576)) #0#) . T) (($ $) . T))
+((((-419 (-576))) . T) (($) . T))
+(((|#1| (-419 (-576)) (-1101)) . T))
+(|has| |#1| (-1119))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(|has| |#1| (-832))
+(((#0=(-927 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
+((((-419 |#2|)) . T))
+(|has| |#1| (-860))
+((((-1223 |#1|)) . T) (((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T))
+((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#2|) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
(((|#2|) . T))
-((((-873)) . T))
-((((-1194)) . T))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T) (((-575)) . T))
+((((-874)) . T))
+((((-1196)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T))
(((|#1|) |has| |#1| (-174)))
(((|#2|) |has| |#2| (-174)))
(((|#1|) . T))
(((|#2|) . T))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
-((((-575) |#3|) . T))
-(((#0=(-52)) . T) (((-2 (|:| -4169 (-1194)) (|:| -3179 #0#))) . T))
-(|has| |#1| (-359))
-((((-575)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-(((#0=(-1271 |#1| |#2| |#3| |#4|) $) |has| #0# (-295 #0# #0#)))
-(|has| |#1| (-373))
-(-3763 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))))
-(((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))) (($) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))) (((-575)) -3763 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066))))
-(((#0=(-1099) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-(((#0=(-418 (-575)) #0#) . T) ((#1=(-710) #1#) . T) (($ $) . T))
-((((-325 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-373)))
-((((-873)) . T))
-(|has| |#1| (-1117))
-(((|#1|) . T))
-(((|#1|) -3763 (|has| |#2| (-377 |#1|)) (|has| |#2| (-428 |#1|))))
-(((|#1|) -3763 (|has| |#2| (-377 |#1|)) (|has| |#2| (-428 |#1|))))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
+((((-576) |#3|) . T))
+(((#0=(-52)) . T) (((-2 (|:| -4147 (-1196)) (|:| -3153 #0#))) . T))
+(|has| |#1| (-360))
+((((-576)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+(((#0=(-1273 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#)))
+(|has| |#1| (-374))
+(-3739 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))
+(((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))) (($) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) (((-576)) -3739 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))))
+(((#0=(-1101) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T))
+((((-326 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-874)) . T))
+(|has| |#1| (-1119))
+(((|#1|) . T))
+(((|#1|) -3739 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|))))
+(((|#1|) -3739 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|))))
(((|#2|) . T))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T))
-((((-590)) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-591)) . T))
(((|#3| |#3|) . T))
-((($ (-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
+((($ (-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
(|has| |#2| (-238))
-((((-875 |#1|)) . T))
-((((-1194)) |has| |#1| (-913 (-1194))) ((|#3|) . T))
-((((-655 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-1039)))
-((((-418 (-575))) . T) (($) . T))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((($) . T) (((-418 (-575))) . T))
-((((-873)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T))
-((((-575)) . T) (((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-575)) . T))
+((((-876 |#1|)) . T))
+((((-1196)) |has| |#1| (-915 (-1196))) ((|#3|) . T))
+((((-656 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-1041)))
+((((-419 (-576))) . T) (($) . T))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((($) . T) (((-419 (-576))) . T))
+((((-874)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T))
+((((-576)) . T) (((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576)) . T))
(((|#3|) . T))
-(|has| |#1| (-1117))
+(|has| |#1| (-1119))
(((|#2|) . T))
(((|#1|) . T))
-((($) -3763 (|has| |#1| (-238)) (|has| |#1| (-237))))
-((((-575)) . T))
-(((|#2|) . T) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (($) . T) (((-575)) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
+((($) -3739 (|has| |#1| (-238)) (|has| |#1| (-237))))
+((((-576)) . T))
+(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
(((|#1| |#2|) . T))
((($) . T))
-((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((($) . T) (((-418 (-575))) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-575)) . T))
-(((|#1|) . T) (((-575)) . T))
-(((|#1| (-1285 |#1|) (-1285 |#1|)) . T))
+(((|#1|) . T) (((-576)) . T))
+(((|#1|) . T) (((-576)) . T))
+(((|#1| (-1287 |#1|) (-1287 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-873)) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-874)) . T))
(((|#2|) . T))
(((|#3|) . T))
-(((#0=(-117 |#1|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
-((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T))
-((((-1142 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#2|) . T))
+(((#0=(-117 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
+((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((((-1144 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
((($ $) . T))
-((((-683 |#1|)) . T))
-((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((((-117 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) (((-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))))
+((((-684 |#1|)) . T))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))))
(((|#2|) . T) ((|#6|) . T))
-((((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) (($) . T))
+((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T))
((((-145)) . T))
((($) . T))
-((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-389)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T))
-(|has| |#2| (-924))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-924))
-(|has| |#1| (-924))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-390)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T))
+(|has| |#2| (-926))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-926))
+(|has| |#1| (-926))
(((|#4|) . T))
-(|has| |#2| (-1039))
+(|has| |#2| (-1041))
((($) . T))
-(|has| |#1| (-924))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+(|has| |#1| (-926))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-373))
-((((-925 |#1|)) . T))
-((($) . T) (((-575)) . T) ((|#1|) . T) (((-418 (-575))) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) |has| |#1| (-859)) (((-575)) -3763 (|has| |#1| (-21)) (|has| |#1| (-859))))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(-3763 (|has| |#1| (-378)) (|has| |#1| (-861)))
-(((|#1|) . T))
-((((-782)) . T))
-((((-873)) . T))
-(-3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-418 |#2|) |#3|) . T))
-((($) . T) (((-418 (-575))) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T) (((-623 $)) . T))
-((((-575)) . T) (($) . T))
-((((-575)) . T) (($) . T))
-((((-782) |#1|) . T))
-(((|#2| (-245 (-2869 |#1|) (-782))) . T))
-(((|#1| (-542 |#3|)) . T))
-((((-418 (-575))) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-1176)) . T) (((-873)) . T))
-(((#0=(-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) #0#) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))))
-((((-1176)) . T))
-(|has| |#1| (-924))
-(|has| |#2| (-373))
-(((|#1|) . T) (($) . T) (((-575)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-((((-171 (-389))) . T) (((-227)) . T) (((-389)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-389)) . T) (((-575)) . T))
-(((#0=(-418 (-575)) #0#) . T) (($ $) . T))
+(|has| |#1| (-374))
+((((-927 |#1|)) . T))
+((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) |has| |#1| (-860)) (((-576)) -3739 (|has| |#1| (-21)) (|has| |#1| (-860))))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(-3739 (|has| |#1| (-379)) (|has| |#1| (-862)))
+(((|#1|) . T))
+((((-783)) . T))
+((((-874)) . T))
+(-3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-419 |#2|) |#3|) . T))
+((($) . T) (((-419 (-576))) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T))
+((((-576)) . T) (($) . T))
+((((-576)) . T) (($) . T))
+((((-783) |#1|) . T))
+(((|#2| (-245 (-2845 |#1|) (-783))) . T))
+(((|#1| (-543 |#3|)) . T))
+((((-419 (-576))) . T))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-1178)) . T) (((-874)) . T))
+(((#0=(-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) #0#) |has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))))
+((((-1178)) . T))
+(|has| |#1| (-926))
+(|has| |#2| (-374))
+(((|#1|) . T) (($) . T) (((-576)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-390)) . T) (((-576)) . T))
+(((#0=(-419 (-576)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-873)) . T))
-(|has| |#1| (-567))
-((((-418 (-575))) . T) (($) . T))
+((((-874)) . T))
+(|has| |#1| (-568))
+((((-419 (-576))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-(-3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)))
-(|has| |#1| (-38 (-418 (-575))))
-(-12 (|has| |#1| (-556)) (|has| |#1| (-839)))
-((((-873)) . T))
-((((-1194)) -3763 (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194))))))
-(|has| |#1| (-373))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-(|has| |#1| (-373))
-((((-418 (-575))) . T) (($) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((((-575) |#1|) . T))
-((((-1194)) |has| |#1| (-913 (-1194))))
-(((|#1|) . T))
-(-3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))
-(((|#2|) |has| |#1| (-373)))
-(((|#2|) |has| |#1| (-373)))
-((((-575)) . T) (($) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+(-3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)))
+(|has| |#1| (-38 (-419 (-576))))
+(-12 (|has| |#1| (-557)) (|has| |#1| (-840)))
+((((-874)) . T))
+((((-1196)) -3739 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196))))))
+(|has| |#1| (-374))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+(|has| |#1| (-374))
+((((-419 (-576))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((((-576) |#1|) . T))
+((((-1196)) |has| |#1| (-915 (-1196))))
+(((|#1|) . T))
+(-3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))
+(((|#2|) |has| |#1| (-374)))
+(((|#2|) |has| |#1| (-374)))
+((((-576)) . T) (($) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-1194)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) (((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))) (((-418 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))))
+(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))))
(((|#2|) . T))
((($) . T))
-((((-1194) #0=(-1271 |#1| |#2| |#3| |#4|)) |has| #0# (-525 (-1194) #0#)) ((#0# #0#) |has| #0# (-318 #0#)))
-((((-418 (-575))) . T) (($) . T) (((-418 |#1|)) . T) ((|#1|) . T))
-((((-623 $) $) . T) (($ $) . T))
-((((-171 (-227))) . T) (((-171 (-389))) . T) (((-1190 (-710))) . T) (((-904 (-389))) . T))
+((((-1196) #0=(-1273 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#)))
+((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T))
+((((-624 $) $) . T) (($ $) . T))
+((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1192 (-711))) . T) (((-905 (-390))) . T))
(((|#3|) . T))
-(|has| |#1| (-567))
-(|has| (-418 |#2|) (-238))
-(((|#1| (-418 (-575))) . T))
-((($) . T) (((-418 (-575))) . T) (((-418 |#1|)) . T) ((|#1|) . T))
+(|has| |#1| (-568))
+(|has| (-419 |#2|) (-238))
+(((|#1| (-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T))
(((|#3|) . T))
-(|has| |#1| (-567))
-((((-873)) . T))
+(|has| |#1| (-568))
+((((-874)) . T))
((($ $) . T))
((($) . T))
-((((-873)) . T))
-((((-1194)) |has| |#2| (-913 (-1194))))
-((((-418 (-575))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (($) . T) (((-575)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-873)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#2|) |has| |#1| (-373)))
-((((-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-389)))) (((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-575)))))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(|has| |#1| (-373))
-(((|#1|) . T))
-((($) . T) (((-575)) . T) ((|#2|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
+((((-874)) . T))
+((((-1196)) |has| |#2| (-915 (-1196))))
+((((-419 (-576))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-874)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#2|) |has| |#1| (-374)))
+((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(((|#1|) . T))
+((($) . T) (((-576)) . T) ((|#2|) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
(((|#3|) . T))
-((((-1176)) . T) (((-517)) . T) (((-227)) . T) (((-575)) . T))
+((((-1178)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T))
(((|#1|) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-567))
-(((|#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
+(|has| |#1| (-374))
+(|has| |#1| (-568))
+(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
(((|#2|) . T))
(((|#2|) . T))
-(|has| |#2| (-1066))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-(|has| |#1| (-38 (-418 (-575))))
+(|has| |#2| (-1068))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+(|has| |#1| (-38 (-419 (-576))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
+(|has| |#1| (-38 (-419 (-576))))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
((($) . T))
-((((-1176) |#1|) . T))
+((((-1178) |#1|) . T))
(|has| |#1| (-148))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
(|has| |#1| (-148))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))
((($) . T))
(|has| |#1| (-148))
-((((-592 |#1|)) . T))
+((((-593 |#1|)) . T))
((($) . T))
-(|has| |#1| (-567))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
+(|has| |#1| (-568))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
((($) . T))
((($) . T))
-((((-418 |#2|)) . T))
-((((-418 |#2|)) . T))
-((((-418 (-575))) |has| |#2| (-1055 (-575))) (((-575)) |has| |#2| (-1055 (-575))) (((-1194)) |has| |#2| (-1055 (-1194))) ((|#2|) . T))
-(((#0=(-418 |#2|) #0#) . T) ((#1=(-418 (-575)) #1#) . T) (($ $) . T))
+((((-419 |#2|)) . T))
+((((-419 |#2|)) . T))
+((((-419 (-576))) |has| |#2| (-1057 (-576))) (((-576)) |has| |#2| (-1057 (-576))) (((-1196)) |has| |#2| (-1057 (-1196))) ((|#2|) . T))
+(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-359)))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-360)))
(|has| |#1| (-148))
-((((-873)) . T))
+((((-874)) . T))
((($) . T))
-((((-1157 |#1| |#2|)) . T))
-(((|#1| (-575)) . T))
-(((|#1| (-418 (-575))) . T))
-((((-575)) |has| |#2| (-898 (-575))) (((-389)) |has| |#2| (-898 (-389))))
+((((-1159 |#1| |#2|)) . T))
+(((|#1| (-576)) . T))
+(((|#1| (-419 (-576))) . T))
+((((-576)) |has| |#2| (-899 (-576))) (((-390)) |has| |#2| (-899 (-390))))
(((|#2|) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
((((-112)) . T))
(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-873)) . T))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-1194) (-52)) . T))
-((((-418 |#2|)) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-(|has| |#1| (-1117))
-(|has| |#1| (-802))
-(|has| |#1| (-802))
-((((-873)) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((((-873)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
+((((-874)) . T))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-1196) (-52)) . T))
+((((-419 |#2|)) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+(|has| |#1| (-1119))
+(|has| |#1| (-803))
+(|has| |#1| (-803))
+((((-874)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-874)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
((((-115)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-227)) . T) (((-389)) . T) (((-904 (-389))) . T))
-((((-873)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)) (((-418 (-575))) |has| |#1| (-567)))
-((((-873)) . T))
-(-3763 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))))
-((((-873)) . T))
+((((-227)) . T) (((-390)) . T) (((-905 (-390))) . T))
+((((-874)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568)))
+((((-874)) . T))
+(-3739 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))
+((((-874)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-873)) . T))
-(((#0=(-925 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T))
+((((-874)) . T))
+(((#0=(-927 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-(|has| |#1| (-373))
-((((-873)) . T))
+((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-374))
+((((-874)) . T))
(((|#2|) . T))
-((((-575)) . T))
-((((-1194)) -3763 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194)))))
-((((-873)) . T))
-((((-575)) . T))
-(-3763 (|has| |#2| (-804)) (|has| |#2| (-861)))
-((((-171 (-389))) . T) (((-227)) . T) (((-389)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-1176)) . T) (((-547)) . T) (((-575)) . T) (((-904 (-575))) . T) (((-389)) . T) (((-227)) . T))
-((((-873)) . T))
+((((-576)) . T))
+((((-1196)) -3739 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196)))))
+((((-874)) . T))
+((((-576)) . T))
+(-3739 (|has| |#2| (-805)) (|has| |#2| (-862)))
+((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-1178)) . T) (((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T))
+((((-874)) . T))
(|has| |#1| (-148))
(|has| |#1| (-146))
-((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) |has| #0# (-174)) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-575) $) . T) (((-655 (-575)) $) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-484)) (|has| |#1| (-737)) (|has| |#1| (-913 (-1194))) (|has| |#1| (-1066)) (|has| |#1| (-1129)) (|has| |#1| (-1117)))
-(|has| |#1| (-1169))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
+((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-576) $) . T) (((-656 (-576)) $) . T))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119)))
+(|has| |#1| (-1171))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
((($) . T))
-((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-575) |#1|) . T))
+((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-576) |#1|) . T))
(((|#1|) . T))
-(((#0=(-117 |#1|) $) |has| #0# (-295 #0# #0#)))
+(((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#)))
(((|#1|) |has| |#1| (-174)))
-((((-325 |#1|)) . T) (((-575)) . T))
-(-3763 (|has| |#2| (-238)) (|has| |#2| (-237)))
+((((-326 |#1|)) . T) (((-576)) . T))
+(-3739 (|has| |#2| (-238)) (|has| |#2| (-237)))
(((|#1|) . T))
-((((-873)) . T))
+((((-874)) . T))
((((-115)) . T) ((|#1|) . T))
-((((-873)) . T))
-((((-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
-(((|#1|) |has| |#1| (-318 |#1|)))
-((((-575) |#1|) . T) (((-1252 (-575)) $) . T))
+((((-874)) . T))
+((((-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-576) |#1|) . T) (((-1254 (-576)) $) . T))
(((|#1| |#2|) . T))
-((((-1194) |#1|) . T))
-(((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373))))
+((((-1196) |#1|) . T))
+(((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374))))
(((|#1|) . T))
-((($ (-1194)) . T))
-(((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-1066))))
-((((-575)) . T) (((-418 (-575))) . T))
+((($ (-1196)) . T))
+(((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))))
+((((-576)) . T) (((-419 (-576))) . T))
(((|#1|) . T))
-(|has| |#1| (-567))
+(|has| |#1| (-568))
(|has| |#1| (-238))
-((($) . T) (((-575)) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-373)))
-((((-389)) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
+((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-390)) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(|has| |#1| (-373))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(|has| |#1| (-373))
-(|has| |#1| (-567))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(|has| |#1| (-374))
+(|has| |#1| (-568))
((($) . T))
-(|has| |#1| (-1117))
-((((-791 |#1| (-875 |#2|))) |has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
+(|has| |#1| (-1119))
+((((-792 |#1| (-876 |#2|))) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-924))
-(((|#1| (-542 |#2|)) . T))
-(((|#1| (-782)) . T))
+(|has| |#2| (-926))
+(((|#1| (-543 |#2|)) . T))
+(((|#1| (-783)) . T))
(|has| |#1| (-238))
-(((|#1| (-542 (-1105 (-1194)))) . T))
-(|has| |#2| (-373))
-((($) -3763 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))))
-((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-575)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-873)) . T))
-((((-873)) . T))
-(-3763 (|has| |#3| (-804)) (|has| |#3| (-861)))
-((((-873)) . T))
-((((-1137)) . T) (((-873)) . T))
-((((-547)) . T) (((-873)) . T))
-(((|#1|) . T))
-((($ $) . T) (((-623 $) $) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-575)) . T))
+(((|#1| (-543 (-1107 (-1196)))) . T))
+(|has| |#2| (-374))
+((($) -3739 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-576)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-874)) . T))
+((((-874)) . T))
+(-3739 (|has| |#3| (-805)) (|has| |#3| (-862)))
+((((-874)) . T))
+((((-1139)) . T) (((-874)) . T))
+((((-548)) . T) (((-874)) . T))
+(((|#1|) . T))
+((($ $) . T) (((-624 $) $) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-576)) . T))
(((|#3|) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-316)) (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-575)) . T) (((-418 (-575))) -3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T))
-((((-1142 |#1| |#2|)) . T) ((|#2|) . T) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-575)) . T))
-((((-1190 |#1|)) . T) (((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) (((-1099)) . T) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))
-(-3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066)))
-((((-1142 |#1| (-1194))) . T) (((-575)) . T) (((-1105 (-1194))) . T) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) (((-1194)) . T))
-(((#0=(-592 |#1|) #0#) . T) (($ $) . T) ((#1=(-418 (-575)) #1#) . T))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-576)) . T) (((-419 (-576))) -3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T))
+((((-1144 |#1| |#2|)) . T) ((|#2|) . T) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T))
+((((-1192 |#1|)) . T) (((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))
+(-3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068)))
+((((-1144 |#1| (-1196))) . T) (((-576)) . T) (((-1107 (-1196))) . T) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-1196)) . T))
+(((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#1| (-1285 |#1|) (-1285 |#1|)) . T))
-((((-592 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((($) . T) (((-418 (-575))) . T))
+(((|#1| (-1287 |#1|) (-1287 |#1|)) . T))
+((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((($) . T) (((-419 (-576))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-418 (-575))) . T))
-(((|#2|) |has| |#2| (-6 (-4462 "*"))))
+((($) . T) (((-419 (-576))) . T))
+(((|#2|) |has| |#2| (-6 (-4464 "*"))))
(((|#1|) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((|#1|) . T) (((-575)) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T))
(((|#1|) . T))
-((((-873)) . T))
-((((-303 |#3|)) . T))
-(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+((((-874)) . T))
+((((-304 |#3|)) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
(((|#2|) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(|has| |#2| (-924))
-(|has| |#1| (-924))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#2| (-926))
+(|has| |#1| (-926))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) . T))
+((((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1117))
+(|has| |#1| (-1119))
(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-((((-1194)) . T) ((|#1|) . T))
-((((-873)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-575)) . T) (($) . T) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))
-(((#0=(-418 (-575)) #0#) . T))
-((((-418 (-575))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+((((-1196)) . T) ((|#1|) . T))
+((((-874)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))
+(((#0=(-419 (-576)) #0#) . T))
+((((-419 (-576))) . T))
(((|#1|) |has| |#1| (-174)))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-(((|#1|) . T))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-547)) . T))
-((((-873)) . T))
-((($) -3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))))
-((((-575)) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((((-873)) . T))
-((((-1194)) |has| |#2| (-913 (-1194))) (((-1099)) . T))
-((((-925 |#1|)) . T))
-((((-1270 |#2| |#3| |#4|)) . T))
-((($) . T) (((-418 (-575))) . T))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-831)))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-831)))
-((((-873)) . T))
-(|has| |#1| (-1239))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+(((|#1|) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-548)) . T))
+((((-874)) . T))
+((($) -3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))
+((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-874)) . T))
+((((-1196)) |has| |#2| (-915 (-1196))) (((-1101)) . T))
+((((-927 |#1|)) . T))
+((((-1272 |#2| |#3| |#4|)) . T))
+((($) . T) (((-419 (-576))) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+((((-874)) . T))
+(|has| |#1| (-1241))
(((|#2|) . T))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-((((-1194)) |has| |#1| (-913 (-1194))))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) . T))
-(((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))) ((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
-((($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-567))))
-(|has| |#1| (-567))
-(((|#1|) |has| |#1| (-373)))
-((((-575)) . T))
-((((-1194) #0=(-117 |#1|)) |has| #0# (-525 (-1194) #0#)) ((#0# #0#) |has| #0# (-318 #0#)))
-(|has| |#1| (-802))
-(|has| |#1| (-802))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-(((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-((((-1099)) . T) ((|#2|) . T) (((-575)) |has| |#2| (-1055 (-575))) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-575)) . T) (($) . T))
-((((-575) (-782)) . T) ((|#3| (-782)) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-1196)) |has| |#1| (-915 (-1196))))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T))
+(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-568))))
+(|has| |#1| (-568))
+(((|#1|) |has| |#1| (-374)))
+((((-576)) . T))
+((((-1196) #0=(-117 |#1|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#)))
+(|has| |#1| (-803))
+(|has| |#1| (-803))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+(((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+((((-1101)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-576)) . T) (($) . T))
+((((-576) (-783)) . T) ((|#3| (-783)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-873)) . T))
-((($) |has| |#1| (-378)))
-((($) |has| |#1| (-378)))
-((($) |has| |#1| (-378)))
-(|has| |#2| (-831))
-(|has| |#2| (-831))
-((((-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) (($) . T) ((|#1|) . T))
-((($ (-1194)) |has| |#1| (-913 (-1194))))
-(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((($) -3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359))))
-(((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-575)) |has| |#1| (-898 (-575))) (((-389)) |has| |#1| (-898 (-389))))
-(((|#1|) . T))
-((((-881 |#1|)) . T))
-((((-881 |#1|)) . T))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-924)))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-874)) . T))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
+((($) |has| |#1| (-379)))
+(|has| |#2| (-832))
+(|has| |#2| (-832))
+((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T))
+((($ (-1196)) |has| |#1| (-915 (-1196))))
+(((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((($) -3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))))
+(((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390))))
+(((|#1|) . T))
+((((-882 |#1|)) . T))
+((((-882 |#1|)) . T))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-926)))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#2|) -3763 (|has| |#2| (-6 (-4462 "*"))) (|has| |#2| (-174))))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#2|) -3739 (|has| |#2| (-6 (-4464 "*"))) (|has| |#2| (-174))))
(((|#2|) . T))
-(|has| |#1| (-373))
+(|has| |#1| (-374))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-875 |#1|)) . T))
+((((-876 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-782)) . T))
-((((-1194)) . T))
-((((-881 |#1|)) . T))
-(-3763 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066)))
-(-3763 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-804)) (|has| |#3| (-1066)))
-((((-873)) . T))
+(((|#2| (-783)) . T))
+((((-1196)) . T))
+((((-882 |#1|)) . T))
+(-3739 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))
+(-3739 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068)))
+((((-874)) . T))
(((|#1|) . T))
-(-3763 (|has| |#2| (-804)) (|has| |#2| (-861)))
-(-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861))))
-((((-881 |#1|)) . T))
+(-3739 (|has| |#2| (-805)) (|has| |#2| (-862)))
+(-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862))))
+((((-882 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-((($ $) . T) (((-623 $) $) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+((($ $) . T) (((-624 $) $) . T))
((($) . T))
-((((-873)) . T))
-((((-575)) . T))
+((((-874)) . T))
+((((-576)) . T))
(((|#2|) . T))
-((((-873)) . T))
-((($) . T) (((-575)) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-373)))
-((((-873)) . T))
-(((|#1|) . T))
-((((-873)) . T))
-((($) . T) ((|#2|) . T) (((-418 (-575))) . T) (((-575)) |has| |#2| (-650 (-575))))
-(|has| |#1| (-1117))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-873)) . T))
-(|has| |#2| (-924))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
-((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575)))))
-((((-873)) . T))
-((((-873)) . T))
-(((|#3|) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066))))
-((((-1142 |#1| |#2|)) . T) (((-967 |#1|)) |has| |#2| (-625 (-1194))) (((-873)) . T))
-((((-967 |#1|)) |has| |#2| (-625 (-1194))) (((-1176)) -12 (|has| |#1| (-1055 (-575))) (|has| |#2| (-625 (-1194)))) (((-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575))))) (((-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389))))) (((-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547)))))
-((((-1190 |#1|)) . T) (((-873)) . T))
-((((-873)) . T))
-((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T))
-((((-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (((-1099)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T) (((-1194)) . T))
-((((-873)) . T))
-((((-575)) . T))
+((((-874)) . T))
+((($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-874)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-651 (-576))))
+(|has| |#1| (-1119))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-874)) . T))
+(|has| |#2| (-926))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+((((-874)) . T))
+((((-874)) . T))
+(((|#3|) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))
+((((-1144 |#1| |#2|)) . T) (((-969 |#1|)) |has| |#2| (-626 (-1196))) (((-874)) . T))
+((((-969 |#1|)) |has| |#2| (-626 (-1196))) (((-1178)) -12 (|has| |#1| (-1057 (-576))) (|has| |#2| (-626 (-1196)))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))
+((((-1192 |#1|)) . T) (((-874)) . T))
+((((-874)) . T))
+((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((((-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T) (((-1196)) . T))
+((((-874)) . T))
+((((-576)) . T))
(((|#1|) . T))
((($) . T))
-((((-389)) |has| |#1| (-898 (-389))) (((-575)) |has| |#1| (-898 (-575))))
-((((-575)) . T))
-(((|#1|) . T))
-((((-873)) . T))
-(((|#1|) . T))
-((((-873)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-655 |#1|)) . T))
-((($) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))
-((($) . T) (((-575)) . T) (((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T))
-((((-575)) -3763 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) (($) -3763 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-567)) (|has| |#1| (-1066))) ((|#1|) -3763 (|has| |#1| (-174)) (|has| |#1| (-1066))) (((-418 (-575))) |has| |#1| (-567)))
-((((-1199)) . T))
-((((-575)) . T) (((-418 (-575))) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-((((-1199)) . T))
-((((-1199)) . T))
+((((-390)) |has| |#1| (-899 (-390))) (((-576)) |has| |#1| (-899 (-576))))
+((((-576)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+(((|#1|) . T))
+((((-874)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-656 |#1|)) . T))
+((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))
+((($) . T) (((-576)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T))
+((((-576)) -3739 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (($) -3739 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -3739 (|has| |#1| (-174)) (|has| |#1| (-1068))) (((-419 (-576))) |has| |#1| (-568)))
+((((-1201)) . T))
+((((-576)) . T) (((-419 (-576))) . T))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+((((-1201)) . T))
+((((-1201)) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
-((((-1199)) . T))
-(((|#1|) |has| |#1| (-318 |#1|)))
-((((-389)) . T))
+((((-1201)) . T))
+(((|#1|) |has| |#1| (-319 |#1|)))
+((((-390)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-873)) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-418 |#2|) |#3|) . T))
-((((-873)) . T))
+((((-874)) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-419 |#2|) |#3|) . T))
+((((-874)) . T))
(((|#1|) . T))
-(|has| |#1| (-1117))
-(((|#2| (-493 (-2869 |#1|) (-782))) . T))
-((((-575) |#1|) . T))
-((((-1176)) . T) (((-873)) . T))
+(|has| |#1| (-1119))
+(((|#2| (-494 (-2845 |#1|) (-783))) . T))
+((((-576) |#1|) . T))
+((((-1178)) . T) (((-874)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-542 (-1194))) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-((((-575)) . T))
+(((|#1| (-543 (-1196))) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+((((-576)) . T))
(((|#2|) . T))
-((($) -3763 (-12 (|has| |#2| (-238)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))))
+((($) -3739 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))))
(((|#2|) . T))
-((((-1194)) |has| |#1| (-913 (-1194))) (((-1099)) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-(|has| |#1| (-567))
-(((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))) (((-575)) . T) (($) . T))
-((($) . T) (((-418 (-575))) . T))
+((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+(|has| |#1| (-568))
+(((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
((($) . T))
((($) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
(((|#1|) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
((((-145)) . T))
-(((|#1|) . T) (((-418 (-575))) . T))
+(((|#1|) . T) (((-419 (-576))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-873)) . T))
+((((-874)) . T))
(((|#1|) . T))
-(|has| |#1| (-1169))
-((($ (-1194)) -3763 (|has| (-418 |#2|) (-913 (-1194))) (|has| (-418 |#2|) (-915 (-1194)))))
+(|has| |#1| (-1171))
+((($ (-1196)) -3739 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196)))))
(((|#1|) . T))
-(((|#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) . T))
-((((-418 $) (-418 $)) |has| |#1| (-567)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((((-873)) . T))
-((((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-575)) |has| |#1| (-1055 (-575))) ((|#1|) . T) ((|#2|) . T))
-((((-1099)) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))))
-((((-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389)))) (((-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-((((-575) |#1|) . T))
+(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T))
+((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((((-874)) . T))
+((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T) ((|#2|) . T))
+((((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))))
+((((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+((((-576) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-174)) (($) . T))
((($) . T))
-((((-710)) . T))
-((((-791 |#1| (-875 |#2|))) . T))
-((((-575)) . T) (($) . T))
+((((-711)) . T))
+((((-792 |#1| (-876 |#2|))) . T))
+((((-576)) . T) (($) . T))
((($) . T))
-(((|#1|) . T) (((-418 (-575))) |has| |#1| (-373)))
-((((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-1117))
-(|has| |#1| (-1117))
-(|has| |#2| (-373))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-299)) (|has| |#1| (-373))) (((-418 (-575))) |has| |#1| (-373)))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-38 (-418 (-575))))
-((($) -3763 (|has| |#2| (-238)) (|has| |#2| (-237))))
-((((-575)) . T))
-((($ (-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
-((((-1194)) -12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))))
-((((-1194)) -12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))))
+(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-1119))
+(|has| |#1| (-1119))
+(|has| |#2| (-374))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374)))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-38 (-419 (-576))))
+((($) -3739 (|has| |#2| (-238)) (|has| |#2| (-237))))
+((((-576)) . T))
+((($ (-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
+((((-1196)) -12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))))
+((((-1196)) -12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))))
(((|#1|) . T))
(|has| |#1| (-238))
-(((|#2| (-245 (-2869 |#1|) (-782))) . T))
-(((|#1| (-542 |#3|)) . T))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
-(|has| |#1| (-378))
+(((|#2| (-245 (-2845 |#1|) (-783))) . T))
+(((|#1| (-543 |#3|)) . T))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
+(|has| |#1| (-379))
(((|#1|) . T) (($) . T))
-(((|#1| (-542 |#2|)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-(((|#1| (-782)) . T))
-(|has| |#1| (-567))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-1066)))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
+(((|#1| (-543 |#2|)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+(((|#1| (-783)) . T))
+(|has| |#1| (-568))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-873)) . T))
-((((-575)) . T) (((-418 (-575))) . T) (($) . T))
-(-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))
-(-3763 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-804)) (|has| |#3| (-1066)))
-(|has| |#2| (-1066))
+((((-874)) . T))
+((((-576)) . T) (((-419 (-576))) . T) (($) . T))
+(-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))
+(-3739 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068)))
+(|has| |#2| (-1068))
(((|#1|) |has| |#1| (-174)))
-(((|#4|) |has| |#4| (-1066)))
-(((|#3|) |has| |#3| (-1066)))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-831)))
-(-12 (|has| |#1| (-373)) (|has| |#2| (-831)))
-((((-575)) . T) (((-418 (-575))) -3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))) ((|#2|) . T) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-875 |#1|)) . T))
-((((-1142 |#1| |#2|)) . T) (((-575)) . T) ((|#3|) . T) (($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))) ((|#2|) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((((-1199)) . T))
-((((-683 |#1|)) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (($) . T))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-((((-873)) . T))
-((((-655 $)) . T) (((-1176)) . T) (((-1194)) . T) (((-575)) . T) (((-227)) . T) (((-873)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((($) . T) (((-418 (-575))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1117)) (((-575)) -12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117))) (((-418 (-575))) -12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))
-(((|#3|) |has| |#3| (-1117)) (((-575)) -12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (((-418 (-575))) -12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))
-(|has| |#2| (-373))
-(((|#2|) |has| |#2| (-1066)) (((-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))))
-(((|#1|) . T))
-(((#0=(-418 (-575)) #0#) |has| |#2| (-38 (-418 (-575)))) ((|#2| |#2|) . T) (($ $) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1| |#1|) . T) ((#0=(-418 (-575)) #0#) |has| |#1| (-38 (-418 (-575)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-((((-1194)) |has| |#1| (-1066)))
-(|has| |#2| (-373))
+(((|#4|) |has| |#4| (-1068)))
+(((|#3|) |has| |#3| (-1068)))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+(-12 (|has| |#1| (-374)) (|has| |#2| (-832)))
+((((-576)) . T) (((-419 (-576))) -3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T))
+((((-1144 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#2|) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-1201)) . T))
+((((-684 |#1|)) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-874)) . T))
+((((-656 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((($) . T) (((-419 (-576))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1119)) (((-576)) -12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (((-419 (-576))) -12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))
+(((|#3|) |has| |#3| (-1119)) (((-576)) -12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))
+(|has| |#2| (-374))
+(((|#2|) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))))
+(((|#1|) . T))
+(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((((-1196)) |has| |#1| (-1068)))
+(|has| |#2| (-374))
(((|#2| |#2|) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (($) -3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) . T) (($) . T) (((-418 (-575))) . T))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) . T) (($) . T) (((-419 (-576))) . T))
(((|#2|) . T))
-((((-873)) |has| |#1| (-1117)))
+((((-874)) |has| |#1| (-1119)))
((($) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-831))
-(|has| |#2| (-831))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-373))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#1|) |has| |#2| (-428 |#1|)))
-(((|#1|) |has| |#2| (-428 |#1|)))
-((((-1176)) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-655 |#1|)) . T) (((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-655 |#1|)) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1234)) . T) (((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) |has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-((((-575) |#1|) . T))
-((((-575) |#1|) . T))
-((((-575) |#1|) . T))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-575) |#1|) . T))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#1|) |has| |#1| (-174)))
-((((-1194)) |has| |#1| (-913 (-1194))) (((-829 (-1194))) . T))
-(-3763 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-804)) (|has| |#3| (-1066)))
-((((-830 |#1|)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-832))
+(|has| |#2| (-832))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#1|) |has| |#2| (-429 |#1|)))
+(((|#1|) |has| |#2| (-429 |#1|)))
+((((-1178)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-656 |#1|)) . T) (((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-656 |#1|)) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1236)) . T) (((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) |has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+((((-576) |#1|) . T))
+((((-576) |#1|) . T))
+((((-576) |#1|) . T))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-576) |#1|) . T))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174)))
+((((-1196)) |has| |#1| (-915 (-1196))) (((-830 (-1196))) . T))
+(-3739 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068)))
+((((-831 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-873)) . T))
-(|has| |#3| (-1066))
+((((-874)) . T))
+(|has| |#3| (-1068))
(((|#1| |#2|) . T))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-(|has| |#1| (-38 (-418 (-575))))
-((((-873)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)) (((-418 (-575))) |has| |#1| (-567)))
-(((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-(|has| |#1| (-373))
-(-3763 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))))
-(|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))
-(|has| |#1| (-373))
-(((|#1|) . T))
-(((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1| |#1|) . T))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-((((-325 |#1|)) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((#0=(-710) (-1190 #0#)) . T))
-((((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-575)) . T) (((-418 (-575))) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+(|has| |#1| (-38 (-419 (-576))))
+((((-874)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568)))
+(((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+(|has| |#1| (-374))
+(-3739 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))))
+(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))
+(|has| |#1| (-374))
+(((|#1|) . T))
+(((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+((((-326 |#1|)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((#0=(-711) (-1192 #0#)) . T))
+((((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-859))
-(((|#2|) . T) (((-1194)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))) (((-575)) . T) ((|#1|) |has| |#1| (-174)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) (((-575)) . T) (($) -3763 (|has| |#1| (-373)) (|has| |#1| (-567))))
-((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1142 |#1| (-1194))) . T) (((-829 (-1194))) . T) ((|#1|) . T) (((-575)) |has| |#1| (-1055 (-575))) (((-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) (((-1194)) . T))
+(|has| |#1| (-860))
+(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3739 (|has| |#1| (-374)) (|has| |#1| (-568))))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1144 |#1| (-1196))) . T) (((-830 (-1196))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-1196)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1099) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1194) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1105 (-1194)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1101) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1196) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1107 (-1196)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) (((-575)) |has| |#2| (-650 (-575))) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))))
-(|has| |#2| (-924))
-((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) |has| #0# (-174)) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))))
+((($) . T) (((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))))
+(|has| |#2| (-926))
+((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
(((|#1|) |has| |#1| (-174)))
-((((-575) |#1|) . T))
+((((-576) |#1|) . T))
(((|#1|) . T))
-((((-1199)) . T))
-(((#0=(-1271 |#1| |#2| |#3| |#4|)) |has| #0# (-318 #0#)))
+((((-1201)) . T))
+(((#0=(-1273 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2| |#2|) |has| |#1| (-373)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) ((#0=(-418 (-575)) #0#) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
+((($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
(|has| |#2| (-238))
(|has| $ (-148))
-((((-873)) . T))
-((($) . T) (((-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-359))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-((((-873)) . T))
-(|has| |#1| (-859))
+((((-874)) . T))
+((($) . T) (((-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((((-874)) . T))
+(|has| |#1| (-860))
((((-130)) . T))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T) (((-575)) . T))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T))
(((|#1|) . T))
((((-130)) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))))
-((((-873)) . T))
-(-12 (|has| |#1| (-316)) (|has| |#1| (-924)))
-(((|#2| (-683 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-418 |#2|) |#3|) . T))
-((((-873)) |has| |#1| (-1117)))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))))
+((((-874)) . T))
+(-12 (|has| |#1| (-317)) (|has| |#1| (-926)))
+(((|#2| (-684 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-419 |#2|) |#3|) . T))
+((((-874)) |has| |#1| (-1119)))
(((|#4|) . T))
-(|has| |#1| (-567))
-((($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))) ((|#2|) |has| |#1| (-373)) ((|#1|) . T))
-((((-1194)) -3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))
-(((|#1|) . T) (($) -3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-567))) (((-418 (-575))) -3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-373))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-(-3763 (|has| |#2| (-174)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))))
-(((|#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))
-(((|#1|) . T))
-(((|#1| (-542 (-829 (-1194)))) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-((((-575)) . T) ((|#2|) . T) (($) . T) (((-418 (-575))) . T) (((-1194)) |has| |#2| (-1055 (-1194))))
-(((|#1|) . T))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
-(((|#1|) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-(-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((($) . T) (((-881 |#1|)) . T) (((-418 (-575))) . T))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(|has| |#1| (-567))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-418 |#2|)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-418 (-575)) #0#) . T) (($ $) . T))
-(((|#2|) . T) (((-418 (-575))) . T) (($) . T))
-((((-575)) . T))
-((((-873)) . T))
-((((-592 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-((((-873)) . T))
-((((-418 (-575))) . T) (($) . T))
-((((-575) |#1|) . T))
+(|has| |#1| (-568))
+((($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T))
+((((-1196)) -3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))
+(((|#1|) . T) (($) -3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+(-3739 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))))
+(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))
+(((|#1|) . T))
+(((|#1| (-543 (-830 (-1196)))) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1196)) |has| |#2| (-1057 (-1196))))
+(((|#1|) . T))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
+(((|#1|) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+(-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((($) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(|has| |#1| (-568))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-419 |#2|)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T))
+(((|#2|) . T) (((-419 (-576))) . T) (($) . T))
+((((-576)) . T))
+((((-874)) . T))
+((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+((((-874)) . T))
+((((-419 (-576))) . T) (($) . T))
+((((-576) |#1|) . T))
((($) . T))
((($) . T))
-((((-873)) . T))
-((((-547)) |has| |#2| (-625 (-547))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575)))))
-((((-873)) . T))
-((((-873)) . T))
-((((-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) (((-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) (((-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)))
-(((|#1|) . T) (((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T))
-((((-115)) . T) ((|#1|) . T) (((-575)) . T))
+((((-874)) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))))
+((((-874)) . T))
+((((-874)) . T))
+((((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)))
+(((|#1|) . T) (((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T))
+((((-115)) . T) ((|#1|) . T) (((-576)) . T))
((((-130)) . T))
-((($) . T) (((-575)) . T) (((-117 |#1|)) . T) (((-418 (-575))) . T))
-(((|#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) . T))
+((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T))
+(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T))
(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T))
-((((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) |has| |#2| (-174)) (($) -3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))))
+((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-418 (-575))) |has| |#2| (-38 (-418 (-575)))) ((|#2|) . T) (((-575)) |has| |#2| (-650 (-575))))
-((($) . T) (((-575)) . T))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-1121)) . T))
-((((-873)) . T))
-((((-1199)) . T) (((-873)) . T))
-((((-1199)) . T) (((-873)) . T))
-((($) -3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-1199)) . T))
-((((-1199)) . T))
-((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-((($) . T) (((-575)) . T))
-((($) -3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924))) ((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-((((-873)) . T))
-(|has| |#2| (-924))
-((($ $) . T) (((-1194) $) . T))
-((((-1277 |#1| |#2| |#3|)) . T))
-((((-1277 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(((|#1|) . T))
-((((-1277 |#1| |#2| |#3|)) . T) (((-1249 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-924))
-((((-1194)) . T) (((-873)) . T))
+((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576))))
+((($) . T) (((-576)) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1123)) . T))
+((((-874)) . T))
+((((-1201)) . T) (((-874)) . T))
+((((-1201)) . T) (((-874)) . T))
+((($) -3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-1201)) . T))
+((((-1201)) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((($) . T) (((-576)) . T))
+((($) -3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+((((-874)) . T))
+(|has| |#2| (-926))
+((($ $) . T) (((-1196) $) . T))
+((((-1279 |#1| |#2| |#3|)) . T))
+((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(((|#1|) . T))
+((((-1279 |#1| |#2| |#3|)) . T) (((-1251 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-926))
+((((-1196)) . T) (((-874)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-((((-710)) . T))
-((((-710)) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-1199)) . T))
+((((-711)) . T))
+((((-711)) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-1201)) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1199)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-418 (-575))) . T))
-(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)) (((-418 (-575))) |has| |#1| (-567)))
-((((-1199)) . T))
-((((-1271 |#1| |#2| |#3| |#4|)) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1|) |has| |#1| (-174)) (((-418 (-575))) |has| |#1| (-567)) (($) |has| |#1| (-567)))
-((((-418 (-575))) . T) (($) . T))
-(((|#1| (-575)) . T))
-((($ (-1194)) -3763 (|has| |#1| (-913 (-1194))) (|has| |#1| (-915 (-1194)))) (($ (-1099)) . T))
-((((-418 (-575))) . T) (((-575)) . T) (($) . T))
+((((-1201)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T))
+(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568)))
+((((-1201)) . T))
+((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568)))
+((((-419 (-576))) . T) (($) . T))
+(((|#1| (-576)) . T))
+((($ (-1196)) -3739 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T))
+((((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1|) |has| |#1| (-174)))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-1199)) . T))
-((((-1199)) . T))
-(|has| |#1| (-373))
-(|has| |#1| (-373))
-(-3763 (|has| |#1| (-174)) (|has| |#1| (-567)))
-(((|#1| (-575)) . T))
-(((|#1| (-418 (-575))) . T))
-(((|#1| (-782)) . T))
-((((-418 (-575))) . T))
-(((|#1| (-542 |#2|) |#2|) . T))
-((((-575) |#1|) . T))
-((((-575) |#1|) . T))
-(|has| |#1| (-1117))
-(-3763 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-237)))
-((((-575) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-904 (-389))) . T) (((-904 (-575))) . T) (((-1194)) . T) (((-547)) . T))
-(-3763 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-373)) (|has| |#2| (-804)) (|has| |#2| (-1066)))
-(-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))
-((((-873)) . T))
-((((-575)) . T))
-((((-575)) . T))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1201)) . T))
+((((-1201)) . T))
+(|has| |#1| (-374))
+(|has| |#1| (-374))
+(-3739 (|has| |#1| (-174)) (|has| |#1| (-568)))
+(((|#1| (-576)) . T))
+(((|#1| (-419 (-576))) . T))
+(((|#1| (-783)) . T))
+((((-419 (-576))) . T))
+(((|#1| (-543 |#2|) |#2|) . T))
+((((-576) |#1|) . T))
+((((-576) |#1|) . T))
+(|has| |#1| (-1119))
+(-3739 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))
+((((-576) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-905 (-390))) . T) (((-905 (-576))) . T) (((-1196)) . T) (((-548)) . T))
+(-3739 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068)))
+(-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))
+((((-874)) . T))
+((((-576)) . T))
+((((-576)) . T))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#2| (-1066))
-((((-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))))
-(-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))))
+(|has| |#2| (-1068))
+((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))))
+(-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))
(|has| |#1| (-146))
(|has| |#1| (-148))
-(|has| |#1| (-373))
+(|has| |#1| (-374))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) |has| #0# (-174)) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))))
+((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
(|has| |#1| (-238))
-((($) . T) (((-575)) . T) (((-418 (-575))) . T))
-((($) . T) (((-575)) . T))
-((($) . T) (((-575)) . T))
-((($) . T) ((#0=(-1270 |#2| |#3| |#4|)) . T) (((-418 (-575))) |has| #0# (-38 (-418 (-575)))))
-((((-873)) . T))
-(((|#1| (-782) (-1099)) . T))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
-((((-1252 (-575)) $) . T) (((-575) |#1|) . T))
+((($) . T) (((-576)) . T) (((-419 (-576))) . T))
+((($) . T) (((-576)) . T))
+((($) . T) (((-576)) . T))
+((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))))
+((((-874)) . T))
+(((|#1| (-783) (-1101)) . T))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
+((((-1254 (-576)) $) . T) (((-576) |#1|) . T))
((((-117 |#1|)) . T))
((((-117 |#1|)) . T))
-(((|#2|) |has| |#2| (-1066)))
-((((-418 (-575))) . T) (($) . T))
-((((-418 (-575))) . T) (((-575)) . T))
+(((|#2|) |has| |#2| (-1068)))
+((((-419 (-576))) . T) (($) . T))
+((((-419 (-576))) . T) (((-576)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-575)) . T))
-((((-575)) . T))
-((((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-567)))
-((((-1176) (-1194) (-575) (-227) (-873)) . T))
+((((-576)) . T))
+((((-576)) . T))
+((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)))
+((((-1178) (-1196) (-576) (-227) (-874)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-575)) . T) ((|#2|) |has| |#2| (-174)))
-((((-115)) . T) ((|#1|) . T) (((-575)) . T))
-(-3763 (|has| |#1| (-359)) (|has| |#1| (-378)))
+((((-576)) . T) ((|#2|) |has| |#2| (-174)))
+((((-115)) . T) ((|#1|) . T) (((-576)) . T))
+(-3739 (|has| |#1| (-360)) (|has| |#1| (-379)))
(((|#1| |#2|) . T))
((((-227)) . T))
-((((-418 (-575))) . T) (($) . T) (((-575)) . T))
-((((-873)) . T))
+((((-419 (-576))) . T) (($) . T) (((-576)) . T))
+((((-874)) . T))
((($) . T) ((|#1|) . T))
-((($) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((|#1|) . T) (((-575)) |has| |#1| (-650 (-575))))
-((($) . T) (((-575)) |has| |#1| (-650 (-575))) ((|#1|) . T) (((-418 (-575))) |has| |#1| (-38 (-418 (-575)))))
-(((|#2|) |has| |#2| (-1117)) (((-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (((-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))))
-(-3763 (|has| |#2| (-238)) (|has| |#2| (-237)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-547)) |has| |#1| (-625 (-547))))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-861)) (|has| |#1| (-1117))))
-((((-575) $) . T) (((-655 (-575)) $) . T))
-((($) . T) (((-418 (-575))) . T))
-(|has| |#1| (-924))
-(|has| |#1| (-924))
-((((-227)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) (((-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) (((-904 (-389))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-389))))) (((-904 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-575))))) (((-547)) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-547)))))
-((((-873)) . T))
-((((-873)) . T))
+((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576))))
+((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))))
+(((|#2|) |has| |#2| (-1119)) (((-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))))
+(-3739 (|has| |#2| (-238)) (|has| |#2| (-237)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-548)) |has| |#1| (-626 (-548))))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119))))
+((((-576) $) . T) (((-656 (-576)) $) . T))
+((($) . T) (((-419 (-576))) . T))
+(|has| |#1| (-926))
+(|has| |#1| (-926))
+((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) (((-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))))
+((((-874)) . T))
+((((-874)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-174)))
-(((|#1|) . T) (((-575)) . T))
-((((-1199)) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-567)))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
+(((|#1|) . T) (((-576)) . T))
+((((-1201)) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-568)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
(((|#2|) . T))
-(-3763 (|has| |#1| (-21)) (|has| |#1| (-859)))
+(-3739 (|has| |#1| (-21)) (|has| |#1| (-860)))
(((|#1|) |has| |#1| (-174)))
(((|#1|) . T))
(((|#1|) . T))
-((((-873)) -3763 (-12 (|has| |#1| (-624 (-873))) (|has| |#2| (-624 (-873)))) (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117)))))
-((((-418 |#2|) |#3|) . T))
-((((-418 (-575))) . T) (($) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-373))
-((($ $) . T) ((#0=(-418 (-575)) #0#) . T))
-((($) . T) (((-575)) . T))
-(|has| (-418 |#2|) (-148))
-(|has| (-418 |#2|) (-146))
+((((-874)) -3739 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))))
+((((-419 |#2|) |#3|) . T))
+((((-419 (-576))) . T) (($) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-374))
+((($ $) . T) ((#0=(-419 (-576)) #0#) . T))
+((($) . T) (((-576)) . T))
+(|has| (-419 |#2|) (-148))
+(|has| (-419 |#2|) (-146))
((($) . T))
-((((-710)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-(((#0=(-575) #0#) . T))
-((($) . T) (((-418 (-575))) . T))
-(|has| |#4| (-1066))
-(|has| |#3| (-1066))
-((((-873)) . T) (((-1199)) . T))
-(|has| |#4| (-804))
-(|has| |#4| (-804))
-(|has| |#3| (-804))
-(|has| |#3| (-804))
-((((-1199)) . T))
-((((-575)) . T))
+((((-711)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+(((#0=(-576) #0#) . T))
+((($) . T) (((-419 (-576))) . T))
+(|has| |#4| (-1068))
+(|has| |#3| (-1068))
+((((-874)) . T) (((-1201)) . T))
+(|has| |#4| (-805))
+(|has| |#4| (-805))
+(|has| |#3| (-805))
+(|has| |#3| (-805))
+((((-1201)) . T))
+((((-576)) . T))
(((|#2|) . T))
-((((-1194)) -3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))))
-((((-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))))
+((((-1196)) -3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))))
+((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-875 |#1|)) . T))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-((((-1157 |#1| |#2|)) . T))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
-(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
+((((-876 |#1|)) . T))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+((((-1159 |#1| |#2|)) . T))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
+(((|#2|) . T) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
((($) . T))
-(|has| |#1| (-1039))
-(((|#2|) . T) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+(|has| |#1| (-1041))
+(((|#2|) . T) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
((($) . T))
-((((-873)) . T))
-((((-547)) |has| |#2| (-625 (-547))) (((-904 (-575))) |has| |#2| (-625 (-904 (-575)))) (((-904 (-389))) |has| |#2| (-625 (-904 (-389)))) (((-389)) . #0=(|has| |#2| (-1039))) (((-227)) . #0#))
-((((-303 |#3|)) . T))
-((((-1194) (-52)) . T))
-(((|#1|) . T))
-(|has| |#1| (-38 (-418 (-575))))
-(|has| |#1| (-38 (-418 (-575))))
-((((-1194)) -3763 (|has| |#2| (-913 (-1194))) (|has| |#2| (-915 (-1194)))))
-((((-873)) . T))
+((((-874)) . T))
+((((-548)) |has| |#2| (-626 (-548))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#2| (-1041))) (((-227)) . #0#))
+((((-304 |#3|)) . T))
+((((-1196) (-52)) . T))
+(((|#1|) . T))
+(|has| |#1| (-38 (-419 (-576))))
+(|has| |#1| (-38 (-419 (-576))))
+((((-1196)) -3739 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))))
+((((-874)) . T))
(((|#2|) . T))
-((((-873)) . T))
-((((-418 (-575)) |#1|) . T) (($ $) . T))
-((((-418 |#2|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-418 (-575))) . T) (((-710)) . T) (($) . T))
-((((-1192 |#1| |#2| |#3|)) . T))
-((((-1192 |#1| |#2| |#3|)) . T) (((-1185 |#1| |#2| |#3|)) . T))
-((((-873)) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-575) |#1|) . T))
-((((-1192 |#1| |#2| |#3|)) |has| |#1| (-373)))
+((((-874)) . T))
+((((-419 (-576)) |#1|) . T) (($ $) . T))
+((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-419 (-576))) . T) (((-711)) . T) (($) . T))
+((((-1194 |#1| |#2| |#3|)) . T))
+((((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T))
+((((-874)) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-576) |#1|) . T))
+((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-373))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) -3763 (|has| |#4| (-174)) (|has| |#4| (-373)) (|has| |#4| (-1066))) (($) |has| |#4| (-1066)) (((-575)) -12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066))))
-(((|#2|) . T) ((|#3|) -3763 (|has| |#3| (-174)) (|has| |#3| (-373)) (|has| |#3| (-1066))) (($) |has| |#3| (-1066)) (((-575)) -12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066))))
+(|has| |#2| (-374))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) -3739 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068))))
+(((|#2|) . T) ((|#3|) -3739 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))
(((|#1|) . T))
(((|#1|) . T))
((((-117 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) (((-575)) |has| |#2| (-1055 (-575))) ((|#2|) . T) (((-875 |#1|)) . T))
-((((-1194)) . T) ((|#1|) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-((((-189)) . T) (((-873)) . T))
-((((-873)) . T))
+((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T))
+((((-1196)) . T) ((|#1|) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+((((-189)) . T) (((-874)) . T))
+((((-874)) . T))
(((|#1|) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-((((-130)) . T) (((-873)) . T))
-((((-575) |#1|) . T) (((-1252 (-575)) $) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+((((-130)) . T) (((-874)) . T))
+((((-576) |#1|) . T) (((-1254 (-576)) $) . T))
((((-130)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-373)) (|has| |#2| (-295 |#2| |#2|))) (($ $) . T) (((-575) |#1|) . T))
-((($ $) . T) (((-418 (-575)) |#1|) . T))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-463)) (|has| |#1| (-924)))
-((($ (-1194)) |has| |#1| (-1066)))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((((-873)) . T))
-((((-873)) . T))
-((((-873)) . T))
-(((|#1| (-542 |#2|)) . T))
-((((-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) . T))
-((((-575) (-130)) . T))
-(((|#1| (-575)) . T))
-(((|#1| (-418 (-575))) . T))
-(((|#1| (-782)) . T))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-117 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-(-3763 (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924)))
-(-3763 (|has| |#1| (-463)) (|has| |#1| (-567)) (|has| |#1| (-924)))
+(((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T))
+((($ $) . T) (((-419 (-576)) |#1|) . T))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926)))
+((($ (-1196)) |has| |#1| (-1068)))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((((-874)) . T))
+((((-874)) . T))
+((((-874)) . T))
+(((|#1| (-543 |#2|)) . T))
+((((-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) . T))
+((((-576) (-130)) . T))
+(((|#1| (-576)) . T))
+(((|#1| (-419 (-576))) . T))
+(((|#1| (-783)) . T))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+(-3739 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))
+(-3739 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))
((($) . T))
-(((|#2| (-542 (-875 |#1|))) . T))
-((((-1199)) . T))
-((((-1199)) . T))
-((((-575) |#1|) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
+(((|#2| (-543 (-876 |#1|))) . T))
+((((-1201)) . T))
+((((-1201)) . T))
+((((-576) |#1|) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
(((|#2|) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) . T) (((-1199)) . T))
-((((-1199)) . T))
-((((-873)) -3763 (|has| |#1| (-624 (-873))) (|has| |#1| (-1117))))
-(((|#1|) . T))
-(((|#2| (-782)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) . T) (((-1201)) . T))
+((((-1201)) . T))
+((((-874)) -3739 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))))
+(((|#1|) . T))
+(((|#2| (-783)) . T))
(((|#1| |#2|) . T))
-((((-1176) |#1|) . T))
-((((-418 |#2|)) . T))
-((((-418 |#2|)) . T))
-(|has| |#1| (-567))
-(|has| |#1| (-567))
-((((-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T))
+((((-1178) |#1|) . T))
+((((-419 |#2|)) . T))
+((((-419 |#2|)) . T))
+(|has| |#1| (-568))
+(|has| |#1| (-568))
+((((-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T))
((($) . T) ((|#2|) . T))
-((($) . T) (((-418 (-575))) . T))
-((((-418 (-575))) . T) (($) . T))
+((($) . T) (((-419 (-576))) . T))
+((((-419 (-576))) . T) (($) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-575)) . T) (($) . T))
-(((|#2| $) |has| |#2| (-295 |#2| |#2|)))
-(((|#1| (-655 |#1|)) |has| |#1| (-859)))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-359)))
-(-3763 (|has| |#1| (-373)) (|has| |#1| (-359)))
-((((-1281 |#1|)) . T) (((-575)) . T) ((|#2|) . T) (((-418 (-575))) |has| |#2| (-1055 (-418 (-575)))))
-(|has| |#1| (-1117))
-(((|#1|) . T))
-((((-1281 |#1|)) . T) (((-575)) . T) (($) -3763 (|has| |#2| (-373)) (|has| |#2| (-463)) (|has| |#2| (-567)) (|has| |#2| (-924))) (((-1099)) . T) ((|#2|) . T) (((-418 (-575))) -3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))))
-((((-418 (-575))) . T) (($) . T))
-((((-1016 |#1|)) . T) ((|#1|) . T) (((-575)) -3763 (|has| (-1016 |#1|) (-1055 (-575))) (|has| |#1| (-1055 (-575)))) (((-418 (-575))) -3763 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))
-((((-925 |#1|)) . T) (((-418 (-575))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-1194)) |has| |#1| (-913 (-1194))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-((((-925 |#1|)) . T) (($) . T) (((-418 (-575))) . T))
+((((-576)) . T) (($) . T))
+(((|#2| $) |has| |#2| (-296 |#2| |#2|)))
+(((|#1| (-656 |#1|)) |has| |#1| (-860)))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-360)))
+(-3739 (|has| |#1| (-374)) (|has| |#1| (-360)))
+((((-1283 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))))
+(|has| |#1| (-1119))
+(((|#1|) . T))
+((((-1283 |#1|)) . T) (((-576)) . T) (($) -3739 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-1101)) . T) ((|#2|) . T) (((-419 (-576))) -3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))))
+((((-419 (-576))) . T) (($) . T))
+((((-1018 |#1|)) . T) ((|#1|) . T) (((-576)) -3739 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576)))) (((-419 (-576))) -3739 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))
+((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-1196)) |has| |#1| (-915 (-1196))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T))
((($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))
-(((|#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))
+(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-418 (-575))) . T) (((-575)) . T) (($) . T))
+(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1157 |#1| |#2|) #0#) |has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))))
+(((#0=(-1159 |#1| |#2|) #0#) |has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((#0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) #0#) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))))
-(|has| |#1| (-295 |#1| |#1|))
-(-3763 (|has| |#1| (-238)) (|has| |#1| (-237)))
-(((#0=(-117 |#1|)) |has| #0# (-318 #0#)))
+(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) #0#) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))))
+(|has| |#1| (-296 |#1| |#1|))
+(-3739 (|has| |#1| (-238)) (|has| |#1| (-237)))
+(((#0=(-117 |#1|)) |has| #0# (-319 #0#)))
((($ $) . T))
-(-3763 (|has| |#1| (-861)) (|has| |#1| (-1117)))
-((($ $) . T) ((#0=(-875 |#1|) $) . T) ((#0# |#2|) . T))
+(-3739 (|has| |#1| (-862)) (|has| |#1| (-1119)))
+((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-489 . -1117) T) ((-272 . -525) 203062) ((-252 . -525) 203005) ((-250 . -1117) 202955) ((-582 . -111) 202940) ((-542 . -23) T) ((-139 . -1117) T) ((-138 . -1117) T) ((-118 . -318) 202897) ((-134 . -1117) T) ((-1016 . -237) 202848) ((-810 . -1235) 202817) ((-490 . -525) 202609) ((-688 . -627) 202593) ((-705 . -102) T) ((-1158 . -525) 202512) ((-410 . -237) T) ((-401 . -132) T) ((-1298 . -993) 202481) ((-1041 . -1068) 202418) ((-31 . -93) T) ((-613 . -500) 202402) ((-1041 . -651) 202339) ((-632 . -132) T) ((-830 . -857) T) ((-534 . -57) 202289) ((-530 . -525) 202222) ((-361 . -234) 202209) ((-364 . -1068) 202154) ((-59 . -525) 202087) ((-527 . -525) 202020) ((-429 . -913) 201979) ((-171 . -1066) T) ((-508 . -525) 201912) ((-507 . -525) 201845) ((-364 . -651) 201790) ((-810 . -1055) 201570) ((-710 . -38) 201535) ((-1258 . -627) 201283) ((-353 . -359) T) ((-1111 . -1110) 201267) ((-1111 . -1117) 201245) ((-866 . -627) 201142) ((-171 . -248) 201093) ((-171 . -238) 201044) ((-1111 . -1112) 201002) ((-883 . -295) 200960) ((-227 . -806) T) ((-227 . -803) T) ((-705 . -293) NIL) ((-582 . -627) 200932) ((-1167 . -1211) 200911) ((-418 . -1009) 200895) ((-48 . -1068) 200860) ((-712 . -21) T) ((-712 . -25) T) ((-48 . -651) 200825) ((-1300 . -659) 200799) ((-1167 . -107) 200749) ((-325 . -161) 200728) ((-325 . -144) 200707) ((-117 . -21) T) ((-40 . -232) 200684) ((-40 . -271) 200661) ((-135 . -25) T) ((-117 . -25) T) ((-619 . -297) 200637) ((-486 . -297) 200616) ((-1258 . -335) 200593) ((-1258 . -1066) T) ((-866 . -1066) T) ((-810 . -348) 200577) ((-140 . -187) T) ((-118 . -1169) NIL) ((-91 . -624) 200509) ((-488 . -132) T) ((-1258 . -238) T) ((-1113 . -501) 200490) ((-1113 . -624) 200456) ((-1107 . -501) 200437) ((-1107 . -624) 200403) ((-604 . -1235) T) ((-1090 . -501) 200384) ((-582 . -1066) T) ((-1090 . -624) 200350) ((-673 . -728) 200334) ((-1083 . -501) 200315) ((-1083 . -624) 200281) ((-973 . -297) 200258) ((-60 . -34) T) ((-1079 . -806) T) ((-1079 . -803) T) ((-1053 . -501) 200239) ((-1036 . -501) 200220) ((-827 . -737) T) ((-742 . -47) 200185) ((-634 . -38) 200172) ((-365 . -299) T) ((-362 . -299) T) ((-354 . -299) T) ((-272 . -299) 200103) ((-252 . -299) 200034) ((-1053 . -624) 200000) ((-1041 . -102) T) ((-1036 . -624) 199966) ((-637 . -501) 199947) ((-424 . -737) T) ((-118 . -38) 199892) ((-494 . -501) 199873) ((-637 . -624) 199839) ((-424 . -484) T) ((-220 . -501) 199820) ((-494 . -624) 199786) ((-364 . -102) T) ((-220 . -624) 199752) ((-1229 . -1075) T) ((-353 . -657) 199682) ((-722 . -1075) T) ((-1192 . -47) 199659) ((-1191 . -47) 199629) ((-1185 . -47) 199606) ((-129 . -297) 199581) ((-1052 . -152) 199527) ((-925 . -299) T) ((-1143 . -47) 199499) ((-705 . -318) NIL) ((-526 . -624) 199481) ((-521 . -624) 199463) ((-519 . -624) 199445) ((-336 . -1117) 199395) ((-325 . -908) 199359) ((-322 . -908) NIL) ((-723 . -463) 199290) ((-48 . -102) T) ((-1269 . -295) 199248) ((-1248 . -295) 199148) ((-655 . -677) 199132) ((-655 . -662) 199116) ((-349 . -21) T) ((-349 . -25) T) ((-40 . -359) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-655 . -383) 199100) ((-616 . -501) 199082) ((-613 . -295) 199034) ((-616 . -624) 199001) ((-399 . -102) T) ((-1137 . -144) T) ((-127 . -624) 198933) ((-885 . -1117) T) ((-669 . -422) 198917) ((-742 . -1235) T) ((-725 . -624) 198899) ((-254 . -624) 198866) ((-189 . -624) 198848) ((-163 . -624) 198830) ((-158 . -624) 198812) ((-1300 . -737) T) ((-1119 . -34) T) ((-882 . -806) NIL) ((-882 . -803) NIL) ((-869 . -861) T) ((-742 . -898) NIL) ((-1309 . -132) T) ((-391 . -132) T) ((-904 . -627) 198780) ((-919 . -102) T) ((-742 . -1055) 198656) ((-1192 . -1235) T) ((-1191 . -1235) T) ((-542 . -132) T) ((-1185 . -1235) T) ((-1104 . -422) 198640) ((-1017 . -500) 198624) ((-118 . -411) 198601) ((-1143 . -1235) T) ((-793 . -422) 198585) ((-791 . -422) 198569) ((-958 . -34) T) ((-705 . -1169) NIL) ((-257 . -659) 198389) ((-256 . -659) 198196) ((-828 . -935) 198175) ((-465 . -422) 198159) ((-613 . -19) 198143) ((-1163 . -1228) 198112) ((-1185 . -898) NIL) ((-1185 . -896) 198064) ((-613 . -615) 198041) ((-1221 . -624) 197973) ((-1193 . -624) 197955) ((-62 . -406) T) ((-1191 . -1055) 197890) ((-1185 . -1055) 197856) ((-705 . -38) 197806) ((-40 . -657) 197736) ((-485 . -295) 197694) ((-1241 . -624) 197676) ((-742 . -387) 197660) ((-849 . -624) 197642) ((-669 . -1075) T) ((-634 . -915) 197565) ((-1269 . -1019) 197531) ((-1248 . -1019) 197497) ((-255 . -1235) T) ((-1105 . -627) 197481) ((-1080 . -1211) 197456) ((-1093 . -627) 197433) ((-883 . -625) 197240) ((-883 . -624) 197222) ((-118 . -915) NIL) ((-712 . -234) 197209) ((-1207 . -500) 197146) ((-429 . -1039) 197124) ((-48 . -318) 197111) ((-1080 . -107) 197057) ((-490 . -500) 196994) ((-531 . -1235) T) ((-1185 . -348) 196946) ((-1158 . -500) 196917) ((-1185 . -387) 196869) ((-1104 . -1075) T) ((-448 . -102) T) ((-185 . -1117) T) ((-257 . -34) T) ((-256 . -34) T) ((-793 . -1075) T) ((-791 . -1075) T) ((-742 . -913) 196846) ((-465 . -1075) T) ((-59 . -500) 196830) ((-1051 . -1073) 196804) ((-530 . -500) 196788) ((-527 . -500) 196772) ((-508 . -500) 196756) ((-507 . -500) 196740) ((-250 . -525) 196673) ((-1051 . -111) 196640) ((-1192 . -913) 196553) ((-1191 . -913) 196459) ((-681 . -1129) T) ((-1185 . -913) 196292) ((-656 . -93) T) ((-1143 . -913) 196276) ((-364 . -1169) T) ((-331 . -1073) 196258) ((-31 . -501) 196239) ((-257 . -805) 196218) ((-257 . -804) 196197) ((-256 . -805) 196176) ((-256 . -804) 196155) ((-31 . -624) 196121) ((-50 . -1075) T) ((-257 . -737) 196099) ((-256 . -737) 196077) ((-1229 . -1117) T) ((-681 . -23) T) ((-592 . -1075) T) ((-529 . -1075) T) ((-389 . -1073) 196042) ((-331 . -111) 196017) ((-73 . -393) T) ((-73 . -406) T) ((-1041 . -38) 195954) ((-705 . -411) 195936) ((-99 . -102) T) ((-722 . -1117) T) ((-1314 . -1068) 195923) ((-1020 . -146) 195895) ((-1020 . -148) 195867) ((-881 . -657) 195839) ((-389 . -111) 195795) ((-328 . -1239) 195774) ((-485 . -1019) 195740) ((-364 . -38) 195705) ((-40 . -380) 195677) ((-884 . -624) 195549) ((-128 . -126) 195533) ((-122 . -126) 195517) ((-847 . -1073) 195487) ((-844 . -21) 195439) ((-838 . -1073) 195423) ((-844 . -25) 195375) ((-328 . -567) 195326) ((-528 . -627) 195307) ((-575 . -839) T) ((-245 . -1235) T) ((-1051 . -627) 195276) ((-847 . -111) 195241) ((-838 . -111) 195220) ((-1269 . -624) 195202) ((-1248 . -624) 195184) ((-1248 . -625) 194855) ((-1190 . -924) 194834) ((-1142 . -924) 194813) ((-48 . -38) 194778) ((-1307 . -1129) T) ((-547 . -295) 194734) ((-613 . -624) 194646) ((-613 . -625) 194607) ((-1305 . -1129) T) ((-371 . -627) 194591) ((-331 . -627) 194575) ((-1159 . -237) 194526) ((-245 . -1055) 194353) ((-1190 . -659) 194242) ((-1142 . -659) 194131) ((-865 . -659) 194105) ((-729 . -624) 194087) ((-557 . -378) T) ((-1307 . -23) T) ((-705 . -915) NIL) ((-1305 . -23) T) ((-502 . -1117) T) ((-389 . -627) 194037) ((-389 . -629) 194019) ((-1051 . -1066) T) ((-876 . -102) T) ((-1207 . -295) 193998) ((-171 . -378) 193949) ((-1021 . -1235) T) ((-847 . -627) 193903) ((-838 . -627) 193858) ((-44 . -23) T) ((-490 . -295) 193837) ((-597 . -1117) T) ((-1314 . -102) T) ((-1163 . -1126) 193806) ((-1121 . -1120) 193758) ((-401 . -21) T) ((-401 . -25) T) ((-153 . -1129) T) ((-1229 . -728) 193655) ((-1215 . -1117) T) ((-1021 . -896) 193637) ((-1021 . -898) 193619) ((-634 . -232) 193603) ((-634 . -271) 193587) ((-632 . -21) T) ((-298 . -567) T) ((-632 . -25) T) ((-1021 . -1055) 193547) ((-722 . -728) 193512) ((-245 . -387) 193481) ((-389 . -1066) T) ((-225 . -1075) T) ((-118 . -271) 193458) ((-118 . -232) 193435) ((-59 . -295) 193387) ((-153 . -23) T) ((-527 . -295) 193339) ((-336 . -525) 193272) ((-507 . -295) 193224) ((-389 . -248) T) ((-389 . -238) T) ((-847 . -1066) T) ((-838 . -1066) T) ((-723 . -964) 193193) ((-712 . -861) T) ((-485 . -624) 193175) ((-1271 . -1068) 193080) ((-591 . -657) 193052) ((-575 . -657) 193024) ((-506 . -657) 192974) ((-838 . -238) 192953) ((-135 . -861) T) ((-1271 . -651) 192845) ((-669 . -1117) T) ((-1207 . -615) 192824) ((-561 . -1211) 192803) ((-346 . -1117) T) ((-328 . -373) 192782) ((-418 . -148) 192761) ((-418 . -146) 192740) ((-979 . -1129) 192639) ((-245 . -913) 192571) ((-826 . -1129) 192549) ((-665 . -863) 192533) ((-490 . -615) 192512) ((-561 . -107) 192462) ((-1021 . -387) 192444) ((-1021 . -348) 192426) ((-1194 . -624) 192408) ((-97 . -1117) T) ((-979 . -23) 192219) ((-488 . -21) T) ((-488 . -25) T) ((-826 . -23) 192071) ((-1194 . -625) 191993) ((-59 . -19) 191977) ((-1190 . -737) T) ((-1142 . -737) T) ((-1104 . -1117) T) ((-527 . -19) 191961) ((-507 . -19) 191945) ((-59 . -615) 191922) ((-1020 . -237) 191859) ((-916 . -102) 191837) ((-865 . -737) T) ((-793 . -1117) T) ((-527 . -615) 191814) ((-507 . -615) 191791) ((-791 . -1117) T) ((-791 . -1082) 191758) ((-472 . -1117) T) ((-465 . -1117) T) ((-597 . -728) 191733) ((-660 . -1117) T) ((-1277 . -47) 191710) ((-1271 . -102) T) ((-1270 . -47) 191680) ((-1249 . -47) 191657) ((-1229 . -174) 191608) ((-1191 . -316) 191587) ((-1185 . -316) 191566) ((-1113 . -627) 191547) ((-1107 . -627) 191528) ((-1097 . -567) 191479) ((-1097 . -1239) 191430) ((-1021 . -913) NIL) ((-1090 . -627) 191411) ((-681 . -132) T) ((-638 . -1129) T) ((-1083 . -627) 191392) ((-1053 . -627) 191373) ((-1036 . -627) 191354) ((-725 . -1073) 191324) ((-710 . -657) 191274) ((-283 . -1117) T) ((-85 . -452) T) ((-85 . -406) T) ((-723 . -908) 191177) ((-722 . -174) T) ((-50 . -1117) T) ((-606 . -47) 191154) ((-227 . -659) 191119) ((-592 . -1117) T) ((-529 . -1117) T) ((-498 . -831) T) ((-498 . -935) T) ((-369 . -1239) T) ((-363 . -1239) T) ((-355 . -1239) T) ((-328 . -1129) T) ((-325 . -1068) 191029) ((-322 . -1068) 190958) ((-108 . -1239) T) ((-637 . -627) 190939) ((-369 . -567) T) ((-219 . -935) T) ((-219 . -831) T) ((-325 . -651) 190849) ((-322 . -651) 190778) ((-363 . -567) T) ((-355 . -567) T) ((-494 . -627) 190759) ((-108 . -567) T) ((-669 . -728) 190729) ((-1185 . -1039) NIL) ((-220 . -627) 190710) ((-328 . -23) T) ((-67 . -1235) T) ((-1017 . -624) 190642) ((-705 . -271) 190624) ((-705 . -232) 190606) ((-725 . -111) 190571) ((-655 . -34) T) ((-250 . -500) 190555) ((-1314 . -1169) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-1307 . -132) T) ((-1119 . -1115) 190539) ((-173 . -1117) T) ((-1305 . -132) T) ((-1298 . -102) T) ((-1281 . -624) 190505) ((-1277 . -1235) T) ((-1270 . -1235) T) ((-967 . -924) 190484) ((-1270 . -1055) 190419) ((-1249 . -1235) T) ((-1249 . -898) NIL) ((-526 . -627) 190403) ((-1249 . -896) 190355) ((-1249 . -1055) 190321) ((-1229 . -525) 190288) ((-492 . -924) 190267) ((-1207 . -625) NIL) ((-1207 . -624) 190249) ((-1104 . -728) 190098) ((-1079 . -659) 190070) ((-967 . -659) 189959) ((-608 . -501) 189940) ((-596 . -501) 189921) ((-793 . -728) 189750) ((-608 . -624) 189716) ((-596 . -624) 189682) ((-547 . -624) 189664) ((-547 . -625) 189645) ((-791 . -728) 189494) ((-1094 . -102) T) ((-391 . -25) T) ((-634 . -657) 189466) ((-391 . -21) T) ((-492 . -659) 189355) ((-472 . -728) 189326) ((-465 . -728) 189175) ((-1004 . -102) T) ((-1159 . -1140) 189120) ((-1063 . -1228) 189049) ((-916 . -318) 188987) ((-748 . -102) T) ((-118 . -657) 188917) ((-616 . -627) 188899) ((-887 . -93) T) ((-725 . -627) 188853) ((-542 . -25) T) ((-692 . -93) T) ((-687 . -93) T) ((-675 . -624) 188835) ((-656 . -501) 188816) ((-142 . -102) T) ((-44 . -132) T) ((-656 . -624) 188769) ((-606 . -1235) T) ((-353 . -1075) T) ((-298 . -1129) T) ((-489 . -93) T) ((-418 . -237) 188720) ((-365 . -624) 188702) ((-362 . -624) 188684) ((-354 . -624) 188666) ((-272 . -625) 188414) ((-272 . -624) 188396) ((-252 . -624) 188378) ((-252 . -625) 188239) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1158 . -624) 188221) ((-1137 . -651) 188208) ((-1137 . -1068) 188195) ((-830 . -737) T) ((-830 . -868) T) ((-613 . -297) 188172) ((-592 . -728) 188137) ((-490 . -625) NIL) ((-490 . -624) 188119) ((-529 . -728) 188064) ((-325 . -102) T) ((-322 . -102) T) ((-298 . -23) T) ((-153 . -132) T) ((-925 . -624) 188046) ((-925 . -625) 188028) ((-397 . -737) T) ((-883 . -1073) 187980) ((-883 . -111) 187918) ((-725 . -1066) T) ((-723 . -1261) 187902) ((-705 . -359) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-530 . -624) 187834) ((-389 . -806) T) ((-225 . -1117) T) ((-169 . -1235) T) ((-389 . -803) T) ((-227 . -805) T) ((-227 . -802) T) ((-59 . -625) 187795) ((-59 . -624) 187707) ((-227 . -737) T) ((-527 . -625) 187668) ((-527 . -624) 187580) ((-508 . -624) 187512) ((-507 . -625) 187473) ((-507 . -624) 187385) ((-1097 . -373) 187336) ((-40 . -422) 187313) ((-77 . -1235) T) ((-882 . -924) NIL) ((-369 . -338) 187297) ((-369 . -373) T) ((-363 . -338) 187281) ((-363 . -373) T) ((-355 . -338) 187265) ((-355 . -373) T) ((-325 . -293) 187244) ((-108 . -373) T) ((-70 . -1235) T) ((-1249 . -348) 187196) ((-882 . -659) 187141) ((-1249 . -387) 187093) ((-979 . -132) 186948) ((-826 . -132) 186819) ((-973 . -662) 186803) ((-1104 . -174) 186714) ((-973 . -383) 186698) ((-1079 . -805) T) ((-1079 . -802) T) ((-883 . -627) 186596) ((-793 . -174) 186487) ((-791 . -174) 186398) ((-827 . -47) 186360) ((-1079 . -737) T) ((-336 . -500) 186344) ((-967 . -737) T) ((-1298 . -318) 186282) ((-1277 . -913) 186195) ((-465 . -174) 186106) ((-250 . -295) 186058) ((-1270 . -913) 185964) ((-1269 . -1073) 185799) ((-1249 . -913) 185632) ((-492 . -737) T) ((-1248 . -1073) 185440) ((-1229 . -299) 185419) ((-1204 . -1235) T) ((-1201 . -378) T) ((-1200 . -378) T) ((-1163 . -152) 185403) ((-1137 . -102) T) ((-1135 . -1117) T) ((-1097 . -23) T) ((-1097 . -1129) T) ((-1092 . -102) T) ((-1074 . -624) 185370) ((-1020 . -420) 185342) ((-942 . -970) T) ((-748 . -318) 185280) ((-75 . -1235) T) ((-675 . -392) 185252) ((-171 . -924) 185205) ((-30 . -970) T) ((-112 . -855) T) ((-1 . -624) 185187) ((-1016 . -908) 185108) ((-129 . -662) 185090) ((-50 . -631) 185074) ((-705 . -657) 185009) ((-606 . -913) 184922) ((-449 . -102) T) ((-129 . -383) 184904) ((-142 . -318) NIL) ((-883 . -1066) T) ((-844 . -861) 184883) ((-81 . -1235) T) ((-722 . -299) T) ((-40 . -1075) T) ((-592 . -174) T) ((-529 . -174) T) ((-522 . -624) 184865) ((-171 . -659) 184739) ((-518 . -624) 184721) ((-361 . -148) 184703) ((-361 . -146) T) ((-369 . -1129) T) ((-363 . -1129) T) ((-355 . -1129) T) ((-1021 . -316) T) ((-929 . -316) T) ((-883 . -248) T) ((-108 . -1129) T) ((-883 . -238) 184682) ((-1269 . -111) 184503) ((-1248 . -111) 184292) ((-250 . -1273) 184276) ((-575 . -859) T) ((-369 . -23) T) ((-364 . -359) T) ((-325 . -318) 184263) ((-322 . -318) 184204) ((-363 . -23) T) ((-328 . -132) T) ((-355 . -23) T) ((-1021 . -1039) T) ((-31 . -627) 184185) ((-108 . -23) T) ((-665 . -1068) 184169) ((-250 . -615) 184146) ((-342 . -1117) T) ((-665 . -651) 184116) ((-1271 . -38) 184008) ((-1258 . -924) 183987) ((-112 . -1117) T) ((-827 . -1235) T) ((-1052 . -102) T) ((-1258 . -659) 183876) ((-882 . -805) NIL) ((-866 . -659) 183850) ((-882 . -802) NIL) ((-827 . -898) NIL) ((-882 . -737) T) ((-1104 . -525) 183723) ((-793 . -525) 183670) ((-791 . -525) 183622) ((-582 . -659) 183609) ((-827 . -1055) 183437) ((-465 . -525) 183380) ((-399 . -400) T) ((-1269 . -627) 183193) ((-1248 . -627) 182941) ((-60 . -1235) T) ((-632 . -861) 182920) ((-511 . -672) T) ((-1163 . -993) 182889) ((-1041 . -657) 182826) ((-1020 . -463) T) ((-710 . -859) T) ((-521 . -803) T) ((-485 . -1073) 182661) ((-511 . -113) T) ((-353 . -1117) T) ((-322 . -1169) NIL) ((-298 . -132) T) ((-405 . -1117) T) ((-881 . -1075) T) ((-705 . -380) 182628) ((-364 . -657) 182558) ((-225 . -631) 182535) ((-336 . -295) 182487) ((-485 . -111) 182308) ((-1269 . -1066) T) ((-1248 . -1066) T) ((-827 . -387) 182292) ((-171 . -737) T) ((-665 . -102) T) ((-1269 . -248) 182271) ((-1269 . -238) 182223) ((-1248 . -238) 182128) ((-1248 . -248) 182107) ((-1020 . -413) NIL) ((-681 . -650) 182055) ((-325 . -38) 181965) ((-322 . -38) 181894) ((-69 . -624) 181876) ((-328 . -504) 181842) ((-48 . -657) 181792) ((-1207 . -297) 181771) ((-1243 . -861) T) ((-1130 . -1129) 181749) ((-83 . -1235) T) ((-61 . -624) 181731) ((-490 . -297) 181710) ((-1300 . -1055) 181687) ((-1182 . -1117) T) ((-1130 . -23) 181539) ((-827 . -913) 181475) ((-1258 . -737) T) ((-1119 . -1235) T) ((-485 . -627) 181301) ((-361 . -237) T) ((-1104 . -299) 181232) ((-981 . -1117) T) ((-905 . -102) T) ((-793 . -299) 181143) ((-336 . -19) 181127) ((-59 . -297) 181104) ((-791 . -299) 181035) ((-866 . -737) T) ((-118 . -859) NIL) ((-527 . -297) 181012) ((-336 . -615) 180989) ((-507 . -297) 180966) ((-465 . -299) 180897) ((-1052 . -318) 180748) ((-887 . -501) 180729) ((-887 . -624) 180695) ((-692 . -501) 180676) ((-582 . -737) T) ((-687 . -501) 180657) ((-692 . -624) 180607) ((-687 . -624) 180573) ((-673 . -624) 180555) ((-489 . -501) 180536) ((-489 . -624) 180502) ((-250 . -625) 180463) ((-250 . -501) 180440) ((-139 . -501) 180421) ((-138 . -501) 180402) ((-134 . -501) 180383) ((-250 . -624) 180275) ((-215 . -102) T) ((-139 . -624) 180241) ((-138 . -624) 180207) ((-134 . -624) 180173) ((-1164 . -34) T) ((-958 . -1235) T) ((-353 . -728) 180118) ((-681 . -25) T) ((-681 . -21) T) ((-1194 . -627) 180099) ((-485 . -1066) T) ((-646 . -428) 180064) ((-618 . -428) 180029) ((-1137 . -1169) T) ((-723 . -1068) 179852) ((-592 . -299) T) ((-529 . -299) T) ((-1270 . -316) 179831) ((-485 . -238) 179783) ((-485 . -248) 179762) ((-1249 . -316) 179741) ((-723 . -651) 179570) ((-1249 . -1039) NIL) ((-1097 . -132) T) ((-883 . -806) 179549) ((-145 . -102) T) ((-40 . -1117) T) ((-883 . -803) 179528) ((-655 . -1027) 179512) ((-591 . -1075) T) ((-575 . -1075) T) ((-506 . -1075) T) ((-418 . -463) T) ((-369 . -132) T) ((-325 . -411) 179496) ((-322 . -411) 179457) ((-363 . -132) T) ((-355 . -132) T) ((-1199 . -1117) T) ((-1137 . -38) 179444) ((-1111 . -624) 179411) ((-108 . -132) T) ((-969 . -1117) T) ((-936 . -1117) T) ((-782 . -1117) T) ((-683 . -1117) T) ((-712 . -148) T) ((-117 . -148) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-1305 . -21) T) ((-1305 . -25) T) ((-675 . -1073) 179395) ((-542 . -861) T) ((-511 . -861) T) ((-365 . -1073) 179347) ((-362 . -1073) 179299) ((-354 . -1073) 179251) ((-257 . -1235) T) ((-256 . -1235) T) ((-272 . -1073) 179094) ((-252 . -1073) 178937) ((-675 . -111) 178916) ((-828 . -1239) 178895) ((-558 . -855) T) ((-325 . -915) 178861) ((-365 . -111) 178799) ((-362 . -111) 178737) ((-354 . -111) 178675) ((-272 . -111) 178504) ((-252 . -111) 178333) ((-322 . -915) NIL) ((-634 . -422) 178317) ((-44 . -21) T) ((-44 . -25) T) ((-826 . -650) 178223) ((-828 . -567) 178202) ((-257 . -1055) 178029) ((-256 . -1055) 177856) ((-127 . -120) 177840) ((-925 . -1073) 177805) ((-723 . -102) T) ((-710 . -1075) T) ((-608 . -627) 177786) ((-596 . -627) 177767) ((-547 . -629) 177670) ((-353 . -174) T) ((-88 . -624) 177652) ((-153 . -21) T) ((-153 . -25) T) ((-925 . -111) 177608) ((-40 . -728) 177553) ((-881 . -1117) T) ((-675 . -627) 177530) ((-656 . -627) 177511) ((-365 . -627) 177448) ((-362 . -627) 177385) ((-558 . -1117) T) ((-354 . -627) 177322) ((-336 . -625) 177283) ((-336 . -624) 177195) ((-272 . -627) 176948) ((-252 . -627) 176733) ((-1248 . -803) 176686) ((-1248 . -806) 176639) ((-257 . -387) 176608) ((-256 . -387) 176577) ((-665 . -38) 176547) ((-619 . -34) T) ((-493 . -1129) 176525) ((-486 . -34) T) ((-1130 . -132) 176396) ((-979 . -25) 176207) ((-925 . -627) 176157) ((-885 . -624) 176139) ((-979 . -21) 176094) ((-826 . -25) 175927) ((-826 . -21) 175838) ((-1241 . -378) T) ((-634 . -1075) T) ((-1196 . -567) 175817) ((-1190 . -47) 175794) ((-365 . -1066) T) ((-362 . -1066) T) ((-493 . -23) 175646) ((-354 . -1066) T) ((-272 . -1066) T) ((-252 . -1066) T) ((-1142 . -47) 175618) ((-118 . -1075) T) ((-1051 . -659) 175592) ((-973 . -34) T) ((-365 . -238) 175571) ((-365 . -248) T) ((-362 . -238) 175550) ((-362 . -248) T) ((-354 . -238) 175529) ((-354 . -248) T) ((-272 . -335) 175501) ((-252 . -335) 175458) ((-272 . -238) 175437) ((-1174 . -152) 175421) ((-257 . -913) 175353) ((-256 . -913) 175285) ((-1159 . -908) 175206) ((-1099 . -861) T) ((-425 . -1129) T) ((-1071 . -23) T) ((-1041 . -859) T) ((-925 . -1066) T) ((-331 . -659) 175188) ((-712 . -237) T) ((-681 . -234) 175133) ((-1229 . -1019) 175099) ((-1191 . -935) 175078) ((-1185 . -935) 175057) ((-1185 . -831) NIL) ((-1016 . -1068) 174953) ((-982 . -1235) T) ((-925 . -248) T) ((-828 . -373) 174932) ((-395 . -23) T) ((-128 . -1117) 174910) ((-122 . -1117) 174888) ((-925 . -238) T) ((-129 . -34) T) ((-389 . -659) 174853) ((-1016 . -651) 174801) ((-881 . -728) 174788) ((-1314 . -657) 174760) ((-1063 . -152) 174725) ((-1010 . -1235) T) ((-40 . -174) T) ((-705 . -422) 174707) ((-723 . -318) 174694) ((-847 . -659) 174654) ((-838 . -659) 174628) ((-328 . -25) T) ((-328 . -21) T) ((-669 . -295) 174607) ((-591 . -1117) T) ((-575 . -1117) T) ((-506 . -1117) T) ((-250 . -297) 174584) ((-1190 . -1235) T) ((-1142 . -1235) T) ((-322 . -271) 174545) ((-322 . -232) 174506) ((-1190 . -898) NIL) ((-55 . -1117) T) ((-1142 . -898) 174365) ((-130 . -861) T) ((-1190 . -1055) 174245) ((-1142 . -1055) 174128) ((-185 . -624) 174110) ((-865 . -1055) 174006) ((-793 . -295) 173933) ((-828 . -1129) T) ((-1051 . -737) T) ((-1063 . -993) 173862) ((-613 . -662) 173846) ((-1020 . -908) 173753) ((-1016 . -102) T) ((-828 . -23) T) ((-723 . -1169) 173731) ((-705 . -1075) T) ((-613 . -383) 173715) ((-361 . -463) T) ((-353 . -299) T) ((-1286 . -1117) T) ((-253 . -1117) T) ((-410 . -102) T) ((-298 . -21) T) ((-298 . -25) T) ((-371 . -737) T) ((-721 . -1117) T) ((-710 . -1117) T) ((-371 . -484) T) ((-1229 . -624) 173697) ((-1190 . -387) 173681) ((-1142 . -387) 173665) ((-1041 . -422) 173627) ((-142 . -231) 173609) ((-389 . -805) T) ((-389 . -802) T) ((-881 . -174) T) ((-389 . -737) T) ((-722 . -624) 173591) ((-723 . -38) 173420) ((-1285 . -1283) 173404) ((-361 . -413) T) ((-1285 . -1117) 173354) ((-1208 . -1117) T) ((-591 . -728) 173341) ((-575 . -728) 173328) ((-506 . -728) 173293) ((-1271 . -657) 173183) ((-325 . -640) 173162) ((-847 . -737) T) ((-838 . -737) T) ((-655 . -1235) T) ((-1097 . -650) 173110) ((-1190 . -913) 173053) ((-1142 . -913) 173037) ((-826 . -234) 172928) ((-673 . -1073) 172912) ((-108 . -650) 172894) ((-493 . -132) 172765) ((-1196 . -1129) T) ((-967 . -47) 172734) ((-634 . -1117) T) ((-673 . -111) 172713) ((-502 . -624) 172679) ((-336 . -297) 172656) ((-492 . -47) 172613) ((-1196 . -23) T) ((-118 . -1117) T) ((-103 . -102) 172591) ((-1297 . -1129) T) ((-559 . -861) T) ((-227 . -1235) T) ((-1071 . -132) T) ((-1041 . -1075) T) ((-1297 . -23) T) ((-830 . -1055) 172575) ((-1215 . -624) 172557) ((-1020 . -735) 172529) ((-1137 . -839) T) ((-710 . -728) 172494) ((-597 . -624) 172476) ((-397 . -1055) 172460) ((-364 . -1075) T) ((-395 . -132) T) ((-333 . -1055) 172444) ((-1122 . -1117) T) ((-1097 . -21) T) ((-1097 . -25) T) ((-227 . -898) 172426) ((-1021 . -935) T) ((-91 . -34) T) ((-1021 . -831) T) ((-929 . -935) T) ((-1016 . -318) 172391) ((-887 . -627) 172372) ((-498 . -1239) T) ((-725 . -659) 172332) ((-692 . -627) 172313) ((-687 . -627) 172294) ((-219 . -1239) T) ((-418 . -908) 172215) ((-227 . -1055) 172175) ((-40 . -299) T) ((-498 . -567) T) ((-489 . -627) 172156) ((-369 . -25) T) ((-325 . -657) 171811) ((-322 . -657) 171725) ((-369 . -21) T) ((-363 . -25) T) ((-363 . -21) T) ((-219 . -567) T) ((-355 . -25) T) ((-355 . -21) T) ((-328 . -234) 171671) ((-250 . -627) 171648) ((-139 . -627) 171629) ((-138 . -627) 171610) ((-134 . -627) 171591) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1075) T) ((-591 . -174) T) ((-575 . -174) T) ((-506 . -174) T) ((-1079 . -1235) T) ((-967 . -1235) T) ((-669 . -624) 171573) ((-492 . -1235) T) ((-748 . -747) 171557) ((-346 . -624) 171539) ((-68 . -393) T) ((-68 . -406) T) ((-1119 . -107) 171523) ((-1079 . -898) 171505) ((-967 . -898) 171430) ((-664 . -1129) T) ((-634 . -728) 171417) ((-492 . -898) NIL) ((-1163 . -102) T) ((-1111 . -629) 171401) ((-1079 . -1055) 171383) ((-97 . -624) 171365) ((-488 . -148) T) ((-967 . -1055) 171245) ((-118 . -728) 171190) ((-723 . -915) 171097) ((-664 . -23) T) ((-492 . -1055) 170973) ((-1104 . -625) NIL) ((-1104 . -624) 170955) ((-793 . -625) NIL) ((-793 . -624) 170916) ((-791 . -625) 170550) ((-791 . -624) 170464) ((-1130 . -650) 170370) ((-472 . -624) 170352) ((-465 . -624) 170334) ((-465 . -625) 170195) ((-1052 . -231) 170141) ((-883 . -924) 170120) ((-127 . -34) T) ((-828 . -132) T) ((-660 . -624) 170102) ((-589 . -102) T) ((-365 . -1304) 170086) ((-362 . -1304) 170070) ((-354 . -1304) 170054) ((-128 . -525) 169987) ((-122 . -525) 169920) ((-522 . -803) T) ((-522 . -806) T) ((-521 . -805) T) ((-103 . -318) 169858) ((-224 . -102) 169836) ((-710 . -174) T) ((-705 . -1117) T) ((-883 . -659) 169752) ((-65 . -394) T) ((-283 . -624) 169734) ((-65 . -406) T) ((-967 . -387) 169718) ((-881 . -299) T) ((-50 . -624) 169700) ((-1016 . -38) 169648) ((-1137 . -657) 169620) ((-592 . -624) 169602) ((-492 . -387) 169586) ((-592 . -625) 169568) ((-529 . -624) 169550) ((-925 . -1304) 169537) ((-882 . -1235) T) ((-712 . -463) T) ((-506 . -525) 169503) ((-498 . -373) T) ((-365 . -378) 169482) ((-362 . -378) 169461) ((-354 . -378) 169440) ((-725 . -737) T) ((-219 . -373) T) ((-117 . -463) T) ((-1308 . -1299) 169424) ((-882 . -896) 169401) ((-882 . -898) NIL) ((-979 . -861) 169300) ((-826 . -861) 169251) ((-1242 . -102) T) ((-665 . -667) 169235) ((-1221 . -34) T) ((-173 . -624) 169217) ((-1130 . -25) 169050) ((-1130 . -21) 168961) ((-882 . -1055) 168938) ((-967 . -913) 168919) ((-1258 . -47) 168896) ((-925 . -378) T) ((-59 . -662) 168880) ((-527 . -662) 168864) ((-492 . -913) 168841) ((-71 . -452) T) ((-71 . -406) T) ((-507 . -662) 168825) ((-59 . -383) 168809) ((-634 . -174) T) ((-527 . -383) 168793) ((-507 . -383) 168777) ((-838 . -719) 168761) ((-1190 . -316) 168740) ((-1196 . -132) T) ((-1159 . -1068) 168724) ((-118 . -174) T) ((-1159 . -651) 168656) ((-1163 . -318) 168594) ((-171 . -1235) T) ((-1297 . -132) T) ((-877 . -1068) 168564) ((-646 . -755) 168548) ((-618 . -755) 168532) ((-1270 . -935) 168511) ((-1249 . -935) 168490) ((-1249 . -831) NIL) ((-877 . -651) 168460) ((-705 . -728) 168410) ((-1248 . -924) 168363) ((-1041 . -1117) T) ((-882 . -387) 168340) ((-882 . -348) 168317) ((-920 . -1129) T) ((-171 . -896) 168301) ((-171 . -898) 168226) ((-1285 . -525) 168159) ((-1269 . -659) 168056) ((-1097 . -234) 167929) ((-498 . -1129) T) ((-364 . -1117) T) ((-219 . -1129) T) ((-76 . -452) T) ((-76 . -406) T) ((-171 . -1055) 167825) ((-303 . -908) 167782) ((-328 . -861) T) ((-1248 . -659) 167590) ((-883 . -805) 167569) ((-883 . -802) 167548) ((-883 . -737) T) ((-498 . -23) T) ((-369 . -234) 167521) ((-363 . -234) 167494) ((-355 . -234) 167467) ((-225 . -624) 167449) ((-176 . -463) T) ((-224 . -318) 167387) ((-86 . -452) T) ((-86 . -406) T) ((-108 . -234) 167374) ((-219 . -23) T) ((-1309 . -1302) 167353) ((-688 . -1055) 167337) ((-591 . -299) T) ((-575 . -299) T) ((-506 . -299) T) ((-137 . -481) 167292) ((-1258 . -1235) T) ((-665 . -657) 167251) ((-48 . -1117) T) ((-723 . -271) 167235) ((-723 . -232) 167219) ((-882 . -913) NIL) ((-1258 . -898) NIL) ((-901 . -102) T) ((-897 . -102) T) ((-399 . -1117) T) ((-171 . -387) 167203) ((-171 . -348) 167187) ((-1258 . -1055) 167067) ((-866 . -1055) 166963) ((-1159 . -102) T) ((-1016 . -915) 166886) ((-673 . -803) 166865) ((-664 . -132) T) ((-673 . -806) 166844) ((-118 . -525) 166752) ((-582 . -1055) 166734) ((-303 . -1292) 166704) ((-877 . -102) T) ((-978 . -567) 166683) ((-1229 . -1073) 166566) ((-1020 . -1068) 166511) ((-493 . -650) 166417) ((-919 . -1117) T) ((-1041 . -728) 166354) ((-722 . -1073) 166319) ((-1020 . -651) 166264) ((-628 . -102) T) ((-613 . -34) T) ((-1164 . -1235) T) ((-1229 . -111) 166133) ((-485 . -659) 166030) ((-364 . -728) 165975) ((-171 . -913) 165934) ((-710 . -299) T) ((-705 . -174) T) ((-722 . -111) 165890) ((-1314 . -1075) T) ((-1258 . -387) 165874) ((-429 . -1239) 165852) ((-1135 . -624) 165834) ((-322 . -859) NIL) ((-429 . -567) T) ((-227 . -316) T) ((-1248 . -802) 165787) ((-1248 . -805) 165740) ((-1269 . -737) T) ((-1248 . -737) T) ((-48 . -728) 165705) ((-227 . -1039) T) ((-1271 . -422) 165671) ((-361 . -1292) 165648) ((-1258 . -913) 165591) ((-729 . -737) T) ((-342 . -624) 165573) ((-1229 . -627) 165455) ((-1130 . -234) 165346) ((-112 . -624) 165328) ((-112 . -625) 165310) ((-729 . -484) T) ((-722 . -627) 165260) ((-1308 . -1068) 165244) ((-493 . -25) 165077) ((-128 . -500) 165061) ((-122 . -500) 165045) ((-493 . -21) 164956) ((-1308 . -651) 164926) ((-634 . -299) T) ((-597 . -1073) 164901) ((-448 . -1117) T) ((-1079 . -316) T) ((-118 . -299) T) ((-1121 . -102) T) ((-1020 . -102) T) ((-597 . -111) 164869) ((-1159 . -318) 164807) ((-1229 . -1066) T) ((-1079 . -1039) T) ((-66 . -1235) T) ((-1071 . -25) T) ((-1071 . -21) T) ((-722 . -1066) T) ((-395 . -21) T) ((-395 . -25) T) ((-705 . -525) NIL) ((-1041 . -174) T) ((-722 . -248) T) ((-1079 . -556) T) ((-723 . -657) 164717) ((-517 . -102) T) ((-513 . -102) T) ((-364 . -174) T) ((-353 . -624) 164699) ((-418 . -1068) 164651) ((-405 . -624) 164633) ((-1137 . -859) T) ((-485 . -737) T) ((-904 . -1055) 164601) ((-418 . -651) 164553) ((-108 . -861) T) ((-669 . -1073) 164537) ((-498 . -132) T) ((-1271 . -1075) T) ((-219 . -132) T) ((-1174 . -102) 164515) ((-99 . -1117) T) ((-250 . -677) 164499) ((-250 . -662) 164483) ((-669 . -111) 164462) ((-597 . -627) 164446) ((-325 . -422) 164430) ((-250 . -383) 164414) ((-1177 . -240) 164361) ((-1016 . -271) 164345) ((-1016 . -232) 164329) ((-74 . -1235) T) ((-48 . -174) T) ((-712 . -398) T) ((-712 . -144) T) ((-1308 . -102) T) ((-1215 . -627) 164311) ((-1105 . -1235) T) ((-1104 . -1073) 164154) ((-1093 . -1235) T) ((-272 . -924) 164133) ((-252 . -924) 164112) ((-793 . -1073) 163935) ((-791 . -1073) 163778) ((-619 . -1235) T) ((-1182 . -624) 163760) ((-1104 . -111) 163589) ((-1063 . -102) T) ((-486 . -1235) T) ((-472 . -1073) 163560) ((-465 . -1073) 163403) ((-675 . -659) 163387) ((-882 . -316) T) ((-793 . -111) 163196) ((-791 . -111) 163025) ((-365 . -659) 162977) ((-362 . -659) 162929) ((-354 . -659) 162881) ((-272 . -659) 162770) ((-252 . -659) 162659) ((-1176 . -861) T) ((-1105 . -1055) 162643) ((-472 . -111) 162604) ((-465 . -111) 162433) ((-1093 . -1055) 162410) ((-1017 . -34) T) ((-981 . -624) 162392) ((-973 . -1235) T) ((-127 . -1027) 162376) ((-978 . -1129) T) ((-882 . -1039) NIL) ((-746 . -1129) T) ((-726 . -1129) T) ((-669 . -627) 162294) ((-1285 . -500) 162278) ((-1159 . -38) 162238) ((-978 . -23) T) ((-925 . -659) 162203) ((-876 . -1117) T) ((-854 . -102) T) ((-828 . -21) T) ((-646 . -1068) 162187) ((-618 . -1068) 162171) ((-828 . -25) T) ((-746 . -23) T) ((-726 . -23) T) ((-646 . -651) 162155) ((-110 . -672) T) ((-618 . -651) 162139) ((-592 . -1073) 162104) ((-529 . -1073) 162049) ((-229 . -57) 162007) ((-464 . -23) T) ((-418 . -102) T) ((-269 . -102) T) ((-110 . -113) T) ((-705 . -299) T) ((-877 . -38) 161977) ((-592 . -111) 161933) ((-529 . -111) 161862) ((-1104 . -627) 161598) ((-429 . -1129) T) ((-325 . -1075) 161488) ((-322 . -1075) T) ((-129 . -1235) T) ((-793 . -627) 161236) ((-791 . -627) 161002) ((-669 . -1066) T) ((-1314 . -1117) T) ((-465 . -627) 160787) ((-171 . -316) 160718) ((-429 . -23) T) ((-40 . -624) 160700) ((-40 . -625) 160684) ((-108 . -1009) 160666) ((-117 . -880) 160650) ((-660 . -627) 160634) ((-48 . -525) 160600) ((-1221 . -1027) 160584) ((-1199 . -624) 160551) ((-1207 . -34) T) ((-969 . -624) 160517) ((-936 . -624) 160499) ((-1130 . -861) 160450) ((-782 . -624) 160432) ((-683 . -624) 160414) ((-1174 . -318) 160352) ((-490 . -34) T) ((-1109 . -1235) T) ((-488 . -463) T) ((-1158 . -34) T) ((-1104 . -1066) T) ((-50 . -627) 160321) ((-793 . -1066) T) ((-791 . -1066) T) ((-658 . -240) 160305) ((-643 . -240) 160251) ((-592 . -627) 160201) ((-529 . -627) 160131) ((-493 . -234) 160022) ((-1258 . -316) 160001) ((-1104 . -335) 159962) ((-465 . -1066) T) ((-1196 . -21) T) ((-1104 . -238) 159941) ((-793 . -335) 159918) ((-793 . -238) T) ((-791 . -335) 159890) ((-742 . -1239) 159869) ((-336 . -662) 159853) ((-1196 . -25) T) ((-59 . -34) T) ((-530 . -34) T) ((-527 . -34) T) ((-465 . -335) 159832) ((-336 . -383) 159816) ((-508 . -34) T) ((-507 . -34) T) ((-1020 . -1169) NIL) ((-742 . -567) 159747) ((-646 . -102) T) ((-618 . -102) T) ((-365 . -737) T) ((-362 . -737) T) ((-354 . -737) T) ((-272 . -737) T) ((-252 . -737) T) ((-389 . -1235) T) ((-1063 . -318) 159655) ((-1297 . -21) T) ((-916 . -1117) 159633) ((-829 . -234) 159620) ((-50 . -1066) T) ((-1297 . -25) T) ((-1192 . -567) 159599) ((-1191 . -1239) 159578) ((-1191 . -567) 159529) ((-1185 . -1239) 159508) ((-1185 . -567) 159459) ((-592 . -1066) T) ((-529 . -1066) T) ((-1041 . -299) T) ((-371 . -1055) 159443) ((-331 . -1055) 159427) ((-1020 . -38) 159372) ((-389 . -898) 159354) ((-1016 . -657) 159277) ((-847 . -1235) T) ((-838 . -1235) 159256) ((-810 . -1129) T) ((-925 . -737) T) ((-592 . -248) T) ((-592 . -238) T) ((-529 . -238) T) ((-529 . -248) T) ((-1143 . -567) 159235) ((-364 . -299) T) ((-658 . -706) 159219) ((-389 . -1055) 159179) ((-303 . -1068) 159100) ((-349 . -908) 159079) ((-1137 . -1075) T) ((-103 . -126) 159063) ((-303 . -651) 159005) ((-810 . -23) T) ((-1307 . -1302) 158981) ((-1305 . -1302) 158960) ((-1285 . -295) 158912) ((-418 . -318) 158877) ((-1271 . -1117) T) ((-1159 . -915) 158800) ((-881 . -624) 158782) ((-847 . -1055) 158751) ((-205 . -798) T) ((-204 . -798) T) ((-203 . -798) T) ((-202 . -798) T) ((-201 . -798) T) ((-200 . -798) T) ((-199 . -798) T) ((-198 . -798) T) ((-197 . -798) T) ((-196 . -798) T) ((-558 . -624) 158733) ((-506 . -1019) T) ((-282 . -850) T) ((-281 . -850) T) ((-280 . -850) T) ((-279 . -850) T) ((-48 . -299) T) ((-278 . -850) T) ((-277 . -850) T) ((-276 . -850) T) ((-195 . -798) T) ((-623 . -861) T) ((-665 . -422) 158717) ((-681 . -237) 158668) ((-225 . -627) 158630) ((-110 . -861) T) ((-664 . -21) T) ((-664 . -25) T) ((-1308 . -38) 158600) ((-118 . -295) 158551) ((-1285 . -19) 158535) ((-1285 . -615) 158512) ((-1298 . -1117) T) ((-361 . -1068) 158457) ((-1094 . -1117) T) ((-1004 . -1117) T) ((-978 . -132) T) ((-828 . -234) 158444) ((-748 . -1117) T) ((-361 . -651) 158389) ((-746 . -132) T) ((-726 . -132) T) ((-522 . -804) T) ((-522 . -805) T) ((-464 . -132) T) ((-418 . -1169) 158367) ((-225 . -1066) T) ((-303 . -102) 158149) ((-142 . -1117) T) ((-710 . -1019) T) ((-1122 . -295) 158105) ((-91 . -1235) T) ((-128 . -624) 158037) ((-122 . -624) 157969) ((-1314 . -174) T) ((-1191 . -373) 157948) ((-1185 . -373) 157927) ((-325 . -1117) T) ((-429 . -132) T) ((-322 . -1117) T) ((-418 . -38) 157879) ((-1150 . -102) T) ((-1271 . -728) 157771) ((-665 . -1075) T) ((-1152 . -1280) T) ((-328 . -146) 157750) ((-328 . -148) 157729) ((-140 . -1117) T) ((-137 . -1117) T) ((-115 . -1117) T) ((-869 . -102) T) ((-591 . -624) 157711) ((-575 . -625) 157610) ((-575 . -624) 157592) ((-506 . -624) 157574) ((-506 . -625) 157519) ((-496 . -23) T) ((-493 . -861) 157470) ((-498 . -650) 157452) ((-980 . -624) 157434) ((-1020 . -915) 157343) ((-219 . -650) 157325) ((-227 . -415) T) ((-673 . -659) 157309) ((-55 . -624) 157291) ((-1190 . -935) 157270) ((-742 . -1129) T) ((-361 . -102) T) ((-1234 . -1100) T) ((-1137 . -855) T) ((-829 . -861) T) ((-742 . -23) T) ((-353 . -1073) 157215) ((-1176 . -1175) T) ((-1164 . -107) 157199) ((-1192 . -1129) T) ((-1191 . -1129) T) ((-526 . -1055) 157183) ((-1185 . -1129) T) ((-1143 . -1129) T) ((-353 . -111) 157112) ((-1021 . -1239) T) ((-127 . -1235) T) ((-929 . -1239) T) ((-1286 . -624) 157094) ((-705 . -295) NIL) ((-725 . -1235) T) ((-1192 . -23) T) ((-1191 . -23) T) ((-1185 . -23) T) ((-1159 . -271) 157078) ((-1159 . -232) 157062) ((-1021 . -567) T) ((-1143 . -23) T) ((-929 . -567) T) ((-1092 . -1117) T) ((-253 . -624) 157044) ((-826 . -237) 156941) ((-810 . -132) T) ((-721 . -624) 156923) ((-325 . -728) 156833) ((-322 . -728) 156762) ((-710 . -624) 156744) ((-710 . -625) 156689) ((-418 . -411) 156673) ((-449 . -1117) T) ((-498 . -25) T) ((-498 . -21) T) ((-1137 . -1117) T) ((-219 . -25) T) ((-219 . -21) T) ((-723 . -422) 156657) ((-725 . -1055) 156626) ((-1285 . -624) 156538) ((-1285 . -625) 156499) ((-1271 . -174) T) ((-1208 . -624) 156481) ((-250 . -34) T) ((-353 . -627) 156411) ((-405 . -627) 156393) ((-941 . -991) T) ((-1221 . -1235) T) ((-673 . -802) 156372) ((-673 . -805) 156351) ((-409 . -406) T) ((-534 . -102) 156329) ((-1052 . -1117) T) ((-418 . -915) 156252) ((-224 . -1012) 156236) ((-515 . -102) T) ((-634 . -624) 156218) ((-45 . -861) NIL) ((-634 . -625) 156195) ((-1052 . -621) 156170) ((-916 . -525) 156103) ((-328 . -237) 156055) ((-353 . -1066) T) ((-118 . -625) NIL) ((-118 . -624) 156037) ((-883 . -1235) T) ((-681 . -428) 156021) ((-681 . -1140) 155966) ((-511 . -152) 155948) ((-353 . -238) T) ((-353 . -248) T) ((-40 . -1073) 155893) ((-883 . -896) 155877) ((-883 . -898) 155802) ((-723 . -1075) T) ((-705 . -1019) NIL) ((-1269 . -47) 155772) ((-1248 . -47) 155749) ((-1158 . -1027) 155720) ((-1137 . -728) 155707) ((-3 . |UnionCategory|) T) ((-1122 . -624) 155689) ((-1097 . -148) 155668) ((-1097 . -146) 155619) ((-1021 . -373) T) ((-981 . -627) 155603) ((-227 . -935) T) ((-40 . -111) 155532) ((-883 . -1055) 155396) ((-1020 . -232) 155373) ((-1020 . -271) 155350) ((-712 . -1068) 155337) ((-929 . -373) T) ((-712 . -651) 155324) ((-328 . -1223) 155290) ((-389 . -316) T) ((-328 . -1220) 155256) ((-325 . -174) 155235) ((-322 . -174) T) ((-592 . -1304) 155222) ((-529 . -1304) 155199) ((-369 . -148) 155178) ((-117 . -1068) 155165) ((-369 . -146) 155116) ((-363 . -148) 155095) ((-363 . -146) 155046) ((-355 . -148) 155025) ((-619 . -1211) 155001) ((-117 . -651) 154988) ((-355 . -146) 154939) ((-328 . -35) 154905) ((-486 . -1211) 154884) ((0 . |EnumerationCategory|) T) ((-328 . -95) 154850) ((-389 . -1039) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 154800) ((-665 . -1117) T) ((-619 . -107) 154747) ((-496 . -132) T) ((-486 . -107) 154697) ((-245 . -1129) 154675) ((-883 . -387) 154659) ((-883 . -348) 154643) ((-245 . -23) 154495) ((-40 . -627) 154425) ((-1079 . -935) T) ((-1079 . -831) T) ((-592 . -378) T) ((-529 . -378) T) ((-1298 . -525) 154358) ((-1277 . -567) 154337) ((-1270 . -1239) 154316) ((-361 . -1169) T) ((-336 . -34) T) ((-44 . -428) 154300) ((-1199 . -627) 154236) ((-884 . -1235) T) ((-401 . -755) 154220) ((-1270 . -567) 154171) ((-1269 . -1235) T) ((-1159 . -657) 154130) ((-742 . -132) T) ((-683 . -627) 154114) ((-1249 . -1239) 154093) ((-1249 . -567) 154044) ((-1248 . -1235) T) ((-1248 . -898) 153917) ((-1248 . -896) 153887) ((-1192 . -132) T) ((-320 . -1100) T) ((-1191 . -132) T) ((-748 . -525) 153820) ((-1185 . -132) T) ((-1143 . -132) T) ((-905 . -1117) T) ((-145 . -855) T) ((-1041 . -1019) T) ((-702 . -624) 153802) ((-1021 . -23) T) ((-534 . -318) 153740) ((-1021 . -1129) T) ((-142 . -525) NIL) ((-877 . -657) 153685) ((-1020 . -359) NIL) ((-988 . -23) T) ((-929 . -1129) T) ((-361 . -38) 153650) ((-929 . -23) T) ((-883 . -913) 153609) ((-82 . -624) 153591) ((-40 . -1066) T) ((-881 . -1073) 153578) ((-881 . -111) 153563) ((-712 . -102) T) ((-705 . -624) 153545) ((-613 . -1235) T) ((-607 . -567) 153524) ((-438 . -1129) T) ((-349 . -1068) 153508) ((-215 . -1117) T) ((-176 . -1068) 153440) ((-485 . -47) 153410) ((-40 . -238) 153382) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-606 . -567) 153361) ((-349 . -651) 153345) ((-705 . -625) 153253) ((-325 . -525) 153219) ((-176 . -651) 153151) ((-322 . -525) 153043) ((-498 . -234) 153030) ((-1269 . -1055) 153014) ((-1248 . -1055) 152800) ((-1016 . -422) 152784) ((-219 . -234) 152771) ((-438 . -23) T) ((-1137 . -174) T) ((-1271 . -299) T) ((-665 . -728) 152741) ((-145 . -1117) T) ((-48 . -1019) T) ((-418 . -271) 152725) ((-418 . -232) 152709) ((-304 . -240) 152659) ((-882 . -935) T) ((-882 . -831) NIL) ((-881 . -627) 152631) ((-875 . -861) T) ((-1248 . -348) 152601) ((-1248 . -387) 152571) ((-1097 . -237) 152450) ((-224 . -1138) 152434) ((-303 . -915) 152393) ((-1285 . -297) 152370) ((-369 . -237) 152349) ((-363 . -237) 152328) ((-485 . -1235) T) ((-355 . -237) 152307) ((-108 . -237) T) ((-1229 . -659) 152232) ((-1020 . -657) 152162) ((-978 . -21) T) ((-978 . -25) T) ((-746 . -21) T) ((-746 . -25) T) ((-726 . -21) T) ((-726 . -25) T) ((-722 . -659) 152127) ((-464 . -21) T) ((-464 . -25) T) ((-349 . -102) T) ((-176 . -102) T) ((-1016 . -1075) T) ((-881 . -1066) T) ((-785 . -102) T) ((-1270 . -373) 152106) ((-1269 . -913) 152012) ((-1249 . -373) 151991) ((-1248 . -913) 151842) ((-1041 . -624) 151824) ((-418 . -839) 151777) ((-1192 . -504) 151743) ((-171 . -935) 151674) ((-1191 . -504) 151640) ((-1185 . -504) 151606) ((-723 . -1117) T) ((-1143 . -504) 151572) ((-591 . -1073) 151559) ((-575 . -1073) 151546) ((-506 . -1073) 151511) ((-325 . -299) 151490) ((-322 . -299) T) ((-364 . -624) 151472) ((-429 . -25) T) ((-429 . -21) T) ((-99 . -295) 151451) ((-591 . -111) 151436) ((-575 . -111) 151421) ((-506 . -111) 151377) ((-1194 . -898) 151344) ((-916 . -500) 151328) ((-48 . -624) 151310) ((-48 . -625) 151255) ((-245 . -132) 151126) ((-1308 . -657) 151085) ((-1258 . -935) 151064) ((-827 . -1239) 151043) ((-399 . -501) 151024) ((-1052 . -525) 150868) ((-399 . -624) 150834) ((-827 . -567) 150765) ((-597 . -659) 150740) ((-272 . -47) 150712) ((-252 . -47) 150669) ((-542 . -520) 150646) ((-591 . -627) 150618) ((-575 . -627) 150590) ((-506 . -627) 150523) ((-1091 . -1235) T) ((-1017 . -1235) T) ((-1277 . -23) T) ((-1277 . -1129) T) ((-1270 . -1129) T) ((-710 . -1073) 150488) ((-1270 . -23) T) ((-1249 . -1129) T) ((-1249 . -23) T) ((-1229 . -737) T) ((-1137 . -299) T) ((-1020 . -380) 150460) ((-112 . -378) T) ((-485 . -913) 150366) ((-1130 . -237) 150263) ((-919 . -624) 150245) ((-55 . -627) 150227) ((-91 . -107) 150211) ((-1021 . -132) T) ((-920 . -861) 150162) ((-712 . -1169) T) ((-710 . -111) 150118) ((-854 . -657) 150035) ((-607 . -1129) T) ((-606 . -1129) T) ((-723 . -728) 149864) ((-722 . -737) T) ((-988 . -132) T) ((-929 . -132) T) ((-498 . -861) T) ((-810 . -25) T) ((-810 . -21) T) ((-591 . -1066) T) ((-219 . -861) T) ((-418 . -657) 149801) ((-575 . -1066) T) ((-547 . -1235) T) ((-506 . -1066) T) ((-607 . -23) T) ((-353 . -1304) 149778) ((-328 . -463) 149757) ((-349 . -318) 149744) ((-606 . -23) T) ((-438 . -132) T) ((-669 . -659) 149718) ((-250 . -1027) 149702) ((-883 . -316) T) ((-1309 . -1299) 149686) ((-782 . -803) T) ((-782 . -806) T) ((-712 . -38) 149673) ((-575 . -238) T) ((-506 . -248) T) ((-506 . -238) T) ((-1167 . -240) 149623) ((-1104 . -924) 149602) ((-117 . -38) 149589) ((-211 . -811) T) ((-210 . -811) T) ((-209 . -811) T) ((-208 . -811) T) ((-883 . -1039) 149567) ((-1298 . -500) 149551) ((-793 . -924) 149530) ((-791 . -924) 149509) ((-1207 . -1235) T) ((-365 . -1235) 149488) ((-362 . -1235) 149467) ((-354 . -1235) 149446) ((-272 . -1235) T) ((-252 . -1235) T) ((-465 . -924) 149425) ((-748 . -500) 149409) ((-1104 . -659) 149298) ((-710 . -627) 149233) ((-793 . -659) 149122) ((-634 . -1073) 149109) ((-490 . -1235) T) ((-353 . -378) T) ((-142 . -500) 149091) ((-791 . -659) 148980) ((-1158 . -1235) T) ((-560 . -861) T) ((-472 . -659) 148951) ((-272 . -898) 148810) ((-252 . -898) NIL) ((-118 . -1073) 148755) ((-465 . -659) 148644) ((-675 . -1055) 148621) ((-634 . -111) 148606) ((-401 . -1068) 148590) ((-365 . -1055) 148574) ((-362 . -1055) 148558) ((-354 . -1055) 148542) ((-272 . -1055) 148386) ((-252 . -1055) 148262) ((-925 . -1235) T) ((-118 . -111) 148191) ((-59 . -1235) T) ((-401 . -651) 148175) ((-632 . -1068) 148159) ((-530 . -1235) T) ((-527 . -1235) T) ((-508 . -1235) T) ((-507 . -1235) T) ((-448 . -624) 148141) ((-445 . -624) 148123) ((-632 . -651) 148107) ((-3 . -102) T) ((-1044 . -1228) 148076) ((-844 . -102) T) ((-700 . -57) 148034) ((-710 . -1066) T) ((-646 . -657) 148003) ((-618 . -657) 147972) ((-50 . -659) 147946) ((-298 . -463) T) ((-487 . -1228) 147915) ((0 . -102) T) ((-592 . -659) 147880) ((-529 . -659) 147825) ((-49 . -102) T) ((-925 . -1055) 147812) ((-710 . -248) T) ((-1097 . -420) 147791) ((-742 . -650) 147739) ((-1016 . -1117) T) ((-723 . -174) 147630) ((-634 . -627) 147525) ((-498 . -1009) 147507) ((-429 . -234) 147452) ((-272 . -387) 147436) ((-252 . -387) 147420) ((-410 . -1117) T) ((-1043 . -102) 147398) ((-349 . -38) 147382) ((-219 . -1009) 147364) ((-118 . -627) 147294) ((-176 . -38) 147226) ((-1269 . -316) 147205) ((-1248 . -316) 147184) ((-669 . -737) T) ((-99 . -624) 147166) ((-488 . -1068) 147131) ((-1185 . -650) 147083) ((-488 . -651) 147048) ((-496 . -25) T) ((-496 . -21) T) ((-1248 . -1039) 147000) ((-1074 . -1235) T) ((-634 . -1066) T) ((-389 . -415) T) ((-401 . -102) T) ((-1122 . -629) 146915) ((-272 . -913) 146861) ((-252 . -913) 146838) ((-118 . -1066) T) ((-827 . -1129) T) ((-1104 . -737) T) ((-634 . -238) 146817) ((-632 . -102) T) ((-793 . -737) T) ((-791 . -737) T) ((-424 . -1129) T) ((-118 . -248) T) ((-40 . -378) NIL) ((-118 . -238) NIL) ((-1240 . -861) T) ((-465 . -737) T) ((-827 . -23) T) ((-742 . -25) T) ((-742 . -21) T) ((-681 . -908) 146738) ((-1094 . -295) 146717) ((-78 . -407) T) ((-78 . -406) T) ((-544 . -778) 146699) ((-705 . -1073) 146649) ((-1310 . -102) T) ((-1277 . -132) T) ((-1270 . -132) T) ((-1249 . -132) T) ((-1192 . -25) T) ((-1159 . -422) 146633) ((-646 . -377) 146565) ((-618 . -377) 146497) ((-1174 . -1166) 146481) ((-103 . -1117) 146459) ((-1192 . -21) T) ((-1191 . -21) T) ((-876 . -624) 146441) ((-1016 . -728) 146389) ((-225 . -659) 146356) ((-705 . -111) 146290) ((-50 . -737) T) ((-1191 . -25) T) ((-361 . -359) T) ((-1185 . -21) T) ((-1097 . -463) 146241) ((-1185 . -25) T) ((-723 . -525) 146188) ((-592 . -737) T) ((-529 . -737) T) ((-1143 . -21) T) ((-1143 . -25) T) ((-607 . -132) T) ((-606 . -132) T) ((-303 . -657) 145923) ((-493 . -237) 145820) ((-369 . -463) T) ((-363 . -463) T) ((-355 . -463) T) ((-485 . -316) 145799) ((-1243 . -102) T) ((-322 . -295) 145734) ((-108 . -463) T) ((-79 . -452) T) ((-79 . -406) T) ((-488 . -102) T) ((-702 . -627) 145718) ((-1314 . -624) 145700) ((-1314 . -625) 145682) ((-1097 . -413) 145661) ((-1052 . -500) 145592) ((-137 . -295) 145569) ((-575 . -806) T) ((-575 . -803) T) ((-1080 . -240) 145515) ((-369 . -413) 145466) ((-363 . -413) 145417) ((-355 . -413) 145368) ((-1300 . -1129) T) ((-1309 . -1068) 145352) ((-391 . -1068) 145336) ((-1309 . -651) 145306) ((-829 . -237) T) ((-391 . -651) 145276) ((-705 . -627) 145211) ((-1300 . -23) T) ((-1287 . -102) T) ((-349 . -915) 145192) ((-177 . -624) 145174) ((-1159 . -1075) T) ((-558 . -378) T) ((-681 . -755) 145158) ((-1196 . -146) 145137) ((-1196 . -148) 145116) ((-1163 . -1117) T) ((-1163 . -1088) 145085) ((-69 . -1235) T) ((-1041 . -1073) 145022) ((-361 . -657) 144952) ((-877 . -1075) T) ((-245 . -650) 144858) ((-705 . -1066) T) ((-364 . -1073) 144803) ((-61 . -1235) T) ((-1041 . -111) 144719) ((-916 . -624) 144630) ((-705 . -248) T) ((-705 . -238) NIL) ((-854 . -859) 144609) ((-710 . -806) T) ((-710 . -803) T) ((-1020 . -422) 144586) ((-364 . -111) 144515) ((-389 . -935) T) ((-418 . -859) 144494) ((-723 . -299) 144405) ((-225 . -737) T) ((-1277 . -504) 144371) ((-1270 . -504) 144337) ((-1249 . -504) 144303) ((-589 . -1117) T) ((-325 . -1019) 144282) ((-224 . -1117) 144260) ((-1242 . -855) T) ((-328 . -990) 144222) ((-105 . -102) T) ((-48 . -1073) 144187) ((-1309 . -102) T) ((-391 . -102) T) ((-48 . -111) 144143) ((-826 . -908) 144010) ((-1021 . -650) 143992) ((-1271 . -624) 143974) ((-542 . -102) T) ((-511 . -102) T) ((-1150 . -1151) 143958) ((-153 . -1292) 143942) ((-250 . -1235) T) ((-1234 . -102) T) ((-1041 . -627) 143879) ((-828 . -237) T) ((-1190 . -1239) 143858) ((-364 . -627) 143788) ((-1142 . -1239) 143767) ((-245 . -25) 143600) ((-245 . -21) 143511) ((-128 . -120) 143495) ((-122 . -120) 143479) ((-44 . -755) 143463) ((-1190 . -567) 143374) ((-1142 . -567) 143305) ((-1242 . -1117) T) ((-1052 . -295) 143280) ((-1184 . -1100) T) ((-1011 . -1100) T) ((-827 . -132) T) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-365 . -316) T) ((-362 . -316) T) ((-354 . -316) T) ((-257 . -1129) 143258) ((-256 . -1129) 143236) ((-1041 . -1066) T) ((-1020 . -1075) T) ((-48 . -627) 143169) ((-353 . -659) 143114) ((-1298 . -624) 143076) ((-632 . -38) 143060) ((-1298 . -625) 143021) ((-1192 . -234) 142974) ((-1094 . -624) 142956) ((-1041 . -248) T) ((-364 . -1066) T) ((-826 . -1292) 142926) ((-257 . -23) T) ((-256 . -23) T) ((-1004 . -624) 142908) ((-1191 . -234) 142854) ((-1185 . -234) 142671) ((-748 . -625) 142632) ((-748 . -624) 142614) ((-1177 . -152) 142561) ((-810 . -861) 142540) ((-1021 . -25) T) ((-1016 . -525) 142452) ((-364 . -238) T) ((-364 . -248) T) ((-399 . -627) 142433) ((-925 . -316) T) ((-142 . -624) 142415) ((-142 . -625) 142374) ((-328 . -908) 142278) ((-1021 . -21) T) ((-988 . -25) T) ((-929 . -21) T) ((-929 . -25) T) ((-438 . -21) T) ((-438 . -25) T) ((-854 . -422) 142262) ((-48 . -1066) T) ((-1307 . -1299) 142246) ((-1305 . -1299) 142230) ((-1052 . -615) 142205) ((-325 . -625) 142066) ((-325 . -624) 142048) ((-322 . -625) NIL) ((-322 . -624) 142030) ((-48 . -248) T) ((-48 . -238) T) ((-665 . -295) 141991) ((-561 . -240) 141941) ((-140 . -624) 141908) ((-137 . -624) 141890) ((-115 . -624) 141872) ((-488 . -38) 141837) ((-1309 . -1306) 141816) ((-1300 . -132) T) ((-1308 . -1075) T) ((-1099 . -102) T) ((-88 . -1235) T) ((-511 . -318) NIL) ((-1017 . -107) 141800) ((-901 . -1117) T) ((-897 . -1117) T) ((-1285 . -662) 141784) ((-1285 . -383) 141768) ((-336 . -1235) T) ((-604 . -861) T) ((-1159 . -1117) T) ((-1159 . -1070) 141708) ((-103 . -525) 141641) ((-942 . -624) 141623) ((-353 . -737) T) ((-30 . -624) 141605) ((-877 . -1117) T) ((-854 . -1075) 141584) ((-40 . -659) 141491) ((-227 . -1239) T) ((-418 . -1075) T) ((-1176 . -152) 141473) ((-1016 . -299) 141424) ((-628 . -1117) T) ((-227 . -567) T) ((-328 . -1266) 141408) ((-328 . -1263) 141378) ((-712 . -657) 141350) ((-1207 . -1211) 141329) ((-1092 . -624) 141311) ((-1207 . -107) 141261) ((-658 . -152) 141245) ((-643 . -152) 141191) ((-117 . -657) 141163) ((-490 . -1211) 141142) ((-498 . -148) T) ((-498 . -146) NIL) ((-1137 . -625) 141057) ((-449 . -624) 141039) ((-219 . -148) T) ((-219 . -146) NIL) ((-1137 . -624) 141021) ((-130 . -102) T) ((-52 . -102) T) ((-1249 . -650) 140973) ((-490 . -107) 140923) ((-1010 . -23) T) ((-1309 . -38) 140893) ((-1190 . -1129) T) ((-1142 . -1129) T) ((-1079 . -1239) T) ((-245 . -234) 140784) ((-320 . -102) T) ((-865 . -1129) T) ((-967 . -1239) 140763) ((-492 . -1239) 140742) ((-1079 . -567) T) ((-967 . -567) 140673) ((-1190 . -23) T) ((-1168 . -1100) T) ((-1142 . -23) T) ((-865 . -23) T) ((-492 . -567) 140604) ((-1159 . -728) 140536) ((-681 . -1068) 140520) ((-1163 . -525) 140453) ((-681 . -651) 140437) ((-1052 . -625) NIL) ((-1052 . -624) 140419) ((-96 . -1100) T) ((-1314 . -1073) 140406) ((-877 . -728) 140376) ((-1314 . -111) 140361) ((-1229 . -47) 140330) ((-1185 . -861) NIL) ((-257 . -132) T) ((-256 . -132) T) ((-1121 . -1117) T) ((-1020 . -1117) T) ((-62 . -624) 140312) ((-1097 . -908) 140181) ((-1041 . -803) T) ((-1041 . -806) T) ((-1277 . -25) T) ((-1277 . -21) T) ((-1270 . -21) T) ((-1270 . -25) T) ((-881 . -659) 140168) ((-1249 . -21) T) ((-1249 . -25) T) ((-1044 . -152) 140152) ((-1021 . -234) 140139) ((-883 . -831) 140118) ((-883 . -935) T) ((-723 . -295) 140045) ((-607 . -21) T) ((-349 . -657) 140004) ((-108 . -908) NIL) ((-607 . -25) T) ((-606 . -21) T) ((-176 . -657) 139921) ((-40 . -737) T) ((-224 . -525) 139854) ((-606 . -25) T) ((-487 . -152) 139838) ((-474 . -152) 139822) ((-936 . -805) T) ((-936 . -737) T) ((-782 . -804) T) ((-782 . -805) T) ((-517 . -1117) T) ((-513 . -1117) T) ((-782 . -737) T) ((-227 . -373) T) ((-1307 . -1068) 139806) ((-1305 . -1068) 139790) ((-1307 . -651) 139760) ((-1174 . -1117) 139738) ((-882 . -1239) T) ((-1305 . -651) 139708) ((-665 . -624) 139690) ((-882 . -567) T) ((-705 . -378) NIL) ((-44 . -1068) 139674) ((-1314 . -627) 139656) ((-1308 . -1117) T) ((-681 . -102) T) ((-369 . -1292) 139640) ((-363 . -1292) 139624) ((-44 . -651) 139608) ((-355 . -1292) 139592) ((-559 . -102) T) ((-1229 . -1235) T) ((-531 . -861) 139571) ((-498 . -237) T) ((-219 . -237) T) ((-1063 . -1117) T) ((-828 . -463) 139550) ((-153 . -1068) 139534) ((-1063 . -1088) 139463) ((-1044 . -993) 139432) ((-830 . -1129) T) ((-1020 . -728) 139377) ((-153 . -651) 139361) ((-397 . -1129) T) ((-487 . -993) 139330) ((-474 . -993) 139299) ((-110 . -152) 139281) ((-73 . -624) 139263) ((-905 . -624) 139245) ((-1097 . -735) 139224) ((-1314 . -1066) T) ((-827 . -650) 139172) ((-303 . -1075) 139114) ((-171 . -1239) 139019) ((-227 . -1129) T) ((-333 . -23) T) ((-1185 . -1009) 138971) ((-854 . -1117) T) ((-1271 . -1073) 138876) ((-1143 . -751) 138855) ((-1269 . -935) 138834) ((-1248 . -935) 138813) ((-881 . -737) T) ((-171 . -567) 138724) ((-591 . -659) 138711) ((-575 . -659) 138683) ((-418 . -1117) T) ((-269 . -1117) T) ((-215 . -624) 138665) ((-506 . -659) 138615) ((-227 . -23) T) ((-1248 . -831) 138568) ((-1307 . -102) T) ((-364 . -1304) 138545) ((-1305 . -102) T) ((-1271 . -111) 138437) ((-1130 . -908) 138304) ((-826 . -1068) 138205) ((-826 . -651) 138127) ((-145 . -624) 138109) ((-1010 . -132) T) ((-44 . -102) T) ((-245 . -861) 138060) ((-1258 . -1239) 138039) ((-103 . -500) 138023) ((-1308 . -728) 137993) ((-1104 . -47) 137954) ((-1079 . -1129) T) ((-967 . -1129) T) ((-128 . -34) T) ((-122 . -34) T) ((-793 . -47) 137931) ((-791 . -47) 137903) ((-1258 . -567) 137814) ((-364 . -378) T) ((-492 . -1129) T) ((-1190 . -132) T) ((-1142 . -132) T) ((-465 . -47) 137793) ((-882 . -373) T) ((-865 . -132) T) ((-153 . -102) T) ((-1079 . -23) T) ((-967 . -23) T) ((-582 . -567) T) ((-827 . -25) T) ((-827 . -21) T) ((-1159 . -525) 137726) ((-603 . -1100) T) ((-597 . -1055) 137710) ((-1271 . -627) 137584) ((-492 . -23) T) ((-361 . -1075) T) ((-1229 . -913) 137565) ((-681 . -318) 137503) ((-1130 . -1292) 137473) ((-710 . -659) 137438) ((-1021 . -861) T) ((-1020 . -174) T) ((-978 . -146) 137417) ((-646 . -1117) T) ((-618 . -1117) T) ((-978 . -148) 137396) ((-746 . -148) 137375) ((-746 . -146) 137354) ((-669 . -1235) T) ((-988 . -861) T) ((-1277 . -234) 137307) ((-1270 . -234) 137253) ((-1249 . -234) 137070) ((-844 . -657) 136987) ((-485 . -935) 136966) ((-328 . -1068) 136801) ((-325 . -1073) 136711) ((-322 . -1073) 136640) ((-1016 . -295) 136598) ((-418 . -728) 136550) ((-328 . -651) 136391) ((-606 . -234) 136344) ((-712 . -859) T) ((-1271 . -1066) T) ((-325 . -111) 136240) ((-322 . -111) 136153) ((-979 . -102) T) ((-826 . -102) 135905) ((-723 . -625) NIL) ((-723 . -624) 135887) ((-1271 . -335) 135831) ((-669 . -1055) 135727) ((-1104 . -1235) T) ((-1052 . -297) 135702) ((-591 . -737) T) ((-575 . -805) T) ((-171 . -373) 135653) ((-575 . -802) T) ((-575 . -737) T) ((-506 . -737) T) ((-793 . -1235) T) ((-791 . -1235) T) ((-1163 . -500) 135637) ((-465 . -1235) T) ((-1104 . -898) NIL) ((-882 . -1129) T) ((-118 . -924) NIL) ((-1307 . -1306) 135613) ((-1305 . -1306) 135592) ((-793 . -898) NIL) ((-791 . -898) 135451) ((-1300 . -25) T) ((-1300 . -21) T) ((-1232 . -102) 135429) ((-1123 . -406) T) ((-634 . -659) 135416) ((-465 . -898) NIL) ((-686 . -102) 135394) ((-1104 . -1055) 135221) ((-882 . -23) T) ((-793 . -1055) 135080) ((-791 . -1055) 134937) ((-118 . -659) 134882) ((-465 . -1055) 134758) ((-325 . -627) 134322) ((-322 . -627) 134205) ((-401 . -657) 134174) ((-660 . -1055) 134158) ((-638 . -102) T) ((-592 . -1235) T) ((-529 . -1235) T) ((-224 . -500) 134142) ((-1285 . -34) T) ((-632 . -657) 134101) ((-298 . -1068) 134088) ((-137 . -627) 134072) ((-298 . -651) 134059) ((-646 . -728) 134043) ((-618 . -728) 134027) ((-681 . -38) 133987) ((-328 . -102) T) ((-85 . -624) 133969) ((-50 . -1055) 133953) ((-1137 . -1073) 133940) ((-1104 . -387) 133924) ((-793 . -387) 133908) ((-710 . -737) T) ((-710 . -805) T) ((-710 . -802) T) ((-592 . -1055) 133895) ((-529 . -1055) 133872) ((-60 . -57) 133834) ((-333 . -132) T) ((-325 . -1066) 133724) ((-322 . -1066) T) ((-171 . -1129) T) ((-791 . -387) 133708) ((-45 . -152) 133658) ((-1021 . -1009) 133640) ((-465 . -387) 133624) ((-418 . -174) T) ((-325 . -248) 133603) ((-322 . -248) T) ((-322 . -238) NIL) ((-303 . -1117) 133385) ((-227 . -132) T) ((-1137 . -111) 133370) ((-171 . -23) T) ((-810 . -148) 133349) ((-810 . -146) 133328) ((-257 . -650) 133234) ((-256 . -650) 133140) ((-328 . -293) 133106) ((-1174 . -525) 133039) ((-488 . -657) 132989) ((-493 . -908) 132856) ((-1150 . -1117) T) ((-227 . -1077) T) ((-826 . -318) 132794) ((-1104 . -913) 132729) ((-793 . -913) 132672) ((-791 . -913) 132656) ((-1307 . -38) 132626) ((-1305 . -38) 132596) ((-1258 . -1129) T) ((-866 . -1129) T) ((-465 . -913) 132573) ((-869 . -1117) T) ((-1258 . -23) T) ((-1137 . -627) 132545) ((-1079 . -132) T) ((-582 . -1129) T) ((-866 . -23) T) ((-634 . -737) T) ((-365 . -935) T) ((-362 . -935) T) ((-298 . -102) T) ((-354 . -935) T) ((-987 . -1100) T) ((-967 . -132) T) ((-827 . -234) 132490) ((-118 . -805) NIL) ((-118 . -802) NIL) ((-118 . -737) T) ((-1063 . -525) 132391) ((-705 . -924) NIL) ((-582 . -23) T) ((-492 . -132) T) ((-429 . -237) 132342) ((-686 . -318) 132280) ((-646 . -772) T) ((-618 . -772) T) ((-1249 . -861) NIL) ((-1097 . -1068) 132190) ((-1020 . -299) T) ((-705 . -659) 132140) ((-257 . -25) T) ((-361 . -1117) T) ((-257 . -21) T) ((-256 . -25) T) ((-256 . -21) T) ((-153 . -38) 132124) ((-2 . -102) T) ((-925 . -935) T) ((-1097 . -651) 131992) ((-493 . -1292) 131962) ((-1137 . -1066) T) ((-722 . -316) T) ((-369 . -1068) 131914) ((-363 . -1068) 131866) ((-355 . -1068) 131818) ((-369 . -651) 131770) ((-225 . -1055) 131747) ((-363 . -651) 131699) ((-108 . -1068) 131649) ((-355 . -651) 131601) ((-303 . -728) 131543) ((-712 . -1075) T) ((-498 . -463) T) ((-418 . -525) 131455) ((-108 . -651) 131405) ((-219 . -463) T) ((-1137 . -238) T) ((-304 . -152) 131355) ((-1016 . -625) 131316) ((-1016 . -624) 131298) ((-1006 . -624) 131280) ((-117 . -1075) T) ((-665 . -1073) 131264) ((-227 . -504) T) ((-410 . -624) 131246) ((-410 . -625) 131223) ((-1071 . -1292) 131193) ((-665 . -111) 131172) ((-681 . -915) 131095) ((-1159 . -500) 131079) ((-1309 . -657) 131038) ((-391 . -657) 131007) ((-63 . -452) T) ((-63 . -406) T) ((-1177 . -102) T) ((-882 . -132) T) ((-495 . -102) 130985) ((-1314 . -378) T) ((-1097 . -102) T) ((-1078 . -102) T) ((-361 . -728) 130930) ((-742 . -148) 130909) ((-742 . -146) 130888) ((-665 . -627) 130806) ((-1041 . -659) 130743) ((-534 . -1117) 130721) ((-369 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-108 . -102) T) ((-515 . -1117) T) ((-364 . -659) 130666) ((-1190 . -650) 130614) ((-1142 . -650) 130562) ((-395 . -520) 130541) ((-844 . -859) 130520) ((-389 . -1239) T) ((-705 . -737) T) ((-1249 . -1009) 130472) ((-349 . -1075) T) ((-112 . -1235) T) ((-176 . -1075) T) ((-103 . -624) 130404) ((-1192 . -146) 130383) ((-1192 . -148) 130362) ((-389 . -567) T) ((-1191 . -148) 130341) ((-1191 . -146) 130320) ((-1185 . -146) 130227) ((-418 . -299) T) ((-1185 . -148) 130134) ((-1143 . -148) 130113) ((-1143 . -146) 130092) ((-328 . -38) 129933) ((-171 . -132) T) ((-322 . -806) NIL) ((-322 . -803) NIL) ((-665 . -1066) T) ((-48 . -659) 129883) ((-1130 . -1068) 129784) ((-905 . -627) 129761) ((-1130 . -651) 129683) ((-1184 . -102) T) ((-1011 . -102) T) ((-1010 . -21) T) ((-128 . -1027) 129667) ((-122 . -1027) 129651) ((-1010 . -25) T) ((-916 . -120) 129635) ((-1176 . -102) T) ((-1258 . -132) T) ((-1190 . -25) T) ((-353 . -1235) T) ((-1190 . -21) T) ((-866 . -132) T) ((-1142 . -25) T) ((-1142 . -21) T) ((-865 . -25) T) ((-865 . -21) T) ((-793 . -316) 129614) ((-1177 . -318) 129409) ((-1174 . -500) 129393) ((-1167 . -152) 129343) ((-658 . -102) 129321) ((-643 . -102) T) ((-1163 . -624) 129283) ((-582 . -132) T) ((-632 . -859) 129262) ((-1163 . -625) 129223) ((-1041 . -802) T) ((-1041 . -805) T) ((-1041 . -737) T) ((-826 . -915) 129092) ((-723 . -1073) 128915) ((-495 . -318) 128853) ((-464 . -428) 128823) ((-361 . -174) T) ((-298 . -38) 128810) ((-257 . -234) 128701) ((-256 . -234) 128592) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-277 . -102) T) ((-353 . -1055) 128569) ((-276 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-723 . -111) 128378) ((-364 . -737) T) ((-681 . -271) 128362) ((-681 . -232) 128346) ((-592 . -316) T) ((-529 . -316) T) ((-303 . -525) 128295) ((-108 . -318) NIL) ((-72 . -406) T) ((-1130 . -102) 128047) ((-844 . -422) 128031) ((-1137 . -806) T) ((-1137 . -803) T) ((-712 . -1117) T) ((-589 . -624) 128013) ((-389 . -373) T) ((-171 . -504) 127991) ((-224 . -624) 127923) ((-135 . -1117) T) ((-117 . -1117) T) ((-981 . -1235) T) ((-48 . -737) T) ((-1063 . -500) 127888) ((-142 . -436) 127870) ((-142 . -378) T) ((-1044 . -102) T) ((-523 . -520) 127849) ((-723 . -627) 127605) ((-1192 . -237) 127564) ((-487 . -102) T) ((-474 . -102) T) ((-1191 . -237) 127516) ((-1185 . -237) 127339) ((-1051 . -1129) T) ((-328 . -915) 127245) ((-1242 . -624) 127227) ((-1199 . -1055) 127163) ((-1192 . -35) 127129) ((-1192 . -95) 127095) ((-1192 . -1223) 127061) ((-1192 . -1220) 127027) ((-1191 . -1220) 126993) ((-1191 . -1223) 126959) ((-1176 . -318) NIL) ((-89 . -407) T) ((-89 . -406) T) ((-1097 . -1169) 126938) ((-40 . -1235) T) ((-1191 . -95) 126904) ((-1051 . -23) T) ((-1191 . -35) 126870) ((-582 . -504) T) ((-1185 . -1220) 126836) ((-1185 . -1223) 126802) ((-1185 . -95) 126768) ((-1185 . -35) 126734) ((-371 . -1129) T) ((-369 . -1169) 126713) ((-363 . -1169) 126692) ((-355 . -1169) 126671) ((-1121 . -295) 126627) ((-1143 . -35) 126593) ((-1143 . -95) 126559) ((-108 . -1169) T) ((-1143 . -1223) 126525) ((-844 . -1075) 126504) ((-658 . -318) 126442) ((-643 . -318) 126293) ((-1143 . -1220) 126259) ((-723 . -1066) T) ((-1079 . -650) 126241) ((-1097 . -38) 126109) ((-967 . -650) 126057) ((-1021 . -148) T) ((-1021 . -146) NIL) ((-389 . -1129) T) ((-333 . -25) T) ((-331 . -23) T) ((-958 . -861) 126036) ((-723 . -335) 126013) ((-492 . -650) 125961) ((-40 . -1055) 125849) ((-723 . -238) T) ((-712 . -728) 125836) ((-349 . -1117) T) ((-176 . -1117) T) ((-340 . -861) T) ((-429 . -463) 125786) ((-389 . -23) T) ((-369 . -38) 125751) ((-363 . -38) 125716) ((-355 . -38) 125681) ((-80 . -452) T) ((-80 . -406) T) ((-227 . -25) T) ((-227 . -21) T) ((-847 . -1129) T) ((-108 . -38) 125631) ((-838 . -1129) T) ((-785 . -1117) T) ((-117 . -728) 125618) ((-683 . -1055) 125602) ((-623 . -102) T) ((-847 . -23) T) ((-838 . -23) T) ((-1174 . -295) 125554) ((-1130 . -318) 125492) ((-493 . -1068) 125393) ((-1119 . -240) 125377) ((-64 . -407) T) ((-64 . -406) T) ((-1168 . -102) T) ((-110 . -102) T) ((-493 . -651) 125299) ((-40 . -387) 125276) ((-96 . -102) T) ((-664 . -863) 125260) ((-1190 . -234) 125247) ((-1152 . -1100) T) ((-1079 . -21) T) ((-1079 . -25) T) ((-1071 . -1068) 125231) ((-826 . -271) 125200) ((-826 . -232) 125169) ((-967 . -25) T) ((-967 . -21) T) ((-1071 . -651) 125111) ((-632 . -1075) T) ((-1137 . -378) T) ((-1044 . -318) 125049) ((-681 . -657) 125008) ((-492 . -25) T) ((-492 . -21) T) ((-395 . -1068) 124992) ((-901 . -624) 124974) ((-897 . -624) 124956) ((-534 . -525) 124889) ((-257 . -861) 124840) ((-256 . -861) 124791) ((-395 . -651) 124761) ((-882 . -650) 124738) ((-487 . -318) 124676) ((-474 . -318) 124614) ((-361 . -299) T) ((-1174 . -1273) 124598) ((-1159 . -624) 124560) ((-1159 . -625) 124521) ((-1157 . -102) T) ((-1016 . -1073) 124417) ((-40 . -913) 124369) ((-1174 . -615) 124346) ((-1314 . -659) 124333) ((-1080 . -152) 124279) ((-498 . -908) NIL) ((-877 . -501) 124256) ((-1016 . -111) 124138) ((-883 . -1239) T) ((-219 . -908) NIL) ((-349 . -728) 124122) ((-877 . -624) 124084) ((-176 . -728) 124016) ((-883 . -567) T) ((-418 . -295) 123974) ((-245 . -237) 123871) ((-108 . -411) 123853) ((-84 . -394) T) ((-84 . -406) T) ((-712 . -174) T) ((-628 . -624) 123835) ((-99 . -737) T) ((-493 . -102) 123587) ((-99 . -484) T) ((-117 . -174) T) ((-1307 . -657) 123546) ((-1305 . -657) 123505) ((-171 . -650) 123453) ((-1097 . -915) 123324) ((-1071 . -102) T) ((-1016 . -627) 123214) ((-882 . -25) T) ((-826 . -243) 123193) ((-882 . -21) T) ((-829 . -102) T) ((-44 . -657) 123136) ((-1021 . -237) T) ((-425 . -102) T) ((-395 . -102) T) ((-110 . -318) NIL) ((-229 . -102) 123114) ((-128 . -1235) T) ((-122 . -1235) T) ((-108 . -915) NIL) ((-828 . -1068) 123065) ((-828 . -651) 123007) ((-1051 . -132) T) ((-681 . -377) 122991) ((-153 . -657) 122950) ((-646 . -295) 122908) ((-618 . -295) 122866) ((-1314 . -737) T) ((-1016 . -1066) T) ((-1258 . -650) 122814) ((-1121 . -624) 122796) ((-1020 . -624) 122778) ((-575 . -1235) T) ((-506 . -1235) T) ((-526 . -23) T) ((-521 . -23) T) ((-353 . -316) T) ((-519 . -23) T) ((-331 . -132) T) ((-3 . -1117) T) ((-1020 . -625) 122762) ((-1016 . -248) 122741) ((-1016 . -238) 122720) ((-1277 . -146) 122699) ((-1277 . -148) 122678) ((-844 . -1117) T) ((-1270 . -148) 122657) ((-1270 . -146) 122636) ((-1269 . -1239) 122615) ((-1249 . -146) 122522) ((-1249 . -148) 122429) ((-1248 . -1239) 122408) ((-389 . -132) T) ((-227 . -234) 122395) ((-575 . -898) 122377) ((0 . -1117) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1117) T) ((-1271 . -659) 122282) ((-1269 . -567) 122233) ((-725 . -1129) T) ((-1248 . -567) 122184) ((-575 . -1055) 122166) ((-606 . -148) 122145) ((-606 . -146) 122124) ((-506 . -1055) 122067) ((-1152 . -1154) T) ((-87 . -394) T) ((-87 . -406) T) ((-883 . -373) T) ((-847 . -132) T) ((-838 . -132) T) ((-979 . -657) 122011) ((-725 . -23) T) ((-517 . -624) 121977) ((-513 . -624) 121959) ((-826 . -657) 121738) ((-1309 . -1075) T) ((-389 . -1077) T) ((-1043 . -1117) 121716) ((-55 . -1055) 121698) ((-916 . -34) T) ((-493 . -318) 121636) ((-603 . -102) T) ((-1174 . -625) 121597) ((-1174 . -624) 121529) ((-1196 . -1068) 121412) ((-45 . -102) T) ((-828 . -102) T) ((-1196 . -651) 121309) ((-1258 . -25) T) ((-1258 . -21) T) ((-1079 . -234) 121296) ((-866 . -25) T) ((-44 . -377) 121280) ((-866 . -21) T) ((-742 . -463) 121231) ((-1308 . -624) 121213) ((-1297 . -1068) 121183) ((-1071 . -318) 121121) ((-682 . -1100) T) ((-617 . -1100) T) ((-401 . -1117) T) ((-582 . -25) T) ((-582 . -21) T) ((-182 . -1100) T) ((-162 . -1100) T) ((-157 . -1100) T) ((-155 . -1100) T) ((-1297 . -651) 121091) ((-632 . -1117) T) ((-710 . -898) 121073) ((-1285 . -1235) T) ((-229 . -318) 121011) ((-145 . -378) T) ((-1063 . -625) 120953) ((-1063 . -624) 120896) ((-322 . -924) NIL) ((-1243 . -855) T) ((-1130 . -915) 120765) ((-710 . -1055) 120710) ((-722 . -935) T) ((-485 . -1239) 120689) ((-1191 . -463) 120668) ((-1185 . -463) 120647) ((-339 . -102) T) ((-883 . -1129) T) ((-328 . -657) 120529) ((-325 . -659) 120258) ((-322 . -659) 120187) ((-485 . -567) 120138) ((-349 . -525) 120104) ((-561 . -152) 120054) ((-40 . -316) T) ((-854 . -624) 120036) ((-712 . -299) T) ((-883 . -23) T) ((-389 . -504) T) ((-1097 . -271) 120006) ((-1097 . -232) 119976) ((-523 . -102) T) ((-418 . -625) 119783) ((-418 . -624) 119765) ((-269 . -624) 119747) ((-117 . -299) T) ((-1271 . -737) T) ((-634 . -1235) T) ((-1310 . -1117) T) ((-1269 . -373) 119726) ((-1248 . -373) 119705) ((-1298 . -34) T) ((-1243 . -1117) T) ((-118 . -1235) T) ((-108 . -271) 119687) ((-108 . -232) 119669) ((-1196 . -102) T) ((-488 . -1117) T) ((-534 . -500) 119653) ((-748 . -34) T) ((-664 . -1068) 119637) ((-664 . -651) 119607) ((-882 . -234) NIL) ((-142 . -34) T) ((-118 . -896) 119584) ((-118 . -898) NIL) ((-634 . -1055) 119467) ((-1297 . -102) T) ((-1277 . -237) 119426) ((-655 . -861) 119405) ((-1270 . -237) 119357) ((-1249 . -237) 119180) ((-304 . -102) T) ((-723 . -378) 119159) ((-118 . -1055) 119136) ((-401 . -728) 119120) ((-606 . -237) 119079) ((-632 . -728) 119063) ((-1122 . -1235) T) ((-45 . -318) 118867) ((-827 . -146) 118846) ((-827 . -148) 118825) ((-298 . -657) 118797) ((-1308 . -392) 118776) ((-830 . -861) T) ((-1287 . -1117) T) ((-1177 . -231) 118723) ((-397 . -861) 118702) ((-1277 . -35) 118668) ((-1277 . -1223) 118634) ((-1277 . -1220) 118600) ((-1270 . -1220) 118566) ((-526 . -132) T) ((-1270 . -1223) 118532) ((-1249 . -1220) 118498) ((-1249 . -1223) 118464) ((-1277 . -95) 118430) ((-1270 . -95) 118396) ((-429 . -908) 118317) ((-646 . -624) 118286) ((-618 . -624) 118255) ((-227 . -861) T) ((-1270 . -35) 118221) ((-1269 . -1129) T) ((-1249 . -95) 118187) ((-1137 . -659) 118159) ((-1249 . -35) 118125) ((-1248 . -1129) T) ((-604 . -152) 118107) ((-1097 . -359) 118086) ((-176 . -299) T) ((-118 . -387) 118063) ((-118 . -348) 118040) ((-171 . -234) 117965) ((-881 . -316) T) ((-322 . -805) NIL) ((-322 . -802) NIL) ((-325 . -737) 117814) ((-322 . -737) T) ((-485 . -373) 117793) ((-369 . -359) 117772) ((-363 . -359) 117751) ((-355 . -359) 117730) ((-325 . -484) 117709) ((-1269 . -23) T) ((-1248 . -23) T) ((-729 . -1129) T) ((-725 . -132) T) ((-664 . -102) T) ((-488 . -728) 117674) ((-45 . -291) 117624) ((-105 . -1117) T) ((-68 . -624) 117606) ((-987 . -102) T) ((-875 . -102) T) ((-634 . -913) 117565) ((-1309 . -1117) T) ((-391 . -1117) T) ((-1258 . -234) 117552) ((-1234 . -1117) T) ((-82 . -1235) T) ((-1130 . -271) 117521) ((-1079 . -861) T) ((-118 . -913) NIL) ((-793 . -935) 117500) ((-724 . -861) T) ((-542 . -1117) T) ((-511 . -1117) T) ((-365 . -1239) T) ((-362 . -1239) T) ((-354 . -1239) T) ((-272 . -1239) 117479) ((-252 . -1239) 117458) ((-544 . -871) T) ((-1130 . -232) 117427) ((-1176 . -839) T) ((-1159 . -1073) 117411) ((-401 . -772) T) ((-705 . -1235) T) ((-702 . -1055) 117395) ((-365 . -567) T) ((-362 . -567) T) ((-354 . -567) T) ((-272 . -567) 117326) ((-252 . -567) 117257) ((-536 . -1100) T) ((-1159 . -111) 117236) ((-464 . -755) 117206) ((-877 . -1073) 117176) ((-828 . -38) 117118) ((-705 . -896) 117100) ((-705 . -898) 117082) ((-304 . -318) 116886) ((-1174 . -297) 116863) ((-925 . -1239) T) ((-1097 . -657) 116758) ((-1021 . -463) T) ((-681 . -422) 116742) ((-877 . -111) 116707) ((-929 . -463) T) ((-705 . -1055) 116652) ((-925 . -567) T) ((-544 . -624) 116634) ((-592 . -935) T) ((-498 . -1068) 116584) ((-485 . -1129) T) ((-529 . -935) T) ((-493 . -915) 116453) ((-65 . -624) 116435) ((-219 . -1068) 116385) ((-498 . -651) 116335) ((-369 . -657) 116272) ((-363 . -657) 116209) ((-355 . -657) 116146) ((-643 . -231) 116092) ((-219 . -651) 116042) ((-108 . -657) 115992) ((-485 . -23) T) ((-1137 . -805) T) ((-883 . -132) T) ((-1137 . -802) T) ((-1300 . -1302) 115971) ((-1137 . -737) T) ((-665 . -659) 115945) ((-303 . -624) 115686) ((-1159 . -627) 115604) ((-1052 . -34) T) ((-827 . -237) 115555) ((-591 . -316) T) ((-575 . -316) T) ((-506 . -316) T) ((-1309 . -728) 115525) ((-705 . -387) 115507) ((-705 . -348) 115489) ((-488 . -174) T) ((-391 . -728) 115459) ((-877 . -627) 115394) ((-882 . -861) NIL) ((-575 . -1039) T) ((-506 . -1039) T) ((-1150 . -624) 115376) ((-1130 . -243) 115355) ((-216 . -102) T) ((-1167 . -102) T) ((-71 . -624) 115337) ((-1159 . -1066) T) ((-1196 . -38) 115234) ((-869 . -624) 115216) ((-575 . -556) T) ((-681 . -1075) T) ((-742 . -964) 115169) ((-364 . -1235) T) ((-1159 . -238) 115148) ((-1099 . -1117) T) ((-1051 . -25) T) ((-1051 . -21) T) ((-1020 . -1073) 115093) ((-920 . -102) T) ((-877 . -1066) T) ((-705 . -913) NIL) ((-365 . -338) 115077) ((-365 . -373) T) ((-362 . -338) 115061) ((-362 . -373) T) ((-354 . -338) 115045) ((-354 . -373) T) ((-498 . -102) T) ((-1297 . -38) 115015) ((-557 . -861) T) ((-534 . -698) 114965) ((-219 . -102) T) ((-1041 . -1055) 114845) ((-1020 . -111) 114774) ((-1192 . -990) 114743) ((-1191 . -990) 114705) ((-531 . -152) 114689) ((-1097 . -380) 114668) ((-361 . -624) 114650) ((-331 . -21) T) ((-364 . -1055) 114627) ((-331 . -25) T) ((-1185 . -990) 114596) ((-48 . -1235) T) ((-76 . -624) 114578) ((-1143 . -990) 114545) ((-710 . -316) T) ((-130 . -855) T) ((-925 . -373) T) ((-389 . -25) T) ((-389 . -21) T) ((-925 . -338) 114532) ((-86 . -624) 114514) ((-710 . -1039) T) ((-688 . -861) T) ((-1269 . -132) T) ((-1248 . -132) T) ((-916 . -1027) 114498) ((-847 . -21) T) ((-48 . -1055) 114441) ((-847 . -25) T) ((-838 . -25) T) ((-838 . -21) T) ((-1130 . -657) 114220) ((-1307 . -1075) T) ((-560 . -102) T) ((-1305 . -1075) T) ((-665 . -737) T) ((-1121 . -629) 114123) ((-1020 . -627) 114053) ((-1308 . -1073) 114037) ((-826 . -422) 114006) ((-103 . -120) 113990) ((-130 . -1117) T) ((-52 . -1117) T) ((-941 . -624) 113972) ((-882 . -1009) 113949) ((-834 . -102) T) ((-1308 . -111) 113928) ((-742 . -908) 113903) ((-664 . -38) 113873) ((-582 . -861) T) ((-365 . -1129) T) ((-362 . -1129) T) ((-354 . -1129) T) ((-272 . -1129) T) ((-252 . -1129) T) ((-1167 . -318) 113677) ((-1105 . -234) 113664) ((-634 . -316) 113643) ((-675 . -23) T) ((-535 . -1100) T) ((-320 . -1117) T) ((-493 . -271) 113612) ((-493 . -232) 113581) ((-153 . -1075) T) ((-365 . -23) T) ((-362 . -23) T) ((-354 . -23) T) ((-118 . -316) T) ((-272 . -23) T) ((-252 . -23) T) ((-1020 . -1066) T) ((-723 . -924) 113560) ((-1192 . -908) 113448) ((-1191 . -908) 113329) ((-1185 . -908) 113065) ((-1174 . -627) 113042) ((-1020 . -238) 113014) ((-1020 . -248) T) ((-1143 . -908) 112996) ((-118 . -1039) NIL) ((-925 . -1129) T) ((-1270 . -463) 112975) ((-1249 . -463) 112954) ((-534 . -624) 112886) ((-723 . -659) 112775) ((-418 . -1073) 112727) ((-515 . -624) 112709) ((-925 . -23) T) ((-498 . -318) NIL) ((-1308 . -627) 112665) ((-485 . -132) T) ((-219 . -318) NIL) ((-418 . -111) 112603) ((-826 . -1075) 112581) ((-748 . -1115) 112565) ((-1269 . -504) 112531) ((-1248 . -504) 112497) ((-559 . -855) T) ((-142 . -1115) 112479) ((-488 . -299) T) ((-1308 . -1066) T) ((-257 . -237) 112376) ((-256 . -237) 112273) ((-1240 . -102) T) ((-1080 . -102) T) ((-854 . -627) 112141) ((-511 . -525) NIL) ((-493 . -243) 112120) ((-418 . -627) 112018) ((-978 . -1068) 111901) ((-746 . -1068) 111871) ((-978 . -651) 111768) ((-1190 . -146) 111747) ((-746 . -651) 111717) ((-464 . -1068) 111687) ((-1190 . -148) 111666) ((-1142 . -148) 111645) ((-1142 . -146) 111624) ((-646 . -1073) 111608) ((-618 . -1073) 111592) ((-464 . -651) 111562) ((-1192 . -1276) 111546) ((-1192 . -1263) 111523) ((-1191 . -1268) 111484) ((-681 . -1117) T) ((-681 . -1070) 111424) ((-1191 . -1263) 111394) ((-559 . -1117) T) ((-498 . -1169) T) ((-1191 . -1266) 111378) ((-1185 . -1247) 111339) ((-829 . -274) 111323) ((-219 . -1169) T) ((-353 . -935) T) ((-99 . -1235) T) ((-646 . -111) 111302) ((-618 . -111) 111281) ((-1185 . -1263) 111258) ((-854 . -1066) 111237) ((-1185 . -1245) 111221) ((-526 . -25) T) ((-506 . -311) T) ((-522 . -23) T) ((-521 . -25) T) ((-519 . -25) T) ((-518 . -23) T) ((-429 . -1068) 111195) ((-418 . -1066) T) ((-328 . -1075) T) ((-705 . -316) T) ((-429 . -651) 111169) ((-108 . -859) T) ((-723 . -737) T) ((-418 . -248) T) ((-418 . -238) 111148) ((-389 . -234) 111135) ((-498 . -38) 111085) ((-219 . -38) 111035) ((-485 . -504) 111001) ((-1242 . -378) T) ((-1176 . -1161) T) ((-1118 . -102) T) ((-838 . -234) 110974) ((-712 . -624) 110956) ((-712 . -625) 110871) ((-725 . -21) T) ((-725 . -25) T) ((-1152 . -102) T) ((-493 . -657) 110650) ((-245 . -908) 110517) ((-135 . -624) 110499) ((-117 . -624) 110481) ((-158 . -25) T) ((-1307 . -1117) T) ((-883 . -650) 110429) ((-1305 . -1117) T) ((-978 . -102) T) ((-746 . -102) T) ((-726 . -102) T) ((-464 . -102) T) ((-827 . -463) 110380) ((-44 . -1117) T) ((-1105 . -861) T) ((-1080 . -318) 110231) ((-675 . -132) T) ((-1071 . -657) 110200) ((-681 . -728) 110184) ((-298 . -1075) T) ((-365 . -132) T) ((-362 . -132) T) ((-354 . -132) T) ((-272 . -132) T) ((-252 . -132) T) ((-395 . -657) 110153) ((-429 . -102) T) ((-153 . -1117) T) ((-45 . -231) 110103) ((-1021 . -908) NIL) ((-810 . -1068) 110087) ((-973 . -861) 110066) ((-1016 . -659) 109968) ((-810 . -651) 109952) ((-245 . -1292) 109922) ((-1041 . -316) T) ((-303 . -1073) 109843) ((-925 . -132) T) ((-40 . -935) T) ((-498 . -411) 109825) ((-364 . -316) T) ((-219 . -411) 109807) ((-1097 . -422) 109791) ((-303 . -111) 109707) ((-1201 . -861) T) ((-1200 . -861) T) ((-883 . -25) T) ((-883 . -21) T) ((-1271 . -47) 109651) ((-349 . -624) 109633) ((-1190 . -237) T) ((-227 . -148) T) ((-176 . -624) 109615) ((-785 . -624) 109597) ((-129 . -861) T) ((-619 . -240) 109544) ((-486 . -240) 109494) ((-1307 . -728) 109464) ((-48 . -316) T) ((-1305 . -728) 109434) ((-65 . -627) 109363) ((-979 . -1117) T) ((-826 . -1117) 109115) ((-321 . -102) T) ((-916 . -1235) T) ((-48 . -1039) T) ((-1248 . -650) 109023) ((-700 . -102) 109001) ((-44 . -728) 108985) ((-561 . -102) T) ((-303 . -627) 108916) ((-67 . -393) T) ((-498 . -915) NIL) ((-67 . -406) T) ((-219 . -915) NIL) ((-673 . -23) T) ((-828 . -657) 108852) ((-681 . -772) T) ((-1232 . -1117) 108830) ((-361 . -1073) 108775) ((-686 . -1117) 108753) ((-1079 . -148) T) ((-967 . -148) 108732) ((-967 . -146) 108711) ((-810 . -102) T) ((-153 . -728) 108695) ((-492 . -148) 108674) ((-492 . -146) 108653) ((-361 . -111) 108582) ((-1097 . -1075) T) ((-331 . -861) 108561) ((-1277 . -990) 108530) ((-638 . -1117) T) ((-1270 . -990) 108492) ((-522 . -132) T) ((-518 . -132) T) ((-304 . -231) 108442) ((-369 . -1075) T) ((-363 . -1075) T) ((-355 . -1075) T) ((-303 . -1066) 108384) ((-1249 . -990) 108353) ((-389 . -861) T) ((-108 . -1075) T) ((-1016 . -737) T) ((-881 . -935) T) ((-854 . -806) 108332) ((-854 . -803) 108311) ((-429 . -318) 108250) ((-479 . -102) T) ((-606 . -990) 108219) ((-328 . -1117) T) ((-418 . -806) 108198) ((-418 . -803) 108177) ((-511 . -500) 108159) ((-1271 . -1055) 108125) ((-1269 . -21) T) ((-1269 . -25) T) ((-1248 . -21) T) ((-1248 . -25) T) ((-826 . -728) 108067) ((-361 . -627) 107997) ((-710 . -415) T) ((-1298 . -1235) T) ((-1130 . -422) 107966) ((-617 . -102) T) ((-1094 . -1235) T) ((-1020 . -378) NIL) ((-682 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1196 . -657) 107876) ((-748 . -1235) T) ((-742 . -1068) 107719) ((-44 . -772) T) ((-742 . -651) 107568) ((-604 . -102) T) ((-664 . -667) 107552) ((-77 . -407) T) ((-77 . -406) T) ((-142 . -1235) T) ((-882 . -148) T) ((-882 . -146) NIL) ((-1297 . -657) 107497) ((-1277 . -908) 107385) ((-1234 . -93) T) ((-361 . -1066) T) ((-227 . -237) T) ((-70 . -393) T) ((-70 . -406) T) ((-1183 . -102) T) ((-681 . -525) 107318) ((-1270 . -908) 107199) ((-1249 . -908) 106935) ((-700 . -318) 106873) ((-978 . -38) 106770) ((-1198 . -624) 106752) ((-746 . -38) 106722) ((-561 . -318) 106526) ((-1192 . -1068) 106409) ((-325 . -1235) T) ((-361 . -238) T) ((-361 . -248) T) ((-322 . -1235) T) ((-298 . -1117) T) ((-1191 . -1068) 106244) ((-1185 . -1068) 106034) ((-1143 . -1068) 105917) ((-1192 . -651) 105814) ((-1191 . -651) 105655) ((-722 . -1239) T) ((-1185 . -651) 105451) ((-1174 . -662) 105435) ((-1143 . -651) 105332) ((-1229 . -567) 105311) ((-830 . -396) 105295) ((-722 . -567) T) ((-606 . -908) 105206) ((-325 . -896) 105190) ((-325 . -898) 105115) ((-137 . -1235) T) ((-322 . -896) 105076) ((-322 . -898) NIL) ((-810 . -318) 105041) ((-328 . -728) 104882) ((-397 . -396) 104866) ((-333 . -332) 104843) ((-496 . -102) T) ((-485 . -25) T) ((-485 . -21) T) ((-429 . -38) 104817) ((-325 . -1055) 104480) ((-227 . -1220) T) ((-227 . -1223) T) ((-3 . -624) 104462) ((-322 . -1055) 104392) ((-883 . -234) 104337) ((-2 . -1117) T) ((-2 . |RecordCategory|) T) ((-1130 . -1075) 104315) ((-844 . -624) 104297) ((-1079 . -237) T) ((-591 . -935) T) ((-575 . -831) T) ((-575 . -935) T) ((-506 . -935) T) ((-137 . -1055) 104281) ((-227 . -95) T) ((-171 . -148) 104260) ((-75 . -452) T) ((0 . -624) 104242) ((-75 . -406) T) ((-171 . -146) 104193) ((-227 . -35) T) ((-49 . -624) 104175) ((-488 . -1075) T) ((-498 . -271) 104157) ((-498 . -232) 104139) ((-495 . -985) 104123) ((-219 . -271) 104105) ((-219 . -232) 104087) ((-81 . -452) T) ((-81 . -406) T) ((-1163 . -34) T) ((-742 . -102) T) ((-664 . -657) 104046) ((-1043 . -624) 104013) ((-511 . -295) 103963) ((-325 . -387) 103932) ((-322 . -387) 103893) ((-322 . -348) 103854) ((-1102 . -624) 103836) ((-827 . -964) 103783) ((-673 . -132) T) ((-1258 . -146) 103762) ((-1258 . -148) 103741) ((-1192 . -102) T) ((-1191 . -102) T) ((-1185 . -102) T) ((-1177 . -1117) T) ((-1143 . -102) T) ((-224 . -34) T) ((-298 . -728) 103728) ((-1177 . -621) 103704) ((-604 . -318) NIL) ((-1277 . -1276) 103688) ((-495 . -1117) 103666) ((-1167 . -231) 103616) ((-401 . -624) 103598) ((-521 . -861) T) ((-1137 . -1235) T) ((-1277 . -1263) 103575) ((-1270 . -1268) 103536) ((-1270 . -1263) 103506) ((-1270 . -1266) 103490) ((-1249 . -1247) 103451) ((-1249 . -1263) 103428) ((-1249 . -1245) 103412) ((-632 . -624) 103394) ((-1192 . -293) 103360) ((-710 . -935) T) ((-1191 . -293) 103326) ((-1185 . -293) 103292) ((-1143 . -293) 103258) ((-1097 . -1117) T) ((-1078 . -1117) T) ((-48 . -311) T) ((-325 . -913) 103224) ((-322 . -913) NIL) ((-1078 . -1085) 103203) ((-1137 . -898) 103185) ((-810 . -38) 103169) ((-272 . -650) 103117) ((-252 . -650) 103065) ((-712 . -1073) 103052) ((-606 . -1263) 103029) ((-1137 . -1055) 103011) ((-328 . -174) 102942) ((-369 . -1117) T) ((-363 . -1117) T) ((-355 . -1117) T) ((-511 . -19) 102924) ((-1119 . -152) 102908) ((-882 . -237) NIL) ((-108 . -1117) T) ((-117 . -1073) 102895) ((-722 . -373) T) ((-511 . -615) 102870) ((-712 . -111) 102855) ((-1310 . -624) 102822) ((-1310 . -501) 102804) ((-1269 . -234) 102750) ((-1248 . -234) 102603) ((-447 . -102) T) ((-887 . -1280) T) ((-255 . -102) T) ((-45 . -1166) 102553) ((-117 . -111) 102538) ((-1287 . -624) 102520) ((-1258 . -237) T) ((-1243 . -624) 102502) ((-1241 . -861) T) ((-646 . -731) T) ((-618 . -731) T) ((-1229 . -1129) T) ((-1229 . -23) T) ((-1190 . -463) 102433) ((-1185 . -318) 102318) ((-1184 . -1117) T) ((-826 . -525) 102251) ((-1052 . -1235) T) ((-245 . -1068) 102152) ((-1176 . -1117) T) ((-1159 . -659) 102090) ((-958 . -152) 102074) ((-1143 . -318) 102061) ((-1142 . -463) 102012) ((-245 . -651) 101934) ((-1104 . -567) 101865) ((-1104 . -1239) 101844) ((-1097 . -728) 101712) ((-536 . -102) T) ((-531 . -102) 101662) ((-1021 . -1068) 101612) ((-1011 . -1117) T) ((-827 . -908) 101508) ((-793 . -1239) 101487) ((-791 . -1239) 101466) ((-62 . -1235) T) ((-488 . -624) 101418) ((-488 . -625) 101340) ((-793 . -567) 101251) ((-791 . -567) 101182) ((-742 . -318) 101169) ((-712 . -627) 101141) ((-493 . -422) 101110) ((-634 . -935) 101089) ((-465 . -1239) 101068) ((-686 . -525) 101001) ((-675 . -25) T) ((-409 . -624) 100983) ((-675 . -21) T) ((-465 . -567) 100914) ((-429 . -915) 100837) ((-365 . -25) T) ((-365 . -21) T) ((-362 . -25) T) ((-118 . -935) T) ((-118 . -831) NIL) ((-362 . -21) T) ((-354 . -25) T) ((-354 . -21) T) ((-272 . -25) T) ((-272 . -21) T) ((-252 . -25) T) ((-252 . -21) T) ((-171 . -237) 100768) ((-83 . -394) T) ((-83 . -406) T) ((-135 . -627) 100750) ((-117 . -627) 100722) ((-1021 . -651) 100672) ((-958 . -997) 100656) ((-929 . -651) 100608) ((-929 . -1068) 100560) ((-925 . -21) T) ((-925 . -25) T) ((-883 . -861) 100511) ((-877 . -659) 100471) ((-722 . -1129) T) ((-722 . -23) T) ((-712 . -1066) T) ((-712 . -238) T) ((-298 . -174) T) ((-665 . -1235) T) ((-320 . -93) T) ((-658 . -1117) 100449) ((-643 . -621) 100424) ((-643 . -1117) T) ((-592 . -1239) T) ((-592 . -567) T) ((-529 . -1239) T) ((-529 . -567) T) ((-498 . -657) 100374) ((-485 . -234) 100320) ((-438 . -1068) 100304) ((-438 . -651) 100288) ((-369 . -728) 100240) ((-363 . -728) 100192) ((-349 . -1073) 100176) ((-355 . -728) 100128) ((-349 . -111) 100107) ((-176 . -1073) 100039) ((-219 . -657) 99989) ((-176 . -111) 99900) ((-108 . -728) 99850) ((-282 . -1117) T) ((-281 . -1117) T) ((-280 . -1117) T) ((-279 . -1117) T) ((-278 . -1117) T) ((-277 . -1117) T) ((-276 . -1117) T) ((-214 . -1117) T) ((-213 . -1117) T) ((-171 . -1223) 99828) ((-171 . -1220) 99806) ((-211 . -1117) T) ((-210 . -1117) T) ((-117 . -1066) T) ((-209 . -1117) T) ((-208 . -1117) T) ((-205 . -1117) T) ((-204 . -1117) T) ((-203 . -1117) T) ((-202 . -1117) T) ((-201 . -1117) T) ((-200 . -1117) T) ((-199 . -1117) T) ((-198 . -1117) T) ((-197 . -1117) T) ((-196 . -1117) T) ((-195 . -1117) T) ((-245 . -102) 99558) ((-171 . -35) 99536) ((-171 . -95) 99514) ((-665 . -1055) 99410) ((-493 . -1075) 99388) ((-1130 . -1117) 99140) ((-1159 . -34) T) ((-681 . -500) 99124) ((-73 . -1235) T) ((-105 . -624) 99106) ((-1309 . -624) 99088) ((-391 . -624) 99070) ((-349 . -627) 99022) ((-176 . -627) 98939) ((-1234 . -501) 98920) ((-742 . -38) 98769) ((-582 . -1223) T) ((-582 . -1220) T) ((-542 . -624) 98751) ((-531 . -318) 98689) ((-511 . -624) 98671) ((-511 . -625) 98653) ((-1234 . -624) 98619) ((-1185 . -1169) NIL) ((-1044 . -1088) 98588) ((-1044 . -1117) T) ((-1021 . -102) T) ((-988 . -102) T) ((-929 . -102) T) ((-905 . -1055) 98565) ((-1159 . -737) T) ((-1020 . -659) 98472) ((-487 . -1117) T) ((-474 . -1117) T) ((-597 . -23) T) ((-582 . -35) T) ((-582 . -95) T) ((-438 . -102) T) ((-1080 . -231) 98418) ((-1192 . -38) 98315) ((-877 . -737) T) ((-705 . -935) T) ((-522 . -25) T) ((-518 . -21) T) ((-518 . -25) T) ((-1191 . -38) 98156) ((-349 . -1066) T) ((-1185 . -38) 97952) ((-1097 . -174) T) ((-176 . -1066) T) ((-1143 . -38) 97849) ((-723 . -47) 97826) ((-369 . -174) T) ((-363 . -174) T) ((-530 . -57) 97800) ((-508 . -57) 97750) ((-361 . -1304) 97727) ((-227 . -463) T) ((-328 . -299) 97678) ((-355 . -174) T) ((-176 . -248) T) ((-1248 . -861) 97577) ((-108 . -174) T) ((-883 . -1009) 97561) ((-669 . -1129) T) ((-592 . -373) T) ((-592 . -338) 97548) ((-529 . -338) 97525) ((-529 . -373) T) ((-325 . -316) 97504) ((-322 . -316) T) ((-613 . -861) 97483) ((-1130 . -728) 97425) ((-531 . -291) 97409) ((-669 . -23) T) ((-429 . -232) 97393) ((-429 . -271) 97377) ((-322 . -1039) NIL) ((-346 . -23) T) ((-103 . -1027) 97361) ((-45 . -36) 97340) ((-623 . -1117) T) ((-361 . -378) T) ((-535 . -102) T) ((-506 . -27) T) ((-245 . -318) 97278) ((-1104 . -1129) T) ((-1308 . -659) 97252) ((-793 . -1129) T) ((-791 . -1129) T) ((-1196 . -422) 97236) ((-465 . -1129) T) ((-1079 . -463) T) ((-1168 . -1117) T) ((-967 . -463) 97187) ((-1132 . -1100) T) ((-110 . -1117) T) ((-1104 . -23) T) ((-1177 . -525) 96970) ((-828 . -1075) T) ((-793 . -23) T) ((-791 . -23) T) ((-492 . -463) 96921) ((-472 . -23) T) ((-391 . -392) 96900) ((-365 . -234) 96873) ((-362 . -234) 96846) ((-354 . -234) 96819) ((-465 . -23) T) ((-272 . -234) 96764) ((-257 . -908) 96631) ((-256 . -908) 96498) ((-96 . -1117) T) ((-723 . -1235) T) ((-681 . -295) 96475) ((-495 . -525) 96408) ((-1277 . -1068) 96291) ((-1277 . -651) 96188) ((-1270 . -651) 96029) ((-1270 . -1068) 95864) ((-1249 . -651) 95660) ((-298 . -299) T) ((-1249 . -1068) 95450) ((-1099 . -624) 95432) ((-1099 . -625) 95413) ((-418 . -924) 95392) ((-1229 . -132) T) ((-50 . -1129) T) ((-1185 . -411) 95344) ((-1041 . -935) T) ((-1020 . -737) T) ((-854 . -659) 95317) ((-723 . -898) NIL) ((-607 . -1068) 95277) ((-592 . -1129) T) ((-529 . -1129) T) ((-606 . -1068) 95160) ((-1174 . -34) T) ((-1021 . -318) NIL) ((-826 . -500) 95144) ((-607 . -651) 95117) ((-364 . -935) T) ((-606 . -651) 95014) ((-925 . -234) 95001) ((-418 . -659) 94917) ((-50 . -23) T) ((-722 . -132) T) ((-723 . -1055) 94797) ((-592 . -23) T) ((-108 . -525) NIL) ((-529 . -23) T) ((-171 . -420) 94768) ((-1157 . -1117) T) ((-1300 . -1299) 94752) ((-742 . -915) 94729) ((-712 . -806) T) ((-712 . -803) T) ((-1137 . -316) T) ((-389 . -148) T) ((-289 . -624) 94711) ((-288 . -624) 94693) ((-1248 . -1009) 94663) ((-48 . -935) T) ((-686 . -500) 94647) ((-257 . -1292) 94617) ((-256 . -1292) 94587) ((-1105 . -237) T) ((-1194 . -861) T) ((-1137 . -1039) T) ((-1063 . -34) T) ((-847 . -148) 94566) ((-847 . -146) 94545) ((-748 . -107) 94529) ((-623 . -133) T) ((-1196 . -1075) T) ((-493 . -1117) 94281) ((-1192 . -915) 94194) ((-1191 . -915) 94100) ((-1185 . -915) 93861) ((-882 . -463) T) ((-85 . -1235) T) ((-142 . -107) 93843) ((-1143 . -915) 93827) ((-723 . -387) 93811) ((-844 . -627) 93679) ((-1308 . -737) T) ((-1297 . -1075) T) ((-1277 . -102) T) ((-1137 . -556) T) ((-590 . -102) T) ((-130 . -501) 93661) ((-1270 . -102) T) ((-401 . -1073) 93645) ((-1190 . -964) 93614) ((-44 . -295) 93591) ((-130 . -624) 93558) ((-52 . -624) 93540) ((-1142 . -964) 93507) ((-664 . -422) 93491) ((-1249 . -102) T) ((-1176 . -525) NIL) ((-673 . -25) T) ((-632 . -1073) 93475) ((-673 . -21) T) ((-978 . -657) 93385) ((-746 . -657) 93330) ((-726 . -657) 93302) ((-401 . -111) 93281) ((-224 . -260) 93265) ((-1071 . -1070) 93205) ((-1071 . -1117) T) ((-1021 . -1169) T) ((-829 . -1117) T) ((-464 . -657) 93120) ((-646 . -659) 93104) ((-353 . -1239) T) ((-632 . -111) 93083) ((-618 . -659) 93067) ((-607 . -102) T) ((-320 . -501) 93048) ((-597 . -132) T) ((-606 . -102) T) ((-425 . -1117) T) ((-395 . -1117) T) ((-320 . -624) 93014) ((-229 . -1117) 92992) ((-658 . -525) 92925) ((-643 . -525) 92769) ((-844 . -1066) 92748) ((-655 . -152) 92732) ((-353 . -567) T) ((-723 . -913) 92675) ((-561 . -231) 92625) ((-1277 . -293) 92591) ((-1270 . -293) 92557) ((-1097 . -299) 92508) ((-498 . -859) T) ((-225 . -1129) T) ((-1249 . -293) 92474) ((-1229 . -504) 92440) ((-1021 . -38) 92390) ((-219 . -859) T) ((-429 . -657) 92349) ((-929 . -38) 92301) ((-854 . -805) 92280) ((-854 . -802) 92259) ((-854 . -737) 92238) ((-369 . -299) T) ((-363 . -299) T) ((-355 . -299) T) ((-171 . -463) 92169) ((-438 . -38) 92153) ((-225 . -23) T) ((-108 . -299) T) ((-418 . -805) 92132) ((-418 . -802) 92111) ((-418 . -737) T) ((-511 . -297) 92086) ((-488 . -1073) 92051) ((-669 . -132) T) ((-632 . -627) 92020) ((-1130 . -525) 91953) ((-346 . -132) T) ((-171 . -413) 91932) ((-493 . -728) 91874) ((-826 . -295) 91851) ((-488 . -111) 91807) ((-664 . -1075) T) ((-1190 . -908) 91710) ((-1142 . -908) 91692) ((-827 . -1068) 91535) ((-1296 . -1100) T) ((-1258 . -463) 91466) ((-827 . -651) 91315) ((-1295 . -1100) T) ((-1104 . -132) T) ((-1071 . -728) 91257) ((-1044 . -525) 91190) ((-793 . -132) T) ((-791 . -132) T) ((-582 . -463) T) ((-632 . -1066) T) ((-603 . -1117) T) ((-544 . -175) T) ((-472 . -132) T) ((-465 . -132) T) ((-389 . -237) T) ((-1016 . -1235) T) ((-45 . -1117) T) ((-395 . -728) 91160) ((-828 . -1117) T) ((-487 . -525) 91093) ((-474 . -525) 91026) ((-1310 . -627) 91008) ((-464 . -377) 90978) ((-45 . -621) 90957) ((-410 . -1235) T) ((-325 . -311) T) ((-838 . -237) 90936) ((-488 . -627) 90886) ((-1249 . -318) 90771) ((-681 . -624) 90733) ((-59 . -861) 90712) ((-1021 . -411) 90694) ((-559 . -624) 90676) ((-810 . -657) 90635) ((-826 . -615) 90612) ((-527 . -861) 90591) ((-507 . -861) 90570) ((-1016 . -1055) 90466) ((-40 . -1239) T) ((-245 . -915) 90335) ((-50 . -132) T) ((-592 . -132) T) ((-529 . -132) T) ((-303 . -659) 90195) ((-353 . -338) 90172) ((-353 . -373) T) ((-331 . -332) 90149) ((-328 . -295) 90107) ((-40 . -567) T) ((-389 . -1220) T) ((-389 . -1223) T) ((-1052 . -1211) 90082) ((-1207 . -240) 90032) ((-1185 . -232) 89984) ((-1185 . -271) 89936) ((-339 . -1117) T) ((-389 . -95) T) ((-389 . -35) T) ((-1052 . -107) 89882) ((-488 . -1066) T) ((-1309 . -1073) 89866) ((-490 . -240) 89816) ((-1177 . -500) 89750) ((-1300 . -1068) 89734) ((-391 . -1073) 89718) ((-1300 . -651) 89688) ((-488 . -248) T) ((-827 . -102) T) ((-725 . -148) 89667) ((-725 . -146) 89646) ((-495 . -500) 89630) ((-496 . -345) 89599) ((-523 . -1117) T) ((-1309 . -111) 89578) ((-1016 . -387) 89562) ((-424 . -102) T) ((-391 . -111) 89541) ((-1016 . -348) 89525) ((-287 . -1000) 89509) ((-286 . -1000) 89493) ((-1021 . -915) NIL) ((-1307 . -624) 89475) ((-1305 . -624) 89457) ((-110 . -525) NIL) ((-1190 . -1261) 89441) ((-865 . -863) 89425) ((-1196 . -1117) T) ((-103 . -1235) T) ((-967 . -964) 89386) ((-828 . -728) 89328) ((-1249 . -1169) NIL) ((-492 . -964) 89273) ((-1079 . -144) T) ((-60 . -102) 89251) ((-44 . -624) 89233) ((-78 . -624) 89215) ((-361 . -659) 89160) ((-1297 . -1117) T) ((-522 . -861) T) ((-298 . -295) 89139) ((-353 . -1129) T) ((-304 . -1117) T) ((-1016 . -913) 89098) ((-304 . -621) 89077) ((-1309 . -627) 89026) ((-1277 . -38) 88923) ((-1270 . -38) 88764) ((-1249 . -38) 88560) ((-498 . -1075) T) ((-391 . -627) 88544) ((-219 . -1075) T) ((-353 . -23) T) ((-153 . -624) 88526) ((-844 . -806) 88505) ((-844 . -803) 88484) ((-1234 . -627) 88465) ((-607 . -38) 88438) ((-606 . -38) 88335) ((-881 . -567) T) ((-225 . -132) T) ((-328 . -1019) 88301) ((-79 . -624) 88283) ((-723 . -316) 88262) ((-303 . -737) 88164) ((-835 . -102) T) ((-875 . -855) T) ((-303 . -484) 88143) ((-1300 . -102) T) ((-40 . -373) T) ((-883 . -148) 88122) ((-496 . -657) 88104) ((-883 . -146) 88083) ((-1176 . -500) 88065) ((-1309 . -1066) T) ((-493 . -525) 87998) ((-1163 . -1235) T) ((-979 . -624) 87980) ((-658 . -500) 87964) ((-643 . -500) 87895) ((-826 . -624) 87588) ((-48 . -27) T) ((-1196 . -728) 87485) ((-967 . -908) 87464) ((-664 . -1117) T) ((-872 . -871) T) ((-447 . -374) 87438) ((-742 . -657) 87348) ((-492 . -908) 87323) ((-1119 . -102) T) ((-987 . -1117) T) ((-875 . -1117) T) ((-827 . -318) 87310) ((-544 . -538) T) ((-544 . -587) T) ((-1305 . -392) 87282) ((-1071 . -525) 87215) ((-1177 . -295) 87191) ((-245 . -232) 87160) ((-245 . -271) 87129) ((-257 . -1068) 87030) ((-256 . -1068) 86931) ((-1297 . -728) 86901) ((-1184 . -93) T) ((-1011 . -93) T) ((-828 . -174) 86880) ((-257 . -651) 86802) ((-256 . -651) 86724) ((-1232 . -501) 86701) ((-229 . -525) 86634) ((-632 . -806) 86613) ((-632 . -803) 86592) ((-1232 . -624) 86504) ((-224 . -1235) T) ((-686 . -624) 86436) ((-1192 . -657) 86346) ((-1174 . -1027) 86330) ((-958 . -102) 86280) ((-361 . -737) T) ((-872 . -624) 86262) ((-1191 . -657) 86144) ((-1185 . -657) 85981) ((-1143 . -657) 85891) ((-1249 . -411) 85843) ((-1130 . -500) 85827) ((-60 . -318) 85765) ((-340 . -102) T) ((-1229 . -21) T) ((-1229 . -25) T) ((-40 . -1129) T) ((-722 . -21) T) ((-638 . -624) 85747) ((-526 . -332) 85726) ((-722 . -25) T) ((-450 . -102) T) ((-108 . -295) NIL) ((-936 . -1129) T) ((-40 . -23) T) ((-782 . -1129) T) ((-575 . -1239) T) ((-506 . -1239) T) ((-1021 . -271) 85708) ((-328 . -624) 85690) ((-1021 . -232) 85672) ((-171 . -167) 85656) ((-591 . -567) T) ((-575 . -567) T) ((-506 . -567) T) ((-782 . -23) T) ((-1269 . -148) 85635) ((-1177 . -615) 85611) ((-1269 . -146) 85590) ((-1044 . -500) 85574) ((-1248 . -146) 85499) ((-1248 . -148) 85424) ((-1300 . -1306) 85403) ((-882 . -908) NIL) ((-487 . -500) 85387) ((-474 . -500) 85371) ((-534 . -34) T) ((-664 . -728) 85341) ((-1277 . -915) 85254) ((-1270 . -915) 85160) ((-1249 . -915) 84921) ((-112 . -984) T) ((-1196 . -174) 84872) ((-673 . -861) 84851) ((-375 . -102) T) ((-606 . -915) 84764) ((-245 . -243) 84743) ((-257 . -102) T) ((-256 . -102) T) ((-1258 . -964) 84712) ((-250 . -861) 84691) ((-827 . -38) 84540) ((-45 . -525) 84332) ((-1176 . -295) 84282) ((-216 . -1117) T) ((-1167 . -1117) T) ((-883 . -237) 84233) ((-1167 . -621) 84212) ((-597 . -25) T) ((-597 . -21) T) ((-1119 . -318) 84150) ((-978 . -422) 84134) ((-710 . -1239) T) ((-643 . -295) 84087) ((-1104 . -650) 84035) ((-920 . -1117) T) ((-793 . -650) 83983) ((-791 . -650) 83931) ((-353 . -132) T) ((-298 . -624) 83913) ((-881 . -1129) T) ((-710 . -567) T) ((-130 . -627) 83895) ((-465 . -650) 83843) ((-171 . -908) 83764) ((-920 . -918) 83748) ((-389 . -463) T) ((-498 . -1117) T) ((-958 . -318) 83686) ((-712 . -659) 83658) ((-560 . -855) T) ((-219 . -1117) T) ((-325 . -935) 83637) ((-322 . -935) T) ((-322 . -831) NIL) ((-401 . -731) T) ((-881 . -23) T) ((-117 . -659) 83624) ((-485 . -146) 83603) ((-429 . -422) 83587) ((-485 . -148) 83566) ((-110 . -500) 83548) ((-320 . -627) 83529) ((-2 . -624) 83511) ((-188 . -102) T) ((-1176 . -19) 83493) ((-1176 . -615) 83468) ((-669 . -21) T) ((-669 . -25) T) ((-604 . -1161) T) ((-1130 . -295) 83445) ((-346 . -25) T) ((-346 . -21) T) ((-245 . -657) 83224) ((-506 . -373) T) ((-1307 . -1073) 83208) ((-1305 . -1073) 83192) ((-1300 . -38) 83162) ((-1269 . -1220) 83128) ((-1258 . -908) 83031) ((-1190 . -1068) 82854) ((-1159 . -1235) T) ((-1142 . -1068) 82697) ((-865 . -1068) 82681) ((-643 . -615) 82656) ((-1269 . -1223) 82622) ((-1269 . -95) 82588) ((-1269 . -237) 82540) ((-1190 . -651) 82369) ((-1142 . -651) 82218) ((-865 . -651) 82188) ((-1252 . -102) 82166) ((-1249 . -232) 82118) ((-560 . -1117) T) ((-1104 . -25) T) ((-1104 . -21) T) ((-542 . -803) T) ((-542 . -806) T) ((-118 . -1239) T) ((-978 . -1075) T) ((-634 . -567) T) ((-793 . -25) T) ((-793 . -21) T) ((-791 . -21) T) ((-791 . -25) T) ((-746 . -1075) T) ((-726 . -1075) T) ((-681 . -1073) 82102) ((-528 . -1100) T) ((-472 . -25) T) ((-118 . -567) T) ((-472 . -21) T) ((-465 . -25) T) ((-465 . -21) T) ((-1249 . -271) 82054) ((-1168 . -93) T) ((-1159 . -1055) 81950) ((-828 . -299) 81929) ((-1248 . -1220) 81895) ((-834 . -1117) T) ((-981 . -984) T) ((-681 . -111) 81874) ((-628 . -1235) T) ((-304 . -525) 81666) ((-1248 . -1223) 81632) ((-1248 . -237) 81491) ((-1243 . -378) T) ((-257 . -318) 81429) ((-256 . -318) 81367) ((-1240 . -855) T) ((-1177 . -625) NIL) ((-1177 . -624) 81349) ((-1159 . -387) 81333) ((-1137 . -831) T) ((-1137 . -935) T) ((-96 . -93) T) ((-1130 . -615) 81310) ((-1097 . -625) 81294) ((-1097 . -624) 81276) ((-1021 . -657) 81226) ((-929 . -657) 81163) ((-826 . -297) 81140) ((-495 . -624) 81072) ((-619 . -152) 81019) ((-498 . -728) 80969) ((-429 . -1075) T) ((-493 . -500) 80953) ((-438 . -657) 80912) ((-336 . -861) 80891) ((-349 . -659) 80865) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -728) 80815) ((-171 . -735) 80786) ((-176 . -659) 80718) ((-592 . -21) T) ((-592 . -25) T) ((-529 . -25) T) ((-529 . -21) T) ((-486 . -152) 80668) ((-1078 . -624) 80650) ((-1010 . -102) T) ((-873 . -102) T) ((-827 . -915) 80550) ((-810 . -422) 80513) ((-40 . -132) T) ((-710 . -373) T) ((-712 . -737) T) ((-712 . -805) T) ((-712 . -802) T) ((-214 . -909) T) ((-591 . -1129) T) ((-575 . -1129) T) ((-506 . -1129) T) ((-369 . -624) 80495) ((-363 . -624) 80477) ((-355 . -624) 80459) ((-66 . -407) T) ((-66 . -406) T) ((-108 . -625) 80389) ((-108 . -624) 80331) ((-213 . -909) T) ((-973 . -152) 80315) ((-782 . -132) T) ((-681 . -627) 80233) ((-135 . -737) T) ((-117 . -737) T) ((-1269 . -35) 80199) ((-1071 . -500) 80183) ((-591 . -23) T) ((-575 . -23) T) ((-506 . -23) T) ((-1248 . -95) 80149) ((-1248 . -35) 80115) ((-1190 . -102) T) ((-1142 . -102) T) ((-865 . -102) T) ((-229 . -500) 80099) ((-1307 . -111) 80078) ((-1305 . -111) 80057) ((-44 . -1073) 80041) ((-1307 . -627) 79987) ((-1307 . -1066) T) ((-1258 . -1261) 79971) ((-866 . -863) 79955) ((-1196 . -299) 79934) ((-1121 . -1235) T) ((-110 . -295) 79884) ((-1020 . -1235) T) ((-129 . -152) 79866) ((-1159 . -913) 79825) ((-44 . -111) 79804) ((-1305 . -627) 79733) ((-1240 . -1117) T) ((-1199 . -1280) T) ((-1184 . -501) 79714) ((-681 . -1066) T) ((-1184 . -624) 79680) ((-1176 . -625) NIL) ((-485 . -237) 79632) ((-1080 . -621) 79607) ((-1011 . -501) 79588) ((-74 . -452) T) ((-74 . -406) T) ((-1080 . -1117) T) ((-153 . -1073) 79572) ((-1011 . -624) 79538) ((-681 . -238) 79517) ((-582 . -565) 79501) ((-365 . -148) 79480) ((-365 . -146) 79431) ((-362 . -148) 79410) ((-362 . -146) 79361) ((-354 . -148) 79340) ((-354 . -146) 79291) ((-272 . -146) 79270) ((-272 . -148) 79249) ((-252 . -148) 79228) ((-118 . -373) T) ((-252 . -146) 79207) ((-1176 . -624) 79189) ((-153 . -111) 79168) ((-1020 . -1055) 79056) ((-1185 . -859) NIL) ((-705 . -1239) T) ((-810 . -1075) T) ((-710 . -1129) T) ((-1305 . -1066) T) ((-1174 . -1235) T) ((-1020 . -387) 79033) ((-925 . -146) T) ((-925 . -148) 79015) ((-881 . -132) T) ((-826 . -1073) 78936) ((-710 . -23) T) ((-705 . -567) T) ((-227 . -1068) 78901) ((-658 . -624) 78833) ((-658 . -625) 78794) ((-643 . -625) NIL) ((-643 . -624) 78776) ((-498 . -174) T) ((-227 . -651) 78741) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-485 . -1223) 78707) ((-485 . -1220) 78673) ((-282 . -624) 78655) ((-281 . -624) 78637) ((-280 . -624) 78619) ((-279 . -624) 78601) ((-278 . -624) 78583) ((-511 . -662) 78565) ((-277 . -624) 78547) ((-349 . -737) T) ((-276 . -624) 78529) ((-110 . -19) 78511) ((-176 . -737) T) ((-511 . -383) 78493) ((-214 . -624) 78475) ((-531 . -1166) 78459) ((-511 . -124) T) ((-110 . -615) 78434) ((-213 . -624) 78416) ((-485 . -35) 78382) ((-485 . -95) 78348) ((-211 . -624) 78330) ((-210 . -624) 78312) ((-209 . -624) 78294) ((-208 . -624) 78276) ((-205 . -624) 78258) ((-204 . -624) 78240) ((-203 . -624) 78222) ((-202 . -624) 78204) ((-201 . -624) 78186) ((-200 . -624) 78168) ((-199 . -624) 78150) ((-547 . -1120) 78102) ((-198 . -624) 78084) ((-197 . -624) 78066) ((-45 . -500) 78003) ((-196 . -624) 77985) ((-195 . -624) 77967) ((-153 . -627) 77936) ((-1132 . -102) T) ((-826 . -111) 77852) ((-655 . -102) 77802) ((-493 . -295) 77779) ((-1308 . -1055) 77763) ((-1130 . -624) 77456) ((-1118 . -1117) T) ((-1063 . -1235) T) ((-1190 . -318) 77443) ((-1079 . -1068) 77430) ((-1152 . -1117) T) ((-967 . -1068) 77273) ((-1142 . -318) 77260) ((-1113 . -1100) T) ((-634 . -1129) T) ((-1079 . -651) 77247) ((-1107 . -1100) T) ((-967 . -651) 77096) ((-1104 . -234) 77041) ((-492 . -1068) 76884) ((-1090 . -1100) T) ((-1083 . -1100) T) ((-1053 . -1100) T) ((-1036 . -1100) T) ((-118 . -1129) T) ((-492 . -651) 76733) ((-793 . -234) 76720) ((-830 . -102) T) ((-637 . -1100) T) ((-634 . -23) T) ((-1167 . -525) 76512) ((-494 . -1100) T) ((-397 . -102) T) ((-333 . -102) T) ((-220 . -1100) T) ((-978 . -1117) T) ((-153 . -1066) T) ((-742 . -422) 76496) ((-118 . -23) T) ((-1020 . -913) 76448) ((-746 . -1117) T) ((-726 . -1117) T) ((-1277 . -657) 76358) ((-464 . -1117) T) ((-418 . -1235) T) ((-325 . -441) 76342) ((-603 . -93) T) ((-1270 . -657) 76224) ((-1044 . -625) 76185) ((-1041 . -1239) T) ((-227 . -102) T) ((-1044 . -624) 76147) ((-827 . -271) 76131) ((-827 . -232) 76115) ((-826 . -627) 75913) ((-1249 . -657) 75750) ((-1041 . -567) T) ((-844 . -659) 75723) ((-364 . -1239) T) ((-487 . -624) 75685) ((-487 . -625) 75646) ((-474 . -625) 75607) ((-474 . -624) 75569) ((-607 . -657) 75528) ((-418 . -896) 75512) ((-328 . -1073) 75347) ((-418 . -898) 75272) ((-606 . -657) 75182) ((-854 . -1055) 75078) ((-498 . -525) NIL) ((-493 . -615) 75055) ((-592 . -234) 75042) ((-364 . -567) T) ((-529 . -234) 75029) ((-219 . -525) NIL) ((-883 . -463) T) ((-429 . -1117) T) ((-418 . -1055) 74893) ((-328 . -111) 74714) ((-705 . -373) T) ((-227 . -293) T) ((-1232 . -627) 74691) ((-48 . -1239) T) ((-1190 . -1169) 74669) ((-1177 . -297) 74645) ((-1079 . -102) T) ((-967 . -102) T) ((-826 . -1066) 74623) ((-591 . -132) T) ((-575 . -132) T) ((-506 . -132) T) ((-365 . -237) 74602) ((-362 . -237) 74581) ((-354 . -237) 74560) ((-48 . -567) T) ((-882 . -1068) 74505) ((-272 . -237) 74456) ((-826 . -238) 74408) ((-325 . -27) 74387) ((-257 . -915) 74256) ((-256 . -915) 74125) ((-254 . -846) 74107) ((-189 . -846) 74089) ((-724 . -102) T) ((-304 . -500) 74026) ((-882 . -651) 73971) ((-492 . -102) T) ((-742 . -1075) T) ((-623 . -624) 73953) ((-623 . -625) 73814) ((-418 . -387) 73798) ((-418 . -348) 73782) ((-1190 . -38) 73611) ((-1142 . -38) 73460) ((-328 . -627) 73286) ((-925 . -237) T) ((-646 . -1235) 73260) ((-618 . -1235) 73234) ((-865 . -38) 73204) ((-401 . -659) 73188) ((-655 . -318) 73126) ((-1168 . -501) 73107) ((-1168 . -624) 73073) ((-978 . -728) 72970) ((-746 . -728) 72940) ((-224 . -107) 72924) ((-45 . -295) 72824) ((-632 . -659) 72798) ((-321 . -1117) T) ((-298 . -1073) 72785) ((-110 . -624) 72767) ((-110 . -625) 72749) ((-464 . -728) 72719) ((-827 . -259) 72658) ((-700 . -1117) 72636) ((-561 . -1117) T) ((-1192 . -1075) T) ((-1191 . -1075) T) ((-96 . -501) 72617) ((-1185 . -1075) T) ((-298 . -111) 72602) ((-1143 . -1075) T) ((-561 . -621) 72581) ((-96 . -624) 72547) ((-1021 . -859) T) ((-229 . -698) 72505) ((-705 . -1129) T) ((-1229 . -751) 72481) ((-1041 . -373) T) ((-849 . -846) 72463) ((-844 . -805) 72442) ((-418 . -913) 72401) ((-328 . -1066) T) ((-353 . -25) T) ((-353 . -21) T) ((-171 . -1068) 72311) ((-68 . -1235) T) ((-844 . -802) 72290) ((-429 . -728) 72264) ((-810 . -1117) T) ((-723 . -935) 72243) ((-710 . -132) T) ((-171 . -651) 72071) ((-705 . -23) T) ((-498 . -299) T) ((-844 . -737) 72050) ((-328 . -238) 72002) ((-328 . -248) 71981) ((-219 . -299) T) ((-130 . -378) T) ((-1269 . -463) 71960) ((-1248 . -463) 71939) ((-364 . -338) 71916) ((-364 . -373) T) ((-1157 . -624) 71898) ((-45 . -1273) 71848) ((-882 . -102) T) ((-655 . -291) 71832) ((-710 . -1077) T) ((-1296 . -102) T) ((-1295 . -102) T) ((-488 . -659) 71797) ((-479 . -1117) T) ((-45 . -615) 71722) ((-1176 . -297) 71697) ((-298 . -627) 71669) ((-40 . -650) 71608) ((-1258 . -1068) 71431) ((-866 . -1068) 71415) ((-48 . -373) T) ((-1123 . -624) 71397) ((-1258 . -651) 71226) ((-866 . -651) 71196) ((-643 . -297) 71171) ((-827 . -657) 71081) ((-582 . -1068) 71068) ((-493 . -624) 70761) ((-245 . -422) 70730) ((-967 . -318) 70717) ((-582 . -651) 70704) ((-65 . -1235) T) ((-1190 . -915) 70611) ((-1183 . -1117) T) ((-1080 . -525) 70455) ((-682 . -1117) T) ((-634 . -132) T) ((-492 . -318) 70442) ((-617 . -1117) T) ((-557 . -102) T) ((-118 . -132) T) ((-298 . -1066) T) ((-182 . -1117) T) ((-162 . -1117) T) ((-157 . -1117) T) ((-155 . -1117) T) ((-464 . -772) T) ((-31 . -1100) T) ((-978 . -174) 70393) ((-1142 . -915) 70377) ((-987 . -93) T) ((-1130 . -297) 70354) ((-1097 . -1073) 70264) ((-632 . -805) 70243) ((-604 . -1117) T) ((-632 . -802) 70222) ((-632 . -737) T) ((-304 . -295) 70201) ((-303 . -1235) T) ((-1071 . -624) 70163) ((-1071 . -625) 70124) ((-1041 . -1129) T) ((-171 . -102) T) ((-283 . -861) T) ((-1119 . -231) 70108) ((-829 . -624) 70090) ((-1097 . -111) 69986) ((-1041 . -23) T) ((-1020 . -316) T) ((-810 . -728) 69970) ((-369 . -1073) 69922) ((-364 . -1129) T) ((-363 . -1073) 69874) ((-425 . -624) 69856) ((-395 . -624) 69838) ((-355 . -1073) 69790) ((-229 . -624) 69722) ((-912 . -102) T) ((-852 . -102) T) ((-108 . -1073) 69672) ((-819 . -102) T) ((-780 . -102) T) ((-688 . -102) T) ((-485 . -463) 69651) ((-429 . -174) T) ((-369 . -111) 69589) ((-363 . -111) 69527) ((-355 . -111) 69465) ((-257 . -271) 69434) ((-257 . -232) 69403) ((-256 . -271) 69372) ((-256 . -232) 69341) ((-364 . -23) T) ((-71 . -1235) T) ((-227 . -38) 69306) ((-108 . -111) 69240) ((-40 . -25) T) ((-40 . -21) T) ((-681 . -731) T) ((-171 . -293) 69218) ((-48 . -1129) T) ((-936 . -25) T) ((-782 . -25) T) ((-1309 . -659) 69192) ((-1167 . -500) 69129) ((-496 . -1117) T) ((-1300 . -657) 69088) ((-1258 . -102) T) ((-1079 . -1169) T) ((-866 . -102) T) ((-245 . -1075) 69066) ((-979 . -803) 69019) ((-979 . -806) 68972) ((-391 . -659) 68956) ((-48 . -23) T) ((-826 . -806) 68935) ((-826 . -803) 68914) ((-559 . -378) T) ((-304 . -615) 68893) ((-488 . -737) T) ((-582 . -102) T) ((-1097 . -627) 68711) ((-254 . -187) T) ((-189 . -187) T) ((-882 . -318) 68668) ((-664 . -295) 68647) ((-112 . -672) T) ((-361 . -1235) T) ((-369 . -627) 68584) ((-363 . -627) 68521) ((-355 . -627) 68458) ((-76 . -1235) T) ((-108 . -627) 68408) ((-112 . -113) T) ((-1079 . -38) 68395) ((-675 . -384) 68374) ((-967 . -38) 68223) ((-742 . -1117) T) ((-492 . -38) 68072) ((-86 . -1235) T) ((-603 . -501) 68053) ((-1249 . -859) NIL) ((-582 . -293) T) ((-1192 . -1117) T) ((-603 . -624) 68019) ((-1191 . -1117) T) ((-1185 . -1117) T) ((-1097 . -1066) T) ((-361 . -1055) 67996) ((-828 . -501) 67980) ((-1021 . -1075) T) ((-45 . -624) 67962) ((-45 . -625) NIL) ((-929 . -1075) T) ((-828 . -624) 67931) ((-1164 . -102) 67909) ((-1097 . -248) 67860) ((-438 . -1075) T) ((-369 . -1066) T) ((-363 . -1066) T) ((-375 . -374) 67837) ((-355 . -1066) T) ((-353 . -234) 67824) ((-257 . -243) 67803) ((-256 . -243) 67782) ((-1097 . -238) 67707) ((-1143 . -1117) T) ((-303 . -913) 67666) ((-108 . -1066) T) ((-705 . -132) T) ((-429 . -525) 67508) ((-369 . -238) 67487) ((-369 . -248) T) ((-44 . -731) T) ((-363 . -238) 67466) ((-363 . -248) T) ((-355 . -238) 67445) ((-355 . -248) T) ((-1184 . -627) 67426) ((-171 . -318) 67391) ((-108 . -248) T) ((-108 . -238) T) ((-1011 . -627) 67372) ((-328 . -803) T) ((-881 . -21) T) ((-881 . -25) T) ((-418 . -316) T) ((-511 . -34) T) ((-110 . -297) 67347) ((-1130 . -1073) 67268) ((-882 . -1169) NIL) ((-339 . -624) 67250) ((-418 . -1039) 67228) ((-1130 . -111) 67144) ((-702 . -1280) T) ((-447 . -1117) T) ((-255 . -1117) T) ((-1309 . -737) T) ((-63 . -624) 67126) ((-882 . -38) 67071) ((-534 . -1235) T) ((-613 . -152) 67055) ((-523 . -624) 67037) ((-1258 . -318) 67024) ((-742 . -728) 66873) ((-542 . -804) T) ((-542 . -805) T) ((-575 . -650) 66855) ((-506 . -650) 66815) ((-365 . -463) T) ((-362 . -463) T) ((-354 . -463) T) ((-272 . -463) 66766) ((-536 . -1117) T) ((-531 . -1117) 66716) ((-252 . -463) 66667) ((-1167 . -295) 66646) ((-1196 . -624) 66628) ((-700 . -525) 66561) ((-978 . -299) 66540) ((-561 . -525) 66332) ((-257 . -657) 66180) ((-256 . -657) 66015) ((-1297 . -624) 65984) ((-1297 . -501) 65968) ((-1192 . -728) 65865) ((-1190 . -271) 65849) ((-1190 . -232) 65833) ((-1130 . -627) 65631) ((-171 . -1169) 65610) ((-1191 . -728) 65451) ((-1185 . -728) 65247) ((-981 . -113) T) ((-904 . -102) T) ((-1174 . -685) 65231) ((-1143 . -728) 65128) ((-1041 . -132) T) ((-365 . -413) 65079) ((-362 . -413) 65030) ((-354 . -413) 64981) ((-979 . -378) 64934) ((-810 . -525) 64846) ((-304 . -625) NIL) ((-304 . -624) 64828) ((-925 . -463) T) ((-920 . -295) 64807) ((-826 . -378) 64786) ((-521 . -520) 64765) ((-519 . -520) 64744) ((-883 . -908) 64665) ((-498 . -295) NIL) ((-493 . -297) 64642) ((-429 . -299) T) ((-364 . -132) T) ((-219 . -295) NIL) ((-705 . -504) NIL) ((-99 . -1129) T) ((-40 . -234) 64573) ((-171 . -38) 64401) ((-967 . -915) 64382) ((-1269 . -990) 64344) ((-1164 . -318) 64282) ((-492 . -915) 64259) ((-1248 . -990) 64228) ((-925 . -413) T) ((-1130 . -1066) 64206) ((-1271 . -567) T) ((-1167 . -615) 64185) ((-112 . -861) T) ((-1080 . -500) 64116) ((-591 . -21) T) ((-591 . -25) T) ((-575 . -21) T) ((-575 . -25) T) ((-506 . -25) T) ((-506 . -21) T) ((-1258 . -1169) 64094) ((-1130 . -238) 64046) ((-48 . -132) T) ((-1216 . -102) T) ((-245 . -1117) 63798) ((-882 . -411) 63775) ((-1105 . -102) T) ((-1093 . -102) T) ((-619 . -102) T) ((-486 . -102) T) ((-1258 . -38) 63604) ((-866 . -38) 63574) ((-1051 . -1068) 63548) ((-742 . -174) 63459) ((-664 . -624) 63441) ((-656 . -1100) T) ((-1051 . -651) 63425) ((-582 . -38) 63412) ((-987 . -501) 63393) ((-987 . -624) 63359) ((-973 . -102) 63309) ((-875 . -624) 63291) ((-875 . -625) 63213) ((-604 . -525) NIL) ((-1314 . -1129) T) ((-1277 . -1075) T) ((-1270 . -1075) T) ((-1269 . -908) 63117) ((-331 . -1068) 63099) ((-1249 . -1075) T) ((-1248 . -908) 62894) ((-1229 . -148) 62873) ((-1229 . -146) 62852) ((-1202 . -102) T) ((-331 . -651) 62834) ((-712 . -1235) T) ((-1201 . -102) T) ((-1200 . -102) T) ((-1192 . -174) 62785) ((-1191 . -174) 62716) ((-607 . -1075) T) ((-606 . -1075) T) ((-1185 . -174) 62647) ((-1168 . -627) 62628) ((-389 . -1068) 62593) ((-1143 . -174) 62544) ((-1021 . -1117) T) ((-988 . -1117) T) ((-929 . -1117) T) ((-882 . -915) NIL) ((-389 . -651) 62509) ((-810 . -808) 62493) ((-710 . -25) T) ((-710 . -21) T) ((-118 . -650) 62470) ((-712 . -898) 62452) ((-438 . -1117) T) ((-325 . -1239) 62431) ((-322 . -1239) T) ((-171 . -411) 62415) ((-847 . -1068) 62385) ((-485 . -990) 62347) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -624) 62329) ((-838 . -1068) 62313) ((-108 . -806) T) ((-108 . -803) T) ((-712 . -1055) 62295) ((-325 . -567) 62274) ((-322 . -567) T) ((-847 . -651) 62244) ((-838 . -651) 62214) ((-1314 . -23) T) ((-135 . -1055) 62196) ((-96 . -627) 62177) ((-1010 . -657) 62159) ((-493 . -1073) 62080) ((-45 . -297) 62005) ((-245 . -728) 61947) ((-528 . -102) T) ((-493 . -111) 61863) ((-1109 . -102) 61833) ((-1051 . -102) T) ((-1190 . -657) 61743) ((-1142 . -657) 61653) ((-865 . -657) 61612) ((-655 . -839) 61591) ((-742 . -525) 61534) ((-1071 . -1073) 61518) ((-171 . -915) 61441) ((-1152 . -93) T) ((-1080 . -295) 61416) ((-634 . -21) T) ((-634 . -25) T) ((-535 . -1117) T) ((-681 . -659) 61354) ((-371 . -102) T) ((-331 . -102) T) ((-395 . -1073) 61338) ((-1071 . -111) 61317) ((-827 . -422) 61301) ((-118 . -25) T) ((-89 . -624) 61283) ((-118 . -21) T) ((-619 . -318) 61078) ((-486 . -318) 60882) ((-1167 . -625) NIL) ((-349 . -1235) T) ((-395 . -111) 60861) ((-389 . -102) T) ((-216 . -624) 60843) ((-1167 . -624) 60825) ((-1185 . -525) 60594) ((-1021 . -728) 60544) ((-1143 . -525) 60514) ((-929 . -728) 60466) ((-493 . -627) 60264) ((-361 . -316) T) ((-1207 . -152) 60214) ((-485 . -908) 60095) ((-973 . -318) 60033) ((-847 . -102) T) ((-438 . -728) 60017) ((-227 . -839) T) ((-838 . -102) T) ((-836 . -102) T) ((-1307 . -659) 59991) ((-1269 . -1268) 59970) ((-490 . -152) 59920) ((-1269 . -1263) 59890) ((-1137 . -1239) T) ((-349 . -1055) 59857) ((-1269 . -1266) 59841) ((-1258 . -915) 59748) ((-1248 . -1247) 59727) ((-80 . -624) 59709) ((-920 . -624) 59691) ((-1248 . -1263) 59668) ((-1137 . -567) T) ((-936 . -861) T) ((-782 . -861) T) ((-683 . -861) T) ((-498 . -625) 59598) ((-498 . -624) 59539) ((-389 . -293) T) ((-1248 . -1245) 59523) ((-1271 . -1129) T) ((-219 . -625) 59453) ((-219 . -624) 59394) ((-1080 . -615) 59369) ((-829 . -627) 59353) ((-575 . -234) 59340) ((-527 . -152) 59324) ((-59 . -152) 59308) ((-507 . -152) 59292) ((-506 . -234) 59279) ((-369 . -1304) 59263) ((-363 . -1304) 59247) ((-355 . -1304) 59231) ((-325 . -373) 59210) ((-322 . -373) T) ((-493 . -1066) 59188) ((-705 . -650) 59170) ((-1305 . -659) 59144) ((-129 . -318) NIL) ((-1271 . -23) T) ((-700 . -500) 59128) ((-64 . -624) 59110) ((-1130 . -806) 59089) ((-1130 . -803) 59068) ((-561 . -500) 59005) ((-681 . -34) T) ((-493 . -238) 58957) ((-304 . -297) 58936) ((-827 . -1075) T) ((-44 . -659) 58894) ((-1097 . -378) 58845) ((-742 . -299) 58776) ((-531 . -525) 58709) ((-828 . -1073) 58660) ((-1104 . -146) 58639) ((-560 . -624) 58621) ((-369 . -378) 58600) ((-363 . -378) 58579) ((-355 . -378) 58558) ((-1104 . -148) 58537) ((-983 . -1235) T) ((-882 . -271) 58514) ((-882 . -232) 58491) ((-828 . -111) 58433) ((-793 . -146) 58412) ((-272 . -964) 58379) ((-252 . -964) 58324) ((-793 . -148) 58303) ((-791 . -146) 58282) ((-791 . -148) 58261) ((-153 . -659) 58235) ((-590 . -1117) T) ((-464 . -295) 58198) ((-465 . -148) 58177) ((-465 . -146) 58156) ((-681 . -737) T) ((-834 . -624) 58138) ((-1277 . -1117) T) ((-1270 . -1117) T) ((-1249 . -1117) T) ((-1229 . -1223) 58104) ((-1229 . -1220) 58070) ((-1192 . -299) 58049) ((-1191 . -299) 58000) ((-1185 . -299) 57951) ((-1143 . -299) 57930) ((-349 . -913) 57911) ((-1021 . -174) T) ((-929 . -174) T) ((-705 . -21) T) ((-705 . -25) T) ((-227 . -657) 57861) ((-607 . -1117) T) ((-606 . -1117) T) ((-485 . -1266) 57845) ((-485 . -1263) 57815) ((-429 . -295) 57743) ((-558 . -861) T) ((-325 . -1129) 57592) ((-322 . -1129) T) ((-1229 . -35) 57558) ((-1229 . -95) 57524) ((-84 . -624) 57506) ((-91 . -102) 57484) ((-1314 . -132) T) ((-725 . -1068) 57454) ((-603 . -627) 57435) ((-592 . -146) T) ((-592 . -148) 57417) ((-529 . -148) 57399) ((-529 . -146) T) ((-725 . -651) 57369) ((-325 . -23) 57221) ((-40 . -352) 57195) ((-322 . -23) T) ((-828 . -627) 57109) ((-1176 . -662) 57091) ((-1300 . -1075) T) ((-1176 . -383) 57073) ((-1113 . -102) T) ((-826 . -659) 56906) ((-1107 . -102) T) ((-1090 . -102) T) ((-171 . -271) 56890) ((-171 . -232) 56874) ((-1083 . -102) T) ((-1053 . -102) T) ((-1036 . -102) T) ((-604 . -500) 56856) ((-637 . -102) T) ((-245 . -525) 56789) ((-494 . -102) T) ((-1307 . -737) T) ((-1305 . -737) T) ((-220 . -102) T) ((-1196 . -1073) 56672) ((-1079 . -657) 56644) ((-967 . -657) 56554) ((-1196 . -111) 56423) ((-887 . -1100) T) ((-872 . -175) T) ((-492 . -657) 56333) ((-272 . -908) 56239) ((-252 . -908) 56214) ((-828 . -1066) T) ((-692 . -1100) T) ((-687 . -1100) T) ((-634 . -234) 56159) ((-526 . -102) T) ((-521 . -102) T) ((-48 . -650) 56119) ((-519 . -102) T) ((-489 . -1100) T) ((-1297 . -1073) 56089) ((-118 . -234) NIL) ((-139 . -1100) T) ((-138 . -1100) T) ((-134 . -1100) T) ((-1051 . -38) 56073) ((-828 . -238) T) ((-828 . -248) 56052) ((-1297 . -111) 56017) ((-1277 . -728) 55914) ((-1270 . -728) 55755) ((-1258 . -271) 55739) ((-561 . -295) 55718) ((-1258 . -232) 55702) ((-1240 . -624) 55684) ((-617 . -93) T) ((-1080 . -625) NIL) ((-1080 . -624) 55666) ((-682 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1249 . -728) 55462) ((-1020 . -935) T) ((-153 . -737) T) ((-1196 . -627) 55315) ((-1130 . -378) 55294) ((-1041 . -25) T) ((-1021 . -525) NIL) ((-257 . -422) 55263) ((-256 . -422) 55232) ((-1041 . -21) T) ((-883 . -1068) 55184) ((-607 . -728) 55157) ((-606 . -728) 55054) ((-810 . -295) 55012) ((-127 . -102) 54990) ((-844 . -1055) 54886) ((-171 . -839) 54865) ((-328 . -659) 54762) ((-826 . -34) T) ((-725 . -102) T) ((-1137 . -1129) T) ((-1043 . -1235) T) ((-883 . -651) 54714) ((-389 . -38) 54679) ((-364 . -25) T) ((-364 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-254 . -102) T) ((-158 . -102) T) ((-365 . -1292) 54663) ((-362 . -1292) 54647) ((-354 . -1292) 54631) ((-171 . -359) 54610) ((-575 . -861) T) ((-1104 . -237) 54561) ((-1137 . -23) T) ((-87 . -624) 54543) ((-793 . -237) T) ((-712 . -316) T) ((-847 . -38) 54513) ((-838 . -38) 54483) ((-1297 . -627) 54425) ((-1271 . -132) T) ((-1167 . -297) 54404) ((-979 . -737) 54303) ((-979 . -804) 54256) ((-979 . -805) 54209) ((-117 . -316) T) ((-91 . -318) 54147) ((-686 . -34) T) ((-561 . -615) 54126) ((-48 . -25) T) ((-48 . -21) T) ((-826 . -805) 54105) ((-826 . -804) 54084) ((-712 . -1039) T) ((-664 . -1073) 54068) ((-882 . -657) 53998) ((-826 . -737) 53976) ((-979 . -484) 53929) ((-493 . -806) 53908) ((-493 . -803) 53887) ((-925 . -1292) 53874) ((-1196 . -1066) T) ((-664 . -111) 53853) ((-1196 . -335) 53830) ((-1221 . -102) 53808) ((-1118 . -624) 53790) ((-712 . -556) T) ((-827 . -1117) T) ((-592 . -237) T) ((-529 . -237) T) ((-1297 . -1066) T) ((-1152 . -501) 53771) ((-1241 . -102) T) ((-424 . -1117) T) ((-1152 . -624) 53737) ((-257 . -1075) 53715) ((-256 . -1075) 53693) ((-849 . -102) T) ((-298 . -659) 53680) ((-604 . -295) 53630) ((-700 . -698) 53588) ((-978 . -624) 53570) ((-883 . -102) T) ((-746 . -624) 53552) ((-726 . -624) 53534) ((-1277 . -174) 53485) ((-1270 . -174) 53416) ((-1249 . -174) 53347) ((-710 . -861) T) ((-1021 . -299) T) ((-464 . -624) 53329) ((-638 . -737) T) ((-60 . -1117) 53307) ((-250 . -152) 53291) ((-929 . -299) T) ((-1041 . -1029) T) ((-638 . -484) T) ((-723 . -1239) 53270) ((-705 . -234) NIL) ((-664 . -627) 53188) ((-171 . -657) 53083) ((-1285 . -861) 53062) ((-607 . -174) 53041) ((-606 . -174) 52992) ((-1269 . -651) 52833) ((-1269 . -1068) 52668) ((-1248 . -651) 52482) ((-1248 . -1068) 52290) ((-723 . -567) 52201) ((-418 . -935) T) ((-418 . -831) 52180) ((-328 . -805) T) ((-987 . -627) 52161) ((-328 . -737) T) ((-655 . -1166) 52145) ((-429 . -624) 52127) ((-429 . -625) 52034) ((-110 . -662) 52016) ((-176 . -316) T) ((-127 . -318) 51954) ((-110 . -383) 51936) ((-409 . -1235) T) ((-325 . -132) 51807) ((-322 . -132) T) ((-69 . -406) T) ((-110 . -124) T) ((-531 . -500) 51791) ((-665 . -1129) T) ((-604 . -19) 51773) ((-61 . -452) T) ((-61 . -406) T) ((-835 . -1117) T) ((-604 . -615) 51748) ((-488 . -1055) 51708) ((-664 . -1066) T) ((-665 . -23) T) ((-1300 . -1117) T) ((-31 . -102) T) ((-1258 . -657) 51618) ((-866 . -657) 51577) ((-827 . -728) 51426) ((-588 . -871) T) ((-582 . -657) 51398) ((-118 . -861) NIL) ((-1190 . -422) 51382) ((-1142 . -422) 51366) ((-865 . -422) 51350) ((-884 . -102) 51301) ((-1269 . -102) T) ((-1249 . -525) 51070) ((-1248 . -102) T) ((-1221 . -318) 51008) ((-1192 . -295) 50973) ((-1191 . -295) 50931) ((-536 . -93) T) ((-1185 . -295) 50759) ((-321 . -624) 50741) ((-1119 . -1117) T) ((-1097 . -659) 50615) ((-722 . -463) T) ((-700 . -624) 50547) ((-298 . -737) T) ((-108 . -924) NIL) ((-700 . -625) 50508) ((-612 . -624) 50490) ((-588 . -624) 50472) ((-561 . -625) NIL) ((-561 . -624) 50454) ((-540 . -624) 50436) ((-522 . -520) 50415) ((-498 . -1073) 50365) ((-485 . -1068) 50200) ((-518 . -520) 50179) ((-485 . -651) 50020) ((-219 . -1073) 49970) ((-369 . -659) 49922) ((-363 . -659) 49874) ((-227 . -859) T) ((-355 . -659) 49826) ((-613 . -102) 49776) ((-498 . -111) 49710) ((-493 . -378) 49689) ((-108 . -659) 49639) ((-364 . -234) 49626) ((-245 . -500) 49610) ((-353 . -148) 49592) ((-353 . -146) T) ((-171 . -380) 49563) ((-958 . -1283) 49547) ((-219 . -111) 49481) ((-883 . -318) 49446) ((-958 . -1117) 49396) ((-810 . -625) 49357) ((-810 . -624) 49339) ((-729 . -102) T) ((-340 . -1117) T) ((-216 . -627) 49316) ((-1137 . -132) T) ((-725 . -38) 49286) ((-325 . -504) 49265) ((-511 . -1235) T) ((-1269 . -293) 49231) ((-1248 . -293) 49197) ((-336 . -152) 49181) ((-450 . -1117) T) ((-1080 . -297) 49156) ((-1300 . -728) 49126) ((-48 . -234) 49113) ((-1177 . -34) T) ((-1309 . -1055) 49090) ((-495 . -34) T) ((-479 . -624) 49072) ((-255 . -295) 49046) ((-391 . -1055) 49030) ((-1190 . -1075) T) ((-1142 . -1075) T) ((-865 . -1075) T) ((-1079 . -859) T) ((-498 . -627) 48980) ((-219 . -627) 48930) ((-827 . -174) 48841) ((-531 . -295) 48793) ((-1277 . -299) 48772) ((-1216 . -374) 48746) ((-1105 . -274) 48730) ((-682 . -501) 48711) ((-682 . -624) 48677) ((-617 . -501) 48658) ((-118 . -1009) 48635) ((-617 . -624) 48585) ((-485 . -102) T) ((-182 . -501) 48566) ((-182 . -624) 48532) ((-162 . -501) 48513) ((-162 . -624) 48479) ((-157 . -501) 48460) ((-155 . -501) 48441) ((-157 . -624) 48407) ((-375 . -1117) T) ((-257 . -1117) T) ((-256 . -1117) T) ((-155 . -624) 48373) ((-1270 . -299) 48324) ((-1249 . -299) 48275) ((-883 . -1169) 48253) ((-1192 . -1019) 48219) ((-619 . -374) 48159) ((-1191 . -1019) 48125) ((-619 . -231) 48072) ((-705 . -861) T) ((-604 . -624) 48054) ((-604 . -625) NIL) ((-486 . -231) 48004) ((-498 . -1066) T) ((-1185 . -1019) 47970) ((-88 . -451) T) ((-88 . -406) T) ((-219 . -1066) T) ((-1143 . -1019) 47936) ((-1097 . -737) T) ((-723 . -1129) T) ((-607 . -299) 47915) ((-606 . -299) 47894) ((-498 . -248) T) ((-498 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1183 . -624) 47876) ((-883 . -38) 47828) ((-369 . -737) T) ((-363 . -737) T) ((-355 . -737) T) ((-108 . -805) T) ((-108 . -802) T) ((-723 . -23) T) ((-108 . -737) T) ((-531 . -1273) 47812) ((-1314 . -25) T) ((-485 . -293) 47778) ((-1314 . -21) T) ((-1248 . -318) 47717) ((-1194 . -102) T) ((-40 . -146) 47689) ((-40 . -148) 47661) ((-531 . -615) 47638) ((-1130 . -659) 47471) ((-613 . -318) 47409) ((-45 . -662) 47359) ((-45 . -677) 47309) ((-45 . -383) 47259) ((-1176 . -34) T) ((-882 . -859) NIL) ((-665 . -132) T) ((-496 . -624) 47241) ((-245 . -295) 47218) ((-188 . -1117) T) ((-1104 . -463) 47169) ((-827 . -525) 47043) ((-793 . -463) 46974) ((-675 . -1068) 46958) ((-658 . -34) T) ((-643 . -34) T) ((-675 . -651) 46942) ((-365 . -1068) 46894) ((-353 . -237) T) ((-362 . -1068) 46846) ((-354 . -1068) 46798) ((-272 . -1068) 46641) ((-252 . -1068) 46484) ((-791 . -463) 46435) ((-365 . -651) 46387) ((-362 . -651) 46339) ((-354 . -651) 46291) ((-272 . -651) 46140) ((-252 . -651) 45989) ((-465 . -463) 45940) ((-967 . -422) 45924) ((-742 . -624) 45906) ((-257 . -728) 45848) ((-256 . -728) 45790) ((-742 . -625) 45651) ((-492 . -422) 45635) ((-349 . -311) T) ((-535 . -93) T) ((-361 . -935) T) ((-1017 . -102) 45613) ((-925 . -1068) 45578) ((-1041 . -861) T) ((-60 . -525) 45511) ((-925 . -651) 45476) ((-1248 . -1169) 45428) ((-1021 . -295) NIL) ((-227 . -1075) T) ((-389 . -839) T) ((-1130 . -34) T) ((-592 . -463) T) ((-529 . -463) T) ((-1252 . -1110) 45412) ((-1252 . -1117) 45390) ((-245 . -615) 45367) ((-1252 . -1112) 45324) ((-1192 . -624) 45306) ((-1191 . -624) 45288) ((-1185 . -624) 45270) ((-1185 . -625) NIL) ((-1143 . -624) 45252) ((-883 . -411) 45236) ((-608 . -102) T) ((-596 . -102) T) ((-547 . -102) T) ((-1269 . -38) 45077) ((-1248 . -38) 44891) ((-881 . -148) T) ((-592 . -413) T) ((-529 . -413) T) ((-1281 . -102) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1130 . -805) 44870) ((-1130 . -804) 44849) ((-1010 . -1117) T) ((-1044 . -34) T) ((-873 . -1117) T) ((-1130 . -737) 44827) ((-675 . -102) T) ((-656 . -102) T) ((-561 . -297) 44806) ((-1207 . -102) T) ((-487 . -34) T) ((-474 . -34) T) ((-365 . -102) T) ((-362 . -102) T) ((-354 . -102) T) ((-272 . -102) T) ((-252 . -102) T) ((-488 . -316) T) ((-1079 . -1075) T) ((-967 . -1075) T) ((-325 . -650) 44712) ((-322 . -650) 44673) ((-1190 . -1117) T) ((-492 . -1075) T) ((-490 . -102) T) ((-447 . -624) 44655) ((-1142 . -1117) T) ((-255 . -624) 44637) ((-865 . -1117) T) ((-1158 . -102) T) ((-827 . -299) 44568) ((-978 . -1073) 44451) ((-488 . -1039) T) ((-883 . -915) 44374) ((-746 . -1073) 44344) ((-1051 . -657) 44303) ((-1164 . -1138) 44287) ((-464 . -1073) 44257) ((-1119 . -525) 44190) ((-978 . -111) 44059) ((-925 . -102) T) ((-40 . -237) 43996) ((-746 . -111) 43961) ((-536 . -501) 43942) ((-536 . -624) 43908) ((-59 . -102) 43858) ((-531 . -625) 43819) ((-531 . -624) 43731) ((-530 . -102) 43709) ((-527 . -102) 43659) ((-508 . -102) 43637) ((-507 . -102) 43587) ((-464 . -111) 43550) ((-331 . -657) 43532) ((-429 . -1073) 43506) ((-1229 . -990) 43468) ((-1016 . -1129) T) ((-389 . -657) 43418) ((-1152 . -627) 43399) ((-958 . -525) 43332) ((-498 . -806) T) ((-485 . -38) 43173) ((-429 . -111) 43140) ((-498 . -803) T) ((-1017 . -318) 43078) ((-219 . -806) T) ((-219 . -803) T) ((-1016 . -23) T) ((-723 . -132) T) ((-1248 . -411) 43048) ((-847 . -657) 42993) ((-838 . -657) 42952) ((-325 . -25) 42804) ((-171 . -422) 42788) ((-325 . -21) 42659) ((-322 . -25) T) ((-322 . -21) T) ((-875 . -378) T) ((-978 . -627) 42512) ((-110 . -34) T) ((-746 . -627) 42468) ((-726 . -627) 42450) ((-493 . -659) 42283) ((-882 . -1075) T) ((-604 . -297) 42258) ((-591 . -148) T) ((-575 . -148) T) ((-506 . -148) T) ((-1190 . -728) 42087) ((-1074 . -102) 42065) ((-1142 . -728) 41914) ((-1137 . -650) 41896) ((-865 . -728) 41866) ((-681 . -1235) T) ((-1 . -102) T) ((-429 . -627) 41774) ((-245 . -624) 41467) ((-1132 . -1117) T) ((-1258 . -422) 41451) ((-1207 . -318) 41255) ((-978 . -1066) T) ((-746 . -1066) T) ((-726 . -1066) T) ((-655 . -1117) 41205) ((-1071 . -659) 41189) ((-866 . -422) 41173) ((-522 . -102) T) ((-518 . -102) T) ((-272 . -318) 41160) ((-252 . -318) 41147) ((-1269 . -915) 41053) ((-978 . -335) 41032) ((-1248 . -915) 40829) ((-395 . -659) 40813) ((-681 . -1055) 40709) ((-490 . -318) 40513) ((-257 . -525) 40446) ((-256 . -525) 40379) ((-1158 . -318) 40305) ((-1229 . -908) 40284) ((-830 . -1117) T) ((-810 . -1073) 40268) ((-1277 . -295) 40233) ((-1270 . -295) 40191) ((-1249 . -295) 40019) ((-397 . -1117) T) ((-333 . -1117) T) ((-429 . -1066) T) ((-171 . -1075) T) ((-59 . -318) 39957) ((-810 . -111) 39936) ((-606 . -295) 39901) ((-530 . -318) 39839) ((-527 . -318) 39777) ((-508 . -318) 39715) ((-507 . -318) 39653) ((-429 . -238) 39632) ((-493 . -34) T) ((-227 . -1117) T) ((-1021 . -625) 39562) ((-1021 . -624) 39522) ((-988 . -624) 39482) ((-929 . -624) 39464) ((-710 . -148) T) ((-712 . -935) T) ((-712 . -831) T) ((-438 . -624) 39446) ((-1137 . -21) T) ((-1137 . -25) T) ((-681 . -387) 39430) ((-117 . -935) T) ((-883 . -271) 39414) ((-883 . -232) 39398) ((-44 . -1235) T) ((-78 . -1235) T) ((-127 . -126) 39382) ((-1071 . -34) T) ((-1307 . -1055) 39356) ((-1305 . -1055) 39313) ((-1258 . -1075) T) ((-866 . -1075) T) ((-365 . -1169) 39292) ((-362 . -1169) 39271) ((-354 . -1169) 39250) ((-493 . -805) 39229) ((-493 . -804) 39208) ((-229 . -34) T) ((-493 . -737) 39186) ((-810 . -627) 39032) ((-673 . -1068) 39016) ((-60 . -500) 39000) ((-582 . -1075) T) ((-1190 . -174) 38891) ((-673 . -651) 38875) ((-485 . -915) 38781) ((-1142 . -174) 38692) ((-1079 . -1117) T) ((-1104 . -964) 38637) ((-967 . -1117) T) ((-828 . -659) 38588) ((-793 . -964) 38557) ((-724 . -1117) T) ((-791 . -964) 38524) ((-527 . -291) 38508) ((-681 . -913) 38467) ((-492 . -1117) T) ((-465 . -964) 38434) ((-79 . -1235) T) ((-365 . -38) 38399) ((-362 . -38) 38364) ((-354 . -38) 38329) ((-272 . -38) 38178) ((-252 . -38) 38027) ((-925 . -1169) T) ((-535 . -501) 38008) ((-634 . -148) 37987) ((-634 . -146) 37966) ((-535 . -624) 37932) ((-118 . -148) T) ((-118 . -146) NIL) ((-425 . -737) T) ((-810 . -1066) T) ((-575 . -237) T) ((-506 . -237) T) ((-353 . -463) T) ((-1277 . -1019) 37898) ((-1270 . -1019) 37864) ((-1249 . -1019) 37830) ((-925 . -38) 37795) ((-227 . -728) 37760) ((-328 . -47) 37730) ((-40 . -420) 37702) ((-141 . -624) 37684) ((-1016 . -132) T) ((-826 . -1235) T) ((-176 . -935) T) ((-560 . -378) T) ((-725 . -657) 37629) ((-617 . -627) 37610) ((-353 . -413) T) ((-682 . -627) 37591) ((-322 . -234) NIL) ((-182 . -627) 37572) ((-162 . -627) 37553) ((-157 . -627) 37534) ((-155 . -627) 37515) ((-531 . -297) 37492) ((-1248 . -232) 37462) ((-1248 . -271) 37432) ((-1196 . -659) 37357) ((-887 . -102) T) ((-826 . -1055) 37184) ((-45 . -34) T) ((-692 . -102) T) ((-687 . -102) T) ((-673 . -102) T) ((-665 . -21) T) ((-665 . -25) T) ((-1119 . -500) 37168) ((-686 . -1235) T) ((-489 . -102) T) ((-250 . -102) 37118) ((-557 . -855) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1104 . -908) 37013) ((-882 . -1117) T) ((-1190 . -525) 36960) ((-1079 . -728) 36947) ((-793 . -908) 36850) ((-742 . -1073) 36693) ((-791 . -908) 36675) ((-967 . -728) 36524) ((-1142 . -525) 36476) ((-1296 . -1117) T) ((-1295 . -1117) T) ((-465 . -908) 36451) ((-492 . -728) 36300) ((-67 . -624) 36282) ((-742 . -111) 36111) ((-958 . -500) 36095) ((-1297 . -659) 36055) ((-1192 . -1073) 35938) ((-828 . -737) T) ((-1191 . -1073) 35773) ((-1185 . -1073) 35563) ((-328 . -1235) T) ((-1143 . -1073) 35446) ((-1020 . -1239) T) ((-1111 . -102) 35424) ((-826 . -387) 35393) ((-590 . -624) 35375) ((-557 . -1117) T) ((-1020 . -567) T) ((-1192 . -111) 35244) ((-1191 . -111) 35065) ((-1185 . -111) 34834) ((-1143 . -111) 34703) ((-1122 . -1120) 34667) ((-389 . -859) T) ((-1277 . -624) 34649) ((-1270 . -624) 34631) ((-883 . -657) 34568) ((-1249 . -624) 34550) ((-1249 . -625) NIL) ((-245 . -297) 34527) ((-40 . -463) T) ((-227 . -174) T) ((-171 . -1117) T) ((-742 . -627) 34312) ((-705 . -148) T) ((-705 . -146) NIL) ((-607 . -624) 34294) ((-606 . -624) 34276) ((-1137 . -234) 34263) ((-912 . -1117) T) ((-852 . -1117) T) ((-819 . -1117) T) ((-272 . -915) 34173) ((-252 . -915) 34150) ((-780 . -1117) T) ((-688 . -1117) T) ((-669 . -863) 34134) ((-634 . -237) 34085) ((-826 . -913) 34017) ((-1240 . -378) T) ((-40 . -413) NIL) ((-118 . -237) NIL) ((-1192 . -627) 33899) ((-1137 . -672) T) ((-882 . -728) 33844) ((-257 . -500) 33828) ((-256 . -500) 33812) ((-1191 . -627) 33555) ((-1185 . -627) 33350) ((-723 . -650) 33298) ((-664 . -659) 33272) ((-1143 . -627) 33154) ((-304 . -34) T) ((-1137 . -113) T) ((-742 . -1066) T) ((-592 . -1292) 33141) ((-529 . -1292) 33118) ((-1258 . -1117) T) ((-1190 . -299) 33029) ((-1142 . -299) 32960) ((-1079 . -174) T) ((-298 . -1235) T) ((-866 . -1117) T) ((-967 . -174) 32871) ((-793 . -1261) 32855) ((-655 . -525) 32788) ((-77 . -624) 32770) ((-742 . -335) 32735) ((-1196 . -737) T) ((-582 . -1117) T) ((-492 . -174) 32646) ((-250 . -318) 32584) ((-1159 . -1129) T) ((-70 . -624) 32566) ((-1297 . -737) T) ((-1192 . -1066) T) ((-1191 . -1066) T) ((-336 . -102) 32516) ((-1185 . -1066) T) ((-1159 . -23) T) ((-1143 . -1066) T) ((-91 . -1138) 32500) ((-877 . -1129) T) ((-1192 . -238) 32459) ((-1191 . -248) 32438) ((-1191 . -238) 32390) ((-1185 . -238) 32277) ((-1185 . -248) 32256) ((-328 . -913) 32162) ((-877 . -23) T) ((-171 . -728) 31990) ((-418 . -1239) T) ((-1118 . -378) T) ((-1020 . -373) T) ((-881 . -463) T) ((-1041 . -148) T) ((-958 . -295) 31942) ((-322 . -861) NIL) ((-1269 . -657) 31824) ((-885 . -102) T) ((-1248 . -657) 31679) ((-723 . -25) T) ((-418 . -567) T) ((-723 . -21) T) ((-536 . -627) 31660) ((-364 . -148) 31642) ((-364 . -146) T) ((-1164 . -1117) 31620) ((-464 . -731) T) ((-75 . -624) 31602) ((-115 . -861) T) ((-250 . -291) 31586) ((-245 . -1073) 31507) ((-81 . -624) 31489) ((-746 . -378) 31442) ((-1194 . -839) T) ((-748 . -240) 31426) ((-1177 . -1235) T) ((-142 . -240) 31408) ((-245 . -111) 31324) ((-1258 . -728) 31153) ((-48 . -148) T) ((-882 . -174) T) ((-866 . -728) 31123) ((-495 . -1235) T) ((-967 . -525) 31070) ((-664 . -737) T) ((-582 . -728) 31057) ((-1051 . -1075) T) ((-705 . -237) NIL) ((-492 . -525) 31000) ((-958 . -19) 30984) ((-958 . -615) 30961) ((-1097 . -1235) 30912) ((-827 . -625) NIL) ((-827 . -624) 30894) ((-1229 . -651) 30791) ((-1229 . -1068) 30674) ((-1021 . -1073) 30624) ((-424 . -624) 30606) ((-257 . -295) 30583) ((-369 . -1235) 30562) ((-363 . -1235) 30541) ((-355 . -1235) 30520) ((-256 . -295) 30497) ((-498 . -924) NIL) ((-325 . -29) 30467) ((-108 . -1235) T) ((-1020 . -1129) T) ((-219 . -924) NIL) ((-1097 . -1055) 30363) ((-929 . -1073) 30315) ((-1021 . -111) 30249) ((-1020 . -23) T) ((-722 . -1068) 30214) ((-929 . -111) 30152) ((-748 . -706) 30136) ((-722 . -651) 30101) ((-272 . -271) 30085) ((-272 . -232) 30069) ((-438 . -1073) 30053) ((-389 . -1075) T) ((-245 . -627) 29851) ((-705 . -1223) NIL) ((-498 . -659) 29801) ((-485 . -657) 29683) ((-108 . -896) 29665) ((-108 . -898) 29647) ((-705 . -1220) NIL) ((-219 . -659) 29597) ((-369 . -1055) 29581) ((-363 . -1055) 29565) ((-336 . -318) 29503) ((-355 . -1055) 29487) ((-227 . -299) T) ((-438 . -111) 29466) ((-60 . -624) 29398) ((-171 . -174) T) ((-1137 . -861) T) ((-108 . -1055) 29358) ((-904 . -1117) T) ((-847 . -1075) T) ((-838 . -1075) T) ((-705 . -35) NIL) ((-705 . -95) NIL) ((-322 . -1009) 29319) ((-185 . -102) T) ((-591 . -463) T) ((-575 . -463) T) ((-506 . -463) T) ((-418 . -373) T) ((-245 . -1066) 29297) ((-1167 . -34) T) ((-488 . -935) T) ((-1016 . -650) 29245) ((-257 . -615) 29222) ((-256 . -615) 29199) ((-1097 . -387) 29183) ((-882 . -525) 29091) ((-245 . -238) 29043) ((-1176 . -1235) T) ((-1021 . -627) 28993) ((-929 . -627) 28930) ((-835 . -624) 28912) ((-1308 . -1129) T) ((-1300 . -624) 28894) ((-1258 . -174) 28785) ((-438 . -627) 28754) ((-108 . -387) 28736) ((-108 . -348) 28718) ((-1079 . -299) T) ((-967 . -299) 28649) ((-810 . -378) 28628) ((-658 . -1235) T) ((-643 . -1235) T) ((-1308 . -23) T) ((-597 . -1068) 28603) ((-492 . -299) 28534) ((-582 . -174) T) ((-336 . -291) 28518) ((-364 . -237) T) ((-1229 . -102) T) ((-1216 . -1117) T) ((-1105 . -1117) T) ((-1093 . -1117) T) ((-597 . -651) 28493) ((-83 . -624) 28475) ((-1201 . -855) T) ((-1200 . -855) T) ((-722 . -102) T) ((-365 . -359) 28454) ((-619 . -1117) T) ((-362 . -359) 28433) ((-354 . -359) 28412) ((-486 . -1117) T) ((-1207 . -231) 28362) ((-272 . -259) 28324) ((-1159 . -132) T) ((-619 . -621) 28300) ((-1097 . -913) 28233) ((-1021 . -1066) T) ((-929 . -1066) T) ((-486 . -621) 28212) ((-1185 . -803) NIL) ((-1185 . -806) NIL) ((-1119 . -625) 28173) ((-1119 . -624) 28155) ((-490 . -231) 28105) ((-1021 . -248) T) ((-1021 . -238) T) ((-973 . -1117) 28055) ((-438 . -1066) T) ((-929 . -248) T) ((-877 . -132) T) ((-48 . -237) T) ((-710 . -463) T) ((-854 . -1129) 28034) ((-108 . -913) NIL) ((-1229 . -293) 28000) ((-1130 . -1235) T) ((-883 . -859) 27979) ((-1016 . -25) T) ((-920 . -737) T) ((-171 . -525) 27891) ((-1016 . -21) T) ((-920 . -484) T) ((-418 . -1129) T) ((-498 . -805) T) ((-498 . -802) T) ((-925 . -359) T) ((-498 . -737) T) ((-219 . -805) T) ((-219 . -802) T) ((-723 . -234) 27878) ((-219 . -737) T) ((-854 . -23) 27830) ((-1202 . -1117) T) ((-669 . -1068) 27814) ((-1201 . -1117) T) ((-535 . -627) 27795) ((-1200 . -1117) T) ((-328 . -316) 27774) ((-1052 . -240) 27720) ((-669 . -651) 27690) ((-418 . -23) T) ((-958 . -625) 27651) ((-958 . -624) 27563) ((-655 . -500) 27547) ((-45 . -1027) 27497) ((-1130 . -1055) 27324) ((-628 . -984) T) ((-502 . -102) T) ((-340 . -624) 27306) ((-1010 . -295) 27273) ((-604 . -662) 27255) ((-131 . -1117) T) ((-129 . -1117) T) ((-604 . -383) 27237) ((-353 . -1292) 27214) ((-450 . -624) 27196) ((-1258 . -525) 27143) ((-1104 . -1068) 26986) ((-1044 . -1235) T) ((-882 . -299) T) ((-1190 . -295) 26913) ((-1104 . -651) 26762) ((-1017 . -1012) 26746) ((-793 . -1068) 26569) ((-791 . -1068) 26412) ((-793 . -651) 26241) ((-791 . -651) 26090) ((-487 . -1235) T) ((-474 . -1235) T) ((-597 . -102) T) ((-472 . -1068) 26061) ((-465 . -1068) 25904) ((-675 . -657) 25873) ((-634 . -463) 25852) ((-472 . -651) 25823) ((-465 . -651) 25672) ((-365 . -657) 25609) ((-362 . -657) 25546) ((-354 . -657) 25483) ((-272 . -657) 25393) ((-252 . -657) 25303) ((-1300 . -392) 25275) ((-528 . -1117) T) ((-118 . -463) T) ((-1215 . -102) T) ((-1109 . -1117) 25245) ((-1051 . -1117) T) ((-1132 . -93) T) ((-905 . -861) T) ((-1277 . -111) 25114) ((-361 . -1239) T) ((-1277 . -1073) 24997) ((-1130 . -387) 24966) ((-1270 . -1073) 24801) ((-1249 . -1073) 24591) ((-1270 . -111) 24412) ((-1249 . -111) 24181) ((-1229 . -318) 24168) ((-1020 . -132) T) ((-925 . -657) 24118) ((-375 . -624) 24100) ((-361 . -567) T) ((-298 . -316) T) ((-607 . -1073) 24060) ((-606 . -1073) 23943) ((-592 . -1068) 23908) ((-529 . -1068) 23853) ((-371 . -1117) T) ((-331 . -1117) T) ((-257 . -624) 23814) ((-256 . -624) 23775) ((-592 . -651) 23740) ((-529 . -651) 23685) ((-705 . -420) 23652) ((-646 . -23) T) ((-618 . -23) T) ((-40 . -908) 23559) ((-669 . -102) T) ((-607 . -111) 23512) ((-606 . -111) 23381) ((-389 . -1117) T) ((-346 . -102) T) ((-171 . -299) 23292) ((-1248 . -859) 23245) ((-725 . -1075) T) ((-1164 . -525) 23178) ((-1208 . -846) 23162) ((-1130 . -913) 23094) ((-847 . -1117) T) ((-838 . -1117) T) ((-836 . -1117) T) ((-97 . -102) T) ((-145 . -861) T) ((-623 . -896) 23078) ((-110 . -1235) T) ((-1104 . -102) T) ((-1080 . -34) T) ((-793 . -102) T) ((-791 . -102) T) ((-1277 . -627) 22960) ((-1270 . -627) 22703) ((-472 . -102) T) ((-465 . -102) T) ((-1249 . -627) 22498) ((-245 . -806) 22477) ((-245 . -803) 22456) ((-660 . -102) T) ((-607 . -627) 22414) ((-606 . -627) 22296) ((-1258 . -299) 22207) ((-675 . -645) 22191) ((-188 . -624) 22173) ((-655 . -295) 22125) ((-1051 . -728) 22109) ((-582 . -299) T) ((-978 . -659) 22034) ((-1308 . -132) T) ((-746 . -659) 21994) ((-726 . -659) 21981) ((-283 . -102) T) ((-464 . -659) 21911) ((-50 . -102) T) ((-592 . -102) T) ((-529 . -102) T) ((-1277 . -1066) T) ((-1270 . -1066) T) ((-1249 . -1066) T) ((-518 . -657) 21893) ((-331 . -728) 21875) ((-1277 . -238) 21834) ((-1270 . -248) 21813) ((-1270 . -238) 21765) ((-1249 . -238) 21652) ((-1249 . -248) 21631) ((-1229 . -38) 21528) ((-607 . -1066) T) ((-606 . -1066) T) ((-1021 . -806) T) ((-1021 . -803) T) ((-988 . -806) T) ((-988 . -803) T) ((-883 . -1075) T) ((-109 . -624) 21510) ((-705 . -463) T) ((-389 . -728) 21475) ((-429 . -659) 21449) ((-881 . -880) 21433) ((-722 . -38) 21398) ((-606 . -238) 21357) ((-40 . -735) 21329) ((-361 . -338) 21306) ((-361 . -373) T) ((-1097 . -316) 21257) ((-303 . -1129) 21138) ((-1123 . -1235) T) ((-1016 . -234) 21083) ((-173 . -102) T) ((-1252 . -624) 21050) ((-854 . -132) 21002) ((-847 . -728) 20972) ((-655 . -1273) 20956) ((-838 . -728) 20926) ((-655 . -615) 20903) ((-493 . -1235) T) ((-369 . -316) T) ((-363 . -316) T) ((-355 . -316) T) ((-410 . -234) 20890) ((-418 . -132) T) ((-531 . -677) 20874) ((-108 . -316) T) ((-303 . -23) 20757) ((-531 . -662) 20741) ((-705 . -413) NIL) ((-531 . -383) 20725) ((-300 . -624) 20707) ((-91 . -1117) 20685) ((-108 . -1039) T) ((-575 . -144) T) ((-1285 . -152) 20669) ((-493 . -1055) 20496) ((-1271 . -146) 20457) ((-1271 . -148) 20418) ((-1071 . -1235) T) ((-1010 . -624) 20400) ((-829 . -1235) T) ((-873 . -624) 20382) ((-827 . -1073) 20225) ((-1296 . -93) T) ((-1295 . -93) T) ((-1190 . -625) NIL) ((-1113 . -1117) T) ((-1107 . -1117) T) ((-1104 . -318) 20212) ((-1090 . -1117) T) ((-229 . -1235) T) ((-1083 . -1117) T) ((-1053 . -1117) T) ((-1036 . -1117) T) ((-793 . -318) 20199) ((-791 . -318) 20186) ((-1190 . -624) 20168) ((-827 . -111) 19997) ((-1142 . -624) 19979) ((-637 . -1117) T) ((-588 . -175) T) ((-540 . -175) T) ((-465 . -318) 19966) ((-494 . -1117) T) ((-1142 . -625) 19714) ((-1051 . -174) T) ((-958 . -297) 19691) ((-220 . -1117) T) ((-865 . -624) 19673) ((-619 . -525) 19456) ((-81 . -627) 19397) ((-829 . -1055) 19381) ((-486 . -525) 19173) ((-978 . -737) T) ((-746 . -737) T) ((-726 . -737) T) ((-361 . -1129) T) ((-1197 . -624) 19155) ((-225 . -102) T) ((-493 . -387) 19124) ((-526 . -1117) T) ((-521 . -1117) T) ((-519 . -1117) T) ((-810 . -659) 19098) ((-1041 . -463) T) ((-973 . -525) 19031) ((-361 . -23) T) ((-646 . -132) T) ((-618 . -132) T) ((-364 . -463) T) ((-245 . -378) 19010) ((-389 . -174) T) ((-1269 . -1075) T) ((-1248 . -1075) T) ((-227 . -1019) T) ((-827 . -627) 18747) ((-710 . -398) T) ((-429 . -737) T) ((-712 . -1239) T) ((-1159 . -650) 18695) ((-591 . -880) 18679) ((-1300 . -1073) 18663) ((-1177 . -1211) 18639) ((-712 . -567) T) ((-127 . -1117) 18617) ((-725 . -1117) T) ((-669 . -38) 18587) ((-493 . -913) 18519) ((-254 . -1117) T) ((-189 . -1117) T) ((-364 . -413) T) ((-325 . -148) 18498) ((-325 . -146) 18477) ((-129 . -525) NIL) ((-117 . -567) T) ((-322 . -148) 18433) ((-322 . -146) 18389) ((-48 . -463) T) ((-163 . -1117) T) ((-158 . -1117) T) ((-1177 . -107) 18336) ((-793 . -1169) 18314) ((-700 . -34) T) ((-1300 . -111) 18293) ((-561 . -34) T) ((-495 . -107) 18277) ((-257 . -297) 18254) ((-256 . -297) 18231) ((-1241 . -855) T) ((-882 . -295) 18182) ((-45 . -1235) T) ((-1229 . -915) 18163) ((-828 . -1235) T) ((-827 . -1066) T) ((-673 . -657) 18132) ((-1196 . -47) 18109) ((-827 . -335) 18071) ((-1104 . -38) 17920) ((-827 . -238) 17899) ((-793 . -38) 17728) ((-791 . -38) 17577) ((-1132 . -501) 17558) ((-465 . -38) 17407) ((-1132 . -624) 17373) ((-1135 . -102) T) ((-655 . -625) 17334) ((-655 . -624) 17246) ((-592 . -1169) T) ((-529 . -1169) T) ((-1164 . -500) 17230) ((-353 . -1068) 17175) ((-1221 . -1117) 17153) ((-1159 . -25) T) ((-1159 . -21) T) ((-353 . -651) 17098) ((-1300 . -627) 17047) ((-485 . -1075) T) ((-1241 . -1117) T) ((-1249 . -803) NIL) ((-1249 . -806) NIL) ((-1016 . -861) 17026) ((-849 . -1117) T) ((-830 . -624) 17008) ((-877 . -21) T) ((-877 . -25) T) ((-810 . -737) T) ((-176 . -1239) T) ((-592 . -38) 16973) ((-529 . -38) 16938) ((-397 . -624) 16920) ((-342 . -102) T) ((-333 . -624) 16902) ((-171 . -295) 16860) ((-63 . -1235) T) ((-112 . -102) T) ((-883 . -1117) T) ((-176 . -567) T) ((-725 . -728) 16830) ((-303 . -132) 16713) ((-227 . -624) 16695) ((-227 . -625) 16625) ((-1020 . -650) 16564) ((-1300 . -1066) T) ((-1137 . -148) T) ((-643 . -1211) 16539) ((-742 . -924) 16518) ((-604 . -34) T) ((-658 . -107) 16502) ((-643 . -107) 16448) ((-634 . -908) 16369) ((-1258 . -295) 16296) ((-742 . -659) 16185) ((-304 . -1235) T) ((-1196 . -1055) 16081) ((-958 . -629) 16058) ((-588 . -587) T) ((-588 . -538) T) ((-540 . -538) T) ((-118 . -908) NIL) ((-1185 . -924) NIL) ((-1079 . -625) 15973) ((-1079 . -624) 15955) ((-967 . -624) 15937) ((-724 . -501) 15887) ((-353 . -102) T) ((-257 . -1073) 15808) ((-256 . -1073) 15729) ((-405 . -102) T) ((-31 . -1117) T) ((-967 . -625) 15590) ((-724 . -624) 15525) ((-1298 . -1228) 15494) ((-492 . -624) 15476) ((-492 . -625) 15337) ((-272 . -422) 15321) ((-252 . -422) 15305) ((-322 . -237) NIL) ((-257 . -111) 15221) ((-256 . -111) 15137) ((-1192 . -659) 15062) ((-1191 . -659) 14959) ((-1185 . -659) 14811) ((-1143 . -659) 14736) ((-361 . -132) T) ((-82 . -452) T) ((-82 . -406) T) ((-1020 . -25) T) ((-1020 . -21) T) ((-884 . -1117) 14687) ((-40 . -1068) 14632) ((-883 . -728) 14584) ((-40 . -651) 14529) ((-389 . -299) T) ((-171 . -1019) 14480) ((-1104 . -915) 14379) ((-705 . -398) T) ((-1016 . -1014) 14363) ((-712 . -1129) T) ((-705 . -167) 14345) ((-793 . -915) 14252) ((-791 . -915) 14236) ((-1269 . -1117) T) ((-1248 . -1117) T) ((-1182 . -102) T) ((-325 . -1220) 14215) ((-325 . -1223) 14194) ((-465 . -915) 14171) ((-325 . -974) 14150) ((-135 . -1129) T) ((-117 . -1129) T) ((-664 . -1235) T) ((-613 . -1283) 14134) ((-712 . -23) T) ((-613 . -1117) 14084) ((-325 . -95) 14063) ((-91 . -525) 13996) ((-176 . -373) T) ((-257 . -627) 13794) ((-256 . -627) 13592) ((-325 . -35) 13571) ((-619 . -500) 13505) ((-135 . -23) T) ((-117 . -23) T) ((-981 . -102) T) ((-729 . -1117) T) ((-486 . -500) 13442) ((-418 . -650) 13390) ((-664 . -1055) 13286) ((-973 . -500) 13270) ((-365 . -1075) T) ((-362 . -1075) T) ((-354 . -1075) T) ((-272 . -1075) T) ((-252 . -1075) T) ((-882 . -625) NIL) ((-882 . -624) 13252) ((-1296 . -501) 13233) ((-1295 . -501) 13214) ((-1308 . -21) T) ((-1296 . -624) 13180) ((-1295 . -624) 13146) ((-582 . -1019) T) ((-742 . -737) T) ((-1308 . -25) T) ((-257 . -1066) 13124) ((-256 . -1066) 13102) ((-72 . -1235) T) ((-1159 . -234) 13047) ((-257 . -238) 12999) ((-256 . -238) 12951) ((-1137 . -237) T) ((-40 . -102) T) ((-925 . -1075) T) ((-705 . -908) NIL) ((-1199 . -102) T) ((-129 . -500) 12933) ((-1192 . -737) T) ((-1191 . -737) T) ((-1185 . -737) T) ((-1185 . -802) NIL) ((-1185 . -805) NIL) ((-969 . -102) T) ((-936 . -102) T) ((-881 . -1068) 12920) ((-1143 . -737) T) ((-782 . -102) T) ((-683 . -102) T) ((-881 . -651) 12907) ((-557 . -624) 12889) ((-485 . -1117) T) ((-349 . -1129) T) ((-176 . -1129) T) ((-328 . -935) 12868) ((-1269 . -728) 12709) ((-883 . -174) T) ((-1248 . -728) 12523) ((-854 . -21) 12475) ((-854 . -25) 12427) ((-250 . -1166) 12411) ((-127 . -525) 12344) ((-418 . -25) T) ((-418 . -21) T) ((-349 . -23) T) ((-171 . -625) 12110) ((-171 . -624) 12092) ((-176 . -23) T) ((-655 . -297) 12069) ((-531 . -34) T) ((-912 . -624) 12051) ((-89 . -1235) T) ((-852 . -624) 12033) ((-819 . -624) 12015) ((-780 . -624) 11997) ((-688 . -624) 11979) ((-245 . -659) 11812) ((-628 . -113) T) ((-1194 . -1117) T) ((-1190 . -1073) 11635) ((-1167 . -1235) T) ((-1142 . -1073) 11478) ((-865 . -1073) 11462) ((-1252 . -629) 11446) ((-1190 . -111) 11255) ((-1142 . -111) 11084) ((-865 . -111) 11063) ((-1242 . -861) T) ((-1258 . -625) NIL) ((-1258 . -624) 11045) ((-353 . -1169) T) ((-866 . -624) 11027) ((-1093 . -295) 11006) ((-1229 . -657) 10916) ((-80 . -1235) T) ((-920 . -1235) T) ((-1221 . -525) 10849) ((-1021 . -924) NIL) ((-1104 . -271) 10833) ((-619 . -295) 10809) ((-1104 . -232) 10793) ((-498 . -1235) T) ((-582 . -624) 10775) ((-486 . -295) 10754) ((-1021 . -659) 10704) ((-528 . -93) T) ((-1020 . -234) 10635) ((-219 . -1235) T) ((-973 . -295) 10587) ((-881 . -102) T) ((-298 . -935) T) ((-828 . -316) 10566) ((-793 . -271) 10550) ((-793 . -232) 10534) ((-929 . -659) 10486) ((-722 . -657) 10436) ((-705 . -735) 10403) ((-646 . -21) T) ((-646 . -25) T) ((-618 . -21) T) ((-558 . -102) T) ((-353 . -38) 10368) ((-498 . -896) 10350) ((-498 . -898) 10332) ((-485 . -728) 10173) ((-219 . -896) 10155) ((-64 . -1235) T) ((-219 . -898) 10137) ((-618 . -25) T) ((-438 . -659) 10111) ((-1190 . -627) 9880) ((-498 . -1055) 9840) ((-883 . -525) 9752) ((-1142 . -627) 9544) ((-865 . -627) 9462) ((-219 . -1055) 9422) ((-245 . -34) T) ((-1017 . -1117) 9400) ((-591 . -1068) 9387) ((-575 . -1068) 9374) ((-506 . -1068) 9339) ((-1269 . -174) 9270) ((-1248 . -174) 9201) ((-591 . -651) 9188) ((-575 . -651) 9175) ((-506 . -651) 9140) ((-723 . -146) 9119) ((-723 . -148) 9098) ((-712 . -132) T) ((-137 . -476) 9075) ((-1164 . -624) 9007) ((-669 . -667) 8991) ((-129 . -295) 8941) ((-117 . -132) T) ((-488 . -1239) T) ((-619 . -615) 8917) ((-486 . -615) 8896) ((-346 . -345) 8865) ((-608 . -1117) T) ((-596 . -1117) T) ((-547 . -1117) T) ((-488 . -567) T) ((-1190 . -1066) T) ((-1142 . -1066) T) ((-865 . -1066) T) ((-245 . -805) 8844) ((-245 . -804) 8823) ((-1190 . -335) 8800) ((-245 . -737) 8778) ((-973 . -19) 8762) ((-498 . -387) 8744) ((-498 . -348) 8726) ((-1142 . -335) 8698) ((-364 . -1292) 8675) ((-219 . -387) 8657) ((-219 . -348) 8639) ((-973 . -615) 8616) ((-1190 . -238) T) ((-1281 . -1117) T) ((-675 . -1117) T) ((-656 . -1117) T) ((-1207 . -1117) T) ((-1104 . -259) 8553) ((-597 . -657) 8513) ((-365 . -1117) T) ((-362 . -1117) T) ((-354 . -1117) T) ((-272 . -1117) T) ((-252 . -1117) T) ((-84 . -1235) T) ((-128 . -102) 8491) ((-122 . -102) 8469) ((-1248 . -525) 8329) ((-1207 . -621) 8308) ((-1158 . -1117) T) ((-1132 . -627) 8289) ((-1097 . -935) 8240) ((-490 . -1117) T) ((-1021 . -805) T) ((-1021 . -802) T) ((-490 . -621) 8219) ((-257 . -806) 8198) ((-257 . -803) 8177) ((-256 . -806) 8156) ((-40 . -1169) NIL) ((-256 . -803) 8135) ((-1021 . -737) T) ((-129 . -19) 8117) ((-988 . -805) T) ((-710 . -1068) 8082) ((-929 . -737) T) ((-925 . -1117) T) ((-904 . -624) 8064) ((-129 . -615) 8039) ((-710 . -651) 8004) ((-91 . -500) 7988) ((-498 . -913) NIL) ((-883 . -299) T) ((-227 . -1073) 7953) ((-847 . -295) 7932) ((-219 . -913) NIL) ((-844 . -1129) 7911) ((-59 . -1117) 7861) ((-530 . -1117) 7839) ((-527 . -1117) 7789) ((-508 . -1117) 7767) ((-507 . -1117) 7717) ((-591 . -102) T) ((-575 . -102) T) ((-506 . -102) T) ((-485 . -174) 7648) ((-369 . -935) T) ((-363 . -935) T) ((-355 . -935) T) ((-227 . -111) 7604) ((-844 . -23) 7556) ((-438 . -737) T) ((-108 . -935) T) ((-40 . -38) 7501) ((-108 . -831) T) ((-592 . -359) T) ((-529 . -359) T) ((-669 . -657) 7460) ((-325 . -463) 7439) ((-322 . -463) T) ((-613 . -525) 7372) ((-418 . -234) 7317) ((-349 . -132) T) ((-176 . -132) T) ((-303 . -25) 7181) ((-303 . -21) 7064) ((-45 . -1211) 7043) ((-66 . -624) 7025) ((-55 . -102) T) ((-346 . -657) 7007) ((-1286 . -102) T) ((-1285 . -102) 6957) ((-45 . -107) 6907) ((-830 . -627) 6891) ((-1277 . -659) 6816) ((-1270 . -659) 6713) ((-1249 . -659) 6565) ((-1249 . -924) NIL) ((-1216 . -624) 6547) ((-1119 . -436) 6531) ((-1119 . -378) 6510) ((-397 . -627) 6494) ((-333 . -627) 6478) ((-1208 . -102) T) ((-1113 . -93) T) ((-1080 . -1235) T) ((-1104 . -657) 6388) ((-1079 . -1073) 6375) ((-1079 . -111) 6360) ((-967 . -1073) 6203) ((-967 . -111) 6032) ((-793 . -657) 5942) ((-791 . -657) 5852) ((-634 . -1068) 5839) ((-675 . -728) 5823) ((-634 . -651) 5810) ((-492 . -1073) 5653) ((-488 . -373) T) ((-472 . -657) 5609) ((-465 . -657) 5519) ((-227 . -627) 5469) ((-365 . -728) 5421) ((-362 . -728) 5373) ((-118 . -1068) 5318) ((-354 . -728) 5270) ((-272 . -728) 5119) ((-252 . -728) 4968) ((-1107 . -93) T) ((-1090 . -93) T) ((-118 . -651) 4913) ((-1083 . -93) T) ((-958 . -662) 4897) ((-1074 . -1117) 4875) ((-492 . -111) 4704) ((-1053 . -93) T) ((-1036 . -93) T) ((-958 . -383) 4688) ((-253 . -102) T) ((-978 . -47) 4667) ((-74 . -624) 4649) ((-723 . -237) T) ((-721 . -102) T) ((-710 . -102) T) ((-1 . -1117) T) ((-632 . -1129) T) ((-1105 . -624) 4631) ((-637 . -93) T) ((-1093 . -624) 4613) ((-925 . -728) 4578) ((-127 . -500) 4562) ((-494 . -93) T) ((-632 . -23) T) ((-401 . -23) T) ((-87 . -1235) T) ((-220 . -93) T) ((-619 . -624) 4544) ((-619 . -625) NIL) ((-486 . -625) NIL) ((-486 . -624) 4526) ((-361 . -25) T) ((-361 . -21) T) ((-50 . -657) 4485) ((-522 . -1117) T) ((-518 . -1117) T) ((-128 . -318) 4423) ((-122 . -318) 4361) ((-607 . -659) 4335) ((-606 . -659) 4260) ((-592 . -657) 4210) ((-227 . -1066) T) ((-529 . -657) 4140) ((-389 . -1019) T) ((-227 . -248) T) ((-227 . -238) T) ((-1079 . -627) 4112) ((-1079 . -629) 4093) ((-973 . -625) 4054) ((-973 . -624) 3966) ((-967 . -627) 3755) ((-881 . -38) 3742) ((-724 . -627) 3692) ((-1269 . -299) 3643) ((-1248 . -299) 3594) ((-492 . -627) 3379) ((-1137 . -463) T) ((-513 . -861) T) ((-325 . -1156) 3358) ((-1016 . -148) 3337) ((-1016 . -146) 3316) ((-506 . -318) 3303) ((-304 . -1211) 3282) ((-1202 . -624) 3264) ((-1201 . -624) 3246) ((-1200 . -624) 3228) ((-882 . -1073) 3173) ((-488 . -1129) T) ((-140 . -846) 3155) ((-115 . -846) 3136) ((-634 . -102) T) ((-1221 . -500) 3120) ((-257 . -378) 3099) ((-256 . -378) 3078) ((-1079 . -1066) T) ((-304 . -107) 3028) ((-131 . -624) 3010) ((-129 . -625) NIL) ((-129 . -624) 2954) ((-118 . -102) T) ((-967 . -1066) T) ((-882 . -111) 2883) ((-488 . -23) T) ((-464 . -1235) T) ((-492 . -1066) T) ((-1079 . -238) T) ((-967 . -335) 2852) ((-40 . -915) 2761) ((-492 . -335) 2718) ((-365 . -174) T) ((-362 . -174) T) ((-354 . -174) T) ((-272 . -174) 2629) ((-252 . -174) 2540) ((-978 . -1055) 2436) ((-528 . -501) 2417) ((-746 . -1055) 2388) ((-528 . -624) 2354) ((-429 . -1235) T) ((-1122 . -102) T) ((-1109 . -624) 2313) ((-1051 . -624) 2295) ((-705 . -1068) 2245) ((-1298 . -152) 2229) ((-1296 . -627) 2210) ((-1295 . -627) 2191) ((-1290 . -624) 2173) ((-1277 . -737) T) ((-705 . -651) 2123) ((-1270 . -737) T) ((-1249 . -802) NIL) ((-1249 . -805) NIL) ((-171 . -1073) 2033) ((-925 . -174) T) ((-882 . -627) 1963) ((-1249 . -737) T) ((-1020 . -352) 1937) ((-225 . -657) 1889) ((-1017 . -525) 1822) ((-854 . -861) 1801) ((-575 . -1169) T) ((-485 . -299) 1752) ((-607 . -737) T) ((-371 . -624) 1734) ((-331 . -624) 1716) ((-429 . -1055) 1612) ((-606 . -737) T) ((-418 . -861) 1563) ((-171 . -111) 1459) ((-844 . -132) 1411) ((-748 . -152) 1395) ((-1285 . -318) 1333) ((-498 . -316) T) ((-389 . -624) 1300) ((-531 . -1027) 1284) ((-389 . -625) 1198) ((-219 . -316) T) ((-142 . -152) 1180) ((-725 . -295) 1159) ((-498 . -1039) T) ((-591 . -38) 1146) ((-575 . -38) 1133) ((-506 . -38) 1098) ((-219 . -1039) T) ((-882 . -1066) T) ((-847 . -624) 1080) ((-838 . -624) 1062) ((-836 . -624) 1044) ((-827 . -924) 1023) ((-1309 . -1129) T) ((-1258 . -1073) 846) ((-866 . -1073) 830) ((-882 . -248) T) ((-882 . -238) NIL) ((-700 . -1235) T) ((-1309 . -23) T) ((-827 . -659) 719) ((-561 . -1235) T) ((-429 . -348) 703) ((-582 . -1073) 690) ((-1258 . -111) 499) ((-712 . -650) 481) ((-866 . -111) 460) ((-391 . -23) T) ((-171 . -627) 238) ((-1207 . -525) 30) ((-887 . -1117) T) ((-692 . -1117) T) ((-687 . -1117) T) ((-673 . -1117) T)) \ No newline at end of file
+(((-490 . -1119) T) ((-273 . -526) 203062) ((-253 . -526) 203005) ((-250 . -1119) 202955) ((-583 . -111) 202940) ((-543 . -23) T) ((-139 . -1119) T) ((-138 . -1119) T) ((-118 . -319) 202897) ((-134 . -1119) T) ((-1018 . -237) 202848) ((-811 . -1237) 202817) ((-491 . -526) 202609) ((-689 . -628) 202593) ((-706 . -102) T) ((-1160 . -526) 202512) ((-411 . -237) T) ((-402 . -132) T) ((-1300 . -995) 202481) ((-1043 . -1070) 202418) ((-31 . -93) T) ((-614 . -501) 202402) ((-1043 . -652) 202339) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 202289) ((-531 . -526) 202222) ((-362 . -234) 202209) ((-365 . -1070) 202154) ((-59 . -526) 202087) ((-528 . -526) 202020) ((-430 . -915) 201979) ((-171 . -1068) T) ((-509 . -526) 201912) ((-508 . -526) 201845) ((-365 . -652) 201790) ((-811 . -1057) 201570) ((-711 . -38) 201535) ((-1260 . -628) 201283) ((-354 . -360) T) ((-1113 . -1112) 201267) ((-1113 . -1119) 201245) ((-867 . -628) 201142) ((-171 . -248) 201093) ((-171 . -238) 201044) ((-1113 . -1114) 201002) ((-884 . -296) 200960) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 200932) ((-1169 . -1213) 200911) ((-419 . -1011) 200895) ((-48 . -1070) 200860) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 200825) ((-1302 . -660) 200799) ((-1169 . -107) 200749) ((-326 . -161) 200728) ((-326 . -144) 200707) ((-117 . -21) T) ((-40 . -232) 200684) ((-40 . -272) 200661) ((-135 . -25) T) ((-117 . -25) T) ((-620 . -298) 200637) ((-487 . -298) 200616) ((-1260 . -336) 200593) ((-1260 . -1068) T) ((-867 . -1068) T) ((-811 . -349) 200577) ((-140 . -187) T) ((-118 . -1171) NIL) ((-91 . -625) 200509) ((-489 . -132) T) ((-1260 . -238) T) ((-1115 . -502) 200490) ((-1115 . -625) 200456) ((-1109 . -502) 200437) ((-1109 . -625) 200403) ((-605 . -1237) T) ((-1092 . -502) 200384) ((-583 . -1068) T) ((-1092 . -625) 200350) ((-674 . -729) 200334) ((-1085 . -502) 200315) ((-1085 . -625) 200281) ((-975 . -298) 200258) ((-60 . -34) T) ((-1081 . -807) T) ((-1081 . -804) T) ((-1055 . -502) 200239) ((-1038 . -502) 200220) ((-828 . -738) T) ((-743 . -47) 200185) ((-635 . -38) 200172) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 200103) ((-253 . -300) 200034) ((-1055 . -625) 200000) ((-1043 . -102) T) ((-1038 . -625) 199966) ((-638 . -502) 199947) ((-425 . -738) T) ((-118 . -38) 199892) ((-495 . -502) 199873) ((-638 . -625) 199839) ((-425 . -485) T) ((-220 . -502) 199820) ((-495 . -625) 199786) ((-365 . -102) T) ((-220 . -625) 199752) ((-1231 . -1077) T) ((-354 . -658) 199682) ((-723 . -1077) T) ((-1194 . -47) 199659) ((-1193 . -47) 199629) ((-1187 . -47) 199606) ((-129 . -298) 199581) ((-1054 . -152) 199527) ((-927 . -300) T) ((-1145 . -47) 199499) ((-706 . -319) NIL) ((-527 . -625) 199481) ((-522 . -625) 199463) ((-520 . -625) 199445) ((-337 . -1119) 199395) ((-326 . -909) 199359) ((-323 . -909) NIL) ((-724 . -464) 199290) ((-48 . -102) T) ((-1271 . -296) 199248) ((-1250 . -296) 199148) ((-656 . -678) 199132) ((-656 . -663) 199116) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 199100) ((-617 . -502) 199082) ((-614 . -296) 199034) ((-617 . -625) 199001) ((-400 . -102) T) ((-1139 . -144) T) ((-127 . -625) 198933) ((-886 . -1119) T) ((-670 . -423) 198917) ((-743 . -1237) T) ((-726 . -625) 198899) ((-255 . -625) 198866) ((-189 . -625) 198848) ((-163 . -625) 198830) ((-158 . -625) 198812) ((-1302 . -738) T) ((-1121 . -34) T) ((-883 . -807) NIL) ((-883 . -804) NIL) ((-870 . -862) T) ((-743 . -899) NIL) ((-1311 . -132) T) ((-392 . -132) T) ((-905 . -628) 198780) ((-921 . -102) T) ((-743 . -1057) 198656) ((-1194 . -1237) T) ((-1193 . -1237) T) ((-543 . -132) T) ((-1187 . -1237) T) ((-1106 . -423) 198640) ((-1019 . -501) 198624) ((-118 . -412) 198601) ((-1145 . -1237) T) ((-794 . -423) 198585) ((-792 . -423) 198569) ((-960 . -34) T) ((-706 . -1171) NIL) ((-258 . -660) 198389) ((-257 . -660) 198196) ((-829 . -937) 198175) ((-466 . -423) 198159) ((-614 . -19) 198143) ((-1165 . -1230) 198112) ((-1187 . -899) NIL) ((-1187 . -897) 198064) ((-614 . -616) 198041) ((-1223 . -625) 197973) ((-1195 . -625) 197955) ((-62 . -407) T) ((-1193 . -1057) 197890) ((-1187 . -1057) 197856) ((-706 . -38) 197806) ((-40 . -658) 197736) ((-486 . -296) 197694) ((-1243 . -625) 197676) ((-743 . -388) 197660) ((-850 . -625) 197642) ((-670 . -1077) T) ((-635 . -917) 197565) ((-1271 . -1021) 197531) ((-1250 . -1021) 197497) ((-256 . -1237) T) ((-1107 . -628) 197481) ((-1082 . -1213) 197456) ((-1095 . -628) 197433) ((-884 . -626) 197240) ((-884 . -625) 197222) ((-118 . -917) NIL) ((-713 . -234) 197209) ((-1209 . -501) 197146) ((-430 . -1041) 197124) ((-48 . -319) 197111) ((-1082 . -107) 197057) ((-491 . -501) 196994) ((-532 . -1237) T) ((-1187 . -349) 196946) ((-1160 . -501) 196917) ((-1187 . -388) 196869) ((-1106 . -1077) T) ((-449 . -102) T) ((-185 . -1119) T) ((-258 . -34) T) ((-257 . -34) T) ((-794 . -1077) T) ((-792 . -1077) T) ((-743 . -915) 196846) ((-466 . -1077) T) ((-59 . -501) 196830) ((-1053 . -1075) 196804) ((-531 . -501) 196788) ((-528 . -501) 196772) ((-509 . -501) 196756) ((-508 . -501) 196740) ((-250 . -526) 196673) ((-1053 . -111) 196640) ((-1194 . -915) 196553) ((-1193 . -915) 196459) ((-682 . -1131) T) ((-1187 . -915) 196292) ((-657 . -93) T) ((-1145 . -915) 196276) ((-365 . -1171) T) ((-332 . -1075) 196258) ((-31 . -502) 196239) ((-258 . -806) 196218) ((-258 . -805) 196197) ((-257 . -806) 196176) ((-257 . -805) 196155) ((-31 . -625) 196121) ((-50 . -1077) T) ((-258 . -738) 196099) ((-257 . -738) 196077) ((-1231 . -1119) T) ((-682 . -23) T) ((-593 . -1077) T) ((-530 . -1077) T) ((-390 . -1075) 196042) ((-332 . -111) 196017) ((-73 . -394) T) ((-73 . -407) T) ((-1043 . -38) 195954) ((-706 . -412) 195936) ((-99 . -102) T) ((-723 . -1119) T) ((-1316 . -1070) 195923) ((-1022 . -146) 195895) ((-1022 . -148) 195867) ((-882 . -658) 195839) ((-390 . -111) 195795) ((-329 . -1241) 195774) ((-486 . -1021) 195740) ((-365 . -38) 195705) ((-40 . -381) 195677) ((-885 . -625) 195549) ((-128 . -126) 195533) ((-122 . -126) 195517) ((-848 . -1075) 195487) ((-845 . -21) 195439) ((-839 . -1075) 195423) ((-845 . -25) 195375) ((-329 . -568) 195326) ((-529 . -628) 195307) ((-576 . -840) T) ((-245 . -1237) T) ((-1053 . -628) 195276) ((-848 . -111) 195241) ((-839 . -111) 195220) ((-1271 . -625) 195202) ((-1250 . -625) 195184) ((-1250 . -626) 194855) ((-1192 . -926) 194834) ((-1144 . -926) 194813) ((-48 . -38) 194778) ((-1309 . -1131) T) ((-548 . -296) 194734) ((-614 . -625) 194646) ((-614 . -626) 194607) ((-1307 . -1131) T) ((-372 . -628) 194591) ((-332 . -628) 194575) ((-1161 . -237) 194526) ((-245 . -1057) 194353) ((-1192 . -660) 194242) ((-1144 . -660) 194131) ((-866 . -660) 194105) ((-730 . -625) 194087) ((-558 . -379) T) ((-1309 . -23) T) ((-706 . -917) NIL) ((-1307 . -23) T) ((-503 . -1119) T) ((-390 . -628) 194037) ((-390 . -630) 194019) ((-1053 . -1068) T) ((-877 . -102) T) ((-1209 . -296) 193998) ((-171 . -379) 193949) ((-1023 . -1237) T) ((-848 . -628) 193903) ((-839 . -628) 193858) ((-44 . -23) T) ((-491 . -296) 193837) ((-598 . -1119) T) ((-1316 . -102) T) ((-1165 . -1128) 193806) ((-1123 . -1122) 193758) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1131) T) ((-1231 . -729) 193655) ((-1217 . -1119) T) ((-1023 . -897) 193637) ((-1023 . -899) 193619) ((-635 . -232) 193603) ((-635 . -272) 193587) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1023 . -1057) 193547) ((-723 . -729) 193512) ((-245 . -388) 193481) ((-390 . -1068) T) ((-225 . -1077) T) ((-118 . -272) 193458) ((-118 . -232) 193435) ((-59 . -296) 193387) ((-153 . -23) T) ((-528 . -296) 193339) ((-337 . -526) 193272) ((-508 . -296) 193224) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1068) T) ((-839 . -1068) T) ((-724 . -966) 193193) ((-713 . -862) T) ((-486 . -625) 193175) ((-1273 . -1070) 193080) ((-592 . -658) 193052) ((-576 . -658) 193024) ((-507 . -658) 192974) ((-839 . -238) 192953) ((-135 . -862) T) ((-1273 . -652) 192845) ((-670 . -1119) T) ((-1209 . -616) 192824) ((-562 . -1213) 192803) ((-347 . -1119) T) ((-329 . -374) 192782) ((-419 . -148) 192761) ((-419 . -146) 192740) ((-981 . -1131) 192639) ((-245 . -915) 192571) ((-827 . -1131) 192549) ((-666 . -864) 192533) ((-491 . -616) 192512) ((-562 . -107) 192462) ((-1023 . -388) 192444) ((-1023 . -349) 192426) ((-1196 . -625) 192408) ((-97 . -1119) T) ((-981 . -23) 192219) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 192071) ((-1196 . -626) 191993) ((-59 . -19) 191977) ((-1192 . -738) T) ((-1144 . -738) T) ((-1106 . -1119) T) ((-528 . -19) 191961) ((-508 . -19) 191945) ((-59 . -616) 191922) ((-1022 . -237) 191859) ((-918 . -102) 191837) ((-866 . -738) T) ((-794 . -1119) T) ((-528 . -616) 191814) ((-508 . -616) 191791) ((-792 . -1119) T) ((-792 . -1084) 191758) ((-473 . -1119) T) ((-466 . -1119) T) ((-598 . -729) 191733) ((-661 . -1119) T) ((-1279 . -47) 191710) ((-1273 . -102) T) ((-1272 . -47) 191680) ((-1251 . -47) 191657) ((-1231 . -174) 191608) ((-1193 . -317) 191587) ((-1187 . -317) 191566) ((-1115 . -628) 191547) ((-1109 . -628) 191528) ((-1099 . -568) 191479) ((-1099 . -1241) 191430) ((-1023 . -915) NIL) ((-1092 . -628) 191411) ((-682 . -132) T) ((-639 . -1131) T) ((-1085 . -628) 191392) ((-1055 . -628) 191373) ((-1038 . -628) 191354) ((-726 . -1075) 191324) ((-711 . -658) 191274) ((-284 . -1119) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -909) 191177) ((-723 . -174) T) ((-50 . -1119) T) ((-607 . -47) 191154) ((-227 . -660) 191119) ((-593 . -1119) T) ((-530 . -1119) T) ((-499 . -832) T) ((-499 . -937) T) ((-370 . -1241) T) ((-364 . -1241) T) ((-356 . -1241) T) ((-329 . -1131) T) ((-326 . -1070) 191029) ((-323 . -1070) 190958) ((-108 . -1241) T) ((-638 . -628) 190939) ((-370 . -568) T) ((-219 . -937) T) ((-219 . -832) T) ((-326 . -652) 190849) ((-323 . -652) 190778) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 190759) ((-108 . -568) T) ((-670 . -729) 190729) ((-1187 . -1041) NIL) ((-220 . -628) 190710) ((-329 . -23) T) ((-67 . -1237) T) ((-1019 . -625) 190642) ((-706 . -272) 190624) ((-706 . -232) 190606) ((-726 . -111) 190571) ((-656 . -34) T) ((-250 . -501) 190555) ((-1316 . -1171) T) ((-1311 . -21) T) ((-1311 . -25) T) ((-1309 . -132) T) ((-1121 . -1117) 190539) ((-173 . -1119) T) ((-1307 . -132) T) ((-1300 . -102) T) ((-1283 . -625) 190505) ((-1279 . -1237) T) ((-1272 . -1237) T) ((-969 . -926) 190484) ((-1272 . -1057) 190419) ((-1251 . -1237) T) ((-1251 . -899) NIL) ((-527 . -628) 190403) ((-1251 . -897) 190355) ((-1251 . -1057) 190321) ((-1231 . -526) 190288) ((-493 . -926) 190267) ((-1209 . -626) NIL) ((-1209 . -625) 190249) ((-1106 . -729) 190098) ((-1081 . -660) 190070) ((-969 . -660) 189959) ((-609 . -502) 189940) ((-597 . -502) 189921) ((-794 . -729) 189750) ((-609 . -625) 189716) ((-597 . -625) 189682) ((-548 . -625) 189664) ((-548 . -626) 189645) ((-792 . -729) 189494) ((-1096 . -102) T) ((-392 . -25) T) ((-635 . -658) 189466) ((-392 . -21) T) ((-493 . -660) 189355) ((-473 . -729) 189326) ((-466 . -729) 189175) ((-1006 . -102) T) ((-1161 . -1142) 189120) ((-1065 . -1230) 189049) ((-918 . -319) 188987) ((-749 . -102) T) ((-118 . -658) 188917) ((-617 . -628) 188899) ((-888 . -93) T) ((-726 . -628) 188853) ((-543 . -25) T) ((-693 . -93) T) ((-688 . -93) T) ((-676 . -625) 188835) ((-657 . -502) 188816) ((-142 . -102) T) ((-44 . -132) T) ((-657 . -625) 188769) ((-607 . -1237) T) ((-354 . -1077) T) ((-299 . -1131) T) ((-490 . -93) T) ((-419 . -237) 188720) ((-366 . -625) 188702) ((-363 . -625) 188684) ((-355 . -625) 188666) ((-273 . -626) 188414) ((-273 . -625) 188396) ((-253 . -625) 188378) ((-253 . -626) 188239) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1160 . -625) 188221) ((-1139 . -652) 188208) ((-1139 . -1070) 188195) ((-831 . -738) T) ((-831 . -869) T) ((-614 . -298) 188172) ((-593 . -729) 188137) ((-491 . -626) NIL) ((-491 . -625) 188119) ((-530 . -729) 188064) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-927 . -625) 188046) ((-927 . -626) 188028) ((-398 . -738) T) ((-884 . -1075) 187980) ((-884 . -111) 187918) ((-726 . -1068) T) ((-724 . -1263) 187902) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 187834) ((-390 . -807) T) ((-225 . -1119) T) ((-169 . -1237) T) ((-390 . -804) T) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -626) 187795) ((-59 . -625) 187707) ((-227 . -738) T) ((-528 . -626) 187668) ((-528 . -625) 187580) ((-509 . -625) 187512) ((-508 . -626) 187473) ((-508 . -625) 187385) ((-1099 . -374) 187336) ((-40 . -423) 187313) ((-77 . -1237) T) ((-883 . -926) NIL) ((-370 . -339) 187297) ((-370 . -374) T) ((-364 . -339) 187281) ((-364 . -374) T) ((-356 . -339) 187265) ((-356 . -374) T) ((-326 . -294) 187244) ((-108 . -374) T) ((-70 . -1237) T) ((-1251 . -349) 187196) ((-883 . -660) 187141) ((-1251 . -388) 187093) ((-981 . -132) 186948) ((-827 . -132) 186819) ((-975 . -663) 186803) ((-1106 . -174) 186714) ((-975 . -384) 186698) ((-1081 . -806) T) ((-1081 . -803) T) ((-884 . -628) 186596) ((-794 . -174) 186487) ((-792 . -174) 186398) ((-828 . -47) 186360) ((-1081 . -738) T) ((-337 . -501) 186344) ((-969 . -738) T) ((-1300 . -319) 186282) ((-1279 . -915) 186195) ((-466 . -174) 186106) ((-250 . -296) 186058) ((-1272 . -915) 185964) ((-1271 . -1075) 185799) ((-1251 . -915) 185632) ((-493 . -738) T) ((-1250 . -1075) 185440) ((-1231 . -300) 185419) ((-1206 . -1237) T) ((-1203 . -379) T) ((-1202 . -379) T) ((-1165 . -152) 185403) ((-1139 . -102) T) ((-1137 . -1119) T) ((-1099 . -23) T) ((-1099 . -1131) T) ((-1094 . -102) T) ((-1076 . -625) 185370) ((-1022 . -421) 185342) ((-944 . -972) T) ((-749 . -319) 185280) ((-75 . -1237) T) ((-676 . -393) 185252) ((-171 . -926) 185205) ((-30 . -972) T) ((-112 . -856) T) ((-1 . -625) 185187) ((-1018 . -909) 185108) ((-129 . -663) 185090) ((-50 . -632) 185074) ((-706 . -658) 185009) ((-607 . -915) 184922) ((-450 . -102) T) ((-129 . -384) 184904) ((-142 . -319) NIL) ((-884 . -1068) T) ((-845 . -862) 184883) ((-81 . -1237) T) ((-723 . -300) T) ((-40 . -1077) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 184865) ((-171 . -660) 184739) ((-519 . -625) 184721) ((-362 . -148) 184703) ((-362 . -146) T) ((-370 . -1131) T) ((-364 . -1131) T) ((-356 . -1131) T) ((-1023 . -317) T) ((-931 . -317) T) ((-884 . -248) T) ((-108 . -1131) T) ((-884 . -238) 184682) ((-1271 . -111) 184503) ((-1250 . -111) 184292) ((-250 . -1275) 184276) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 184263) ((-323 . -319) 184204) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1023 . -1041) T) ((-31 . -628) 184185) ((-108 . -23) T) ((-666 . -1070) 184169) ((-250 . -616) 184146) ((-343 . -1119) T) ((-666 . -652) 184116) ((-1273 . -38) 184008) ((-1260 . -926) 183987) ((-112 . -1119) T) ((-828 . -1237) T) ((-1054 . -102) T) ((-1260 . -660) 183876) ((-883 . -806) NIL) ((-867 . -660) 183850) ((-883 . -803) NIL) ((-828 . -899) NIL) ((-883 . -738) T) ((-1106 . -526) 183723) ((-794 . -526) 183670) ((-792 . -526) 183622) ((-583 . -660) 183609) ((-828 . -1057) 183437) ((-466 . -526) 183380) ((-400 . -401) T) ((-1271 . -628) 183193) ((-1250 . -628) 182941) ((-60 . -1237) T) ((-633 . -862) 182920) ((-512 . -673) T) ((-1165 . -995) 182889) ((-1043 . -658) 182826) ((-1022 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1075) 182661) ((-512 . -113) T) ((-354 . -1119) T) ((-323 . -1171) NIL) ((-299 . -132) T) ((-406 . -1119) T) ((-882 . -1077) T) ((-706 . -381) 182628) ((-365 . -658) 182558) ((-225 . -632) 182535) ((-337 . -296) 182487) ((-486 . -111) 182308) ((-1271 . -1068) T) ((-1250 . -1068) T) ((-828 . -388) 182292) ((-171 . -738) T) ((-666 . -102) T) ((-1271 . -248) 182271) ((-1271 . -238) 182223) ((-1250 . -238) 182128) ((-1250 . -248) 182107) ((-1022 . -414) NIL) ((-682 . -651) 182055) ((-326 . -38) 181965) ((-323 . -38) 181894) ((-69 . -625) 181876) ((-329 . -505) 181842) ((-48 . -658) 181792) ((-1209 . -298) 181771) ((-1245 . -862) T) ((-1132 . -1131) 181749) ((-83 . -1237) T) ((-61 . -625) 181731) ((-491 . -298) 181710) ((-1302 . -1057) 181687) ((-1184 . -1119) T) ((-1132 . -23) 181539) ((-828 . -915) 181475) ((-1260 . -738) T) ((-1121 . -1237) T) ((-486 . -628) 181301) ((-362 . -237) T) ((-1106 . -300) 181232) ((-983 . -1119) T) ((-906 . -102) T) ((-794 . -300) 181143) ((-337 . -19) 181127) ((-59 . -298) 181104) ((-792 . -300) 181035) ((-867 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 181012) ((-337 . -616) 180989) ((-508 . -298) 180966) ((-466 . -300) 180897) ((-1054 . -319) 180748) ((-888 . -502) 180729) ((-888 . -625) 180695) ((-693 . -502) 180676) ((-583 . -738) T) ((-688 . -502) 180657) ((-693 . -625) 180607) ((-688 . -625) 180573) ((-674 . -625) 180555) ((-490 . -502) 180536) ((-490 . -625) 180502) ((-250 . -626) 180463) ((-250 . -502) 180440) ((-139 . -502) 180421) ((-138 . -502) 180402) ((-134 . -502) 180383) ((-250 . -625) 180275) ((-215 . -102) T) ((-139 . -625) 180241) ((-138 . -625) 180207) ((-134 . -625) 180173) ((-1166 . -34) T) ((-960 . -1237) T) ((-354 . -729) 180118) ((-682 . -25) T) ((-682 . -21) T) ((-1196 . -628) 180099) ((-486 . -1068) T) ((-647 . -429) 180064) ((-619 . -429) 180029) ((-1139 . -1171) T) ((-724 . -1070) 179852) ((-593 . -300) T) ((-530 . -300) T) ((-1272 . -317) 179831) ((-486 . -238) 179783) ((-486 . -248) 179762) ((-1251 . -317) 179741) ((-724 . -652) 179570) ((-1251 . -1041) NIL) ((-1099 . -132) T) ((-884 . -807) 179549) ((-145 . -102) T) ((-40 . -1119) T) ((-884 . -804) 179528) ((-656 . -1029) 179512) ((-592 . -1077) T) ((-576 . -1077) T) ((-507 . -1077) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 179496) ((-323 . -412) 179457) ((-364 . -132) T) ((-356 . -132) T) ((-1201 . -1119) T) ((-1139 . -38) 179444) ((-1113 . -625) 179411) ((-108 . -132) T) ((-971 . -1119) T) ((-938 . -1119) T) ((-783 . -1119) T) ((-684 . -1119) T) ((-713 . -148) T) ((-117 . -148) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-676 . -1075) 179395) ((-543 . -862) T) ((-512 . -862) T) ((-366 . -1075) 179347) ((-363 . -1075) 179299) ((-355 . -1075) 179251) ((-258 . -1237) T) ((-257 . -1237) T) ((-273 . -1075) 179094) ((-253 . -1075) 178937) ((-676 . -111) 178916) ((-829 . -1241) 178895) ((-559 . -856) T) ((-326 . -917) 178861) ((-366 . -111) 178799) ((-363 . -111) 178737) ((-355 . -111) 178675) ((-273 . -111) 178504) ((-253 . -111) 178333) ((-323 . -917) NIL) ((-635 . -423) 178317) ((-44 . -21) T) ((-44 . -25) T) ((-827 . -651) 178223) ((-829 . -568) 178202) ((-258 . -1057) 178029) ((-257 . -1057) 177856) ((-127 . -120) 177840) ((-927 . -1075) 177805) ((-724 . -102) T) ((-711 . -1077) T) ((-609 . -628) 177786) ((-597 . -628) 177767) ((-548 . -630) 177670) ((-354 . -174) T) ((-88 . -625) 177652) ((-153 . -21) T) ((-153 . -25) T) ((-927 . -111) 177608) ((-40 . -729) 177553) ((-882 . -1119) T) ((-676 . -628) 177530) ((-657 . -628) 177511) ((-366 . -628) 177448) ((-363 . -628) 177385) ((-559 . -1119) T) ((-355 . -628) 177322) ((-337 . -626) 177283) ((-337 . -625) 177195) ((-273 . -628) 176948) ((-253 . -628) 176733) ((-1250 . -804) 176686) ((-1250 . -807) 176639) ((-258 . -388) 176608) ((-257 . -388) 176577) ((-666 . -38) 176547) ((-620 . -34) T) ((-494 . -1131) 176525) ((-487 . -34) T) ((-1132 . -132) 176396) ((-981 . -25) 176207) ((-927 . -628) 176157) ((-886 . -625) 176139) ((-981 . -21) 176094) ((-827 . -25) 175927) ((-827 . -21) 175838) ((-1243 . -379) T) ((-635 . -1077) T) ((-1198 . -568) 175817) ((-1192 . -47) 175794) ((-366 . -1068) T) ((-363 . -1068) T) ((-494 . -23) 175646) ((-355 . -1068) T) ((-273 . -1068) T) ((-253 . -1068) T) ((-1144 . -47) 175618) ((-118 . -1077) T) ((-1053 . -660) 175592) ((-975 . -34) T) ((-366 . -238) 175571) ((-366 . -248) T) ((-363 . -238) 175550) ((-363 . -248) T) ((-355 . -238) 175529) ((-355 . -248) T) ((-273 . -336) 175501) ((-253 . -336) 175458) ((-273 . -238) 175437) ((-1176 . -152) 175421) ((-258 . -915) 175353) ((-257 . -915) 175285) ((-1161 . -909) 175206) ((-1101 . -862) T) ((-426 . -1131) T) ((-1073 . -23) T) ((-1043 . -860) T) ((-927 . -1068) T) ((-332 . -660) 175188) ((-713 . -237) T) ((-682 . -234) 175133) ((-1231 . -1021) 175099) ((-1193 . -937) 175078) ((-1187 . -937) 175057) ((-1187 . -832) NIL) ((-1018 . -1070) 174953) ((-984 . -1237) T) ((-927 . -248) T) ((-829 . -374) 174932) ((-396 . -23) T) ((-128 . -1119) 174910) ((-122 . -1119) 174888) ((-927 . -238) T) ((-129 . -34) T) ((-390 . -660) 174853) ((-1018 . -652) 174801) ((-882 . -729) 174788) ((-1316 . -658) 174760) ((-1065 . -152) 174725) ((-1012 . -1237) T) ((-40 . -174) T) ((-706 . -423) 174707) ((-724 . -319) 174694) ((-848 . -660) 174654) ((-839 . -660) 174628) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 174607) ((-592 . -1119) T) ((-576 . -1119) T) ((-507 . -1119) T) ((-250 . -298) 174584) ((-1192 . -1237) T) ((-1144 . -1237) T) ((-323 . -272) 174545) ((-323 . -232) 174506) ((-1192 . -899) NIL) ((-55 . -1119) T) ((-1144 . -899) 174365) ((-130 . -862) T) ((-1192 . -1057) 174245) ((-1144 . -1057) 174128) ((-185 . -625) 174110) ((-866 . -1057) 174006) ((-794 . -296) 173933) ((-829 . -1131) T) ((-1053 . -738) T) ((-1065 . -995) 173862) ((-614 . -663) 173846) ((-1022 . -909) 173753) ((-1018 . -102) T) ((-829 . -23) T) ((-724 . -1171) 173731) ((-706 . -1077) T) ((-614 . -384) 173715) ((-362 . -464) T) ((-354 . -300) T) ((-1288 . -1119) T) ((-254 . -1119) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1119) T) ((-711 . -1119) T) ((-372 . -485) T) ((-1231 . -625) 173697) ((-1192 . -388) 173681) ((-1144 . -388) 173665) ((-1043 . -423) 173627) ((-142 . -231) 173609) ((-390 . -806) T) ((-390 . -803) T) ((-882 . -174) T) ((-390 . -738) T) ((-723 . -625) 173591) ((-724 . -38) 173420) ((-1287 . -1285) 173404) ((-362 . -414) T) ((-1287 . -1119) 173354) ((-1210 . -1119) T) ((-592 . -729) 173341) ((-576 . -729) 173328) ((-507 . -729) 173293) ((-1273 . -658) 173183) ((-326 . -641) 173162) ((-848 . -738) T) ((-839 . -738) T) ((-656 . -1237) T) ((-1099 . -651) 173110) ((-1192 . -915) 173053) ((-1144 . -915) 173037) ((-827 . -234) 172928) ((-674 . -1075) 172912) ((-108 . -651) 172894) ((-494 . -132) 172765) ((-1198 . -1131) T) ((-969 . -47) 172734) ((-635 . -1119) T) ((-674 . -111) 172713) ((-503 . -625) 172679) ((-337 . -298) 172656) ((-493 . -47) 172613) ((-1198 . -23) T) ((-118 . -1119) T) ((-103 . -102) 172591) ((-1299 . -1131) T) ((-560 . -862) T) ((-227 . -1237) T) ((-1073 . -132) T) ((-1043 . -1077) T) ((-1299 . -23) T) ((-831 . -1057) 172575) ((-1217 . -625) 172557) ((-1022 . -736) 172529) ((-1139 . -840) T) ((-711 . -729) 172494) ((-598 . -625) 172476) ((-398 . -1057) 172460) ((-365 . -1077) T) ((-396 . -132) T) ((-334 . -1057) 172444) ((-1124 . -1119) T) ((-1099 . -21) T) ((-1099 . -25) T) ((-227 . -899) 172426) ((-1023 . -937) T) ((-91 . -34) T) ((-1023 . -832) T) ((-931 . -937) T) ((-1018 . -319) 172391) ((-888 . -628) 172372) ((-499 . -1241) T) ((-726 . -660) 172332) ((-693 . -628) 172313) ((-688 . -628) 172294) ((-219 . -1241) T) ((-419 . -909) 172215) ((-227 . -1057) 172175) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 172156) ((-370 . -25) T) ((-326 . -658) 171811) ((-323 . -658) 171725) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 171671) ((-250 . -628) 171648) ((-139 . -628) 171629) ((-138 . -628) 171610) ((-134 . -628) 171591) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1077) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1081 . -1237) T) ((-969 . -1237) T) ((-670 . -625) 171573) ((-493 . -1237) T) ((-749 . -748) 171557) ((-347 . -625) 171539) ((-68 . -394) T) ((-68 . -407) T) ((-1121 . -107) 171523) ((-1081 . -899) 171505) ((-969 . -899) 171430) ((-665 . -1131) T) ((-635 . -729) 171417) ((-493 . -899) NIL) ((-1165 . -102) T) ((-1113 . -630) 171401) ((-1081 . -1057) 171383) ((-97 . -625) 171365) ((-489 . -148) T) ((-969 . -1057) 171245) ((-118 . -729) 171190) ((-724 . -917) 171097) ((-665 . -23) T) ((-493 . -1057) 170973) ((-1106 . -626) NIL) ((-1106 . -625) 170955) ((-794 . -626) NIL) ((-794 . -625) 170916) ((-792 . -626) 170550) ((-792 . -625) 170464) ((-1132 . -651) 170370) ((-473 . -625) 170352) ((-466 . -625) 170334) ((-466 . -626) 170195) ((-1054 . -231) 170141) ((-884 . -926) 170120) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 170102) ((-590 . -102) T) ((-366 . -1306) 170086) ((-363 . -1306) 170070) ((-355 . -1306) 170054) ((-128 . -526) 169987) ((-122 . -526) 169920) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 169858) ((-224 . -102) 169836) ((-711 . -174) T) ((-706 . -1119) T) ((-884 . -660) 169752) ((-65 . -395) T) ((-284 . -625) 169734) ((-65 . -407) T) ((-969 . -388) 169718) ((-882 . -300) T) ((-50 . -625) 169700) ((-1018 . -38) 169648) ((-1139 . -658) 169620) ((-593 . -625) 169602) ((-493 . -388) 169586) ((-593 . -626) 169568) ((-530 . -625) 169550) ((-927 . -1306) 169537) ((-883 . -1237) T) ((-713 . -464) T) ((-507 . -526) 169503) ((-499 . -374) T) ((-366 . -379) 169482) ((-363 . -379) 169461) ((-355 . -379) 169440) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1310 . -1301) 169424) ((-883 . -897) 169401) ((-883 . -899) NIL) ((-981 . -862) 169300) ((-827 . -862) 169251) ((-1244 . -102) T) ((-666 . -668) 169235) ((-1223 . -34) T) ((-173 . -625) 169217) ((-1132 . -25) 169050) ((-1132 . -21) 168961) ((-883 . -1057) 168938) ((-969 . -915) 168919) ((-1260 . -47) 168896) ((-927 . -379) T) ((-59 . -663) 168880) ((-528 . -663) 168864) ((-493 . -915) 168841) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 168825) ((-59 . -384) 168809) ((-635 . -174) T) ((-528 . -384) 168793) ((-508 . -384) 168777) ((-839 . -720) 168761) ((-1192 . -317) 168740) ((-1198 . -132) T) ((-1161 . -1070) 168724) ((-118 . -174) T) ((-1161 . -652) 168656) ((-1165 . -319) 168594) ((-171 . -1237) T) ((-1299 . -132) T) ((-878 . -1070) 168564) ((-647 . -756) 168548) ((-619 . -756) 168532) ((-1272 . -937) 168511) ((-1251 . -937) 168490) ((-1251 . -832) NIL) ((-878 . -652) 168460) ((-706 . -729) 168410) ((-1250 . -926) 168363) ((-1043 . -1119) T) ((-883 . -388) 168340) ((-883 . -349) 168317) ((-922 . -1131) T) ((-171 . -897) 168301) ((-171 . -899) 168226) ((-1287 . -526) 168159) ((-1271 . -660) 168056) ((-1099 . -234) 167929) ((-499 . -1131) T) ((-365 . -1119) T) ((-219 . -1131) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1057) 167825) ((-304 . -909) 167782) ((-329 . -862) T) ((-1250 . -660) 167590) ((-884 . -806) 167569) ((-884 . -803) 167548) ((-884 . -738) T) ((-499 . -23) T) ((-370 . -234) 167521) ((-364 . -234) 167494) ((-356 . -234) 167467) ((-225 . -625) 167449) ((-176 . -464) T) ((-224 . -319) 167387) ((-86 . -453) T) ((-86 . -407) T) ((-108 . -234) 167374) ((-219 . -23) T) ((-1311 . -1304) 167353) ((-689 . -1057) 167337) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-137 . -482) 167292) ((-1260 . -1237) T) ((-666 . -658) 167251) ((-48 . -1119) T) ((-724 . -272) 167235) ((-724 . -232) 167219) ((-883 . -915) NIL) ((-1260 . -899) NIL) ((-902 . -102) T) ((-898 . -102) T) ((-400 . -1119) T) ((-171 . -388) 167203) ((-171 . -349) 167187) ((-1260 . -1057) 167067) ((-867 . -1057) 166963) ((-1161 . -102) T) ((-1018 . -917) 166886) ((-674 . -804) 166865) ((-665 . -132) T) ((-674 . -807) 166844) ((-118 . -526) 166752) ((-583 . -1057) 166734) ((-304 . -1294) 166704) ((-878 . -102) T) ((-980 . -568) 166683) ((-1231 . -1075) 166566) ((-1022 . -1070) 166511) ((-494 . -651) 166417) ((-921 . -1119) T) ((-1043 . -729) 166354) ((-723 . -1075) 166319) ((-1022 . -652) 166264) ((-629 . -102) T) ((-614 . -34) T) ((-1166 . -1237) T) ((-1231 . -111) 166133) ((-486 . -660) 166030) ((-365 . -729) 165975) ((-171 . -915) 165934) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 165890) ((-1316 . -1077) T) ((-1260 . -388) 165874) ((-430 . -1241) 165852) ((-1137 . -625) 165834) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1250 . -803) 165787) ((-1250 . -806) 165740) ((-1271 . -738) T) ((-1250 . -738) T) ((-48 . -729) 165705) ((-227 . -1041) T) ((-1273 . -423) 165671) ((-362 . -1294) 165648) ((-1260 . -915) 165591) ((-730 . -738) T) ((-343 . -625) 165573) ((-1231 . -628) 165455) ((-1132 . -234) 165346) ((-112 . -625) 165328) ((-112 . -626) 165310) ((-730 . -485) T) ((-723 . -628) 165260) ((-1310 . -1070) 165244) ((-494 . -25) 165077) ((-128 . -501) 165061) ((-122 . -501) 165045) ((-494 . -21) 164956) ((-1310 . -652) 164926) ((-635 . -300) T) ((-598 . -1075) 164901) ((-449 . -1119) T) ((-1081 . -317) T) ((-118 . -300) T) ((-1123 . -102) T) ((-1022 . -102) T) ((-598 . -111) 164869) ((-1161 . -319) 164807) ((-1231 . -1068) T) ((-1081 . -1041) T) ((-66 . -1237) T) ((-1073 . -25) T) ((-1073 . -21) T) ((-723 . -1068) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1043 . -174) T) ((-723 . -248) T) ((-1081 . -557) T) ((-724 . -658) 164717) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 164699) ((-419 . -1070) 164651) ((-406 . -625) 164633) ((-1139 . -860) T) ((-486 . -738) T) ((-905 . -1057) 164601) ((-419 . -652) 164553) ((-108 . -862) T) ((-670 . -1075) 164537) ((-499 . -132) T) ((-1273 . -1077) T) ((-219 . -132) T) ((-1176 . -102) 164515) ((-99 . -1119) T) ((-250 . -678) 164499) ((-250 . -663) 164483) ((-670 . -111) 164462) ((-598 . -628) 164446) ((-326 . -423) 164430) ((-250 . -384) 164414) ((-1179 . -240) 164361) ((-1018 . -272) 164345) ((-1018 . -232) 164329) ((-74 . -1237) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1310 . -102) T) ((-1217 . -628) 164311) ((-1107 . -1237) T) ((-1106 . -1075) 164154) ((-1095 . -1237) T) ((-273 . -926) 164133) ((-253 . -926) 164112) ((-794 . -1075) 163935) ((-792 . -1075) 163778) ((-620 . -1237) T) ((-1184 . -625) 163760) ((-1106 . -111) 163589) ((-1065 . -102) T) ((-487 . -1237) T) ((-473 . -1075) 163560) ((-466 . -1075) 163403) ((-676 . -660) 163387) ((-883 . -317) T) ((-794 . -111) 163196) ((-792 . -111) 163025) ((-366 . -660) 162977) ((-363 . -660) 162929) ((-355 . -660) 162881) ((-273 . -660) 162770) ((-253 . -660) 162659) ((-1178 . -862) T) ((-1107 . -1057) 162643) ((-473 . -111) 162604) ((-466 . -111) 162433) ((-1095 . -1057) 162410) ((-1019 . -34) T) ((-983 . -625) 162392) ((-975 . -1237) T) ((-127 . -1029) 162376) ((-980 . -1131) T) ((-883 . -1041) NIL) ((-747 . -1131) T) ((-727 . -1131) T) ((-670 . -628) 162294) ((-1287 . -501) 162278) ((-1161 . -38) 162238) ((-980 . -23) T) ((-927 . -660) 162203) ((-877 . -1119) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1070) 162187) ((-619 . -1070) 162171) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 162155) ((-110 . -673) T) ((-619 . -652) 162139) ((-593 . -1075) 162104) ((-530 . -1075) 162049) ((-229 . -57) 162007) ((-465 . -23) T) ((-419 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-878 . -38) 161977) ((-593 . -111) 161933) ((-530 . -111) 161862) ((-1106 . -628) 161598) ((-430 . -1131) T) ((-326 . -1077) 161488) ((-323 . -1077) T) ((-129 . -1237) T) ((-794 . -628) 161236) ((-792 . -628) 161002) ((-670 . -1068) T) ((-1316 . -1119) T) ((-466 . -628) 160787) ((-171 . -317) 160718) ((-430 . -23) T) ((-40 . -625) 160700) ((-40 . -626) 160684) ((-108 . -1011) 160666) ((-117 . -881) 160650) ((-661 . -628) 160634) ((-48 . -526) 160600) ((-1223 . -1029) 160584) ((-1201 . -625) 160551) ((-1209 . -34) T) ((-971 . -625) 160517) ((-938 . -625) 160499) ((-1132 . -862) 160450) ((-783 . -625) 160432) ((-684 . -625) 160414) ((-1176 . -319) 160352) ((-491 . -34) T) ((-1111 . -1237) T) ((-489 . -464) T) ((-1160 . -34) T) ((-1106 . -1068) T) ((-50 . -628) 160321) ((-794 . -1068) T) ((-792 . -1068) T) ((-659 . -240) 160305) ((-644 . -240) 160251) ((-593 . -628) 160201) ((-530 . -628) 160131) ((-494 . -234) 160022) ((-1260 . -317) 160001) ((-1106 . -336) 159962) ((-466 . -1068) T) ((-1198 . -21) T) ((-1106 . -238) 159941) ((-794 . -336) 159918) ((-794 . -238) T) ((-792 . -336) 159890) ((-743 . -1241) 159869) ((-337 . -663) 159853) ((-1198 . -25) T) ((-59 . -34) T) ((-531 . -34) T) ((-528 . -34) T) ((-466 . -336) 159832) ((-337 . -384) 159816) ((-509 . -34) T) ((-508 . -34) T) ((-1022 . -1171) NIL) ((-743 . -568) 159747) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1237) T) ((-1065 . -319) 159655) ((-1299 . -21) T) ((-918 . -1119) 159633) ((-830 . -234) 159620) ((-50 . -1068) T) ((-1299 . -25) T) ((-1194 . -568) 159599) ((-1193 . -1241) 159578) ((-1193 . -568) 159529) ((-1187 . -1241) 159508) ((-1187 . -568) 159459) ((-593 . -1068) T) ((-530 . -1068) T) ((-1043 . -300) T) ((-372 . -1057) 159443) ((-332 . -1057) 159427) ((-1022 . -38) 159372) ((-390 . -899) 159354) ((-1018 . -658) 159277) ((-848 . -1237) T) ((-839 . -1237) 159256) ((-811 . -1131) T) ((-927 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1145 . -568) 159235) ((-365 . -300) T) ((-659 . -707) 159219) ((-390 . -1057) 159179) ((-304 . -1070) 159100) ((-350 . -909) 159079) ((-1139 . -1077) T) ((-103 . -126) 159063) ((-304 . -652) 159005) ((-811 . -23) T) ((-1309 . -1304) 158981) ((-1307 . -1304) 158960) ((-1287 . -296) 158912) ((-419 . -319) 158877) ((-1273 . -1119) T) ((-1161 . -917) 158800) ((-882 . -625) 158782) ((-848 . -1057) 158751) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 158733) ((-507 . -1021) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -862) T) ((-666 . -423) 158717) ((-682 . -237) 158668) ((-225 . -628) 158630) ((-110 . -862) T) ((-665 . -21) T) ((-665 . -25) T) ((-1310 . -38) 158600) ((-118 . -296) 158551) ((-1287 . -19) 158535) ((-1287 . -616) 158512) ((-1300 . -1119) T) ((-362 . -1070) 158457) ((-1096 . -1119) T) ((-1006 . -1119) T) ((-980 . -132) T) ((-829 . -234) 158444) ((-749 . -1119) T) ((-362 . -652) 158389) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1171) 158367) ((-225 . -1068) T) ((-304 . -102) 158149) ((-142 . -1119) T) ((-711 . -1021) T) ((-1124 . -296) 158105) ((-91 . -1237) T) ((-128 . -625) 158037) ((-122 . -625) 157969) ((-1316 . -174) T) ((-1193 . -374) 157948) ((-1187 . -374) 157927) ((-326 . -1119) T) ((-430 . -132) T) ((-323 . -1119) T) ((-419 . -38) 157879) ((-1152 . -102) T) ((-1273 . -729) 157771) ((-666 . -1077) T) ((-1154 . -1282) T) ((-329 . -146) 157750) ((-329 . -148) 157729) ((-140 . -1119) T) ((-137 . -1119) T) ((-115 . -1119) T) ((-870 . -102) T) ((-592 . -625) 157711) ((-576 . -626) 157610) ((-576 . -625) 157592) ((-507 . -625) 157574) ((-507 . -626) 157519) ((-497 . -23) T) ((-494 . -862) 157470) ((-499 . -651) 157452) ((-982 . -625) 157434) ((-1022 . -917) 157343) ((-219 . -651) 157325) ((-227 . -416) T) ((-674 . -660) 157309) ((-55 . -625) 157291) ((-1192 . -937) 157270) ((-743 . -1131) T) ((-362 . -102) T) ((-1236 . -1102) T) ((-1139 . -856) T) ((-830 . -862) T) ((-743 . -23) T) ((-354 . -1075) 157215) ((-1178 . -1177) T) ((-1166 . -107) 157199) ((-1194 . -1131) T) ((-1193 . -1131) T) ((-527 . -1057) 157183) ((-1187 . -1131) T) ((-1145 . -1131) T) ((-354 . -111) 157112) ((-1023 . -1241) T) ((-127 . -1237) T) ((-931 . -1241) T) ((-1288 . -625) 157094) ((-706 . -296) NIL) ((-726 . -1237) T) ((-1194 . -23) T) ((-1193 . -23) T) ((-1187 . -23) T) ((-1161 . -272) 157078) ((-1161 . -232) 157062) ((-1023 . -568) T) ((-1145 . -23) T) ((-931 . -568) T) ((-1094 . -1119) T) ((-254 . -625) 157044) ((-827 . -237) 156941) ((-811 . -132) T) ((-722 . -625) 156923) ((-326 . -729) 156833) ((-323 . -729) 156762) ((-711 . -625) 156744) ((-711 . -626) 156689) ((-419 . -412) 156673) ((-450 . -1119) T) ((-499 . -25) T) ((-499 . -21) T) ((-1139 . -1119) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 156657) ((-726 . -1057) 156626) ((-1287 . -625) 156538) ((-1287 . -626) 156499) ((-1273 . -174) T) ((-1210 . -625) 156481) ((-250 . -34) T) ((-354 . -628) 156411) ((-406 . -628) 156393) ((-943 . -993) T) ((-1223 . -1237) T) ((-674 . -803) 156372) ((-674 . -806) 156351) ((-410 . -407) T) ((-535 . -102) 156329) ((-1054 . -1119) T) ((-419 . -917) 156252) ((-224 . -1014) 156236) ((-516 . -102) T) ((-635 . -625) 156218) ((-45 . -862) NIL) ((-635 . -626) 156195) ((-1054 . -622) 156170) ((-918 . -526) 156103) ((-329 . -237) 156055) ((-354 . -1068) T) ((-118 . -626) NIL) ((-118 . -625) 156037) ((-884 . -1237) T) ((-682 . -429) 156021) ((-682 . -1142) 155966) ((-512 . -152) 155948) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1075) 155893) ((-884 . -897) 155877) ((-884 . -899) 155802) ((-724 . -1077) T) ((-706 . -1021) NIL) ((-1271 . -47) 155772) ((-1250 . -47) 155749) ((-1160 . -1029) 155720) ((-1139 . -729) 155707) ((-3 . |UnionCategory|) T) ((-1124 . -625) 155689) ((-1099 . -148) 155668) ((-1099 . -146) 155619) ((-1023 . -374) T) ((-983 . -628) 155603) ((-227 . -937) T) ((-40 . -111) 155532) ((-884 . -1057) 155396) ((-1022 . -232) 155373) ((-1022 . -272) 155350) ((-713 . -1070) 155337) ((-931 . -374) T) ((-713 . -652) 155324) ((-329 . -1225) 155290) ((-390 . -317) T) ((-329 . -1222) 155256) ((-326 . -174) 155235) ((-323 . -174) T) ((-593 . -1306) 155222) ((-530 . -1306) 155199) ((-370 . -148) 155178) ((-117 . -1070) 155165) ((-370 . -146) 155116) ((-364 . -148) 155095) ((-364 . -146) 155046) ((-356 . -148) 155025) ((-620 . -1213) 155001) ((-117 . -652) 154988) ((-356 . -146) 154939) ((-329 . -35) 154905) ((-487 . -1213) 154884) ((0 . |EnumerationCategory|) T) ((-329 . -95) 154850) ((-390 . -1041) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 154800) ((-666 . -1119) T) ((-620 . -107) 154747) ((-497 . -132) T) ((-487 . -107) 154697) ((-245 . -1131) 154675) ((-884 . -388) 154659) ((-884 . -349) 154643) ((-245 . -23) 154495) ((-40 . -628) 154425) ((-1081 . -937) T) ((-1081 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1300 . -526) 154358) ((-1279 . -568) 154337) ((-1272 . -1241) 154316) ((-362 . -1171) T) ((-337 . -34) T) ((-44 . -429) 154300) ((-1201 . -628) 154236) ((-885 . -1237) T) ((-402 . -756) 154220) ((-1272 . -568) 154171) ((-1271 . -1237) T) ((-1161 . -658) 154130) ((-743 . -132) T) ((-684 . -628) 154114) ((-1251 . -1241) 154093) ((-1251 . -568) 154044) ((-1250 . -1237) T) ((-1250 . -899) 153917) ((-1250 . -897) 153887) ((-1194 . -132) T) ((-321 . -1102) T) ((-1193 . -132) T) ((-749 . -526) 153820) ((-1187 . -132) T) ((-1145 . -132) T) ((-906 . -1119) T) ((-145 . -856) T) ((-1043 . -1021) T) ((-703 . -625) 153802) ((-1023 . -23) T) ((-535 . -319) 153740) ((-1023 . -1131) T) ((-142 . -526) NIL) ((-878 . -658) 153685) ((-1022 . -360) NIL) ((-990 . -23) T) ((-931 . -1131) T) ((-362 . -38) 153650) ((-931 . -23) T) ((-884 . -915) 153609) ((-82 . -625) 153591) ((-40 . -1068) T) ((-882 . -1075) 153578) ((-882 . -111) 153563) ((-713 . -102) T) ((-706 . -625) 153545) ((-614 . -1237) T) ((-608 . -568) 153524) ((-439 . -1131) T) ((-350 . -1070) 153508) ((-215 . -1119) T) ((-176 . -1070) 153440) ((-486 . -47) 153410) ((-40 . -238) 153382) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 153361) ((-350 . -652) 153345) ((-706 . -626) 153253) ((-326 . -526) 153219) ((-176 . -652) 153151) ((-323 . -526) 153043) ((-499 . -234) 153030) ((-1271 . -1057) 153014) ((-1250 . -1057) 152800) ((-1018 . -423) 152784) ((-219 . -234) 152771) ((-439 . -23) T) ((-1139 . -174) T) ((-1273 . -300) T) ((-666 . -729) 152741) ((-145 . -1119) T) ((-48 . -1021) T) ((-419 . -272) 152725) ((-419 . -232) 152709) ((-305 . -240) 152659) ((-883 . -937) T) ((-883 . -832) NIL) ((-882 . -628) 152631) ((-876 . -862) T) ((-1250 . -349) 152601) ((-1250 . -388) 152571) ((-1099 . -237) 152450) ((-224 . -1140) 152434) ((-304 . -917) 152393) ((-1287 . -298) 152370) ((-370 . -237) 152349) ((-364 . -237) 152328) ((-486 . -1237) T) ((-356 . -237) 152307) ((-108 . -237) T) ((-1231 . -660) 152232) ((-1022 . -658) 152162) ((-980 . -21) T) ((-980 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 152127) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1018 . -1077) T) ((-882 . -1068) T) ((-786 . -102) T) ((-1272 . -374) 152106) ((-1271 . -915) 152012) ((-1251 . -374) 151991) ((-1250 . -915) 151842) ((-1043 . -625) 151824) ((-419 . -840) 151777) ((-1194 . -505) 151743) ((-171 . -937) 151674) ((-1193 . -505) 151640) ((-1187 . -505) 151606) ((-724 . -1119) T) ((-1145 . -505) 151572) ((-592 . -1075) 151559) ((-576 . -1075) 151546) ((-507 . -1075) 151511) ((-326 . -300) 151490) ((-323 . -300) T) ((-365 . -625) 151472) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 151451) ((-592 . -111) 151436) ((-576 . -111) 151421) ((-507 . -111) 151377) ((-1196 . -899) 151344) ((-918 . -501) 151328) ((-48 . -625) 151310) ((-48 . -626) 151255) ((-245 . -132) 151126) ((-1310 . -658) 151085) ((-1260 . -937) 151064) ((-828 . -1241) 151043) ((-400 . -502) 151024) ((-1054 . -526) 150868) ((-400 . -625) 150834) ((-828 . -568) 150765) ((-598 . -660) 150740) ((-273 . -47) 150712) ((-253 . -47) 150669) ((-543 . -521) 150646) ((-592 . -628) 150618) ((-576 . -628) 150590) ((-507 . -628) 150523) ((-1093 . -1237) T) ((-1019 . -1237) T) ((-1279 . -23) T) ((-1279 . -1131) T) ((-1272 . -1131) T) ((-711 . -1075) 150488) ((-1272 . -23) T) ((-1251 . -1131) T) ((-1251 . -23) T) ((-1231 . -738) T) ((-1139 . -300) T) ((-1022 . -381) 150460) ((-112 . -379) T) ((-486 . -915) 150366) ((-1132 . -237) 150263) ((-921 . -625) 150245) ((-55 . -628) 150227) ((-91 . -107) 150211) ((-1023 . -132) T) ((-922 . -862) 150162) ((-713 . -1171) T) ((-711 . -111) 150118) ((-855 . -658) 150035) ((-608 . -1131) T) ((-607 . -1131) T) ((-724 . -729) 149864) ((-723 . -738) T) ((-990 . -132) T) ((-931 . -132) T) ((-499 . -862) T) ((-811 . -25) T) ((-811 . -21) T) ((-592 . -1068) T) ((-219 . -862) T) ((-419 . -658) 149801) ((-576 . -1068) T) ((-548 . -1237) T) ((-507 . -1068) T) ((-608 . -23) T) ((-354 . -1306) 149778) ((-329 . -464) 149757) ((-350 . -319) 149744) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 149718) ((-250 . -1029) 149702) ((-884 . -317) T) ((-1311 . -1301) 149686) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 149673) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1169 . -240) 149623) ((-1106 . -926) 149602) ((-117 . -38) 149589) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-884 . -1041) 149567) ((-1300 . -501) 149551) ((-794 . -926) 149530) ((-792 . -926) 149509) ((-1209 . -1237) T) ((-366 . -1237) 149488) ((-363 . -1237) 149467) ((-355 . -1237) 149446) ((-273 . -1237) T) ((-253 . -1237) T) ((-466 . -926) 149425) ((-749 . -501) 149409) ((-1106 . -660) 149298) ((-711 . -628) 149233) ((-794 . -660) 149122) ((-635 . -1075) 149109) ((-491 . -1237) T) ((-354 . -379) T) ((-142 . -501) 149091) ((-792 . -660) 148980) ((-1160 . -1237) T) ((-561 . -862) T) ((-473 . -660) 148951) ((-273 . -899) 148810) ((-253 . -899) NIL) ((-118 . -1075) 148755) ((-466 . -660) 148644) ((-676 . -1057) 148621) ((-635 . -111) 148606) ((-402 . -1070) 148590) ((-366 . -1057) 148574) ((-363 . -1057) 148558) ((-355 . -1057) 148542) ((-273 . -1057) 148386) ((-253 . -1057) 148262) ((-927 . -1237) T) ((-118 . -111) 148191) ((-59 . -1237) T) ((-402 . -652) 148175) ((-633 . -1070) 148159) ((-531 . -1237) T) ((-528 . -1237) T) ((-509 . -1237) T) ((-508 . -1237) T) ((-449 . -625) 148141) ((-446 . -625) 148123) ((-633 . -652) 148107) ((-3 . -102) T) ((-1046 . -1230) 148076) ((-845 . -102) T) ((-701 . -57) 148034) ((-711 . -1068) T) ((-647 . -658) 148003) ((-619 . -658) 147972) ((-50 . -660) 147946) ((-299 . -464) T) ((-488 . -1230) 147915) ((0 . -102) T) ((-593 . -660) 147880) ((-530 . -660) 147825) ((-49 . -102) T) ((-927 . -1057) 147812) ((-711 . -248) T) ((-1099 . -421) 147791) ((-743 . -651) 147739) ((-1018 . -1119) T) ((-724 . -174) 147630) ((-635 . -628) 147525) ((-499 . -1011) 147507) ((-430 . -234) 147452) ((-273 . -388) 147436) ((-253 . -388) 147420) ((-411 . -1119) T) ((-1045 . -102) 147398) ((-350 . -38) 147382) ((-219 . -1011) 147364) ((-118 . -628) 147294) ((-176 . -38) 147226) ((-1271 . -317) 147205) ((-1250 . -317) 147184) ((-670 . -738) T) ((-99 . -625) 147166) ((-489 . -1070) 147131) ((-1187 . -651) 147083) ((-489 . -652) 147048) ((-497 . -25) T) ((-497 . -21) T) ((-1250 . -1041) 147000) ((-1076 . -1237) T) ((-635 . -1068) T) ((-390 . -416) T) ((-402 . -102) T) ((-1124 . -630) 146915) ((-273 . -915) 146861) ((-253 . -915) 146838) ((-118 . -1068) T) ((-828 . -1131) T) ((-1106 . -738) T) ((-635 . -238) 146817) ((-633 . -102) T) ((-794 . -738) T) ((-792 . -738) T) ((-425 . -1131) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-1242 . -862) T) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -909) 146738) ((-1096 . -296) 146717) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 146699) ((-706 . -1075) 146649) ((-1312 . -102) T) ((-1279 . -132) T) ((-1272 . -132) T) ((-1251 . -132) T) ((-1194 . -25) T) ((-1161 . -423) 146633) ((-647 . -378) 146565) ((-619 . -378) 146497) ((-1176 . -1168) 146481) ((-103 . -1119) 146459) ((-1194 . -21) T) ((-1193 . -21) T) ((-877 . -625) 146441) ((-1018 . -729) 146389) ((-225 . -660) 146356) ((-706 . -111) 146290) ((-50 . -738) T) ((-1193 . -25) T) ((-362 . -360) T) ((-1187 . -21) T) ((-1099 . -464) 146241) ((-1187 . -25) T) ((-724 . -526) 146188) ((-593 . -738) T) ((-530 . -738) T) ((-1145 . -21) T) ((-1145 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 145923) ((-494 . -237) 145820) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 145799) ((-1245 . -102) T) ((-323 . -296) 145734) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 145718) ((-1316 . -625) 145700) ((-1316 . -626) 145682) ((-1099 . -414) 145661) ((-1054 . -501) 145592) ((-137 . -296) 145569) ((-576 . -807) T) ((-576 . -804) T) ((-1082 . -240) 145515) ((-370 . -414) 145466) ((-364 . -414) 145417) ((-356 . -414) 145368) ((-1302 . -1131) T) ((-1311 . -1070) 145352) ((-392 . -1070) 145336) ((-1311 . -652) 145306) ((-830 . -237) T) ((-392 . -652) 145276) ((-706 . -628) 145211) ((-1302 . -23) T) ((-1289 . -102) T) ((-350 . -917) 145192) ((-177 . -625) 145174) ((-1161 . -1077) T) ((-559 . -379) T) ((-682 . -756) 145158) ((-1198 . -146) 145137) ((-1198 . -148) 145116) ((-1165 . -1119) T) ((-1165 . -1090) 145085) ((-69 . -1237) T) ((-1043 . -1075) 145022) ((-362 . -658) 144952) ((-878 . -1077) T) ((-245 . -651) 144858) ((-706 . -1068) T) ((-365 . -1075) 144803) ((-61 . -1237) T) ((-1043 . -111) 144719) ((-918 . -625) 144630) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 144609) ((-711 . -807) T) ((-711 . -804) T) ((-1022 . -423) 144586) ((-365 . -111) 144515) ((-390 . -937) T) ((-419 . -860) 144494) ((-724 . -300) 144405) ((-225 . -738) T) ((-1279 . -505) 144371) ((-1272 . -505) 144337) ((-1251 . -505) 144303) ((-590 . -1119) T) ((-326 . -1021) 144282) ((-224 . -1119) 144260) ((-1244 . -856) T) ((-329 . -992) 144222) ((-105 . -102) T) ((-48 . -1075) 144187) ((-1311 . -102) T) ((-392 . -102) T) ((-48 . -111) 144143) ((-827 . -909) 144010) ((-1023 . -651) 143992) ((-1273 . -625) 143974) ((-543 . -102) T) ((-512 . -102) T) ((-1152 . -1153) 143958) ((-153 . -1294) 143942) ((-250 . -1237) T) ((-1236 . -102) T) ((-1043 . -628) 143879) ((-829 . -237) T) ((-1192 . -1241) 143858) ((-365 . -628) 143788) ((-1144 . -1241) 143767) ((-245 . -25) 143600) ((-245 . -21) 143511) ((-128 . -120) 143495) ((-122 . -120) 143479) ((-44 . -756) 143463) ((-1192 . -568) 143374) ((-1144 . -568) 143305) ((-1244 . -1119) T) ((-1054 . -296) 143280) ((-1186 . -1102) T) ((-1013 . -1102) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-258 . -1131) 143258) ((-257 . -1131) 143236) ((-1043 . -1068) T) ((-1022 . -1077) T) ((-48 . -628) 143169) ((-354 . -660) 143114) ((-1300 . -625) 143076) ((-633 . -38) 143060) ((-1300 . -626) 143021) ((-1194 . -234) 142974) ((-1096 . -625) 142956) ((-1043 . -248) T) ((-365 . -1068) T) ((-827 . -1294) 142926) ((-258 . -23) T) ((-257 . -23) T) ((-1006 . -625) 142908) ((-1193 . -234) 142854) ((-1187 . -234) 142671) ((-749 . -626) 142632) ((-749 . -625) 142614) ((-1179 . -152) 142561) ((-811 . -862) 142540) ((-1023 . -25) T) ((-1018 . -526) 142452) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 142433) ((-927 . -317) T) ((-142 . -625) 142415) ((-142 . -626) 142374) ((-329 . -909) 142278) ((-1023 . -21) T) ((-990 . -25) T) ((-931 . -21) T) ((-931 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 142262) ((-48 . -1068) T) ((-1309 . -1301) 142246) ((-1307 . -1301) 142230) ((-1054 . -616) 142205) ((-326 . -626) 142066) ((-326 . -625) 142048) ((-323 . -626) NIL) ((-323 . -625) 142030) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 141991) ((-562 . -240) 141941) ((-140 . -625) 141908) ((-137 . -625) 141890) ((-115 . -625) 141872) ((-489 . -38) 141837) ((-1311 . -1308) 141816) ((-1302 . -132) T) ((-1310 . -1077) T) ((-1101 . -102) T) ((-88 . -1237) T) ((-512 . -319) NIL) ((-1019 . -107) 141800) ((-902 . -1119) T) ((-898 . -1119) T) ((-1287 . -663) 141784) ((-1287 . -384) 141768) ((-337 . -1237) T) ((-605 . -862) T) ((-1161 . -1119) T) ((-1161 . -1072) 141708) ((-103 . -526) 141641) ((-944 . -625) 141623) ((-354 . -738) T) ((-30 . -625) 141605) ((-878 . -1119) T) ((-855 . -1077) 141584) ((-40 . -660) 141491) ((-227 . -1241) T) ((-419 . -1077) T) ((-1178 . -152) 141473) ((-1018 . -300) 141424) ((-629 . -1119) T) ((-227 . -568) T) ((-329 . -1268) 141408) ((-329 . -1265) 141378) ((-713 . -658) 141350) ((-1209 . -1213) 141329) ((-1094 . -625) 141311) ((-1209 . -107) 141261) ((-659 . -152) 141245) ((-644 . -152) 141191) ((-117 . -658) 141163) ((-491 . -1213) 141142) ((-499 . -148) T) ((-499 . -146) NIL) ((-1139 . -626) 141057) ((-450 . -625) 141039) ((-219 . -148) T) ((-219 . -146) NIL) ((-1139 . -625) 141021) ((-130 . -102) T) ((-52 . -102) T) ((-1251 . -651) 140973) ((-491 . -107) 140923) ((-1012 . -23) T) ((-1311 . -38) 140893) ((-1192 . -1131) T) ((-1144 . -1131) T) ((-1081 . -1241) T) ((-245 . -234) 140784) ((-321 . -102) T) ((-866 . -1131) T) ((-969 . -1241) 140763) ((-493 . -1241) 140742) ((-1081 . -568) T) ((-969 . -568) 140673) ((-1192 . -23) T) ((-1170 . -1102) T) ((-1144 . -23) T) ((-866 . -23) T) ((-493 . -568) 140604) ((-1161 . -729) 140536) ((-682 . -1070) 140520) ((-1165 . -526) 140453) ((-682 . -652) 140437) ((-1054 . -626) NIL) ((-1054 . -625) 140419) ((-96 . -1102) T) ((-1316 . -1075) 140406) ((-878 . -729) 140376) ((-1316 . -111) 140361) ((-1231 . -47) 140330) ((-1187 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1123 . -1119) T) ((-1022 . -1119) T) ((-62 . -625) 140312) ((-1099 . -909) 140181) ((-1043 . -804) T) ((-1043 . -807) T) ((-1279 . -25) T) ((-1279 . -21) T) ((-1272 . -21) T) ((-1272 . -25) T) ((-882 . -660) 140168) ((-1251 . -21) T) ((-1251 . -25) T) ((-1046 . -152) 140152) ((-1023 . -234) 140139) ((-884 . -832) 140118) ((-884 . -937) T) ((-724 . -296) 140045) ((-608 . -21) T) ((-350 . -658) 140004) ((-108 . -909) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 139921) ((-40 . -738) T) ((-224 . -526) 139854) ((-607 . -25) T) ((-488 . -152) 139838) ((-475 . -152) 139822) ((-938 . -806) T) ((-938 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1119) T) ((-514 . -1119) T) ((-783 . -738) T) ((-227 . -374) T) ((-1309 . -1070) 139806) ((-1307 . -1070) 139790) ((-1309 . -652) 139760) ((-1176 . -1119) 139738) ((-883 . -1241) T) ((-1307 . -652) 139708) ((-666 . -625) 139690) ((-883 . -568) T) ((-706 . -379) NIL) ((-44 . -1070) 139674) ((-1316 . -628) 139656) ((-1310 . -1119) T) ((-682 . -102) T) ((-370 . -1294) 139640) ((-364 . -1294) 139624) ((-44 . -652) 139608) ((-356 . -1294) 139592) ((-560 . -102) T) ((-1231 . -1237) T) ((-532 . -862) 139571) ((-499 . -237) T) ((-219 . -237) T) ((-1065 . -1119) T) ((-829 . -464) 139550) ((-153 . -1070) 139534) ((-1065 . -1090) 139463) ((-1046 . -995) 139432) ((-831 . -1131) T) ((-1022 . -729) 139377) ((-153 . -652) 139361) ((-398 . -1131) T) ((-488 . -995) 139330) ((-475 . -995) 139299) ((-110 . -152) 139281) ((-73 . -625) 139263) ((-906 . -625) 139245) ((-1099 . -736) 139224) ((-1316 . -1068) T) ((-828 . -651) 139172) ((-304 . -1077) 139114) ((-171 . -1241) 139019) ((-227 . -1131) T) ((-334 . -23) T) ((-1187 . -1011) 138971) ((-855 . -1119) T) ((-1273 . -1075) 138876) ((-1145 . -752) 138855) ((-1271 . -937) 138834) ((-1250 . -937) 138813) ((-882 . -738) T) ((-171 . -568) 138724) ((-592 . -660) 138711) ((-576 . -660) 138683) ((-419 . -1119) T) ((-270 . -1119) T) ((-215 . -625) 138665) ((-507 . -660) 138615) ((-227 . -23) T) ((-1250 . -832) 138568) ((-1309 . -102) T) ((-365 . -1306) 138545) ((-1307 . -102) T) ((-1273 . -111) 138437) ((-1132 . -909) 138304) ((-827 . -1070) 138205) ((-827 . -652) 138127) ((-145 . -625) 138109) ((-1012 . -132) T) ((-44 . -102) T) ((-245 . -862) 138060) ((-1260 . -1241) 138039) ((-103 . -501) 138023) ((-1310 . -729) 137993) ((-1106 . -47) 137954) ((-1081 . -1131) T) ((-969 . -1131) T) ((-128 . -34) T) ((-122 . -34) T) ((-794 . -47) 137931) ((-792 . -47) 137903) ((-1260 . -568) 137814) ((-365 . -379) T) ((-493 . -1131) T) ((-1192 . -132) T) ((-1144 . -132) T) ((-466 . -47) 137793) ((-883 . -374) T) ((-866 . -132) T) ((-153 . -102) T) ((-1081 . -23) T) ((-969 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1161 . -526) 137726) ((-604 . -1102) T) ((-598 . -1057) 137710) ((-1273 . -628) 137584) ((-493 . -23) T) ((-362 . -1077) T) ((-1231 . -915) 137565) ((-682 . -319) 137503) ((-1132 . -1294) 137473) ((-711 . -660) 137438) ((-1023 . -862) T) ((-1022 . -174) T) ((-980 . -146) 137417) ((-647 . -1119) T) ((-619 . -1119) T) ((-980 . -148) 137396) ((-747 . -148) 137375) ((-747 . -146) 137354) ((-670 . -1237) T) ((-990 . -862) T) ((-1279 . -234) 137307) ((-1272 . -234) 137253) ((-1251 . -234) 137070) ((-845 . -658) 136987) ((-486 . -937) 136966) ((-329 . -1070) 136801) ((-326 . -1075) 136711) ((-323 . -1075) 136640) ((-1018 . -296) 136598) ((-419 . -729) 136550) ((-329 . -652) 136391) ((-607 . -234) 136344) ((-713 . -860) T) ((-1273 . -1068) T) ((-326 . -111) 136240) ((-323 . -111) 136153) ((-981 . -102) T) ((-827 . -102) 135905) ((-724 . -626) NIL) ((-724 . -625) 135887) ((-1273 . -336) 135831) ((-670 . -1057) 135727) ((-1106 . -1237) T) ((-1054 . -298) 135702) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 135653) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1237) T) ((-792 . -1237) T) ((-1165 . -501) 135637) ((-466 . -1237) T) ((-1106 . -899) NIL) ((-883 . -1131) T) ((-118 . -926) NIL) ((-1309 . -1308) 135613) ((-1307 . -1308) 135592) ((-794 . -899) NIL) ((-792 . -899) 135451) ((-1302 . -25) T) ((-1302 . -21) T) ((-1234 . -102) 135429) ((-1125 . -407) T) ((-635 . -660) 135416) ((-466 . -899) NIL) ((-687 . -102) 135394) ((-1106 . -1057) 135221) ((-883 . -23) T) ((-794 . -1057) 135080) ((-792 . -1057) 134937) ((-118 . -660) 134882) ((-466 . -1057) 134758) ((-326 . -628) 134322) ((-323 . -628) 134205) ((-402 . -658) 134174) ((-661 . -1057) 134158) ((-639 . -102) T) ((-593 . -1237) T) ((-530 . -1237) T) ((-224 . -501) 134142) ((-1287 . -34) T) ((-633 . -658) 134101) ((-299 . -1070) 134088) ((-137 . -628) 134072) ((-299 . -652) 134059) ((-647 . -729) 134043) ((-619 . -729) 134027) ((-682 . -38) 133987) ((-329 . -102) T) ((-85 . -625) 133969) ((-50 . -1057) 133953) ((-1139 . -1075) 133940) ((-1106 . -388) 133924) ((-794 . -388) 133908) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-593 . -1057) 133895) ((-530 . -1057) 133872) ((-60 . -57) 133834) ((-334 . -132) T) ((-326 . -1068) 133724) ((-323 . -1068) T) ((-171 . -1131) T) ((-792 . -388) 133708) ((-45 . -152) 133658) ((-1023 . -1011) 133640) ((-466 . -388) 133624) ((-419 . -174) T) ((-326 . -248) 133603) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1119) 133385) ((-227 . -132) T) ((-1139 . -111) 133370) ((-171 . -23) T) ((-811 . -148) 133349) ((-811 . -146) 133328) ((-258 . -651) 133234) ((-257 . -651) 133140) ((-329 . -294) 133106) ((-1176 . -526) 133039) ((-489 . -658) 132989) ((-494 . -909) 132856) ((-1152 . -1119) T) ((-227 . -1079) T) ((-827 . -319) 132794) ((-1106 . -915) 132729) ((-794 . -915) 132672) ((-792 . -915) 132656) ((-1309 . -38) 132626) ((-1307 . -38) 132596) ((-1260 . -1131) T) ((-867 . -1131) T) ((-466 . -915) 132573) ((-870 . -1119) T) ((-1260 . -23) T) ((-1139 . -628) 132545) ((-1081 . -132) T) ((-583 . -1131) T) ((-867 . -23) T) ((-635 . -738) T) ((-366 . -937) T) ((-363 . -937) T) ((-299 . -102) T) ((-355 . -937) T) ((-989 . -1102) T) ((-969 . -132) T) ((-828 . -234) 132490) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1065 . -526) 132391) ((-706 . -926) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 132342) ((-687 . -319) 132280) ((-647 . -773) T) ((-619 . -773) T) ((-1251 . -862) NIL) ((-1099 . -1070) 132190) ((-1022 . -300) T) ((-706 . -660) 132140) ((-258 . -25) T) ((-362 . -1119) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 132124) ((-2 . -102) T) ((-927 . -937) T) ((-1099 . -652) 131992) ((-494 . -1294) 131962) ((-1139 . -1068) T) ((-723 . -317) T) ((-370 . -1070) 131914) ((-364 . -1070) 131866) ((-356 . -1070) 131818) ((-370 . -652) 131770) ((-225 . -1057) 131747) ((-364 . -652) 131699) ((-108 . -1070) 131649) ((-356 . -652) 131601) ((-304 . -729) 131543) ((-713 . -1077) T) ((-499 . -464) T) ((-419 . -526) 131455) ((-108 . -652) 131405) ((-219 . -464) T) ((-1139 . -238) T) ((-305 . -152) 131355) ((-1018 . -626) 131316) ((-1018 . -625) 131298) ((-1008 . -625) 131280) ((-117 . -1077) T) ((-666 . -1075) 131264) ((-227 . -505) T) ((-411 . -625) 131246) ((-411 . -626) 131223) ((-1073 . -1294) 131193) ((-666 . -111) 131172) ((-682 . -917) 131095) ((-1161 . -501) 131079) ((-1311 . -658) 131038) ((-392 . -658) 131007) ((-63 . -453) T) ((-63 . -407) T) ((-1179 . -102) T) ((-883 . -132) T) ((-496 . -102) 130985) ((-1316 . -379) T) ((-1099 . -102) T) ((-1080 . -102) T) ((-362 . -729) 130930) ((-743 . -148) 130909) ((-743 . -146) 130888) ((-666 . -628) 130806) ((-1043 . -660) 130743) ((-535 . -1119) 130721) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1119) T) ((-365 . -660) 130666) ((-1192 . -651) 130614) ((-1144 . -651) 130562) ((-396 . -521) 130541) ((-845 . -860) 130520) ((-390 . -1241) T) ((-706 . -738) T) ((-1251 . -1011) 130472) ((-350 . -1077) T) ((-112 . -1237) T) ((-176 . -1077) T) ((-103 . -625) 130404) ((-1194 . -146) 130383) ((-1194 . -148) 130362) ((-390 . -568) T) ((-1193 . -148) 130341) ((-1193 . -146) 130320) ((-1187 . -146) 130227) ((-419 . -300) T) ((-1187 . -148) 130134) ((-1145 . -148) 130113) ((-1145 . -146) 130092) ((-329 . -38) 129933) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1068) T) ((-48 . -660) 129883) ((-1132 . -1070) 129784) ((-906 . -628) 129761) ((-1132 . -652) 129683) ((-1186 . -102) T) ((-1013 . -102) T) ((-1012 . -21) T) ((-128 . -1029) 129667) ((-122 . -1029) 129651) ((-1012 . -25) T) ((-918 . -120) 129635) ((-1178 . -102) T) ((-1260 . -132) T) ((-1192 . -25) T) ((-354 . -1237) T) ((-1192 . -21) T) ((-867 . -132) T) ((-1144 . -25) T) ((-1144 . -21) T) ((-866 . -25) T) ((-866 . -21) T) ((-794 . -317) 129614) ((-1179 . -319) 129409) ((-1176 . -501) 129393) ((-1169 . -152) 129343) ((-659 . -102) 129321) ((-644 . -102) T) ((-1165 . -625) 129283) ((-583 . -132) T) ((-633 . -860) 129262) ((-1165 . -626) 129223) ((-1043 . -803) T) ((-1043 . -806) T) ((-1043 . -738) T) ((-827 . -917) 129092) ((-724 . -1075) 128915) ((-496 . -319) 128853) ((-465 . -429) 128823) ((-362 . -174) T) ((-299 . -38) 128810) ((-258 . -234) 128701) ((-257 . -234) 128592) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1057) 128569) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 128378) ((-365 . -738) T) ((-682 . -272) 128362) ((-682 . -232) 128346) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 128295) ((-108 . -319) NIL) ((-72 . -407) T) ((-1132 . -102) 128047) ((-845 . -423) 128031) ((-1139 . -807) T) ((-1139 . -804) T) ((-713 . -1119) T) ((-590 . -625) 128013) ((-390 . -374) T) ((-171 . -505) 127991) ((-224 . -625) 127923) ((-135 . -1119) T) ((-117 . -1119) T) ((-983 . -1237) T) ((-48 . -738) T) ((-1065 . -501) 127888) ((-142 . -437) 127870) ((-142 . -379) T) ((-1046 . -102) T) ((-524 . -521) 127849) ((-724 . -628) 127605) ((-1194 . -237) 127564) ((-488 . -102) T) ((-475 . -102) T) ((-1193 . -237) 127516) ((-1187 . -237) 127339) ((-1053 . -1131) T) ((-329 . -917) 127245) ((-1244 . -625) 127227) ((-1201 . -1057) 127163) ((-1194 . -35) 127129) ((-1194 . -95) 127095) ((-1194 . -1225) 127061) ((-1194 . -1222) 127027) ((-1193 . -1222) 126993) ((-1193 . -1225) 126959) ((-1178 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1099 . -1171) 126938) ((-40 . -1237) T) ((-1193 . -95) 126904) ((-1053 . -23) T) ((-1193 . -35) 126870) ((-583 . -505) T) ((-1187 . -1222) 126836) ((-1187 . -1225) 126802) ((-1187 . -95) 126768) ((-1187 . -35) 126734) ((-372 . -1131) T) ((-370 . -1171) 126713) ((-364 . -1171) 126692) ((-356 . -1171) 126671) ((-1123 . -296) 126627) ((-1145 . -35) 126593) ((-1145 . -95) 126559) ((-108 . -1171) T) ((-1145 . -1225) 126525) ((-845 . -1077) 126504) ((-659 . -319) 126442) ((-644 . -319) 126293) ((-1145 . -1222) 126259) ((-724 . -1068) T) ((-1081 . -651) 126241) ((-1099 . -38) 126109) ((-969 . -651) 126057) ((-1023 . -148) T) ((-1023 . -146) NIL) ((-390 . -1131) T) ((-334 . -25) T) ((-332 . -23) T) ((-960 . -862) 126036) ((-724 . -336) 126013) ((-493 . -651) 125961) ((-40 . -1057) 125849) ((-724 . -238) T) ((-713 . -729) 125836) ((-350 . -1119) T) ((-176 . -1119) T) ((-341 . -862) T) ((-430 . -464) 125786) ((-390 . -23) T) ((-370 . -38) 125751) ((-364 . -38) 125716) ((-356 . -38) 125681) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1131) T) ((-108 . -38) 125631) ((-839 . -1131) T) ((-786 . -1119) T) ((-117 . -729) 125618) ((-684 . -1057) 125602) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1176 . -296) 125554) ((-1132 . -319) 125492) ((-494 . -1070) 125393) ((-1121 . -240) 125377) ((-64 . -408) T) ((-64 . -407) T) ((-1170 . -102) T) ((-110 . -102) T) ((-494 . -652) 125299) ((-40 . -388) 125276) ((-96 . -102) T) ((-665 . -864) 125260) ((-1192 . -234) 125247) ((-1154 . -1102) T) ((-1081 . -21) T) ((-1081 . -25) T) ((-1073 . -1070) 125231) ((-827 . -272) 125200) ((-827 . -232) 125169) ((-969 . -25) T) ((-969 . -21) T) ((-1073 . -652) 125111) ((-633 . -1077) T) ((-1139 . -379) T) ((-1046 . -319) 125049) ((-682 . -658) 125008) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1070) 124992) ((-902 . -625) 124974) ((-898 . -625) 124956) ((-535 . -526) 124889) ((-258 . -862) 124840) ((-257 . -862) 124791) ((-396 . -652) 124761) ((-883 . -651) 124738) ((-488 . -319) 124676) ((-475 . -319) 124614) ((-362 . -300) T) ((-1176 . -1275) 124598) ((-1161 . -625) 124560) ((-1161 . -626) 124521) ((-1159 . -102) T) ((-1018 . -1075) 124417) ((-40 . -915) 124369) ((-1176 . -616) 124346) ((-1316 . -660) 124333) ((-1082 . -152) 124279) ((-499 . -909) NIL) ((-878 . -502) 124256) ((-1018 . -111) 124138) ((-884 . -1241) T) ((-219 . -909) NIL) ((-350 . -729) 124122) ((-878 . -625) 124084) ((-176 . -729) 124016) ((-884 . -568) T) ((-419 . -296) 123974) ((-245 . -237) 123871) ((-108 . -412) 123853) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 123835) ((-99 . -738) T) ((-494 . -102) 123587) ((-99 . -485) T) ((-117 . -174) T) ((-1309 . -658) 123546) ((-1307 . -658) 123505) ((-171 . -651) 123453) ((-1099 . -917) 123324) ((-1073 . -102) T) ((-1018 . -628) 123214) ((-883 . -25) T) ((-827 . -243) 123193) ((-883 . -21) T) ((-830 . -102) T) ((-44 . -658) 123136) ((-1023 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 123114) ((-128 . -1237) T) ((-122 . -1237) T) ((-108 . -917) NIL) ((-829 . -1070) 123065) ((-829 . -652) 123007) ((-1053 . -132) T) ((-682 . -378) 122991) ((-153 . -658) 122950) ((-647 . -296) 122908) ((-619 . -296) 122866) ((-1316 . -738) T) ((-1018 . -1068) T) ((-1260 . -651) 122814) ((-1123 . -625) 122796) ((-1022 . -625) 122778) ((-576 . -1237) T) ((-507 . -1237) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1119) T) ((-1022 . -626) 122762) ((-1018 . -248) 122741) ((-1018 . -238) 122720) ((-1279 . -146) 122699) ((-1279 . -148) 122678) ((-845 . -1119) T) ((-1272 . -148) 122657) ((-1272 . -146) 122636) ((-1271 . -1241) 122615) ((-1251 . -146) 122522) ((-1251 . -148) 122429) ((-1250 . -1241) 122408) ((-390 . -132) T) ((-227 . -234) 122395) ((-576 . -899) 122377) ((0 . -1119) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1119) T) ((-1273 . -660) 122282) ((-1271 . -568) 122233) ((-726 . -1131) T) ((-1250 . -568) 122184) ((-576 . -1057) 122166) ((-607 . -148) 122145) ((-607 . -146) 122124) ((-507 . -1057) 122067) ((-1154 . -1156) T) ((-87 . -395) T) ((-87 . -407) T) ((-884 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-981 . -658) 122011) ((-726 . -23) T) ((-518 . -625) 121977) ((-514 . -625) 121959) ((-827 . -658) 121738) ((-1311 . -1077) T) ((-390 . -1079) T) ((-1045 . -1119) 121716) ((-55 . -1057) 121698) ((-918 . -34) T) ((-494 . -319) 121636) ((-604 . -102) T) ((-1176 . -626) 121597) ((-1176 . -625) 121529) ((-1198 . -1070) 121412) ((-45 . -102) T) ((-829 . -102) T) ((-1198 . -652) 121309) ((-1260 . -25) T) ((-1260 . -21) T) ((-1081 . -234) 121296) ((-867 . -25) T) ((-44 . -378) 121280) ((-867 . -21) T) ((-743 . -464) 121231) ((-1310 . -625) 121213) ((-1299 . -1070) 121183) ((-1073 . -319) 121121) ((-683 . -1102) T) ((-618 . -1102) T) ((-402 . -1119) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1102) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-155 . -1102) T) ((-1299 . -652) 121091) ((-633 . -1119) T) ((-711 . -899) 121073) ((-1287 . -1237) T) ((-229 . -319) 121011) ((-145 . -379) T) ((-1065 . -626) 120953) ((-1065 . -625) 120896) ((-323 . -926) NIL) ((-1245 . -856) T) ((-1132 . -917) 120765) ((-711 . -1057) 120710) ((-723 . -937) T) ((-486 . -1241) 120689) ((-1193 . -464) 120668) ((-1187 . -464) 120647) ((-340 . -102) T) ((-884 . -1131) T) ((-329 . -658) 120529) ((-326 . -660) 120258) ((-323 . -660) 120187) ((-486 . -568) 120138) ((-350 . -526) 120104) ((-562 . -152) 120054) ((-40 . -317) T) ((-855 . -625) 120036) ((-713 . -300) T) ((-884 . -23) T) ((-390 . -505) T) ((-1099 . -272) 120006) ((-1099 . -232) 119976) ((-524 . -102) T) ((-419 . -626) 119783) ((-419 . -625) 119765) ((-270 . -625) 119747) ((-117 . -300) T) ((-1273 . -738) T) ((-635 . -1237) T) ((-1312 . -1119) T) ((-1271 . -374) 119726) ((-1250 . -374) 119705) ((-1300 . -34) T) ((-1245 . -1119) T) ((-118 . -1237) T) ((-108 . -272) 119687) ((-108 . -232) 119669) ((-1198 . -102) T) ((-489 . -1119) T) ((-535 . -501) 119653) ((-749 . -34) T) ((-665 . -1070) 119637) ((-665 . -652) 119607) ((-883 . -234) NIL) ((-142 . -34) T) ((-118 . -897) 119584) ((-118 . -899) NIL) ((-635 . -1057) 119467) ((-1299 . -102) T) ((-1279 . -237) 119426) ((-656 . -862) 119405) ((-1272 . -237) 119357) ((-1251 . -237) 119180) ((-305 . -102) T) ((-724 . -379) 119159) ((-118 . -1057) 119136) ((-402 . -729) 119120) ((-607 . -237) 119079) ((-633 . -729) 119063) ((-1124 . -1237) T) ((-45 . -319) 118867) ((-828 . -146) 118846) ((-828 . -148) 118825) ((-299 . -658) 118797) ((-1310 . -393) 118776) ((-831 . -862) T) ((-1289 . -1119) T) ((-1179 . -231) 118723) ((-398 . -862) 118702) ((-1279 . -35) 118668) ((-1279 . -1225) 118634) ((-1279 . -1222) 118600) ((-1272 . -1222) 118566) ((-527 . -132) T) ((-1272 . -1225) 118532) ((-1251 . -1222) 118498) ((-1251 . -1225) 118464) ((-1279 . -95) 118430) ((-1272 . -95) 118396) ((-430 . -909) 118317) ((-647 . -625) 118286) ((-619 . -625) 118255) ((-227 . -862) T) ((-1272 . -35) 118221) ((-1271 . -1131) T) ((-1251 . -95) 118187) ((-1139 . -660) 118159) ((-1251 . -35) 118125) ((-1250 . -1131) T) ((-605 . -152) 118107) ((-1099 . -360) 118086) ((-176 . -300) T) ((-118 . -388) 118063) ((-118 . -349) 118040) ((-171 . -234) 117965) ((-882 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 117814) ((-323 . -738) T) ((-486 . -374) 117793) ((-370 . -360) 117772) ((-364 . -360) 117751) ((-356 . -360) 117730) ((-326 . -485) 117709) ((-1271 . -23) T) ((-1250 . -23) T) ((-730 . -1131) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 117674) ((-45 . -292) 117624) ((-105 . -1119) T) ((-68 . -625) 117606) ((-989 . -102) T) ((-876 . -102) T) ((-635 . -915) 117565) ((-1311 . -1119) T) ((-392 . -1119) T) ((-1260 . -234) 117552) ((-1236 . -1119) T) ((-82 . -1237) T) ((-1132 . -272) 117521) ((-1081 . -862) T) ((-118 . -915) NIL) ((-794 . -937) 117500) ((-725 . -862) T) ((-543 . -1119) T) ((-512 . -1119) T) ((-366 . -1241) T) ((-363 . -1241) T) ((-355 . -1241) T) ((-273 . -1241) 117479) ((-253 . -1241) 117458) ((-545 . -872) T) ((-1132 . -232) 117427) ((-1178 . -840) T) ((-1161 . -1075) 117411) ((-402 . -773) T) ((-706 . -1237) T) ((-703 . -1057) 117395) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 117326) ((-253 . -568) 117257) ((-537 . -1102) T) ((-1161 . -111) 117236) ((-465 . -756) 117206) ((-878 . -1075) 117176) ((-829 . -38) 117118) ((-706 . -897) 117100) ((-706 . -899) 117082) ((-305 . -319) 116886) ((-1176 . -298) 116863) ((-927 . -1241) T) ((-1099 . -658) 116758) ((-1023 . -464) T) ((-682 . -423) 116742) ((-878 . -111) 116707) ((-931 . -464) T) ((-706 . -1057) 116652) ((-927 . -568) T) ((-545 . -625) 116634) ((-593 . -937) T) ((-499 . -1070) 116584) ((-486 . -1131) T) ((-530 . -937) T) ((-494 . -917) 116453) ((-65 . -625) 116435) ((-219 . -1070) 116385) ((-499 . -652) 116335) ((-370 . -658) 116272) ((-364 . -658) 116209) ((-356 . -658) 116146) ((-644 . -231) 116092) ((-219 . -652) 116042) ((-108 . -658) 115992) ((-486 . -23) T) ((-1139 . -806) T) ((-884 . -132) T) ((-1139 . -803) T) ((-1302 . -1304) 115971) ((-1139 . -738) T) ((-666 . -660) 115945) ((-304 . -625) 115686) ((-1161 . -628) 115604) ((-1054 . -34) T) ((-828 . -237) 115555) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1311 . -729) 115525) ((-706 . -388) 115507) ((-706 . -349) 115489) ((-489 . -174) T) ((-392 . -729) 115459) ((-878 . -628) 115394) ((-883 . -862) NIL) ((-576 . -1041) T) ((-507 . -1041) T) ((-1152 . -625) 115376) ((-1132 . -243) 115355) ((-216 . -102) T) ((-1169 . -102) T) ((-71 . -625) 115337) ((-1161 . -1068) T) ((-1198 . -38) 115234) ((-870 . -625) 115216) ((-576 . -557) T) ((-682 . -1077) T) ((-743 . -966) 115169) ((-365 . -1237) T) ((-1161 . -238) 115148) ((-1101 . -1119) T) ((-1053 . -25) T) ((-1053 . -21) T) ((-1022 . -1075) 115093) ((-922 . -102) T) ((-878 . -1068) T) ((-706 . -915) NIL) ((-366 . -339) 115077) ((-366 . -374) T) ((-363 . -339) 115061) ((-363 . -374) T) ((-355 . -339) 115045) ((-355 . -374) T) ((-499 . -102) T) ((-1299 . -38) 115015) ((-558 . -862) T) ((-535 . -699) 114965) ((-219 . -102) T) ((-1043 . -1057) 114845) ((-1022 . -111) 114774) ((-1194 . -992) 114743) ((-1193 . -992) 114705) ((-532 . -152) 114689) ((-1099 . -381) 114668) ((-362 . -625) 114650) ((-332 . -21) T) ((-365 . -1057) 114627) ((-332 . -25) T) ((-1187 . -992) 114596) ((-48 . -1237) T) ((-76 . -625) 114578) ((-1145 . -992) 114545) ((-711 . -317) T) ((-130 . -856) T) ((-927 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-927 . -339) 114532) ((-86 . -625) 114514) ((-711 . -1041) T) ((-689 . -862) T) ((-1271 . -132) T) ((-1250 . -132) T) ((-918 . -1029) 114498) ((-848 . -21) T) ((-48 . -1057) 114441) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1132 . -658) 114220) ((-1309 . -1077) T) ((-561 . -102) T) ((-1307 . -1077) T) ((-666 . -738) T) ((-1123 . -630) 114123) ((-1022 . -628) 114053) ((-1310 . -1075) 114037) ((-827 . -423) 114006) ((-103 . -120) 113990) ((-130 . -1119) T) ((-52 . -1119) T) ((-943 . -625) 113972) ((-883 . -1011) 113949) ((-835 . -102) T) ((-1310 . -111) 113928) ((-743 . -909) 113903) ((-665 . -38) 113873) ((-583 . -862) T) ((-366 . -1131) T) ((-363 . -1131) T) ((-355 . -1131) T) ((-273 . -1131) T) ((-253 . -1131) T) ((-1169 . -319) 113677) ((-1107 . -234) 113664) ((-635 . -317) 113643) ((-676 . -23) T) ((-536 . -1102) T) ((-321 . -1119) T) ((-494 . -272) 113612) ((-494 . -232) 113581) ((-153 . -1077) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1022 . -1068) T) ((-724 . -926) 113560) ((-1194 . -909) 113448) ((-1193 . -909) 113329) ((-1187 . -909) 113065) ((-1176 . -628) 113042) ((-1022 . -238) 113014) ((-1022 . -248) T) ((-1145 . -909) 112996) ((-118 . -1041) NIL) ((-927 . -1131) T) ((-1272 . -464) 112975) ((-1251 . -464) 112954) ((-535 . -625) 112886) ((-724 . -660) 112775) ((-419 . -1075) 112727) ((-516 . -625) 112709) ((-927 . -23) T) ((-499 . -319) NIL) ((-1310 . -628) 112665) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 112603) ((-827 . -1077) 112581) ((-749 . -1117) 112565) ((-1271 . -505) 112531) ((-1250 . -505) 112497) ((-560 . -856) T) ((-142 . -1117) 112479) ((-489 . -300) T) ((-1310 . -1068) T) ((-258 . -237) 112376) ((-257 . -237) 112273) ((-1242 . -102) T) ((-1082 . -102) T) ((-855 . -628) 112141) ((-512 . -526) NIL) ((-494 . -243) 112120) ((-419 . -628) 112018) ((-980 . -1070) 111901) ((-747 . -1070) 111871) ((-980 . -652) 111768) ((-1192 . -146) 111747) ((-747 . -652) 111717) ((-465 . -1070) 111687) ((-1192 . -148) 111666) ((-1144 . -148) 111645) ((-1144 . -146) 111624) ((-647 . -1075) 111608) ((-619 . -1075) 111592) ((-465 . -652) 111562) ((-1194 . -1278) 111546) ((-1194 . -1265) 111523) ((-1193 . -1270) 111484) ((-682 . -1119) T) ((-682 . -1072) 111424) ((-1193 . -1265) 111394) ((-560 . -1119) T) ((-499 . -1171) T) ((-1193 . -1268) 111378) ((-1187 . -1249) 111339) ((-830 . -275) 111323) ((-219 . -1171) T) ((-354 . -937) T) ((-99 . -1237) T) ((-647 . -111) 111302) ((-619 . -111) 111281) ((-1187 . -1265) 111258) ((-855 . -1068) 111237) ((-1187 . -1247) 111221) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1070) 111195) ((-419 . -1068) T) ((-329 . -1077) T) ((-706 . -317) T) ((-430 . -652) 111169) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111148) ((-390 . -234) 111135) ((-499 . -38) 111085) ((-219 . -38) 111035) ((-486 . -505) 111001) ((-1244 . -379) T) ((-1178 . -1163) T) ((-1120 . -102) T) ((-839 . -234) 110974) ((-713 . -625) 110956) ((-713 . -626) 110871) ((-726 . -21) T) ((-726 . -25) T) ((-1154 . -102) T) ((-494 . -658) 110650) ((-245 . -909) 110517) ((-135 . -625) 110499) ((-117 . -625) 110481) ((-158 . -25) T) ((-1309 . -1119) T) ((-884 . -651) 110429) ((-1307 . -1119) T) ((-980 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 110380) ((-44 . -1119) T) ((-1107 . -862) T) ((-1082 . -319) 110231) ((-676 . -132) T) ((-1073 . -658) 110200) ((-682 . -729) 110184) ((-299 . -1077) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110153) ((-430 . -102) T) ((-153 . -1119) T) ((-45 . -231) 110103) ((-1023 . -909) NIL) ((-811 . -1070) 110087) ((-975 . -862) 110066) ((-1018 . -660) 109968) ((-811 . -652) 109952) ((-245 . -1294) 109922) ((-1043 . -317) T) ((-304 . -1075) 109843) ((-927 . -132) T) ((-40 . -937) T) ((-499 . -412) 109825) ((-365 . -317) T) ((-219 . -412) 109807) ((-1099 . -423) 109791) ((-304 . -111) 109707) ((-1203 . -862) T) ((-1202 . -862) T) ((-884 . -25) T) ((-884 . -21) T) ((-1273 . -47) 109651) ((-350 . -625) 109633) ((-1192 . -237) T) ((-227 . -148) T) ((-176 . -625) 109615) ((-786 . -625) 109597) ((-129 . -862) T) ((-620 . -240) 109544) ((-487 . -240) 109494) ((-1309 . -729) 109464) ((-48 . -317) T) ((-1307 . -729) 109434) ((-65 . -628) 109363) ((-981 . -1119) T) ((-827 . -1119) 109115) ((-322 . -102) T) ((-918 . -1237) T) ((-48 . -1041) T) ((-1250 . -651) 109023) ((-701 . -102) 109001) ((-44 . -729) 108985) ((-562 . -102) T) ((-304 . -628) 108916) ((-67 . -394) T) ((-499 . -917) NIL) ((-67 . -407) T) ((-219 . -917) NIL) ((-674 . -23) T) ((-829 . -658) 108852) ((-682 . -773) T) ((-1234 . -1119) 108830) ((-362 . -1075) 108775) ((-687 . -1119) 108753) ((-1081 . -148) T) ((-969 . -148) 108732) ((-969 . -146) 108711) ((-811 . -102) T) ((-153 . -729) 108695) ((-493 . -148) 108674) ((-493 . -146) 108653) ((-362 . -111) 108582) ((-1099 . -1077) T) ((-332 . -862) 108561) ((-1279 . -992) 108530) ((-639 . -1119) T) ((-1272 . -992) 108492) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 108442) ((-370 . -1077) T) ((-364 . -1077) T) ((-356 . -1077) T) ((-304 . -1068) 108384) ((-1251 . -992) 108353) ((-390 . -862) T) ((-108 . -1077) T) ((-1018 . -738) T) ((-882 . -937) T) ((-855 . -807) 108332) ((-855 . -804) 108311) ((-430 . -319) 108250) ((-480 . -102) T) ((-607 . -992) 108219) ((-329 . -1119) T) ((-419 . -807) 108198) ((-419 . -804) 108177) ((-512 . -501) 108159) ((-1273 . -1057) 108125) ((-1271 . -21) T) ((-1271 . -25) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-827 . -729) 108067) ((-362 . -628) 107997) ((-711 . -416) T) ((-1300 . -1237) T) ((-1132 . -423) 107966) ((-618 . -102) T) ((-1096 . -1237) T) ((-1022 . -379) NIL) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1198 . -658) 107876) ((-749 . -1237) T) ((-743 . -1070) 107719) ((-44 . -773) T) ((-743 . -652) 107568) ((-605 . -102) T) ((-665 . -668) 107552) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1237) T) ((-883 . -148) T) ((-883 . -146) NIL) ((-1299 . -658) 107497) ((-1279 . -909) 107385) ((-1236 . -93) T) ((-362 . -1068) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1185 . -102) T) ((-682 . -526) 107318) ((-1272 . -909) 107199) ((-1251 . -909) 106935) ((-701 . -319) 106873) ((-980 . -38) 106770) ((-1200 . -625) 106752) ((-747 . -38) 106722) ((-562 . -319) 106526) ((-1194 . -1070) 106409) ((-326 . -1237) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1237) T) ((-299 . -1119) T) ((-1193 . -1070) 106244) ((-1187 . -1070) 106034) ((-1145 . -1070) 105917) ((-1194 . -652) 105814) ((-1193 . -652) 105655) ((-723 . -1241) T) ((-1187 . -652) 105451) ((-1176 . -663) 105435) ((-1145 . -652) 105332) ((-1231 . -568) 105311) ((-831 . -397) 105295) ((-723 . -568) T) ((-607 . -909) 105206) ((-326 . -897) 105190) ((-326 . -899) 105115) ((-137 . -1237) T) ((-323 . -897) 105076) ((-323 . -899) NIL) ((-811 . -319) 105041) ((-329 . -729) 104882) ((-398 . -397) 104866) ((-334 . -333) 104843) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 104817) ((-326 . -1057) 104480) ((-227 . -1222) T) ((-227 . -1225) T) ((-3 . -625) 104462) ((-323 . -1057) 104392) ((-884 . -234) 104337) ((-2 . -1119) T) ((-2 . |RecordCategory|) T) ((-1132 . -1077) 104315) ((-845 . -625) 104297) ((-1081 . -237) T) ((-592 . -937) T) ((-576 . -832) T) ((-576 . -937) T) ((-507 . -937) T) ((-137 . -1057) 104281) ((-227 . -95) T) ((-171 . -148) 104260) ((-75 . -453) T) ((0 . -625) 104242) ((-75 . -407) T) ((-171 . -146) 104193) ((-227 . -35) T) ((-49 . -625) 104175) ((-489 . -1077) T) ((-499 . -272) 104157) ((-499 . -232) 104139) ((-496 . -987) 104123) ((-219 . -272) 104105) ((-219 . -232) 104087) ((-81 . -453) T) ((-81 . -407) T) ((-1165 . -34) T) ((-743 . -102) T) ((-665 . -658) 104046) ((-1045 . -625) 104013) ((-512 . -296) 103963) ((-326 . -388) 103932) ((-323 . -388) 103893) ((-323 . -349) 103854) ((-1104 . -625) 103836) ((-828 . -966) 103783) ((-674 . -132) T) ((-1260 . -146) 103762) ((-1260 . -148) 103741) ((-1194 . -102) T) ((-1193 . -102) T) ((-1187 . -102) T) ((-1179 . -1119) T) ((-1145 . -102) T) ((-224 . -34) T) ((-299 . -729) 103728) ((-1179 . -622) 103704) ((-605 . -319) NIL) ((-1279 . -1278) 103688) ((-496 . -1119) 103666) ((-1169 . -231) 103616) ((-402 . -625) 103598) ((-522 . -862) T) ((-1139 . -1237) T) ((-1279 . -1265) 103575) ((-1272 . -1270) 103536) ((-1272 . -1265) 103506) ((-1272 . -1268) 103490) ((-1251 . -1249) 103451) ((-1251 . -1265) 103428) ((-1251 . -1247) 103412) ((-633 . -625) 103394) ((-1194 . -294) 103360) ((-711 . -937) T) ((-1193 . -294) 103326) ((-1187 . -294) 103292) ((-1145 . -294) 103258) ((-1099 . -1119) T) ((-1080 . -1119) T) ((-48 . -312) T) ((-326 . -915) 103224) ((-323 . -915) NIL) ((-1080 . -1087) 103203) ((-1139 . -899) 103185) ((-811 . -38) 103169) ((-273 . -651) 103117) ((-253 . -651) 103065) ((-713 . -1075) 103052) ((-607 . -1265) 103029) ((-1139 . -1057) 103011) ((-329 . -174) 102942) ((-370 . -1119) T) ((-364 . -1119) T) ((-356 . -1119) T) ((-512 . -19) 102924) ((-1121 . -152) 102908) ((-883 . -237) NIL) ((-108 . -1119) T) ((-117 . -1075) 102895) ((-723 . -374) T) ((-512 . -616) 102870) ((-713 . -111) 102855) ((-1312 . -625) 102822) ((-1312 . -502) 102804) ((-1271 . -234) 102750) ((-1250 . -234) 102603) ((-448 . -102) T) ((-888 . -1282) T) ((-256 . -102) T) ((-45 . -1168) 102553) ((-117 . -111) 102538) ((-1289 . -625) 102520) ((-1260 . -237) T) ((-1245 . -625) 102502) ((-1243 . -862) T) ((-647 . -732) T) ((-619 . -732) T) ((-1231 . -1131) T) ((-1231 . -23) T) ((-1192 . -464) 102433) ((-1187 . -319) 102318) ((-1186 . -1119) T) ((-827 . -526) 102251) ((-1054 . -1237) T) ((-245 . -1070) 102152) ((-1178 . -1119) T) ((-1161 . -660) 102090) ((-960 . -152) 102074) ((-1145 . -319) 102061) ((-1144 . -464) 102012) ((-245 . -652) 101934) ((-1106 . -568) 101865) ((-1106 . -1241) 101844) ((-1099 . -729) 101712) ((-537 . -102) T) ((-532 . -102) 101662) ((-1023 . -1070) 101612) ((-1013 . -1119) T) ((-828 . -909) 101508) ((-794 . -1241) 101487) ((-792 . -1241) 101466) ((-62 . -1237) T) ((-489 . -625) 101418) ((-489 . -626) 101340) ((-794 . -568) 101251) ((-792 . -568) 101182) ((-743 . -319) 101169) ((-713 . -628) 101141) ((-494 . -423) 101110) ((-635 . -937) 101089) ((-466 . -1241) 101068) ((-687 . -526) 101001) ((-676 . -25) T) ((-410 . -625) 100983) ((-676 . -21) T) ((-466 . -568) 100914) ((-430 . -917) 100837) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -937) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 100768) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 100750) ((-117 . -628) 100722) ((-1023 . -652) 100672) ((-960 . -999) 100656) ((-931 . -652) 100608) ((-931 . -1070) 100560) ((-927 . -21) T) ((-927 . -25) T) ((-884 . -862) 100511) ((-878 . -660) 100471) ((-723 . -1131) T) ((-723 . -23) T) ((-713 . -1068) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1237) T) ((-321 . -93) T) ((-659 . -1119) 100449) ((-644 . -622) 100424) ((-644 . -1119) T) ((-593 . -1241) T) ((-593 . -568) T) ((-530 . -1241) T) ((-530 . -568) T) ((-499 . -658) 100374) ((-486 . -234) 100320) ((-439 . -1070) 100304) ((-439 . -652) 100288) ((-370 . -729) 100240) ((-364 . -729) 100192) ((-350 . -1075) 100176) ((-356 . -729) 100128) ((-350 . -111) 100107) ((-176 . -1075) 100039) ((-219 . -658) 99989) ((-176 . -111) 99900) ((-108 . -729) 99850) ((-283 . -1119) T) ((-282 . -1119) T) ((-281 . -1119) T) ((-280 . -1119) T) ((-279 . -1119) T) ((-278 . -1119) T) ((-277 . -1119) T) ((-214 . -1119) T) ((-213 . -1119) T) ((-171 . -1225) 99828) ((-171 . -1222) 99806) ((-211 . -1119) T) ((-210 . -1119) T) ((-117 . -1068) T) ((-209 . -1119) T) ((-208 . -1119) T) ((-205 . -1119) T) ((-204 . -1119) T) ((-203 . -1119) T) ((-202 . -1119) T) ((-201 . -1119) T) ((-200 . -1119) T) ((-199 . -1119) T) ((-198 . -1119) T) ((-197 . -1119) T) ((-196 . -1119) T) ((-195 . -1119) T) ((-245 . -102) 99558) ((-171 . -35) 99536) ((-171 . -95) 99514) ((-666 . -1057) 99410) ((-494 . -1077) 99388) ((-1132 . -1119) 99140) ((-1161 . -34) T) ((-682 . -501) 99124) ((-73 . -1237) T) ((-105 . -625) 99106) ((-1311 . -625) 99088) ((-392 . -625) 99070) ((-350 . -628) 99022) ((-176 . -628) 98939) ((-1236 . -502) 98920) ((-743 . -38) 98769) ((-583 . -1225) T) ((-583 . -1222) T) ((-543 . -625) 98751) ((-532 . -319) 98689) ((-512 . -625) 98671) ((-512 . -626) 98653) ((-1236 . -625) 98619) ((-1187 . -1171) NIL) ((-1046 . -1090) 98588) ((-1046 . -1119) T) ((-1023 . -102) T) ((-990 . -102) T) ((-931 . -102) T) ((-906 . -1057) 98565) ((-1161 . -738) T) ((-1022 . -660) 98472) ((-488 . -1119) T) ((-475 . -1119) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1082 . -231) 98418) ((-1194 . -38) 98315) ((-878 . -738) T) ((-706 . -937) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1193 . -38) 98156) ((-350 . -1068) T) ((-1187 . -38) 97952) ((-1099 . -174) T) ((-176 . -1068) T) ((-1145 . -38) 97849) ((-724 . -47) 97826) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 97800) ((-509 . -57) 97750) ((-362 . -1306) 97727) ((-227 . -464) T) ((-329 . -300) 97678) ((-356 . -174) T) ((-176 . -248) T) ((-1250 . -862) 97577) ((-108 . -174) T) ((-884 . -1011) 97561) ((-670 . -1131) T) ((-593 . -374) T) ((-593 . -339) 97548) ((-530 . -339) 97525) ((-530 . -374) T) ((-326 . -317) 97504) ((-323 . -317) T) ((-614 . -862) 97483) ((-1132 . -729) 97425) ((-532 . -292) 97409) ((-670 . -23) T) ((-430 . -232) 97393) ((-430 . -272) 97377) ((-323 . -1041) NIL) ((-347 . -23) T) ((-103 . -1029) 97361) ((-45 . -36) 97340) ((-624 . -1119) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 97278) ((-1106 . -1131) T) ((-1310 . -660) 97252) ((-794 . -1131) T) ((-792 . -1131) T) ((-1198 . -423) 97236) ((-466 . -1131) T) ((-1081 . -464) T) ((-1170 . -1119) T) ((-969 . -464) 97187) ((-1134 . -1102) T) ((-110 . -1119) T) ((-1106 . -23) T) ((-1179 . -526) 96970) ((-829 . -1077) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 96921) ((-473 . -23) T) ((-392 . -393) 96900) ((-366 . -234) 96873) ((-363 . -234) 96846) ((-355 . -234) 96819) ((-466 . -23) T) ((-273 . -234) 96764) ((-258 . -909) 96631) ((-257 . -909) 96498) ((-96 . -1119) T) ((-724 . -1237) T) ((-682 . -296) 96475) ((-496 . -526) 96408) ((-1279 . -1070) 96291) ((-1279 . -652) 96188) ((-1272 . -652) 96029) ((-1272 . -1070) 95864) ((-1251 . -652) 95660) ((-299 . -300) T) ((-1251 . -1070) 95450) ((-1101 . -625) 95432) ((-1101 . -626) 95413) ((-419 . -926) 95392) ((-1231 . -132) T) ((-50 . -1131) T) ((-1187 . -412) 95344) ((-1043 . -937) T) ((-1022 . -738) T) ((-855 . -660) 95317) ((-724 . -899) NIL) ((-608 . -1070) 95277) ((-593 . -1131) T) ((-530 . -1131) T) ((-607 . -1070) 95160) ((-1176 . -34) T) ((-1023 . -319) NIL) ((-827 . -501) 95144) ((-608 . -652) 95117) ((-365 . -937) T) ((-607 . -652) 95014) ((-927 . -234) 95001) ((-419 . -660) 94917) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1057) 94797) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 94768) ((-1159 . -1119) T) ((-1302 . -1301) 94752) ((-743 . -917) 94729) ((-713 . -807) T) ((-713 . -804) T) ((-1139 . -317) T) ((-390 . -148) T) ((-290 . -625) 94711) ((-289 . -625) 94693) ((-1250 . -1011) 94663) ((-48 . -937) T) ((-687 . -501) 94647) ((-258 . -1294) 94617) ((-257 . -1294) 94587) ((-1107 . -237) T) ((-1196 . -862) T) ((-1139 . -1041) T) ((-1065 . -34) T) ((-848 . -148) 94566) ((-848 . -146) 94545) ((-749 . -107) 94529) ((-624 . -133) T) ((-1198 . -1077) T) ((-494 . -1119) 94281) ((-1194 . -917) 94194) ((-1193 . -917) 94100) ((-1187 . -917) 93861) ((-883 . -464) T) ((-85 . -1237) T) ((-142 . -107) 93843) ((-1145 . -917) 93827) ((-724 . -388) 93811) ((-845 . -628) 93679) ((-1310 . -738) T) ((-1299 . -1077) T) ((-1279 . -102) T) ((-1139 . -557) T) ((-591 . -102) T) ((-130 . -502) 93661) ((-1272 . -102) T) ((-402 . -1075) 93645) ((-1192 . -966) 93614) ((-44 . -296) 93591) ((-130 . -625) 93558) ((-52 . -625) 93540) ((-1144 . -966) 93507) ((-665 . -423) 93491) ((-1251 . -102) T) ((-1178 . -526) NIL) ((-674 . -25) T) ((-633 . -1075) 93475) ((-674 . -21) T) ((-980 . -658) 93385) ((-747 . -658) 93330) ((-727 . -658) 93302) ((-402 . -111) 93281) ((-224 . -261) 93265) ((-1073 . -1072) 93205) ((-1073 . -1119) T) ((-1023 . -1171) T) ((-830 . -1119) T) ((-465 . -658) 93120) ((-647 . -660) 93104) ((-354 . -1241) T) ((-633 . -111) 93083) ((-619 . -660) 93067) ((-608 . -102) T) ((-321 . -502) 93048) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1119) T) ((-396 . -1119) T) ((-321 . -625) 93014) ((-229 . -1119) 92992) ((-659 . -526) 92925) ((-644 . -526) 92769) ((-845 . -1068) 92748) ((-656 . -152) 92732) ((-354 . -568) T) ((-724 . -915) 92675) ((-562 . -231) 92625) ((-1279 . -294) 92591) ((-1272 . -294) 92557) ((-1099 . -300) 92508) ((-499 . -860) T) ((-225 . -1131) T) ((-1251 . -294) 92474) ((-1231 . -505) 92440) ((-1023 . -38) 92390) ((-219 . -860) T) ((-430 . -658) 92349) ((-931 . -38) 92301) ((-855 . -806) 92280) ((-855 . -803) 92259) ((-855 . -738) 92238) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92169) ((-439 . -38) 92153) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92132) ((-419 . -803) 92111) ((-419 . -738) T) ((-512 . -298) 92086) ((-489 . -1075) 92051) ((-670 . -132) T) ((-633 . -628) 92020) ((-1132 . -526) 91953) ((-347 . -132) T) ((-171 . -414) 91932) ((-494 . -729) 91874) ((-827 . -296) 91851) ((-489 . -111) 91807) ((-665 . -1077) T) ((-1192 . -909) 91710) ((-1144 . -909) 91692) ((-828 . -1070) 91535) ((-1298 . -1102) T) ((-1260 . -464) 91466) ((-828 . -652) 91315) ((-1297 . -1102) T) ((-1106 . -132) T) ((-1073 . -729) 91257) ((-1046 . -526) 91190) ((-794 . -132) T) ((-792 . -132) T) ((-583 . -464) T) ((-633 . -1068) T) ((-604 . -1119) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1018 . -1237) T) ((-45 . -1119) T) ((-396 . -729) 91160) ((-829 . -1119) T) ((-488 . -526) 91093) ((-475 . -526) 91026) ((-1312 . -628) 91008) ((-465 . -378) 90978) ((-45 . -622) 90957) ((-411 . -1237) T) ((-326 . -312) T) ((-839 . -237) 90936) ((-489 . -628) 90886) ((-1251 . -319) 90771) ((-682 . -625) 90733) ((-59 . -862) 90712) ((-1023 . -412) 90694) ((-560 . -625) 90676) ((-811 . -658) 90635) ((-827 . -616) 90612) ((-528 . -862) 90591) ((-508 . -862) 90570) ((-1018 . -1057) 90466) ((-40 . -1241) T) ((-245 . -917) 90335) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90195) ((-354 . -339) 90172) ((-354 . -374) T) ((-332 . -333) 90149) ((-329 . -296) 90107) ((-40 . -568) T) ((-390 . -1222) T) ((-390 . -1225) T) ((-1054 . -1213) 90082) ((-1209 . -240) 90032) ((-1187 . -232) 89984) ((-1187 . -272) 89936) ((-340 . -1119) T) ((-390 . -95) T) ((-390 . -35) T) ((-1054 . -107) 89882) ((-489 . -1068) T) ((-1311 . -1075) 89866) ((-491 . -240) 89816) ((-1179 . -501) 89750) ((-1302 . -1070) 89734) ((-392 . -1075) 89718) ((-1302 . -652) 89688) ((-489 . -248) T) ((-828 . -102) T) ((-726 . -148) 89667) ((-726 . -146) 89646) ((-496 . -501) 89630) ((-497 . -346) 89599) ((-524 . -1119) T) ((-1311 . -111) 89578) ((-1018 . -388) 89562) ((-425 . -102) T) ((-392 . -111) 89541) ((-1018 . -349) 89525) ((-288 . -1002) 89509) ((-287 . -1002) 89493) ((-1023 . -917) NIL) ((-1309 . -625) 89475) ((-1307 . -625) 89457) ((-110 . -526) NIL) ((-1192 . -1263) 89441) ((-866 . -864) 89425) ((-1198 . -1119) T) ((-103 . -1237) T) ((-969 . -966) 89386) ((-829 . -729) 89328) ((-1251 . -1171) NIL) ((-493 . -966) 89273) ((-1081 . -144) T) ((-60 . -102) 89251) ((-44 . -625) 89233) ((-78 . -625) 89215) ((-362 . -660) 89160) ((-1299 . -1119) T) ((-523 . -862) T) ((-299 . -296) 89139) ((-354 . -1131) T) ((-305 . -1119) T) ((-1018 . -915) 89098) ((-305 . -622) 89077) ((-1311 . -628) 89026) ((-1279 . -38) 88923) ((-1272 . -38) 88764) ((-1251 . -38) 88560) ((-499 . -1077) T) ((-392 . -628) 88544) ((-219 . -1077) T) ((-354 . -23) T) ((-153 . -625) 88526) ((-845 . -807) 88505) ((-845 . -804) 88484) ((-1236 . -628) 88465) ((-608 . -38) 88438) ((-607 . -38) 88335) ((-882 . -568) T) ((-225 . -132) T) ((-329 . -1021) 88301) ((-79 . -625) 88283) ((-724 . -317) 88262) ((-304 . -738) 88164) ((-836 . -102) T) ((-876 . -856) T) ((-304 . -485) 88143) ((-1302 . -102) T) ((-40 . -374) T) ((-884 . -148) 88122) ((-497 . -658) 88104) ((-884 . -146) 88083) ((-1178 . -501) 88065) ((-1311 . -1068) T) ((-494 . -526) 87998) ((-1165 . -1237) T) ((-981 . -625) 87980) ((-659 . -501) 87964) ((-644 . -501) 87895) ((-827 . -625) 87588) ((-48 . -27) T) ((-1198 . -729) 87485) ((-969 . -909) 87464) ((-665 . -1119) T) ((-873 . -872) T) ((-448 . -375) 87438) ((-743 . -658) 87348) ((-493 . -909) 87323) ((-1121 . -102) T) ((-989 . -1119) T) ((-876 . -1119) T) ((-828 . -319) 87310) ((-545 . -539) T) ((-545 . -588) T) ((-1307 . -393) 87282) ((-1073 . -526) 87215) ((-1179 . -296) 87191) ((-245 . -232) 87160) ((-245 . -272) 87129) ((-258 . -1070) 87030) ((-257 . -1070) 86931) ((-1299 . -729) 86901) ((-1186 . -93) T) ((-1013 . -93) T) ((-829 . -174) 86880) ((-258 . -652) 86802) ((-257 . -652) 86724) ((-1234 . -502) 86701) ((-229 . -526) 86634) ((-633 . -807) 86613) ((-633 . -804) 86592) ((-1234 . -625) 86504) ((-224 . -1237) T) ((-687 . -625) 86436) ((-1194 . -658) 86346) ((-1176 . -1029) 86330) ((-960 . -102) 86280) ((-362 . -738) T) ((-873 . -625) 86262) ((-1193 . -658) 86144) ((-1187 . -658) 85981) ((-1145 . -658) 85891) ((-1251 . -412) 85843) ((-1132 . -501) 85827) ((-60 . -319) 85765) ((-341 . -102) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-40 . -1131) T) ((-723 . -21) T) ((-639 . -625) 85747) ((-527 . -333) 85726) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-938 . -1131) T) ((-40 . -23) T) ((-783 . -1131) T) ((-576 . -1241) T) ((-507 . -1241) T) ((-1023 . -272) 85708) ((-329 . -625) 85690) ((-1023 . -232) 85672) ((-171 . -167) 85656) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1271 . -148) 85635) ((-1179 . -616) 85611) ((-1271 . -146) 85590) ((-1046 . -501) 85574) ((-1250 . -146) 85499) ((-1250 . -148) 85424) ((-1302 . -1308) 85403) ((-883 . -909) NIL) ((-488 . -501) 85387) ((-475 . -501) 85371) ((-535 . -34) T) ((-665 . -729) 85341) ((-1279 . -917) 85254) ((-1272 . -917) 85160) ((-1251 . -917) 84921) ((-112 . -986) T) ((-1198 . -174) 84872) ((-674 . -862) 84851) ((-376 . -102) T) ((-607 . -917) 84764) ((-245 . -243) 84743) ((-258 . -102) T) ((-257 . -102) T) ((-1260 . -966) 84712) ((-250 . -862) 84691) ((-828 . -38) 84540) ((-45 . -526) 84332) ((-1178 . -296) 84282) ((-216 . -1119) T) ((-1169 . -1119) T) ((-884 . -237) 84233) ((-1169 . -622) 84212) ((-598 . -25) T) ((-598 . -21) T) ((-1121 . -319) 84150) ((-980 . -423) 84134) ((-711 . -1241) T) ((-644 . -296) 84087) ((-1106 . -651) 84035) ((-922 . -1119) T) ((-794 . -651) 83983) ((-792 . -651) 83931) ((-354 . -132) T) ((-299 . -625) 83913) ((-882 . -1131) T) ((-711 . -568) T) ((-130 . -628) 83895) ((-466 . -651) 83843) ((-171 . -909) 83764) ((-922 . -920) 83748) ((-390 . -464) T) ((-499 . -1119) T) ((-960 . -319) 83686) ((-713 . -660) 83658) ((-561 . -856) T) ((-219 . -1119) T) ((-326 . -937) 83637) ((-323 . -937) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-882 . -23) T) ((-117 . -660) 83624) ((-486 . -146) 83603) ((-430 . -423) 83587) ((-486 . -148) 83566) ((-110 . -501) 83548) ((-321 . -628) 83529) ((-2 . -625) 83511) ((-188 . -102) T) ((-1178 . -19) 83493) ((-1178 . -616) 83468) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1163) T) ((-1132 . -296) 83445) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -658) 83224) ((-507 . -374) T) ((-1309 . -1075) 83208) ((-1307 . -1075) 83192) ((-1302 . -38) 83162) ((-1271 . -1222) 83128) ((-1260 . -909) 83031) ((-1192 . -1070) 82854) ((-1161 . -1237) T) ((-1144 . -1070) 82697) ((-866 . -1070) 82681) ((-644 . -616) 82656) ((-1271 . -1225) 82622) ((-1271 . -95) 82588) ((-1271 . -237) 82540) ((-1192 . -652) 82369) ((-1144 . -652) 82218) ((-866 . -652) 82188) ((-1254 . -102) 82166) ((-1251 . -232) 82118) ((-561 . -1119) T) ((-1106 . -25) T) ((-1106 . -21) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1241) T) ((-980 . -1077) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1077) T) ((-727 . -1077) T) ((-682 . -1075) 82102) ((-529 . -1102) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1251 . -272) 82054) ((-1170 . -93) T) ((-1161 . -1057) 81950) ((-829 . -300) 81929) ((-1250 . -1222) 81895) ((-835 . -1119) T) ((-983 . -986) T) ((-682 . -111) 81874) ((-629 . -1237) T) ((-305 . -526) 81666) ((-1250 . -1225) 81632) ((-1250 . -237) 81491) ((-1245 . -379) T) ((-258 . -319) 81429) ((-257 . -319) 81367) ((-1242 . -856) T) ((-1179 . -626) NIL) ((-1179 . -625) 81349) ((-1161 . -388) 81333) ((-1139 . -832) T) ((-1139 . -937) T) ((-96 . -93) T) ((-1132 . -616) 81310) ((-1099 . -626) 81294) ((-1099 . -625) 81276) ((-1023 . -658) 81226) ((-931 . -658) 81163) ((-827 . -298) 81140) ((-496 . -625) 81072) ((-620 . -152) 81019) ((-499 . -729) 80969) ((-430 . -1077) T) ((-494 . -501) 80953) ((-439 . -658) 80912) ((-337 . -862) 80891) ((-350 . -660) 80865) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 80815) ((-171 . -736) 80786) ((-176 . -660) 80718) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 80668) ((-1080 . -625) 80650) ((-1012 . -102) T) ((-874 . -102) T) ((-828 . -917) 80550) ((-811 . -423) 80513) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -910) T) ((-592 . -1131) T) ((-576 . -1131) T) ((-507 . -1131) T) ((-370 . -625) 80495) ((-364 . -625) 80477) ((-356 . -625) 80459) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 80389) ((-108 . -625) 80331) ((-213 . -910) T) ((-975 . -152) 80315) ((-783 . -132) T) ((-682 . -628) 80233) ((-135 . -738) T) ((-117 . -738) T) ((-1271 . -35) 80199) ((-1073 . -501) 80183) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1250 . -95) 80149) ((-1250 . -35) 80115) ((-1192 . -102) T) ((-1144 . -102) T) ((-866 . -102) T) ((-229 . -501) 80099) ((-1309 . -111) 80078) ((-1307 . -111) 80057) ((-44 . -1075) 80041) ((-1309 . -628) 79987) ((-1309 . -1068) T) ((-1260 . -1263) 79971) ((-867 . -864) 79955) ((-1198 . -300) 79934) ((-1123 . -1237) T) ((-110 . -296) 79884) ((-1022 . -1237) T) ((-129 . -152) 79866) ((-1161 . -915) 79825) ((-44 . -111) 79804) ((-1307 . -628) 79733) ((-1242 . -1119) T) ((-1201 . -1282) T) ((-1186 . -502) 79714) ((-682 . -1068) T) ((-1186 . -625) 79680) ((-1178 . -626) NIL) ((-486 . -237) 79632) ((-1082 . -622) 79607) ((-1013 . -502) 79588) ((-74 . -453) T) ((-74 . -407) T) ((-1082 . -1119) T) ((-153 . -1075) 79572) ((-1013 . -625) 79538) ((-682 . -238) 79517) ((-583 . -566) 79501) ((-366 . -148) 79480) ((-366 . -146) 79431) ((-363 . -148) 79410) ((-363 . -146) 79361) ((-355 . -148) 79340) ((-355 . -146) 79291) ((-273 . -146) 79270) ((-273 . -148) 79249) ((-253 . -148) 79228) ((-118 . -374) T) ((-253 . -146) 79207) ((-1178 . -625) 79189) ((-153 . -111) 79168) ((-1022 . -1057) 79056) ((-1187 . -860) NIL) ((-706 . -1241) T) ((-811 . -1077) T) ((-711 . -1131) T) ((-1307 . -1068) T) ((-1176 . -1237) T) ((-1022 . -388) 79033) ((-927 . -146) T) ((-927 . -148) 79015) ((-882 . -132) T) ((-827 . -1075) 78936) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1070) 78901) ((-659 . -625) 78833) ((-659 . -626) 78794) ((-644 . -626) NIL) ((-644 . -625) 78776) ((-499 . -174) T) ((-227 . -652) 78741) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-486 . -1225) 78707) ((-486 . -1222) 78673) ((-283 . -625) 78655) ((-282 . -625) 78637) ((-281 . -625) 78619) ((-280 . -625) 78601) ((-279 . -625) 78583) ((-512 . -663) 78565) ((-278 . -625) 78547) ((-350 . -738) T) ((-277 . -625) 78529) ((-110 . -19) 78511) ((-176 . -738) T) ((-512 . -384) 78493) ((-214 . -625) 78475) ((-532 . -1168) 78459) ((-512 . -124) T) ((-110 . -616) 78434) ((-213 . -625) 78416) ((-486 . -35) 78382) ((-486 . -95) 78348) ((-211 . -625) 78330) ((-210 . -625) 78312) ((-209 . -625) 78294) ((-208 . -625) 78276) ((-205 . -625) 78258) ((-204 . -625) 78240) ((-203 . -625) 78222) ((-202 . -625) 78204) ((-201 . -625) 78186) ((-200 . -625) 78168) ((-199 . -625) 78150) ((-548 . -1122) 78102) ((-198 . -625) 78084) ((-197 . -625) 78066) ((-45 . -501) 78003) ((-196 . -625) 77985) ((-195 . -625) 77967) ((-153 . -628) 77936) ((-1134 . -102) T) ((-827 . -111) 77852) ((-656 . -102) 77802) ((-494 . -296) 77779) ((-1310 . -1057) 77763) ((-1132 . -625) 77456) ((-1120 . -1119) T) ((-1065 . -1237) T) ((-1192 . -319) 77443) ((-1081 . -1070) 77430) ((-1154 . -1119) T) ((-969 . -1070) 77273) ((-1144 . -319) 77260) ((-1115 . -1102) T) ((-635 . -1131) T) ((-1081 . -652) 77247) ((-1109 . -1102) T) ((-969 . -652) 77096) ((-1106 . -234) 77041) ((-493 . -1070) 76884) ((-1092 . -1102) T) ((-1085 . -1102) T) ((-1055 . -1102) T) ((-1038 . -1102) T) ((-118 . -1131) T) ((-493 . -652) 76733) ((-794 . -234) 76720) ((-831 . -102) T) ((-638 . -1102) T) ((-635 . -23) T) ((-1169 . -526) 76512) ((-495 . -1102) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1102) T) ((-980 . -1119) T) ((-153 . -1068) T) ((-743 . -423) 76496) ((-118 . -23) T) ((-1022 . -915) 76448) ((-747 . -1119) T) ((-727 . -1119) T) ((-1279 . -658) 76358) ((-465 . -1119) T) ((-419 . -1237) T) ((-326 . -442) 76342) ((-604 . -93) T) ((-1272 . -658) 76224) ((-1046 . -626) 76185) ((-1043 . -1241) T) ((-227 . -102) T) ((-1046 . -625) 76147) ((-828 . -272) 76131) ((-828 . -232) 76115) ((-827 . -628) 75913) ((-1251 . -658) 75750) ((-1043 . -568) T) ((-845 . -660) 75723) ((-365 . -1241) T) ((-488 . -625) 75685) ((-488 . -626) 75646) ((-475 . -626) 75607) ((-475 . -625) 75569) ((-608 . -658) 75528) ((-419 . -897) 75512) ((-329 . -1075) 75347) ((-419 . -899) 75272) ((-607 . -658) 75182) ((-855 . -1057) 75078) ((-499 . -526) NIL) ((-494 . -616) 75055) ((-593 . -234) 75042) ((-365 . -568) T) ((-530 . -234) 75029) ((-219 . -526) NIL) ((-884 . -464) T) ((-430 . -1119) T) ((-419 . -1057) 74893) ((-329 . -111) 74714) ((-706 . -374) T) ((-227 . -294) T) ((-1234 . -628) 74691) ((-48 . -1241) T) ((-1192 . -1171) 74669) ((-1179 . -298) 74645) ((-1081 . -102) T) ((-969 . -102) T) ((-827 . -1068) 74623) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 74602) ((-363 . -237) 74581) ((-355 . -237) 74560) ((-48 . -568) T) ((-883 . -1070) 74505) ((-273 . -237) 74456) ((-827 . -238) 74408) ((-326 . -27) 74387) ((-258 . -917) 74256) ((-257 . -917) 74125) ((-255 . -847) 74107) ((-189 . -847) 74089) ((-725 . -102) T) ((-305 . -501) 74026) ((-883 . -652) 73971) ((-493 . -102) T) ((-743 . -1077) T) ((-624 . -625) 73953) ((-624 . -626) 73814) ((-419 . -388) 73798) ((-419 . -349) 73782) ((-1192 . -38) 73611) ((-1144 . -38) 73460) ((-329 . -628) 73286) ((-927 . -237) T) ((-647 . -1237) 73260) ((-619 . -1237) 73234) ((-866 . -38) 73204) ((-402 . -660) 73188) ((-656 . -319) 73126) ((-1170 . -502) 73107) ((-1170 . -625) 73073) ((-980 . -729) 72970) ((-747 . -729) 72940) ((-224 . -107) 72924) ((-45 . -296) 72824) ((-633 . -660) 72798) ((-322 . -1119) T) ((-299 . -1075) 72785) ((-110 . -625) 72767) ((-110 . -626) 72749) ((-465 . -729) 72719) ((-828 . -260) 72658) ((-701 . -1119) 72636) ((-562 . -1119) T) ((-1194 . -1077) T) ((-1193 . -1077) T) ((-96 . -502) 72617) ((-1187 . -1077) T) ((-299 . -111) 72602) ((-1145 . -1077) T) ((-562 . -622) 72581) ((-96 . -625) 72547) ((-1023 . -860) T) ((-229 . -699) 72505) ((-706 . -1131) T) ((-1231 . -752) 72481) ((-1043 . -374) T) ((-850 . -847) 72463) ((-845 . -806) 72442) ((-419 . -915) 72401) ((-329 . -1068) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1070) 72311) ((-68 . -1237) T) ((-845 . -803) 72290) ((-430 . -729) 72264) ((-811 . -1119) T) ((-724 . -937) 72243) ((-711 . -132) T) ((-171 . -652) 72071) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72050) ((-329 . -238) 72002) ((-329 . -248) 71981) ((-219 . -300) T) ((-130 . -379) T) ((-1271 . -464) 71960) ((-1250 . -464) 71939) ((-365 . -339) 71916) ((-365 . -374) T) ((-1159 . -625) 71898) ((-45 . -1275) 71848) ((-883 . -102) T) ((-656 . -292) 71832) ((-711 . -1079) T) ((-1298 . -102) T) ((-1297 . -102) T) ((-489 . -660) 71797) ((-480 . -1119) T) ((-45 . -616) 71722) ((-1178 . -298) 71697) ((-299 . -628) 71669) ((-40 . -651) 71608) ((-1260 . -1070) 71431) ((-867 . -1070) 71415) ((-48 . -374) T) ((-1125 . -625) 71397) ((-1260 . -652) 71226) ((-867 . -652) 71196) ((-644 . -298) 71171) ((-828 . -658) 71081) ((-583 . -1070) 71068) ((-494 . -625) 70761) ((-245 . -423) 70730) ((-969 . -319) 70717) ((-583 . -652) 70704) ((-65 . -1237) T) ((-1192 . -917) 70611) ((-1185 . -1119) T) ((-1082 . -526) 70455) ((-683 . -1119) T) ((-635 . -132) T) ((-493 . -319) 70442) ((-618 . -1119) T) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1068) T) ((-182 . -1119) T) ((-162 . -1119) T) ((-157 . -1119) T) ((-155 . -1119) T) ((-465 . -773) T) ((-31 . -1102) T) ((-980 . -174) 70393) ((-1144 . -917) 70377) ((-989 . -93) T) ((-1132 . -298) 70354) ((-1099 . -1075) 70264) ((-633 . -806) 70243) ((-605 . -1119) T) ((-633 . -803) 70222) ((-633 . -738) T) ((-305 . -296) 70201) ((-304 . -1237) T) ((-1073 . -625) 70163) ((-1073 . -626) 70124) ((-1043 . -1131) T) ((-171 . -102) T) ((-284 . -862) T) ((-1121 . -231) 70108) ((-830 . -625) 70090) ((-1099 . -111) 69986) ((-1043 . -23) T) ((-1022 . -317) T) ((-811 . -729) 69970) ((-370 . -1075) 69922) ((-365 . -1131) T) ((-364 . -1075) 69874) ((-426 . -625) 69856) ((-396 . -625) 69838) ((-356 . -1075) 69790) ((-229 . -625) 69722) ((-913 . -102) T) ((-853 . -102) T) ((-108 . -1075) 69672) ((-820 . -102) T) ((-781 . -102) T) ((-689 . -102) T) ((-486 . -464) 69651) ((-430 . -174) T) ((-370 . -111) 69589) ((-364 . -111) 69527) ((-356 . -111) 69465) ((-258 . -272) 69434) ((-258 . -232) 69403) ((-257 . -272) 69372) ((-257 . -232) 69341) ((-365 . -23) T) ((-71 . -1237) T) ((-227 . -38) 69306) ((-108 . -111) 69240) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69218) ((-48 . -1131) T) ((-938 . -25) T) ((-783 . -25) T) ((-1311 . -660) 69192) ((-1169 . -501) 69129) ((-497 . -1119) T) ((-1302 . -658) 69088) ((-1260 . -102) T) ((-1081 . -1171) T) ((-867 . -102) T) ((-245 . -1077) 69066) ((-981 . -804) 69019) ((-981 . -807) 68972) ((-392 . -660) 68956) ((-48 . -23) T) ((-827 . -807) 68935) ((-827 . -804) 68914) ((-560 . -379) T) ((-305 . -616) 68893) ((-489 . -738) T) ((-583 . -102) T) ((-1099 . -628) 68711) ((-255 . -187) T) ((-189 . -187) T) ((-883 . -319) 68668) ((-665 . -296) 68647) ((-112 . -673) T) ((-362 . -1237) T) ((-370 . -628) 68584) ((-364 . -628) 68521) ((-356 . -628) 68458) ((-76 . -1237) T) ((-108 . -628) 68408) ((-112 . -113) T) ((-1081 . -38) 68395) ((-676 . -385) 68374) ((-969 . -38) 68223) ((-743 . -1119) T) ((-493 . -38) 68072) ((-86 . -1237) T) ((-604 . -502) 68053) ((-1251 . -860) NIL) ((-583 . -294) T) ((-1194 . -1119) T) ((-604 . -625) 68019) ((-1193 . -1119) T) ((-1187 . -1119) T) ((-1099 . -1068) T) ((-362 . -1057) 67996) ((-829 . -502) 67980) ((-1023 . -1077) T) ((-45 . -625) 67962) ((-45 . -626) NIL) ((-931 . -1077) T) ((-829 . -625) 67931) ((-1166 . -102) 67909) ((-1099 . -248) 67860) ((-439 . -1077) T) ((-370 . -1068) T) ((-364 . -1068) T) ((-376 . -375) 67837) ((-356 . -1068) T) ((-354 . -234) 67824) ((-258 . -243) 67803) ((-257 . -243) 67782) ((-1099 . -238) 67707) ((-1145 . -1119) T) ((-304 . -915) 67666) ((-108 . -1068) T) ((-706 . -132) T) ((-430 . -526) 67508) ((-370 . -238) 67487) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 67466) ((-364 . -248) T) ((-356 . -238) 67445) ((-356 . -248) T) ((-1186 . -628) 67426) ((-171 . -319) 67391) ((-108 . -248) T) ((-108 . -238) T) ((-1013 . -628) 67372) ((-329 . -804) T) ((-882 . -21) T) ((-882 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67347) ((-1132 . -1075) 67268) ((-883 . -1171) NIL) ((-340 . -625) 67250) ((-419 . -1041) 67228) ((-1132 . -111) 67144) ((-703 . -1282) T) ((-448 . -1119) T) ((-256 . -1119) T) ((-1311 . -738) T) ((-63 . -625) 67126) ((-883 . -38) 67071) ((-535 . -1237) T) ((-614 . -152) 67055) ((-524 . -625) 67037) ((-1260 . -319) 67024) ((-743 . -729) 66873) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 66855) ((-507 . -651) 66815) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 66766) ((-537 . -1119) T) ((-532 . -1119) 66716) ((-253 . -464) 66667) ((-1169 . -296) 66646) ((-1198 . -625) 66628) ((-701 . -526) 66561) ((-980 . -300) 66540) ((-562 . -526) 66332) ((-258 . -658) 66180) ((-257 . -658) 66015) ((-1299 . -625) 65984) ((-1299 . -502) 65968) ((-1194 . -729) 65865) ((-1192 . -272) 65849) ((-1192 . -232) 65833) ((-1132 . -628) 65631) ((-171 . -1171) 65610) ((-1193 . -729) 65451) ((-1187 . -729) 65247) ((-983 . -113) T) ((-905 . -102) T) ((-1176 . -686) 65231) ((-1145 . -729) 65128) ((-1043 . -132) T) ((-366 . -414) 65079) ((-363 . -414) 65030) ((-355 . -414) 64981) ((-981 . -379) 64934) ((-811 . -526) 64846) ((-305 . -626) NIL) ((-305 . -625) 64828) ((-927 . -464) T) ((-922 . -296) 64807) ((-827 . -379) 64786) ((-522 . -521) 64765) ((-520 . -521) 64744) ((-884 . -909) 64665) ((-499 . -296) NIL) ((-494 . -298) 64642) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1131) T) ((-40 . -234) 64573) ((-171 . -38) 64401) ((-969 . -917) 64382) ((-1271 . -992) 64344) ((-1166 . -319) 64282) ((-493 . -917) 64259) ((-1250 . -992) 64228) ((-927 . -414) T) ((-1132 . -1068) 64206) ((-1273 . -568) T) ((-1169 . -616) 64185) ((-112 . -862) T) ((-1082 . -501) 64116) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1260 . -1171) 64094) ((-1132 . -238) 64046) ((-48 . -132) T) ((-1218 . -102) T) ((-245 . -1119) 63798) ((-883 . -412) 63775) ((-1107 . -102) T) ((-1095 . -102) T) ((-620 . -102) T) ((-487 . -102) T) ((-1260 . -38) 63604) ((-867 . -38) 63574) ((-1053 . -1070) 63548) ((-743 . -174) 63459) ((-665 . -625) 63441) ((-657 . -1102) T) ((-1053 . -652) 63425) ((-583 . -38) 63412) ((-989 . -502) 63393) ((-989 . -625) 63359) ((-975 . -102) 63309) ((-876 . -625) 63291) ((-876 . -626) 63213) ((-605 . -526) NIL) ((-1316 . -1131) T) ((-1279 . -1077) T) ((-1272 . -1077) T) ((-1271 . -909) 63117) ((-332 . -1070) 63099) ((-1251 . -1077) T) ((-1250 . -909) 62894) ((-1231 . -148) 62873) ((-1231 . -146) 62852) ((-1204 . -102) T) ((-332 . -652) 62834) ((-713 . -1237) T) ((-1203 . -102) T) ((-1202 . -102) T) ((-1194 . -174) 62785) ((-1193 . -174) 62716) ((-608 . -1077) T) ((-607 . -1077) T) ((-1187 . -174) 62647) ((-1170 . -628) 62628) ((-390 . -1070) 62593) ((-1145 . -174) 62544) ((-1023 . -1119) T) ((-990 . -1119) T) ((-931 . -1119) T) ((-883 . -917) NIL) ((-390 . -652) 62509) ((-811 . -809) 62493) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 62470) ((-713 . -899) 62452) ((-439 . -1119) T) ((-326 . -1241) 62431) ((-323 . -1241) T) ((-171 . -412) 62415) ((-848 . -1070) 62385) ((-486 . -992) 62347) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -625) 62329) ((-839 . -1070) 62313) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1057) 62295) ((-326 . -568) 62274) ((-323 . -568) T) ((-848 . -652) 62244) ((-839 . -652) 62214) ((-1316 . -23) T) ((-135 . -1057) 62196) ((-96 . -628) 62177) ((-1012 . -658) 62159) ((-494 . -1075) 62080) ((-45 . -298) 62005) ((-245 . -729) 61947) ((-529 . -102) T) ((-494 . -111) 61863) ((-1111 . -102) 61833) ((-1053 . -102) T) ((-1192 . -658) 61743) ((-1144 . -658) 61653) ((-866 . -658) 61612) ((-656 . -840) 61591) ((-743 . -526) 61534) ((-1073 . -1075) 61518) ((-171 . -917) 61441) ((-1154 . -93) T) ((-1082 . -296) 61416) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1119) T) ((-682 . -660) 61354) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1075) 61338) ((-1073 . -111) 61317) ((-828 . -423) 61301) ((-118 . -25) T) ((-89 . -625) 61283) ((-118 . -21) T) ((-620 . -319) 61078) ((-487 . -319) 60882) ((-1169 . -626) NIL) ((-350 . -1237) T) ((-396 . -111) 60861) ((-390 . -102) T) ((-216 . -625) 60843) ((-1169 . -625) 60825) ((-1187 . -526) 60594) ((-1023 . -729) 60544) ((-1145 . -526) 60514) ((-931 . -729) 60466) ((-494 . -628) 60264) ((-362 . -317) T) ((-1209 . -152) 60214) ((-486 . -909) 60095) ((-975 . -319) 60033) ((-848 . -102) T) ((-439 . -729) 60017) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1309 . -660) 59991) ((-1271 . -1270) 59970) ((-491 . -152) 59920) ((-1271 . -1265) 59890) ((-1139 . -1241) T) ((-350 . -1057) 59857) ((-1271 . -1268) 59841) ((-1260 . -917) 59748) ((-1250 . -1249) 59727) ((-80 . -625) 59709) ((-922 . -625) 59691) ((-1250 . -1265) 59668) ((-1139 . -568) T) ((-938 . -862) T) ((-783 . -862) T) ((-684 . -862) T) ((-499 . -626) 59598) ((-499 . -625) 59539) ((-390 . -294) T) ((-1250 . -1247) 59523) ((-1273 . -1131) T) ((-219 . -626) 59453) ((-219 . -625) 59394) ((-1082 . -616) 59369) ((-830 . -628) 59353) ((-576 . -234) 59340) ((-528 . -152) 59324) ((-59 . -152) 59308) ((-508 . -152) 59292) ((-507 . -234) 59279) ((-370 . -1306) 59263) ((-364 . -1306) 59247) ((-356 . -1306) 59231) ((-326 . -374) 59210) ((-323 . -374) T) ((-494 . -1068) 59188) ((-706 . -651) 59170) ((-1307 . -660) 59144) ((-129 . -319) NIL) ((-1273 . -23) T) ((-701 . -501) 59128) ((-64 . -625) 59110) ((-1132 . -807) 59089) ((-1132 . -804) 59068) ((-562 . -501) 59005) ((-682 . -34) T) ((-494 . -238) 58957) ((-305 . -298) 58936) ((-828 . -1077) T) ((-44 . -660) 58894) ((-1099 . -379) 58845) ((-743 . -300) 58776) ((-532 . -526) 58709) ((-829 . -1075) 58660) ((-1106 . -146) 58639) ((-561 . -625) 58621) ((-370 . -379) 58600) ((-364 . -379) 58579) ((-356 . -379) 58558) ((-1106 . -148) 58537) ((-985 . -1237) T) ((-883 . -272) 58514) ((-883 . -232) 58491) ((-829 . -111) 58433) ((-794 . -146) 58412) ((-273 . -966) 58379) ((-253 . -966) 58324) ((-794 . -148) 58303) ((-792 . -146) 58282) ((-792 . -148) 58261) ((-153 . -660) 58235) ((-591 . -1119) T) ((-465 . -296) 58198) ((-466 . -148) 58177) ((-466 . -146) 58156) ((-682 . -738) T) ((-835 . -625) 58138) ((-1279 . -1119) T) ((-1272 . -1119) T) ((-1251 . -1119) T) ((-1231 . -1225) 58104) ((-1231 . -1222) 58070) ((-1194 . -300) 58049) ((-1193 . -300) 58000) ((-1187 . -300) 57951) ((-1145 . -300) 57930) ((-350 . -915) 57911) ((-1023 . -174) T) ((-931 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 57861) ((-608 . -1119) T) ((-607 . -1119) T) ((-486 . -1268) 57845) ((-486 . -1265) 57815) ((-430 . -296) 57743) ((-559 . -862) T) ((-326 . -1131) 57592) ((-323 . -1131) T) ((-1231 . -35) 57558) ((-1231 . -95) 57524) ((-84 . -625) 57506) ((-91 . -102) 57484) ((-1316 . -132) T) ((-726 . -1070) 57454) ((-604 . -628) 57435) ((-593 . -146) T) ((-593 . -148) 57417) ((-530 . -148) 57399) ((-530 . -146) T) ((-726 . -652) 57369) ((-326 . -23) 57221) ((-40 . -353) 57195) ((-323 . -23) T) ((-829 . -628) 57109) ((-1178 . -663) 57091) ((-1302 . -1077) T) ((-1178 . -384) 57073) ((-1115 . -102) T) ((-827 . -660) 56906) ((-1109 . -102) T) ((-1092 . -102) T) ((-171 . -272) 56890) ((-171 . -232) 56874) ((-1085 . -102) T) ((-1055 . -102) T) ((-1038 . -102) T) ((-605 . -501) 56856) ((-638 . -102) T) ((-245 . -526) 56789) ((-495 . -102) T) ((-1309 . -738) T) ((-1307 . -738) T) ((-220 . -102) T) ((-1198 . -1075) 56672) ((-1081 . -658) 56644) ((-969 . -658) 56554) ((-1198 . -111) 56423) ((-888 . -1102) T) ((-873 . -175) T) ((-493 . -658) 56333) ((-273 . -909) 56239) ((-253 . -909) 56214) ((-829 . -1068) T) ((-693 . -1102) T) ((-688 . -1102) T) ((-635 . -234) 56159) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56119) ((-520 . -102) T) ((-490 . -1102) T) ((-1299 . -1075) 56089) ((-118 . -234) NIL) ((-139 . -1102) T) ((-138 . -1102) T) ((-134 . -1102) T) ((-1053 . -38) 56073) ((-829 . -238) T) ((-829 . -248) 56052) ((-1299 . -111) 56017) ((-1279 . -729) 55914) ((-1272 . -729) 55755) ((-1260 . -272) 55739) ((-562 . -296) 55718) ((-1260 . -232) 55702) ((-1242 . -625) 55684) ((-618 . -93) T) ((-1082 . -626) NIL) ((-1082 . -625) 55666) ((-683 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1251 . -729) 55462) ((-1022 . -937) T) ((-153 . -738) T) ((-1198 . -628) 55315) ((-1132 . -379) 55294) ((-1043 . -25) T) ((-1023 . -526) NIL) ((-258 . -423) 55263) ((-257 . -423) 55232) ((-1043 . -21) T) ((-884 . -1070) 55184) ((-608 . -729) 55157) ((-607 . -729) 55054) ((-811 . -296) 55012) ((-127 . -102) 54990) ((-845 . -1057) 54886) ((-171 . -840) 54865) ((-329 . -660) 54762) ((-827 . -34) T) ((-726 . -102) T) ((-1139 . -1131) T) ((-1045 . -1237) T) ((-884 . -652) 54714) ((-390 . -38) 54679) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1294) 54663) ((-363 . -1294) 54647) ((-355 . -1294) 54631) ((-171 . -360) 54610) ((-576 . -862) T) ((-1106 . -237) 54561) ((-1139 . -23) T) ((-87 . -625) 54543) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 54513) ((-839 . -38) 54483) ((-1299 . -628) 54425) ((-1273 . -132) T) ((-1169 . -298) 54404) ((-981 . -738) 54303) ((-981 . -805) 54256) ((-981 . -806) 54209) ((-117 . -317) T) ((-91 . -319) 54147) ((-687 . -34) T) ((-562 . -616) 54126) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54105) ((-827 . -805) 54084) ((-713 . -1041) T) ((-665 . -1075) 54068) ((-883 . -658) 53998) ((-827 . -738) 53976) ((-981 . -485) 53929) ((-494 . -807) 53908) ((-494 . -804) 53887) ((-927 . -1294) 53874) ((-1198 . -1068) T) ((-665 . -111) 53853) ((-1198 . -336) 53830) ((-1223 . -102) 53808) ((-1120 . -625) 53790) ((-713 . -557) T) ((-828 . -1119) T) ((-593 . -237) T) ((-530 . -237) T) ((-1299 . -1068) T) ((-1154 . -502) 53771) ((-1243 . -102) T) ((-425 . -1119) T) ((-1154 . -625) 53737) ((-258 . -1077) 53715) ((-257 . -1077) 53693) ((-850 . -102) T) ((-299 . -660) 53680) ((-605 . -296) 53630) ((-701 . -699) 53588) ((-980 . -625) 53570) ((-884 . -102) T) ((-747 . -625) 53552) ((-727 . -625) 53534) ((-1279 . -174) 53485) ((-1272 . -174) 53416) ((-1251 . -174) 53347) ((-711 . -862) T) ((-1023 . -300) T) ((-465 . -625) 53329) ((-639 . -738) T) ((-60 . -1119) 53307) ((-250 . -152) 53291) ((-931 . -300) T) ((-1043 . -1031) T) ((-639 . -485) T) ((-724 . -1241) 53270) ((-706 . -234) NIL) ((-665 . -628) 53188) ((-171 . -658) 53083) ((-1287 . -862) 53062) ((-608 . -174) 53041) ((-607 . -174) 52992) ((-1271 . -652) 52833) ((-1271 . -1070) 52668) ((-1250 . -652) 52482) ((-1250 . -1070) 52290) ((-724 . -568) 52201) ((-419 . -937) T) ((-419 . -832) 52180) ((-329 . -806) T) ((-989 . -628) 52161) ((-329 . -738) T) ((-656 . -1168) 52145) ((-430 . -625) 52127) ((-430 . -626) 52034) ((-110 . -663) 52016) ((-176 . -317) T) ((-127 . -319) 51954) ((-110 . -384) 51936) ((-410 . -1237) T) ((-326 . -132) 51807) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 51791) ((-666 . -1131) T) ((-605 . -19) 51773) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1119) T) ((-605 . -616) 51748) ((-489 . -1057) 51708) ((-665 . -1068) T) ((-666 . -23) T) ((-1302 . -1119) T) ((-31 . -102) T) ((-1260 . -658) 51618) ((-867 . -658) 51577) ((-828 . -729) 51426) ((-589 . -872) T) ((-583 . -658) 51398) ((-118 . -862) NIL) ((-1192 . -423) 51382) ((-1144 . -423) 51366) ((-866 . -423) 51350) ((-885 . -102) 51301) ((-1271 . -102) T) ((-1251 . -526) 51070) ((-1250 . -102) T) ((-1223 . -319) 51008) ((-1194 . -296) 50973) ((-1193 . -296) 50931) ((-537 . -93) T) ((-1187 . -296) 50759) ((-322 . -625) 50741) ((-1121 . -1119) T) ((-1099 . -660) 50615) ((-723 . -464) T) ((-701 . -625) 50547) ((-299 . -738) T) ((-108 . -926) NIL) ((-701 . -626) 50508) ((-613 . -625) 50490) ((-589 . -625) 50472) ((-562 . -626) NIL) ((-562 . -625) 50454) ((-541 . -625) 50436) ((-523 . -521) 50415) ((-499 . -1075) 50365) ((-486 . -1070) 50200) ((-519 . -521) 50179) ((-486 . -652) 50020) ((-219 . -1075) 49970) ((-370 . -660) 49922) ((-364 . -660) 49874) ((-227 . -860) T) ((-356 . -660) 49826) ((-614 . -102) 49776) ((-499 . -111) 49710) ((-494 . -379) 49689) ((-108 . -660) 49639) ((-365 . -234) 49626) ((-245 . -501) 49610) ((-354 . -148) 49592) ((-354 . -146) T) ((-171 . -381) 49563) ((-960 . -1285) 49547) ((-219 . -111) 49481) ((-884 . -319) 49446) ((-960 . -1119) 49396) ((-811 . -626) 49357) ((-811 . -625) 49339) ((-730 . -102) T) ((-341 . -1119) T) ((-216 . -628) 49316) ((-1139 . -132) T) ((-726 . -38) 49286) ((-326 . -505) 49265) ((-512 . -1237) T) ((-1271 . -294) 49231) ((-1250 . -294) 49197) ((-337 . -152) 49181) ((-451 . -1119) T) ((-1082 . -298) 49156) ((-1302 . -729) 49126) ((-48 . -234) 49113) ((-1179 . -34) T) ((-1311 . -1057) 49090) ((-496 . -34) T) ((-480 . -625) 49072) ((-256 . -296) 49046) ((-392 . -1057) 49030) ((-1192 . -1077) T) ((-1144 . -1077) T) ((-866 . -1077) T) ((-1081 . -860) T) ((-499 . -628) 48980) ((-219 . -628) 48930) ((-828 . -174) 48841) ((-532 . -296) 48793) ((-1279 . -300) 48772) ((-1218 . -375) 48746) ((-1107 . -275) 48730) ((-683 . -502) 48711) ((-683 . -625) 48677) ((-618 . -502) 48658) ((-118 . -1011) 48635) ((-618 . -625) 48585) ((-486 . -102) T) ((-182 . -502) 48566) ((-182 . -625) 48532) ((-162 . -502) 48513) ((-162 . -625) 48479) ((-157 . -502) 48460) ((-155 . -502) 48441) ((-157 . -625) 48407) ((-376 . -1119) T) ((-258 . -1119) T) ((-257 . -1119) T) ((-155 . -625) 48373) ((-1272 . -300) 48324) ((-1251 . -300) 48275) ((-884 . -1171) 48253) ((-1194 . -1021) 48219) ((-620 . -375) 48159) ((-1193 . -1021) 48125) ((-620 . -231) 48072) ((-706 . -862) T) ((-605 . -625) 48054) ((-605 . -626) NIL) ((-487 . -231) 48004) ((-499 . -1068) T) ((-1187 . -1021) 47970) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1068) T) ((-1145 . -1021) 47936) ((-1099 . -738) T) ((-724 . -1131) T) ((-608 . -300) 47915) ((-607 . -300) 47894) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1185 . -625) 47876) ((-884 . -38) 47828) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1275) 47812) ((-1316 . -25) T) ((-486 . -294) 47778) ((-1316 . -21) T) ((-1250 . -319) 47717) ((-1196 . -102) T) ((-40 . -146) 47689) ((-40 . -148) 47661) ((-532 . -616) 47638) ((-1132 . -660) 47471) ((-614 . -319) 47409) ((-45 . -663) 47359) ((-45 . -678) 47309) ((-45 . -384) 47259) ((-1178 . -34) T) ((-883 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47241) ((-245 . -296) 47218) ((-188 . -1119) T) ((-1106 . -464) 47169) ((-828 . -526) 47043) ((-794 . -464) 46974) ((-676 . -1070) 46958) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 46942) ((-366 . -1070) 46894) ((-354 . -237) T) ((-363 . -1070) 46846) ((-355 . -1070) 46798) ((-273 . -1070) 46641) ((-253 . -1070) 46484) ((-792 . -464) 46435) ((-366 . -652) 46387) ((-363 . -652) 46339) ((-355 . -652) 46291) ((-273 . -652) 46140) ((-253 . -652) 45989) ((-466 . -464) 45940) ((-969 . -423) 45924) ((-743 . -625) 45906) ((-258 . -729) 45848) ((-257 . -729) 45790) ((-743 . -626) 45651) ((-493 . -423) 45635) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -937) T) ((-1019 . -102) 45613) ((-927 . -1070) 45578) ((-1043 . -862) T) ((-60 . -526) 45511) ((-927 . -652) 45476) ((-1250 . -1171) 45428) ((-1023 . -296) NIL) ((-227 . -1077) T) ((-390 . -840) T) ((-1132 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1254 . -1112) 45412) ((-1254 . -1119) 45390) ((-245 . -616) 45367) ((-1254 . -1114) 45324) ((-1194 . -625) 45306) ((-1193 . -625) 45288) ((-1187 . -625) 45270) ((-1187 . -626) NIL) ((-1145 . -625) 45252) ((-884 . -412) 45236) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1271 . -38) 45077) ((-1250 . -38) 44891) ((-882 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1283 . -102) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-1132 . -806) 44870) ((-1132 . -805) 44849) ((-1012 . -1119) T) ((-1046 . -34) T) ((-874 . -1119) T) ((-1132 . -738) 44827) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 44806) ((-1209 . -102) T) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1081 . -1077) T) ((-969 . -1077) T) ((-326 . -651) 44712) ((-323 . -651) 44673) ((-1192 . -1119) T) ((-493 . -1077) T) ((-491 . -102) T) ((-448 . -625) 44655) ((-1144 . -1119) T) ((-256 . -625) 44637) ((-866 . -1119) T) ((-1160 . -102) T) ((-828 . -300) 44568) ((-980 . -1075) 44451) ((-489 . -1041) T) ((-884 . -917) 44374) ((-747 . -1075) 44344) ((-1053 . -658) 44303) ((-1166 . -1140) 44287) ((-465 . -1075) 44257) ((-1121 . -526) 44190) ((-980 . -111) 44059) ((-927 . -102) T) ((-40 . -237) 43996) ((-747 . -111) 43961) ((-537 . -502) 43942) ((-537 . -625) 43908) ((-59 . -102) 43858) ((-532 . -626) 43819) ((-532 . -625) 43731) ((-531 . -102) 43709) ((-528 . -102) 43659) ((-509 . -102) 43637) ((-508 . -102) 43587) ((-465 . -111) 43550) ((-332 . -658) 43532) ((-430 . -1075) 43506) ((-1231 . -992) 43468) ((-1018 . -1131) T) ((-390 . -658) 43418) ((-1154 . -628) 43399) ((-960 . -526) 43332) ((-499 . -807) T) ((-486 . -38) 43173) ((-430 . -111) 43140) ((-499 . -804) T) ((-1019 . -319) 43078) ((-219 . -807) T) ((-219 . -804) T) ((-1018 . -23) T) ((-724 . -132) T) ((-1250 . -412) 43048) ((-848 . -658) 42993) ((-839 . -658) 42952) ((-326 . -25) 42804) ((-171 . -423) 42788) ((-326 . -21) 42659) ((-323 . -25) T) ((-323 . -21) T) ((-876 . -379) T) ((-980 . -628) 42512) ((-110 . -34) T) ((-747 . -628) 42468) ((-727 . -628) 42450) ((-494 . -660) 42283) ((-883 . -1077) T) ((-605 . -298) 42258) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1192 . -729) 42087) ((-1076 . -102) 42065) ((-1144 . -729) 41914) ((-1139 . -651) 41896) ((-866 . -729) 41866) ((-682 . -1237) T) ((-1 . -102) T) ((-430 . -628) 41774) ((-245 . -625) 41467) ((-1134 . -1119) T) ((-1260 . -423) 41451) ((-1209 . -319) 41255) ((-980 . -1068) T) ((-747 . -1068) T) ((-727 . -1068) T) ((-656 . -1119) 41205) ((-1073 . -660) 41189) ((-867 . -423) 41173) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41160) ((-253 . -319) 41147) ((-1271 . -917) 41053) ((-980 . -336) 41032) ((-1250 . -917) 40829) ((-396 . -660) 40813) ((-682 . -1057) 40709) ((-491 . -319) 40513) ((-258 . -526) 40446) ((-257 . -526) 40379) ((-1160 . -319) 40305) ((-1231 . -909) 40284) ((-831 . -1119) T) ((-811 . -1075) 40268) ((-1279 . -296) 40233) ((-1272 . -296) 40191) ((-1251 . -296) 40019) ((-398 . -1119) T) ((-334 . -1119) T) ((-430 . -1068) T) ((-171 . -1077) T) ((-59 . -319) 39957) ((-811 . -111) 39936) ((-607 . -296) 39901) ((-531 . -319) 39839) ((-528 . -319) 39777) ((-509 . -319) 39715) ((-508 . -319) 39653) ((-430 . -238) 39632) ((-494 . -34) T) ((-227 . -1119) T) ((-1023 . -626) 39562) ((-1023 . -625) 39522) ((-990 . -625) 39482) ((-931 . -625) 39464) ((-711 . -148) T) ((-713 . -937) T) ((-713 . -832) T) ((-439 . -625) 39446) ((-1139 . -21) T) ((-1139 . -25) T) ((-682 . -388) 39430) ((-117 . -937) T) ((-884 . -272) 39414) ((-884 . -232) 39398) ((-44 . -1237) T) ((-78 . -1237) T) ((-127 . -126) 39382) ((-1073 . -34) T) ((-1309 . -1057) 39356) ((-1307 . -1057) 39313) ((-1260 . -1077) T) ((-867 . -1077) T) ((-366 . -1171) 39292) ((-363 . -1171) 39271) ((-355 . -1171) 39250) ((-494 . -806) 39229) ((-494 . -805) 39208) ((-229 . -34) T) ((-494 . -738) 39186) ((-811 . -628) 39032) ((-674 . -1070) 39016) ((-60 . -501) 39000) ((-583 . -1077) T) ((-1192 . -174) 38891) ((-674 . -652) 38875) ((-486 . -917) 38781) ((-1144 . -174) 38692) ((-1081 . -1119) T) ((-1106 . -966) 38637) ((-969 . -1119) T) ((-829 . -660) 38588) ((-794 . -966) 38557) ((-725 . -1119) T) ((-792 . -966) 38524) ((-528 . -292) 38508) ((-682 . -915) 38467) ((-493 . -1119) T) ((-466 . -966) 38434) ((-79 . -1237) T) ((-366 . -38) 38399) ((-363 . -38) 38364) ((-355 . -38) 38329) ((-273 . -38) 38178) ((-253 . -38) 38027) ((-927 . -1171) T) ((-536 . -502) 38008) ((-635 . -148) 37987) ((-635 . -146) 37966) ((-536 . -625) 37932) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1068) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1279 . -1021) 37898) ((-1272 . -1021) 37864) ((-1251 . -1021) 37830) ((-927 . -38) 37795) ((-227 . -729) 37760) ((-329 . -47) 37730) ((-40 . -421) 37702) ((-141 . -625) 37684) ((-1018 . -132) T) ((-827 . -1237) T) ((-176 . -937) T) ((-561 . -379) T) ((-726 . -658) 37629) ((-618 . -628) 37610) ((-354 . -414) T) ((-683 . -628) 37591) ((-323 . -234) NIL) ((-182 . -628) 37572) ((-162 . -628) 37553) ((-157 . -628) 37534) ((-155 . -628) 37515) ((-532 . -298) 37492) ((-1250 . -232) 37462) ((-1250 . -272) 37432) ((-1198 . -660) 37357) ((-888 . -102) T) ((-827 . -1057) 37184) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1121 . -501) 37168) ((-687 . -1237) T) ((-490 . -102) T) ((-250 . -102) 37118) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1106 . -909) 37013) ((-883 . -1119) T) ((-1192 . -526) 36960) ((-1081 . -729) 36947) ((-794 . -909) 36850) ((-743 . -1075) 36693) ((-792 . -909) 36675) ((-969 . -729) 36524) ((-1144 . -526) 36476) ((-1298 . -1119) T) ((-1297 . -1119) T) ((-466 . -909) 36451) ((-493 . -729) 36300) ((-67 . -625) 36282) ((-743 . -111) 36111) ((-960 . -501) 36095) ((-1299 . -660) 36055) ((-1194 . -1075) 35938) ((-829 . -738) T) ((-1193 . -1075) 35773) ((-1187 . -1075) 35563) ((-329 . -1237) T) ((-1145 . -1075) 35446) ((-1022 . -1241) T) ((-1113 . -102) 35424) ((-827 . -388) 35393) ((-591 . -625) 35375) ((-558 . -1119) T) ((-1022 . -568) T) ((-1194 . -111) 35244) ((-1193 . -111) 35065) ((-1187 . -111) 34834) ((-1145 . -111) 34703) ((-1124 . -1122) 34667) ((-390 . -860) T) ((-1279 . -625) 34649) ((-1272 . -625) 34631) ((-884 . -658) 34568) ((-1251 . -625) 34550) ((-1251 . -626) NIL) ((-245 . -298) 34527) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1119) T) ((-743 . -628) 34312) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34294) ((-607 . -625) 34276) ((-1139 . -234) 34263) ((-913 . -1119) T) ((-853 . -1119) T) ((-820 . -1119) T) ((-273 . -917) 34173) ((-253 . -917) 34150) ((-781 . -1119) T) ((-689 . -1119) T) ((-670 . -864) 34134) ((-635 . -237) 34085) ((-827 . -915) 34017) ((-1242 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1194 . -628) 33899) ((-1139 . -673) T) ((-883 . -729) 33844) ((-258 . -501) 33828) ((-257 . -501) 33812) ((-1193 . -628) 33555) ((-1187 . -628) 33350) ((-724 . -651) 33298) ((-665 . -660) 33272) ((-1145 . -628) 33154) ((-305 . -34) T) ((-1139 . -113) T) ((-743 . -1068) T) ((-593 . -1294) 33141) ((-530 . -1294) 33118) ((-1260 . -1119) T) ((-1192 . -300) 33029) ((-1144 . -300) 32960) ((-1081 . -174) T) ((-299 . -1237) T) ((-867 . -1119) T) ((-969 . -174) 32871) ((-794 . -1263) 32855) ((-656 . -526) 32788) ((-77 . -625) 32770) ((-743 . -336) 32735) ((-1198 . -738) T) ((-583 . -1119) T) ((-493 . -174) 32646) ((-250 . -319) 32584) ((-1161 . -1131) T) ((-70 . -625) 32566) ((-1299 . -738) T) ((-1194 . -1068) T) ((-1193 . -1068) T) ((-337 . -102) 32516) ((-1187 . -1068) T) ((-1161 . -23) T) ((-1145 . -1068) T) ((-91 . -1140) 32500) ((-878 . -1131) T) ((-1194 . -238) 32459) ((-1193 . -248) 32438) ((-1193 . -238) 32390) ((-1187 . -238) 32277) ((-1187 . -248) 32256) ((-329 . -915) 32162) ((-878 . -23) T) ((-171 . -729) 31990) ((-419 . -1241) T) ((-1120 . -379) T) ((-1022 . -374) T) ((-882 . -464) T) ((-1043 . -148) T) ((-960 . -296) 31942) ((-323 . -862) NIL) ((-1271 . -658) 31824) ((-886 . -102) T) ((-1250 . -658) 31679) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31660) ((-365 . -148) 31642) ((-365 . -146) T) ((-1166 . -1119) 31620) ((-465 . -732) T) ((-75 . -625) 31602) ((-115 . -862) T) ((-250 . -292) 31586) ((-245 . -1075) 31507) ((-81 . -625) 31489) ((-747 . -379) 31442) ((-1196 . -840) T) ((-749 . -240) 31426) ((-1179 . -1237) T) ((-142 . -240) 31408) ((-245 . -111) 31324) ((-1260 . -729) 31153) ((-48 . -148) T) ((-883 . -174) T) ((-867 . -729) 31123) ((-496 . -1237) T) ((-969 . -526) 31070) ((-665 . -738) T) ((-583 . -729) 31057) ((-1053 . -1077) T) ((-706 . -237) NIL) ((-493 . -526) 31000) ((-960 . -19) 30984) ((-960 . -616) 30961) ((-1099 . -1237) 30912) ((-828 . -626) NIL) ((-828 . -625) 30894) ((-1231 . -652) 30791) ((-1231 . -1070) 30674) ((-1023 . -1075) 30624) ((-425 . -625) 30606) ((-258 . -296) 30583) ((-370 . -1237) 30562) ((-364 . -1237) 30541) ((-356 . -1237) 30520) ((-257 . -296) 30497) ((-499 . -926) NIL) ((-326 . -29) 30467) ((-108 . -1237) T) ((-1022 . -1131) T) ((-219 . -926) NIL) ((-1099 . -1057) 30363) ((-931 . -1075) 30315) ((-1023 . -111) 30249) ((-1022 . -23) T) ((-723 . -1070) 30214) ((-931 . -111) 30152) ((-749 . -707) 30136) ((-723 . -652) 30101) ((-273 . -272) 30085) ((-273 . -232) 30069) ((-439 . -1075) 30053) ((-390 . -1077) T) ((-245 . -628) 29851) ((-706 . -1225) NIL) ((-499 . -660) 29801) ((-486 . -658) 29683) ((-108 . -897) 29665) ((-108 . -899) 29647) ((-706 . -1222) NIL) ((-219 . -660) 29597) ((-370 . -1057) 29581) ((-364 . -1057) 29565) ((-337 . -319) 29503) ((-356 . -1057) 29487) ((-227 . -300) T) ((-439 . -111) 29466) ((-60 . -625) 29398) ((-171 . -174) T) ((-1139 . -862) T) ((-108 . -1057) 29358) ((-905 . -1119) T) ((-848 . -1077) T) ((-839 . -1077) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1011) 29319) ((-185 . -102) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-419 . -374) T) ((-245 . -1068) 29297) ((-1169 . -34) T) ((-489 . -937) T) ((-1018 . -651) 29245) ((-258 . -616) 29222) ((-257 . -616) 29199) ((-1099 . -388) 29183) ((-883 . -526) 29091) ((-245 . -238) 29043) ((-1178 . -1237) T) ((-1023 . -628) 28993) ((-931 . -628) 28930) ((-836 . -625) 28912) ((-1310 . -1131) T) ((-1302 . -625) 28894) ((-1260 . -174) 28785) ((-439 . -628) 28754) ((-108 . -388) 28736) ((-108 . -349) 28718) ((-1081 . -300) T) ((-969 . -300) 28649) ((-811 . -379) 28628) ((-659 . -1237) T) ((-644 . -1237) T) ((-1310 . -23) T) ((-598 . -1070) 28603) ((-493 . -300) 28534) ((-583 . -174) T) ((-337 . -292) 28518) ((-365 . -237) T) ((-1231 . -102) T) ((-1218 . -1119) T) ((-1107 . -1119) T) ((-1095 . -1119) T) ((-598 . -652) 28493) ((-83 . -625) 28475) ((-1203 . -856) T) ((-1202 . -856) T) ((-723 . -102) T) ((-366 . -360) 28454) ((-620 . -1119) T) ((-363 . -360) 28433) ((-355 . -360) 28412) ((-487 . -1119) T) ((-1209 . -231) 28362) ((-273 . -260) 28324) ((-1161 . -132) T) ((-620 . -622) 28300) ((-1099 . -915) 28233) ((-1023 . -1068) T) ((-931 . -1068) T) ((-487 . -622) 28212) ((-1187 . -804) NIL) ((-1187 . -807) NIL) ((-1121 . -626) 28173) ((-1121 . -625) 28155) ((-491 . -231) 28105) ((-1023 . -248) T) ((-1023 . -238) T) ((-975 . -1119) 28055) ((-439 . -1068) T) ((-931 . -248) T) ((-878 . -132) T) ((-48 . -237) T) ((-711 . -464) T) ((-855 . -1131) 28034) ((-108 . -915) NIL) ((-1231 . -294) 28000) ((-1132 . -1237) T) ((-884 . -860) 27979) ((-1018 . -25) T) ((-922 . -738) T) ((-171 . -526) 27891) ((-1018 . -21) T) ((-922 . -485) T) ((-419 . -1131) T) ((-499 . -806) T) ((-499 . -803) T) ((-927 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 27878) ((-219 . -738) T) ((-855 . -23) 27830) ((-1204 . -1119) T) ((-670 . -1070) 27814) ((-1203 . -1119) T) ((-536 . -628) 27795) ((-1202 . -1119) T) ((-329 . -317) 27774) ((-1054 . -240) 27720) ((-670 . -652) 27690) ((-419 . -23) T) ((-960 . -626) 27651) ((-960 . -625) 27563) ((-656 . -501) 27547) ((-45 . -1029) 27497) ((-1132 . -1057) 27324) ((-629 . -986) T) ((-503 . -102) T) ((-341 . -625) 27306) ((-1012 . -296) 27273) ((-605 . -663) 27255) ((-131 . -1119) T) ((-129 . -1119) T) ((-605 . -384) 27237) ((-354 . -1294) 27214) ((-451 . -625) 27196) ((-1260 . -526) 27143) ((-1106 . -1070) 26986) ((-1046 . -1237) T) ((-883 . -300) T) ((-1192 . -296) 26913) ((-1106 . -652) 26762) ((-1019 . -1014) 26746) ((-794 . -1070) 26569) ((-792 . -1070) 26412) ((-794 . -652) 26241) ((-792 . -652) 26090) ((-488 . -1237) T) ((-475 . -1237) T) ((-598 . -102) T) ((-473 . -1070) 26061) ((-466 . -1070) 25904) ((-676 . -658) 25873) ((-635 . -464) 25852) ((-473 . -652) 25823) ((-466 . -652) 25672) ((-366 . -658) 25609) ((-363 . -658) 25546) ((-355 . -658) 25483) ((-273 . -658) 25393) ((-253 . -658) 25303) ((-1302 . -393) 25275) ((-529 . -1119) T) ((-118 . -464) T) ((-1217 . -102) T) ((-1111 . -1119) 25245) ((-1053 . -1119) T) ((-1134 . -93) T) ((-906 . -862) T) ((-1279 . -111) 25114) ((-362 . -1241) T) ((-1279 . -1075) 24997) ((-1132 . -388) 24966) ((-1272 . -1075) 24801) ((-1251 . -1075) 24591) ((-1272 . -111) 24412) ((-1251 . -111) 24181) ((-1231 . -319) 24168) ((-1022 . -132) T) ((-927 . -658) 24118) ((-376 . -625) 24100) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1075) 24060) ((-607 . -1075) 23943) ((-593 . -1070) 23908) ((-530 . -1070) 23853) ((-372 . -1119) T) ((-332 . -1119) T) ((-258 . -625) 23814) ((-257 . -625) 23775) ((-593 . -652) 23740) ((-530 . -652) 23685) ((-706 . -421) 23652) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -909) 23559) ((-670 . -102) T) ((-608 . -111) 23512) ((-607 . -111) 23381) ((-390 . -1119) T) ((-347 . -102) T) ((-171 . -300) 23292) ((-1250 . -860) 23245) ((-726 . -1077) T) ((-1166 . -526) 23178) ((-1210 . -847) 23162) ((-1132 . -915) 23094) ((-848 . -1119) T) ((-839 . -1119) T) ((-837 . -1119) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -897) 23078) ((-110 . -1237) T) ((-1106 . -102) T) ((-1082 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1279 . -628) 22960) ((-1272 . -628) 22703) ((-473 . -102) T) ((-466 . -102) T) ((-1251 . -628) 22498) ((-245 . -807) 22477) ((-245 . -804) 22456) ((-661 . -102) T) ((-608 . -628) 22414) ((-607 . -628) 22296) ((-1260 . -300) 22207) ((-676 . -646) 22191) ((-188 . -625) 22173) ((-656 . -296) 22125) ((-1053 . -729) 22109) ((-583 . -300) T) ((-980 . -660) 22034) ((-1310 . -132) T) ((-747 . -660) 21994) ((-727 . -660) 21981) ((-284 . -102) T) ((-465 . -660) 21911) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1279 . -1068) T) ((-1272 . -1068) T) ((-1251 . -1068) T) ((-519 . -658) 21893) ((-332 . -729) 21875) ((-1279 . -238) 21834) ((-1272 . -248) 21813) ((-1272 . -238) 21765) ((-1251 . -238) 21652) ((-1251 . -248) 21631) ((-1231 . -38) 21528) ((-608 . -1068) T) ((-607 . -1068) T) ((-1023 . -807) T) ((-1023 . -804) T) ((-990 . -807) T) ((-990 . -804) T) ((-884 . -1077) T) ((-109 . -625) 21510) ((-706 . -464) T) ((-390 . -729) 21475) ((-430 . -660) 21449) ((-882 . -881) 21433) ((-723 . -38) 21398) ((-607 . -238) 21357) ((-40 . -736) 21329) ((-362 . -339) 21306) ((-362 . -374) T) ((-1099 . -317) 21257) ((-304 . -1131) 21138) ((-1125 . -1237) T) ((-1018 . -234) 21083) ((-173 . -102) T) ((-1254 . -625) 21050) ((-855 . -132) 21002) ((-848 . -729) 20972) ((-656 . -1275) 20956) ((-839 . -729) 20926) ((-656 . -616) 20903) ((-494 . -1237) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 20890) ((-419 . -132) T) ((-532 . -678) 20874) ((-108 . -317) T) ((-304 . -23) 20757) ((-532 . -663) 20741) ((-706 . -414) NIL) ((-532 . -384) 20725) ((-301 . -625) 20707) ((-91 . -1119) 20685) ((-108 . -1041) T) ((-576 . -144) T) ((-1287 . -152) 20669) ((-494 . -1057) 20496) ((-1273 . -146) 20457) ((-1273 . -148) 20418) ((-1073 . -1237) T) ((-1012 . -625) 20400) ((-830 . -1237) T) ((-874 . -625) 20382) ((-828 . -1075) 20225) ((-1298 . -93) T) ((-1297 . -93) T) ((-1192 . -626) NIL) ((-1115 . -1119) T) ((-1109 . -1119) T) ((-1106 . -319) 20212) ((-1092 . -1119) T) ((-229 . -1237) T) ((-1085 . -1119) T) ((-1055 . -1119) T) ((-1038 . -1119) T) ((-794 . -319) 20199) ((-792 . -319) 20186) ((-1192 . -625) 20168) ((-828 . -111) 19997) ((-1144 . -625) 19979) ((-638 . -1119) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 19966) ((-495 . -1119) T) ((-1144 . -626) 19714) ((-1053 . -174) T) ((-960 . -298) 19691) ((-220 . -1119) T) ((-866 . -625) 19673) ((-620 . -526) 19456) ((-81 . -628) 19397) ((-830 . -1057) 19381) ((-487 . -526) 19173) ((-980 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1131) T) ((-1199 . -625) 19155) ((-225 . -102) T) ((-494 . -388) 19124) ((-527 . -1119) T) ((-522 . -1119) T) ((-520 . -1119) T) ((-811 . -660) 19098) ((-1043 . -464) T) ((-975 . -526) 19031) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19010) ((-390 . -174) T) ((-1271 . -1077) T) ((-1250 . -1077) T) ((-227 . -1021) T) ((-828 . -628) 18747) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1241) T) ((-1161 . -651) 18695) ((-592 . -881) 18679) ((-1302 . -1075) 18663) ((-1179 . -1213) 18639) ((-713 . -568) T) ((-127 . -1119) 18617) ((-726 . -1119) T) ((-670 . -38) 18587) ((-494 . -915) 18519) ((-255 . -1119) T) ((-189 . -1119) T) ((-365 . -414) T) ((-326 . -148) 18498) ((-326 . -146) 18477) ((-129 . -526) NIL) ((-117 . -568) T) ((-323 . -148) 18433) ((-323 . -146) 18389) ((-48 . -464) T) ((-163 . -1119) T) ((-158 . -1119) T) ((-1179 . -107) 18336) ((-794 . -1171) 18314) ((-701 . -34) T) ((-1302 . -111) 18293) ((-562 . -34) T) ((-496 . -107) 18277) ((-258 . -298) 18254) ((-257 . -298) 18231) ((-1243 . -856) T) ((-883 . -296) 18182) ((-45 . -1237) T) ((-1231 . -917) 18163) ((-829 . -1237) T) ((-828 . -1068) T) ((-674 . -658) 18132) ((-1198 . -47) 18109) ((-828 . -336) 18071) ((-1106 . -38) 17920) ((-828 . -238) 17899) ((-794 . -38) 17728) ((-792 . -38) 17577) ((-1134 . -502) 17558) ((-466 . -38) 17407) ((-1134 . -625) 17373) ((-1137 . -102) T) ((-656 . -626) 17334) ((-656 . -625) 17246) ((-593 . -1171) T) ((-530 . -1171) T) ((-1166 . -501) 17230) ((-354 . -1070) 17175) ((-1223 . -1119) 17153) ((-1161 . -25) T) ((-1161 . -21) T) ((-354 . -652) 17098) ((-1302 . -628) 17047) ((-486 . -1077) T) ((-1243 . -1119) T) ((-1251 . -804) NIL) ((-1251 . -807) NIL) ((-1018 . -862) 17026) ((-850 . -1119) T) ((-831 . -625) 17008) ((-878 . -21) T) ((-878 . -25) T) ((-811 . -738) T) ((-176 . -1241) T) ((-593 . -38) 16973) ((-530 . -38) 16938) ((-398 . -625) 16920) ((-343 . -102) T) ((-334 . -625) 16902) ((-171 . -296) 16860) ((-63 . -1237) T) ((-112 . -102) T) ((-884 . -1119) T) ((-176 . -568) T) ((-726 . -729) 16830) ((-304 . -132) 16713) ((-227 . -625) 16695) ((-227 . -626) 16625) ((-1022 . -651) 16564) ((-1302 . -1068) T) ((-1139 . -148) T) ((-644 . -1213) 16539) ((-743 . -926) 16518) ((-605 . -34) T) ((-659 . -107) 16502) ((-644 . -107) 16448) ((-635 . -909) 16369) ((-1260 . -296) 16296) ((-743 . -660) 16185) ((-305 . -1237) T) ((-1198 . -1057) 16081) ((-960 . -630) 16058) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -909) NIL) ((-1187 . -926) NIL) ((-1081 . -626) 15973) ((-1081 . -625) 15955) ((-969 . -625) 15937) ((-725 . -502) 15887) ((-354 . -102) T) ((-258 . -1075) 15808) ((-257 . -1075) 15729) ((-406 . -102) T) ((-31 . -1119) T) ((-969 . -626) 15590) ((-725 . -625) 15525) ((-1300 . -1230) 15494) ((-493 . -625) 15476) ((-493 . -626) 15337) ((-273 . -423) 15321) ((-253 . -423) 15305) ((-323 . -237) NIL) ((-258 . -111) 15221) ((-257 . -111) 15137) ((-1194 . -660) 15062) ((-1193 . -660) 14959) ((-1187 . -660) 14811) ((-1145 . -660) 14736) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1022 . -25) T) ((-1022 . -21) T) ((-885 . -1119) 14687) ((-40 . -1070) 14632) ((-884 . -729) 14584) ((-40 . -652) 14529) ((-390 . -300) T) ((-171 . -1021) 14480) ((-1106 . -917) 14379) ((-706 . -399) T) ((-1018 . -1016) 14363) ((-713 . -1131) T) ((-706 . -167) 14345) ((-794 . -917) 14252) ((-792 . -917) 14236) ((-1271 . -1119) T) ((-1250 . -1119) T) ((-1184 . -102) T) ((-326 . -1222) 14215) ((-326 . -1225) 14194) ((-466 . -917) 14171) ((-326 . -976) 14150) ((-135 . -1131) T) ((-117 . -1131) T) ((-665 . -1237) T) ((-614 . -1285) 14134) ((-713 . -23) T) ((-614 . -1119) 14084) ((-326 . -95) 14063) ((-91 . -526) 13996) ((-176 . -374) T) ((-258 . -628) 13794) ((-257 . -628) 13592) ((-326 . -35) 13571) ((-620 . -501) 13505) ((-135 . -23) T) ((-117 . -23) T) ((-983 . -102) T) ((-730 . -1119) T) ((-487 . -501) 13442) ((-419 . -651) 13390) ((-665 . -1057) 13286) ((-975 . -501) 13270) ((-366 . -1077) T) ((-363 . -1077) T) ((-355 . -1077) T) ((-273 . -1077) T) ((-253 . -1077) T) ((-883 . -626) NIL) ((-883 . -625) 13252) ((-1298 . -502) 13233) ((-1297 . -502) 13214) ((-1310 . -21) T) ((-1298 . -625) 13180) ((-1297 . -625) 13146) ((-583 . -1021) T) ((-743 . -738) T) ((-1310 . -25) T) ((-258 . -1068) 13124) ((-257 . -1068) 13102) ((-72 . -1237) T) ((-1161 . -234) 13047) ((-258 . -238) 12999) ((-257 . -238) 12951) ((-1139 . -237) T) ((-40 . -102) T) ((-927 . -1077) T) ((-706 . -909) NIL) ((-1201 . -102) T) ((-129 . -501) 12933) ((-1194 . -738) T) ((-1193 . -738) T) ((-1187 . -738) T) ((-1187 . -803) NIL) ((-1187 . -806) NIL) ((-971 . -102) T) ((-938 . -102) T) ((-882 . -1070) 12920) ((-1145 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-882 . -652) 12907) ((-558 . -625) 12889) ((-486 . -1119) T) ((-350 . -1131) T) ((-176 . -1131) T) ((-329 . -937) 12868) ((-1271 . -729) 12709) ((-884 . -174) T) ((-1250 . -729) 12523) ((-855 . -21) 12475) ((-855 . -25) 12427) ((-250 . -1168) 12411) ((-127 . -526) 12344) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12110) ((-171 . -625) 12092) ((-176 . -23) T) ((-656 . -298) 12069) ((-532 . -34) T) ((-913 . -625) 12051) ((-89 . -1237) T) ((-853 . -625) 12033) ((-820 . -625) 12015) ((-781 . -625) 11997) ((-689 . -625) 11979) ((-245 . -660) 11812) ((-629 . -113) T) ((-1196 . -1119) T) ((-1192 . -1075) 11635) ((-1169 . -1237) T) ((-1144 . -1075) 11478) ((-866 . -1075) 11462) ((-1254 . -630) 11446) ((-1192 . -111) 11255) ((-1144 . -111) 11084) ((-866 . -111) 11063) ((-1244 . -862) T) ((-1260 . -626) NIL) ((-1260 . -625) 11045) ((-354 . -1171) T) ((-867 . -625) 11027) ((-1095 . -296) 11006) ((-1231 . -658) 10916) ((-80 . -1237) T) ((-922 . -1237) T) ((-1223 . -526) 10849) ((-1023 . -926) NIL) ((-1106 . -272) 10833) ((-620 . -296) 10809) ((-1106 . -232) 10793) ((-499 . -1237) T) ((-583 . -625) 10775) ((-487 . -296) 10754) ((-1023 . -660) 10704) ((-529 . -93) T) ((-1022 . -234) 10635) ((-219 . -1237) T) ((-975 . -296) 10587) ((-882 . -102) T) ((-299 . -937) T) ((-829 . -317) 10566) ((-794 . -272) 10550) ((-794 . -232) 10534) ((-931 . -660) 10486) ((-723 . -658) 10436) ((-706 . -736) 10403) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10368) ((-499 . -897) 10350) ((-499 . -899) 10332) ((-486 . -729) 10173) ((-219 . -897) 10155) ((-64 . -1237) T) ((-219 . -899) 10137) ((-619 . -25) T) ((-439 . -660) 10111) ((-1192 . -628) 9880) ((-499 . -1057) 9840) ((-884 . -526) 9752) ((-1144 . -628) 9544) ((-866 . -628) 9462) ((-219 . -1057) 9422) ((-245 . -34) T) ((-1019 . -1119) 9400) ((-592 . -1070) 9387) ((-576 . -1070) 9374) ((-507 . -1070) 9339) ((-1271 . -174) 9270) ((-1250 . -174) 9201) ((-592 . -652) 9188) ((-576 . -652) 9175) ((-507 . -652) 9140) ((-724 . -146) 9119) ((-724 . -148) 9098) ((-713 . -132) T) ((-137 . -477) 9075) ((-1166 . -625) 9007) ((-670 . -668) 8991) ((-129 . -296) 8941) ((-117 . -132) T) ((-489 . -1241) T) ((-620 . -616) 8917) ((-487 . -616) 8896) ((-347 . -346) 8865) ((-609 . -1119) T) ((-597 . -1119) T) ((-548 . -1119) T) ((-489 . -568) T) ((-1192 . -1068) T) ((-1144 . -1068) T) ((-866 . -1068) T) ((-245 . -806) 8844) ((-245 . -805) 8823) ((-1192 . -336) 8800) ((-245 . -738) 8778) ((-975 . -19) 8762) ((-499 . -388) 8744) ((-499 . -349) 8726) ((-1144 . -336) 8698) ((-365 . -1294) 8675) ((-219 . -388) 8657) ((-219 . -349) 8639) ((-975 . -616) 8616) ((-1192 . -238) T) ((-1283 . -1119) T) ((-676 . -1119) T) ((-657 . -1119) T) ((-1209 . -1119) T) ((-1106 . -260) 8553) ((-598 . -658) 8513) ((-366 . -1119) T) ((-363 . -1119) T) ((-355 . -1119) T) ((-273 . -1119) T) ((-253 . -1119) T) ((-84 . -1237) T) ((-128 . -102) 8491) ((-122 . -102) 8469) ((-1250 . -526) 8329) ((-1209 . -622) 8308) ((-1160 . -1119) T) ((-1134 . -628) 8289) ((-1099 . -937) 8240) ((-491 . -1119) T) ((-1023 . -806) T) ((-1023 . -803) T) ((-491 . -622) 8219) ((-258 . -807) 8198) ((-258 . -804) 8177) ((-257 . -807) 8156) ((-40 . -1171) NIL) ((-257 . -804) 8135) ((-1023 . -738) T) ((-129 . -19) 8117) ((-990 . -806) T) ((-711 . -1070) 8082) ((-931 . -738) T) ((-927 . -1119) T) ((-905 . -625) 8064) ((-129 . -616) 8039) ((-711 . -652) 8004) ((-91 . -501) 7988) ((-499 . -915) NIL) ((-884 . -300) T) ((-227 . -1075) 7953) ((-848 . -296) 7932) ((-219 . -915) NIL) ((-845 . -1131) 7911) ((-59 . -1119) 7861) ((-531 . -1119) 7839) ((-528 . -1119) 7789) ((-509 . -1119) 7767) ((-508 . -1119) 7717) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7648) ((-370 . -937) T) ((-364 . -937) T) ((-356 . -937) T) ((-227 . -111) 7604) ((-845 . -23) 7556) ((-439 . -738) T) ((-108 . -937) T) ((-40 . -38) 7501) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7460) ((-326 . -464) 7439) ((-323 . -464) T) ((-614 . -526) 7372) ((-419 . -234) 7317) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7181) ((-304 . -21) 7064) ((-45 . -1213) 7043) ((-66 . -625) 7025) ((-55 . -102) T) ((-347 . -658) 7007) ((-1288 . -102) T) ((-1287 . -102) 6957) ((-45 . -107) 6907) ((-831 . -628) 6891) ((-1279 . -660) 6816) ((-1272 . -660) 6713) ((-1251 . -660) 6565) ((-1251 . -926) NIL) ((-1218 . -625) 6547) ((-1121 . -437) 6531) ((-1121 . -379) 6510) ((-398 . -628) 6494) ((-334 . -628) 6478) ((-1210 . -102) T) ((-1115 . -93) T) ((-1082 . -1237) T) ((-1106 . -658) 6388) ((-1081 . -1075) 6375) ((-1081 . -111) 6360) ((-969 . -1075) 6203) ((-969 . -111) 6032) ((-794 . -658) 5942) ((-792 . -658) 5852) ((-635 . -1070) 5839) ((-676 . -729) 5823) ((-635 . -652) 5810) ((-493 . -1075) 5653) ((-489 . -374) T) ((-473 . -658) 5609) ((-466 . -658) 5519) ((-227 . -628) 5469) ((-366 . -729) 5421) ((-363 . -729) 5373) ((-118 . -1070) 5318) ((-355 . -729) 5270) ((-273 . -729) 5119) ((-253 . -729) 4968) ((-1109 . -93) T) ((-1092 . -93) T) ((-118 . -652) 4913) ((-1085 . -93) T) ((-960 . -663) 4897) ((-1076 . -1119) 4875) ((-493 . -111) 4704) ((-1055 . -93) T) ((-1038 . -93) T) ((-960 . -384) 4688) ((-254 . -102) T) ((-980 . -47) 4667) ((-74 . -625) 4649) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1119) T) ((-633 . -1131) T) ((-1107 . -625) 4631) ((-638 . -93) T) ((-1095 . -625) 4613) ((-927 . -729) 4578) ((-127 . -501) 4562) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1237) T) ((-220 . -93) T) ((-620 . -625) 4544) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4526) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4485) ((-523 . -1119) T) ((-519 . -1119) T) ((-128 . -319) 4423) ((-122 . -319) 4361) ((-608 . -660) 4335) ((-607 . -660) 4260) ((-593 . -658) 4210) ((-227 . -1068) T) ((-530 . -658) 4140) ((-390 . -1021) T) ((-227 . -248) T) ((-227 . -238) T) ((-1081 . -628) 4112) ((-1081 . -630) 4093) ((-975 . -626) 4054) ((-975 . -625) 3966) ((-969 . -628) 3755) ((-882 . -38) 3742) ((-725 . -628) 3692) ((-1271 . -300) 3643) ((-1250 . -300) 3594) ((-493 . -628) 3379) ((-1139 . -464) T) ((-514 . -862) T) ((-326 . -1158) 3358) ((-1018 . -148) 3337) ((-1018 . -146) 3316) ((-507 . -319) 3303) ((-305 . -1213) 3282) ((-1204 . -625) 3264) ((-1203 . -625) 3246) ((-1202 . -625) 3228) ((-883 . -1075) 3173) ((-489 . -1131) T) ((-140 . -847) 3155) ((-115 . -847) 3136) ((-635 . -102) T) ((-1223 . -501) 3120) ((-258 . -379) 3099) ((-257 . -379) 3078) ((-1081 . -1068) T) ((-305 . -107) 3028) ((-131 . -625) 3010) ((-129 . -626) NIL) ((-129 . -625) 2954) ((-118 . -102) T) ((-969 . -1068) T) ((-883 . -111) 2883) ((-489 . -23) T) ((-465 . -1237) T) ((-493 . -1068) T) ((-1081 . -238) T) ((-969 . -336) 2852) ((-40 . -917) 2761) ((-493 . -336) 2718) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2629) ((-253 . -174) 2540) ((-980 . -1057) 2436) ((-529 . -502) 2417) ((-747 . -1057) 2388) ((-529 . -625) 2354) ((-430 . -1237) T) ((-1124 . -102) T) ((-1111 . -625) 2313) ((-1053 . -625) 2295) ((-706 . -1070) 2245) ((-1300 . -152) 2229) ((-1298 . -628) 2210) ((-1297 . -628) 2191) ((-1292 . -625) 2173) ((-1279 . -738) T) ((-706 . -652) 2123) ((-1272 . -738) T) ((-1251 . -803) NIL) ((-1251 . -806) NIL) ((-171 . -1075) 2033) ((-927 . -174) T) ((-883 . -628) 1963) ((-1251 . -738) T) ((-1022 . -353) 1937) ((-225 . -658) 1889) ((-1019 . -526) 1822) ((-855 . -862) 1801) ((-576 . -1171) T) ((-486 . -300) 1752) ((-608 . -738) T) ((-372 . -625) 1734) ((-332 . -625) 1716) ((-430 . -1057) 1612) ((-607 . -738) T) ((-419 . -862) 1563) ((-171 . -111) 1459) ((-845 . -132) 1411) ((-749 . -152) 1395) ((-1287 . -319) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1029) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1041) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1041) T) ((-883 . -1068) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -926) 1023) ((-1311 . -1131) T) ((-1260 . -1075) 846) ((-867 . -1075) 830) ((-883 . -248) T) ((-883 . -238) NIL) ((-701 . -1237) T) ((-1311 . -23) T) ((-828 . -660) 719) ((-562 . -1237) T) ((-430 . -349) 703) ((-583 . -1075) 690) ((-1260 . -111) 499) ((-713 . -651) 481) ((-867 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1209 . -526) 30) ((-888 . -1119) T) ((-693 . -1119) T) ((-688 . -1119) T) ((-674 . -1119) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 699e5263..bf9bc7a8 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3485856131)
-(4463 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3485863920)
+(4465 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -74,9 +74,9 @@
|DirectProductCategory&| |DirectProductCategory|
|DirectProductFunctions2| |DirectProduct| |DisplayPackage|
|DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList|
- |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial|
- |Domain| |DomainConstructor| |DomainTemplate|
- |DirectProductMatrixModule| |DirectProductModule|
+ |DiscreteLogarithmPackage| |DifferentialModuleExtension|
+ |DistributedMultivariatePolynomial| |Domain| |DomainConstructor|
+ |DomainTemplate| |DirectProductMatrixModule| |DirectProductModule|
|DifferentialPolynomialCategory&| |DifferentialPolynomialCategory|
|DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions|
|TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex|
@@ -333,9 +333,9 @@
|PartialDifferentialDomain&| |PartialDifferentialDomain|
|PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition|
|AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem|
- |PartialDifferentialRing| |PartialDifferentialSpace&|
- |PartialDifferentialSpace| |PendantTree| |Permanent|
- |PermutationCategory| |PermutationGroup| |Permutation|
+ |PartialDifferentialModule| |PartialDifferentialRing|
+ |PartialDifferentialSpace&| |PartialDifferentialSpace| |PendantTree|
+ |Permanent| |PermutationCategory| |PermutationGroup| |Permutation|
|PolynomialFactorizationByRecursion|
|PolynomialFactorizationByRecursionUnivariate|
|PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit|
@@ -488,670 +488,665 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |generic?| |child| |semiResultantEuclidean2|
- |member?| |getGoodPrime| |matrixConcat3D| |generateIrredPoly|
- |factorSquareFree| |head| |ran| |in?| |set| |elliptic| |ListOfTerms|
- |mdeg| |d01fcf| |mapGen| |numberOfComposites| |cothIfCan| |totalfract|
- |queue| |c06gsf| |returnType!| |listLoops|
- |factorSquareFreePolynomial| |doublyTransitive?| |getProperties| |xn|
- |rightQuotient| |isAnd| |binding| |composites|
- |combineFeatureCompatibility| |modularGcd|
- |removeRedundantFactorsInPols| |areEquivalent?| |mindegTerm|
- |ramified?| |sec2cos| |rootSimp| |mkcomm| |leftMinimalPolynomial|
- |startTableInvSet!| |semiResultantEuclideannaif| |rename!| |identity|
- |lists| |factors| |character?| |generalizedEigenvector|
- |lfextendedint| |squareTop| |zag| |genericLeftNorm| |prologue|
- |extension| |trueEqual| |zeroSetSplitIntoTriangularSystems|
- |brillhartIrreducible?| |irCtor| |d03faf| |signature| |nextPrime|
- |lookupFunction| |f01qdf| |realZeros| |iicosh| |rur| |argument|
- |supRittWu?| |selectAndPolynomials| |pdf2ef| |lambert|
- |chainSubResultants| |empty| |OMread| |rationalPoints| |UP2ifCan|
- |f01rcf| |search| |connectTo| |zeroSquareMatrix| |expr|
- |uncouplingMatrices| |numberOfMonomials| |maxint| |presub| |ode1|
- |tryFunctionalDecomposition| |characteristicSerie|
- |indiceSubResultant| |extendedSubResultantGcd| |pointData| |paren|
- |removeDuplicates!| |f02aaf| |mapUnivariateIfCan| |outputList|
- |univcase| |minPoints| |dmpToHdmp| |showClipRegion| |cyclic| |maxrow|
- |createNormalPrimitivePoly| |printingInfo?| |iCompose| |wreath| |show|
- |maxdeg| |exprHasWeightCosWXorSinWX| |univariatePolynomials|
- |cycleEntry| |tubePoints| |noValueMode| |loopPoints| |interReduce|
- |closed| |nonQsign| |printStatement| |zeroDimensional?| |mathieu23|
- |variable| |removeRoughlyRedundantFactorsInPol| |drawComplex|
- |modulus| |isTimes| |computeInt| |s18aff| |trace| |meshPar2Var| |cdr|
- |var1Steps| |iterators| |calcRanges| |rightRegularRepresentation|
- |leftTrace| |var2StepsDefault| |companionBlocks| |bivariate?| |e01daf|
- |viewport2D| |normFactors| |wordInStrongGenerators| |datalist|
- |radicalSimplify| |imagj| |matrixGcd| |systemCommand|
- |balancedBinaryTree| |e02bcf| |makeVariable| |setColumn!| |char|
- |functionIsContinuousAtEndPoints| |checkPrecision| |subst| |hconcat|
- |minColIndex| |internalLastSubResultant| |stronglyReduce| |subscript|
- |eisensteinIrreducible?| |OMgetBVar| |RittWuCompare| |bitior|
- |generalPosition| |purelyAlgebraic?| |lifting1| |mirror|
- |PollardSmallFactor| |slash| |beauzamyBound| |clikeUniv| |OMreadStr|
- |insertRoot!| |genericRightTraceForm| |attributeData|
- |rightExactQuotient| |lexGroebner| |sizeMultiplication| |precision|
- |normal| |f01maf| |list?| |s18dcf| |contract| |support| |LiePoly|
- |sturmVariationsOf| |leftAlternative?| |cond| |conditionP| |isPlus|
- |concat| |Frobenius| |consnewpol| |bat| |currentScope|
- |unrankImproperPartitions0| |rootKerSimp| |iiasin| |sech| |iiacsch|
- |regime| |se2rfi| |alphanumeric| |bracket| |df2st| |viewWriteDefault|
- |oneDimensionalArray| |leftMult| |csch| |operation| |prem|
- |coth2trigh| |compound?| |element?| |bothWays| |objects| |float|
- |find| |elaboration| |subscriptedVariables| |screenResolution3D|
- |asinh| |gcdcofactprim| |dimensions| |addPointLast| |base|
- |useEisensteinCriterion?| |totalLex| |ridHack1| |cubic| |setnext!|
- |acosh| |socf2socdf| |lfintegrate| |simplify| |generalSqFr| |kind|
- |vconcat| |subresultantSequence| |putProperty| |fortranReal| |arg1|
- |tableau| |f01mcf| |leftDivide| |pseudoDivide| |atanh|
- |sylvesterMatrix| |getMatch| |shallowExpand| |f01ref| |nthExpon| |op|
- |getGraph| |equality| |jacobi| |internalInfRittWu?| |arg2| |expIfCan|
- |f02aef| |acoth| |blankSeparate| |permutationRepresentation|
- |argscript| |exportedOperators| |HermiteIntegrate| |autoReduced?|
- |LiePolyIfCan| |writeInt8!| |FormatArabic| |asech| |e04naf| |numer|
- |writeBytes!| |pop!| |addmod| |palgint0| |roughSubIdeal?| |conditions|
- |setTopPredicate| |mainCoefficients| |sts2stst| |dimension|
- |variables| |cRationalPower| |denom| |topFortranOutputStack| |besselY|
- |d01aqf| |listBranches| |match| |coth2tanh| |options| |commaSeparate|
- |multiple| |null?| |genericLeftDiscriminant| |overset?|
- |identityMatrix| |rational| |bubbleSort!| |rootOfIrreduciblePoly|
- |allRootsOf| |e04dgf| |applyQuote| |asinIfCan|
- |irreducibleRepresentation| |tanIfCan| |factorials| |pi| |tree|
- |edf2efi| |submod| |approximants| |s17dhf| |fortranDoubleComplex|
- |superHeight| |c06fqf| |infinity| |ipow| |resultantReduit| |union|
- |numberOfHues| |showIntensityFunctions| |any| |froot| |setleaves!|
- |string| |ldf2vmf| |fill!| |indices| |bigEndian| |changeName|
- |newTypeLists| |splitDenominator| |exponent| |rk4a| |ruleset|
- |dioSolve| |rectangularMatrix| |s18acf| |brillhartTrials|
- |subResultantGcd| |stiffnessAndStabilityFactor| |elRow1!| |heap|
- |primextendedint| |isOp| |tanNa| |kernel| |partialDenominators|
- |previous| |leadingIdeal| |gethi| |pile| |recur| |s19acf|
- |bombieriNorm| |qqq| |mainMonomials| |stoseInvertibleSetreg| |list|
- |complexNumeric| |multMonom| |numberOfComponents| |pastel| |sinh2csch|
- |conjug| |factorByRecursion| |suchThat| |putGraph| |hostByteOrder|
- |open?| |elseBranch| |compdegd| |draw| |unravel| |nextsousResultant2|
- |npcoef| |adjoint| |trace2PowMod| |specialTrigs| |OMgetEndBind|
- |cartesian| |modifyPointData| |subtractIfCan|
- |numberOfIrreduciblePoly| |sumOfKthPowerDivisors| |d01ajf| |adaptive?|
- |sech2cosh| |oddintegers| |top!| |f01brf| |localAbs| |asimpson|
- |monomials| |euclideanSize| |negative?| |selectsecond| |changeBase|
- |charthRoot| |iflist2Result| |simpleBounds?| |realElementary|
- |LagrangeInterpolation| |inverse| |write!| |rightNorm| |headAst|
- |opeval| |pquo| |rquo| |duplicates?| |position!| |expint|
- |nextIrreduciblePoly| |prinb| |makeObject| |dihedral| |pdf2df|
- |ScanFloatIgnoreSpacesIfCan| |reduction| |cyclicGroup| |lazyEvaluate|
- |nary?| |monicDivide| |OMmakeConn| |center| |multiplyExponents|
- |degree| |coef| |s17dcf| |roughUnitIdeal?| |innerSolve|
- |primitiveElement| |roughBase?| |stack|
- |setLegalFortranSourceExtensions| |pointPlot| |primlimintfrac|
- |csubst| |indicialEquationAtInfinity| |label| |OMputEndAttr|
- |toseInvertibleSet| |mkPrim| |vectorise| |basisOfRightAnnihilator|
- |endSubProgram| |setprevious!| |cycleSplit!| |normalizedDivide|
- |e01sbf| |name| |iroot| |getProperty| |d01alf| |quadratic|
- |mainCharacterization| |mkIntegral| |messagePrint| |iterationVar|
- |badValues| |oddInfiniteProduct| |body| |mainVariable?|
- |axesColorDefault| |meshPar1Var| |Is| |schwerpunkt| |rangeIsFinite|
- |nextsubResultant2| |typeForm| |rotate| |singularitiesOf| |e02aef|
- |findConstructor| |index?| |baseRDE| |interpret|
- |selectOptimizationRoutines| |f04maf| |patternMatch| |virtualDegree|
- |padicallyExpand| |binaryTree| |rightPower| |c06ekf| |hspace| |iiacsc|
- |getlo| |iitanh| |distance| |getSyntaxFormsFromFile| |getMeasure|
- |alternating| |qinterval| |bitLength| |hasSolution?| |musserTrials|
- |completeEchelonBasis| |belong?| |removeIrreducibleRedundantFactors|
- |rightZero| |solveLinearPolynomialEquationByRecursion|
- |createNormalPoly| |complexEigenvectors| |curveColorPalette|
- |OMputAtp| |cardinality| |fmecg| |c02agf| |iicsc| |normalise| |point|
- |completeHensel| |length| |lazyPseudoRemainder| |changeMeasure|
- |readUInt32!| |extendedIntegrate| |bfEntry|
- |rewriteSetByReducingWithParticularGenerators|
- |createPrimitiveElement| |option| |constantKernel| |scripts|
- |internalSubPolSet?| |cyclicEqual?| |s17aff| |aQuartic| |notelem|
- |recoverAfterFail| |internalDecompose| |OMgetAttr| SEGMENT |irVar|
- |iisqrt2| |eulerPhi| |leftExtendedGcd| |OMgetEndApp|
- |lineColorDefault| |port| |innerint| |setPoly| |modularGcdPrimitive|
- |satisfy?| |variable?| |intersect| |series| |adaptive3D?| |sechIfCan|
- |explimitedint| |aromberg| |sequence| |boundOfCauchy| |ParCondList|
- |viewPosDefault| |perfectSquare?| |charClass| |divisors|
- |OMsupportsSymbol?| |primitivePart!| |expandTrigProducts| |t|
- |internalIntegrate| |scalarMatrix| |perfectSqrt| |ptFunc| |nodes|
- |lookup| |permutations| |resetNew| |redPol| |tube| |reopen!|
- |alternatingGroup| |simpson| |leaf?| |e02agf| |setButtonValue|
- |sorted?| |rightUnits| |setErrorBound| |createNormalElement|
- |primintfldpoly| |s17aef| |d02gaf| |f07adf| |bernoulli| |min| |delay|
- |integralLastSubResultant| |back| |limitPlus| |alphanumeric?|
- |cyclePartition| |inverseLaplace| |PDESolve| |polar| |s18def|
- |tanhIfCan| |swapColumns!| |f02adf| |nilFactor| |solveLinear|
- |coerceListOfPairs| |fractionPart| |select!| |addBadValue|
- |mainKernel| |createThreeSpace| |evaluateInverse| |mergeFactors|
- |square?| |startTable!| |diagonal?| |rightFactorIfCan| |unknown|
- |apply| |tubePlot| |reduceLODE| |mapExponents| |eyeDistance|
- |divideIfCan!| |cAtan| |makeViewport2D| |measure2Result|
- |internalZeroSetSplit| |getIdentifier| |aLinear| |first| |groebner|
- |coefChoose| |rowEchLocal| |f04asf| |mapMatrixIfCan| |leftFactor|
- |palgextint| |isPower| |xor| |imag| |euler| |localUnquote|
- |separateFactors| |rest| |generalizedContinuumHypothesisAssumed|
- |ReduceOrder| |certainlySubVariety?| |ode2| |range| |directProduct|
- |antisymmetricTensors| |case| |incrementKthElement| |Hausdorff|
- |randomR| |noKaratsuba| |binomThmExpt| |OMputSymbol| |unitNormal|
- |extend| |headReduce| |leftUnit| GF2FG |Zero| |lowerCase!| |e02bdf|
- |initiallyReduced?| |ramifiedAtInfinity?| |leadingExponent| |keys|
- |comp| |true| |setProperty| |atanhIfCan| |tryFunctionalDecomposition?|
- |void| |sayLength| |shiftRoots| |fillPascalTriangle| |One| |top|
- |iiacoth| |setMaxPoints| |f04atf| |coordinate| |clipWithRanges| |cap|
- |rightFactorCandidate| |continue| |s15adf| |binary| |empty?| |sin?|
- |mainContent| |inverseIntegralMatrixAtInfinity| |showTheIFTable|
- |hclf| |Gamma| |goodnessOfFit| |sort| |plusInfinity| |setStatus|
- |fortranComplex| |leftLcm| |iibinom| |factorial| |elem?|
- |complexElementary| |prolateSpheroidal| |iisech| |idealSimplify|
- |minusInfinity| |solveid| |palgintegrate| |schema| |ignore?| |hessian|
- |lieAdmissible?| |f02awf| |zero?| |var2Steps| |genericRightNorm|
- |roman| |tubeRadius| |iomode| |id| |tanSum| |selectfirst|
- |invertible?| |central?| |stopTableGcd!| |infRittWu?|
- |reciprocalPolynomial| |host| |sortConstraints| |BasicMethod|
- |splitConstant| |ratpart| |OMgetEndAttr| |elt| |quotientByP| |lo|
- |s17agf| |atoms| |ddFact| |exptMod| |changeVar| |random| |fixedPoints|
- |f02ajf| |OMserve| |inR?| |collectUnder| |next| |listexp|
- |symmetricDifference| |spherical| |halfExtendedResultant1| |rspace|
- |check| |stoseInvertible?reg| |fintegrate| |endOfFile?| |setrest!|
- |hcrf| |weierstrass| |nextPrimitiveNormalPoly| |polyRicDE|
- |modifyPoint| |badNum| |quickSort| |totolex| |basis| |OMgetObject|
- |leastPower| |rubiksGroup| |sparsityIF| |complexSolve|
- |stoseInvertible?| |principalIdeal| |physicalLength| |trim|
- |doubleRank| |compiledFunction| |OMgetFloat| |nthRoot|
- |integralAtInfinity?| |extensionDegree| |genericLeftTrace| |debug3D|
- |iipow| |charpol| |ord| |hitherPlane| |complexNumericIfCan|
- |karatsubaOnce| |commutative?| |rowEch| |rischDE|
- |constantToUnaryFunction| |mainSquareFreePart| |complement|
- |addPoint2| |insert| |youngDiagram| |abelianGroup| |unmakeSUP|
- |someBasis| |randomLC| |subQuasiComponent?| |powers|
- |basisOfLeftAnnihilator| |iiabs| |readUInt8!| |symmetricSquare|
- |leader| |chvar| |lagrange| |push| |intensity| |rightUnit| |quote|
- |rootRadius| |primintegrate| |c06ecf| |critpOrder| |OMgetError|
- |viewWriteAvailable| |iicos| |df2ef| |compBound| |rationalIfCan|
- |f02xef| |stirling2| |normDeriv2| |upDateBranches| |viewDefaults|
- |cAtanh| |OMputEndError| |torsionIfCan| |maxPoints3D| |lowerCase|
- |doubleComplex?| |enterInCache| |setEmpty!| |critM| |monicModulo|
- |subResultantGcdEuclidean| |integers| |iidsum| |parametersOf|
- |partialFraction| |resultantEuclideannaif| |iiatanh| |dark|
- |binaryTournament| |palgRDE0| |subNode?| |addiag| |stFunc2| |vspace|
- |mainVariable| |rational?| |makeViewport3D| |setOrder| |dequeue!|
- |nullary| |s17akf| |inverseIntegralMatrix| |realSolve| |reify|
- |e02bef| |setsubMatrix!| |structuralConstants| |symbolTable|
- |gcdcofact| |e01saf| |seriesSolve| |whileLoop| |pow| |middle|
- |tracePowMod| |f04mcf| |coordinates| |subset?| |checkRur|
- |coefficients| |weight| |status| |relationsIdeal| |orbit| |goodPoint|
- |postfix| |s18aef| |OMencodingSGML| |pushFortranOutputStack|
- |setAttributeButtonStep| |isOpen?| |setUnion| |OMwrite| |normalize|
- |reseed| |cAcosh| |clearTheIFTable| |extractProperty| |constantRight|
- |popFortranOutputStack| |irDef| |lazy?| |width| |cycles| |lazyPquo|
- |iicsch| |super| |cosIfCan| |rCoord| |computeCycleEntry| |tanQ|
- |outputAsFortran| |cyclotomic| |appendPoint| |leftGcd| |s14aaf|
- |irreducibleFactors| |tRange| |positiveSolve| |number?| Y |deref|
- |fortranLogical| |findBinding| |bitCoef| |meshFun2Var| |d02bhf|
- |cyclicParents| |solid| |exponential| |maxIndex| |SturmHabicht|
- |infinityNorm| |binomial| |fortranLiteralLine| |denomLODE|
- |variationOfParameters| |generalInfiniteProduct| |newSubProgram|
- |subResultantsChain| |lepol| |subTriSet?| |reduceBasisAtInfinity|
- |stFunc1| |semiSubResultantGcdEuclidean1| |internalSubQuasiComponent?|
- |flexible?| |geometric| |linearAssociatedExp| |OMputError| |palgLODE0|
- |pseudoQuotient| |clearCache| |fglmIfCan| |radicalEigenvectors|
- |credPol| |dAndcExp| |lift| |table| |partialNumerators|
- |totalDifferential| |cCsch| |hyperelliptic| |sumOfSquares|
- |nativeModuleExtension| |leftOne| |harmonic| |digit|
- |nthFractionalTerm| |reduce| |new| |basisOfMiddleNucleus| |jacobian|
- |updateStatus!| |obj| |imagi| |tableForDiscreteLogarithm|
- |subresultantVector| |rotatex| |quoted?| |normal?| |minordet|
- |wordInGenerators| |exp1| |just| |cache|
- |unprotectedRemoveRedundantFactors| |row| |bat1| |li| |digits|
- |column| |denominator| |sign| |fortranInteger| |setvalue!| |isExpt|
- |revert| |minGbasis| |retractable?| |pole?| |clearTable!|
- |possiblyInfinite?| |lowerBound| |antiCommutator| |multinomial|
- |algSplitSimple| |radicalSolve| |lifting| |quasiAlgebraicSet| |edf2ef|
- |idealiser| |cPower| |setClosed| |factor| |ocf2ocdf| |hexDigit?|
- |triangularSystems| |testModulus| |fixedDivisor| |unparse|
- |OMopenFile| |iisec| |minPol| |degreePartition| |numberOfNormalPoly|
- |positive?| |algebraicCoefficients?| |triangulate|
- |rewriteIdealWithQuasiMonicGenerators| |iiatan| |createPrimitivePoly|
- |makeResult| |removeRedundantFactors| |sinhIfCan|
- |rightRankPolynomial| |plus!| |rk4| |vector| |genericLeftTraceForm|
- |hostPlatform| |fractionFreeGauss!| |remove!|
- |generalizedContinuumHypothesisAssumed?| |diagonalMatrix| |e02gaf|
- |primitivePart| |OMclose| |userOrdered?| |differentiate| |symbolIfCan|
- |OMputEndAtp| |OMgetString| |lazyIrreducibleFactors| |overlap|
- |resize| |divisor| |predicate| |eq?| |wronskianMatrix| |qfactor| |box|
- |eigenvector| |Vectorise| |pureLex| |unvectorise| |prinshINFO|
- |internalAugment| |resultantEuclidean| |getButtonValue| |usingTable?|
- |stoseInternalLastSubResultant| |magnitude| |ellipticCylindrical|
- |safeCeiling| |clearFortranOutputStack| |size| |useSingleFactorBound|
- |btwFact| |left| ** |monomial| |infiniteProduct| |besselK| |dom|
- |test| |read!| |logical?| |lazyVariations| |coerceImages|
- |semiIndiceSubResultantEuclidean| |byte| |differentialVariables|
- |integralCoordinates| |innerSolve1| |extendedResultant| |right|
- |multivariate| |lquo| |split| |factorAndSplit|
- |nextNormalPrimitivePoly| |singleFactorBound| |imaginary| |string?|
- |paraboloidal| |polyred| |unknownEndian| |makeop| |leadingIndex|
- |retractIfCan| |cycle| |e02daf| |iicot| |build|
- |getMultiplicationMatrix| |getVariableOrder| |outputMeasure| |s15aef|
- |whatInfinity| |algebraicOf| |close| |linear| |unitCanonical|
- |primeFrobenius| |irForm| |root?| |getMultiplicationTable| |wrregime|
- |complexIntegrate| |setelt!| |completeEval| |insertMatch| |tan2cot|
- |sqrt| |closedCurve| |resetAttributeButtons| |readLine!|
- |semiResultantEuclidean1| |removeRoughlyRedundantFactorsInContents|
- |showFortranOutputStack| |physicalLength!| |e01sff| |leaves| |hasoln|
- |display| |polynomial| |high| |real| |title| |ravel| |curveColor|
- |eigenvalues| |separate| |OMsend| |untab| |prefix| |units|
- |lazyResidueClass| |insertionSort!| |numberOfImproperPartitions|
- |rationalFunction| |inputBinaryFile| |basisOfRightNucleus|
- |completeHermite| |GospersMethod| |points| |reshape| |rdregime| |mix|
- |printStats!| |elaborate| |pascalTriangle| |parameters| |shape| |dn|
- |iiacot| |node?| |elRow2!| |e04ucf| |leftZero| |int| |power|
- |numberOfChildren| |cAsec| |cos2sec| |copies| |e| |cCoth| |coord|
- |e02ahf| |e01bgf| |squareMatrix| |node| |capacity| |singular?|
- |ODESolve| |rightDiscriminant| |laurentIfCan| |pushdterm| |c06fuf|
- |s13aaf| |ScanFloatIgnoreSpaces| |f07aef| |create3Space|
- |basisOfNucleus| |ksec| |rewriteIdealWithHeadRemainder| |input|
- |OMgetBind| |pointColorDefault| |map| |shellSort|
- |purelyAlgebraicLeadingMonomial?| |inHallBasis?| |unitsColorDefault|
- |numberOfCycles| |brace| |kernels| |dequeue| |code| |d02bbf|
- |acschIfCan| |euclideanNormalForm| |library| |constantIfCan| |conical|
- |mapCoef| |removeCoshSq| |perfectNthRoot| |gramschmidt| |vertConcat|
- |update| |eq| |operator| |showSummary| |minIndex| |isEquiv| |fortran|
- |swap| |saturate| |leadingTerm| |sturmSequence| |logGamma|
- |radicalEigenvalues| |integralMatrix| |shallowCopy| |getDatabase|
- |fractRagits| |iter| |e04jaf| |optimize| |strongGenerators| |fi2df|
- |rowEchelonLocal| |replaceKthElement| |OMcloseConn|
- |balancedFactorisation| |nthExponent| |exprex|
- |standardBasisOfCyclicSubmodule| |countable?| |orbits| |option?|
- |prevPrime| |stoseLastSubResultant| |extractSplittingLeaf|
- |partialQuotients| |rotatey| |LyndonWordsList| |child?| |assert|
- |digamma| |wholeRadix| |chiSquare| |pointColor| |viewport3D|
- |numerators| |curve| |generalizedEigenvectors| |convert| |zeroVector|
- |gradient| |setAdaptive| |copyInto!| |midpoints| |discreteLog| |critT|
- |subspace| |showAttributes| |argumentListOf| |LyndonCoordinates|
- |level| |outputGeneral| |rename| |algint| |OMreadFile| |position|
- |symFunc| |f04qaf| |tubeRadiusDefault| |genericRightDiscriminant|
- |interpretString| |arrayStack| |mappingMode| |fortranLiteral|
- |monomialIntPoly| |shanksDiscLogAlgorithm| |redPo| |lexTriangular|
- |tanh2coth| |makeMulti| |copy!| |bit?| |makingStats?| |lyndon?|
- |quatern| |scopes| |lfunc| |branchPoint?| |kovacic| |s19adf| |measure|
- |mkAnswer| |setRow!| |compile| |createZechTable| |curryRight|
- |readByte!| |fTable| |exp| |cCosh| |rombergo| |leastAffineMultiple|
- |f02wef| |firstSubsetGray| |has?| |associatedSystem|
- |subResultantChain| |setScreenResolution3D| |getCurve| |equation|
- |expintfldpoly| |cyclicSubmodule| |removeCosSq| |cSec| |numeric|
- |myDegree| |shiftLeft| |imagI| |radicalRoots| |decimal|
- |OMgetEndObject| |systemSizeIF| |radical| |changeThreshhold|
- |readInt16!| |selectPolynomials| |multiplyCoefficients| |OMReadError?|
- |commonDenominator| |quasiRegular?| |complementaryBasis| |asechIfCan|
- |entries| |OMconnectTCP| |OMgetEndBVar| |factorSFBRlcUnit|
- |normalDeriv| |epilogue| |lintgcd| |kmax| |sdf2lst| |rotate!|
- |parabolicCylindrical| |limit| |script| |external?| |lllp| F2FG
- |doubleFloatFormat| |s18adf| |octon| |nonSingularModel| |extractIndex|
- |every?| |printInfo| |divideExponents| |getRef| |upperCase|
- |nextPartition| |countRealRoots| |mathieu11| |red| |modTree|
- |enumerate| |symmetricGroup| |linearPolynomials| |insertBottom!|
- |UnVectorise| |intcompBasis| |Ci| |explogs2trigs|
- |mainDefiningPolynomial| |cAsech| |orthonormalBasis| |iidprod|
- |bumprow| |tex| |graphImage| |f04mbf| |trunc| |complexZeros|
- |basisOfCentroid| |bumptab1| |linkToFortran| |OMUnknownSymbol?|
- |nothing| |newReduc| |palglimint| |comparison| |getOperands|
- |reducedContinuedFraction| |s01eaf| |useSingleFactorBound?|
- |leftScalarTimes!| |diag| |uniform| |clipPointsDefault|
- |rewriteIdealWithRemainder| |infix| |zCoord|
- |characteristicPolynomial| |subMatrix| |zerosOf| |shuffle|
- |startStats!| |transcendent?| |inrootof| |normalElement| |sqfrFactor|
- |zoom| |po| |enterPointData| |outputSpacing| |SturmHabichtSequence|
- |infieldIntegrate| |radicalEigenvector| |bytes| |bandedHessian|
- |f02bbf| |quasiMonic?| |removeSinSq| |qelt| |secIfCan| |multiset|
- |setLabelValue| |getStream| |heapSort| |fracPart| |qsetelt| |type|
- |expintegrate| |complexExpand| |youngGroup| |algDsolve|
- |trailingCoefficient| |rem| |discriminant| |palgextint0|
- |symmetricRemainder| |pseudoRemainder| |safeFloor| |d02kef|
- |selectIntegrationRoutines| |nextItem| |screenResolution| |ref| |quo|
- |xRange| |OMputEndObject| |initial| |linearAssociatedOrder|
- |sylvesterSequence| |OMencodingBinary| |wordsForStrongGenerators|
- |cons| |cCot| |tab| |wholeRagits| |basicSet| |yRange| |readBytes!|
- |moduleSum| |yCoordinates| |setVariableOrder| |nthRootIfCan|
- |outputForm| |dim| |integerIfCan| |Ei| |nthFactor| |e01bef| |div|
- |zRange| |identification| |minimize| |call|
- |dimensionOfIrreducibleRepresentation| |module| |solveInField| |map!|
- |palgRDE| |isConnected?| |factorFraction| |buildSyntax| |exquo|
- |rootPoly| |laplace| |redmat| |extractPoint| |problemPoints| |f01qcf|
- |principalAncestors| |qsetelt!| |cot2tan| ~= |mapExpon| |BumInSepFFE|
- |reducedSystem| |cschIfCan| |rightMinimalPolynomial| |cAcoth|
- |lazyIntegrate| |modularFactor| |lyndonIfCan| |#|
- |normalizedAssociate| |dihedralGroup| |flexibleArray| |crushedSet|
- |factorsOfDegree| |oddlambert| |associatorDependence| ~ |zero| |rk4f|
- |expressIdealMember| |iiexp| |coerce| |particularSolution| |log2|
- |constantLeft| |selectSumOfSquaresRoutines| |closed?| |source|
- |direction| |cscIfCan| |univariatePolynomial| |writable?| |construct|
- |currentSubProgram| |validExponential| |readInt32!| |lazyPseudoDivide|
- |And| |exteriorDifferential| |outputFixed| |contains?|
- |iteratedInitials| |branchPointAtInfinity?| |typeLists| |updatD|
- |surface| |rightRank| |bag| |/\\| |Or| |bandedJacobian| |acsch|
- |taylorRep| |selectPDERoutines| |mapUp!| |convergents|
- |mergeDifference| |makeSUP| |predicates| |\\/| |Not| |setMinPoints|
- |mpsode| |printTypes| |critBonD| |numberOfPrimitivePoly| |eulerE|
- |bezoutDiscriminant| |bernoulliB| UP2UTS |doubleDisc| |elColumn2!|
- |gensym| |ScanArabic| |leadingCoefficientRicDE| |coHeight| |target|
- |coerceS| |implies| |setlast!| |viewSizeDefault| |unit|
- |computePowers| |isOr| |f02akf| |refine| |lazyPremWithDefault|
- |noncommutativeJordanAlgebra?| |nthFlag| |explicitEntries?|
- |listOfMonoms| |s14baf| |isAtom| |environment| |chebyshevT| |radPoly|
- |divergence| |indicialEquations| |legendre| |toseInvertible?|
- |baseRDEsys| |pointSizeDefault| |whitePoint| |traverse| |gbasis|
- |restorePrecision| |printInfo!| |getPickedPoints| |cross|
- |multiEuclideanTree| |linear?| |invertIfCan| |mainExpression|
- |linearlyDependent?| |second| |open| |quartic| |maxPoints| |powern|
- |numFunEvals| |createLowComplexityTable| |definingEquations| |iFTable|
- |graphCurves| |cSin| |besselI| |third| |dot| |inverseColeman|
- |countRealRootsMultiple| |linearMatrix| |basisOfLeftNucloid|
- |viewDeltaXDefault| |f07fef| |hermite| |outputBinaryFile| |setValue!|
- |exQuo| |makeSketch| |generalTwoFactor| |setchildren!| |coefficient|
- |scalarTypeOf| FG2F |singularAtInfinity?| |expandPower|
- |headRemainder| |integerBound| |OMsetEncoding| |nextPrimitivePoly|
- |cSech| |interactiveEnv| |toseLastSubResultant| |OMlistSymbols|
- |reset| |decrease| |readUInt16!| |safetyMargin| |bright| |operations|
- |leftRemainder| |rightGcd| |gcdPrimitive| |makeTerm| |failed?|
- |complexEigenvalues| F |leftQuotient| |writeLine!|
- |createPrimitiveNormalPoly| |tanAn| |imports| |exactQuotient|
- |ffactor| |fortranLinkerArgs| |frst| |deriv| |c06eaf| |augment|
- |OMunhandledSymbol| |write| |iiperm| |reorder| |inc|
- |pmComplexintegrate| |eval| |cycleElt| |OMgetAtp| |pair?| |bipolar|
- |simpsono| |setelt| |save| |constant?| |setfirst!|
- |localIntegralBasis| |s13adf| |acoshIfCan| |iisin| |dual|
- |drawComplexVectorField| |nsqfree| |ratPoly| |createGenericMatrix|
- |stopTable!| |leviCivitaSymbol| |outputFloating| |semicolonSeparate|
- |round| |sn| |setFormula!| |ranges| |reduced?| |laurentRep|
- |setPrologue!| |copy| |nlde| |numberOfComputedEntries| |region|
- |dfRange| |sup| |error| |cTanh| |littleEndian| |lexico| |reverse!|
- |f02aff| |zeroOf| |setLength!| |e02def| EQ |rootNormalize|
- |maxRowIndex| |f04jgf| |even?| |dmp2rfi| |evaluate| |singRicDE|
- |typeList| |rightCharacteristicPolynomial| |selectNonFiniteRoutines|
- |curve?| |constDsolve| |sinhcosh| |janko2| |viewPhiDefault| |push!|
- |isNot| |constantCoefficientRicDE| |graphStates| |f02bjf| |double?|
- |minimumExponent| |escape| |plot| |rewriteSetWithReduction|
- |aspFilename| |unexpand| |clipParametric| |graeffe| |invmod| |f2df|
- |showTheRoutinesTable| |distdfact| |nextSubsetGray| |match?|
- |upperCase!| |e01baf| |indicialEquation| |coerceL|
- |removeSuperfluousCases| |autoCoerce| |size?| |smith| |monomial?|
- |mapBivariate| |overlabel| |primes| |categoryFrame| |setTex!| |critB|
- |rootDirectory| |minimumDegree| |encodingDirectory| |thetaCoord|
- |alphabetic| |mapUnivariate| |trapezoidalo| |terms| |OMbindTCP|
- |rootOf| |changeNameToObjf| |transpose| |factorPolynomial|
- |jordanAlgebra?| |solveLinearPolynomialEquationByFractions|
- |limitedIntegrate| |splitSquarefree| |deleteProperty!| |digit?|
- |LowTriBddDenomInv| |iiasec| |localReal?| |makeGraphImage| |rst|
- |c06gcf| |merge!| |bivariatePolynomials| |integralRepresents|
- |B1solve| |replace| |complexForm| |lowerPolynomial| |d02gbf| |sort!|
- |cExp| |testDim| |dimensionsOf| |entry| |quadraticForm| |adaptive|
- |Si| |pr2dmp| |stronglyReduced?| |absolutelyIrreducible?| |subCase?|
- |isobaric?| |viewpoint| |integralBasis| |domainTemplate| |cLog|
- |trigs2explogs| |corrPoly| |listOfLists| |elaborateFile| |inf|
- |distribute| |antiAssociative?| |voidMode| |null| |OMlistCDs|
- |nullity| |eigenvectors| |listConjugateBases| |curryLeft| |acosIfCan|
- |slex| |innerEigenvectors| |purelyTranscendental?| |s17ahf| |lazyPrem|
- |OMputObject| |not| |removeSinhSq| |ldf2lst| |nullSpace| |c06gbf|
- |less?| |ratDenom| |associative?| |f07fdf| |realEigenvalues| |cfirst|
- |and| |monicCompleteDecompose| |FormatRoman| |numFunEvals3D|
- |primitive?| |antisymmetric?| |categories| |horizConcat|
- |invertibleSet| |LazardQuotient2| |linearDependenceOverZ|
- |stoseInvertibleSet| |or| |delete| |firstDenom| |applyRules|
- |quasiComponent| |e02akf| |stoseInvertibleSetsqfreg| |superscript|
- |LyndonWordsList1| |pushdown| |swapRows!| |cycleTail| |hMonic|
- |branchIfCan| |trigs| |OMputAttr| |compose| |edf2fi| |acotIfCan|
- |integer?| |algintegrate| |sinIfCan| |normal01| |startTableGcd!|
- |Aleph| |sample| |quotient| |atanIfCan| |droot| |close!| |rootBound|
- |lfextlimint| |iisinh| |degreeSubResultant| |e02baf| |reducedForm|
- |optAttributes| |collectUpper| |nodeOf?| |OMputInteger| |makeSeries|
- |hex| |realEigenvectors| |seriesToOutputForm| |maxrank| |vedf2vef|
- |firstNumer| |contractSolve| |leftRecip| |shade| |polynomialZeros|
- |newLine| |useNagFunctions| |raisePolynomial| |halfExtendedResultant2|
- |e02adf| |isQuotient| |sncndn| |optpair| |extractIfCan|
- |functionIsOscillatory| |representationType| |sqfree| |lprop| |cTan|
- |xCoord| |deepCopy| |leftUnits| |iprint| |reduceByQuasiMonic|
- |polygamma| |polygon?| |skewSFunction| |rightTrace| |bfKeys| |monic?|
- |squareFreePart| |c06ebf| |finite?| |simplifyLog| |forLoop| |repSq|
- |psolve| |rootSplit| |polyPart| |depth| |perspective| |dictionary|
- |numberOfVariables| |cup| |subSet| |d03eef| |withPredicates| |getCode|
- |bringDown| |cn| |categoryMode| |setFieldInfo| |drawCurves| |s17ajf|
- |exprHasAlgebraicWeight| |semiSubResultantGcdEuclidean2| |LyndonBasis|
- |permanent| |height| |repeating?| |d01akf| |meatAxe| |rationalPower|
- |decompose| |moebius| |rootPower| |semiLastSubResultantEuclidean|
- |monomRDE| |fortranTypeOf| |dec| |moreAlgebraic?| |cAcsch|
- |gcdPolynomial| |removeZero| |pdct| |concat!| |tubePointsDefault|
- |removeRedundantFactorsInContents| |setOfMinN| |setMinPoints3D|
- |numberOfOperations| |gcdprim| |power!| |d02cjf| |qPot| |multisect|
- |expPot| |order| |log10| |is?| |tensorProduct| |clearTheSymbolTable|
- |unary?| |normalForm| |fullPartialFraction| |mainForm|
- |exponentialOrder| |generalLambert| |bitand| |radix| |checkForZero|
- |isMult| |colorFunction| |nthCoef| |dualSignature| |f04arf|
- |linearAssociatedLog| |univariate?| |norm| |df2fi| |lflimitedint|
- |makeCos| |henselFact| |genericLeftMinimalPolynomial|
- |semiDiscriminantEuclidean| |factorsOfCyclicGroupSize| |d02raf|
- |clipSurface| |leftTraceMatrix| |cCos| |quadraticNorm| |s20adf|
- |expenseOfEvaluation| |regularRepresentation| |minPoints3D| |nthr|
- |euclideanGroebner| |mapdiv| |RemainderList| |fullDisplay| |s21bcf|
- |mathieu22| |triangular?| |mat| |rischDEsys| |debug| |An| |failed|
- |enqueue!| |gderiv| |SturmHabichtMultiple| |SFunction| |denomRicDE|
- |arity| |getOrder| |substring?| D |equiv| |diophantineSystem|
- |product| |degreeSubResultantEuclidean| |imagJ| |graphState| |f02axf|
- |scan| |makeYoungTableau| |hermiteH| |clearDenominator| |yellow|
- |extractBottom!| |df2mf| |padecf| |coleman| |suffix?| |clipBoolean|
- |exponential1| |stosePrepareSubResAlgo| |truncate| |unitNormalize|
- |setleft!| |numericalIntegration| |contours| |axes| |llprop|
- |repeatUntilLoop| |nil| |associator| |cosSinInfo| |tail| |log|
- |univariate| |prefix?| |prepareSubResAlgo| |real?| |laguerreL|
- |Lazard| |readable?| |transform| |LazardQuotient| |f02fjf| |init|
- |increase| |polygon| |leftRegularRepresentation| |isList| |besselJ|
- |minrank| |macroExpand| |rangePascalTriangle| |medialSet| |cyclic?|
- |radicalOfLeftTraceForm| |sumSquares| |plotPolar| |varList|
- |OMputEndBind| |generic| |nextColeman| |currentCategoryFrame|
- |cyclotomicFactorization| |critMonD1| |approximate| |complexLimit|
- |OMgetVariable| |reverseLex| |toseSquareFreePart| |neglist|
- |sizePascalTriangle| |constantOpIfCan| |complex| |probablyZeroDim?|
- |max| |yCoord| |ScanRoman| |padicFraction| |processTemplate|
- |totalDegree| |positiveRemainder| |computeCycleLength| |primeFactor|
- |expenseOfEvaluationIF| |rotatez| |monicLeftDivide|
- |removeConstantTerm| |conjugate| |infieldint| |print| |iilog| |solve|
- |stoseInvertible?sqfreg| |properties| |extendedEuclidean| |c05nbf|
- |toroidal| |infix?| |romberg| |resolve| |e04ycf| |invmultisect|
- |translate| |powerSum| |invertibleElseSplit?| |lieAlgebra?| |mask|
- |squareFreeLexTriangular| |declare| |OMgetSymbol| |laguerre| |pack!|
- |more?| |scaleRoots| |firstUncouplingMatrix| |crest| |fprindINFO|
- |acothIfCan| |coshIfCan| |quoByVar| |numberOfDivisors| |Beta|
- |groebnerFactorize| |weights| |asecIfCan| |factor1| |cotIfCan|
- |supDimElseRittWu?| |leftCharacteristicPolynomial| |OMputEndApp|
- |prime?| |cylindrical| |palglimint0| |bitTruth| |green|
- |selectMultiDimensionalRoutines| |integralBasisAtInfinity| |updatF|
- |optional?| GE |vark| |numericIfCan| |solid?| |light|
- |createLowComplexityNormalBasis| |OMputEndBVar| |complete|
- |scanOneDimSubspaces| GT |getOperator| |airyAi| |karatsuba| |edf2df|
- |goto| |fractRadix| |randnum| |s21baf| |say| |OMputVariable|
- |components| LE |sequences| |cycleRagits| |delta| |moduloP|
- |alternative?| |hdmpToDmp| |binarySearchTree| |readInt8!| LT
- |sizeLess?| |conditionsForIdempotents| |numberOfFactors| |deepExpand|
- |signatureAst| |e01bff| |fortranCharacter| |frobenius|
- |setIntersection| |internal?| |plus| |f04adf| |upperCase?| |ef2edf|
- |s17dlf| |writeByte!| |resetVariableOrder| |parabolic| |d01amf|
- |outputAsScript| |OMconnOutDevice| |children| |normalized?|
- |genericRightMinimalPolynomial| |powmod| |shift|
- |integralMatrixAtInfinity| |prefixRagits| |csch2sinh| |recolor|
- |extendIfCan| |OMgetApp| |remove| |ParCond| |eigenMatrix|
- |setImagSteps| |redpps| |rightTraceMatrix|
- |halfExtendedSubResultantGcd1| |pushucoef| |cosh2sech|
- |listYoungTableaus| |mapDown!| |over| |leftPower| |OMUnknownCD?|
- |times| |monicRightFactorIfCan| |insertTop!|
- |unrankImproperPartitions1| |mesh| |showAll?| |last|
- |rationalApproximation| |morphism| |parseString| |partitions|
- |lastSubResultantElseSplit| |generator| |aQuadratic| |iisqrt3|
- |logpart| |mantissa| |algebraicDecompose| |collectQuasiMonic|
- |symmetricTensors| |assoc| |genericRightTrace| |s17adf|
- |factorGroebnerBasis| |stFuncN| |iiasinh| |useEisensteinCriterion|
- |transcendentalDecompose| |lfinfieldint| |numberOfFractionalTerms|
- |cyclicEntries| |antiCommutative?| |eof?| UTS2UP |quasiRegular|
- |OMreceive| |e02zaf| BY |fixPredicate| |symmetric?| |before?|
- |condition| |ratDsolve| |part?| |d02ejf| |s19abf| |rightScalarTimes!|
- |monom| |fortranCompilerName| |callForm?| |linSolve| |content|
- |OMgetEndAtp| |printHeader| |rowEchelon| |deepestTail| |ode|
- |UpTriBddDenomInv| |omError| |symbol?| |mightHaveRoots| |Nul|
- |acscIfCan| |s17acf| |removeZeroes| |monicRightDivide|
- |leadingBasisTerm| |OMputBVar| |largest| |OMencodingXML| |erf|
- |makeCrit| |mainVariables| |getExplanations| |c06gqf| |output|
- |common| |showScalarValues| |patternMatchTimes| |pointLists| |mapmult|
- |leftRankPolynomial| |weakBiRank| |denominators| |curry| |Lazard2|
- |e04fdf| |permutation| |printCode| |makeSin| |cAcsc| |constant|
- |generalizedInverse| |integral| |irreducibleFactor|
- |inputOutputBinaryFile| |constructor| |split!| |sh| |finiteBasis|
- |linearDependence| |leftExactQuotient| |dilog| |powerAssociative?|
- |relativeApprox| NOT |create| |extractClosed| |tablePow| |incr|
- |presuper| |groebner?| |mvar| |point?| |sin| |function| |ricDsolve|
- |initializeGroupForWordProblem| OR |interval| |extendedint| |key?|
- |hi| |nor| |binaryFunction| |isAbsolutelyIrreducible?| |move| |cos|
- |extract!| |stiffnessAndStabilityOfODEIF| |d01bbf| AND |rightTrim|
- |fixedPointExquo| |homogeneous?| |factorOfDegree| |cCsc| |lyndon|
- |separant| |tan| |d01apf| |infinite?| |logIfCan| |outputAsTex|
- |leftTrim| |deepestInitial| |e01bhf| |reducedDiscriminant|
- |simplifyExp| |reindex| |cot| |distFact| |derivationCoordinates|
- |addMatchRestricted| |chiSquare1| |linearPart| |componentUpperBound|
- |realRoots| |hue| |setStatus!| |sec| |groebgen| |cot2trig| |entry?|
- |permutationGroup| |splitNodeOf!| |perfectNthPower?| |KrullNumber|
- |monicDecomposeIfCan| |evenInfiniteProduct| |csc| |symbol| |shufflein|
- |pToHdmp| |quadratic?| |e02dcf| |chebyshevU| |lastSubResultant|
- |d03edf| |wholePart| |setDifference| |asin| |expression| |moebiusMu|
- |csc2sin| |normalizeAtInfinity| |traceMatrix| |repeating| |tab1|
- |setPosition| |twoFactor| |f01rdf| |acos| |functorData| |integer|
- |nil?| |destruct| |directSum| |showTheSymbolTable| |derivative|
- |rightMult| |f01qef| |legendreP| |biRank| |splitLinear| |atan|
- |removeRoughlyRedundantFactorsInPols| |showArrayValues| |setright!|
- |viewZoomDefault| |setref| |solveLinearlyOverQ|
- |coercePreimagesImages| |findCycle| |anfactor|
- |stripCommentsAndBlanks| |acot| |s19aaf| |abs| |f2st| |hasPredicate?|
- |cAcos| |extractTop!| |readLineIfCan!| |expandLog| |rightRemainder|
- |asec| |jordanAdmissible?| |changeWeightLevel| * |normalizeIfCan|
- |subHeight| |minus!| |lhs| |createMultiplicationTable| |lex|
- |triangSolve| |kroneckerDelta| |acsc| |rightAlternative?|
- |complexRoots| |lcm| |dflist| |karatsubaDivide|
- |fortranCarriageReturn| |rhs| |nand| |approxSqrt| |f02agf| |cSinh|
- |sinh| |lazyPseudoQuotient| |low| |represents| |mulmod| |one?|
- |generate| |diff| |laplacian| |lighting| |plenaryPower| |principal?|
- |cosh| |createIrreduciblePoly| |idealiserMatrix| |anticoord| |append|
- |hash| = |currentEnv| |clearTheFTable| |returns| |tValues| |isImplies|
- |pattern| |floor| |tanh| |count| |gcd| |symbolTableOf|
- |complexNormalize| |cAcot| |commutativeEquality| |incrementBy|
- |normInvertible?| |associates?| |groebSolve| |initTable!|
- |showTheFTable| |nonLinearPart| |coth| |e02ajf| |false| |lp|
- |atrapezoidal| < |removeSuperfluousQuasiComponents| |decomposeFunc|
- |expand| |category| |rationalPoint?| |getZechTable| |pmintegrate|
- |ptree| |sin2csc| |solve1| |flatten| |rightRecip| |inGroundField?|
- |OMParseError?| > |root| |filterWhile| |domain| |intPatternMatch|
- |conjugates| |diagonal| |loadNativeModule| |poisson|
- |oblateSpheroidal| |pushup| |sub| <= |parent| |generators|
- |filterUntil| |package| |iiasech| |asinhIfCan| |interpolate| |message|
- |tanh2trigh| |minimalPolynomial| |unit?| |overbar| >= |externalList|
- |matrixDimensions| |select| |cycleLength| |separateDegrees|
- |defineProperty| |OMgetEndError| |polCase| |prod| |algebraicSort|
- |hdmpToP| |exactQuotient!| |packageCall| |double| |drawStyle| |space|
- |delete!| |polarCoordinates| |parts| |exponents|
- |integralDerivationMatrix| |genus| |bezoutResultant| |weighted|
- |squareFreePolynomial| |arbitrary| |complex?| |OMopenString|
- |viewDeltaYDefault| |figureUnits| |c06fpf| |characteristicSet|
- |dominantTerm| |zeroSetSplit| + |makeprod| |setAdaptive3D|
- |palginfieldint| |mappingAst| |summation| |parents| |s21bbf| |rarrow|
- |linearlyDependentOverZ?| |qualifier| |univariatePolynomialsGcds| -
- |controlPanel| |determinant| |inspect| |blue| |solveRetract|
- |createMultiplicationMatrix| |maximumExponent| |getBadValues|
- |completeSmith| |f02abf| / |c02aff| |pToDmp| |remainder| |rule|
- |prindINFO| |reflect| |birth| |tanintegrate|
- |solveLinearPolynomialEquation| |makeRecord| |collect| |difference|
- |univariateSolve| |createRandomElement| |twist| |s17dgf|
- |lastSubResultantEuclidean| |outerProduct| |setCondition!|
- |trapezoidal| |functionIsFracPolynomial?| |algebraic?|
- |internalIntegrate0| |pleskenSplit| |e01sef| |byteBuffer| |bounds|
- |declare!| |fibonacci| |initiallyReduce| |assign| |removeDuplicates|
- |selectFiniteRoutines| |startPolynomial| |selectOrPolynomials|
- |roughBasicSet| |operators| |zeroDimPrimary?|
- |resultantReduitEuclidean| |selectODEIVPRoutines|
- |intermediateResultsIF| |computeBasis| |outputArgs| |lllip|
- |noLinearFactor?| |coerceP| |bivariateSLPEBR| |irreducible?| |s21bdf|
- |minPoly| |imagE| |factorSquareFreeByRecursion| |headReduced?| |rules|
- |discriminantEuclidean| |algebraicVariables| |composite| |palgLODE|
- |nullary?| |rdHack1| |e02ddf| |halfExtendedSubResultantGcd2|
- |showAllElements| |nextNormalPoly| |basisOfLeftNucleus| |setEpilogue!|
- |iitan| |definingInequation| |step| |taylorIfCan| |makeUnit|
- |finiteBound| |prepareDecompose| |errorInfo| |cAsinh| |inconsistent?|
- |stirling1| |swap!| |linGenPos| |airyBi| |backOldPos| |zeroDim?|
- |any?| |constantOperator| |stoseSquareFreePart| |returnTypeOf|
- |tan2trig| |unitVector| |segment| |diagonalProduct| |quotedOperators|
- |topPredicate| |leastMonomial| |stopMusserTrials| |sumOfDivisors|
- |genericPosition| |palgint| |cyclicCopy| |signAround| |f04faf|
- |htrigs| |outlineRender| |zeroDimPrime?| |transcendenceDegree|
- |expextendedint| |block| |OMconnInDevice| |ip4Address| |bindings|
- |c05adf| |s13acf| |parametric?| |iiacosh| |commutator| |OMputString|
- |atom?| |writeUInt8!| |scripted?| |pushuconst| |alphabetic?|
- |integral?| |iExquo| |primlimitedint| |recip| |normalDenom|
- |pushNewContour| |putProperties| |leadingSupport| |merge|
- |associatedEquations| |key| |cAsin| |resultant| |multiple?|
- |setScreenResolution| |errorKind| |leftDiscriminant| |closeComponent|
- |color| |clip| |connect| |maxColIndex| |value| |upperBound|
- |divisorCascade| |drawToScale| |linears| |filename| |exists?|
- |factorList| |bits| |closedCurve?| |exprToXXP| |HenselLift|
- |taylorQuoByVar| |optional| |polyRDE| |supersub| |imagK|
- |approxNthRoot| |mathieu12| |times!| |rightLcm| |lazyGintegrate|
- |duplicates| |formula| |parse| |d01asf| |car| |minset| |nextSublist|
- |prime| |squareFreePrim| |initials| |explicitlyFinite?| |stop|
- |substitute| |nextLatticePermutation| |component| |insert!|
- |setProperties| |s14abf| |evenlambert| |mr| |arguments|
- |resetBadValues| |front| |var1StepsDefault| |leftRank| |seed|
- |readIfCan!| |bumptab| |fortranDouble| |disjunction| |relerror|
- |getConstant| |intChoose| |rischNormalize| |limitedint|
- |chineseRemainder| |imagk| |iifact| |infLex?| |d01gbf| |nrows|
- |result| |subPolSet?| |shiftRight| |c05pbf| |ceiling| |accuracyIF|
- |d01anf| |stoseIntegralLastSubResultant| |members|
- |SturmHabichtCoefficients| |odd?| |ncols| |groebnerIdeal| |OMputBind|
- |universe| |rk4qc| |symmetricProduct| |sPol| |subNodeOf?|
- |patternVariable| |latex| |bsolve| |e04mbf| |setMaxPoints3D|
- |shrinkable| |mapSolve| |tower| |explicitlyEmpty?| |preprocess|
- |symmetricPower| |minRowIndex| |routines| |e04gcf| |colorDef| |iiacos|
- |divideIfCan| |c06frf| |squareFree| |rootProduct| |scale| |freeOf?|
- |rootsOf| |bezoutMatrix| |totalGroebner| |indiceSubResultantEuclidean|
- |compactFraction| |taylor| |comment| |conjunction| |OMputApp|
- |setPredicates| |thenBranch| |hexDigit| |zeroMatrix| |knownInfBasis|
- |mainMonomial| |numerator| |laurent| |semiResultantReduitEuclidean|
- |elementary| |qroot| LODO2FUN |toScale| |e02dff| |choosemon|
- |property| |expt| |puiseux| |basisOfCommutingElements|
- |continuedFraction| |quasiMonicPolynomials| |makeFR| |matrix| |index|
- |rroot| |mainValue| |reducedQPowers| |diagonals| |deleteRoutine!|
- |pointColorPalette| |monomRDEsys| RF2UTS |jokerMode| |midpoint|
- |cyclotomicDecomposition| |elements| |semiDegreeSubResultantEuclidean|
- |uniform01| |inv| |aCubic| |lambda| |critMTonD1| |highCommonTerms|
- |primextintfrac| |dmpToP| |leftNorm| |exprHasLogarithmicWeights|
- |elliptic?| |s20acf| |att2Result| |float?| |setRealSteps| |ground?|
- |f01bsf| |exprToGenUPS| |partition| |jacobiIdentity?| |pair|
- |doubleResultant| |ground| |prinpolINFO| |showRegion| |iiGamma|
- |primaryDecomp| |fixedPoint| |rightExtendedGcd| |unaryFunction|
- |mesh?| |addPoint| |squareFreeFactors| |directory|
- |identitySquareMatrix| |decreasePrecision| |increasePrecision|
- |OMencodingUnknown| |mainPrimitivePart| |leadingMonomial|
- |primPartElseUnitCanonical| |factorset| |hypergeometric0F1|
- |viewThetaDefault| |hasHi| |sum| |basisOfRightNucloid|
- |possiblyNewVariety?| |phiCoord| |reverse| |OMgetType| |pade|
- |leadingCoefficient| |pomopo!| |style| |rightOne| |setClipValue|
- |integrate| |simplifyPower| |listRepresentation| |ideal| |graphs|
- |primitiveMonomials| |leftFactorIfCan| |d01gaf| |makeEq|
- |numericalOptimization| |resultantnaif| |e02bbf| |retract|
- |bipolarCylindrical| |varselect| |basisOfCenter| |flagFactor|
- |lSpaceBasis| |reductum| |addMatch| |pol| |increment| |lowerCase?|
- |makeFloatFunction| |OMputFloat| |OMsupportsCD?| |s17def|
- |roughEqualIdeals?| |divide| |torsion?| |multiEuclidean|
- |trivialIdeal?| |inRadical?| |characteristic| |rank|
- |removeSquaresIfCan| |sincos| |putColorInfo| |const|
- |stopTableInvSet!| |mindeg| |mathieu24| |primPartElseUnitCanonical!|
- |rightDivide| |monomialIntegrate| |f04axf| |bottom!|
- |hasTopPredicate?| |definingPolynomial| |iicoth| |exprToUPS|
- |argumentList!| |OMgetInteger| |nil| |infinite| |arbitraryExponent|
- |approximate| |complex| |shallowMutable| |canonical| |noetherian|
- |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
- |commutative|) \ No newline at end of file
+ |Record| |Union| |distribute| |thenBranch| |createPrimitivePoly|
+ |nthRootIfCan| |arrayStack| |makeEq| |coercePreimagesImages|
+ |doubleDisc| |leastPower| |mainDefiningPolynomial| |ipow|
+ |commutative?| |set| |perfectSqrt| |hermiteH| |setMaxPoints|
+ |cRationalPower| |SturmHabichtSequence| |internalDecompose|
+ |findConstructor| |d02gbf| |bringDown| |d03edf| |edf2df|
+ |showAllElements| |matrixConcat3D| |setUnion| |physicalLength!|
+ |readUInt32!| |useSingleFactorBound| |addMatchRestricted|
+ |OMUnknownSymbol?| |findBinding| |encodingDirectory| |power|
+ |OMgetEndAtp| |deepCopy| |numberOfDivisors| |squareFreeLexTriangular|
+ |generic| |red| |iiacsc| |hdmpToP| |intChoose| |s17agf| |partition|
+ |scalarTypeOf| |cyclotomicDecomposition| |wrregime| |s18acf| |head|
+ |lists| |extendedResultant| |lazyPseudoDivide| |f01ref| |point?|
+ |unravel| |cyclePartition| |exists?| |compound?| |prinshINFO|
+ |mapSolve| |ffactor| |probablyZeroDim?| |nodeOf?| |quasiRegular?|
+ |checkForZero| |inHallBasis?| |signature| |infieldIntegrate|
+ |LyndonWordsList1| |functionIsContinuousAtEndPoints| |isList| |cAtan|
+ |c06gsf| |OMputFloat| |realSolve| |tableForDiscreteLogarithm|
+ |addPoint| |writeByte!| |torsionIfCan| |antisymmetric?|
+ |genericPosition| |nthRoot| |search| |leftPower| |scripted?|
+ |anticoord| |s17dcf| |listOfMonoms| |expr| |sumOfKthPowerDivisors|
+ |numericalOptimization| |elColumn2!| |viewWriteAvailable| |subCase?|
+ |zeroSetSplitIntoTriangularSystems| |strongGenerators| |mirror|
+ |makeResult| |outputForm| |birth| |topFortranOutputStack| |findCycle|
+ |linearlyDependentOverZ?| |sort!| |cAsech| |outputList| |hexDigit|
+ |antiAssociative?| |ptFunc| |clearDenominator| |setLength!|
+ |leftUnits| |extendedIntegrate| |OMgetAttr| |rubiksGroup|
+ |splitNodeOf!| |bitCoef| |rowEch| |show| |goto| |nextNormalPoly|
+ |mappingMode| |OMwrite| |complexIntegrate| |e01sff| |modTree| |index?|
+ |newReduc| |resultantReduit| |atoms| |numberOfChildren| |f04atf|
+ |variable| |cAcoth| |OMgetSymbol| |Beta| |btwFact| |chiSquare1|
+ |categoryMode| |trace| |wholePart| |rischNormalize| |thetaCoord|
+ |iterators| |printHeader| |increasePrecision| |root| |factorList|
+ |elements| |brillhartTrials| |nextColeman| |OMencodingUnknown|
+ |exteriorDifferential| |getlo| |complementaryBasis| |nthExpon|
+ |datalist| |jacobiIdentity?| |factorsOfCyclicGroupSize|
+ |inverseLaplace| |systemCommand| |iicos| |element?| |ran| |besselJ|
+ |char| |top!| |subst| |checkPrecision| |max| |exactQuotient!| |reify|
+ |ricDsolve| |nextsousResultant2| FG2F |horizConcat| |maxPoints3D|
+ |hconcat| |internalAugment| |bitior| |fortranLinkerArgs| |lquo|
+ |OMputInteger| |OMsupportsCD?| |isMult| |resetVariableOrder|
+ |anfactor| |pushdown| |isobaric?| |palgint| |pushuconst|
+ |makeViewport2D| |clearTheFTable| |roughUnitIdeal?|
+ |subresultantVector| |precision| |normal| |unitsColorDefault| |irVar|
+ |radicalEigenvector| |linearPart| |integralAtInfinity?| |fi2df|
+ |returnType!| |yellow| |integerIfCan| |tanintegrate| |bfEntry| |cond|
+ |groebnerFactorize| |perfectNthPower?| |concat| |enumerate|
+ |PollardSmallFactor| |OMUnknownCD?| |cAsec| |removeRedundantFactors|
+ |s14baf| |mkcomm| |sech| |setelt!| |hasoln| |orthonormalBasis|
+ |subResultantGcd| |voidMode| |zeroMatrix| |basisOfLeftNucleus| |nodes|
+ |printStatement| |rightOne| |csch| |operation| |laguerre|
+ |semiDegreeSubResultantEuclidean| |minrank| |baseRDE| |numberOfHues|
+ |objects| |rischDE| |float| |alphabetic| |fractRadix| |e02def|
+ |firstSubsetGray| |asinh| |bits| |bothWays| |resultantEuclidean|
+ |currentCategoryFrame| |base| |limitedint| |ddFact| |coordinate|
+ |baseRDEsys| |Lazard2| |acosh| |df2ef| |kovacic| |swapRows!|
+ |infiniteProduct| |cyclicCopy| |kind| |cyclotomicFactorization|
+ |selectSumOfSquaresRoutines| |fortranLiteral| |arg1|
+ |initializeGroupForWordProblem| |getGraph| |oddintegers|
+ |setCondition!| |atanh| |pointData| |in?| |bytes| |lowerCase|
+ |OMencodingXML| |certainlySubVariety?| |op| |besselK| |externalList|
+ |factors| |makeSeries| |asechIfCan| |arg2| |rowEchelon| |writeBytes!|
+ |acoth| |complexExpand| |invertibleSet| |ip4Address| |acoshIfCan|
+ |bindings| |makeTerm| |e02bef| |s17def| |doubleResultant| |lifting|
+ |asech| |numer| |semiResultantEuclidean2| |viewpoint| |elliptic|
+ |square?| |returns| |makeCos| |innerSolve| |c06fpf| |npcoef| |s21bcf|
+ |conditions| |stoseInvertible?sqfreg| |variables| |denom|
+ |symmetricGroup| |minColIndex| |setImagSteps|
+ |internalLastSubResultant| |rotatex| |extractBottom!| |Ei| |match|
+ |bat1| |options| |iFTable| |multiple| |predicates| |getVariableOrder|
+ |componentUpperBound| |extensionDegree| |leadingTerm|
+ |genericLeftTrace| |lookup| |sinhIfCan| |colorFunction| |applyQuote|
+ |selectODEIVPRoutines| |leftDiscriminant| |s13adf| |iidprod|
+ |stiffnessAndStabilityFactor| |pi| |tree| |rootsOf| |integralBasis|
+ |solveLinearPolynomialEquation| |cycleEntry| |sturmVariationsOf|
+ |ReduceOrder| |getButtonValue| |infinity| |KrullNumber| |factorials|
+ |union| |bumprow| |equiv| |viewPosDefault| |any| |isAtom| |f07fef|
+ |string| |genericRightTrace| |less?| |computeInt|
+ |rangePascalTriangle| |leftGcd| |monicDecomposeIfCan| |solid?|
+ |headReduced?| |zeroDimensional?| |s17aef| |ruleset| |child?|
+ |lagrange| |signAround| |selectOptimizationRoutines| |s18aff|
+ |perspective| |infRittWu?| |var1StepsDefault| |clipWithRanges| |has?|
+ |legendreP| |rroot| |kernel| |previous| |matrixDimensions| |f04maf|
+ |putProperty| |monomial?| |rootNormalize| |setClipValue| |regime|
+ |startStats!| |nonSingularModel| |axesColorDefault| |list|
+ |complexNumeric| |read!| |closed?| |decimal| |close!|
+ |monomialIntPoly| |e04fdf| |suchThat| |sign| |reduceBasisAtInfinity|
+ |OMputAtp| |ksec| |logIfCan| |draw| |critMonD1| |failed?| |mulmod|
+ |leftExactQuotient| |deepestTail| |pleskenSplit| |paren|
+ |outputMeasure| |moreAlgebraic?| |bottom!| |setIntersection| |c05adf|
+ |startTable!| |varselect| |vspace| |pop!| |extendedEuclidean|
+ |setMinPoints| |getProperty| |symmetricProduct| |makeCrit|
+ |ListOfTerms| |redpps| |cCot| |ScanFloatIgnoreSpacesIfCan|
+ |setProperty| |mathieu22| |closeComponent| |characteristicSet|
+ |normFactors| |laguerreL| |domainTemplate| |hclf| |sturmSequence|
+ |pascalTriangle| |minPol| |dfRange| |quasiAlgebraicSet| |ratDenom|
+ |s17adf| |sparsityIF| |resize| |makeObject| |bezoutMatrix|
+ |perfectSquare?| |stronglyReduce| |diophantineSystem| |curve?|
+ |algint| |intermediateResultsIF| |leftAlternative?| |digamma| |center|
+ |cExp| |returnTypeOf| |coef| |edf2efi| |debug3D| |light|
+ |discriminantEuclidean| |d02ejf| |stack| |biRank| |graphCurves|
+ |nextPrimitiveNormalPoly| |mainValue| |pmintegrate| |label|
+ |dictionary| |graphImage| |leftRank| |showClipRegion| |elliptic?|
+ |d02gaf| |push| |se2rfi| |c06gcf| |cot2tan| |name| |s14aaf|
+ |evenInfiniteProduct| |reciprocalPolynomial| |fortranReal| |conjug|
+ |hermite| |cAcsch| |transcendent?| |meshPar1Var| |nonQsign| |body|
+ |meshPar2Var| |direction| |rootBound| |mapBivariate| |unary?|
+ |associatedSystem| |typeForm| |cardinality| |stFunc1|
+ |rewriteIdealWithHeadRemainder| |outputAsTex| |powerAssociative?|
+ |patternMatch| |cycleLength| |interpret| |one?| |harmonic|
+ |permutation| |c05nbf| |dominantTerm| |extractIndex| |internal?|
+ |logical?| |complexEigenvalues| |OMgetEndObject| |mainVariable| |isOr|
+ |integrate| |s15aef| |mpsode| |sPol| |hasTopPredicate?| |complexLimit|
+ |diagonal?| |basisOfCenter| |tab| |completeSmith| |addmod|
+ |createPrimitiveElement| |color| |d01alf| |wordInStrongGenerators|
+ |logGamma| |s13acf| |charClass| |degreePartition| |sup|
+ |factorGroebnerBasis| |cSin| |point| |length| |conditionP| |divisor|
+ |complexSolve| |rightTraceMatrix| |mdeg|
+ |createLowComplexityNormalBasis| |reduction| |atanhIfCan| |option|
+ |associative?| |computeBasis| |scripts| |wholeRadix| |testDim|
+ |Lazard| |iipow| |numberOfMonomials| |totalGroebner| SEGMENT |shape|
+ |s19abf| |f07adf| |reducedQPowers| |intensity| |mapExpon| |tan2trig|
+ |port| |submod| |subscript| |seed| |product| |OMreadFile|
+ |outputBinaryFile| |series| |inrootof| |alphanumeric| |every?|
+ |sin2csc| |cLog| |irreducibleFactors| |algebraicVariables| |lambert|
+ |s20acf| |goodPoint| |splitLinear| |gcdPolynomial| |polyRicDE| |Is|
+ |t| |f04mbf| |numberOfVariables| |host| |tableau| |factorByRecursion|
+ |printCode| |semiSubResultantGcdEuclidean1| |fmecg| |f04adf| |merge!|
+ |separateDegrees| |shufflein| |lfextlimint| |overlabel| |digit|
+ |subResultantChain| |toroidal| |printTypes| |OMgetBind|
+ |deepestInitial| |cscIfCan| |cdr| |systemSizeIF| |rational?|
+ |normalForm| |simplifyPower| |lfunc| |min| |whatInfinity|
+ |zeroSetSplit| |definingPolynomial| |subNodeOf?| |virtualDegree|
+ |leftQuotient| |diff| |relativeApprox| |f02abf| |character?|
+ |goodnessOfFit| |clip| |constantKernel| |radicalSimplify| |quadratic|
+ |OMgetVariable| |rightFactorIfCan| |flagFactor| |wholeRagits| |f02akf|
+ |palgint0| |isPlus| |chiSquare| |eq?| |dimensionsOf| |unknown| |apply|
+ |lazyVariations| |radicalEigenvalues| |numberOfNormalPoly| |divisors|
+ |tryFunctionalDecomposition?| |s19adf| |functionIsOscillatory|
+ |rightUnit| |stFuncN| |readable?| |stoseInvertible?| |first| |d01fcf|
+ |halfExtendedSubResultantGcd1| |dn| |cyclicGroup| |cTanh|
+ |primPartElseUnitCanonical| |f07fdf| |outputArgs| |xor| |imag|
+ |diagonals| |solve1| |unitVector| |rest| |parametric?|
+ |indiceSubResultantEuclidean| |maxint| |OMputEndBVar|
+ |rightScalarTimes!| |directProduct| |normalElement| |besselI| |case|
+ |bracket| |e01bhf| |BumInSepFFE| |approximants|
+ |eisensteinIrreducible?| |degreeSubResultantEuclidean| |readIfCan!|
+ |symFunc| |bernoulli| |Zero| |removeRoughlyRedundantFactorsInPols|
+ |internalSubQuasiComponent?| |schwerpunkt| |bivariatePolynomials|
+ |charpol| |comp| |keys| |presub| |true| |chainSubResultants|
+ |composite| |att2Result| |void| |c02agf| |setValue!| |One| |top|
+ |removeZero| |patternVariable| |modifyPoint| |cup| |trigs2explogs|
+ |var1Steps| |sortConstraints| |fullPartialFraction|
+ |generalizedEigenvector| |continue| |critBonD| |romberg| |imagj|
+ |generic?| |tRange| |pToHdmp| |f01mcf| |primes| |putGraph| |sort|
+ |plusInfinity| |makeSin| |makeprod| |algebraicOf| |principalIdeal|
+ |divideExponents| |defineProperty| |trunc| |iisinh| |changeThreshhold|
+ |c02aff| |minusInfinity| |setScreenResolution3D| |internalSubPolSet?|
+ |connect| |iicoth| |quadraticForm| |padicallyExpand|
+ |univariatePolynomial| |Gamma| |create| |makeViewport3D|
+ |nthFractionalTerm| |pointColor| |listRepresentation| |reducedSystem|
+ |Frobenius| |id| |mainCharacterization| |leadingBasisTerm| |tubePlot|
+ |reverseLex| |lSpaceBasis| |laplacian| |refine| |iiasinh| |transform|
+ |roughSubIdeal?| |realEigenvalues| |elt| |rightRecip| |lo|
+ |coerceImages| |writeLine!| |lazyEvaluate| |basicSet| |littleEndian|
+ |random| |representationType| |quote| |deleteRoutine!| |rangeIsFinite|
+ |wronskianMatrix| |next| |iiacosh| |integralMatrix|
+ |OMsupportsSymbol?| |imagJ| |sayLength| |postfix| |df2st| |sqfrFactor|
+ |stoseInternalLastSubResultant| |diagonalProduct| |mapGen| |pushucoef|
+ |iiacot| |positive?| |f04qaf| |lllip| |numberOfPrimitivePoly|
+ |showArrayValues| |integralRepresents| |cyclic?| |OMgetBVar|
+ |compactFraction| |palgLODE| |complete| |fortranCompilerName| |dot|
+ |iicsc| |setAdaptive3D| |getRef| |latex| |ord| |s17dhf|
+ |categoryFrame| |bumptab| |float?| |exQuo| |unitCanonical|
+ |cyclicEqual?| |matrixGcd| |badNum| |corrPoly| |ode1| |readBytes!|
+ |BasicMethod| |hostByteOrder| |useEisensteinCriterion| |delay|
+ |adaptive| |e04ycf| |insert| |child| |complexZeros| |subSet|
+ |readInt16!| |leftDivide| |basisOfMiddleNucleus| |cAcsc| |maxColIndex|
+ |viewport3D| |physicalLength| |reducedDiscriminant| |leader|
+ |quadratic?| |positiveSolve| |degreeSubResultant| |extractClosed|
+ |mainForm| |restorePrecision| |getCurve| |pointColorPalette|
+ |consnewpol| |exprToUPS| |cschIfCan| |sinhcosh| |binaryTree|
+ |writable?| |addMatch| |setOrder| |pToDmp| |applyRules| |rootRadius|
+ |mkIntegral| |inGroundField?| |OMputBVar| |OMgetEndError|
+ |semiIndiceSubResultantEuclidean| |nary?| |lighting| |localAbs|
+ |lazyPremWithDefault| |changeBase| |viewWriteDefault| |cfirst|
+ |qfactor| |nextsubResultant2| |createPrimitiveNormalPoly|
+ |toseSquareFreePart| |calcRanges| |algebraicCoefficients?|
+ |leftTraceMatrix| |d03faf| |minPoints3D| |setright!| |normDeriv2|
+ |radicalOfLeftTraceForm| |LazardQuotient| |commutator| |reduceLODE|
+ |primitivePart!| |graphState| |shiftRoots| |possiblyInfinite?|
+ |palginfieldint| |zoom| |quotedOperators| |magnitude| |nullary?|
+ |node?| |lexico| |startPolynomial| |symbolTable| |eulerE| |normalise|
+ |quickSort| |bsolve| |gramschmidt| |splitConstant|
+ |scanOneDimSubspaces| |callForm?| |quartic| |primeFrobenius| |s17aff|
+ |balancedBinaryTree| |B1solve| |csch2sinh| |fortranDouble| |setTex!|
+ |tubeRadiusDefault| |escape| |pushFortranOutputStack| |numerators|
+ |invmultisect| |Si| |upperCase| |divideIfCan| |tablePow|
+ |pseudoDivide| |setRealSteps| |idealSimplify| |popFortranOutputStack|
+ |width| |trim| |simplifyExp| |rootOfIrreduciblePoly| |e02baf| |super|
+ |selectPolynomials| |open?| |fTable| |exponent| |f01maf|
+ |outputAsFortran| |rightMinimalPolynomial| |argumentList!| |cosIfCan|
+ |pol| |dequeue!| |exponentialOrder| Y |mapmult|
+ |variationOfParameters| |powers| |OMParseError?| |messagePrint|
+ |simplifyLog| |moduleSum| |monicDivide| |jacobian| |phiCoord|
+ |lazyPrem| |decompose| |eigenvector| |rotate| |expressIdealMember|
+ |noncommutativeJordanAlgebra?| |nthr| |infix| |selectPDERoutines|
+ |ellipticCylindrical| |f02fjf| |interpolate| |d01asf|
+ |selectMultiDimensionalRoutines| |remainder| |lowerBound| |bipolar|
+ |nil?| |clearCache| |sumSquares| |topPredicate| |readUInt16!| |lift|
+ |table| |tubeRadius| |completeHermite| |nextPrime| |maxPoints|
+ |isPower| |rename!| |reindex| |e04mbf| |addBadValue| |reduce| |new|
+ |upperCase!| |insert!| |fillPascalTriangle| |obj|
+ |selectOrPolynomials| |iisqrt3| |removeIrreducibleRedundantFactors|
+ |recolor| |socf2socdf| |integral| |reverse!| |solveid|
+ |removeConstantTerm| |cache| |stoseLastSubResultant|
+ |rightRegularRepresentation| |external?| |li| |vertConcat| |dark|
+ |cyclicSubmodule| |genericRightDiscriminant| |plot| |cycle| |expt|
+ |rootPoly| |factorOfDegree| |c06frf| |uncouplingMatrices|
+ |startTableGcd!| |linSolve| |leftRankPolynomial| |cAsin| |rk4a|
+ |raisePolynomial| |check| |allRootsOf| |approxSqrt| |duplicates?|
+ |factor| |cCosh| |moebius| |removeRedundantFactorsInPols| |checkRur|
+ |mindeg| |forLoop| |hexDigit?| |ref| |totalDifferential| |OMgetType|
+ |dmpToHdmp| |generalInfiniteProduct| |nonLinearPart| |endSubProgram|
+ |rCoord| |integralBasisAtInfinity| |gderiv| |multisect| |mapUp!|
+ |LiePolyIfCan| |tubePoints| |vector| |setErrorBound| |llprop| |iiexp|
+ |GospersMethod| |car| |inspect| |complex?| |euclideanGroebner| |list?|
+ |differentiate| |numberOfFactors| |userOrdered?| |tanh2trigh| |iomode|
+ |explimitedint| |coerceS| |predicate| |antiCommutator|
+ |basisOfLeftAnnihilator| |simpsono| |c06fuf| |airyBi| |mainKernel|
+ |setProperties| |e01baf| |lowerCase!| |roughBasicSet| |OMputObject|
+ |euler| |digit?| |SturmHabichtCoefficients| |binaryTournament| |size|
+ |irreducibleFactor| |safetyMargin| |left| ** |lyndon?| |monomial|
+ |laurentRep| |dom| |test| |logpart| |powern| |directSum| |box|
+ |leftTrace| |stoseInvertible?reg| |byte| |lfintegrate| |minIndex|
+ |multivariate| |right| |removeCosSq| |removeZeroes| |fixPredicate|
+ |palgintegrate| |zCoord| |extractSplittingLeaf| |cCsc|
+ |halfExtendedResultant2| |extendIfCan| |Aleph| |position!|
+ |retractIfCan| |subspace| |janko2| |rewriteSetWithReduction|
+ |basisOfCommutingElements| |rightZero| |lllp| |coefficients| |f02agf|
+ |close| |squareFree| |SturmHabichtMultiple| |linear| |highCommonTerms|
+ |weakBiRank| |mapUnivariateIfCan| |e02daf| |laplace| |mathieu24|
+ |computeCycleEntry| |OMputEndObject| |triangularSystems|
+ |stoseInvertibleSetreg| |sqrt| |rombergo| |dioSolve| |conjugate|
+ |setprevious!| |e02ajf| |updatF| |e04dgf| |leaves| |display|
+ |indicialEquation| |polynomial| |expPot| |real| |title| |rootPower|
+ |pade| |ravel| |resultant| |createNormalElement| |repeatUntilLoop|
+ |units| |repSq| |aromberg| |prefix| |tanSum| |cCsch| |deepExpand|
+ |writeInt8!| |iiabs| |newSubProgram| |symbolIfCan| |reshape|
+ |minimalPolynomial| |inputOutputBinaryFile| |points| |parameters|
+ |implies| |multinomial| |convergents| |s18dcf| |backOldPos| |s13aaf|
+ |scopes| |particularSolution| |int| |cSec| |s14abf| |blue| |e|
+ |mapdiv| |characteristicPolynomial| |OMopenString| F2FG |odd?| |node|
+ |linearAssociatedOrder| |leftRemainder| |decreasePrecision| |expint|
+ |e02bdf| |operators| |tryFunctionalDecomposition| |removeSinhSq|
+ |LowTriBddDenomInv| |var2StepsDefault| |SFunction| |createThreeSpace|
+ |input| |simplify| |setPrologue!| |map| |localUnquote| |numFunEvals|
+ |weight| |showTheSymbolTable| |fintegrate| |brace| |kernels| |code|
+ |testModulus| |OMgetApp| |palgRDE0| |library| |symmetric?| |lyndon|
+ |aspFilename| |solveLinearPolynomialEquationByRecursion| |constant?|
+ |e02adf| |update| |eq| |operator| |showSummary| |isEquiv| |fortran|
+ |s21bdf| |sample| |argumentListOf| |algebraic?| |schema|
+ |partialQuotients| |iicot| |atrapezoidal| |primPartElseUnitCanonical!|
+ |iter| |rootProduct| |optimize| |cSinh| |coerceL| |primextintfrac|
+ |constDsolve| |denominators| |infieldint| |associator|
+ |algebraicDecompose| |redmat| |isNot| |tanQ| |sequence| |selectfirst|
+ |hyperelliptic| |leastAffineMultiple| |ScanFloatIgnoreSpaces|
+ |continuedFraction| |multiple?| |assert| |cycleSplit!| |measure|
+ |asinIfCan| |myDegree| |optional?| |multMonom| |convert| |pomopo!|
+ |contract| |subResultantsChain| |OMputEndAtp| |signatureAst|
+ |showAttributes| |psolve| |rdregime| |split!| |order| |level|
+ |ldf2lst| |FormatArabic| |groebnerIdeal|
+ |semiLastSubResultantEuclidean| |zeroDim?| |position| |log2|
+ |nextIrreduciblePoly| |evenlambert| |areEquivalent?| |algSplitSimple|
+ |readUInt8!| |mergeDifference| |separant| |companionBlocks| |unit?|
+ |denomRicDE| |generalSqFr| |solveRetract| |RemainderList| |derivative|
+ |viewDeltaYDefault| |iiasec| |sncndn| |swap| |quotient| |fixedDivisor|
+ |setlast!| |createLowComplexityTable| |compile| |subMatrix|
+ |characteristicSerie| |status| |endOfFile?| |exp| |evaluateInverse|
+ |minPoly| |subNode?| |nlde| |zeroDimPrimary?| |createNormalPoly|
+ |separateFactors| |doubleFloatFormat|
+ |removeSuperfluousQuasiComponents| |equation| |lazyPseudoQuotient|
+ |rightGcd| |numeric| |invertible?| |initiallyReduced?| |curry| |iilog|
+ |setfirst!| |rightDivide| |extractPoint| |radical| |ParCond|
+ |sylvesterSequence| |removeSuperfluousCases| |LyndonCoordinates|
+ |f02wef| |rotatey| |build| |normalizedDivide| |badValues| |scale|
+ |rationalPoints| |shiftLeft| |before?| |rootSimp|
+ |setScreenResolution| |collectQuasiMonic| |e01bff| |OMgetString|
+ |irreducibleRepresentation| |script| |boundOfCauchy| |sh| |dmpToP|
+ |style| |noValueMode| |modulus| |f07aef| |cosSinInfo| |rootSplit|
+ |printInfo| |prinb| |vark| |sumOfSquares| |e04naf| |support|
+ |quasiMonicPolynomials| |any?| |OMputBind| |cyclotomic| |unparse|
+ |mix| |numberOfComponents| |fullDisplay| |iiasin| |symmetricSquare|
+ |localReal?| |bivariate?| |constantLeft| |tex| |arity|
+ |resetBadValues| |is?| |radicalSolve| |lepol| |nullSpace|
+ |relationsIdeal| |d01apf| |nothing| |overbar| |imagE| |vconcat|
+ |mindegTerm| |resultantReduitEuclidean| |zerosOf| |monomRDE| |optpair|
+ |setrest!| |mergeFactors| |size?| |atanIfCan|
+ |createMultiplicationMatrix| |univariatePolynomials| |figureUnits|
+ |rightMult| |problemPoints| |s18adf| |gcdPrimitive| |central?|
+ |addiag| |viewSizeDefault| |definingEquations| |complexEigenvectors|
+ |makeSUP| |monomialIntegrate| |decomposeFunc| |identity| |finiteBasis|
+ |saturate| |OMencodingBinary| |qelt| |ramifiedAtInfinity?|
+ |primintfldpoly| |generalizedContinuumHypothesisAssumed|
+ |getMultiplicationMatrix| |e01sbf| |oddInfiniteProduct| |type|
+ |qsetelt| |imagI| |sech2cosh| |eigenMatrix| |low| |rem|
+ |numberOfComputedEntries| |viewDeltaXDefault| |solve|
+ |localIntegralBasis| |fortranCharacter| |lazyIrreducibleFactors|
+ |dihedral| |freeOf?| |UP2ifCan| |quo| |xRange| |outputGeneral|
+ |initial| |LyndonWordsList| |errorKind| |prepareSubResAlgo|
+ |create3Space| |cons| |OMopenFile| |tanIfCan| |ParCondList| |yRange|
+ |ratDsolve| |mainVariables| |constantOperator| |LiePoly|
+ |symmetricTensors| |universe| |dim| |polyPart| |numericIfCan|
+ |getOrder| |div| |zRange| |leftNorm| |factorset| |chvar| |makeFR|
+ |hcrf| |e01daf| |appendPoint| |map!| |factorSquareFreeByRecursion|
+ |printStats!| |exquo| |pastel| |asimpson| |c06gbf| |isTimes|
+ |rationalPoint?| |makeGraphImage| |qsetelt!| |front| |stopTableGcd!|
+ ~= |tensorProduct| |cCos| |iiacsch| |f01qef| |octon| |orbit| |null?|
+ |subresultantSequence| |smith| |#| |nativeModuleExtension| |revert|
+ |shuffle| |subTriSet?| |infinite?| |extractIfCan| |constantRight|
+ |droot| |zero| |linearDependence| ~ |unit| |coerce|
+ |multiEuclideanTree| |curveColorPalette| |f01qcf| |fortranTypeOf|
+ |f04axf| |source| |flexibleArray| |radicalRoots| |stFunc2|
+ |maximumExponent| |construct| |fibonacci| |iroot| |mainVariable?|
+ |pushup| |And| |bipolarCylindrical| |represents| |leadingExponent|
+ |factorial| |iiperm| |positiveRemainder| |basisOfNucleus| |overlap|
+ |pdf2df| |nextPrimitivePoly| |/\\| |Or| |wordsForStrongGenerators|
+ |acsch| |region| |constantCoefficientRicDE| |coefChoose| |string?|
+ |frobenius| |real?| |f02adf| |elaborate| |Not| |iisec| |\\/| |rename|
+ |mkAnswer| |rationalApproximation| |normalDenom| |rk4qc|
+ |stoseSquareFreePart| |constantIfCan| |part?| |getExplanations|
+ |exprex| |rightQuotient| |closed| |viewport2D| |target| |normalized?|
+ |acothIfCan| |lazyResidueClass| |exprHasLogarithmicWeights|
+ |hypergeometric0F1| |genericRightTraceForm| |qroot|
+ |principalAncestors| |rst| |minRowIndex| |squareFreePrim| |imagK|
+ |sinh2csch| |indiceSubResultant| |indices| |leftScalarTimes!|
+ |getZechTable| |weierstrass| |bfKeys| |clipParametric| |addPointLast|
+ |leftOne| |monomials| |permanent| |abelianGroup|
+ |inverseIntegralMatrixAtInfinity| |genericLeftDiscriminant| |edf2fi|
+ |hessian| |exp1| |clearTheSymbolTable| |quadraticNorm| |acosIfCan|
+ |SturmHabicht| |transpose| |shiftRight|
+ |rightCharacteristicPolynomial| |second| |open| |irDef|
+ |setLabelValue| |integers| |univariate?| |computePowers| |minGbasis|
+ |integralDerivationMatrix| |tab1| |lintgcd|
+ |permutationRepresentation| |third| |sub| |rightAlternative?|
+ |readLineIfCan!| |twist| |getBadValues| |linear?| |bitLength|
+ |surface| |pow| |move| |crushedSet| |inverse| |pseudoRemainder|
+ |indicialEquations| |initiallyReduce| |paraboloidal| |reorder|
+ |characteristic| |contractSolve| |nilFactor| |modularGcdPrimitive|
+ |removeRoughlyRedundantFactorsInContents| |binomThmExpt| |evaluate|
+ |computeCycleLength| |cyclic| |rowEchLocal| |reset| |module|
+ |indicialEquationAtInfinity| |isExpt| |bright| |operations| |cSech|
+ |coshIfCan| |insertionSort!| |zeroVector| |empty?| |elem?| F
+ |morphism| |isAnd| |commutativeEquality| |remove!| |bounds| |conical|
+ |approxNthRoot| |prime?| |makeMulti| |cyclicEntries|
+ |standardBasisOfCyclicSubmodule| |graphStates| |pushNewContour|
+ |write| |simpson| |truncate| |inc| |cross| |eval|
+ |genericRightMinimalPolynomial| |graeffe| |initials| |gethi|
+ |mightHaveRoots| |setelt| |setRow!| |setPosition| |save| LODO2FUN
+ |capacity| |errorInfo| |iibinom| |routines| |lieAdmissible?|
+ |useEisensteinCriterion?| |rightExtendedGcd| |setMinPoints3D| |c06gqf|
+ |bigEndian| |attributeData| |alternative?| |zag| |iidsum| |overset?|
+ |sn| |getStream| |modifyPointData| |pseudoQuotient| |copy|
+ |viewThetaDefault| |infinityNorm| |slex| |c05pbf| |listexp| |error|
+ |lazy?| |acotIfCan| |expandLog| |just| |OMconnInDevice| |repeating?|
+ |extendedSubResultantGcd| EQ |unmakeSUP| |factorPolynomial|
+ |argscript| |write!| |monic?| |antiCommutative?| |complexRoots|
+ |fortranInteger| |norm| |euclideanSize| |rightRank| |diag| |extract!|
+ |leftRecip| |outputFloating| |factorsOfDegree| |safeFloor| |mathieu12|
+ |d02raf| |s17dgf| |s20adf| |genus| |hasSolution?| |kmax| |middle|
+ |parent| |cylindrical| |invmod| |legendre| |OMputSymbol|
+ |retractable?| |primeFactor| |pmComplexintegrate| |normInvertible?|
+ |removeSquaresIfCan| |match?| |interactiveEnv| |f02awf| |satisfy?|
+ |sin?| |gradient| |autoCoerce| |invertIfCan| |f04asf| |polyred|
+ |solveInField| |OMputEndAttr| |solveLinear| |heapSort|
+ |numberOfImproperPartitions| |singRicDE| |pile| |assign| |binding|
+ |countable?| |generalizedContinuumHypothesisAssumed?| |leaf?|
+ |mapCoef| |genericLeftMinimalPolynomial| |rightRemainder| |prologue|
+ |Nul| |numberOfOperations| |maxrow| |putProperties| |parseString|
+ |singular?| |unitNormalize| |powmod| |rightNorm| |explicitlyFinite?|
+ |fglmIfCan| |copy!| |f02bjf| |toScale| |someBasis| |genericLeftNorm|
+ |hdmpToDmp| |e04gcf| |column| |rur| |integer?| |unitNormal|
+ |unaryFunction| |changeName| |complexElementary| |entry|
+ |rightExactQuotient| |cAsinh| |ceiling| |edf2ef| |identityMatrix|
+ |totalLex| |traverse| |subtractIfCan| |semicolonSeparate|
+ |createZechTable| |innerEigenvectors| |d01akf| |exportedOperators|
+ |jordanAlgebra?| |cycles| |triangular?| |parametersOf| |df2fi| |eof?|
+ |tracePowMod| |showScalarValues| |uniform| |binomial| |null|
+ |symmetricDifference| |squareFreePart| |dflist| |times!|
+ |unprotectedRemoveRedundantFactors| |setAdaptive| |bezoutResultant|
+ |hasHi| |stiffnessAndStabilityOfODEIF| |twoFactor| |shade| |not|
+ |generators| |f2df| |d02kef| |gcdprim| |lastSubResultantEuclidean|
+ |bag| |negative?| |sdf2lst| |musserTrials| |associates?| |and|
+ |oddlambert| |variable?| |zero?| |recur| |toseInvertible?|
+ |categories| |unknownEndian| |expenseOfEvaluation| |cycleElt|
+ |palgRDE| |sincos| |or| |delete| |coerceListOfPairs|
+ |jordanAdmissible?| |extension| |gensym| |mainContent| |pole?|
+ |expenseOfEvaluationIF| |mapMatrixIfCan| |binarySearchTree|
+ |toseInvertibleSet| |toseLastSubResultant| |fracPart| |palglimint0|
+ |typeList| |radicalEigenvectors| |removeDuplicates| |leadingSupport|
+ |orbits| |setleft!| |e02agf| |s17acf| |integralMatrixAtInfinity|
+ |headAst| |rationalFunction| |bit?| |qualifier| |setStatus|
+ |mainExpression| |partitions| |composites| |f01rcf| |diagonalMatrix|
+ |makingStats?| |removeCoshSq| |argument| |substitute| |acscIfCan|
+ |round| |branchPoint?| |prolateSpheroidal| |mainPrimitivePart|
+ |e02dff| |lexGroebner| |ODESolve| |inconsistent?| |colorDef| |mat|
+ |ridHack1| |extend| |spherical| |double?| |randomLC| |newTypeLists|
+ |accuracyIF| |isQuotient| |rational| |idealiser| |algintegrate|
+ |copyInto!| |curryRight| |fortranLiteralLine| |purelyTranscendental?|
+ |HermiteIntegrate| |solveLinearPolynomialEquationByFractions| |c06ebf|
+ |rightLcm| |partialFraction| UTS2UP |f01brf| |patternMatchTimes|
+ |clipPointsDefault| |meatAxe| |polynomialZeros| |d01bbf| |lazyPquo|
+ |var2Steps| |selectIntegrationRoutines| |s19acf| |basisOfRightNucloid|
+ |bandedJacobian| |f01rdf| |f04mcf| |rotate!| |depth| |iiasech|
+ |showTheRoutinesTable| |karatsubaDivide| |credPol| |selectsecond|
+ |weighted| |completeEchelonBasis| |putColorInfo| |groebSolve| |cn|
+ |associatorDependence| |expintegrate| |intersect| |power!| |rotatez|
+ |regularRepresentation| |mkPrim| |OMgetAtp| |isConnected?| |height|
+ |OMlistSymbols| |inputBinaryFile| |changeWeightLevel| |ScanArabic|
+ |clearTable!| |makeop| |leftFactor| |setButtonValue| |e02gaf| |dec|
+ |fractionPart| |bitTruth| |opeval| |univariatePolynomialsGcds|
+ |linearlyDependent?| |combineFeatureCompatibility| |option?|
+ |rightDiscriminant| |numericalIntegration| |perfectNthRoot| |cPower|
+ |nextLatticePermutation| |setFormula!| |selectFiniteRoutines|
+ |lastSubResultantElseSplit| |merge| |stirling1| |connectTo| |log10|
+ |prefixRagits| |univcase| |rischDEsys| |headReduce| |iisech|
+ |sizeMultiplication| |choosemon| |readInt8!| |limitedIntegrate|
+ |bitand| |iiacos| |cubic| |lazyGintegrate| |midpoints|
+ |minimumExponent| |s17ahf| |splitDenominator| |d01anf|
+ |halfExtendedResultant1| |bubbleSort!| |distdfact|
+ |resultantEuclideannaif| |quasiRegular| |pointLists| |denomLODE|
+ |subQuasiComponent?| |parabolicCylindrical| |autoReduced?| |iicsch|
+ |genericRightNorm| |sinIfCan| |bombieriNorm| |readByte!| |functorData|
+ |rationalPower| |newLine| |fixedPointExquo| |finite?|
+ |fortranCarriageReturn| |pquo| |dAndcExp| |possiblyNewVariety?|
+ |squareFreePolynomial| |rewriteIdealWithRemainder| |const|
+ |coordinates| |debug| |rk4f| |failed| |An| |nextItem| |d02cjf|
+ |factorFraction| |semiResultantEuclideannaif| |taylorRep| |vectorise|
+ |substring?| D |asinhIfCan| |basisOfRightNucleus| |setClosed|
+ |leadingCoefficientRicDE| |palgextint| |belong?| |contours|
+ |initTable!| |decrease| |duplicates| |adaptive3D?| |controlPanel|
+ |sizeLess?| |leadingIndex| |pair?| |primitivePart| |suffix?|
+ |monicRightDivide| |select!| |nextSubsetGray| |green| |leftUnit|
+ |monicLeftDivide| |prevPrime| |sorted?| |swap!| |quatern| |component|
+ |ranges| |nil| |roman| |tail| |log| |associatedEquations|
+ |splitSquarefree| |univariate| |aQuadratic| |prefix?| |laurentIfCan|
+ |removeDuplicates!| |setnext!| |generalizedInverse| |discreteLog|
+ |init| |modularGcd| |property| |rspace|
+ |stoseIntegralLastSubResultant| |trapezoidal| |resultantnaif|
+ |macroExpand| |iiatanh| |expintfldpoly| |OMreceive| |arbitrary|
+ |homogeneous?| |minPoints| |useNagFunctions| |varList|
+ |pointSizeDefault| |lflimitedint| |besselY| |ocf2ocdf| |approximate|
+ |normal01| |partialNumerators| |e01sef| |showTheFTable| |limit|
+ |iprint| |row| |nand| |complex| |rquo| |printInfo!| |qqq|
+ |setFieldInfo| |palglimint| |subset?| |stopTableInvSet!| |normalize|
+ |zeroSquareMatrix| |screenResolution| |qPot| |setDifference|
+ |meshFun2Var| |basisOfRightAnnihilator| |buildSyntax|
+ |intPatternMatch| |print| |sechIfCan| |enqueue!| |determinant|
+ |properties| |iitanh| |outputFixed| |conditionsForIdempotents|
+ |infix?| |OMclose| |resolve| |lazyIntegrate| |coHeight| |translate|
+ |packageCall| |yCoord| |rightUnits| |mask| |axes| |declare|
+ |identitySquareMatrix| |singularAtInfinity?| |normalizeIfCan|
+ |stripCommentsAndBlanks| GF2FG |measure2Result| |supRittWu?|
+ |linGenPos| |pushdterm| |PDESolve| |adaptive?| |weights| |realZeros|
+ |reduced?| |frst| |split| |deleteProperty!| |members| |parabolic|
+ |iisqrt2| |rewriteSetByReducingWithParticularGenerators| |critT|
+ |alphabetic?| |rowEchelonLocal| |numberOfCycles| |completeEval| |high|
+ |e02zaf| GE |listLoops| |monicRightFactorIfCan| |randnum|
+ |setEpilogue!| |pack!| |e02bbf| |uniform01|
+ |semiDiscriminantEuclidean| |critMTonD1| |knownInfBasis| |slash| GT
+ |mapUnivariate| |cos2sec| |find| |d01aqf| |closedCurve?| |denominator|
+ |mainMonomials| |say| |constantToUnaryFunction|
+ |showIntensityFunctions| LE |interval| |chineseRemainder| |delta|
+ |f02aaf| |doubleComplex?| |compBound| |d02bhf| |OMlistCDs| LT
+ |equality| |exptMod| |reseed| |LazardQuotient2| |cycleTail| |iisin|
+ |comparison| |drawCurves| |hex| |entries| |plus| |reduceByQuasiMonic|
+ |bandedHessian| |subHeight| |ode2| |contains?| |moebiusMu|
+ |setsubMatrix!| |roughEqualIdeals?| |modularFactor| |s19aaf|
+ |youngGroup| |realRoots| |shift| |distance| |drawStyle| |nthFactor|
+ |primitiveElement| |conjugates| |iicosh| |eulerPhi| |member?| |remove|
+ |factorAndSplit| |internalZeroSetSplit| |df2mf| |tValues|
+ |prinpolINFO| |polar| |curveColor| |exprToXXP| |linearPolynomials|
+ |ScanRoman| |deriv| |rightRankPolynomial| |permutations| |environment|
+ |times| |expandPower| |insertMatch| |asecIfCan| |elRow1!| |last|
+ |largest| |insertTop!| |integral?| |copies| |iitan| |generator|
+ |adjoint| |dequeue| |internalIntegrate0| |mantissa| |aCubic| |more?|
+ |usingTable?| |assoc| |factorSquareFreePolynomial| |replaceKthElement|
+ |extendedint| |s21baf| |nthCoef| |elaboration| |d01amf| |gbasis|
+ |f02bbf| |medialSet| |beauzamyBound| |mainMonomial| |trapezoidalo|
+ |imagk| |quoted?| |listBranches| BY |hMonic| |rationalIfCan| |f04faf|
+ |condition| |froot| |nullity| |jacobi| |changeVar| |monom| |collect|
+ |cAcosh| |enterInCache| |linearDependenceOverZ| |range| |s17ajf|
+ |mainSquareFreePart| |realEigenvectors| |OMconnectTCP| |maxdeg|
+ |polygamma| |minus!| |abs| |dual| |getOperands| |cyclicParents|
+ |divide| |structuralConstants| |cap| |lyndonIfCan| |algDsolve|
+ |charthRoot| |insertBottom!| |erf| |space| |e01bef| |csc2sin|
+ |roughBase?| |output| |common| |maxRowIndex| |diagonal| |scaleRoots|
+ |leftExtendedGcd| |hue| |nextNormalPrimitivePoly| |iteratedInitials|
+ |plus!| |isImplies| |shanksDiscLogAlgorithm| |mathieu23| |eigenvalues|
+ |tan2cot| |heap| |constant| |getIdentifier| |getSyntaxFormsFromFile|
+ |padecf| |resetNew| |constructor| |ode| |s18def| |HenselLift|
+ |factor1| |brillhartIrreducible?| |dilog| |c06eaf| |padicFraction| NOT
+ |cCoth| |definingInequation| |incr| |showRegion| |headRemainder|
+ |subscriptedVariables| |f02xef| |htrigs| |sin| |function|
+ |OMcloseConn| |selectAndPolynomials| OR |OMputVariable| |fixedPoints|
+ |dualSignature| |hi| |d02bbf| |branchIfCan| |stoseInvertibleSet|
+ |drawComplexVectorField| |cos| |doublyTransitive?| |iifact|
+ |unrankImproperPartitions1| AND |rightTrim| |terms| |trace2PowMod|
+ |outputAsScript| |f2st| |setEmpty!| |antisymmetricTensors| |tan|
+ |iExquo| |key?| |numerator| |internalInfRittWu?| |leftTrim|
+ |exprHasWeightCosWXorSinWX| |explicitlyEmpty?|
+ |createMultiplicationTable| |quasiMonic?| |UnVectorise| |cot|
+ |setleaves!| |reducedContinuedFraction| |gcdcofact| |OMgetEndBVar|
+ |normal?| |coth2tanh| |lfextendedint| |trailingCoefficient|
+ |setStatus!| |sec| |solid| |clikeUniv| |seriesToOutputForm| |torsion?|
+ |chebyshevT| |clearTheIFTable| |iflist2Result| |OMgetEndApp|
+ |primextendedint| |csc| |symbol| |exprHasAlgebraicWeight|
+ |eigenvectors| |setLegalFortranSourceExtensions| |identification|
+ |difference| |polygon?| |firstUncouplingMatrix| |cotIfCan| |flexible?|
+ |asin| |expression| |delete!| |complement| |rk4| |floor| |f04jgf|
+ |normalizedAssociate| |closedCurve| |separate| |pdct| |acos|
+ |normalizeAtInfinity| |integer| |branchPointAtInfinity?| |destruct|
+ |redPol| |coleman| |rightFactorCandidate| |poisson| |taylorQuoByVar|
+ |minset| |irCtor| |showTheIFTable| |atan| |pdf2ef| |augment| |coord|
+ |taylorIfCan| |redPo| |integerBound| |stirling2| |screenResolution3D|
+ |selectNonFiniteRoutines| |outlineRender| |acot| |getMeasure|
+ |aLinear| |f02ajf| |components| |UpTriBddDenomInv| |lookupFunction|
+ |critM| |firstDenom| |nsqfree| |asec| |processTemplate| |empty| *
+ |OMbindTCP| |infLex?| |iiGamma| |lhs| |tanhIfCan| |hasPredicate?|
+ |trigs| |incrementKthElement| |acsc| |balancedFactorisation|
+ |singleFactorBound| |lcm| |nor| |expIfCan| |specialTrigs| |rhs|
+ |OMconnOutDevice| |lex| |removeSinSq| |groebgen| |sinh|
+ |getProperties| |mesh| |e01saf| |factorSFBRlcUnit| |f04arf| |generate|
+ |acschIfCan| |squareTop| |discriminant| |intcompBasis|
+ |multiEuclidean| |cosh| |primlimitedint| |append|
+ |semiResultantReduitEuclidean| |hash| |maxrank| = |currentEnv|
+ |minordet| |simpleBounds?| |preprocess| |lineColorDefault| |pattern|
+ |isOp| |tanh| |polarCoordinates| |minimize| |OMreadStr| |gcd| |count|
+ |pointPlot| |radPoly| |incrementBy| |commaSeparate| |ramified?|
+ |OMsend| |geometric| |clipBoolean| |coth| |ldf2vmf|
+ |listConjugateBases| |false| |lp| < |symbolTableOf| |expand|
+ |univariateSolve| |resetAttributeButtons| |category| |skewSFunction|
+ |supDimElseRittWu?| |ptree| |concat!| |genericLeftTraceForm| |flatten|
+ |semiSubResultantGcdEuclidean2| |addPoint2| > |tube| |s15adf|
+ |filterWhile| |domain| |extractProperty| |nextSublist| |crest|
+ |loadNativeModule| |zeroDimPrime?| |traceMatrix| |makeUnit|
+ |exponential| |e02ahf| <= |even?| |filterUntil| |oblateSpheroidal|
+ |package| |gcdcofactprim| |iCompose| |message| |ratPoly| |s01eaf|
+ |typeLists| |OMserve| >= |sequences| |lexTriangular| |select|
+ |dihedralGroup| |OMputAttr| |polyRDE| |Hausdorff| |byteBuffer|
+ |alternating| |groebner| |d01gbf| |rootOf| |omError| |double|
+ |euclideanNormalForm| |cAcos| |monicModulo| |Ci| |parts| |imaginary|
+ |OMunhandledSymbol| |getPickedPoints| |normalDeriv| |f02aef|
+ |primaryDecomp| |swapColumns!| |palgextint0| |secIfCan| |cot2trig|
+ |vedf2vef| |OMread| |totalDegree| |binaryFunction| + |OMgetEndBind|
+ |OMsetEncoding| |realElementary| |triangSolve| |tanNa| |parents|
+ |seriesSolve| |nthExponent| |xn| |binary| |trivialIdeal?| -
+ |linearAssociatedLog| |f01qdf| |innerint| |sec2cos|
+ |linearAssociatedExp| |call| |primlimintfrac| |showAll?| |recip|
+ |dmp2rfi| / |wordInGenerators| |leftCharacteristicPolynomial|
+ |children| |fprindINFO| |rule| |tubePointsDefault| |insertRoot!|
+ |elementary| |exponential1| |complexNormalize| |divergence|
+ |makeRecord| |symmetricPower| |untab| |readLine!|
+ |transcendenceDegree| |exponents| |reopen!| |useSingleFactorBound?|
+ |outerProduct| |hostPlatform| |createRandomElement| |rightTrace|
+ |wreath| |prime| |randomR| |fill!| |curryLeft| |finiteBound| |e01bgf|
+ |declare!| |supersub| |subResultantGcdEuclidean| |createGenericMatrix|
+ |maxIndex| |youngDiagram| |changeNameToObjf| |cycleRagits| |ideal|
+ |ignore?| |dimensions| |partialDenominators| |squareFreeFactors|
+ |LyndonBasis| |repeating| |inR?| |subPolSet?| |setTopPredicate|
+ |compose| |unexpand| |d01ajf| |OMputError| |updatD| |qinterval|
+ |blankSeparate| |isAbsolutelyIrreducible?| |rules| |s18aef|
+ |kroneckerDelta| |extractTop!| |removeRedundantFactorsInContents|
+ |whileLoop| |epilogue| |sqfree| |symmetricRemainder| |multiset|
+ |expextendedint| |numberOfComposites| |shallowCopy| |inRadical?|
+ |symbol?| |step| |firstNumer| |noLinearFactor?| |setPoly|
+ |LagrangeInterpolation| |stopTable!| |RittWuCompare| |cosh2sech|
+ |dimensionOfIrreducibleRepresentation| |tanh2coth| |csubst|
+ |inverseColeman| |OMputEndApp| |semiResultantEuclidean1| |noKaratsuba|
+ |conjunction| |listOfLists| |cAcot| |fractionFreeGauss!| |makeSketch|
+ |segment| |generalizedEigenvectors| |digits| |fortranDoubleComplex|
+ |hitherPlane| |alternatingGroup| |stosePrepareSubResAlgo|
+ |integralLastSubResultant| |transcendentalDecompose| |upperBound|
+ |henselFact| |numberOfFractionalTerms| |basisOfCentroid| |number?|
+ |moduloP| |prepareDecompose| |graphs| |monomRDEsys| |bat|
+ |leadingIdeal| |d03eef| |e02dcf| |collectUnder| |squareMatrix|
+ |mainCoefficients| |oneDimensionalArray| |primintegrate| |palgLODE0|
+ |differentialVariables| |polCase| |OMencodingSGML| |upDateBranches|
+ |monicCompleteDecompose| |setOfMinN| |rightPower| |currentSubProgram|
+ |plenaryPower| |f02axf| |lprop| |po| |quasiComponent| |block| |key|
+ |neglist| |mapExponents| |triangulate| |expandTrigProducts| |coerceP|
+ |bezoutDiscriminant| |viewZoomDefault| |leviCivitaSymbol|
+ |createNormalPrimitivePoly| |elRow2!| |tanAn| |rdHack1| |value|
+ |countRealRootsMultiple| |completeHensel| |mappingAst| |filename|
+ |getDatabase| |cothIfCan| |critB| |getOperator| |powerSum| |back|
+ |totolex| |aQuartic| |e02bcf| |optional| |OMputString|
+ |listYoungTableaus| |ratpart| |disjunction| |generalTwoFactor|
+ |irForm| |lfinfieldint| |doubleRank| |replace| |formula| |parse|
+ |generalPosition| |OMputApp| |sylvesterMatrix| |presuper| |upperCase?|
+ |divisorCascade| |curve| |pr2dmp| |nextPartition| |elaborateFile|
+ |reducedForm| |removeRoughlyRedundantFactorsInPol| |stop|
+ |multiplyCoefficients| |arguments| |currentScope| |pointColorDefault|
+ RF2UTS |mr| |leftMinimalPolynomial| |OMgetInteger|
+ |complexNumericIfCan| |superHeight| |principal?| |increment| |f01bsf|
+ |leftFactorIfCan| |leftMult| |c06ecf| |singularitiesOf| |iterationVar|
+ |withPredicates| |chebyshevU| |nullary| |OMmakeConn| |loopPoints|
+ |sts2stst| |e02akf| |FormatRoman| |increase| |safeCeiling| |nrows|
+ |result| |deref| |bumptab1| |yCoordinates|
+ |rewriteIdealWithQuasiMonicGenerators| |elseBranch|
+ |setAttributeButtonStep| |setref| |viewDefaults| |mesh?| |Vectorise|
+ |plotPolar| |ncols| |validExponential| |integralCoordinates|
+ |internalIntegrate| |scan| |updateStatus!| |summation| |cTan|
+ |numberOfIrreduciblePoly| |enterPointData| |generateIrredPoly|
+ |leastMonomial| |c06ekf| |prod| |e02ddf| |e04ucf| |tower|
+ |generalLambert| |linearMatrix| |lazyPseudoRemainder| |bernoulliB|
+ |basis| |setMaxPoints3D| |sizePascalTriangle| |imports| |groebner?|
+ |airyAi| |nthFlag| |bivariateSLPEBR| |notelem| |invertibleElseSplit?|
+ |makeVariable| |complexForm| |totalfract| |eyeDistance| |relerror|
+ |OMgetEndAttr| |prindINFO| |taylor| |comment| |setchildren!|
+ |jokerMode| |root?| |distFact| |compiledFunction| |mapDown!| |atom?|
+ |getMatch| |rootDirectory| |iiacoth| |laurent| |limitPlus|
+ |drawToScale| |prem| |countRealRoots| |stronglyReduced?| |fractRagits|
+ |printingInfo?| |optAttributes| |OMReadError?| |exprToGenUPS|
+ |puiseux| |ef2edf| |cAtanh| |explogs2trigs|
+ |unrankImproperPartitions0| |pureLex| |matrix| |index| |drawComplex|
+ |purelyAlgebraic?| |lowerCase?| |s17akf| |f02aff| |shellSort|
+ |critpOrder| |stoseInvertibleSetsqfreg| |entry?| |polygon|
+ |functionIsFracPolynomial?| |inf| |setPredicates|
+ |createIrreduciblePoly| |multiplyExponents| |inv| |content| |lambda|
+ |d01gaf| |s21bbf| |numFunEvals3D| |stopMusserTrials|
+ |startTableInvSet!| |whitePoint| |iiatan| |getCode| |karatsubaOnce|
+ |ground?| |setVariableOrder| |setvalue!| |interpretString| |dimension|
+ |outputSpacing| UP2UTS |lowerPolynomial| |e02aef| |pair|
+ |linkToFortran| |ground| |fortranLogical| |fixedPoint|
+ |makeYoungTableau| |scalarMatrix| |interReduce| |clipSurface|
+ |isOpen?| |recoverAfterFail| |solveLinearlyOverQ|
+ |clearFortranOutputStack| |OMgetObject| |directory| |cartesian|
+ |c06fqf| |lastSubResultant| |leftZero| |halfExtendedSubResultantGcd2|
+ |getGoodPrime| |leadingMonomial| |xCoord| |showFortranOutputStack|
+ |changeMeasure| |derivationCoordinates| |OMputEndBind| |sum|
+ |readInt32!| |reverse| |hspace| |quotientByP| |karatsuba| |compdegd|
+ |leadingCoefficient| |basisOfLeftNucloid| |getMultiplicationTable|
+ |quoByVar| |mathieu11| |factorSquareFree| |leftLcm| |constantOpIfCan|
+ |algebraicSort| |getConstant| |minimumDegree| |imagi|
+ |primitiveMonomials| |irreducible?| |lieAlgebra?| |midpoint|
+ |shrinkable| |rectangularMatrix| |retract| |push!| |divideIfCan!|
+ |innerSolve1| |shallowExpand| |mvar| |radix| |reductum| |setColumn!|
+ |alphanumeric?| |linears| |coth2trigh| |leftRegularRepresentation|
+ |fortranComplex| |queue| |exactQuotient| |inverseIntegralMatrix|
+ |commonDenominator| |reflect| |rootKerSimp| |coefficient|
+ |absolutelyIrreducible?| |OMputEndError| |unvectorise|
+ |viewPhiDefault| |rank| |e04jaf| |writeUInt8!| |makeFloatFunction|
+ |collectUpper| |explicitEntries?| |s17dlf| |primitive?| |superscript|
+ |trueEqual| |OMgetFloat| |lifting1| |over| |idealiserMatrix| |degree|
+ |zeroOf| |purelyAlgebraicLeadingMonomial?| |OMgetError| |rarrow|
+ |sumOfDivisors| |permutationGroup| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index d588ea66..37a2c8a9 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5429 +1,5439 @@
-(3248531 . 3485856152)
-((-1905 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3175 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3052 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-1252 (-575)) |#2|) 44)) (-3086 (($ $) 80)) (-2302 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2630 (((-575) (-1 (-112) |#2|) $) 27) (((-575) |#2| $) NIL) (((-575) |#2| $ (-575)) 96)) (-3999 (((-655 |#2|) $) 13)) (-4167 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2844 (($ (-1 |#2| |#2|) $) 37)) (-2544 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2129 (($ |#2| $ (-575)) NIL) (($ $ $ (-575)) 67)) (-1540 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2718 (((-112) (-1 (-112) |#2|) $) 23)) (-2065 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) NIL) (($ $ (-1252 (-575))) 66)) (-3237 (($ $ (-575)) 76) (($ $ (-1252 (-575))) 75)) (-3922 (((-782) (-1 (-112) |#2|) $) 34) (((-782) |#2| $) NIL)) (-2617 (($ $ $ (-575)) 69)) (-3076 (($ $) 68)) (-2893 (($ (-655 |#2|)) 73)) (-1513 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-655 $)) 85)) (-2882 (((-873) $) 92)) (-4121 (((-112) (-1 (-112) |#2|) $) 22)) (-3913 (((-112) $ $) 95)) (-3940 (((-112) $ $) 99)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3913 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3940 ((-112) |#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3086 (|#1| |#1|)) (-15 -2617 (|#1| |#1| |#1| (-575))) (-15 -1905 ((-112) |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2630 ((-575) |#2| |#1| (-575))) (-15 -2630 ((-575) |#2| |#1|)) (-15 -2630 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -1905 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3052 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -3237 (|#1| |#1| (-1252 (-575)))) (-15 -3237 (|#1| |#1| (-575))) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1513 (|#1| (-655 |#1|))) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#2|)) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -2893 (|#1| (-655 |#2|))) (-15 -1540 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2065 (|#2| |#1| (-575))) (-15 -2065 (|#2| |#1| (-575) |#2|)) (-15 -3052 (|#2| |#1| (-575) |#2|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3999 ((-655 |#2|) |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#1| |#1|))) (-19 |#2|) (-1235)) (T -18))
+(3251813 . 3485863941)
+((-3429 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-1426 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3028 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1254 (-576)) |#2|) 44)) (-2338 (($ $) 80)) (-2326 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2627 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3975 (((-656 |#2|) $) 13)) (-3343 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2822 (($ (-1 |#2| |#2|) $) 37)) (-2548 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2163 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-3557 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1910 (((-112) (-1 (-112) |#2|) $) 23)) (-2099 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1254 (-576))) 66)) (-3213 (($ $ (-576)) 76) (($ $ (-1254 (-576))) 75)) (-3902 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-3272 (($ $ $ (-576)) 69)) (-3052 (($ $) 68)) (-2869 (($ (-656 |#2|)) 73)) (-1534 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-2858 (((-874) $) 92)) (-2714 (((-112) (-1 (-112) |#2|) $) 22)) (-3889 (((-112) $ $) 95)) (-3916 (((-112) $ $) 99)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3889 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3916 ((-112) |#1| |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -1426 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -3272 (|#1| |#1| |#1| (-576))) (-15 -3429 ((-112) |#1|)) (-15 -3343 (|#1| |#1| |#1|)) (-15 -2627 ((-576) |#2| |#1| (-576))) (-15 -2627 ((-576) |#2| |#1|)) (-15 -2627 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3429 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3343 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3028 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -3213 (|#1| |#1| (-1254 (-576)))) (-15 -3213 (|#1| |#1| (-576))) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1534 (|#1| (-656 |#1|))) (-15 -1534 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#2|)) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -2869 (|#1| (-656 |#2|))) (-15 -3557 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2099 (|#2| |#1| (-576))) (-15 -2099 (|#2| |#1| (-576) |#2|)) (-15 -3028 (|#2| |#1| (-576) |#2|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3975 ((-656 |#2|) |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3052 (|#1| |#1|))) (-19 |#2|) (-1237)) (T -18))
NIL
-(-10 -8 (-15 -3913 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3940 ((-112) |#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3086 (|#1| |#1|)) (-15 -2617 (|#1| |#1| |#1| (-575))) (-15 -1905 ((-112) |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2630 ((-575) |#2| |#1| (-575))) (-15 -2630 ((-575) |#2| |#1|)) (-15 -2630 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -1905 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3052 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -3237 (|#1| |#1| (-1252 (-575)))) (-15 -3237 (|#1| |#1| (-575))) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1513 (|#1| (-655 |#1|))) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#2|)) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -2893 (|#1| (-655 |#2|))) (-15 -1540 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2065 (|#2| |#1| (-575))) (-15 -2065 (|#2| |#1| (-575) |#2|)) (-15 -3052 (|#2| |#1| (-575) |#2|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3999 ((-655 |#2|) |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-3086 (($ $) 93 (|has| $ (-6 -4461)))) (-4380 (($ $) 103)) (-4070 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 52)) (-2630 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 90 (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 89 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 43 (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1652 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 72)) (-1513 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3967 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 85 (|has| |#1| (-861)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-19 |#1|) (-141) (-1235)) (T -19))
+(-10 -8 (-15 -3889 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3916 ((-112) |#1| |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -1426 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2338 (|#1| |#1|)) (-15 -3272 (|#1| |#1| |#1| (-576))) (-15 -3429 ((-112) |#1|)) (-15 -3343 (|#1| |#1| |#1|)) (-15 -2627 ((-576) |#2| |#1| (-576))) (-15 -2627 ((-576) |#2| |#1|)) (-15 -2627 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3429 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3343 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3028 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -3213 (|#1| |#1| (-1254 (-576)))) (-15 -3213 (|#1| |#1| (-576))) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1534 (|#1| (-656 |#1|))) (-15 -1534 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#2|)) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -2869 (|#1| (-656 |#2|))) (-15 -3557 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2099 (|#2| |#1| (-576))) (-15 -2099 (|#2| |#1| (-576) |#2|)) (-15 -3028 (|#2| |#1| (-576) |#2|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3975 ((-656 |#2|) |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3052 (|#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-2338 (($ $) 93 (|has| $ (-6 -4463)))) (-4374 (($ $) 103)) (-3229 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 52)) (-2627 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 90 (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 89 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 43 (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4040 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 72)) (-1534 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3944 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-19 |#1|) (-141) (-1237)) (T -19))
NIL
-(-13 (-383 |t#1|) (-10 -7 (-6 -4461)))
-(((-34) . T) ((-102) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T))
-((-1708 (((-3 $ "failed") $ $) 12)) (-4027 (($ $) NIL) (($ $ $) 9)) (* (($ (-936) $) NIL) (($ (-782) $) 16) (($ (-575) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -1708 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-21)) (T -20))
+(-13 (-384 |t#1|) (-10 -7 (-6 -4463)))
+(((-34) . T) ((-102) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T))
+((-3161 (((-3 $ "failed") $ $) 12)) (-4002 (($ $) NIL) (($ $ $) 9)) (* (($ (-938) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3161 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -1708 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24)))
+(-10 -8 (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3161 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24)))
(((-21) (-141)) (T -21))
-((-4027 (*1 *1 *1) (-4 *1 (-21))) (-4027 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-132) (-657 (-575)) (-10 -8 (-15 -4027 ($ $)) (-15 -4027 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1117) . T))
-((-2045 (((-112) $) 10)) (-3261 (($) 15)) (* (($ (-936) $) 14) (($ (-782) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-782) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 -3261 (|#1|)) (-15 * (|#1| (-936) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-782) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 -3261 (|#1|)) (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16)))
+((-4002 (*1 *1 *1) (-4 *1 (-21))) (-4002 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-132) (-658 (-576)) (-10 -8 (-15 -4002 ($ $)) (-15 -4002 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1119) . T))
+((-3203 (((-112) $) 10)) (-2574 (($) 15)) (* (($ (-938) $) 14) (($ (-783) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3203 ((-112) |#1|)) (-15 -2574 (|#1|)) (-15 * (|#1| (-938) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -3203 ((-112) |#1|)) (-15 -2574 (|#1|)) (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16)))
(((-23) (-141)) (T -23))
-((-1989 (*1 *1) (-4 *1 (-23))) (-3261 (*1 *1) (-4 *1 (-23))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-782)))))
-(-13 (-25) (-10 -8 (-15 (-1989) ($) -3736) (-15 -3261 ($) -3736) (-15 -2045 ((-112) $)) (-15 * ($ (-782) $))))
-(((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((* (($ (-936) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-936) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14)))
+((-2022 (*1 *1) (-4 *1 (-23))) (-2574 (*1 *1) (-4 *1 (-23))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))))
+(-13 (-25) (-10 -8 (-15 (-2022) ($) -3712) (-15 -2574 ($) -3712) (-15 -3203 ((-112) $)) (-15 * ($ (-783) $))))
+(((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((* (($ (-938) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-938) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14)))
(((-25) (-141)) (T -25))
-((-4015 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-936)))))
-(-13 (-1117) (-10 -8 (-15 -4015 ($ $ $)) (-15 * ($ (-936) $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2767 (((-655 $) (-967 $)) 32) (((-655 $) (-1190 $)) 16) (((-655 $) (-1190 $) (-1194)) 20)) (-3088 (($ (-967 $)) 30) (($ (-1190 $)) 11) (($ (-1190 $) (-1194)) 60)) (-4285 (((-655 $) (-967 $)) 33) (((-655 $) (-1190 $)) 18) (((-655 $) (-1190 $) (-1194)) 19)) (-3151 (($ (-967 $)) 31) (($ (-1190 $)) 13) (($ (-1190 $) (-1194)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2767 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2767 ((-655 |#1|) (-1190 |#1|))) (-15 -2767 ((-655 |#1|) (-967 |#1|))) (-15 -3088 (|#1| (-1190 |#1|) (-1194))) (-15 -3088 (|#1| (-1190 |#1|))) (-15 -3088 (|#1| (-967 |#1|))) (-15 -4285 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -4285 ((-655 |#1|) (-1190 |#1|))) (-15 -4285 ((-655 |#1|) (-967 |#1|))) (-15 -3151 (|#1| (-1190 |#1|) (-1194))) (-15 -3151 (|#1| (-1190 |#1|))) (-15 -3151 (|#1| (-967 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2767 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2767 ((-655 |#1|) (-1190 |#1|))) (-15 -2767 ((-655 |#1|) (-967 |#1|))) (-15 -3088 (|#1| (-1190 |#1|) (-1194))) (-15 -3088 (|#1| (-1190 |#1|))) (-15 -3088 (|#1| (-967 |#1|))) (-15 -4285 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -4285 ((-655 |#1|) (-1190 |#1|))) (-15 -4285 ((-655 |#1|) (-967 |#1|))) (-15 -3151 (|#1| (-1190 |#1|) (-1194))) (-15 -3151 (|#1| (-1190 |#1|))) (-15 -3151 (|#1| (-967 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2767 (((-655 $) (-967 $)) 88) (((-655 $) (-1190 $)) 87) (((-655 $) (-1190 $) (-1194)) 86)) (-3088 (($ (-967 $)) 91) (($ (-1190 $)) 90) (($ (-1190 $) (-1194)) 89)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-2467 (($ $) 100)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-4285 (((-655 $) (-967 $)) 94) (((-655 $) (-1190 $)) 93) (((-655 $) (-1190 $) (-1194)) 92)) (-3151 (($ (-967 $)) 97) (($ (-1190 $)) 96) (($ (-1190 $) (-1194)) 95)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3559 (((-112) $) 79)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 99)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 98)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75)))
+((-3990 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938)))))
+(-13 (-1119) (-10 -8 (-15 -3990 ($ $ $)) (-15 * ($ (-938) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2741 (((-656 $) (-969 $)) 32) (((-656 $) (-1192 $)) 16) (((-656 $) (-1192 $) (-1196)) 20)) (-4437 (($ (-969 $)) 30) (($ (-1192 $)) 11) (($ (-1192 $) (-1196)) 60)) (-1665 (((-656 $) (-969 $)) 33) (((-656 $) (-1192 $)) 18) (((-656 $) (-1192 $) (-1196)) 19)) (-3968 (($ (-969 $)) 31) (($ (-1192 $)) 13) (($ (-1192 $) (-1196)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2741 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2741 ((-656 |#1|) (-1192 |#1|))) (-15 -2741 ((-656 |#1|) (-969 |#1|))) (-15 -4437 (|#1| (-1192 |#1|) (-1196))) (-15 -4437 (|#1| (-1192 |#1|))) (-15 -4437 (|#1| (-969 |#1|))) (-15 -1665 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1665 ((-656 |#1|) (-1192 |#1|))) (-15 -1665 ((-656 |#1|) (-969 |#1|))) (-15 -3968 (|#1| (-1192 |#1|) (-1196))) (-15 -3968 (|#1| (-1192 |#1|))) (-15 -3968 (|#1| (-969 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2741 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2741 ((-656 |#1|) (-1192 |#1|))) (-15 -2741 ((-656 |#1|) (-969 |#1|))) (-15 -4437 (|#1| (-1192 |#1|) (-1196))) (-15 -4437 (|#1| (-1192 |#1|))) (-15 -4437 (|#1| (-969 |#1|))) (-15 -1665 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1665 ((-656 |#1|) (-1192 |#1|))) (-15 -1665 ((-656 |#1|) (-969 |#1|))) (-15 -3968 (|#1| (-1192 |#1|) (-1196))) (-15 -3968 (|#1| (-1192 |#1|))) (-15 -3968 (|#1| (-969 |#1|))))
+((-2835 (((-112) $ $) 7)) (-2741 (((-656 $) (-969 $)) 88) (((-656 $) (-1192 $)) 87) (((-656 $) (-1192 $) (-1196)) 86)) (-4437 (($ (-969 $)) 91) (($ (-1192 $)) 90) (($ (-1192 $) (-1196)) 89)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-2477 (($ $) 100)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-1665 (((-656 $) (-969 $)) 94) (((-656 $) (-1192 $)) 93) (((-656 $) (-1192 $) (-1196)) 92)) (-3968 (($ (-969 $)) 97) (($ (-1192 $)) 96) (($ (-1192 $) (-1196)) 95)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3011 (((-112) $) 79)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 99)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
(((-27) (-141)) (T -27))
-((-3151 (*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) (-3151 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-4285 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-3088 (*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27)))) (-3088 (*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27)))) (-3088 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1)))) (-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27)) (-5 *2 (-655 *1)))))
-(-13 (-373) (-1019) (-10 -8 (-15 -3151 ($ (-967 $))) (-15 -3151 ($ (-1190 $))) (-15 -3151 ($ (-1190 $) (-1194))) (-15 -4285 ((-655 $) (-967 $))) (-15 -4285 ((-655 $) (-1190 $))) (-15 -4285 ((-655 $) (-1190 $) (-1194))) (-15 -3088 ($ (-967 $))) (-15 -3088 ($ (-1190 $))) (-15 -3088 ($ (-1190 $) (-1194))) (-15 -2767 ((-655 $) (-967 $))) (-15 -2767 ((-655 $) (-1190 $))) (-15 -2767 ((-655 $) (-1190 $) (-1194)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1019) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-2767 (((-655 $) (-967 $)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-1190 $) (-1194)) 55) (((-655 $) $) 22) (((-655 $) $ (-1194)) 46)) (-3088 (($ (-967 $)) NIL) (($ (-1190 $)) NIL) (($ (-1190 $) (-1194)) 57) (($ $) 20) (($ $ (-1194)) 40)) (-4285 (((-655 $) (-967 $)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-1190 $) (-1194)) 53) (((-655 $) $) 18) (((-655 $) $ (-1194)) 48)) (-3151 (($ (-967 $)) NIL) (($ (-1190 $)) NIL) (($ (-1190 $) (-1194)) NIL) (($ $) 15) (($ $ (-1194)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2767 ((-655 |#1|) |#1| (-1194))) (-15 -3088 (|#1| |#1| (-1194))) (-15 -2767 ((-655 |#1|) |#1|)) (-15 -3088 (|#1| |#1|)) (-15 -4285 ((-655 |#1|) |#1| (-1194))) (-15 -3151 (|#1| |#1| (-1194))) (-15 -4285 ((-655 |#1|) |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -2767 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2767 ((-655 |#1|) (-1190 |#1|))) (-15 -2767 ((-655 |#1|) (-967 |#1|))) (-15 -3088 (|#1| (-1190 |#1|) (-1194))) (-15 -3088 (|#1| (-1190 |#1|))) (-15 -3088 (|#1| (-967 |#1|))) (-15 -4285 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -4285 ((-655 |#1|) (-1190 |#1|))) (-15 -4285 ((-655 |#1|) (-967 |#1|))) (-15 -3151 (|#1| (-1190 |#1|) (-1194))) (-15 -3151 (|#1| (-1190 |#1|))) (-15 -3151 (|#1| (-967 |#1|)))) (-29 |#2|) (-567)) (T -28))
-NIL
-(-10 -8 (-15 -2767 ((-655 |#1|) |#1| (-1194))) (-15 -3088 (|#1| |#1| (-1194))) (-15 -2767 ((-655 |#1|) |#1|)) (-15 -3088 (|#1| |#1|)) (-15 -4285 ((-655 |#1|) |#1| (-1194))) (-15 -3151 (|#1| |#1| (-1194))) (-15 -4285 ((-655 |#1|) |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -2767 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -2767 ((-655 |#1|) (-1190 |#1|))) (-15 -2767 ((-655 |#1|) (-967 |#1|))) (-15 -3088 (|#1| (-1190 |#1|) (-1194))) (-15 -3088 (|#1| (-1190 |#1|))) (-15 -3088 (|#1| (-967 |#1|))) (-15 -4285 ((-655 |#1|) (-1190 |#1|) (-1194))) (-15 -4285 ((-655 |#1|) (-1190 |#1|))) (-15 -4285 ((-655 |#1|) (-967 |#1|))) (-15 -3151 (|#1| (-1190 |#1|) (-1194))) (-15 -3151 (|#1| (-1190 |#1|))) (-15 -3151 (|#1| (-967 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2767 (((-655 $) (-967 $)) 88) (((-655 $) (-1190 $)) 87) (((-655 $) (-1190 $) (-1194)) 86) (((-655 $) $) 137) (((-655 $) $ (-1194)) 135)) (-3088 (($ (-967 $)) 91) (($ (-1190 $)) 90) (($ (-1190 $) (-1194)) 89) (($ $) 138) (($ $ (-1194)) 136)) (-2045 (((-112) $) 17)) (-1606 (((-655 (-1194)) $) 206)) (-3462 (((-418 (-1190 $)) $ (-623 $)) 238 (|has| |#1| (-567)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-4270 (((-655 (-623 $)) $) 169)) (-1708 (((-3 $ "failed") $ $) 20)) (-1475 (($ $ (-655 (-623 $)) (-655 $)) 159) (($ $ (-655 (-303 $))) 158) (($ $ (-303 $)) 157)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-2467 (($ $) 100)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-4285 (((-655 $) (-967 $)) 94) (((-655 $) (-1190 $)) 93) (((-655 $) (-1190 $) (-1194)) 92) (((-655 $) $) 141) (((-655 $) $ (-1194)) 139)) (-3151 (($ (-967 $)) 97) (($ (-1190 $)) 96) (($ (-1190 $) (-1194)) 95) (($ $) 142) (($ $ (-1194)) 140)) (-2443 (((-3 (-967 |#1|) "failed") $) 256 (|has| |#1| (-1066))) (((-3 (-418 (-967 |#1|)) "failed") $) 240 (|has| |#1| (-567))) (((-3 |#1| "failed") $) 202) (((-3 (-575) "failed") $) 199 (|has| |#1| (-1055 (-575)))) (((-3 (-1194) "failed") $) 193) (((-3 (-623 $) "failed") $) 144) (((-3 (-418 (-575)) "failed") $) 132 (-3763 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-4400 (((-967 |#1|) $) 255 (|has| |#1| (-1066))) (((-418 (-967 |#1|)) $) 239 (|has| |#1| (-567))) ((|#1| $) 201) (((-575) $) 200 (|has| |#1| (-1055 (-575)))) (((-1194) $) 192) (((-623 $) $) 143) (((-418 (-575)) $) 133 (-3763 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-2800 (($ $ $) 61)) (-2862 (((-700 |#1|) (-1285 $)) 246 (|has| |#1| (-1066))) (((-700 |#1|) (-700 $)) 245 (|has| |#1| (-1066))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 244 (|has| |#1| (-1066))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 131 (-3763 (-3224 (|has| |#1| (-1066)) (|has| |#1| (-650 (-575)))) (-3224 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (((-700 (-575)) (-700 $)) 130 (-3763 (-3224 (|has| |#1| (-1066)) (|has| |#1| (-650 (-575)))) (-3224 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (((-700 (-575)) (-1285 $)) 129 (-3763 (-3224 (|has| |#1| (-1066)) (|has| |#1| (-650 (-575)))) (-3224 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3559 (((-112) $) 79)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 198 (|has| |#1| (-898 (-389)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 197 (|has| |#1| (-898 (-575))))) (-1412 (($ (-655 $)) 163) (($ $) 162)) (-4075 (((-655 (-115)) $) 170)) (-2567 (((-115) (-115)) 171)) (-3900 (((-112) $) 35)) (-4254 (((-112) $) 191 (|has| $ (-1055 (-575))))) (-4300 (($ $) 223 (|has| |#1| (-1066)))) (-1595 (((-1142 |#1| (-623 $)) $) 222 (|has| |#1| (-1066)))) (-2111 (($ $ (-575)) 99)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-4088 (((-1190 $) (-623 $)) 188 (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) 177)) (-1934 (((-3 (-623 $) "failed") $) 167)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-2551 (((-655 (-623 $)) $) 168)) (-1672 (($ (-115) (-655 $)) 176) (($ (-115) $) 175)) (-1445 (((-3 (-655 $) "failed") $) 217 (|has| |#1| (-1129)))) (-1963 (((-3 (-2 (|:| |val| $) (|:| -1658 (-575))) "failed") $) 226 (|has| |#1| (-1066)))) (-1512 (((-3 (-655 $) "failed") $) 219 (|has| |#1| (-25)))) (-3383 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 220 (|has| |#1| (-25)))) (-2329 (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-1194)) 225 (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-115)) 224 (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $) 218 (|has| |#1| (-1129)))) (-3371 (((-112) $ (-1194)) 174) (((-112) $ (-115)) 173)) (-4332 (($ $) 78)) (-3340 (((-782) $) 166)) (-3912 (((-1137) $) 11)) (-4346 (((-112) $) 204)) (-4353 ((|#1| $) 205)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-4284 (((-112) $ (-1194)) 179) (((-112) $ $) 178)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3095 (((-112) $) 190 (|has| $ (-1055 (-575))))) (-3046 (($ $ (-1194) (-782) (-1 $ $)) 230 (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ (-655 $))) 229 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) 228 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) 227 (|has| |#1| (-1066))) (($ $ (-655 (-115)) (-655 $) (-1194)) 216 (|has| |#1| (-625 (-547)))) (($ $ (-115) $ (-1194)) 215 (|has| |#1| (-625 (-547)))) (($ $) 214 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194))) 213 (|has| |#1| (-625 (-547)))) (($ $ (-1194)) 212 (|has| |#1| (-625 (-547)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-655 $))) 186) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 185) (($ $ (-655 (-115)) (-655 (-1 $ $))) 184) (($ $ (-1194) (-1 $ $)) 183) (($ $ (-1194) (-1 $ (-655 $))) 182) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 181) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 180) (($ $ (-655 $) (-655 $)) 151) (($ $ $ $) 150) (($ $ (-303 $)) 149) (($ $ (-655 (-303 $))) 148) (($ $ (-655 (-623 $)) (-655 $)) 147) (($ $ (-623 $) $) 146)) (-1720 (((-782) $) 64)) (-2065 (($ (-115) (-655 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-3197 (($ $ $) 165) (($ $) 164)) (-2382 (($ $ (-655 (-1194)) (-655 (-782))) 251 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 250 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 249 (|has| |#1| (-1066))) (($ $ (-1194)) 247 (|has| |#1| (-1066)))) (-2325 (($ $) 233 (|has| |#1| (-567)))) (-1608 (((-1142 |#1| (-623 $)) $) 232 (|has| |#1| (-567)))) (-4436 (($ $) 189 (|has| $ (-1066)))) (-2613 (((-547) $) 260 (|has| |#1| (-625 (-547)))) (($ (-429 $)) 231 (|has| |#1| (-567))) (((-904 (-389)) $) 196 (|has| |#1| (-625 (-904 (-389))))) (((-904 (-575)) $) 195 (|has| |#1| (-625 (-904 (-575)))))) (-3516 (($ $ $) 259 (|has| |#1| (-484)))) (-4152 (($ $ $) 258 (|has| |#1| (-484)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ (-967 |#1|)) 257 (|has| |#1| (-1066))) (($ (-418 (-967 |#1|))) 241 (|has| |#1| (-567))) (($ (-418 (-967 (-418 |#1|)))) 237 (|has| |#1| (-567))) (($ (-967 (-418 |#1|))) 236 (|has| |#1| (-567))) (($ (-418 |#1|)) 235 (|has| |#1| (-567))) (($ (-1142 |#1| (-623 $))) 221 (|has| |#1| (-1066))) (($ |#1|) 203) (($ (-1194)) 194) (($ (-623 $)) 145)) (-1724 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-2394 (($ (-655 $)) 161) (($ $) 160)) (-1825 (((-112) (-115)) 172)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1627 (($ (-1194) (-655 $)) 211) (($ (-1194) $ $ $ $) 210) (($ (-1194) $ $ $) 209) (($ (-1194) $ $) 208) (($ (-1194) $) 207)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-655 (-1194)) (-655 (-782))) 254 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 253 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 252 (|has| |#1| (-1066))) (($ $ (-1194)) 248 (|has| |#1| (-1066)))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73) (($ (-1142 |#1| (-623 $)) (-1142 |#1| (-623 $))) 234 (|has| |#1| (-567)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 98)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1066)))))
-(((-29 |#1|) (-141) (-567)) (T -29))
-((-3151 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567)))) (-4285 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567)))) (-4285 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *4)))) (-3088 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567)))) (-2767 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3)))) (-3088 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-441 |t#1|) (-10 -8 (-15 -3151 ($ $)) (-15 -4285 ((-655 $) $)) (-15 -3151 ($ $ (-1194))) (-15 -4285 ((-655 $) $ (-1194))) (-15 -3088 ($ $)) (-15 -2767 ((-655 $) $)) (-15 -3088 ($ $ (-1194))) (-15 -2767 ((-655 $) $ (-1194)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 #1=(-418 (-967 |#1|))) |has| |#1| (-567)) ((-627 (-575)) . T) ((-627 #2=(-623 $)) . T) ((-627 #3=(-967 |#1|)) |has| |#1| (-1066)) ((-627 #4=(-1194)) . T) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-248) . T) ((-299) . T) ((-316) . T) ((-318 $) . T) ((-311) . T) ((-373) . T) ((-387 |#1|) |has| |#1| (-1066)) ((-411 |#1|) . T) ((-422 |#1|) . T) ((-441 |#1|) . T) ((-463) . T) ((-484) |has| |#1| (-484)) ((-525 (-623 $) $) . T) ((-525 $ $) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) -3763 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-657 $) . T) ((-659 #0#) . T) ((-659 #5=(-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-659 |#1|) -3763 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) . T) ((-650 #5#) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-650 |#1|) |has| |#1| (-1066)) ((-728 #0#) . T) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) . T) ((-737) . T) ((-908 $ #6=(-1194)) |has| |#1| (-1066)) ((-913 #6#) |has| |#1| (-1066)) ((-915 #6#) |has| |#1| (-1066)) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-935) . T) ((-1019) . T) ((-1055 (-418 (-575))) -3763 (|has| |#1| (-1055 (-418 (-575)))) (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) ((-1055 #1#) |has| |#1| (-567)) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #2#) . T) ((-1055 #3#) |has| |#1| (-1066)) ((-1055 #4#) . T) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) . T))
-((-2824 (((-1111 (-227)) $) NIL)) (-2812 (((-1111 (-227)) $) NIL)) (-2946 (($ $ (-227)) 164)) (-2999 (($ (-967 (-575)) (-1194) (-1194) (-1111 (-418 (-575))) (-1111 (-418 (-575)))) 104)) (-1612 (((-655 (-655 (-958 (-227)))) $) 180)) (-2882 (((-873) $) 194)))
-(((-30) (-13 (-970) (-10 -8 (-15 -2999 ($ (-967 (-575)) (-1194) (-1194) (-1111 (-418 (-575))) (-1111 (-418 (-575))))) (-15 -2946 ($ $ (-227)))))) (T -30))
-((-2999 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-967 (-575))) (-5 *3 (-1194)) (-5 *4 (-1111 (-418 (-575)))) (-5 *1 (-30)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
-(-13 (-970) (-10 -8 (-15 -2999 ($ (-967 (-575)) (-1194) (-1194) (-1111 (-418 (-575))) (-1111 (-418 (-575))))) (-15 -2946 ($ $ (-227)))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 11)) (-3685 (((-112) $ $) NIL)) (-1548 (((-1152) $) 9)) (-3913 (((-112) $ $) NIL)))
-(((-31) (-13 (-1100) (-10 -8 (-15 -1548 ((-1152) $)) (-15 -1788 ((-1152) $))))) (T -31))
-((-1548 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31)))))
-(-13 (-1100) (-10 -8 (-15 -1548 ((-1152) $)) (-15 -1788 ((-1152) $))))
-((-3151 ((|#2| (-1190 |#2|) (-1194)) 41)) (-2567 (((-115) (-115)) 55)) (-4088 (((-1190 |#2|) (-623 |#2|)) 149 (|has| |#1| (-1055 (-575))))) (-1778 ((|#2| |#1| (-575)) 137 (|has| |#1| (-1055 (-575))))) (-2771 ((|#2| (-1190 |#2|) |#2|) 29)) (-3264 (((-873) (-655 |#2|)) 86)) (-4436 ((|#2| |#2|) 144 (|has| |#1| (-1055 (-575))))) (-1825 (((-112) (-115)) 17)) (** ((|#2| |#2| (-418 (-575))) 103 (|has| |#1| (-1055 (-575))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3151 (|#2| (-1190 |#2|) (-1194))) (-15 -2567 ((-115) (-115))) (-15 -1825 ((-112) (-115))) (-15 -2771 (|#2| (-1190 |#2|) |#2|)) (-15 -3264 ((-873) (-655 |#2|))) (IF (|has| |#1| (-1055 (-575))) (PROGN (-15 ** (|#2| |#2| (-418 (-575)))) (-15 -4088 ((-1190 |#2|) (-623 |#2|))) (-15 -4436 (|#2| |#2|)) (-15 -1778 (|#2| |#1| (-575)))) |%noBranch|)) (-567) (-441 |#1|)) (T -32))
-((-1778 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-4 *2 (-441 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1055 *4)) (-4 *3 (-567)))) (-4436 (*1 *2 *2) (-12 (-4 *3 (-1055 (-575))) (-4 *3 (-567)) (-5 *1 (-32 *3 *2)) (-4 *2 (-441 *3)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-441 *4)) (-4 *4 (-1055 (-575))) (-4 *4 (-567)) (-5 *2 (-1190 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-1055 (-575))) (-4 *4 (-567)) (-5 *1 (-32 *4 *2)) (-4 *2 (-441 *4)))) (-3264 (*1 *2 *3) (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-567)) (-5 *2 (-873)) (-5 *1 (-32 *4 *5)))) (-2771 (*1 *2 *3 *2) (-12 (-5 *3 (-1190 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) (-5 *1 (-32 *4 *2)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-441 *4)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-32 *3 *4)) (-4 *4 (-441 *3)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *2)) (-5 *4 (-1194)) (-4 *2 (-441 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-567)))))
-(-10 -7 (-15 -3151 (|#2| (-1190 |#2|) (-1194))) (-15 -2567 ((-115) (-115))) (-15 -1825 ((-112) (-115))) (-15 -2771 (|#2| (-1190 |#2|) |#2|)) (-15 -3264 ((-873) (-655 |#2|))) (IF (|has| |#1| (-1055 (-575))) (PROGN (-15 ** (|#2| |#2| (-418 (-575)))) (-15 -4088 ((-1190 |#2|) (-623 |#2|))) (-15 -4436 (|#2| |#2|)) (-15 -1778 (|#2| |#1| (-575)))) |%noBranch|))
-((-3133 (((-112) $ (-782)) 20)) (-3261 (($) 10)) (-3541 (((-112) $ (-782)) 19)) (-3218 (((-112) $ (-782)) 17)) (-2391 (((-112) $ $) 8)) (-2017 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -3261 (|#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782))) (-15 -2017 ((-112) |#1|)) (-15 -2391 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -3261 (|#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782))) (-15 -2017 ((-112) |#1|)) (-15 -2391 ((-112) |#1| |#1|)))
-((-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-3541 (((-112) $ (-782)) 9)) (-3218 (((-112) $ (-782)) 10)) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3076 (($ $) 13)) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
+((-3968 (*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-3968 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4437 (*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) (-4437 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-4437 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-656 *1)))))
+(-13 (-374) (-1021) (-10 -8 (-15 -3968 ($ (-969 $))) (-15 -3968 ($ (-1192 $))) (-15 -3968 ($ (-1192 $) (-1196))) (-15 -1665 ((-656 $) (-969 $))) (-15 -1665 ((-656 $) (-1192 $))) (-15 -1665 ((-656 $) (-1192 $) (-1196))) (-15 -4437 ($ (-969 $))) (-15 -4437 ($ (-1192 $))) (-15 -4437 ($ (-1192 $) (-1196))) (-15 -2741 ((-656 $) (-969 $))) (-15 -2741 ((-656 $) (-1192 $))) (-15 -2741 ((-656 $) (-1192 $) (-1196)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1021) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-2741 (((-656 $) (-969 $)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 $) (-1196)) 55) (((-656 $) $) 22) (((-656 $) $ (-1196)) 46)) (-4437 (($ (-969 $)) NIL) (($ (-1192 $)) NIL) (($ (-1192 $) (-1196)) 57) (($ $) 20) (($ $ (-1196)) 40)) (-1665 (((-656 $) (-969 $)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 $) (-1196)) 53) (((-656 $) $) 18) (((-656 $) $ (-1196)) 48)) (-3968 (($ (-969 $)) NIL) (($ (-1192 $)) NIL) (($ (-1192 $) (-1196)) NIL) (($ $) 15) (($ $ (-1196)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2741 ((-656 |#1|) |#1| (-1196))) (-15 -4437 (|#1| |#1| (-1196))) (-15 -2741 ((-656 |#1|) |#1|)) (-15 -4437 (|#1| |#1|)) (-15 -1665 ((-656 |#1|) |#1| (-1196))) (-15 -3968 (|#1| |#1| (-1196))) (-15 -1665 ((-656 |#1|) |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -2741 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2741 ((-656 |#1|) (-1192 |#1|))) (-15 -2741 ((-656 |#1|) (-969 |#1|))) (-15 -4437 (|#1| (-1192 |#1|) (-1196))) (-15 -4437 (|#1| (-1192 |#1|))) (-15 -4437 (|#1| (-969 |#1|))) (-15 -1665 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1665 ((-656 |#1|) (-1192 |#1|))) (-15 -1665 ((-656 |#1|) (-969 |#1|))) (-15 -3968 (|#1| (-1192 |#1|) (-1196))) (-15 -3968 (|#1| (-1192 |#1|))) (-15 -3968 (|#1| (-969 |#1|)))) (-29 |#2|) (-568)) (T -28))
+NIL
+(-10 -8 (-15 -2741 ((-656 |#1|) |#1| (-1196))) (-15 -4437 (|#1| |#1| (-1196))) (-15 -2741 ((-656 |#1|) |#1|)) (-15 -4437 (|#1| |#1|)) (-15 -1665 ((-656 |#1|) |#1| (-1196))) (-15 -3968 (|#1| |#1| (-1196))) (-15 -1665 ((-656 |#1|) |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -2741 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -2741 ((-656 |#1|) (-1192 |#1|))) (-15 -2741 ((-656 |#1|) (-969 |#1|))) (-15 -4437 (|#1| (-1192 |#1|) (-1196))) (-15 -4437 (|#1| (-1192 |#1|))) (-15 -4437 (|#1| (-969 |#1|))) (-15 -1665 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1665 ((-656 |#1|) (-1192 |#1|))) (-15 -1665 ((-656 |#1|) (-969 |#1|))) (-15 -3968 (|#1| (-1192 |#1|) (-1196))) (-15 -3968 (|#1| (-1192 |#1|))) (-15 -3968 (|#1| (-969 |#1|))))
+((-2835 (((-112) $ $) 7)) (-2741 (((-656 $) (-969 $)) 88) (((-656 $) (-1192 $)) 87) (((-656 $) (-1192 $) (-1196)) 86) (((-656 $) $) 137) (((-656 $) $ (-1196)) 135)) (-4437 (($ (-969 $)) 91) (($ (-1192 $)) 90) (($ (-1192 $) (-1196)) 89) (($ $) 138) (($ $ (-1196)) 136)) (-3203 (((-112) $) 17)) (-1634 (((-656 (-1196)) $) 206)) (-3440 (((-419 (-1192 $)) $ (-624 $)) 238 (|has| |#1| (-568)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-4256 (((-656 (-624 $)) $) 169)) (-3161 (((-3 $ "failed") $ $) 20)) (-1490 (($ $ (-656 (-624 $)) (-656 $)) 159) (($ $ (-656 (-304 $))) 158) (($ $ (-304 $)) 157)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-2477 (($ $) 100)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-1665 (((-656 $) (-969 $)) 94) (((-656 $) (-1192 $)) 93) (((-656 $) (-1192 $) (-1196)) 92) (((-656 $) $) 141) (((-656 $) $ (-1196)) 139)) (-3968 (($ (-969 $)) 97) (($ (-1192 $)) 96) (($ (-1192 $) (-1196)) 95) (($ $) 142) (($ $ (-1196)) 140)) (-2454 (((-3 (-969 |#1|) "failed") $) 256 (|has| |#1| (-1068))) (((-3 (-419 (-969 |#1|)) "failed") $) 240 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 202) (((-3 (-576) "failed") $) 199 (|has| |#1| (-1057 (-576)))) (((-3 (-1196) "failed") $) 193) (((-3 (-624 $) "failed") $) 144) (((-3 (-419 (-576)) "failed") $) 132 (-3739 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-4397 (((-969 |#1|) $) 255 (|has| |#1| (-1068))) (((-419 (-969 |#1|)) $) 239 (|has| |#1| (-568))) ((|#1| $) 201) (((-576) $) 200 (|has| |#1| (-1057 (-576)))) (((-1196) $) 192) (((-624 $) $) 143) (((-419 (-576)) $) 133 (-3739 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-2780 (($ $ $) 61)) (-2085 (((-701 |#1|) (-1287 $)) 246 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 245 (|has| |#1| (-1068))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 244 (|has| |#1| (-1068))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 131 (-3739 (-3200 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-3200 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-701 (-576)) (-701 $)) 130 (-3739 (-3200 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-3200 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-701 (-576)) (-1287 $)) 129 (-3739 (-3200 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-3200 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3011 (((-112) $) 79)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 197 (|has| |#1| (-899 (-576))))) (-1739 (($ (-656 $)) 163) (($ $) 162)) (-2538 (((-656 (-115)) $) 170)) (-2569 (((-115) (-115)) 171)) (-1838 (((-112) $) 35)) (-2531 (((-112) $) 191 (|has| $ (-1057 (-576))))) (-3763 (($ $) 223 (|has| |#1| (-1068)))) (-1621 (((-1144 |#1| (-624 $)) $) 222 (|has| |#1| (-1068)))) (-1404 (($ $ (-576)) 99)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2658 (((-1192 $) (-624 $)) 188 (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) 177)) (-2412 (((-3 (-624 $) "failed") $) 167)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-2555 (((-656 (-624 $)) $) 168)) (-1706 (($ (-115) (-656 $)) 176) (($ (-115) $) 175)) (-2829 (((-3 (-656 $) "failed") $) 217 (|has| |#1| (-1131)))) (-2321 (((-3 (-2 (|:| |val| $) (|:| -2273 (-576))) "failed") $) 226 (|has| |#1| (-1068)))) (-1972 (((-3 (-656 $) "failed") $) 219 (|has| |#1| (-25)))) (-1507 (((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 $))) "failed") $) 220 (|has| |#1| (-25)))) (-2994 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-1196)) 225 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-115)) 224 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $) 218 (|has| |#1| (-1131)))) (-2729 (((-112) $ (-1196)) 174) (((-112) $ (-115)) 173)) (-4324 (($ $) 78)) (-3317 (((-783) $) 166)) (-3887 (((-1139) $) 11)) (-4336 (((-112) $) 204)) (-4347 ((|#1| $) 205)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2788 (((-112) $ (-1196)) 179) (((-112) $ $) 178)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3945 (((-112) $) 190 (|has| $ (-1057 (-576))))) (-3022 (($ $ (-1196) (-783) (-1 $ $)) 230 (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ (-656 $))) 229 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 228 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 227 (|has| |#1| (-1068))) (($ $ (-656 (-115)) (-656 $) (-1196)) 216 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 215 (|has| |#1| (-626 (-548)))) (($ $) 214 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) 213 (|has| |#1| (-626 (-548)))) (($ $ (-1196)) 212 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 187) (($ $ (-115) (-1 $ (-656 $))) 186) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 185) (($ $ (-656 (-115)) (-656 (-1 $ $))) 184) (($ $ (-1196) (-1 $ $)) 183) (($ $ (-1196) (-1 $ (-656 $))) 182) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 181) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 180) (($ $ (-656 $) (-656 $)) 151) (($ $ $ $) 150) (($ $ (-304 $)) 149) (($ $ (-656 (-304 $))) 148) (($ $ (-656 (-624 $)) (-656 $)) 147) (($ $ (-624 $) $) 146)) (-3076 (((-783) $) 64)) (-2099 (($ (-115) (-656 $)) 156) (($ (-115) $ $ $ $) 155) (($ (-115) $ $ $) 154) (($ (-115) $ $) 153) (($ (-115) $) 152)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-1321 (($ $ $) 165) (($ $) 164)) (-2399 (($ $ (-656 (-1196)) (-656 (-783))) 251 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 250 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 249 (|has| |#1| (-1068))) (($ $ (-1196)) 247 (|has| |#1| (-1068)))) (-3560 (($ $) 233 (|has| |#1| (-568)))) (-1635 (((-1144 |#1| (-624 $)) $) 232 (|has| |#1| (-568)))) (-1953 (($ $) 189 (|has| $ (-1068)))) (-2610 (((-548) $) 260 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 231 (|has| |#1| (-568))) (((-905 (-390)) $) 196 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 195 (|has| |#1| (-626 (-905 (-576)))))) (-2480 (($ $ $) 259 (|has| |#1| (-485)))) (-2220 (($ $ $) 258 (|has| |#1| (-485)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-969 |#1|)) 257 (|has| |#1| (-1068))) (($ (-419 (-969 |#1|))) 241 (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) 237 (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) 236 (|has| |#1| (-568))) (($ (-419 |#1|)) 235 (|has| |#1| (-568))) (($ (-1144 |#1| (-624 $))) 221 (|has| |#1| (-1068))) (($ |#1|) 203) (($ (-1196)) 194) (($ (-624 $)) 145)) (-3689 (((-3 $ "failed") $) 243 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2435 (($ (-656 $)) 161) (($ $) 160)) (-3410 (((-112) (-115)) 172)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-1657 (($ (-1196) (-656 $)) 211) (($ (-1196) $ $ $ $) 210) (($ (-1196) $ $ $) 209) (($ (-1196) $ $) 208) (($ (-1196) $) 207)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-656 (-1196)) (-656 (-783))) 254 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 253 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 252 (|has| |#1| (-1068))) (($ $ (-1196)) 248 (|has| |#1| (-1068)))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73) (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 234 (|has| |#1| (-568)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 242 (|has| |#1| (-174))) (($ |#1| $) 134 (|has| |#1| (-1068)))))
+(((-29 |#1|) (-141) (-568)) (T -29))
+((-3968 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1665 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1665 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-4437 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-2741 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-4437 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-2741 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -3968 ($ $)) (-15 -1665 ((-656 $) $)) (-15 -3968 ($ $ (-1196))) (-15 -1665 ((-656 $) $ (-1196))) (-15 -4437 ($ $)) (-15 -2741 ((-656 $) $)) (-15 -4437 ($ $ (-1196))) (-15 -2741 ((-656 $) $ (-1196)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-969 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-969 |#1|)) |has| |#1| (-1068)) ((-628 #4=(-1196)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -3739 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-660 |#1|) -3739 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-651 |#1|) |has| |#1| (-1068)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-909 $ #6=(-1196)) |has| |#1| (-1068)) ((-915 #6#) |has| |#1| (-1068)) ((-917 #6#) |has| |#1| (-1068)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-937) . T) ((-1021) . T) ((-1057 (-419 (-576))) -3739 (|has| |#1| (-1057 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) ((-1057 #1#) |has| |#1| (-568)) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 #3#) |has| |#1| (-1068)) ((-1057 #4#) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) |has| |#1| (-174)) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) |has| |#1| (-174)) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) . T))
+((-2802 (((-1113 (-227)) $) NIL)) (-2791 (((-1113 (-227)) $) NIL)) (-2094 (($ $ (-227)) 164)) (-4104 (($ (-969 (-576)) (-1196) (-1196) (-1113 (-419 (-576))) (-1113 (-419 (-576)))) 104)) (-3657 (((-656 (-656 (-960 (-227)))) $) 180)) (-2858 (((-874) $) 194)))
+(((-30) (-13 (-972) (-10 -8 (-15 -4104 ($ (-969 (-576)) (-1196) (-1196) (-1113 (-419 (-576))) (-1113 (-419 (-576))))) (-15 -2094 ($ $ (-227)))))) (T -30))
+((-4104 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-969 (-576))) (-5 *3 (-1196)) (-5 *4 (-1113 (-419 (-576)))) (-5 *1 (-30)))) (-2094 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))))
+(-13 (-972) (-10 -8 (-15 -4104 ($ (-969 (-576)) (-1196) (-1196) (-1113 (-419 (-576))) (-1113 (-419 (-576))))) (-15 -2094 ($ $ (-227)))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-1154) $) 11)) (-2690 (((-112) $ $) NIL)) (-1572 (((-1154) $) 9)) (-3889 (((-112) $ $) NIL)))
+(((-31) (-13 (-1102) (-10 -8 (-15 -1572 ((-1154) $)) (-15 -1822 ((-1154) $))))) (T -31))
+((-1572 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))))
+(-13 (-1102) (-10 -8 (-15 -1572 ((-1154) $)) (-15 -1822 ((-1154) $))))
+((-3968 ((|#2| (-1192 |#2|) (-1196)) 41)) (-2569 (((-115) (-115)) 55)) (-2658 (((-1192 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1057 (-576))))) (-2871 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1057 (-576))))) (-1908 ((|#2| (-1192 |#2|) |#2|) 29)) (-2853 (((-874) (-656 |#2|)) 86)) (-1953 ((|#2| |#2|) 144 (|has| |#1| (-1057 (-576))))) (-3410 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1057 (-576))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3968 (|#2| (-1192 |#2|) (-1196))) (-15 -2569 ((-115) (-115))) (-15 -3410 ((-112) (-115))) (-15 -1908 (|#2| (-1192 |#2|) |#2|)) (-15 -2853 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1057 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2658 ((-1192 |#2|) (-624 |#2|))) (-15 -1953 (|#2| |#2|)) (-15 -2871 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32))
+((-2871 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1057 *4)) (-4 *3 (-568)))) (-1953 (*1 *2 *2) (-12 (-4 *3 (-1057 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))) (-1908 (*1 *2 *3 *2) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1196)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))))
+(-10 -7 (-15 -3968 (|#2| (-1192 |#2|) (-1196))) (-15 -2569 ((-115) (-115))) (-15 -3410 ((-112) (-115))) (-15 -1908 (|#2| (-1192 |#2|) |#2|)) (-15 -2853 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1057 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2658 ((-1192 |#2|) (-624 |#2|))) (-15 -1953 (|#2| |#2|)) (-15 -2871 (|#2| |#1| (-576)))) |%noBranch|))
+((-2746 (((-112) $ (-783)) 20)) (-2574 (($) 10)) (-3639 (((-112) $ (-783)) 19)) (-1684 (((-112) $ (-783)) 17)) (-1974 (((-112) $ $) 8)) (-3001 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -2574 (|#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783))) (-15 -3001 ((-112) |#1|)) (-15 -1974 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -2574 (|#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783))) (-15 -3001 ((-112) |#1|)) (-15 -1974 ((-112) |#1| |#1|)))
+((-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-3639 (((-112) $ (-783)) 9)) (-1684 (((-112) $ (-783)) 10)) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3052 (($ $) 13)) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
(((-34) (-141)) (T -34))
-((-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3076 (*1 *1 *1) (-4 *1 (-34))) (-1393 (*1 *1) (-4 *1 (-34))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3218 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) (-3541 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) (-3133 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))) (-3261 (*1 *1) (-4 *1 (-34))) (-2869 (*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-34)) (-5 *2 (-782)))))
-(-13 (-1235) (-10 -8 (-15 -2391 ((-112) $ $)) (-15 -3076 ($ $)) (-15 -1393 ($)) (-15 -2017 ((-112) $)) (-15 -3218 ((-112) $ (-782))) (-15 -3541 ((-112) $ (-782))) (-15 -3133 ((-112) $ (-782))) (-15 -3261 ($) -3736) (IF (|has| $ (-6 -4460)) (-15 -2869 ((-782) $)) |%noBranch|)))
-(((-1235) . T))
-((-1569 (($ $) 11)) (-1544 (($ $) 10)) (-1593 (($ $) 9)) (-2912 (($ $) 8)) (-1583 (($ $) 7)) (-1554 (($ $) 6)))
+((-1974 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3052 (*1 *1 *1) (-4 *1 (-34))) (-3849 (*1 *1) (-4 *1 (-34))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1684 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3639 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2746 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2574 (*1 *1) (-4 *1 (-34))) (-2845 (*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-34)) (-5 *2 (-783)))))
+(-13 (-1237) (-10 -8 (-15 -1974 ((-112) $ $)) (-15 -3052 ($ $)) (-15 -3849 ($)) (-15 -3001 ((-112) $)) (-15 -1684 ((-112) $ (-783))) (-15 -3639 ((-112) $ (-783))) (-15 -2746 ((-112) $ (-783))) (-15 -2574 ($) -3712) (IF (|has| $ (-6 -4462)) (-15 -2845 ((-783) $)) |%noBranch|)))
+(((-1237) . T))
+((-1593 (($ $) 11)) (-1567 (($ $) 10)) (-1620 (($ $) 9)) (-2888 (($ $) 8)) (-1609 (($ $) 7)) (-1578 (($ $) 6)))
(((-35) (-141)) (T -35))
-((-1569 (*1 *1 *1) (-4 *1 (-35))) (-1544 (*1 *1 *1) (-4 *1 (-35))) (-1593 (*1 *1 *1) (-4 *1 (-35))) (-2912 (*1 *1 *1) (-4 *1 (-35))) (-1583 (*1 *1 *1) (-4 *1 (-35))) (-1554 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -1554 ($ $)) (-15 -1583 ($ $)) (-15 -2912 ($ $)) (-15 -1593 ($ $)) (-15 -1544 ($ $)) (-15 -1569 ($ $))))
-((-2859 (((-112) $ $) 19 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-4181 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 127)) (-2987 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 150)) (-3460 (($ $) 148)) (-2291 (($) 73) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 72)) (-4116 (((-1290) $ |#1| |#1|) 100 (|has| $ (-6 -4461))) (((-1290) $ (-575) (-575)) 180 (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) 161 (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3175 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 202 (|has| $ (-6 -4461))) (($ $) 201 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3133 (((-112) $ (-782)) 8)) (-2328 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 136 (|has| $ (-6 -4461)))) (-2089 (($ $ $) 157 (|has| $ (-6 -4461)))) (-2940 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 159 (|has| $ (-6 -4461)))) (-3055 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 155 (|has| $ (-6 -4461)))) (-3052 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 191 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-1252 (-575)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 162 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 160 (|has| $ (-6 -4461))) (($ $ "rest" $) 158 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 156 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 135 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 134 (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 46 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 218)) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 56 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 177 (|has| $ (-6 -4460)))) (-2975 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 149)) (-1398 (((-3 |#2| "failed") |#1| $) 62)) (-3261 (($) 7 T CONST)) (-3086 (($ $) 203 (|has| $ (-6 -4461)))) (-4380 (($ $) 213)) (-1969 (($ $ (-782)) 144) (($ $) 142)) (-1413 (($ $) 216 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-4070 (($ $) 59 (-3763 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))) (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 47 (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 222) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 217 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 55 (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 176 (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 54 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 53 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 178 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 175 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 174 (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 192 (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) 89) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 190)) (-2335 (((-112) $) 194)) (-2630 (((-575) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 210) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 209 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 208 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 31 (|has| $ (-6 -4460))) (((-655 |#2|) $) 80 (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 116 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 125)) (-2510 (((-112) $ $) 133 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2303 (($ (-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 170)) (-3541 (((-112) $ (-782)) 9)) (-2569 ((|#1| $) 97 (|has| |#1| (-861))) (((-575) $) 182 (|has| (-575) (-861)))) (-1914 (($ $ $) 200 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3167 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-4167 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 30 (|has| $ (-6 -4460))) (((-655 |#2|) $) 81 (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 117 (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-2263 ((|#1| $) 96 (|has| |#1| (-861))) (((-575) $) 183 (|has| (-575) (-861)))) (-3503 (($ $ $) 199 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 35 (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4461))) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 112 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 111)) (-1684 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 227)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 130)) (-1902 (((-112) $) 126)) (-4264 (((-1176) $) 22 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3651 (($ $ (-782)) 147) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 145)) (-1995 (((-655 |#1|) $) 64)) (-3766 (((-112) |#1| $) 65)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 40)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 41) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 221) (($ $ $ (-575)) 220)) (-2129 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 164) (($ $ $ (-575)) 163)) (-1653 (((-655 |#1|) $) 94) (((-655 (-575)) $) 185)) (-1801 (((-112) |#1| $) 93) (((-112) (-575) $) 186)) (-3912 (((-1137) $) 21 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1955 ((|#2| $) 98 (|has| |#1| (-861))) (($ $ (-782)) 141) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 139)) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 52) (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 173)) (-1652 (($ $ |#2|) 99 (|has| $ (-6 -4461))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 181 (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 42)) (-4213 (((-112) $) 193)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 33 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 114 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 87 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 85 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) 84 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 123 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 122 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 121 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 120 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 184 (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2697 (((-655 |#2|) $) 92) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 187)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 189) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) 188) (($ $ (-1252 (-575))) 171) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first") 140) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value") 128)) (-1816 (((-575) $ $) 131)) (-3323 (($) 50) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 49)) (-3997 (($ $ (-575)) 224) (($ $ (-1252 (-575))) 223)) (-3237 (($ $ (-575)) 166) (($ $ (-1252 (-575))) 165)) (-3482 (((-112) $) 129)) (-3247 (($ $) 153)) (-1774 (($ $) 154 (|has| $ (-6 -4461)))) (-3984 (((-782) $) 152)) (-1431 (($ $) 151)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 32 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-782) |#2| $) 82 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 115 (|has| $ (-6 -4460)))) (-2617 (($ $ $ (-575)) 204 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547)))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 51) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 172)) (-3357 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 226) (($ $ $) 225)) (-1513 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 169) (($ (-655 $)) 168) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 138) (($ $ $) 137)) (-2882 (((-873) $) 18 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))))) (-3620 (((-655 $) $) 124)) (-2603 (((-112) $ $) 132 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3685 (((-112) $ $) 23 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 43)) (-3665 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") |#1| $) 110)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 34 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 113 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 197 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3955 (((-112) $ $) 196 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3913 (((-112) $ $) 20 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-3967 (((-112) $ $) 198 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3940 (((-112) $ $) 195 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-36 |#1| |#2|) (-141) (-1117) (-1117)) (T -36))
-((-3665 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| -4169 *3) (|:| -3179 *4))))))
-(-13 (-1211 |t#1| |t#2|) (-677 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|))) (-10 -8 (-15 -3665 ((-3 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-102) -3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861))) ((-624 (-873)) -3763 (|has| |#2| (-1117)) (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))) ((-152 #1=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-625 (-547)) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) ((-231 #0#) . T) ((-240 #0#) . T) ((-295 #2=(-575) #1#) . T) ((-295 (-1252 (-575)) $) . T) ((-295 |#1| |#2|) . T) ((-297 #2# #1#) . T) ((-297 |#1| |#2|) . T) ((-318 #1#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-291 #1#) . T) ((-383 #1#) . T) ((-500 #1#) . T) ((-500 |#2|) . T) ((-615 #2# #1#) . T) ((-615 |#1| |#2|) . T) ((-525 #1# #1#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-621 |#1| |#2|) . T) ((-662 #1#) . T) ((-677 #1#) . T) ((-861) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)) ((-1027 #1#) . T) ((-1117) -3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861))) ((-1166 #1#) . T) ((-1211 |#1| |#2|) . T) ((-1235) . T) ((-1273 #1#) . T))
-((-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-38 |#2|) (-174)) (T -37))
-NIL
-(-10 -8 (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-1593 (*1 *1 *1) (-4 *1 (-35))) (-1567 (*1 *1 *1) (-4 *1 (-35))) (-1620 (*1 *1 *1) (-4 *1 (-35))) (-2888 (*1 *1 *1) (-4 *1 (-35))) (-1609 (*1 *1 *1) (-4 *1 (-35))) (-1578 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -1578 ($ $)) (-15 -1609 ($ $)) (-15 -2888 ($ $)) (-15 -1620 ($ $)) (-15 -1567 ($ $)) (-15 -1593 ($ $))))
+((-2835 (((-112) $ $) 19 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-4160 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 127)) (-2963 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 150)) (-3436 (($ $) 148)) (-2316 (($) 73) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 72)) (-3430 (((-1292) $ |#1| |#1|) 100 (|has| $ (-6 -4463))) (((-1292) $ (-576) (-576)) 180 (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) 161 (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-1426 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 202 (|has| $ (-6 -4463))) (($ $) 201 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-2746 (((-112) $ (-783)) 8)) (-4338 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 136 (|has| $ (-6 -4463)))) (-2744 (($ $ $) 157 (|has| $ (-6 -4463)))) (-2649 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 159 (|has| $ (-6 -4463)))) (-2674 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 155 (|has| $ (-6 -4463)))) (-3028 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 191 (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-1254 (-576)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 162 (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "last" (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 160 (|has| $ (-6 -4463))) (($ $ "rest" $) 158 (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "first" (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 156 (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "value" (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 135 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 134 (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 46 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 218)) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 56 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 177 (|has| $ (-6 -4462)))) (-2951 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 149)) (-1405 (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($) 7 T CONST)) (-2338 (($ $) 203 (|has| $ (-6 -4463)))) (-4374 (($ $) 213)) (-2003 (($ $ (-783)) 144) (($ $) 142)) (-3444 (($ $) 216 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3229 (($ $) 59 (-3739 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462))) (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 47 (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 222) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 217 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 55 (|has| $ (-6 -4462))) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 176 (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 57 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 54 (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 53 (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 178 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 175 (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 174 (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 192 (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) 89) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) 190)) (-2225 (((-112) $) 194)) (-2627 (((-576) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 210) (((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 209 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) (((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 31 (|has| $ (-6 -4462))) (((-656 |#2|) $) 80 (|has| $ (-6 -4462))) (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 116 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 125)) (-2231 (((-112) $ $) 133 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2327 (($ (-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 170)) (-3639 (((-112) $ (-783)) 9)) (-2440 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-1950 (($ $ $) 200 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-1932 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3343 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 30 (|has| $ (-6 -4462))) (((-656 |#2|) $) 81 (|has| $ (-6 -4462))) (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 117 (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462)))) (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-4048 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-1492 (($ $ $) 199 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 35 (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4463))) (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 112 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 111)) (-1718 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 227)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 130)) (-3123 (((-112) $) 126)) (-2143 (((-1178) $) 22 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3627 (($ $ (-783)) 147) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 145)) (-2029 (((-656 |#1|) $) 64)) (-3762 (((-112) |#1| $) 65)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 40)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 41) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2163 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-2928 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-1449 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-3887 (((-1139) $) 21 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-1989 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-783)) 141) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 139)) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 52) (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 173)) (-4040 (($ $ |#2|) 99 (|has| $ (-6 -4463))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 181 (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 42)) (-3137 (((-112) $) 193)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 33 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 114 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) 27 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 26 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 25 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 24 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 123 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 122 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 121 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) 120 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 184 (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3584 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 187)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 189) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) 188) (($ $ (-1254 (-576))) 171) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "first") 140) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "value") 128)) (-3599 (((-576) $ $) 131)) (-1801 (($) 50) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 49)) (-3804 (($ $ (-576)) 224) (($ $ (-1254 (-576))) 223)) (-3213 (($ $ (-576)) 166) (($ $ (-1254 (-576))) 165)) (-2133 (((-112) $) 129)) (-3579 (($ $) 153)) (-2604 (($ $) 154 (|has| $ (-6 -4463)))) (-1836 (((-783) $) 152)) (-1668 (($ $) 151)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 32 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 115 (|has| $ (-6 -4462)))) (-3272 (($ $ $ (-576)) 204 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548)))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 51) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 172)) (-3925 (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 226) (($ $ $) 225)) (-1534 (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 138) (($ $ $) 137)) (-2858 (((-874) $) 18 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874)))))) (-4016 (((-656 $) $) 124)) (-1694 (((-112) $ $) 132 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2690 (((-112) $ $) 23 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 43)) (-3641 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") |#1| $) 110)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 34 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 113 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 197 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3930 (((-112) $ $) 196 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3889 (((-112) $ $) 20 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3944 (((-112) $ $) 198 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3916 (((-112) $ $) 195 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-36 |#1| |#2|) (-141) (-1119) (-1119)) (T -36))
+((-3641 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| -4147 *3) (|:| -3153 *4))))))
+(-13 (-1213 |t#1| |t#2|) (-678 (-2 (|:| -4147 |t#1|) (|:| -3153 |t#2|))) (-10 -8 (-15 -3641 ((-3 (-2 (|:| -4147 |t#1|) (|:| -3153 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((-102) -3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862))) ((-625 (-874)) -3739 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874)))) ((-152 #1=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1254 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-862) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)) ((-1029 #1#) . T) ((-1119) -3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862))) ((-1168 #1#) . T) ((-1213 |#1| |#2|) . T) ((-1237) . T) ((-1275 #1#) . T))
+((-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-38 |#2|) (-174)) (T -37))
+NIL
+(-10 -8 (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-141) (-174)) (T -38))
NIL
-(-13 (-1066) (-728 |t#1|) (-627 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2432 (((-429 |#1|) |#1|) 41)) (-2347 (((-429 |#1|) |#1|) 30) (((-429 |#1|) |#1| (-655 (-48))) 33)) (-1344 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -2347 ((-429 |#1|) |#1| (-655 (-48)))) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -2432 ((-429 |#1|) |#1|)) (-15 -1344 ((-112) |#1|))) (-1261 (-48))) (T -39))
-((-1344 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) (-2432 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-48))) (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))))
-(-10 -7 (-15 -2347 ((-429 |#1|) |#1| (-655 (-48)))) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -2432 ((-429 |#1|) |#1|)) (-15 -1344 ((-112) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2827 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| (-418 |#2|) (-373)))) (-2456 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-3978 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-3831 (((-700 (-418 |#2|)) (-1285 $)) NIL) (((-700 (-418 |#2|))) NIL)) (-1448 (((-418 |#2|) $) NIL)) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-418 |#2|) (-359)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-4281 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3599 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2409 (((-782)) NIL (|has| (-418 |#2|) (-378)))) (-3005 (((-112)) NIL)) (-2528 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-3 (-418 |#2|) "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-418 |#2|) $) NIL)) (-3898 (($ (-1285 (-418 |#2|)) (-1285 $)) NIL) (($ (-1285 (-418 |#2|))) 61) (($ (-1285 |#2|) |#2|) 131)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-418 |#2|) (-359)))) (-2800 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-3405 (((-700 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-418 |#2|))) (|:| |vec| (-1285 (-418 |#2|)))) (-700 $) (-1285 $)) NIL) (((-700 (-418 |#2|)) (-700 $)) NIL) (((-700 (-418 |#2|)) (-1285 $)) NIL)) (-2275 (((-1285 $) (-1285 $)) NIL)) (-2302 (($ |#3|) NIL) (((-3 $ "failed") (-418 |#3|)) NIL (|has| (-418 |#2|) (-373)))) (-4162 (((-3 $ "failed") $) NIL)) (-1395 (((-655 (-655 |#1|))) NIL (|has| |#1| (-378)))) (-3945 (((-112) |#1| |#1|) NIL)) (-4422 (((-936)) NIL)) (-2073 (($) NIL (|has| (-418 |#2|) (-378)))) (-1993 (((-112)) NIL)) (-1356 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2811 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| (-418 |#2|) (-373)))) (-2379 (($ $) NIL)) (-1758 (($) NIL (|has| (-418 |#2|) (-359)))) (-3228 (((-112) $) NIL (|has| (-418 |#2|) (-359)))) (-2457 (($ $ (-782)) NIL (|has| (-418 |#2|) (-359))) (($ $) NIL (|has| (-418 |#2|) (-359)))) (-3559 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-3369 (((-936) $) NIL (|has| (-418 |#2|) (-359))) (((-844 (-936)) $) NIL (|has| (-418 |#2|) (-359)))) (-3900 (((-112) $) NIL)) (-1687 (((-782)) NIL)) (-3830 (((-1285 $) (-1285 $)) 106)) (-3390 (((-418 |#2|) $) NIL)) (-2716 (((-655 (-967 |#1|)) (-1194)) NIL (|has| |#1| (-373)))) (-2808 (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3977 ((|#3| $) NIL (|has| (-418 |#2|) (-373)))) (-1894 (((-936) $) NIL (|has| (-418 |#2|) (-378)))) (-2290 ((|#3| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4264 (((-1176) $) NIL)) (-4298 (((-1290) (-782)) 84)) (-2020 (((-700 (-418 |#2|))) 56)) (-2194 (((-700 (-418 |#2|))) 49)) (-4332 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-3169 (($ (-1285 |#2|) |#2|) 132)) (-3625 (((-700 (-418 |#2|))) 50)) (-2578 (((-700 (-418 |#2|))) 48)) (-4001 (((-2 (|:| |num| (-700 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-2426 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 68)) (-3565 (((-1285 $)) 47)) (-3189 (((-1285 $)) 46)) (-2112 (((-112) $) NIL)) (-4159 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3472 (($) NIL (|has| (-418 |#2|) (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| (-418 |#2|) (-378)))) (-2295 (((-3 |#2| "failed")) NIL)) (-3912 (((-1137) $) NIL)) (-4002 (((-782)) NIL)) (-3657 (($) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-418 |#2|) (-373)))) (-3923 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-418 |#2|) (-359)))) (-2347 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-418 |#2|) (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2849 (((-3 $ "failed") $ $) NIL (|has| (-418 |#2|) (-373)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-1720 (((-782) $) NIL (|has| (-418 |#2|) (-373)))) (-2065 ((|#1| $ |#1| |#1|) NIL)) (-1331 (((-3 |#2| "failed")) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2801 (((-418 |#2|) (-1285 $)) NIL) (((-418 |#2|)) 44)) (-2619 (((-782) $) NIL (|has| (-418 |#2|) (-359))) (((-3 (-782) "failed") $ $) NIL (|has| (-418 |#2|) (-359)))) (-2382 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3797 (((-700 (-418 |#2|)) (-1285 $) (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373)))) (-4436 ((|#3|) 55)) (-1847 (($) NIL (|has| (-418 |#2|) (-359)))) (-2209 (((-1285 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) (-1285 $) (-1285 $)) NIL) (((-1285 (-418 |#2|)) $) 62) (((-700 (-418 |#2|)) (-1285 $)) 107)) (-2613 (((-1285 (-418 |#2|)) $) NIL) (($ (-1285 (-418 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-418 |#2|) (-359)))) (-2695 (((-1285 $) (-1285 $)) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 |#2|)) NIL) (($ (-418 (-575))) NIL (-3763 (|has| (-418 |#2|) (-1055 (-418 (-575)))) (|has| (-418 |#2|) (-373)))) (($ $) NIL (|has| (-418 |#2|) (-373)))) (-1724 (($ $) NIL (|has| (-418 |#2|) (-359))) (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-146)))) (-2765 ((|#3| $) NIL)) (-4421 (((-782)) NIL T CONST)) (-2903 (((-112)) 42)) (-2652 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL)) (-3930 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2339 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3185 (((-112)) NIL)) (-1989 (($) 17 T CONST)) (-2005 (($) 27 T CONST)) (-3428 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| (-418 |#2|) (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 |#2|)) NIL) (($ (-418 |#2|) $) NIL) (($ (-418 (-575)) $) NIL (|has| (-418 |#2|) (-373))) (($ $ (-418 (-575))) NIL (|has| (-418 |#2|) (-373)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-352 |#1| |#2| |#3|) (-10 -7 (-15 -4298 ((-1290) (-782))))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) |#3|) (T -40))
-((-4298 (*1 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *2 (-1290)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1261 (-418 *5))) (-14 *7 *6))))
-(-13 (-352 |#1| |#2| |#3|) (-10 -7 (-15 -4298 ((-1290) (-782)))))
-((-3319 ((|#2| |#2|) 47)) (-1358 ((|#2| |#2|) 139 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-4282 ((|#2| |#2|) 100 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-3347 ((|#2| |#2|) 101 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-1519 ((|#2| (-115) |#2| (-782)) 135 (-12 (|has| |#2| (-441 |#1|)) (|has| |#1| (-13 (-463) (-1055 (-575))))))) (-3063 (((-1190 |#2|) |#2|) 44)) (-3219 ((|#2| |#2| (-655 (-623 |#2|))) 18) ((|#2| |#2| (-655 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3319 (|#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -3219 (|#2| |#2| |#2|)) (-15 -3219 (|#2| |#2| (-655 |#2|))) (-15 -3219 (|#2| |#2| (-655 (-623 |#2|)))) (-15 -3063 ((-1190 |#2|) |#2|)) (IF (|has| |#1| (-13 (-463) (-1055 (-575)))) (IF (|has| |#2| (-441 |#1|)) (PROGN (-15 -3347 (|#2| |#2|)) (-15 -4282 (|#2| |#2|)) (-15 -1358 (|#2| |#2|)) (-15 -1519 (|#2| (-115) |#2| (-782)))) |%noBranch|) |%noBranch|)) (-567) (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 |#1| (-623 $)) $)) (-15 -1608 ((-1142 |#1| (-623 $)) $)) (-15 -2882 ($ (-1142 |#1| (-623 $))))))) (T -41))
-((-1519 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-782)) (-4 *5 (-13 (-463) (-1055 (-575)))) (-4 *5 (-567)) (-5 *1 (-41 *5 *2)) (-4 *2 (-441 *5)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *5 (-623 $)) $)) (-15 -1608 ((-1142 *5 (-623 $)) $)) (-15 -2882 ($ (-1142 *5 (-623 $))))))))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2882 ($ (-1142 *3 (-623 $))))))))) (-4282 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2882 ($ (-1142 *3 (-623 $))))))))) (-3347 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2882 ($ (-1142 *3 (-623 $))))))))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-1190 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) (-15 -1608 ((-1142 *4 (-623 $)) $)) (-15 -2882 ($ (-1142 *4 (-623 $))))))))) (-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-623 *2))) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) (-15 -1608 ((-1142 *4 (-623 $)) $)) (-15 -2882 ($ (-1142 *4 (-623 $))))))) (-4 *4 (-567)) (-5 *1 (-41 *4 *2)))) (-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $)) (-15 -1608 ((-1142 *4 (-623 $)) $)) (-15 -2882 ($ (-1142 *4 (-623 $))))))) (-4 *4 (-567)) (-5 *1 (-41 *4 *2)))) (-3219 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2882 ($ (-1142 *3 (-623 $))))))))) (-3219 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2882 ($ (-1142 *3 (-623 $))))))))) (-3319 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-373) (-311) (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $)) (-15 -1608 ((-1142 *3 (-623 $)) $)) (-15 -2882 ($ (-1142 *3 (-623 $))))))))))
-(-10 -7 (-15 -3319 (|#2| |#2|)) (-15 -3219 (|#2| |#2|)) (-15 -3219 (|#2| |#2| |#2|)) (-15 -3219 (|#2| |#2| (-655 |#2|))) (-15 -3219 (|#2| |#2| (-655 (-623 |#2|)))) (-15 -3063 ((-1190 |#2|) |#2|)) (IF (|has| |#1| (-13 (-463) (-1055 (-575)))) (IF (|has| |#2| (-441 |#1|)) (PROGN (-15 -3347 (|#2| |#2|)) (-15 -4282 (|#2| |#2|)) (-15 -1358 (|#2| |#2|)) (-15 -1519 (|#2| (-115) |#2| (-782)))) |%noBranch|) |%noBranch|))
-((-2347 (((-429 (-1190 |#3|)) (-1190 |#3|) (-655 (-48))) 23) (((-429 |#3|) |#3| (-655 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2347 ((-429 |#3|) |#3| (-655 (-48)))) (-15 -2347 ((-429 (-1190 |#3|)) (-1190 |#3|) (-655 (-48))))) (-861) (-804) (-964 (-48) |#2| |#1|)) (T -42))
-((-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *7 (-964 (-48) *6 *5)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804)) (-5 *2 (-429 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-964 (-48) *6 *5)))))
-(-10 -7 (-15 -2347 ((-429 |#3|) |#3| (-655 (-48)))) (-15 -2347 ((-429 (-1190 |#3|)) (-1190 |#3|) (-655 (-48)))))
-((-3727 (((-782) |#2|) 70)) (-2907 (((-782) |#2|) 74)) (-3483 (((-655 |#2|)) 37)) (-4227 (((-782) |#2|) 73)) (-2108 (((-782) |#2|) 69)) (-3848 (((-782) |#2|) 72)) (-4377 (((-655 (-700 |#1|))) 65)) (-2496 (((-655 |#2|)) 60)) (-1771 (((-655 |#2|) |#2|) 48)) (-2538 (((-655 |#2|)) 62)) (-2304 (((-655 |#2|)) 61)) (-2992 (((-655 (-700 |#1|))) 53)) (-4103 (((-655 |#2|)) 59)) (-2137 (((-655 |#2|) |#2|) 47)) (-4312 (((-655 |#2|)) 55)) (-2746 (((-655 (-700 |#1|))) 66)) (-4403 (((-655 |#2|)) 64)) (-2098 (((-1285 |#2|) (-1285 |#2|)) 99 (|has| |#1| (-316)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -4227 ((-782) |#2|)) (-15 -2907 ((-782) |#2|)) (-15 -2108 ((-782) |#2|)) (-15 -3727 ((-782) |#2|)) (-15 -3848 ((-782) |#2|)) (-15 -4312 ((-655 |#2|))) (-15 -2137 ((-655 |#2|) |#2|)) (-15 -1771 ((-655 |#2|) |#2|)) (-15 -4103 ((-655 |#2|))) (-15 -2496 ((-655 |#2|))) (-15 -2304 ((-655 |#2|))) (-15 -2538 ((-655 |#2|))) (-15 -4403 ((-655 |#2|))) (-15 -2992 ((-655 (-700 |#1|)))) (-15 -4377 ((-655 (-700 |#1|)))) (-15 -2746 ((-655 (-700 |#1|)))) (-15 -3483 ((-655 |#2|))) (IF (|has| |#1| (-316)) (-15 -2098 ((-1285 |#2|) (-1285 |#2|))) |%noBranch|)) (-567) (-428 |#1|)) (T -43))
-((-2098 (*1 *2 *2) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-428 *3)) (-4 *3 (-316)) (-4 *3 (-567)) (-5 *1 (-43 *3 *4)))) (-3483 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2746 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-4377 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2992 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-4403 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2538 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2304 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-2496 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-4103 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-1771 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-2137 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-4312 (*1 *2) (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-428 *3)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-2108 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3)) (-4 *3 (-428 *4)))))
-(-10 -7 (-15 -4227 ((-782) |#2|)) (-15 -2907 ((-782) |#2|)) (-15 -2108 ((-782) |#2|)) (-15 -3727 ((-782) |#2|)) (-15 -3848 ((-782) |#2|)) (-15 -4312 ((-655 |#2|))) (-15 -2137 ((-655 |#2|) |#2|)) (-15 -1771 ((-655 |#2|) |#2|)) (-15 -4103 ((-655 |#2|))) (-15 -2496 ((-655 |#2|))) (-15 -2304 ((-655 |#2|))) (-15 -2538 ((-655 |#2|))) (-15 -4403 ((-655 |#2|))) (-15 -2992 ((-655 (-700 |#1|)))) (-15 -4377 ((-655 (-700 |#1|)))) (-15 -2746 ((-655 (-700 |#1|)))) (-15 -3483 ((-655 |#2|))) (IF (|has| |#1| (-316)) (-15 -2098 ((-1285 |#2|) (-1285 |#2|))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2942 (((-3 $ "failed")) NIL (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2199 (((-1285 (-700 |#1|)) (-1285 $)) NIL) (((-1285 (-700 |#1|))) 24)) (-2133 (((-1285 $)) 52)) (-3261 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (|has| |#1| (-567)))) (-2146 (((-3 $ "failed")) NIL (|has| |#1| (-567)))) (-3636 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) NIL)) (-3309 ((|#1| $) NIL)) (-1454 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-3952 (((-3 $ "failed") $) NIL (|has| |#1| (-567)))) (-2368 (((-1190 (-967 |#1|))) NIL (|has| |#1| (-373)))) (-1810 (($ $ (-936)) NIL)) (-1731 ((|#1| $) NIL)) (-2864 (((-1190 |#1|) $) NIL (|has| |#1| (-567)))) (-2530 ((|#1| (-1285 $)) NIL) ((|#1|) NIL)) (-3100 (((-1190 |#1|) $) NIL)) (-3884 (((-112)) 99)) (-3898 (($ (-1285 |#1|) (-1285 $)) NIL) (($ (-1285 |#1|)) NIL)) (-4162 (((-3 $ "failed") $) 14 (|has| |#1| (-567)))) (-4422 (((-936)) 53)) (-3748 (((-112)) NIL)) (-3905 (($ $ (-936)) NIL)) (-2948 (((-112)) NIL)) (-3534 (((-112)) NIL)) (-2043 (((-112)) 101)) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (|has| |#1| (-567)))) (-1987 (((-3 $ "failed")) NIL (|has| |#1| (-567)))) (-3400 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) NIL)) (-1455 ((|#1| $) NIL)) (-3475 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-3284 (((-3 $ "failed") $) NIL (|has| |#1| (-567)))) (-3726 (((-1190 (-967 |#1|))) NIL (|has| |#1| (-373)))) (-3643 (($ $ (-936)) NIL)) (-4339 ((|#1| $) NIL)) (-1360 (((-1190 |#1|) $) NIL (|has| |#1| (-567)))) (-4175 ((|#1| (-1285 $)) NIL) ((|#1|) NIL)) (-3557 (((-1190 |#1|) $) NIL)) (-1509 (((-112)) 98)) (-4264 (((-1176) $) NIL)) (-3155 (((-112)) 106)) (-3872 (((-112)) 105)) (-4350 (((-112)) 107)) (-3912 (((-1137) $) NIL)) (-2279 (((-112)) 100)) (-2065 ((|#1| $ (-575)) 55)) (-2209 (((-1285 |#1|) $ (-1285 $)) 48) (((-700 |#1|) (-1285 $) (-1285 $)) NIL) (((-1285 |#1|) $) 28) (((-700 |#1|) (-1285 $)) NIL)) (-2613 (((-1285 |#1|) $) NIL) (($ (-1285 |#1|)) NIL)) (-3600 (((-655 (-967 |#1|)) (-1285 $)) NIL) (((-655 (-967 |#1|))) NIL)) (-4152 (($ $ $) NIL)) (-2122 (((-112)) 95)) (-2882 (((-873) $) 71) (($ (-1285 |#1|)) 22)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) 51)) (-2876 (((-655 (-1285 |#1|))) NIL (|has| |#1| (-567)))) (-3458 (($ $ $ $) NIL)) (-3220 (((-112)) 91)) (-1943 (($ (-700 |#1|) $) 18)) (-2337 (($ $ $) NIL)) (-3676 (((-112)) 97)) (-3198 (((-112)) 92)) (-3594 (((-112)) 90)) (-1989 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1159 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-428 |#1|) (-659 (-1159 |#2| |#1|)) (-10 -8 (-15 -2882 ($ (-1285 |#1|))))) (-373) (-936) (-655 (-1194)) (-1285 (-700 |#1|))) (T -44))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-14 *6 (-1285 (-700 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))))))
-(-13 (-428 |#1|) (-659 (-1159 |#2| |#1|)) (-10 -8 (-15 -2882 ($ (-1285 |#1|)))))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-4181 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2987 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-3460 (($ $) NIL)) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461))) (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3175 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861))))) (-2025 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-2328 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-2089 (($ $ $) 33 (|has| $ (-6 -4461)))) (-2940 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-3055 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 35 (|has| $ (-6 -4461)))) (-3052 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-1252 (-575)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (($ $ "rest" $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value" (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2975 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1398 (((-3 |#2| "failed") |#1| $) 43)) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-1969 (($ $ (-782)) NIL) (($ $) 29)) (-1413 (($ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL)) (-2335 (((-112) $) NIL)) (-2630 (((-575) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) (((-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 20 (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 20 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2303 (($ (-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861))) (((-575) $) 38 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3167 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-4167 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861))) (((-575) $) 40 (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1684 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2476 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1902 (((-112) $) NIL)) (-4264 (((-1176) $) 49 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-3651 (($ $ (-782)) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1995 (((-655 |#1|) $) 22)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-2129 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 |#1|) $) NIL) (((-655 (-575)) $) NIL)) (-1801 (((-112) |#1| $) NIL) (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861))) (($ $ (-782)) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 27)) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4213 (((-112) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2697 (((-655 |#2|) $) NIL) (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 19)) (-2017 (((-112) $) 18)) (-1393 (($) 14)) (-2065 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ (-575)) NIL) (($ $ (-1252 (-575))) NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "first") NIL) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $ "value") NIL)) (-1816 (((-575) $ $) NIL)) (-3323 (($) 13) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3997 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3482 (((-112) $) NIL)) (-3247 (($ $) NIL)) (-1774 (($ $) NIL (|has| $ (-6 -4461)))) (-3984 (((-782) $) NIL)) (-1431 (($ $) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3357 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL) (($ $ $) NIL)) (-1513 (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL) (($ (-655 $)) NIL) (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 31) (($ $ $) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3665 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") |#1| $) 51)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-3967 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-861)))) (-2869 (((-782) $) 25 (|has| $ (-6 -4460)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1117) (-1117)) (T -45))
+(-13 (-1068) (-729 |t#1|) (-628 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-3529 (((-430 |#1|) |#1|) 41)) (-2367 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-3749 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -2367 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3529 ((-430 |#1|) |#1|)) (-15 -3749 ((-112) |#1|))) (-1263 (-48))) (T -39))
+((-3749 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-3529 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))))
+(-10 -7 (-15 -2367 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3529 ((-430 |#1|) |#1|)) (-15 -3749 ((-112) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-4231 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2150 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2637 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3940 (((-701 (-419 |#2|)) (-1287 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-1462 (((-419 |#2|) $) NIL)) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2464 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3417 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2422 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3515 (((-112)) NIL)) (-3133 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2876 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL) (($ (-1287 (-419 |#2|))) 61) (($ (-1287 |#2|) |#2|) 131)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-2780 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3313 (((-701 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-1728 (((-1287 $) (-1287 $)) NIL)) (-2326 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-4011 (((-3 $ "failed") $) NIL)) (-2688 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2830 (((-112) |#1| |#1|) NIL)) (-4422 (((-938)) NIL)) (-2107 (($) NIL (|has| (-419 |#2|) (-379)))) (-2768 (((-112)) NIL)) (-3907 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2790 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-3420 (($ $) NIL)) (-3602 (($) NIL (|has| (-419 |#2|) (-360)))) (-4429 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-2244 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-3011 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2620 (((-938) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-360)))) (-1838 (((-112) $) NIL)) (-2719 (((-783)) NIL)) (-3814 (((-1287 $) (-1287 $)) 106)) (-3075 (((-419 |#2|) $) NIL)) (-1716 (((-656 (-969 |#1|)) (-1196)) NIL (|has| |#1| (-374)))) (-3397 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2510 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1654 (((-938) $) NIL (|has| (-419 |#2|) (-379)))) (-2315 ((|#3| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2143 (((-1178) $) NIL)) (-3552 (((-1292) (-783)) 84)) (-2939 (((-701 (-419 |#2|))) 56)) (-4413 (((-701 (-419 |#2|))) 49)) (-4324 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2132 (($ (-1287 |#2|) |#2|) 132)) (-3235 (((-701 (-419 |#2|))) 50)) (-2115 (((-701 (-419 |#2|))) 48)) (-2959 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-4242 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 68)) (-2383 (((-1287 $)) 47)) (-1666 (((-1287 $)) 46)) (-1524 (((-112) $) NIL)) (-3630 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3448 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-4308 (($ (-938)) NIL (|has| (-419 |#2|) (-379)))) (-2598 (((-3 |#2| "failed")) NIL)) (-3887 (((-1139) $) NIL)) (-3088 (((-783)) NIL)) (-3633 (($) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-374)))) (-3901 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-2367 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2825 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3076 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2099 ((|#1| $ |#1| |#1|) NIL)) (-1624 (((-3 |#2| "failed")) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3880 (((-419 |#2|) (-1287 $)) NIL) (((-419 |#2|)) 44)) (-3447 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2399 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4370 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1953 ((|#3|) 55)) (-1861 (($) NIL (|has| (-419 |#2|) (-360)))) (-3392 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1287 $)) 107)) (-2610 (((-1287 (-419 |#2|)) $) NIL) (($ (-1287 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-1477 (((-1287 $) (-1287 $)) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3739 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3689 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2528 ((|#3| $) NIL)) (-2981 (((-783)) NIL T CONST)) (-3816 (((-112)) 42)) (-3252 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL)) (-3199 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2632 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4418 (((-112)) NIL)) (-2022 (($) 17 T CONST)) (-2038 (($) 27 T CONST)) (-3404 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-1292) (-783))))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) |#3|) (T -40))
+((-3552 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *2 (-1292)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6))))
+(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3552 ((-1292) (-783)))))
+((-2706 ((|#2| |#2|) 47)) (-2691 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-2583 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-2492 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-4416 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-3952 (((-1192 |#2|) |#2|) 44)) (-1771 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -2706 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -1771 (|#2| |#2| |#2|)) (-15 -1771 (|#2| |#2| (-656 |#2|))) (-15 -1771 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -3952 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2492 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -2691 (|#2| |#2|)) (-15 -4416 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 |#1| (-624 $)) $)) (-15 -1635 ((-1144 |#1| (-624 $)) $)) (-15 -2858 ($ (-1144 |#1| (-624 $))))))) (T -41))
+((-4416 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *5 (-624 $)) $)) (-15 -1635 ((-1144 *5 (-624 $)) $)) (-15 -2858 ($ (-1144 *5 (-624 $))))))))) (-2691 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $)) (-15 -1635 ((-1144 *3 (-624 $)) $)) (-15 -2858 ($ (-1144 *3 (-624 $))))))))) (-2583 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $)) (-15 -1635 ((-1144 *3 (-624 $)) $)) (-15 -2858 ($ (-1144 *3 (-624 $))))))))) (-2492 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $)) (-15 -1635 ((-1144 *3 (-624 $)) $)) (-15 -2858 ($ (-1144 *3 (-624 $))))))))) (-3952 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *4 (-624 $)) $)) (-15 -1635 ((-1144 *4 (-624 $)) $)) (-15 -2858 ($ (-1144 *4 (-624 $))))))))) (-1771 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *4 (-624 $)) $)) (-15 -1635 ((-1144 *4 (-624 $)) $)) (-15 -2858 ($ (-1144 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1771 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *4 (-624 $)) $)) (-15 -1635 ((-1144 *4 (-624 $)) $)) (-15 -2858 ($ (-1144 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1771 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $)) (-15 -1635 ((-1144 *3 (-624 $)) $)) (-15 -2858 ($ (-1144 *3 (-624 $))))))))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $)) (-15 -1635 ((-1144 *3 (-624 $)) $)) (-15 -2858 ($ (-1144 *3 (-624 $))))))))) (-2706 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $)) (-15 -1635 ((-1144 *3 (-624 $)) $)) (-15 -2858 ($ (-1144 *3 (-624 $))))))))))
+(-10 -7 (-15 -2706 (|#2| |#2|)) (-15 -1771 (|#2| |#2|)) (-15 -1771 (|#2| |#2| |#2|)) (-15 -1771 (|#2| |#2| (-656 |#2|))) (-15 -1771 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -3952 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2492 (|#2| |#2|)) (-15 -2583 (|#2| |#2|)) (-15 -2691 (|#2| |#2|)) (-15 -4416 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|))
+((-2367 (((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2367 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -2367 ((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))))) (-862) (-805) (-966 (-48) |#2| |#1|)) (T -42))
+((-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *7 (-966 (-48) *6 *5)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-966 (-48) *6 *5)))))
+(-10 -7 (-15 -2367 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -2367 ((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48)))))
+((-2468 (((-783) |#2|) 70)) (-3077 (((-783) |#2|) 74)) (-2218 (((-656 |#2|)) 37)) (-1803 (((-783) |#2|) 73)) (-4182 (((-783) |#2|) 69)) (-1795 (((-783) |#2|) 72)) (-3292 (((-656 (-701 |#1|))) 65)) (-3406 (((-656 |#2|)) 60)) (-3491 (((-656 |#2|) |#2|) 48)) (-2881 (((-656 |#2|)) 62)) (-2169 (((-656 |#2|)) 61)) (-4380 (((-656 (-701 |#1|))) 53)) (-1549 (((-656 |#2|)) 59)) (-2408 (((-656 |#2|) |#2|) 47)) (-2458 (((-656 |#2|)) 55)) (-4117 (((-656 (-701 |#1|))) 66)) (-1857 (((-656 |#2|)) 64)) (-4261 (((-1287 |#2|) (-1287 |#2|)) 99 (|has| |#1| (-317)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1803 ((-783) |#2|)) (-15 -3077 ((-783) |#2|)) (-15 -4182 ((-783) |#2|)) (-15 -2468 ((-783) |#2|)) (-15 -1795 ((-783) |#2|)) (-15 -2458 ((-656 |#2|))) (-15 -2408 ((-656 |#2|) |#2|)) (-15 -3491 ((-656 |#2|) |#2|)) (-15 -1549 ((-656 |#2|))) (-15 -3406 ((-656 |#2|))) (-15 -2169 ((-656 |#2|))) (-15 -2881 ((-656 |#2|))) (-15 -1857 ((-656 |#2|))) (-15 -4380 ((-656 (-701 |#1|)))) (-15 -3292 ((-656 (-701 |#1|)))) (-15 -4117 ((-656 (-701 |#1|)))) (-15 -2218 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -4261 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43))
+((-4261 (*1 *2 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-2218 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4117 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3292 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4380 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1857 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2881 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2169 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3406 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1549 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2408 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2458 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1803 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))))
+(-10 -7 (-15 -1803 ((-783) |#2|)) (-15 -3077 ((-783) |#2|)) (-15 -4182 ((-783) |#2|)) (-15 -2468 ((-783) |#2|)) (-15 -1795 ((-783) |#2|)) (-15 -2458 ((-656 |#2|))) (-15 -2408 ((-656 |#2|) |#2|)) (-15 -3491 ((-656 |#2|) |#2|)) (-15 -1549 ((-656 |#2|))) (-15 -3406 ((-656 |#2|))) (-15 -2169 ((-656 |#2|))) (-15 -2881 ((-656 |#2|))) (-15 -1857 ((-656 |#2|))) (-15 -4380 ((-656 (-701 |#1|)))) (-15 -3292 ((-656 (-701 |#1|)))) (-15 -4117 ((-656 (-701 |#1|)))) (-15 -2218 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -4261 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2857 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3685 (((-1287 (-701 |#1|)) (-1287 $)) NIL) (((-1287 (-701 |#1|))) 24)) (-3142 (((-1287 $)) 52)) (-2574 (($) NIL T CONST)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-1985 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1877 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-4036 ((|#1| $) NIL)) (-2343 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-2100 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3619 (((-1192 (-969 |#1|))) NIL (|has| |#1| (-374)))) (-4139 (($ $ (-938)) NIL)) (-3136 ((|#1| $) NIL)) (-2276 (((-1192 |#1|) $) NIL (|has| |#1| (-568)))) (-3335 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-2950 (((-1192 |#1|) $) NIL)) (-2965 (((-112)) 99)) (-2876 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) NIL)) (-4011 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-4422 (((-938)) 53)) (-1834 (((-112)) NIL)) (-4141 (($ $ (-938)) NIL)) (-2298 (((-112)) NIL)) (-4393 (((-112)) NIL)) (-3037 (((-112)) 101)) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3426 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2213 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-2436 ((|#1| $) NIL)) (-4409 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2359 (((-1192 (-969 |#1|))) NIL (|has| |#1| (-374)))) (-1406 (($ $ (-938)) NIL)) (-2815 ((|#1| $) NIL)) (-4205 (((-1192 |#1|) $) NIL (|has| |#1| (-568)))) (-1659 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-4015 (((-1192 |#1|) $) NIL)) (-1783 (((-112)) 98)) (-2143 (((-1178) $) NIL)) (-3167 (((-112)) 106)) (-3215 (((-112)) 105)) (-1480 (((-112)) 107)) (-3887 (((-1139) $) NIL)) (-3801 (((-112)) 100)) (-2099 ((|#1| $ (-576)) 55)) (-3392 (((-1287 |#1|) $ (-1287 $)) 48) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) 28) (((-701 |#1|) (-1287 $)) NIL)) (-2610 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL)) (-3501 (((-656 (-969 |#1|)) (-1287 $)) NIL) (((-656 (-969 |#1|))) NIL)) (-2220 (($ $ $) NIL)) (-1332 (((-112)) 95)) (-2858 (((-874) $) 71) (($ (-1287 |#1|)) 22)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) 51)) (-3308 (((-656 (-1287 |#1|))) NIL (|has| |#1| (-568)))) (-2591 (($ $ $ $) NIL)) (-1883 (((-112)) 91)) (-1977 (($ (-701 |#1|) $) 18)) (-2407 (($ $ $) NIL)) (-3072 (((-112)) 97)) (-1430 (((-112)) 92)) (-3044 (((-112)) 90)) (-2022 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1161 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1161 |#2| |#1|)) (-10 -8 (-15 -2858 ($ (-1287 |#1|))))) (-374) (-938) (-656 (-1196)) (-1287 (-701 |#1|))) (T -44))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-14 *6 (-1287 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))))))
+(-13 (-429 |#1|) (-660 (-1161 |#2| |#1|)) (-10 -8 (-15 -2858 ($ (-1287 |#1|)))))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4160 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2963 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-3436 (($ $) NIL)) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463))) (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-1426 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862))))) (-2059 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-4338 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463)))) (-2744 (($ $ $) 33 (|has| $ (-6 -4463)))) (-2649 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463)))) (-2674 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 35 (|has| $ (-6 -4463)))) (-3028 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-1254 (-576)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "last" (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463))) (($ $ "rest" $) NIL (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "first" (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "value" (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2951 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1405 (((-3 |#2| "failed") |#1| $) 43)) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-2003 (($ $ (-783)) NIL) (($ $) 29)) (-3444 (($ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) NIL)) (-2225 (((-112) $) NIL)) (-2627 (((-576) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) (((-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 20 (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 20 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2327 (($ (-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-1932 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3343 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-1718 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2485 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-3123 (((-112) $) NIL)) (-2143 (((-1178) $) 49 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3627 (($ $ (-783)) NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2029 (((-656 |#1|) $) 22)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2163 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-1449 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-783)) NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 27)) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-3137 (((-112) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3584 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 19)) (-3001 (((-112) $) 18)) (-3849 (($) 14)) (-2099 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "first") NIL) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $ "value") NIL)) (-3599 (((-576) $ $) NIL)) (-1801 (($) 13) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3804 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2133 (((-112) $) NIL)) (-3579 (($ $) NIL)) (-2604 (($ $) NIL (|has| $ (-6 -4463)))) (-1836 (((-783) $) NIL)) (-1668 (($ $) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3925 (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL) (($ $ $) NIL)) (-1534 (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 31) (($ $ $) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3641 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") |#1| $) 51)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3944 (((-112) $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-862)))) (-2845 (((-783) $) 25 (|has| $ (-6 -4462)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1119) (-1119)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3135 (((-112) $) 12)) (-2544 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-418 (-575)) $) 25) (($ $ (-418 (-575))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-47 |#2| |#3|) (-1066) (-803)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -3135 ((-112) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-3135 (((-112) $) 74)) (-2414 (($ |#1| |#2|) 73)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-1753 ((|#2| $) 76)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3002 ((|#1| $ |#2|) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-47 |#1| |#2|) (-141) (-1066) (-803)) (T -47))
-((-4383 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-4370 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-112)))) (-2414 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-3002 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *2 (-373)))))
-(-13 (-1066) (-111 |t#1| |t#1|) (-10 -8 (-15 -4383 (|t#1| $)) (-15 -4370 ($ $)) (-15 -1753 (|t#2| $)) (-15 -2544 ($ (-1 |t#1| |t#1|) $)) (-15 -3135 ((-112) $)) (-15 -2414 ($ |t#1| |t#2|)) (-15 -4406 ($ $)) (-15 -3002 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-373)) (-15 -4038 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-567)) (-6 (-567)) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (-6 (-38 (-418 (-575)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-299) |has| |#1| (-567)) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2767 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-3088 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-2045 (((-112) $) 9)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-4270 (((-655 (-623 $)) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1475 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-2467 (($ $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-4285 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-3151 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-2443 (((-3 (-623 $) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL)) (-4400 (((-623 $) $) NIL) (((-575) $) NIL) (((-418 (-575)) $) NIL)) (-2800 (($ $ $) NIL)) (-2862 (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 (-418 (-575)))) (|:| |vec| (-1285 (-418 (-575))))) (-700 $) (-1285 $)) NIL) (((-700 (-418 (-575))) (-700 $)) NIL) (((-700 (-418 (-575))) (-1285 $)) NIL)) (-2302 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-1412 (($ $) NIL) (($ (-655 $)) NIL)) (-4075 (((-655 (-115)) $) NIL)) (-2567 (((-115) (-115)) NIL)) (-3900 (((-112) $) 11)) (-4254 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-1595 (((-1142 (-575) (-623 $)) $) NIL)) (-2111 (($ $ (-575)) NIL)) (-3390 (((-1190 $) (-1190 $) (-623 $)) NIL) (((-1190 $) (-1190 $) (-655 (-623 $))) NIL) (($ $ (-623 $)) NIL) (($ $ (-655 (-623 $))) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-4088 (((-1190 $) (-623 $)) NIL (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) NIL)) (-1934 (((-3 (-623 $) "failed") $) NIL)) (-3886 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-2551 (((-655 (-623 $)) $) NIL)) (-1672 (($ (-115) $) NIL) (($ (-115) (-655 $)) NIL)) (-3371 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) NIL)) (-4332 (($ $) NIL)) (-3340 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4284 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3095 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3046 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1720 (((-782) $) NIL)) (-2065 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-3197 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $) NIL) (($ $ (-782)) NIL)) (-1608 (((-1142 (-575) (-623 $)) $) NIL)) (-4436 (($ $) NIL (|has| $ (-1066)))) (-2613 (((-389) $) NIL) (((-227) $) NIL) (((-171 (-389)) $) NIL)) (-2882 (((-873) $) NIL) (($ (-623 $)) NIL) (($ (-418 (-575))) NIL) (($ $) NIL) (($ (-575)) NIL) (($ (-1142 (-575) (-623 $))) NIL)) (-4421 (((-782)) NIL T CONST)) (-2394 (($ $) NIL) (($ (-655 $)) NIL)) (-1825 (((-112) (-115)) NIL)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 6 T CONST)) (-2005 (($) 10 T CONST)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3913 (((-112) $ $) 13)) (-4038 (($ $ $) NIL)) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-418 (-575))) NIL) (($ $ (-575)) NIL) (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ $ $) NIL) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL)))
-(((-48) (-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2882 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2302 ($ $)) (-15 -3390 ((-1190 $) (-1190 $) (-623 $))) (-15 -3390 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -3390 ($ $ (-623 $))) (-15 -3390 ($ $ (-655 (-623 $))))))) (T -48))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48)))) (-2302 (*1 *1 *1) (-5 *1 (-48))) (-3390 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-623 (-48))) (-5 *1 (-48)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-655 (-623 (-48)))) (-5 *1 (-48)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-48))) (-5 *1 (-48)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-48)))) (-5 *1 (-48)))))
-(-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2882 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2302 ($ $)) (-15 -3390 ((-1190 $) (-1190 $) (-623 $))) (-15 -3390 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -3390 ($ $ (-623 $))) (-15 -3390 ($ $ (-655 (-623 $))))))
-((-2859 (((-112) $ $) NIL)) (-2506 (((-655 (-517)) $) 17)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 7)) (-1788 (((-1199) $) 18)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-49) (-13 (-1117) (-10 -8 (-15 -2506 ((-655 (-517)) $)) (-15 -1788 ((-1199) $))))) (T -49))
-((-2506 (*1 *2 *1) (-12 (-5 *2 (-655 (-517))) (-5 *1 (-49)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-49)))))
-(-13 (-1117) (-10 -8 (-15 -2506 ((-655 (-517)) $)) (-15 -1788 ((-1199) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 85)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2332 (((-112) $) 30)) (-2443 (((-3 |#1| "failed") $) 33)) (-4400 ((|#1| $) 34)) (-4406 (($ $) 40)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4383 ((|#1| $) 31)) (-3711 (($ $) 74)) (-4264 (((-1176) $) NIL)) (-3779 (((-112) $) 43)) (-3912 (((-1137) $) NIL)) (-3657 (($ (-782)) 72)) (-2663 (($ (-655 (-575))) 73)) (-1753 (((-782) $) 44)) (-2882 (((-873) $) 91) (($ (-575)) 69) (($ |#1|) 67)) (-3002 ((|#1| $ $) 28)) (-4421 (((-782)) 71 T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 45 T CONST)) (-2005 (($) 17 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 64)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
-(((-50 |#1| |#2|) (-13 (-631 |#1|) (-1055 |#1|) (-10 -8 (-15 -4383 (|#1| $)) (-15 -3711 ($ $)) (-15 -4406 ($ $)) (-15 -3002 (|#1| $ $)) (-15 -3657 ($ (-782))) (-15 -2663 ($ (-655 (-575)))) (-15 -3779 ((-112) $)) (-15 -2332 ((-112) $)) (-15 -1753 ((-782) $)) (-15 -2544 ($ (-1 |#1| |#1|) $)))) (-1066) (-655 (-1194))) (T -50))
-((-4383 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194))))) (-3711 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))))) (-3002 (*1 *2 *1 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194))))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-3779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066)) (-14 *4 (-655 (-1194))))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-50 *3 *4)) (-14 *4 (-655 (-1194))))))
-(-13 (-631 |#1|) (-1055 |#1|) (-10 -8 (-15 -4383 (|#1| $)) (-15 -3711 ($ $)) (-15 -4406 ($ $)) (-15 -3002 (|#1| $ $)) (-15 -3657 ($ (-782))) (-15 -2663 ($ (-655 (-575)))) (-15 -3779 ((-112) $)) (-15 -2332 ((-112) $)) (-15 -1753 ((-782) $)) (-15 -2544 ($ (-1 |#1| |#1|) $))))
-((-2332 (((-112) (-52)) 18)) (-2443 (((-3 |#1| "failed") (-52)) 20)) (-4400 ((|#1| (-52)) 21)) (-2882 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -2882 ((-52) |#1|)) (-15 -2443 ((-3 |#1| "failed") (-52))) (-15 -2332 ((-112) (-52))) (-15 -4400 (|#1| (-52)))) (-1235)) (T -51))
-((-4400 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1235)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235)))) (-2882 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1235)))))
-(-10 -7 (-15 -2882 ((-52) |#1|)) (-15 -2443 ((-3 |#1| "failed") (-52))) (-15 -2332 ((-112) (-52))) (-15 -4400 (|#1| (-52))))
-((-2859 (((-112) $ $) NIL)) (-2307 (((-785) $) 8)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2417 (((-1121) $) 10)) (-2882 (((-873) $) 15)) (-3685 (((-112) $ $) NIL)) (-1647 (($ (-1121) (-785)) 16)) (-3913 (((-112) $ $) 12)))
-(((-52) (-13 (-1117) (-10 -8 (-15 -1647 ($ (-1121) (-785))) (-15 -2417 ((-1121) $)) (-15 -2307 ((-785) $))))) (T -52))
-((-1647 (*1 *1 *2 *3) (-12 (-5 *2 (-1121)) (-5 *3 (-785)) (-5 *1 (-52)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-52)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-785)) (-5 *1 (-52)))))
-(-13 (-1117) (-10 -8 (-15 -1647 ($ (-1121) (-785))) (-15 -2417 ((-1121) $)) (-15 -2307 ((-785) $))))
-((-1943 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1943 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1066) (-659 |#1|) (-863 |#1|)) (T -53))
-((-1943 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-659 *5)) (-4 *5 (-1066)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-863 *5)))))
-(-10 -7 (-15 -1943 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1967 ((|#3| |#3| (-655 (-1194))) 44)) (-3239 ((|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3| (-936)) 32) ((|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3239 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3|)) (-15 -3239 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3| (-936))) (-15 -1967 (|#3| |#3| (-655 (-1194))))) (-1117) (-13 (-1066) (-898 |#1|) (-625 (-904 |#1|))) (-13 (-441 |#2|) (-898 |#1|) (-625 (-904 |#1|)))) (T -54))
-((-1967 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) (-3239 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-655 (-1093 *5 *6 *2))) (-5 *4 (-936)) (-4 *5 (-1117)) (-4 *6 (-13 (-1066) (-898 *5) (-625 (-904 *5)))) (-4 *2 (-13 (-441 *6) (-898 *5) (-625 (-904 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *3 (-655 (-1093 *4 *5 *2))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3239 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3|)) (-15 -3239 (|#3| (-655 (-1093 |#1| |#2| |#3|)) |#3| (-936))) (-15 -1967 (|#3| |#3| (-655 (-1194)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 14)) (-2443 (((-3 (-782) "failed") $) 34)) (-4400 (((-782) $) NIL)) (-3900 (((-112) $) 16)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) 18)) (-2882 (((-873) $) 23) (($ (-782)) 29)) (-3685 (((-112) $ $) NIL)) (-4006 (($) 11 T CONST)) (-3913 (((-112) $ $) 20)))
-(((-55) (-13 (-1117) (-1055 (-782)) (-10 -8 (-15 -4006 ($) -3736) (-15 -2045 ((-112) $)) (-15 -3900 ((-112) $))))) (T -55))
-((-4006 (*1 *1) (-5 *1 (-55))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1117) (-1055 (-782)) (-10 -8 (-15 -4006 ($) -3736) (-15 -2045 ((-112) $)) (-15 -3900 ((-112) $))))
-((-3133 (((-112) $ (-782)) 27)) (-2657 (($ $ (-575) |#3|) 66)) (-1471 (($ $ (-575) |#4|) 70)) (-2320 ((|#3| $ (-575)) 79)) (-3999 (((-655 |#2|) $) 47)) (-3541 (((-112) $ (-782)) 31)) (-1322 (((-112) |#2| $) 74)) (-2844 (($ (-1 |#2| |#2|) $) 55)) (-2544 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3218 (((-112) $ (-782)) 29)) (-1652 (($ $ |#2|) 52)) (-2718 (((-112) (-1 (-112) |#2|) $) 21)) (-2065 ((|#2| $ (-575) (-575)) NIL) ((|#2| $ (-575) (-575) |#2|) 35)) (-3922 (((-782) (-1 (-112) |#2|) $) 41) (((-782) |#2| $) 76)) (-3076 (($ $) 51)) (-2324 ((|#4| $ (-575)) 82)) (-2882 (((-873) $) 88)) (-4121 (((-112) (-1 (-112) |#2|) $) 20)) (-3913 (((-112) $ $) 73)) (-2869 (((-782) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 (|#1| |#1| (-575) |#4|)) (-15 -2657 (|#1| |#1| (-575) |#3|)) (-15 -3999 ((-655 |#2|) |#1|)) (-15 -2324 (|#4| |#1| (-575))) (-15 -2320 (|#3| |#1| (-575))) (-15 -2065 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) (-575))) (-15 -1652 (|#1| |#1| |#2|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -1322 ((-112) |#2| |#1|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782))) (-15 -3076 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1235) (-383 |#2|) (-383 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 (|#1| |#1| (-575) |#4|)) (-15 -2657 (|#1| |#1| (-575) |#3|)) (-15 -3999 ((-655 |#2|) |#1|)) (-15 -2324 (|#4| |#1| (-575))) (-15 -2320 (|#3| |#1| (-575))) (-15 -2065 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) (-575))) (-15 -1652 (|#1| |#1| |#2|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -1322 ((-112) |#2| |#1|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782))) (-15 -3076 (|#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) (-575) |#1|) 45)) (-2657 (($ $ (-575) |#2|) 43)) (-1471 (($ $ (-575) |#3|) 42)) (-3261 (($) 7 T CONST)) (-2320 ((|#2| $ (-575)) 47)) (-2857 ((|#1| $ (-575) (-575) |#1|) 44)) (-2786 ((|#1| $ (-575) (-575)) 49)) (-3999 (((-655 |#1|) $) 31)) (-4243 (((-782) $) 52)) (-2303 (($ (-782) (-782) |#1|) 58)) (-4255 (((-782) $) 51)) (-3541 (((-112) $ (-782)) 9)) (-4274 (((-575) $) 56)) (-1477 (((-575) $) 54)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3093 (((-575) $) 55)) (-4180 (((-575) $) 53)) (-2844 (($ (-1 |#1| |#1|) $) 35)) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) 57)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) (-575)) 50) ((|#1| $ (-575) (-575) |#1|) 48)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2324 ((|#3| $ (-575)) 46)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-57 |#1| |#2| |#3|) (-141) (-1235) (-383 |t#1|) (-383 |t#1|)) (T -57))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2303 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-782)) (-4 *3 (-1235)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-1652 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-575)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-782)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-782)))) (-2065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-1235)))) (-2786 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-1235)))) (-2065 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1235)) (-4 *5 (-383 *4)) (-4 *2 (-383 *4)))) (-2324 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1235)) (-4 *5 (-383 *4)) (-4 *2 (-383 *4)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-655 *3)))) (-3052 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) (-2857 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235)) (-4 *4 (-383 *2)) (-4 *5 (-383 *2)))) (-2657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1235)) (-4 *3 (-383 *4)) (-4 *5 (-383 *4)))) (-1471 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1235)) (-4 *5 (-383 *4)) (-4 *3 (-383 *4)))) (-2844 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2544 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2544 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))))
-(-13 (-500 |t#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2303 ($ (-782) (-782) |t#1|)) (-15 -1652 ($ $ |t#1|)) (-15 -4274 ((-575) $)) (-15 -3093 ((-575) $)) (-15 -1477 ((-575) $)) (-15 -4180 ((-575) $)) (-15 -4243 ((-782) $)) (-15 -4255 ((-782) $)) (-15 -2065 (|t#1| $ (-575) (-575))) (-15 -2786 (|t#1| $ (-575) (-575))) (-15 -2065 (|t#1| $ (-575) (-575) |t#1|)) (-15 -2320 (|t#2| $ (-575))) (-15 -2324 (|t#3| $ (-575))) (-15 -3999 ((-655 |t#1|) $)) (-15 -3052 (|t#1| $ (-575) (-575) |t#1|)) (-15 -2857 (|t#1| $ (-575) (-575) |t#1|)) (-15 -2657 ($ $ (-575) |t#2|)) (-15 -1471 ($ $ (-575) |t#3|)) (-15 -2544 ($ (-1 |t#1| |t#1|) $)) (-15 -2844 ($ (-1 |t#1| |t#1|) $)) (-15 -2544 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2544 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-3436 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2302 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2544 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -3436 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2544 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1235) (-1235)) (T -58))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-58 *5 *2)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -3436 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2544 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1529 (($ (-655 |#1|)) 11) (($ (-782) |#1|) 14)) (-2303 (($ (-782) |#1|) 13)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 10)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1529 ($ (-655 |#1|))) (-15 -1529 ($ (-782) |#1|)))) (-1235)) (T -59))
-((-1529 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-59 *3)))) (-1529 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-59 *3)) (-4 *3 (-1235)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -1529 ($ (-655 |#1|))) (-15 -1529 ($ (-782) |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2657 (($ $ (-575) (-59 |#1|)) NIL)) (-1471 (($ $ (-575) (-59 |#1|)) NIL)) (-3261 (($) NIL T CONST)) (-2320 (((-59 |#1|) $ (-575)) NIL)) (-2857 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2786 ((|#1| $ (-575) (-575)) NIL)) (-3999 (((-655 |#1|) $) NIL)) (-4243 (((-782) $) NIL)) (-2303 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-4274 (((-575) $) NIL)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3093 (((-575) $) NIL)) (-4180 (((-575) $) NIL)) (-2844 (($ (-1 |#1| |#1|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2324 (((-59 |#1|) $ (-575)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4461))) (-1235)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4461)))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 74) (((-3 $ "failed") (-1285 (-325 (-575)))) 63) (((-3 $ "failed") (-1285 (-967 (-389)))) 94) (((-3 $ "failed") (-1285 (-967 (-575)))) 84) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 52) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 39)) (-4400 (($ (-1285 (-325 (-389)))) 70) (($ (-1285 (-325 (-575)))) 59) (($ (-1285 (-967 (-389)))) 90) (($ (-1285 (-967 (-575)))) 80) (($ (-1285 (-418 (-967 (-389))))) 48) (($ (-1285 (-418 (-967 (-575))))) 32)) (-2244 (((-1290) $) 124)) (-2882 (((-873) $) 118) (($ (-655 (-339))) 103) (($ (-339)) 97) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 101) (($ (-1285 (-349 (-2893 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2893) (-710)))) 31)))
-(((-61 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2893) (-710))))))) (-1194)) (T -61))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2893) (-710)))) (-5 *1 (-61 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2893) (-710)))))))
-((-2244 (((-1290) $) 54) (((-1290)) 55)) (-2882 (((-873) $) 51)))
-(((-62 |#1|) (-13 (-406) (-10 -7 (-15 -2244 ((-1290))))) (-1194)) (T -62))
-((-2244 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-62 *3)) (-14 *3 (-1194)))))
-(-13 (-406) (-10 -7 (-15 -2244 ((-1290)))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 150) (((-3 $ "failed") (-1285 (-325 (-575)))) 140) (((-3 $ "failed") (-1285 (-967 (-389)))) 170) (((-3 $ "failed") (-1285 (-967 (-575)))) 160) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 129) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 117)) (-4400 (($ (-1285 (-325 (-389)))) 146) (($ (-1285 (-325 (-575)))) 136) (($ (-1285 (-967 (-389)))) 166) (($ (-1285 (-967 (-575)))) 156) (($ (-1285 (-418 (-967 (-389))))) 125) (($ (-1285 (-418 (-967 (-575))))) 110)) (-2244 (((-1290) $) 103)) (-2882 (((-873) $) 97) (($ (-655 (-339))) 30) (($ (-339)) 35) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 33) (($ (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710)))) 95)))
-(((-63 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710))))))) (-1194)) (T -63))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710)))) (-5 *1 (-63 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710)))))))
-((-2443 (((-3 $ "failed") (-325 (-389))) 41) (((-3 $ "failed") (-325 (-575))) 46) (((-3 $ "failed") (-967 (-389))) 50) (((-3 $ "failed") (-967 (-575))) 54) (((-3 $ "failed") (-418 (-967 (-389)))) 36) (((-3 $ "failed") (-418 (-967 (-575)))) 29)) (-4400 (($ (-325 (-389))) 39) (($ (-325 (-575))) 44) (($ (-967 (-389))) 48) (($ (-967 (-575))) 52) (($ (-418 (-967 (-389)))) 34) (($ (-418 (-967 (-575)))) 26)) (-2244 (((-1290) $) 76)) (-2882 (((-873) $) 69) (($ (-655 (-339))) 61) (($ (-339)) 66) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 64) (($ (-349 (-2893 (QUOTE X)) (-2893) (-710))) 25)))
-(((-64 |#1|) (-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893 (QUOTE X)) (-2893) (-710)))))) (-1194)) (T -64))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-349 (-2893 (QUOTE X)) (-2893) (-710))) (-5 *1 (-64 *3)) (-14 *3 (-1194)))))
-(-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893 (QUOTE X)) (-2893) (-710))))))
-((-2443 (((-3 $ "failed") (-700 (-325 (-389)))) 111) (((-3 $ "failed") (-700 (-325 (-575)))) 99) (((-3 $ "failed") (-700 (-967 (-389)))) 133) (((-3 $ "failed") (-700 (-967 (-575)))) 122) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 87) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 73)) (-4400 (($ (-700 (-325 (-389)))) 107) (($ (-700 (-325 (-575)))) 95) (($ (-700 (-967 (-389)))) 129) (($ (-700 (-967 (-575)))) 118) (($ (-700 (-418 (-967 (-389))))) 83) (($ (-700 (-418 (-967 (-575))))) 66)) (-2244 (((-1290) $) 141)) (-2882 (((-873) $) 135) (($ (-655 (-339))) 29) (($ (-339)) 34) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 32) (($ (-700 (-349 (-2893) (-2893 (QUOTE X) (QUOTE HESS)) (-710)))) 56)))
-(((-65 |#1|) (-13 (-394) (-627 (-700 (-349 (-2893) (-2893 (QUOTE X) (QUOTE HESS)) (-710))))) (-1194)) (T -65))
-NIL
-(-13 (-394) (-627 (-700 (-349 (-2893) (-2893 (QUOTE X) (QUOTE HESS)) (-710)))))
-((-2443 (((-3 $ "failed") (-325 (-389))) 60) (((-3 $ "failed") (-325 (-575))) 65) (((-3 $ "failed") (-967 (-389))) 69) (((-3 $ "failed") (-967 (-575))) 73) (((-3 $ "failed") (-418 (-967 (-389)))) 55) (((-3 $ "failed") (-418 (-967 (-575)))) 48)) (-4400 (($ (-325 (-389))) 58) (($ (-325 (-575))) 63) (($ (-967 (-389))) 67) (($ (-967 (-575))) 71) (($ (-418 (-967 (-389)))) 53) (($ (-418 (-967 (-575)))) 45)) (-2244 (((-1290) $) 82)) (-2882 (((-873) $) 76) (($ (-655 (-339))) 29) (($ (-339)) 34) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 32) (($ (-349 (-2893) (-2893 (QUOTE XC)) (-710))) 40)))
-(((-66 |#1|) (-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893) (-2893 (QUOTE XC)) (-710)))))) (-1194)) (T -66))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-349 (-2893) (-2893 (QUOTE XC)) (-710))) (-5 *1 (-66 *3)) (-14 *3 (-1194)))))
-(-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893) (-2893 (QUOTE XC)) (-710))))))
-((-2244 (((-1290) $) 65)) (-2882 (((-873) $) 59) (($ (-700 (-710))) 51) (($ (-655 (-339))) 50) (($ (-339)) 57) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 55)))
-(((-67 |#1|) (-393) (-1194)) (T -67))
-NIL
-(-393)
-((-2244 (((-1290) $) 66)) (-2882 (((-873) $) 60) (($ (-700 (-710))) 52) (($ (-655 (-339))) 51) (($ (-339)) 54) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 57)))
-(((-68 |#1|) (-393) (-1194)) (T -68))
-NIL
-(-393)
-((-2244 (((-1290) $) NIL) (((-1290)) 33)) (-2882 (((-873) $) NIL)))
-(((-69 |#1|) (-13 (-406) (-10 -7 (-15 -2244 ((-1290))))) (-1194)) (T -69))
-((-2244 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-69 *3)) (-14 *3 (-1194)))))
-(-13 (-406) (-10 -7 (-15 -2244 ((-1290)))))
-((-2244 (((-1290) $) 75)) (-2882 (((-873) $) 69) (($ (-700 (-710))) 61) (($ (-655 (-339))) 63) (($ (-339)) 66) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 60)))
-(((-70 |#1|) (-393) (-1194)) (T -70))
-NIL
-(-393)
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 109) (((-3 $ "failed") (-1285 (-325 (-575)))) 98) (((-3 $ "failed") (-1285 (-967 (-389)))) 129) (((-3 $ "failed") (-1285 (-967 (-575)))) 119) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 87) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 74)) (-4400 (($ (-1285 (-325 (-389)))) 105) (($ (-1285 (-325 (-575)))) 94) (($ (-1285 (-967 (-389)))) 125) (($ (-1285 (-967 (-575)))) 115) (($ (-1285 (-418 (-967 (-389))))) 83) (($ (-1285 (-418 (-967 (-575))))) 67)) (-2244 (((-1290) $) 142)) (-2882 (((-873) $) 136) (($ (-655 (-339))) 131) (($ (-339)) 134) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 59) (($ (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))) 60)))
-(((-71 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710))))))) (-1194)) (T -71))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))) (-5 *1 (-71 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))))))
-((-2244 (((-1290) $) 33) (((-1290)) 32)) (-2882 (((-873) $) 36)))
-(((-72 |#1|) (-13 (-406) (-10 -7 (-15 -2244 ((-1290))))) (-1194)) (T -72))
-((-2244 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-72 *3)) (-14 *3 (-1194)))))
-(-13 (-406) (-10 -7 (-15 -2244 ((-1290)))))
-((-2244 (((-1290) $) 65)) (-2882 (((-873) $) 59) (($ (-700 (-710))) 51) (($ (-655 (-339))) 53) (($ (-339)) 56) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 50)))
-(((-73 |#1|) (-393) (-1194)) (T -73))
-NIL
-(-393)
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 127) (((-3 $ "failed") (-1285 (-325 (-575)))) 117) (((-3 $ "failed") (-1285 (-967 (-389)))) 147) (((-3 $ "failed") (-1285 (-967 (-575)))) 137) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 107) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 95)) (-4400 (($ (-1285 (-325 (-389)))) 123) (($ (-1285 (-325 (-575)))) 113) (($ (-1285 (-967 (-389)))) 143) (($ (-1285 (-967 (-575)))) 133) (($ (-1285 (-418 (-967 (-389))))) 103) (($ (-1285 (-418 (-967 (-575))))) 88)) (-2244 (((-1290) $) 80)) (-2882 (((-873) $) 28) (($ (-655 (-339))) 70) (($ (-339)) 66) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 73) (($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))) 67)))
-(((-74 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710))))))) (-1194)) (T -74))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))) (-5 *1 (-74 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 132) (((-3 $ "failed") (-1285 (-325 (-575)))) 121) (((-3 $ "failed") (-1285 (-967 (-389)))) 152) (((-3 $ "failed") (-1285 (-967 (-575)))) 142) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 110) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 97)) (-4400 (($ (-1285 (-325 (-389)))) 128) (($ (-1285 (-325 (-575)))) 117) (($ (-1285 (-967 (-389)))) 148) (($ (-1285 (-967 (-575)))) 138) (($ (-1285 (-418 (-967 (-389))))) 106) (($ (-1285 (-418 (-967 (-575))))) 90)) (-2244 (((-1290) $) 82)) (-2882 (((-873) $) 74) (($ (-655 (-339))) NIL) (($ (-339)) NIL) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) NIL) (($ (-1285 (-349 (-2893 (QUOTE X) (QUOTE EPS)) (-2893 (QUOTE -2253)) (-710)))) 69)))
-(((-75 |#1| |#2| |#3|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X) (QUOTE EPS)) (-2893 (QUOTE -2253)) (-710))))))) (-1194) (-1194) (-1194)) (T -75))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE X) (QUOTE EPS)) (-2893 (QUOTE -2253)) (-710)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194)) (-14 *5 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X) (QUOTE EPS)) (-2893 (QUOTE -2253)) (-710)))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 138) (((-3 $ "failed") (-1285 (-325 (-575)))) 127) (((-3 $ "failed") (-1285 (-967 (-389)))) 158) (((-3 $ "failed") (-1285 (-967 (-575)))) 148) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 116) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 103)) (-4400 (($ (-1285 (-325 (-389)))) 134) (($ (-1285 (-325 (-575)))) 123) (($ (-1285 (-967 (-389)))) 154) (($ (-1285 (-967 (-575)))) 144) (($ (-1285 (-418 (-967 (-389))))) 112) (($ (-1285 (-418 (-967 (-575))))) 96)) (-2244 (((-1290) $) 88)) (-2882 (((-873) $) 80) (($ (-655 (-339))) NIL) (($ (-339)) NIL) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) NIL) (($ (-1285 (-349 (-2893 (QUOTE EPS)) (-2893 (QUOTE YA) (QUOTE YB)) (-710)))) 75)))
-(((-76 |#1| |#2| |#3|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE EPS)) (-2893 (QUOTE YA) (QUOTE YB)) (-710))))))) (-1194) (-1194) (-1194)) (T -76))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE EPS)) (-2893 (QUOTE YA) (QUOTE YB)) (-710)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194)) (-14 *5 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE EPS)) (-2893 (QUOTE YA) (QUOTE YB)) (-710)))))))
-((-2443 (((-3 $ "failed") (-325 (-389))) 83) (((-3 $ "failed") (-325 (-575))) 88) (((-3 $ "failed") (-967 (-389))) 92) (((-3 $ "failed") (-967 (-575))) 96) (((-3 $ "failed") (-418 (-967 (-389)))) 78) (((-3 $ "failed") (-418 (-967 (-575)))) 71)) (-4400 (($ (-325 (-389))) 81) (($ (-325 (-575))) 86) (($ (-967 (-389))) 90) (($ (-967 (-575))) 94) (($ (-418 (-967 (-389)))) 76) (($ (-418 (-967 (-575)))) 68)) (-2244 (((-1290) $) 63)) (-2882 (((-873) $) 51) (($ (-655 (-339))) 47) (($ (-339)) 57) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 55) (($ (-349 (-2893) (-2893 (QUOTE X)) (-710))) 48)))
-(((-77 |#1|) (-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893) (-2893 (QUOTE X)) (-710)))))) (-1194)) (T -77))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-349 (-2893) (-2893 (QUOTE X)) (-710))) (-5 *1 (-77 *3)) (-14 *3 (-1194)))))
-(-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893) (-2893 (QUOTE X)) (-710))))))
-((-2443 (((-3 $ "failed") (-325 (-389))) 47) (((-3 $ "failed") (-325 (-575))) 52) (((-3 $ "failed") (-967 (-389))) 56) (((-3 $ "failed") (-967 (-575))) 60) (((-3 $ "failed") (-418 (-967 (-389)))) 42) (((-3 $ "failed") (-418 (-967 (-575)))) 35)) (-4400 (($ (-325 (-389))) 45) (($ (-325 (-575))) 50) (($ (-967 (-389))) 54) (($ (-967 (-575))) 58) (($ (-418 (-967 (-389)))) 40) (($ (-418 (-967 (-575)))) 32)) (-2244 (((-1290) $) 81)) (-2882 (((-873) $) 75) (($ (-655 (-339))) 67) (($ (-339)) 72) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 70) (($ (-349 (-2893) (-2893 (QUOTE X)) (-710))) 31)))
-(((-78 |#1|) (-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893) (-2893 (QUOTE X)) (-710)))))) (-1194)) (T -78))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-349 (-2893) (-2893 (QUOTE X)) (-710))) (-5 *1 (-78 *3)) (-14 *3 (-1194)))))
-(-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893) (-2893 (QUOTE X)) (-710))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 90) (((-3 $ "failed") (-1285 (-325 (-575)))) 79) (((-3 $ "failed") (-1285 (-967 (-389)))) 110) (((-3 $ "failed") (-1285 (-967 (-575)))) 100) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 68) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 55)) (-4400 (($ (-1285 (-325 (-389)))) 86) (($ (-1285 (-325 (-575)))) 75) (($ (-1285 (-967 (-389)))) 106) (($ (-1285 (-967 (-575)))) 96) (($ (-1285 (-418 (-967 (-389))))) 64) (($ (-1285 (-418 (-967 (-575))))) 48)) (-2244 (((-1290) $) 126)) (-2882 (((-873) $) 120) (($ (-655 (-339))) 113) (($ (-339)) 38) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 116) (($ (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710)))) 39)))
-(((-79 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710))))))) (-1194)) (T -79))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710)))) (-5 *1 (-79 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE XC)) (-710)))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 151) (((-3 $ "failed") (-1285 (-325 (-575)))) 141) (((-3 $ "failed") (-1285 (-967 (-389)))) 171) (((-3 $ "failed") (-1285 (-967 (-575)))) 161) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 131) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 119)) (-4400 (($ (-1285 (-325 (-389)))) 147) (($ (-1285 (-325 (-575)))) 137) (($ (-1285 (-967 (-389)))) 167) (($ (-1285 (-967 (-575)))) 157) (($ (-1285 (-418 (-967 (-389))))) 127) (($ (-1285 (-418 (-967 (-575))))) 112)) (-2244 (((-1290) $) 105)) (-2882 (((-873) $) 99) (($ (-655 (-339))) 90) (($ (-339)) 97) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 95) (($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))) 91)))
-(((-80 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710))))))) (-1194)) (T -80))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))) (-5 *1 (-80 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 79) (((-3 $ "failed") (-1285 (-325 (-575)))) 68) (((-3 $ "failed") (-1285 (-967 (-389)))) 99) (((-3 $ "failed") (-1285 (-967 (-575)))) 89) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 57) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 44)) (-4400 (($ (-1285 (-325 (-389)))) 75) (($ (-1285 (-325 (-575)))) 64) (($ (-1285 (-967 (-389)))) 95) (($ (-1285 (-967 (-575)))) 85) (($ (-1285 (-418 (-967 (-389))))) 53) (($ (-1285 (-418 (-967 (-575))))) 37)) (-2244 (((-1290) $) 125)) (-2882 (((-873) $) 119) (($ (-655 (-339))) 110) (($ (-339)) 116) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 114) (($ (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))) 36)))
-(((-81 |#1|) (-13 (-452) (-627 (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710))))) (-1194)) (T -81))
-NIL
-(-13 (-452) (-627 (-1285 (-349 (-2893) (-2893 (QUOTE X)) (-710)))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 98) (((-3 $ "failed") (-1285 (-325 (-575)))) 87) (((-3 $ "failed") (-1285 (-967 (-389)))) 118) (((-3 $ "failed") (-1285 (-967 (-575)))) 108) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 76) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 63)) (-4400 (($ (-1285 (-325 (-389)))) 94) (($ (-1285 (-325 (-575)))) 83) (($ (-1285 (-967 (-389)))) 114) (($ (-1285 (-967 (-575)))) 104) (($ (-1285 (-418 (-967 (-389))))) 72) (($ (-1285 (-418 (-967 (-575))))) 56)) (-2244 (((-1290) $) 48)) (-2882 (((-873) $) 42) (($ (-655 (-339))) 32) (($ (-339)) 35) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 38) (($ (-1285 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710)))) 33)))
-(((-82 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710))))))) (-1194)) (T -82))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710)))) (-5 *1 (-82 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710)))))))
-((-2443 (((-3 $ "failed") (-700 (-325 (-389)))) 118) (((-3 $ "failed") (-700 (-325 (-575)))) 107) (((-3 $ "failed") (-700 (-967 (-389)))) 140) (((-3 $ "failed") (-700 (-967 (-575)))) 129) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 96) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 83)) (-4400 (($ (-700 (-325 (-389)))) 114) (($ (-700 (-325 (-575)))) 103) (($ (-700 (-967 (-389)))) 136) (($ (-700 (-967 (-575)))) 125) (($ (-700 (-418 (-967 (-389))))) 92) (($ (-700 (-418 (-967 (-575))))) 76)) (-2244 (((-1290) $) 66)) (-2882 (((-873) $) 53) (($ (-655 (-339))) 60) (($ (-339)) 49) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 58) (($ (-700 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710)))) 50)))
-(((-83 |#1|) (-13 (-394) (-10 -8 (-15 -2882 ($ (-700 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710))))))) (-1194)) (T -83))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-700 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710)))) (-5 *1 (-83 *3)) (-14 *3 (-1194)))))
-(-13 (-394) (-10 -8 (-15 -2882 ($ (-700 (-349 (-2893 (QUOTE X) (QUOTE -2253)) (-2893) (-710)))))))
-((-2443 (((-3 $ "failed") (-700 (-325 (-389)))) 113) (((-3 $ "failed") (-700 (-325 (-575)))) 101) (((-3 $ "failed") (-700 (-967 (-389)))) 135) (((-3 $ "failed") (-700 (-967 (-575)))) 124) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 89) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 75)) (-4400 (($ (-700 (-325 (-389)))) 109) (($ (-700 (-325 (-575)))) 97) (($ (-700 (-967 (-389)))) 131) (($ (-700 (-967 (-575)))) 120) (($ (-700 (-418 (-967 (-389))))) 85) (($ (-700 (-418 (-967 (-575))))) 68)) (-2244 (((-1290) $) 60)) (-2882 (((-873) $) 54) (($ (-655 (-339))) 48) (($ (-339)) 51) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 45) (($ (-700 (-349 (-2893 (QUOTE X)) (-2893) (-710)))) 46)))
-(((-84 |#1|) (-13 (-394) (-10 -8 (-15 -2882 ($ (-700 (-349 (-2893 (QUOTE X)) (-2893) (-710))))))) (-1194)) (T -84))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-700 (-349 (-2893 (QUOTE X)) (-2893) (-710)))) (-5 *1 (-84 *3)) (-14 *3 (-1194)))))
-(-13 (-394) (-10 -8 (-15 -2882 ($ (-700 (-349 (-2893 (QUOTE X)) (-2893) (-710)))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 105) (((-3 $ "failed") (-1285 (-325 (-575)))) 94) (((-3 $ "failed") (-1285 (-967 (-389)))) 125) (((-3 $ "failed") (-1285 (-967 (-575)))) 115) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 83) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 70)) (-4400 (($ (-1285 (-325 (-389)))) 101) (($ (-1285 (-325 (-575)))) 90) (($ (-1285 (-967 (-389)))) 121) (($ (-1285 (-967 (-575)))) 111) (($ (-1285 (-418 (-967 (-389))))) 79) (($ (-1285 (-418 (-967 (-575))))) 63)) (-2244 (((-1290) $) 47)) (-2882 (((-873) $) 41) (($ (-655 (-339))) 50) (($ (-339)) 37) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 53) (($ (-1285 (-349 (-2893 (QUOTE X)) (-2893) (-710)))) 38)))
-(((-85 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X)) (-2893) (-710))))))) (-1194)) (T -85))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE X)) (-2893) (-710)))) (-5 *1 (-85 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X)) (-2893) (-710)))))))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 80) (((-3 $ "failed") (-1285 (-325 (-575)))) 69) (((-3 $ "failed") (-1285 (-967 (-389)))) 100) (((-3 $ "failed") (-1285 (-967 (-575)))) 90) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 58) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 45)) (-4400 (($ (-1285 (-325 (-389)))) 76) (($ (-1285 (-325 (-575)))) 65) (($ (-1285 (-967 (-389)))) 96) (($ (-1285 (-967 (-575)))) 86) (($ (-1285 (-418 (-967 (-389))))) 54) (($ (-1285 (-418 (-967 (-575))))) 38)) (-2244 (((-1290) $) 126)) (-2882 (((-873) $) 120) (($ (-655 (-339))) 111) (($ (-339)) 117) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 115) (($ (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))) 37)))
-(((-86 |#1|) (-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710))))))) (-1194)) (T -86))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))) (-5 *1 (-86 *3)) (-14 *3 (-1194)))))
-(-13 (-452) (-10 -8 (-15 -2882 ($ (-1285 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))))))
-((-2443 (((-3 $ "failed") (-700 (-325 (-389)))) 117) (((-3 $ "failed") (-700 (-325 (-575)))) 105) (((-3 $ "failed") (-700 (-967 (-389)))) 139) (((-3 $ "failed") (-700 (-967 (-575)))) 128) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 93) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 79)) (-4400 (($ (-700 (-325 (-389)))) 113) (($ (-700 (-325 (-575)))) 101) (($ (-700 (-967 (-389)))) 135) (($ (-700 (-967 (-575)))) 124) (($ (-700 (-418 (-967 (-389))))) 89) (($ (-700 (-418 (-967 (-575))))) 72)) (-2244 (((-1290) $) 63)) (-2882 (((-873) $) 57) (($ (-655 (-339))) 47) (($ (-339)) 54) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 52) (($ (-700 (-349 (-2893 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2893) (-710)))) 48)))
-(((-87 |#1|) (-13 (-394) (-10 -8 (-15 -2882 ($ (-700 (-349 (-2893 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2893) (-710))))))) (-1194)) (T -87))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-700 (-349 (-2893 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2893) (-710)))) (-5 *1 (-87 *3)) (-14 *3 (-1194)))))
-(-13 (-394) (-10 -8 (-15 -2882 ($ (-700 (-349 (-2893 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2893) (-710)))))))
-((-2244 (((-1290) $) 45)) (-2882 (((-873) $) 39) (($ (-1285 (-710))) 100) (($ (-655 (-339))) 31) (($ (-339)) 36) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 34)))
-(((-88 |#1|) (-451) (-1194)) (T -88))
-NIL
-(-451)
-((-2443 (((-3 $ "failed") (-325 (-389))) 48) (((-3 $ "failed") (-325 (-575))) 53) (((-3 $ "failed") (-967 (-389))) 57) (((-3 $ "failed") (-967 (-575))) 61) (((-3 $ "failed") (-418 (-967 (-389)))) 43) (((-3 $ "failed") (-418 (-967 (-575)))) 36)) (-4400 (($ (-325 (-389))) 46) (($ (-325 (-575))) 51) (($ (-967 (-389))) 55) (($ (-967 (-575))) 59) (($ (-418 (-967 (-389)))) 41) (($ (-418 (-967 (-575)))) 33)) (-2244 (((-1290) $) 91)) (-2882 (((-873) $) 85) (($ (-655 (-339))) 79) (($ (-339)) 82) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 77) (($ (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710))) 32)))
-(((-89 |#1|) (-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710)))))) (-1194)) (T -89))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710))) (-5 *1 (-89 *3)) (-14 *3 (-1194)))))
-(-13 (-407) (-10 -8 (-15 -2882 ($ (-349 (-2893 (QUOTE X)) (-2893 (QUOTE -2253)) (-710))))))
-((-1402 (((-1285 (-700 |#1|)) (-700 |#1|)) 61)) (-2670 (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 (-655 (-936))))) |#2| (-936)) 49)) (-4168 (((-2 (|:| |minor| (-655 (-936))) (|:| -2566 |#2|) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 |#2|))) |#2| (-936)) 72 (|has| |#1| (-373)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -2670 ((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 (-655 (-936))))) |#2| (-936))) (-15 -1402 ((-1285 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-373)) (-15 -4168 ((-2 (|:| |minor| (-655 (-936))) (|:| -2566 |#2|) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 |#2|))) |#2| (-936))) |%noBranch|)) (-567) (-667 |#1|)) (T -90))
-((-4168 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |minor| (-655 (-936))) (|:| -2566 *3) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5)))) (-1402 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-700 *4)) (-4 *5 (-667 *4)))) (-2670 (*1 *2 *3 *4) (-12 (-4 *5 (-567)) (-5 *2 (-2 (|:| -3415 (-700 *5)) (|:| |vec| (-1285 (-655 (-936)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5)))))
-(-10 -7 (-15 -2670 ((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 (-655 (-936))))) |#2| (-936))) (-15 -1402 ((-1285 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-373)) (-15 -4168 ((-2 (|:| |minor| (-655 (-936))) (|:| -2566 |#2|) (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 |#2|))) |#2| (-936))) |%noBranch|))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2006 ((|#1| $) 40)) (-3133 (((-112) $ (-782)) NIL)) (-3261 (($) NIL T CONST)) (-3107 ((|#1| |#1| $) 35)) (-1597 ((|#1| $) 33)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4030 ((|#1| $) NIL)) (-4218 (($ |#1| $) 36)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3773 ((|#1| $) 34)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 18)) (-1393 (($) 45)) (-3321 (((-782) $) 31)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 17)) (-2882 (((-873) $) 30 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) NIL)) (-2636 (($ (-655 |#1|)) 42)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 15 (|has| |#1| (-1117)))) (-2869 (((-782) $) 12 (|has| $ (-6 -4460)))))
-(((-91 |#1|) (-13 (-1138 |#1|) (-10 -8 (-15 -2636 ($ (-655 |#1|))))) (-1117)) (T -91))
-((-2636 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-91 *3)))))
-(-13 (-1138 |#1|) (-10 -8 (-15 -2636 ($ (-655 |#1|)))))
-((-2882 (((-873) $) 13) (($ (-1199)) 9) (((-1199) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -2882 ((-1199) |#1|)) (-15 -2882 (|#1| (-1199))) (-15 -2882 ((-873) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -2882 ((-1199) |#1|)) (-15 -2882 (|#1| (-1199))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-1199)) 17) (((-1199) $) 16)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
+((-1711 (((-112) $) 12)) (-2548 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -1711 ((-112) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-47 |#2| |#3|) (-1068) (-804)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -1711 ((-112) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-1711 (((-112) $) 74)) (-2428 (($ |#1| |#2|) 73)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4436 ((|#2| $) 76)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4417 ((|#1| $ |#2|) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-47 |#1| |#2|) (-141) (-1068) (-804)) (T -47))
+((-4379 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-112)))) (-2428 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-4404 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-4417 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-374)))))
+(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (-15 -4379 (|t#1| $)) (-15 -4366 ($ $)) (-15 -4436 (|t#2| $)) (-15 -2548 ($ (-1 |t#1| |t#1|) $)) (-15 -1711 ((-112) $)) (-15 -2428 ($ |t#1| |t#2|)) (-15 -4404 ($ $)) (-15 -4417 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -4013 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2741 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-4437 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-3203 (((-112) $) 9)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-4256 (((-656 (-624 $)) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1490 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-2477 (($ $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-1665 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-3968 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-2454 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4397 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-2780 (($ $ $) NIL)) (-2085 (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-701 $) (-1287 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-701 (-419 (-576))) (-1287 $)) NIL)) (-2326 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1739 (($ $) NIL) (($ (-656 $)) NIL)) (-2538 (((-656 (-115)) $) NIL)) (-2569 (((-115) (-115)) NIL)) (-1838 (((-112) $) 11)) (-2531 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-1621 (((-1144 (-576) (-624 $)) $) NIL)) (-1404 (($ $ (-576)) NIL)) (-3075 (((-1192 $) (-1192 $) (-624 $)) NIL) (((-1192 $) (-1192 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2658 (((-1192 $) (-624 $)) NIL (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) NIL)) (-2412 (((-3 (-624 $) "failed") $) NIL)) (-3862 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-2555 (((-656 (-624 $)) $) NIL)) (-1706 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2729 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-4324 (($ $) NIL)) (-3317 (((-783) $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2788 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3945 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3022 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3076 (((-783) $) NIL)) (-2099 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-1321 (($ $) NIL) (($ $ $) NIL)) (-2399 (($ $) NIL) (($ $ (-783)) NIL)) (-1635 (((-1144 (-576) (-624 $)) $) NIL)) (-1953 (($ $) NIL (|has| $ (-1068)))) (-2610 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-2858 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1144 (-576) (-624 $))) NIL)) (-2981 (((-783)) NIL T CONST)) (-2435 (($ $) NIL) (($ (-656 $)) NIL)) (-3410 (((-112) (-115)) NIL)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 6 T CONST)) (-2038 (($) 10 T CONST)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3889 (((-112) $ $) 13)) (-4013 (($ $ $) NIL)) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL)))
+(((-48) (-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -2858 ($ (-1144 (-576) (-624 $)))) (-15 -1621 ((-1144 (-576) (-624 $)) $)) (-15 -1635 ((-1144 (-576) (-624 $)) $)) (-15 -2326 ($ $)) (-15 -3075 ((-1192 $) (-1192 $) (-624 $))) (-15 -3075 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -3075 ($ $ (-624 $))) (-15 -3075 ($ $ (-656 (-624 $))))))) (T -48))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2326 (*1 *1 *1) (-5 *1 (-48))) (-3075 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-3075 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))))
+(-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -2858 ($ (-1144 (-576) (-624 $)))) (-15 -1621 ((-1144 (-576) (-624 $)) $)) (-15 -1635 ((-1144 (-576) (-624 $)) $)) (-15 -2326 ($ $)) (-15 -3075 ((-1192 $) (-1192 $) (-624 $))) (-15 -3075 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -3075 ($ $ (-624 $))) (-15 -3075 ($ $ (-656 (-624 $))))))
+((-2835 (((-112) $ $) NIL)) (-2513 (((-656 (-518)) $) 17)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 7)) (-1822 (((-1201) $) 18)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-49) (-13 (-1119) (-10 -8 (-15 -2513 ((-656 (-518)) $)) (-15 -1822 ((-1201) $))))) (T -49))
+((-2513 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49)))))
+(-13 (-1119) (-10 -8 (-15 -2513 ((-656 (-518)) $)) (-15 -1822 ((-1201) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 85)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3097 (((-112) $) 30)) (-2454 (((-3 |#1| "failed") $) 33)) (-4397 ((|#1| $) 34)) (-4404 (($ $) 40)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-4379 ((|#1| $) 31)) (-2089 (($ $) 74)) (-2143 (((-1178) $) NIL)) (-3460 (((-112) $) 43)) (-3887 (((-1139) $) NIL)) (-3633 (($ (-783)) 72)) (-2656 (($ (-656 (-576))) 73)) (-4436 (((-783) $) 44)) (-2858 (((-874) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-4417 ((|#1| $ $) 28)) (-2981 (((-783)) 71 T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 45 T CONST)) (-2038 (($) 17 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 64)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58)))
+(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1057 |#1|) (-10 -8 (-15 -4379 (|#1| $)) (-15 -2089 ($ $)) (-15 -4404 ($ $)) (-15 -4417 (|#1| $ $)) (-15 -3633 ($ (-783))) (-15 -2656 ($ (-656 (-576)))) (-15 -3460 ((-112) $)) (-15 -3097 ((-112) $)) (-15 -4436 ((-783) $)) (-15 -2548 ($ (-1 |#1| |#1|) $)))) (-1068) (-656 (-1196))) (T -50))
+((-4379 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) (-2089 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))))) (-4404 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))))) (-4417 (*1 *2 *1 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1196))))))
+(-13 (-632 |#1|) (-1057 |#1|) (-10 -8 (-15 -4379 (|#1| $)) (-15 -2089 ($ $)) (-15 -4404 ($ $)) (-15 -4417 (|#1| $ $)) (-15 -3633 ($ (-783))) (-15 -2656 ($ (-656 (-576)))) (-15 -3460 ((-112) $)) (-15 -3097 ((-112) $)) (-15 -4436 ((-783) $)) (-15 -2548 ($ (-1 |#1| |#1|) $))))
+((-3097 (((-112) (-52)) 18)) (-2454 (((-3 |#1| "failed") (-52)) 20)) (-4397 ((|#1| (-52)) 21)) (-2858 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -2858 ((-52) |#1|)) (-15 -2454 ((-3 |#1| "failed") (-52))) (-15 -3097 ((-112) (-52))) (-15 -4397 (|#1| (-52)))) (-1237)) (T -51))
+((-4397 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1237)))) (-2454 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) (-2858 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1237)))))
+(-10 -7 (-15 -2858 ((-52) |#1|)) (-15 -2454 ((-3 |#1| "failed") (-52))) (-15 -3097 ((-112) (-52))) (-15 -4397 (|#1| (-52))))
+((-2835 (((-112) $ $) NIL)) (-2331 (((-786) $) 8)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2430 (((-1123) $) 10)) (-2858 (((-874) $) 15)) (-2690 (((-112) $ $) NIL)) (-1679 (($ (-1123) (-786)) 16)) (-3889 (((-112) $ $) 12)))
+(((-52) (-13 (-1119) (-10 -8 (-15 -1679 ($ (-1123) (-786))) (-15 -2430 ((-1123) $)) (-15 -2331 ((-786) $))))) (T -52))
+((-1679 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-786)) (-5 *1 (-52)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-52)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52)))))
+(-13 (-1119) (-10 -8 (-15 -1679 ($ (-1123) (-786))) (-15 -2430 ((-1123) $)) (-15 -2331 ((-786) $))))
+((-1977 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1977 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1068) (-660 |#1|) (-864 |#1|)) (T -53))
+((-1977 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1068)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5)))))
+(-10 -7 (-15 -1977 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2549 ((|#3| |#3| (-656 (-1196))) 44)) (-2193 ((|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938)) 32) ((|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2193 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -2193 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938))) (-15 -2549 (|#3| |#3| (-656 (-1196))))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -54))
+((-2549 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2193 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1095 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1119)) (-4 *6 (-13 (-1068) (-899 *5) (-626 (-905 *5)))) (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2193 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1095 *4 *5 *2))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -2193 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -2193 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938))) (-15 -2549 (|#3| |#3| (-656 (-1196)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 14)) (-2454 (((-3 (-783) "failed") $) 34)) (-4397 (((-783) $) NIL)) (-1838 (((-112) $) 16)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) 18)) (-2858 (((-874) $) 23) (($ (-783)) 29)) (-2690 (((-112) $ $) NIL)) (-3459 (($) 11 T CONST)) (-3889 (((-112) $ $) 20)))
+(((-55) (-13 (-1119) (-1057 (-783)) (-10 -8 (-15 -3459 ($) -3712) (-15 -3203 ((-112) $)) (-15 -1838 ((-112) $))))) (T -55))
+((-3459 (*1 *1) (-5 *1 (-55))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1119) (-1057 (-783)) (-10 -8 (-15 -3459 ($) -3712) (-15 -3203 ((-112) $)) (-15 -1838 ((-112) $))))
+((-2746 (((-112) $ (-783)) 27)) (-3029 (($ $ (-576) |#3|) 66)) (-4405 (($ $ (-576) |#4|) 70)) (-3475 ((|#3| $ (-576)) 79)) (-3975 (((-656 |#2|) $) 47)) (-3639 (((-112) $ (-783)) 31)) (-3606 (((-112) |#2| $) 74)) (-2822 (($ (-1 |#2| |#2|) $) 55)) (-2548 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1684 (((-112) $ (-783)) 29)) (-4040 (($ $ |#2|) 52)) (-1910 (((-112) (-1 (-112) |#2|) $) 21)) (-2099 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-3902 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-3052 (($ $) 51)) (-3146 ((|#4| $ (-576)) 82)) (-2858 (((-874) $) 88)) (-2714 (((-112) (-1 (-112) |#2|) $) 20)) (-3889 (((-112) $ $) 73)) (-2845 (((-783) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4405 (|#1| |#1| (-576) |#4|)) (-15 -3029 (|#1| |#1| (-576) |#3|)) (-15 -3975 ((-656 |#2|) |#1|)) (-15 -3146 (|#4| |#1| (-576))) (-15 -3475 (|#3| |#1| (-576))) (-15 -2099 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) (-576))) (-15 -4040 (|#1| |#1| |#2|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#2| |#1|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783))) (-15 -3052 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1237) (-384 |#2|) (-384 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4405 (|#1| |#1| (-576) |#4|)) (-15 -3029 (|#1| |#1| (-576) |#3|)) (-15 -3975 ((-656 |#2|) |#1|)) (-15 -3146 (|#4| |#1| (-576))) (-15 -3475 (|#3| |#1| (-576))) (-15 -2099 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) (-576))) (-15 -4040 (|#1| |#1| |#2|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#2| |#1|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783))) (-15 -3052 (|#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) (-576) |#1|) 45)) (-3029 (($ $ (-576) |#2|) 43)) (-4405 (($ $ (-576) |#3|) 42)) (-2574 (($) 7 T CONST)) (-3475 ((|#2| $ (-576)) 47)) (-2832 ((|#1| $ (-576) (-576) |#1|) 44)) (-2767 ((|#1| $ (-576) (-576)) 49)) (-3975 (((-656 |#1|) $) 31)) (-4227 (((-783) $) 52)) (-2327 (($ (-783) (-783) |#1|) 58)) (-4240 (((-783) $) 51)) (-3639 (((-112) $ (-783)) 9)) (-2923 (((-576) $) 56)) (-1637 (((-576) $) 54)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3698 (((-576) $) 55)) (-2171 (((-576) $) 53)) (-2822 (($ (-1 |#1| |#1|) $) 35)) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) 57)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-3146 ((|#3| $ (-576)) 46)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-57 |#1| |#2| |#3|) (-141) (-1237) (-384 |t#1|) (-384 |t#1|)) (T -57))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2327 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4040 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2099 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1237)))) (-2767 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1237)))) (-2099 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3146 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3975 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3028 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2832 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3029 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-4405 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-2822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2548 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2548 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(-13 (-501 |t#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2327 ($ (-783) (-783) |t#1|)) (-15 -4040 ($ $ |t#1|)) (-15 -2923 ((-576) $)) (-15 -3698 ((-576) $)) (-15 -1637 ((-576) $)) (-15 -2171 ((-576) $)) (-15 -4227 ((-783) $)) (-15 -4240 ((-783) $)) (-15 -2099 (|t#1| $ (-576) (-576))) (-15 -2767 (|t#1| $ (-576) (-576))) (-15 -2099 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3475 (|t#2| $ (-576))) (-15 -3146 (|t#3| $ (-576))) (-15 -3975 ((-656 |t#1|) $)) (-15 -3028 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2832 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3029 ($ $ (-576) |t#2|)) (-15 -4405 ($ $ (-576) |t#3|)) (-15 -2548 ($ (-1 |t#1| |t#1|) $)) (-15 -2822 ($ (-1 |t#1| |t#1|) $)) (-15 -2548 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2548 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-4244 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2326 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2548 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -4244 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2548 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1237) (-1237)) (T -58))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-58 *5 *2)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -4244 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2548 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4130 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-2327 (($ (-783) |#1|) 13)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 10)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4130 ($ (-656 |#1|))) (-15 -4130 ($ (-783) |#1|)))) (-1237)) (T -59))
+((-4130 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-59 *3)))) (-4130 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1237)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -4130 ($ (-656 |#1|))) (-15 -4130 ($ (-783) |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3029 (($ $ (-576) (-59 |#1|)) NIL)) (-4405 (($ $ (-576) (-59 |#1|)) NIL)) (-2574 (($) NIL T CONST)) (-3475 (((-59 |#1|) $ (-576)) NIL)) (-2832 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2767 ((|#1| $ (-576) (-576)) NIL)) (-3975 (((-656 |#1|) $) NIL)) (-4227 (((-783) $) NIL)) (-2327 (($ (-783) (-783) |#1|) NIL)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2923 (((-576) $) NIL)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3698 (((-576) $) NIL)) (-2171 (((-576) $) NIL)) (-2822 (($ (-1 |#1| |#1|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-3146 (((-59 |#1|) $ (-576)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4463))) (-1237)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4463)))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 74) (((-3 $ "failed") (-1287 (-326 (-576)))) 63) (((-3 $ "failed") (-1287 (-969 (-390)))) 94) (((-3 $ "failed") (-1287 (-969 (-576)))) 84) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 52) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 39)) (-4397 (($ (-1287 (-326 (-390)))) 70) (($ (-1287 (-326 (-576)))) 59) (($ (-1287 (-969 (-390)))) 90) (($ (-1287 (-969 (-576)))) 80) (($ (-1287 (-419 (-969 (-390))))) 48) (($ (-1287 (-419 (-969 (-576))))) 32)) (-2275 (((-1292) $) 124)) (-2858 (((-874) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 101) (($ (-1287 (-350 (-2869 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2869) (-711)))) 31)))
+(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2869) (-711))))))) (-1196)) (T -61))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2869) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2869) (-711)))))))
+((-2275 (((-1292) $) 54) (((-1292)) 55)) (-2858 (((-874) $) 51)))
+(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2275 ((-1292))))) (-1196)) (T -62))
+((-2275 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-62 *3)) (-14 *3 (-1196)))))
+(-13 (-407) (-10 -7 (-15 -2275 ((-1292)))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 150) (((-3 $ "failed") (-1287 (-326 (-576)))) 140) (((-3 $ "failed") (-1287 (-969 (-390)))) 170) (((-3 $ "failed") (-1287 (-969 (-576)))) 160) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 129) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 117)) (-4397 (($ (-1287 (-326 (-390)))) 146) (($ (-1287 (-326 (-576)))) 136) (($ (-1287 (-969 (-390)))) 166) (($ (-1287 (-969 (-576)))) 156) (($ (-1287 (-419 (-969 (-390))))) 125) (($ (-1287 (-419 (-969 (-576))))) 110)) (-2275 (((-1292) $) 103)) (-2858 (((-874) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 33) (($ (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711)))) 95)))
+(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711))))))) (-1196)) (T -63))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711)))))))
+((-2454 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-969 (-390))) 50) (((-3 $ "failed") (-969 (-576))) 54) (((-3 $ "failed") (-419 (-969 (-390)))) 36) (((-3 $ "failed") (-419 (-969 (-576)))) 29)) (-4397 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-969 (-390))) 48) (($ (-969 (-576))) 52) (($ (-419 (-969 (-390)))) 34) (($ (-419 (-969 (-576)))) 26)) (-2275 (((-1292) $) 76)) (-2858 (((-874) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 64) (($ (-350 (-2869 (QUOTE X)) (-2869) (-711))) 25)))
+(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869 (QUOTE X)) (-2869) (-711)))))) (-1196)) (T -64))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-350 (-2869 (QUOTE X)) (-2869) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1196)))))
+(-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869 (QUOTE X)) (-2869) (-711))))))
+((-2454 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-969 (-390)))) 133) (((-3 $ "failed") (-701 (-969 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 73)) (-4397 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-969 (-390)))) 129) (($ (-701 (-969 (-576)))) 118) (($ (-701 (-419 (-969 (-390))))) 83) (($ (-701 (-419 (-969 (-576))))) 66)) (-2275 (((-1292) $) 141)) (-2858 (((-874) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 32) (($ (-701 (-350 (-2869) (-2869 (QUOTE X) (QUOTE HESS)) (-711)))) 56)))
+(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-2869) (-2869 (QUOTE X) (QUOTE HESS)) (-711))))) (-1196)) (T -65))
+NIL
+(-13 (-395) (-628 (-701 (-350 (-2869) (-2869 (QUOTE X) (QUOTE HESS)) (-711)))))
+((-2454 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-969 (-390))) 69) (((-3 $ "failed") (-969 (-576))) 73) (((-3 $ "failed") (-419 (-969 (-390)))) 55) (((-3 $ "failed") (-419 (-969 (-576)))) 48)) (-4397 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-969 (-390))) 67) (($ (-969 (-576))) 71) (($ (-419 (-969 (-390)))) 53) (($ (-419 (-969 (-576)))) 45)) (-2275 (((-1292) $) 82)) (-2858 (((-874) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 32) (($ (-350 (-2869) (-2869 (QUOTE XC)) (-711))) 40)))
+(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869) (-2869 (QUOTE XC)) (-711)))))) (-1196)) (T -66))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-350 (-2869) (-2869 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1196)))))
+(-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869) (-2869 (QUOTE XC)) (-711))))))
+((-2275 (((-1292) $) 65)) (-2858 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 55)))
+(((-67 |#1|) (-394) (-1196)) (T -67))
+NIL
+(-394)
+((-2275 (((-1292) $) 66)) (-2858 (((-874) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 57)))
+(((-68 |#1|) (-394) (-1196)) (T -68))
+NIL
+(-394)
+((-2275 (((-1292) $) NIL) (((-1292)) 33)) (-2858 (((-874) $) NIL)))
+(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2275 ((-1292))))) (-1196)) (T -69))
+((-2275 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196)))))
+(-13 (-407) (-10 -7 (-15 -2275 ((-1292)))))
+((-2275 (((-1292) $) 75)) (-2858 (((-874) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 60)))
+(((-70 |#1|) (-394) (-1196)) (T -70))
+NIL
+(-394)
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 109) (((-3 $ "failed") (-1287 (-326 (-576)))) 98) (((-3 $ "failed") (-1287 (-969 (-390)))) 129) (((-3 $ "failed") (-1287 (-969 (-576)))) 119) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 87) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 74)) (-4397 (($ (-1287 (-326 (-390)))) 105) (($ (-1287 (-326 (-576)))) 94) (($ (-1287 (-969 (-390)))) 125) (($ (-1287 (-969 (-576)))) 115) (($ (-1287 (-419 (-969 (-390))))) 83) (($ (-1287 (-419 (-969 (-576))))) 67)) (-2275 (((-1292) $) 142)) (-2858 (((-874) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 59) (($ (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))) 60)))
+(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711))))))) (-1196)) (T -71))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))))))
+((-2275 (((-1292) $) 33) (((-1292)) 32)) (-2858 (((-874) $) 36)))
+(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2275 ((-1292))))) (-1196)) (T -72))
+((-2275 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196)))))
+(-13 (-407) (-10 -7 (-15 -2275 ((-1292)))))
+((-2275 (((-1292) $) 65)) (-2858 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 50)))
+(((-73 |#1|) (-394) (-1196)) (T -73))
+NIL
+(-394)
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 127) (((-3 $ "failed") (-1287 (-326 (-576)))) 117) (((-3 $ "failed") (-1287 (-969 (-390)))) 147) (((-3 $ "failed") (-1287 (-969 (-576)))) 137) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 107) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 95)) (-4397 (($ (-1287 (-326 (-390)))) 123) (($ (-1287 (-326 (-576)))) 113) (($ (-1287 (-969 (-390)))) 143) (($ (-1287 (-969 (-576)))) 133) (($ (-1287 (-419 (-969 (-390))))) 103) (($ (-1287 (-419 (-969 (-576))))) 88)) (-2275 (((-1292) $) 80)) (-2858 (((-874) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 73) (($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))) 67)))
+(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711))))))) (-1196)) (T -74))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 132) (((-3 $ "failed") (-1287 (-326 (-576)))) 121) (((-3 $ "failed") (-1287 (-969 (-390)))) 152) (((-3 $ "failed") (-1287 (-969 (-576)))) 142) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 110) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 97)) (-4397 (($ (-1287 (-326 (-390)))) 128) (($ (-1287 (-326 (-576)))) 117) (($ (-1287 (-969 (-390)))) 148) (($ (-1287 (-969 (-576)))) 138) (($ (-1287 (-419 (-969 (-390))))) 106) (($ (-1287 (-419 (-969 (-576))))) 90)) (-2275 (((-1292) $) 82)) (-2858 (((-874) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) NIL) (($ (-1287 (-350 (-2869 (QUOTE X) (QUOTE EPS)) (-2869 (QUOTE -2282)) (-711)))) 69)))
+(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X) (QUOTE EPS)) (-2869 (QUOTE -2282)) (-711))))))) (-1196) (-1196) (-1196)) (T -75))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE X) (QUOTE EPS)) (-2869 (QUOTE -2282)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X) (QUOTE EPS)) (-2869 (QUOTE -2282)) (-711)))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 138) (((-3 $ "failed") (-1287 (-326 (-576)))) 127) (((-3 $ "failed") (-1287 (-969 (-390)))) 158) (((-3 $ "failed") (-1287 (-969 (-576)))) 148) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 116) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 103)) (-4397 (($ (-1287 (-326 (-390)))) 134) (($ (-1287 (-326 (-576)))) 123) (($ (-1287 (-969 (-390)))) 154) (($ (-1287 (-969 (-576)))) 144) (($ (-1287 (-419 (-969 (-390))))) 112) (($ (-1287 (-419 (-969 (-576))))) 96)) (-2275 (((-1292) $) 88)) (-2858 (((-874) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) NIL) (($ (-1287 (-350 (-2869 (QUOTE EPS)) (-2869 (QUOTE YA) (QUOTE YB)) (-711)))) 75)))
+(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE EPS)) (-2869 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1196) (-1196) (-1196)) (T -76))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE EPS)) (-2869 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE EPS)) (-2869 (QUOTE YA) (QUOTE YB)) (-711)))))))
+((-2454 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-969 (-390))) 92) (((-3 $ "failed") (-969 (-576))) 96) (((-3 $ "failed") (-419 (-969 (-390)))) 78) (((-3 $ "failed") (-419 (-969 (-576)))) 71)) (-4397 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-969 (-390))) 90) (($ (-969 (-576))) 94) (($ (-419 (-969 (-390)))) 76) (($ (-419 (-969 (-576)))) 68)) (-2275 (((-1292) $) 63)) (-2858 (((-874) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 55) (($ (-350 (-2869) (-2869 (QUOTE X)) (-711))) 48)))
+(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869) (-2869 (QUOTE X)) (-711)))))) (-1196)) (T -77))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-350 (-2869) (-2869 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1196)))))
+(-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869) (-2869 (QUOTE X)) (-711))))))
+((-2454 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-969 (-390))) 56) (((-3 $ "failed") (-969 (-576))) 60) (((-3 $ "failed") (-419 (-969 (-390)))) 42) (((-3 $ "failed") (-419 (-969 (-576)))) 35)) (-4397 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-969 (-390))) 54) (($ (-969 (-576))) 58) (($ (-419 (-969 (-390)))) 40) (($ (-419 (-969 (-576)))) 32)) (-2275 (((-1292) $) 81)) (-2858 (((-874) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 70) (($ (-350 (-2869) (-2869 (QUOTE X)) (-711))) 31)))
+(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869) (-2869 (QUOTE X)) (-711)))))) (-1196)) (T -78))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-350 (-2869) (-2869 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1196)))))
+(-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869) (-2869 (QUOTE X)) (-711))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 90) (((-3 $ "failed") (-1287 (-326 (-576)))) 79) (((-3 $ "failed") (-1287 (-969 (-390)))) 110) (((-3 $ "failed") (-1287 (-969 (-576)))) 100) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 68) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 55)) (-4397 (($ (-1287 (-326 (-390)))) 86) (($ (-1287 (-326 (-576)))) 75) (($ (-1287 (-969 (-390)))) 106) (($ (-1287 (-969 (-576)))) 96) (($ (-1287 (-419 (-969 (-390))))) 64) (($ (-1287 (-419 (-969 (-576))))) 48)) (-2275 (((-1292) $) 126)) (-2858 (((-874) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 116) (($ (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711)))) 39)))
+(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711))))))) (-1196)) (T -79))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE XC)) (-711)))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 151) (((-3 $ "failed") (-1287 (-326 (-576)))) 141) (((-3 $ "failed") (-1287 (-969 (-390)))) 171) (((-3 $ "failed") (-1287 (-969 (-576)))) 161) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 131) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 119)) (-4397 (($ (-1287 (-326 (-390)))) 147) (($ (-1287 (-326 (-576)))) 137) (($ (-1287 (-969 (-390)))) 167) (($ (-1287 (-969 (-576)))) 157) (($ (-1287 (-419 (-969 (-390))))) 127) (($ (-1287 (-419 (-969 (-576))))) 112)) (-2275 (((-1292) $) 105)) (-2858 (((-874) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 95) (($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))) 91)))
+(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711))))))) (-1196)) (T -80))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 79) (((-3 $ "failed") (-1287 (-326 (-576)))) 68) (((-3 $ "failed") (-1287 (-969 (-390)))) 99) (((-3 $ "failed") (-1287 (-969 (-576)))) 89) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 57) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 44)) (-4397 (($ (-1287 (-326 (-390)))) 75) (($ (-1287 (-326 (-576)))) 64) (($ (-1287 (-969 (-390)))) 95) (($ (-1287 (-969 (-576)))) 85) (($ (-1287 (-419 (-969 (-390))))) 53) (($ (-1287 (-419 (-969 (-576))))) 37)) (-2275 (((-1292) $) 125)) (-2858 (((-874) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 114) (($ (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))) 36)))
+(((-81 |#1|) (-13 (-453) (-628 (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711))))) (-1196)) (T -81))
+NIL
+(-13 (-453) (-628 (-1287 (-350 (-2869) (-2869 (QUOTE X)) (-711)))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 98) (((-3 $ "failed") (-1287 (-326 (-576)))) 87) (((-3 $ "failed") (-1287 (-969 (-390)))) 118) (((-3 $ "failed") (-1287 (-969 (-576)))) 108) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 76) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 63)) (-4397 (($ (-1287 (-326 (-390)))) 94) (($ (-1287 (-326 (-576)))) 83) (($ (-1287 (-969 (-390)))) 114) (($ (-1287 (-969 (-576)))) 104) (($ (-1287 (-419 (-969 (-390))))) 72) (($ (-1287 (-419 (-969 (-576))))) 56)) (-2275 (((-1292) $) 48)) (-2858 (((-874) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 38) (($ (-1287 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711)))) 33)))
+(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711))))))) (-1196)) (T -82))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711)))))))
+((-2454 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-969 (-390)))) 140) (((-3 $ "failed") (-701 (-969 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 83)) (-4397 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-969 (-390)))) 136) (($ (-701 (-969 (-576)))) 125) (($ (-701 (-419 (-969 (-390))))) 92) (($ (-701 (-419 (-969 (-576))))) 76)) (-2275 (((-1292) $) 66)) (-2858 (((-874) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 58) (($ (-701 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711)))) 50)))
+(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -2858 ($ (-701 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711))))))) (-1196)) (T -83))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1196)))))
+(-13 (-395) (-10 -8 (-15 -2858 ($ (-701 (-350 (-2869 (QUOTE X) (QUOTE -2282)) (-2869) (-711)))))))
+((-2454 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-969 (-390)))) 135) (((-3 $ "failed") (-701 (-969 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 75)) (-4397 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-969 (-390)))) 131) (($ (-701 (-969 (-576)))) 120) (($ (-701 (-419 (-969 (-390))))) 85) (($ (-701 (-419 (-969 (-576))))) 68)) (-2275 (((-1292) $) 60)) (-2858 (((-874) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 45) (($ (-701 (-350 (-2869 (QUOTE X)) (-2869) (-711)))) 46)))
+(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -2858 ($ (-701 (-350 (-2869 (QUOTE X)) (-2869) (-711))))))) (-1196)) (T -84))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2869 (QUOTE X)) (-2869) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1196)))))
+(-13 (-395) (-10 -8 (-15 -2858 ($ (-701 (-350 (-2869 (QUOTE X)) (-2869) (-711)))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 105) (((-3 $ "failed") (-1287 (-326 (-576)))) 94) (((-3 $ "failed") (-1287 (-969 (-390)))) 125) (((-3 $ "failed") (-1287 (-969 (-576)))) 115) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 83) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 70)) (-4397 (($ (-1287 (-326 (-390)))) 101) (($ (-1287 (-326 (-576)))) 90) (($ (-1287 (-969 (-390)))) 121) (($ (-1287 (-969 (-576)))) 111) (($ (-1287 (-419 (-969 (-390))))) 79) (($ (-1287 (-419 (-969 (-576))))) 63)) (-2275 (((-1292) $) 47)) (-2858 (((-874) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 53) (($ (-1287 (-350 (-2869 (QUOTE X)) (-2869) (-711)))) 38)))
+(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X)) (-2869) (-711))))))) (-1196)) (T -85))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE X)) (-2869) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X)) (-2869) (-711)))))))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 80) (((-3 $ "failed") (-1287 (-326 (-576)))) 69) (((-3 $ "failed") (-1287 (-969 (-390)))) 100) (((-3 $ "failed") (-1287 (-969 (-576)))) 90) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 58) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 45)) (-4397 (($ (-1287 (-326 (-390)))) 76) (($ (-1287 (-326 (-576)))) 65) (($ (-1287 (-969 (-390)))) 96) (($ (-1287 (-969 (-576)))) 86) (($ (-1287 (-419 (-969 (-390))))) 54) (($ (-1287 (-419 (-969 (-576))))) 38)) (-2275 (((-1292) $) 126)) (-2858 (((-874) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 115) (($ (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))) 37)))
+(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711))))))) (-1196)) (T -86))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1196)))))
+(-13 (-453) (-10 -8 (-15 -2858 ($ (-1287 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))))))
+((-2454 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-969 (-390)))) 139) (((-3 $ "failed") (-701 (-969 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 79)) (-4397 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-969 (-390)))) 135) (($ (-701 (-969 (-576)))) 124) (($ (-701 (-419 (-969 (-390))))) 89) (($ (-701 (-419 (-969 (-576))))) 72)) (-2275 (((-1292) $) 63)) (-2858 (((-874) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 52) (($ (-701 (-350 (-2869 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2869) (-711)))) 48)))
+(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -2858 ($ (-701 (-350 (-2869 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2869) (-711))))))) (-1196)) (T -87))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-2869 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2869) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1196)))))
+(-13 (-395) (-10 -8 (-15 -2858 ($ (-701 (-350 (-2869 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2869) (-711)))))))
+((-2275 (((-1292) $) 45)) (-2858 (((-874) $) 39) (($ (-1287 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 34)))
+(((-88 |#1|) (-452) (-1196)) (T -88))
+NIL
+(-452)
+((-2454 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-969 (-390))) 57) (((-3 $ "failed") (-969 (-576))) 61) (((-3 $ "failed") (-419 (-969 (-390)))) 43) (((-3 $ "failed") (-419 (-969 (-576)))) 36)) (-4397 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-969 (-390))) 55) (($ (-969 (-576))) 59) (($ (-419 (-969 (-390)))) 41) (($ (-419 (-969 (-576)))) 33)) (-2275 (((-1292) $) 91)) (-2858 (((-874) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 77) (($ (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711))) 32)))
+(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711)))))) (-1196)) (T -89))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1196)))))
+(-13 (-408) (-10 -8 (-15 -2858 ($ (-350 (-2869 (QUOTE X)) (-2869 (QUOTE -2282)) (-711))))))
+((-2356 (((-1287 (-701 |#1|)) (-701 |#1|)) 61)) (-1828 (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-938))))) |#2| (-938)) 49)) (-3438 (((-2 (|:| |minor| (-656 (-938))) (|:| -2568 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938)) 72 (|has| |#1| (-374)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -1828 ((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-938))))) |#2| (-938))) (-15 -2356 ((-1287 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3438 ((-2 (|:| |minor| (-656 (-938))) (|:| -2568 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938))) |%noBranch|)) (-568) (-668 |#1|)) (T -90))
+((-3438 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-938))) (|:| -2568 *3) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5)))) (-2356 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-1828 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3260 (-701 *5)) (|:| |vec| (-1287 (-656 (-938)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5)))))
+(-10 -7 (-15 -1828 ((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-938))))) |#2| (-938))) (-15 -2356 ((-1287 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -3438 ((-2 (|:| |minor| (-656 (-938))) (|:| -2568 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938))) |%noBranch|))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2039 ((|#1| $) 40)) (-2746 (((-112) $ (-783)) NIL)) (-2574 (($) NIL T CONST)) (-4398 ((|#1| |#1| $) 35)) (-1748 ((|#1| $) 33)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2395 ((|#1| $) NIL)) (-2329 (($ |#1| $) 36)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3079 ((|#1| $) 34)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 18)) (-3849 (($) 45)) (-3297 (((-783) $) 31)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 17)) (-2858 (((-874) $) 30 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) NIL)) (-1325 (($ (-656 |#1|)) 42)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 15 (|has| |#1| (-1119)))) (-2845 (((-783) $) 12 (|has| $ (-6 -4462)))))
+(((-91 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -1325 ($ (-656 |#1|))))) (-1119)) (T -91))
+((-1325 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-91 *3)))))
+(-13 (-1140 |#1|) (-10 -8 (-15 -1325 ($ (-656 |#1|)))))
+((-2858 (((-874) $) 13) (($ (-1201)) 9) (((-1201) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -2858 ((-1201) |#1|)) (-15 -2858 (|#1| (-1201))) (-15 -2858 ((-874) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -2858 ((-1201) |#1|)) (-15 -2858 (|#1| (-1201))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
(((-93) (-141)) (T -93))
NIL
-(-13 (-1117) (-501 (-1199)))
-(((-102) . T) ((-627 #0=(-1199)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T))
-((-3871 (($ $) 10)) (-3883 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1119) (-502 (-1201)))
+(((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T))
+((-3847 (($ $) 10)) (-3859 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -3859 (|#1| |#1|)) (-15 -3847 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)))
-((-3850 (($ $) 11)) (-3826 (($ $) 10)) (-3871 (($ $) 9)) (-3883 (($ $) 8)) (-3861 (($ $) 7)) (-3837 (($ $) 6)))
+(-10 -8 (-15 -3859 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)))
+((-3826 (($ $) 11)) (-3802 (($ $) 10)) (-3847 (($ $) 9)) (-3859 (($ $) 8)) (-3837 (($ $) 7)) (-3813 (($ $) 6)))
(((-95) (-141)) (T -95))
-((-3850 (*1 *1 *1) (-4 *1 (-95))) (-3826 (*1 *1 *1) (-4 *1 (-95))) (-3871 (*1 *1 *1) (-4 *1 (-95))) (-3883 (*1 *1 *1) (-4 *1 (-95))) (-3861 (*1 *1 *1) (-4 *1 (-95))) (-3837 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3837 ($ $)) (-15 -3861 ($ $)) (-15 -3883 ($ $)) (-15 -3871 ($ $)) (-15 -3826 ($ $)) (-15 -3850 ($ $))))
-((-2859 (((-112) $ $) NIL)) (-1777 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-96) (-13 (-1100) (-10 -8 (-15 -1777 ((-1152) $))))) (T -96))
-((-1777 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-96)))))
-(-13 (-1100) (-10 -8 (-15 -1777 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-1904 (((-389) (-1176) (-389)) 46) (((-389) (-1176) (-1176) (-389)) 44)) (-2222 (((-389) (-389)) 35)) (-2469 (((-1290)) 37)) (-4264 (((-1176) $) NIL)) (-3473 (((-389) (-1176) (-1176)) 50) (((-389) (-1176)) 52)) (-3912 (((-1137) $) NIL)) (-2402 (((-389) (-1176) (-1176)) 51)) (-3016 (((-389) (-1176) (-1176)) 53) (((-389) (-1176)) 54)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-97) (-13 (-1117) (-10 -7 (-15 -3473 ((-389) (-1176) (-1176))) (-15 -3473 ((-389) (-1176))) (-15 -3016 ((-389) (-1176) (-1176))) (-15 -3016 ((-389) (-1176))) (-15 -2402 ((-389) (-1176) (-1176))) (-15 -2469 ((-1290))) (-15 -2222 ((-389) (-389))) (-15 -1904 ((-389) (-1176) (-389))) (-15 -1904 ((-389) (-1176) (-1176) (-389))) (-6 -4460)))) (T -97))
-((-3473 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-3016 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))) (-2469 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-97)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-97)))) (-1904 (*1 *2 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97)))) (-1904 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97)))))
-(-13 (-1117) (-10 -7 (-15 -3473 ((-389) (-1176) (-1176))) (-15 -3473 ((-389) (-1176))) (-15 -3016 ((-389) (-1176) (-1176))) (-15 -3016 ((-389) (-1176))) (-15 -2402 ((-389) (-1176) (-1176))) (-15 -2469 ((-1290))) (-15 -2222 ((-389) (-389))) (-15 -1904 ((-389) (-1176) (-389))) (-15 -1904 ((-389) (-1176) (-1176) (-389))) (-6 -4460)))
+((-3826 (*1 *1 *1) (-4 *1 (-95))) (-3802 (*1 *1 *1) (-4 *1 (-95))) (-3847 (*1 *1 *1) (-4 *1 (-95))) (-3859 (*1 *1 *1) (-4 *1 (-95))) (-3837 (*1 *1 *1) (-4 *1 (-95))) (-3813 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -3813 ($ $)) (-15 -3837 ($ $)) (-15 -3859 ($ $)) (-15 -3847 ($ $)) (-15 -3802 ($ $)) (-15 -3826 ($ $))))
+((-2835 (((-112) $ $) NIL)) (-1811 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-96) (-13 (-1102) (-10 -8 (-15 -1811 ((-1154) $))))) (T -96))
+((-1811 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96)))))
+(-13 (-1102) (-10 -8 (-15 -1811 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-3325 (((-390) (-1178) (-390)) 46) (((-390) (-1178) (-1178) (-390)) 44)) (-4234 (((-390) (-390)) 35)) (-3920 (((-1292)) 37)) (-2143 (((-1178) $) NIL)) (-4225 (((-390) (-1178) (-1178)) 50) (((-390) (-1178)) 52)) (-3887 (((-1139) $) NIL)) (-1671 (((-390) (-1178) (-1178)) 51)) (-3413 (((-390) (-1178) (-1178)) 53) (((-390) (-1178)) 54)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-97) (-13 (-1119) (-10 -7 (-15 -4225 ((-390) (-1178) (-1178))) (-15 -4225 ((-390) (-1178))) (-15 -3413 ((-390) (-1178) (-1178))) (-15 -3413 ((-390) (-1178))) (-15 -1671 ((-390) (-1178) (-1178))) (-15 -3920 ((-1292))) (-15 -4234 ((-390) (-390))) (-15 -3325 ((-390) (-1178) (-390))) (-15 -3325 ((-390) (-1178) (-1178) (-390))) (-6 -4462)))) (T -97))
+((-4225 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3413 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-1671 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3920 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97)))) (-4234 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3325 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))) (-3325 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))))
+(-13 (-1119) (-10 -7 (-15 -4225 ((-390) (-1178) (-1178))) (-15 -4225 ((-390) (-1178))) (-15 -3413 ((-390) (-1178) (-1178))) (-15 -3413 ((-390) (-1178))) (-15 -1671 ((-390) (-1178) (-1178))) (-15 -3920 ((-1292))) (-15 -4234 ((-390) (-390))) (-15 -3325 ((-390) (-1178) (-390))) (-15 -3325 ((-390) (-1178) (-1178) (-390))) (-6 -4462)))
NIL
(((-98) (-141)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4460) (-6 (-4462 "*")) (-6 -4461) (-6 -4457) (-6 -4455) (-6 -4454) (-6 -4453) (-6 -4458) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4448) (-6 -4456) (-6 -4459) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4447)))
-((-2859 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-3653 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-575))) 24)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 16)) (-3912 (((-1137) $) NIL)) (-2065 ((|#1| $ |#1|) 13)) (-3516 (($ $ $) NIL)) (-4152 (($ $ $) NIL)) (-2882 (((-873) $) 22)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 8 T CONST)) (-3913 (((-112) $ $) 10)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) 32) (($ $ (-782)) NIL) (($ $ (-575)) 18)) (* (($ $ $) 33)))
-(((-99 |#1|) (-13 (-484) (-295 |#1| |#1|) (-10 -8 (-15 -3653 ($ (-1 |#1| |#1|))) (-15 -3653 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3653 ($ (-1 |#1| |#1| (-575)))))) (-1066)) (T -99))
-((-3653 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3)))) (-3653 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3)))) (-3653 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-99 *3)))))
-(-13 (-484) (-295 |#1| |#1|) (-10 -8 (-15 -3653 ($ (-1 |#1| |#1|))) (-15 -3653 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3653 ($ (-1 |#1| |#1| (-575))))))
-((-2590 (((-429 |#2|) |#2| (-655 |#2|)) 10) (((-429 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -2590 ((-429 |#2|) |#2| |#2|)) (-15 -2590 ((-429 |#2|) |#2| (-655 |#2|)))) (-13 (-463) (-148)) (-1261 |#1|)) (T -100))
-((-2590 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-13 (-463) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-100 *5 *3)))) (-2590 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-463) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -2590 ((-429 |#2|) |#2| |#2|)) (-15 -2590 ((-429 |#2|) |#2| (-655 |#2|))))
-((-2859 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -2859 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2859 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-3913 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4462) (-6 (-4464 "*")) (-6 -4463) (-6 -4459) (-6 -4457) (-6 -4456) (-6 -4455) (-6 -4460) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4458) (-6 -4461) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4449)))
+((-2835 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-3004 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 16)) (-3887 (((-1139) $) NIL)) (-2099 ((|#1| $ |#1|) 13)) (-2480 (($ $ $) NIL)) (-2220 (($ $ $) NIL)) (-2858 (((-874) $) 22)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 8 T CONST)) (-3889 (((-112) $ $) 10)) (-4013 (($ $ $) NIL)) (** (($ $ (-938)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33)))
+(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3004 ($ (-1 |#1| |#1|))) (-15 -3004 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3004 ($ (-1 |#1| |#1| (-576)))))) (-1068)) (T -99))
+((-3004 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-3004 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-3004 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-99 *3)))))
+(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3004 ($ (-1 |#1| |#1|))) (-15 -3004 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3004 ($ (-1 |#1| |#1| (-576))))))
+((-3860 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -3860 ((-430 |#2|) |#2| |#2|)) (-15 -3860 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1263 |#1|)) (T -100))
+((-3860 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-3860 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -3860 ((-430 |#2|) |#2| |#2|)) (-15 -3860 ((-430 |#2|) |#2| (-656 |#2|))))
+((-2835 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2835 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2835 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3889 (((-112) $ $) 6)))
(((-102) (-141)) (T -102))
-((-2859 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -3913 ((-112) $ $)) (-15 -2859 ((-112) $ $))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) 24 (|has| $ (-6 -4461)))) (-3853 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3451 (($ $ $) NIL (|has| $ (-6 -4461)))) (-1649 (($ $ (-655 |#1|)) 30)) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2429 (($ $) 12)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2526 (($ $ |#1| $) 32)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2915 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3641 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-655 |#1|) |#1| |#1| |#1|)) 49)) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2412 (($ $) 11)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) 13)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 9)) (-1393 (($) 31)) (-2065 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1816 (((-575) $ $) NIL)) (-3482 (((-112) $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1468 (($ (-782) |#1|) 33)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1468 ($ (-782) |#1|)) (-15 -1649 ($ $ (-655 |#1|))) (-15 -2915 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2915 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3641 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3641 ($ $ |#1| (-1 (-655 |#1|) |#1| |#1| |#1|))))) (-1117)) (T -103))
-((-1468 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-103 *3)) (-4 *3 (-1117)))) (-1649 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3)))) (-2915 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1117)))) (-2915 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3)))) (-3641 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (-5 *1 (-103 *2)))) (-3641 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-655 *2) *2 *2 *2)) (-4 *2 (-1117)) (-5 *1 (-103 *2)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1468 ($ (-782) |#1|)) (-15 -1649 ($ $ (-655 |#1|))) (-15 -2915 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2915 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3641 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3641 ($ $ |#1| (-1 (-655 |#1|) |#1| |#1| |#1|)))))
-((-1570 ((|#3| |#2| |#2|) 34)) (-4003 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4462 "*"))))) (-4286 ((|#3| |#2| |#2|) 36)) (-2928 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4462 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1570 (|#3| |#2| |#2|)) (-15 -4286 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4462 "*"))) (PROGN (-15 -4003 (|#1| |#2| |#2|)) (-15 -2928 (|#1| |#2|))) |%noBranch|)) (-1066) (-1261 |#1|) (-698 |#1| |#4| |#5|) (-383 |#1|) (-383 |#1|)) (T -104))
-((-2928 (*1 *2 *3) (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2)) (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2)) (-4 *4 (-698 *2 *5 *6)))) (-4003 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2)) (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2)) (-4 *4 (-698 *2 *5 *6)))) (-4286 (*1 *2 *3 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)))) (-1570 (*1 *2 *3 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)))))
-(-10 -7 (-15 -1570 (|#3| |#2| |#2|)) (-15 -4286 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4462 "*"))) (PROGN (-15 -4003 (|#1| |#2| |#2|)) (-15 -2928 (|#1| |#2|))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3310 (((-655 (-1194))) 37)) (-1845 (((-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227)))) (-1194)) 39)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-105) (-13 (-1117) (-10 -7 (-15 -3310 ((-655 (-1194)))) (-15 -1845 ((-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227)))) (-1194))) (-6 -4460)))) (T -105))
-((-3310 (*1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-105)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227))))) (-5 *1 (-105)))))
-(-13 (-1117) (-10 -7 (-15 -3310 ((-655 (-1194)))) (-15 -1845 ((-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227))) (|:| |singularities| (-1174 (-227)))) (-1194))) (-6 -4460)))
-((-2908 (($ (-655 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -2908 (|#1| (-655 |#2|)))) (-107 |#2|) (-1235)) (T -106))
-NIL
-(-10 -8 (-15 -2908 (|#1| (-655 |#2|))))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-107 |#1|) (-141) (-1235)) (T -107))
-((-2908 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-107 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))) (-4218 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))))
-(-13 (-500 |t#1|) (-10 -8 (-6 -4461) (-15 -2908 ($ (-655 |t#1|))) (-15 -3773 (|t#1| $)) (-15 -4218 ($ |t#1| $)) (-15 -4030 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-575) $) NIL (|has| (-575) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-575) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-575) (-1055 (-575))))) (-4400 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-575) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| (-575) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-575) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-1721 (((-112) $) NIL (|has| (-575) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-575) (-861)))) (-2544 (($ (-1 (-575) (-575)) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-575) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) NIL)) (-3920 (((-575) $) NIL (|has| (-575) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-575) $) NIL)) (-2613 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 8) (($ (-575)) NIL) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL) (((-1021 2) $) 10)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 (((-575) $) NIL (|has| (-575) (-556)))) (-2016 (($ (-418 (-575))) 9)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| (-575) (-831)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-575) (-861)))) (-4038 (($ $ $) NIL) (($ (-575) (-575)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL)))
-(((-108) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 2)) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -2016 ($ (-418 (-575))))))) (T -108))
-((-1931 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108)))))
-(-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 2)) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -2016 ($ (-418 (-575))))))
-((-3522 (((-655 (-980)) $) 13)) (-1777 (((-517) $) 9)) (-2882 (((-873) $) 20)) (-1349 (($ (-517) (-655 (-980))) 15)))
-(((-109) (-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -3522 ((-655 (-980)) $)) (-15 -1349 ($ (-517) (-655 (-980))))))) (T -109))
-((-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-109)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-655 (-980))) (-5 *1 (-109)))) (-1349 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-109)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -3522 ((-655 (-980)) $)) (-15 -1349 ($ (-517) (-655 (-980))))))
-((-2859 (((-112) $ $) NIL)) (-2877 (($ $) NIL)) (-1964 (($ $ $) NIL)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3175 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2025 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3052 (((-112) $ (-1252 (-575)) (-112)) NIL (|has| $ (-6 -4461))) (((-112) $ (-575) (-112)) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-3631 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2302 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2857 (((-112) $ (-575) (-112)) NIL (|has| $ (-6 -4461)))) (-2786 (((-112) $ (-575)) NIL)) (-2630 (((-575) (-112) $ (-575)) NIL (|has| (-112) (-1117))) (((-575) (-112) $) NIL (|has| (-112) (-1117))) (((-575) (-1 (-112) (-112)) $) NIL)) (-3999 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-3236 (($ $ $) NIL)) (-3213 (($ $) NIL)) (-3768 (($ $ $) NIL)) (-2303 (($ (-782) (-112)) 10)) (-3891 (($ $ $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL)) (-4167 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4252 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL)) (-2844 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-2129 (($ $ $ (-575)) NIL) (($ (-112) $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-112) $) NIL (|has| (-575) (-861)))) (-1540 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1652 (($ $ (-112)) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-112)) (-655 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-303 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-655 (-303 (-112)))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2697 (((-655 (-112)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 (($ $ (-1252 (-575))) NIL) (((-112) $ (-575)) NIL) (((-112) $ (-575) (-112)) NIL)) (-3237 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3922 (((-782) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117)))) (((-782) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-112) (-625 (-547))))) (-2893 (($ (-655 (-112))) NIL)) (-1513 (($ (-655 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2882 (((-873) $) NIL)) (-4189 (($ (-782) (-112)) 11)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3224 (($ $ $) NIL)) (-2920 (($ $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-2909 (($ $ $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-110) (-13 (-124) (-10 -8 (-15 -4189 ($ (-782) (-112)))))) (T -110))
-((-4189 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-124) (-10 -8 (-15 -4189 ($ (-782) (-112)))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
-(((-111 |#1| |#2|) (-141) (-1066) (-1066)) (T -111))
-NIL
-(-13 (-659 |t#1|) (-1073 |t#2|) (-10 -7 (-6 -4455) (-6 -4454)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2877 (($ $) 10)) (-1964 (($ $ $) 15)) (-1997 (($) 7 T CONST)) (-2418 (($ $) 6)) (-2409 (((-782)) 24)) (-2073 (($) 32)) (-3236 (($ $ $) 13)) (-3213 (($ $) 9)) (-3768 (($ $ $) 16)) (-3891 (($ $ $) 17)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) 30)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) 28)) (-2939 (($ $ $) 20)) (-3912 (((-1137) $) NIL)) (-3937 (($) 8 T CONST)) (-3429 (($ $ $) 21)) (-2613 (((-547) $) 34)) (-2882 (((-873) $) 36)) (-3685 (((-112) $ $) NIL)) (-3224 (($ $ $) 11)) (-2920 (($ $ $) 14)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 19)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 22)) (-2909 (($ $ $) 12)))
-(((-112) (-13 (-855) (-672) (-984) (-625 (-547)) (-10 -8 (-15 -1964 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -2418 ($ $))))) (T -112))
-((-1964 (*1 *1 *1 *1) (-5 *1 (-112))) (-3891 (*1 *1 *1 *1) (-5 *1 (-112))) (-3768 (*1 *1 *1 *1) (-5 *1 (-112))) (-2418 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-855) (-672) (-984) (-625 (-547)) (-10 -8 (-15 -1964 ($ $ $)) (-15 -3891 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -2418 ($ $))))
-((-3236 (($ $ $) 6)) (-3213 (($ $) 8)) (-3224 (($ $ $) 7)))
+((-2835 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3889 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -3889 ((-112) $ $)) (-15 -2835 ((-112) $ $))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) 24 (|has| $ (-6 -4463)))) (-2216 (($ $ $) NIL (|has| $ (-6 -4463)))) (-3232 (($ $ $) NIL (|has| $ (-6 -4463)))) (-3772 (($ $ (-656 |#1|)) 30)) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2442 (($ $) 12)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2532 (($ $ |#1| $) 32)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2386 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-4285 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2425 (($ $) 11)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) 13)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 9)) (-3849 (($) 31)) (-2099 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3599 (((-576) $ $) NIL)) (-2133 (((-112) $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2246 (($ (-783) |#1|) 33)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -2246 ($ (-783) |#1|)) (-15 -3772 ($ $ (-656 |#1|))) (-15 -2386 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2386 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4285 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4285 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1119)) (T -103))
+((-2246 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1119)))) (-3772 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) (-2386 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1119)))) (-2386 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) (-4285 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2)))) (-4285 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -2246 ($ (-783) |#1|)) (-15 -3772 ($ $ (-656 |#1|))) (-15 -2386 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2386 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4285 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4285 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)))))
+((-4188 ((|#3| |#2| |#2|) 34)) (-3184 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4464 "*"))))) (-1776 ((|#3| |#2| |#2|) 36)) (-4153 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4464 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4188 (|#3| |#2| |#2|)) (-15 -1776 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4464 "*"))) (PROGN (-15 -3184 (|#1| |#2| |#2|)) (-15 -4153 (|#1| |#2|))) |%noBranch|)) (-1068) (-1263 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104))
+((-4153 (*1 *2 *3) (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3184 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-699 *2 *5 *6)))) (-1776 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-4188 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))))
+(-10 -7 (-15 -4188 (|#3| |#2| |#2|)) (-15 -1776 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4464 "*"))) (PROGN (-15 -3184 (|#1| |#2| |#2|)) (-15 -4153 (|#1| |#2|))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2932 (((-656 (-1196))) 37)) (-1530 (((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1196)) 39)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-105) (-13 (-1119) (-10 -7 (-15 -2932 ((-656 (-1196)))) (-15 -1530 ((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1196))) (-6 -4462)))) (T -105))
+((-2932 (*1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-105)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227))))) (-5 *1 (-105)))))
+(-13 (-1119) (-10 -7 (-15 -2932 ((-656 (-1196)))) (-15 -1530 ((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1196))) (-6 -4462)))
+((-3195 (($ (-656 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3195 (|#1| (-656 |#2|)))) (-107 |#2|) (-1237)) (T -106))
+NIL
+(-10 -8 (-15 -3195 (|#1| (-656 |#2|))))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-107 |#1|) (-141) (-1237)) (T -107))
+((-3195 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-2329 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))))
+(-13 (-501 |t#1|) (-10 -8 (-6 -4463) (-15 -3195 ($ (-656 |t#1|))) (-15 -3079 (|t#1| $)) (-15 -2329 ($ |t#1| $)) (-15 -2395 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-576) $) NIL (|has| (-576) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-576) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-4397 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-576) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| (-576) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-576) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3196 (((-112) $) NIL (|has| (-576) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-576) (-862)))) (-2548 (($ (-1 (-576) (-576)) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-576) (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3807 (((-576) $) NIL (|has| (-576) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-576) $) NIL)) (-2610 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL) (((-1023 2) $) 10)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 (((-576) $) NIL (|has| (-576) (-557)))) (-4000 (($ (-419 (-576))) 9)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| (-576) (-832)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4013 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL)))
+(((-108) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 2)) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -4000 ($ (-419 (-576))))))) (T -108))
+((-3328 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))))
+(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 2)) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -4000 ($ (-419 (-576))))))
+((-3498 (((-656 (-982)) $) 13)) (-1811 (((-518) $) 9)) (-2858 (((-874) $) 20)) (-3120 (($ (-518) (-656 (-982))) 15)))
+(((-109) (-13 (-625 (-874)) (-10 -8 (-15 -1811 ((-518) $)) (-15 -3498 ((-656 (-982)) $)) (-15 -3120 ($ (-518) (-656 (-982))))))) (T -109))
+((-1811 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-656 (-982))) (-5 *1 (-109)))) (-3120 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-109)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -1811 ((-518) $)) (-15 -3498 ((-656 (-982)) $)) (-15 -3120 ($ (-518) (-656 (-982))))))
+((-2835 (((-112) $ $) NIL)) (-2856 (($ $) NIL)) (-1998 (($ $ $) NIL)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1426 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2059 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3028 (((-112) $ (-1254 (-576)) (-112)) NIL (|has| $ (-6 -4463))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3607 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2326 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2832 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4463)))) (-2767 (((-112) $ (-576)) NIL)) (-2627 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1119))) (((-576) (-112) $) NIL (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3975 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-3212 (($ $ $) NIL)) (-3189 (($ $) NIL)) (-3863 (($ $ $) NIL)) (-2327 (($ (-783) (-112)) 10)) (-3476 (($ $ $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL)) (-3343 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3531 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL)) (-2822 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-2163 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-112) $) NIL (|has| (-576) (-862)))) (-3557 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4040 (($ $ (-112)) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3584 (((-656 (-112)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 (($ $ (-1254 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3213 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3902 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-2869 (($ (-656 (-112))) NIL)) (-1534 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2858 (((-874) $) NIL)) (-1568 (($ (-783) (-112)) 11)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3200 (($ $ $) NIL)) (-2899 (($ $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-2885 (($ $ $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-110) (-13 (-124) (-10 -8 (-15 -1568 ($ (-783) (-112)))))) (T -110))
+((-1568 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-124) (-10 -8 (-15 -1568 ($ (-783) (-112)))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-141) (-1068) (-1068)) (T -111))
+NIL
+(-13 (-660 |t#1|) (-1075 |t#2|) (-10 -7 (-6 -4457) (-6 -4456)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2856 (($ $) 10)) (-1998 (($ $ $) 15)) (-2031 (($) 7 T CONST)) (-2431 (($ $) 6)) (-2422 (((-783)) 24)) (-2107 (($) 32)) (-3212 (($ $ $) 13)) (-3189 (($ $) 9)) (-3863 (($ $ $) 16)) (-3476 (($ $ $) 17)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) 30)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) 28)) (-2514 (($ $ $) 20)) (-3887 (((-1139) $) NIL)) (-3914 (($) 8 T CONST)) (-1677 (($ $ $) 21)) (-2610 (((-548) $) 34)) (-2858 (((-874) $) 36)) (-2690 (((-112) $ $) NIL)) (-3200 (($ $ $) 11)) (-2899 (($ $ $) 14)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 19)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 22)) (-2885 (($ $ $) 12)))
+(((-112) (-13 (-856) (-673) (-986) (-626 (-548)) (-10 -8 (-15 -1998 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -3863 ($ $ $)) (-15 -2431 ($ $))))) (T -112))
+((-1998 (*1 *1 *1 *1) (-5 *1 (-112))) (-3476 (*1 *1 *1 *1) (-5 *1 (-112))) (-3863 (*1 *1 *1 *1) (-5 *1 (-112))) (-2431 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-856) (-673) (-986) (-626 (-548)) (-10 -8 (-15 -1998 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -3863 ($ $ $)) (-15 -2431 ($ $))))
+((-3212 (($ $ $) 6)) (-3189 (($ $) 8)) (-3200 (($ $ $) 7)))
(((-113) (-141)) (T -113))
-((-3213 (*1 *1 *1) (-4 *1 (-113))) (-3224 (*1 *1 *1 *1) (-4 *1 (-113))) (-3236 (*1 *1 *1 *1) (-4 *1 (-113))))
-(-13 (-1235) (-10 -8 (-15 -3213 ($ $)) (-15 -3224 ($ $ $)) (-15 -3236 ($ $ $))))
-(((-1235) . T))
-((-3097 (((-3 (-1 |#1| (-655 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-655 |#1|))) 11) (((-3 |#1| "failed") (-115) (-655 |#1|)) 25)) (-3844 (((-3 (-655 (-1 |#1| (-655 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-655 (-1 |#1| (-655 |#1|)))) 30)) (-4122 (((-115) |#1|) 63)) (-3500 (((-3 |#1| "failed") (-115)) 58)))
-(((-114 |#1|) (-10 -7 (-15 -3097 ((-3 |#1| "failed") (-115) (-655 |#1|))) (-15 -3097 ((-115) (-115) (-1 |#1| (-655 |#1|)))) (-15 -3097 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3097 ((-3 (-1 |#1| (-655 |#1|)) "failed") (-115))) (-15 -3844 ((-115) (-115) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3844 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3844 ((-3 (-655 (-1 |#1| (-655 |#1|))) "failed") (-115))) (-15 -4122 ((-115) |#1|)) (-15 -3500 ((-3 |#1| "failed") (-115)))) (-1117)) (T -114))
-((-3500 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1117)))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1117)))) (-3844 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-1 *4 (-655 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1117)))) (-3844 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-3844 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 (-1 *4 (-655 *4)))) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-3097 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-655 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1117)))) (-3097 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-3097 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-655 *4))) (-4 *4 (-1117)) (-5 *1 (-114 *4)))) (-3097 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-655 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1117)))))
-(-10 -7 (-15 -3097 ((-3 |#1| "failed") (-115) (-655 |#1|))) (-15 -3097 ((-115) (-115) (-1 |#1| (-655 |#1|)))) (-15 -3097 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3097 ((-3 (-1 |#1| (-655 |#1|)) "failed") (-115))) (-15 -3844 ((-115) (-115) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3844 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3844 ((-3 (-655 (-1 |#1| (-655 |#1|))) "failed") (-115))) (-15 -4122 ((-115) |#1|)) (-15 -3500 ((-3 |#1| "failed") (-115))))
-((-2859 (((-112) $ $) NIL)) (-2213 (((-782) $) 91) (($ $ (-782)) 37)) (-3374 (((-112) $) 41)) (-1998 (($ $ (-1176) (-785)) 58) (($ $ (-517) (-785)) 33)) (-4219 (($ $ (-45 (-1176) (-785))) 16)) (-4309 (((-3 (-785) "failed") $ (-1176)) 27) (((-702 (-785)) $ (-517)) 32)) (-3522 (((-45 (-1176) (-785)) $) 15)) (-2567 (($ (-1194)) 20) (($ (-1194) (-782)) 23) (($ (-1194) (-55)) 24)) (-4097 (((-112) $) 39)) (-1748 (((-112) $) 43)) (-1777 (((-1194) $) 8)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3371 (((-112) $ (-1194)) 11)) (-2541 (($ $ (-1 (-547) (-655 (-547)))) 64) (((-3 (-1 (-547) (-655 (-547))) "failed") $) 71)) (-3912 (((-1137) $) NIL)) (-2669 (((-112) $ (-517)) 36)) (-1577 (($ $ (-1 (-112) $ $)) 45)) (-2478 (((-3 (-1 (-873) (-655 (-873))) "failed") $) 69) (($ $ (-1 (-873) (-655 (-873)))) 51) (($ $ (-1 (-873) (-873))) 53)) (-3159 (($ $ (-1176)) 55) (($ $ (-517)) 56)) (-3076 (($ $) 77)) (-2753 (($ $ (-1 (-112) $ $)) 46)) (-2882 (((-873) $) 60)) (-3685 (((-112) $ $) NIL)) (-2604 (($ $ (-517)) 34)) (-3425 (((-55) $) 72)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 89)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 103)))
-(((-115) (-13 (-861) (-846 (-1194)) (-10 -8 (-15 -3522 ((-45 (-1176) (-785)) $)) (-15 -3076 ($ $)) (-15 -2567 ($ (-1194))) (-15 -2567 ($ (-1194) (-782))) (-15 -2567 ($ (-1194) (-55))) (-15 -4097 ((-112) $)) (-15 -3374 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -2213 ((-782) $)) (-15 -2213 ($ $ (-782))) (-15 -1577 ($ $ (-1 (-112) $ $))) (-15 -2753 ($ $ (-1 (-112) $ $))) (-15 -2478 ((-3 (-1 (-873) (-655 (-873))) "failed") $)) (-15 -2478 ($ $ (-1 (-873) (-655 (-873))))) (-15 -2478 ($ $ (-1 (-873) (-873)))) (-15 -2541 ($ $ (-1 (-547) (-655 (-547))))) (-15 -2541 ((-3 (-1 (-547) (-655 (-547))) "failed") $)) (-15 -2669 ((-112) $ (-517))) (-15 -2604 ($ $ (-517))) (-15 -3159 ($ $ (-1176))) (-15 -3159 ($ $ (-517))) (-15 -4309 ((-3 (-785) "failed") $ (-1176))) (-15 -4309 ((-702 (-785)) $ (-517))) (-15 -1998 ($ $ (-1176) (-785))) (-15 -1998 ($ $ (-517) (-785))) (-15 -4219 ($ $ (-45 (-1176) (-785))))))) (T -115))
-((-3522 (*1 *2 *1) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115)))) (-3076 (*1 *1 *1) (-5 *1 (-115))) (-2567 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-115)))) (-2567 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *1 (-115)))) (-2567 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-55)) (-5 *1 (-115)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-115)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-115)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2753 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2478 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-873))) (-5 *1 (-115)))) (-2541 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115)))) (-2541 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115)))) (-2669 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-115)))) (-3159 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115)))) (-4309 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-785)) (-5 *1 (-115)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-785))) (-5 *1 (-115)))) (-1998 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-785)) (-5 *1 (-115)))) (-1998 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-785)) (-5 *1 (-115)))) (-4219 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115)))))
-(-13 (-861) (-846 (-1194)) (-10 -8 (-15 -3522 ((-45 (-1176) (-785)) $)) (-15 -3076 ($ $)) (-15 -2567 ($ (-1194))) (-15 -2567 ($ (-1194) (-782))) (-15 -2567 ($ (-1194) (-55))) (-15 -4097 ((-112) $)) (-15 -3374 ((-112) $)) (-15 -1748 ((-112) $)) (-15 -2213 ((-782) $)) (-15 -2213 ($ $ (-782))) (-15 -1577 ($ $ (-1 (-112) $ $))) (-15 -2753 ($ $ (-1 (-112) $ $))) (-15 -2478 ((-3 (-1 (-873) (-655 (-873))) "failed") $)) (-15 -2478 ($ $ (-1 (-873) (-655 (-873))))) (-15 -2478 ($ $ (-1 (-873) (-873)))) (-15 -2541 ($ $ (-1 (-547) (-655 (-547))))) (-15 -2541 ((-3 (-1 (-547) (-655 (-547))) "failed") $)) (-15 -2669 ((-112) $ (-517))) (-15 -2604 ($ $ (-517))) (-15 -3159 ($ $ (-1176))) (-15 -3159 ($ $ (-517))) (-15 -4309 ((-3 (-785) "failed") $ (-1176))) (-15 -4309 ((-702 (-785)) $ (-517))) (-15 -1998 ($ $ (-1176) (-785))) (-15 -1998 ($ $ (-517) (-785))) (-15 -4219 ($ $ (-45 (-1176) (-785))))))
-((-3008 (((-575) |#2|) 41)))
-(((-116 |#1| |#2|) (-10 -7 (-15 -3008 ((-575) |#2|))) (-13 (-373) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -116))
-((-3008 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-1055 (-418 *2)))) (-5 *2 (-575)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -3008 ((-575) |#2|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $ (-575)) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-3956 (($ (-1190 (-575)) (-575)) NIL)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2066 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3369 (((-782) $) NIL)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1444 (((-575)) NIL)) (-3593 (((-575) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1985 (($ $ (-575)) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2323 (((-1174 (-575)) $) NIL)) (-3575 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-575) $ (-575)) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL)))
-(((-117 |#1|) (-880 |#1|) (-575)) (T -117))
-NIL
-(-880 |#1|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-117 |#1|) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-117 |#1|) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-117 |#1|) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-117 |#1|) (-1055 (-575))))) (-4400 (((-117 |#1|) $) NIL) (((-1194) $) NIL (|has| (-117 |#1|) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-117 |#1|) (-1055 (-575)))) (((-575) $) NIL (|has| (-117 |#1|) (-1055 (-575))))) (-3709 (($ $) NIL) (($ (-575) $) NIL)) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-117 |#1|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-117 |#1|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-117 |#1|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-117 |#1|))) (|:| |vec| (-1285 (-117 |#1|)))) (-700 $) (-1285 $)) NIL) (((-700 (-117 |#1|)) (-700 $)) NIL) (((-700 (-117 |#1|)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-117 |#1|) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| (-117 |#1|) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-117 |#1|) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-117 |#1|) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-117 |#1|) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1169)))) (-1721 (((-112) $) NIL (|has| (-117 |#1|) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-3503 (($ $ $) NIL (|has| (-117 |#1|) (-861)))) (-2544 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-117 |#1|) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-117 |#1|) (-316)))) (-3920 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-117 |#1|) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-117 |#1|)) (-655 (-117 |#1|))) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-303 (-117 |#1|))) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-655 (-303 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-318 (-117 |#1|)))) (($ $ (-655 (-1194)) (-655 (-117 |#1|))) NIL (|has| (-117 |#1|) (-525 (-1194) (-117 |#1|)))) (($ $ (-1194) (-117 |#1|)) NIL (|has| (-117 |#1|) (-525 (-1194) (-117 |#1|))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-295 (-117 |#1|) (-117 |#1|))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-117 |#1|) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-117 |#1|) $) NIL)) (-2613 (((-904 (-575)) $) NIL (|has| (-117 |#1|) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-117 |#1|) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-117 |#1|) (-625 (-547)))) (((-389) $) NIL (|has| (-117 |#1|) (-1039))) (((-227) $) NIL (|has| (-117 |#1|) (-1039)))) (-4313 (((-176 (-418 (-575))) $) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-117 |#1|)) NIL) (($ (-1194)) NIL (|has| (-117 |#1|) (-1055 (-1194))))) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-924))) (|has| (-117 |#1|) (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-418 (-575)) $ (-575)) NIL)) (-3863 (($ $) NIL (|has| (-117 |#1|) (-831)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-117 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-117 |#1|) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-117 |#1|) (-861)))) (-4038 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
-(((-118 |#1|) (-13 (-1009 (-117 |#1|)) (-10 -8 (-15 -3493 ((-418 (-575)) $ (-575))) (-15 -4313 ((-176 (-418 (-575))) $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $)))) (-575)) (T -118))
-((-3493 (*1 *2 *1 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-575)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-118 *3)) (-14 *3 (-575)))) (-3709 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-575)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-118 *3)) (-14 *3 *2))))
-(-13 (-1009 (-117 |#1|)) (-10 -8 (-15 -3493 ((-418 (-575)) $ (-575))) (-15 -4313 ((-176 (-418 (-575))) $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $))))
-((-3052 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1893 (((-655 $) $) 31)) (-2510 (((-112) $ $) 36)) (-1322 (((-112) |#2| $) 40)) (-2476 (((-655 |#2|) $) 25)) (-1902 (((-112) $) 18)) (-2065 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3482 (((-112) $) 57)) (-2882 (((-873) $) 47)) (-3620 (((-655 $) $) 32)) (-3913 (((-112) $ $) 38)) (-2869 (((-782) $) 50)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -3052 (|#1| |#1| "right" |#1|)) (-15 -3052 (|#1| |#1| "left" |#1|)) (-15 -2065 (|#1| |#1| "right")) (-15 -2065 (|#1| |#1| "left")) (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -2510 ((-112) |#1| |#1|)) (-15 -2476 ((-655 |#2|) |#1|)) (-15 -3482 ((-112) |#1|)) (-15 -2065 (|#2| |#1| "value")) (-15 -1902 ((-112) |#1|)) (-15 -1893 ((-655 |#1|) |#1|)) (-15 -3620 ((-655 |#1|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -1322 ((-112) |#2| |#1|)) (-15 -2869 ((-782) |#1|))) (-120 |#2|) (-1235)) (T -119))
-NIL
-(-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -3052 (|#1| |#1| "right" |#1|)) (-15 -3052 (|#1| |#1| "left" |#1|)) (-15 -2065 (|#1| |#1| "right")) (-15 -2065 (|#1| |#1| "left")) (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -2510 ((-112) |#1| |#1|)) (-15 -2476 ((-655 |#2|) |#1|)) (-15 -3482 ((-112) |#1|)) (-15 -2065 (|#2| |#1| "value")) (-15 -1902 ((-112) |#1|)) (-15 -1893 ((-655 |#1|) |#1|)) (-15 -3620 ((-655 |#1|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -1322 ((-112) |#2| |#1|)) (-15 -2869 ((-782) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3853 (($ $ $) 53 (|has| $ (-6 -4461)))) (-3451 (($ $ $) 55 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) (($ $ "left" $) 56 (|has| $ (-6 -4461))) (($ $ "right" $) 54 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3261 (($) 7 T CONST)) (-2429 (($ $) 58)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-2412 (($ $) 60)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1816 (((-575) $ $) 45)) (-3482 (((-112) $) 47)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-120 |#1|) (-141) (-1235)) (T -120))
-((-2412 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-2429 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-3052 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-3451 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235)))) (-3052 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3)) (-4 *3 (-1235)))) (-3853 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235)))))
-(-13 (-1027 |t#1|) (-10 -8 (-15 -2412 ($ $)) (-15 -2065 ($ $ "left")) (-15 -2429 ($ $)) (-15 -2065 ($ $ "right")) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3052 ($ $ "left" $)) (-15 -3451 ($ $ $)) (-15 -3052 ($ $ "right" $)) (-15 -3853 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-4083 (((-112) |#1|) 29)) (-1664 (((-782) (-782)) 28) (((-782)) 27)) (-1377 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-121 |#1|) (-10 -7 (-15 -1377 ((-112) |#1|)) (-15 -1377 ((-112) |#1| (-112))) (-15 -1664 ((-782))) (-15 -1664 ((-782) (-782))) (-15 -4083 ((-112) |#1|))) (-1261 (-575))) (T -121))
-((-4083 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-1664 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-1377 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))) (-1377 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))))
-(-10 -7 (-15 -1377 ((-112) |#1|)) (-15 -1377 ((-112) |#1| (-112))) (-15 -1664 ((-782))) (-15 -1664 ((-782) (-782))) (-15 -4083 ((-112) |#1|)))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) 18)) (-2432 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3853 (($ $ $) 21 (|has| $ (-6 -4461)))) (-3451 (($ $ $) 23 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2429 (($ $) 20)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2526 (($ $ |#1| $) 27)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2412 (($ $) 22)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-1494 (($ |#1| $) 28)) (-4218 (($ |#1| $) 15)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 17)) (-1393 (($) 11)) (-2065 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1816 (((-575) $ $) NIL)) (-3482 (((-112) $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3596 (($ (-655 |#1|)) 16)) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -3596 ($ (-655 |#1|))) (-15 -4218 ($ |#1| $)) (-15 -1494 ($ |#1| $)) (-15 -2432 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -122))
-((-3596 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))) (-4218 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-1494 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))) (-2432 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-861)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -3596 ($ (-655 |#1|))) (-15 -4218 ($ |#1| $)) (-15 -1494 ($ |#1| $)) (-15 -2432 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2877 (($ $) 13)) (-3213 (($ $) 11)) (-3768 (($ $ $) 23)) (-3891 (($ $ $) 21)) (-2920 (($ $ $) 19)) (-2909 (($ $ $) 17)))
-(((-123 |#1|) (-10 -8 (-15 -3768 (|#1| |#1| |#1|)) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -3213 (|#1| |#1|))) (-124)) (T -123))
-NIL
-(-10 -8 (-15 -3768 (|#1| |#1| |#1|)) (-15 -3891 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2920 (|#1| |#1| |#1|)) (-15 -3213 (|#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2877 (($ $) 103)) (-1964 (($ $ $) 28)) (-4116 (((-1290) $ (-575) (-575)) 66 (|has| $ (-6 -4461)))) (-1905 (((-112) $) 98 (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3175 (($ $) 102 (-12 (|has| (-112) (-861)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4461)))) (-2025 (($ $) 97 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3133 (((-112) $ (-782)) 37)) (-3052 (((-112) $ (-1252 (-575)) (-112)) 88 (|has| $ (-6 -4461))) (((-112) $ (-575) (-112)) 54 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4460)))) (-3261 (($) 38 T CONST)) (-3086 (($ $) 100 (|has| $ (-6 -4461)))) (-4380 (($ $) 90)) (-4070 (($ $) 68 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4460))) (($ (-112) $) 69 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-2302 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-2857 (((-112) $ (-575) (-112)) 53 (|has| $ (-6 -4461)))) (-2786 (((-112) $ (-575)) 55)) (-2630 (((-575) (-112) $ (-575)) 95 (|has| (-112) (-1117))) (((-575) (-112) $) 94 (|has| (-112) (-1117))) (((-575) (-1 (-112) (-112)) $) 93)) (-3999 (((-655 (-112)) $) 45 (|has| $ (-6 -4460)))) (-3236 (($ $ $) 108)) (-3213 (($ $) 106)) (-3768 (($ $ $) 29)) (-2303 (($ (-782) (-112)) 78)) (-3891 (($ $ $) 30)) (-3541 (((-112) $ (-782)) 36)) (-2569 (((-575) $) 63 (|has| (-575) (-861)))) (-1914 (($ $ $) 14)) (-4167 (($ $ $) 96 (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-4252 (((-655 (-112)) $) 46 (|has| $ (-6 -4460)))) (-1322 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 62 (|has| (-575) (-861)))) (-3503 (($ $ $) 15)) (-2844 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-3218 (((-112) $ (-782)) 35)) (-4264 (((-1176) $) 10)) (-2129 (($ $ $ (-575)) 87) (($ (-112) $ (-575)) 86)) (-1653 (((-655 (-575)) $) 60)) (-1801 (((-112) (-575) $) 59)) (-3912 (((-1137) $) 11)) (-1955 (((-112) $) 64 (|has| (-575) (-861)))) (-1540 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-1652 (($ $ (-112)) 65 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-112)) (-655 (-112))) 52 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-303 (-112))) 50 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-655 (-303 (-112)))) 49 (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))))) (-2391 (((-112) $ $) 31)) (-3808 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2697 (((-655 (-112)) $) 58)) (-2017 (((-112) $) 34)) (-1393 (($) 33)) (-2065 (($ $ (-1252 (-575))) 77) (((-112) $ (-575)) 57) (((-112) $ (-575) (-112)) 56)) (-3237 (($ $ (-1252 (-575))) 85) (($ $ (-575)) 84)) (-3922 (((-782) (-112) $) 47 (-12 (|has| (-112) (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4460)))) (-2617 (($ $ $ (-575)) 99 (|has| $ (-6 -4461)))) (-3076 (($ $) 32)) (-2613 (((-547) $) 67 (|has| (-112) (-625 (-547))))) (-2893 (($ (-655 (-112))) 76)) (-1513 (($ (-655 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-4121 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4460)))) (-3224 (($ $ $) 107)) (-2920 (($ $ $) 105)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-2909 (($ $ $) 104)) (-2869 (((-782) $) 39 (|has| $ (-6 -4460)))))
+((-3189 (*1 *1 *1) (-4 *1 (-113))) (-3200 (*1 *1 *1 *1) (-4 *1 (-113))) (-3212 (*1 *1 *1 *1) (-4 *1 (-113))))
+(-13 (-1237) (-10 -8 (-15 -3189 ($ $)) (-15 -3200 ($ $ $)) (-15 -3212 ($ $ $))))
+(((-1237) . T))
+((-2987 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-2642 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-2805 (((-115) |#1|) 63)) (-4386 (((-3 |#1| "failed") (-115)) 58)))
+(((-114 |#1|) (-10 -7 (-15 -2987 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2987 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2987 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2987 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2642 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2642 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2642 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2805 ((-115) |#1|)) (-15 -4386 ((-3 |#1| "failed") (-115)))) (-1119)) (T -114))
+((-4386 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1119)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1119)))) (-2642 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1119)))) (-2642 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-2642 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-2987 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1119)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-2987 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1119)))))
+(-10 -7 (-15 -2987 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -2987 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -2987 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2987 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2642 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2642 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2642 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -2805 ((-115) |#1|)) (-15 -4386 ((-3 |#1| "failed") (-115))))
+((-2835 (((-112) $ $) NIL)) (-2551 (((-783) $) 91) (($ $ (-783)) 37)) (-1827 (((-112) $) 41)) (-1758 (($ $ (-1178) (-786)) 58) (($ $ (-518) (-786)) 33)) (-2413 (($ $ (-45 (-1178) (-786))) 16)) (-3450 (((-3 (-786) "failed") $ (-1178)) 27) (((-703 (-786)) $ (-518)) 32)) (-3498 (((-45 (-1178) (-786)) $) 15)) (-2569 (($ (-1196)) 20) (($ (-1196) (-783)) 23) (($ (-1196) (-55)) 24)) (-2230 (((-112) $) 39)) (-2200 (((-112) $) 43)) (-1811 (((-1196) $) 8)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-2729 (((-112) $ (-1196)) 11)) (-2545 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-3887 (((-1139) $) NIL)) (-1703 (((-112) $ (-518)) 36)) (-3575 (($ $ (-1 (-112) $ $)) 45)) (-2486 (((-3 (-1 (-874) (-656 (-874))) "failed") $) 69) (($ $ (-1 (-874) (-656 (-874)))) 51) (($ $ (-1 (-874) (-874))) 53)) (-3530 (($ $ (-1178)) 55) (($ $ (-518)) 56)) (-3052 (($ $) 77)) (-3581 (($ $ (-1 (-112) $ $)) 46)) (-2858 (((-874) $) 60)) (-2690 (((-112) $ $) NIL)) (-2603 (($ $ (-518)) 34)) (-2727 (((-55) $) 72)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 89)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 103)))
+(((-115) (-13 (-862) (-847 (-1196)) (-10 -8 (-15 -3498 ((-45 (-1178) (-786)) $)) (-15 -3052 ($ $)) (-15 -2569 ($ (-1196))) (-15 -2569 ($ (-1196) (-783))) (-15 -2569 ($ (-1196) (-55))) (-15 -2230 ((-112) $)) (-15 -1827 ((-112) $)) (-15 -2200 ((-112) $)) (-15 -2551 ((-783) $)) (-15 -2551 ($ $ (-783))) (-15 -3575 ($ $ (-1 (-112) $ $))) (-15 -3581 ($ $ (-1 (-112) $ $))) (-15 -2486 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -2486 ($ $ (-1 (-874) (-656 (-874))))) (-15 -2486 ($ $ (-1 (-874) (-874)))) (-15 -2545 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2545 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -1703 ((-112) $ (-518))) (-15 -2603 ($ $ (-518))) (-15 -3530 ($ $ (-1178))) (-15 -3530 ($ $ (-518))) (-15 -3450 ((-3 (-786) "failed") $ (-1178))) (-15 -3450 ((-703 (-786)) $ (-518))) (-15 -1758 ($ $ (-1178) (-786))) (-15 -1758 ($ $ (-518) (-786))) (-15 -2413 ($ $ (-45 (-1178) (-786))))))) (T -115))
+((-3498 (*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115)))) (-3052 (*1 *1 *1) (-5 *1 (-115))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) (-2569 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *1 (-115)))) (-2569 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2551 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-3575 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3581 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2486 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-2486 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-2486 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2545 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-1703 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2603 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3450 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-786)) (-5 *1 (-115)))) (-3450 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-1758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-786)) (-5 *1 (-115)))) (-1758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115)))))
+(-13 (-862) (-847 (-1196)) (-10 -8 (-15 -3498 ((-45 (-1178) (-786)) $)) (-15 -3052 ($ $)) (-15 -2569 ($ (-1196))) (-15 -2569 ($ (-1196) (-783))) (-15 -2569 ($ (-1196) (-55))) (-15 -2230 ((-112) $)) (-15 -1827 ((-112) $)) (-15 -2200 ((-112) $)) (-15 -2551 ((-783) $)) (-15 -2551 ($ $ (-783))) (-15 -3575 ($ $ (-1 (-112) $ $))) (-15 -3581 ($ $ (-1 (-112) $ $))) (-15 -2486 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -2486 ($ $ (-1 (-874) (-656 (-874))))) (-15 -2486 ($ $ (-1 (-874) (-874)))) (-15 -2545 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2545 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -1703 ((-112) $ (-518))) (-15 -2603 ($ $ (-518))) (-15 -3530 ($ $ (-1178))) (-15 -3530 ($ $ (-518))) (-15 -3450 ((-3 (-786) "failed") $ (-1178))) (-15 -3450 ((-703 (-786)) $ (-518))) (-15 -1758 ($ $ (-1178) (-786))) (-15 -1758 ($ $ (-518) (-786))) (-15 -2413 ($ $ (-45 (-1178) (-786))))))
+((-3832 (((-576) |#2|) 41)))
+(((-116 |#1| |#2|) (-10 -7 (-15 -3832 ((-576) |#2|))) (-13 (-374) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -116))
+((-3832 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1057 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -3832 ((-576) |#2|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $ (-576)) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-1469 (($ (-1192 (-576)) (-576)) NIL)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-4376 (($ $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-2620 (((-783) $) NIL)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2703 (((-576)) NIL)) (-4119 (((-576) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3262 (($ $ (-576)) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-4107 (((-1176 (-576)) $) NIL)) (-2137 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-576) $ (-576)) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL)))
+(((-117 |#1|) (-881 |#1|) (-576)) (T -117))
+NIL
+(-881 |#1|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-576))))) (-4397 (((-117 |#1|) $) NIL) (((-1196) $) NIL (|has| (-117 |#1|) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1057 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1057 (-576))))) (-2444 (($ $) NIL) (($ (-576) $) NIL)) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-117 |#1|))) (|:| |vec| (-1287 (-117 |#1|)))) (-701 $) (-1287 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL) (((-701 (-117 |#1|)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-117 |#1|) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-117 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-117 |#1|) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-117 |#1|) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1171)))) (-3196 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-1492 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-2548 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-117 |#1|) (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-3807 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1196)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1196) (-117 |#1|)))) (($ $ (-1196) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1196) (-117 |#1|))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-117 |#1|) $) NIL)) (-2610 (((-905 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1041))) (((-227) $) NIL (|has| (-117 |#1|) (-1041)))) (-2601 (((-176 (-419 (-576))) $) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1196)) NIL (|has| (-117 |#1|) (-1057 (-1196))))) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-926))) (|has| (-117 |#1|) (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-419 (-576)) $ (-576)) NIL)) (-3680 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-4013 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL)))
+(((-118 |#1|) (-13 (-1011 (-117 |#1|)) (-10 -8 (-15 -3468 ((-419 (-576)) $ (-576))) (-15 -2601 ((-176 (-419 (-576))) $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $)))) (-576)) (T -118))
+((-3468 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-2444 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))))
+(-13 (-1011 (-117 |#1|)) (-10 -8 (-15 -3468 ((-419 (-576)) $ (-576))) (-15 -2601 ((-176 (-419 (-576))) $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $))))
+((-3028 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1550 (((-656 $) $) 31)) (-2231 (((-112) $ $) 36)) (-3606 (((-112) |#2| $) 40)) (-2485 (((-656 |#2|) $) 25)) (-3123 (((-112) $) 18)) (-2099 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2133 (((-112) $) 57)) (-2858 (((-874) $) 47)) (-4016 (((-656 $) $) 32)) (-3889 (((-112) $ $) 38)) (-2845 (((-783) $) 50)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -3028 (|#1| |#1| "right" |#1|)) (-15 -3028 (|#1| |#1| "left" |#1|)) (-15 -2099 (|#1| |#1| "right")) (-15 -2099 (|#1| |#1| "left")) (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -2231 ((-112) |#1| |#1|)) (-15 -2485 ((-656 |#2|) |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -2099 (|#2| |#1| "value")) (-15 -3123 ((-112) |#1|)) (-15 -1550 ((-656 |#1|) |#1|)) (-15 -4016 ((-656 |#1|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#2| |#1|)) (-15 -2845 ((-783) |#1|))) (-120 |#2|) (-1237)) (T -119))
+NIL
+(-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -3028 (|#1| |#1| "right" |#1|)) (-15 -3028 (|#1| |#1| "left" |#1|)) (-15 -2099 (|#1| |#1| "right")) (-15 -2099 (|#1| |#1| "left")) (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -2231 ((-112) |#1| |#1|)) (-15 -2485 ((-656 |#2|) |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -2099 (|#2| |#1| "value")) (-15 -3123 ((-112) |#1|)) (-15 -1550 ((-656 |#1|) |#1|)) (-15 -4016 ((-656 |#1|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -3606 ((-112) |#2| |#1|)) (-15 -2845 ((-783) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2216 (($ $ $) 53 (|has| $ (-6 -4463)))) (-3232 (($ $ $) 55 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) (($ $ "left" $) 56 (|has| $ (-6 -4463))) (($ $ "right" $) 54 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-2574 (($) 7 T CONST)) (-2442 (($ $) 58)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2425 (($ $) 60)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3599 (((-576) $ $) 45)) (-2133 (((-112) $) 47)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-120 |#1|) (-141) (-1237)) (T -120))
+((-2425 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-3028 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-3232 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-3028 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-2216 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237)))))
+(-13 (-1029 |t#1|) (-10 -8 (-15 -2425 ($ $)) (-15 -2099 ($ $ "left")) (-15 -2442 ($ $)) (-15 -2099 ($ $ "right")) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3028 ($ $ "left" $)) (-15 -3232 ($ $ $)) (-15 -3028 ($ $ "right" $)) (-15 -2216 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-4087 (((-112) |#1|) 29)) (-1472 (((-783) (-783)) 28) (((-783)) 27)) (-3722 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-121 |#1|) (-10 -7 (-15 -3722 ((-112) |#1|)) (-15 -3722 ((-112) |#1| (-112))) (-15 -1472 ((-783))) (-15 -1472 ((-783) (-783))) (-15 -4087 ((-112) |#1|))) (-1263 (-576))) (T -121))
+((-4087 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-1472 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-1472 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-3722 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-3722 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))))
+(-10 -7 (-15 -3722 ((-112) |#1|)) (-15 -3722 ((-112) |#1| (-112))) (-15 -1472 ((-783))) (-15 -1472 ((-783) (-783))) (-15 -4087 ((-112) |#1|)))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) 18)) (-3529 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2216 (($ $ $) 21 (|has| $ (-6 -4463)))) (-3232 (($ $ $) 23 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2442 (($ $) 20)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2532 (($ $ |#1| $) 27)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2425 (($ $) 22)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-4020 (($ |#1| $) 28)) (-2329 (($ |#1| $) 15)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 17)) (-3849 (($) 11)) (-2099 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3599 (((-576) $ $) NIL)) (-2133 (((-112) $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3222 (($ (-656 |#1|)) 16)) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -3222 ($ (-656 |#1|))) (-15 -2329 ($ |#1| $)) (-15 -4020 ($ |#1| $)) (-15 -3529 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122))
+((-3222 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-2329 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-4020 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-3529 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -3222 ($ (-656 |#1|))) (-15 -2329 ($ |#1| $)) (-15 -4020 ($ |#1| $)) (-15 -3529 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2856 (($ $) 13)) (-3189 (($ $) 11)) (-3863 (($ $ $) 23)) (-3476 (($ $ $) 21)) (-2899 (($ $ $) 19)) (-2885 (($ $ $) 17)))
+(((-123 |#1|) (-10 -8 (-15 -3863 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2885 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3189 (|#1| |#1|))) (-124)) (T -123))
+NIL
+(-10 -8 (-15 -3863 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2885 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3189 (|#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-2856 (($ $) 103)) (-1998 (($ $ $) 28)) (-3430 (((-1292) $ (-576) (-576)) 66 (|has| $ (-6 -4463)))) (-3429 (((-112) $) 98 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1426 (($ $) 102 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4463)))) (-2059 (($ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2746 (((-112) $ (-783)) 37)) (-3028 (((-112) $ (-1254 (-576)) (-112)) 88 (|has| $ (-6 -4463))) (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4462)))) (-2574 (($) 38 T CONST)) (-2338 (($ $) 100 (|has| $ (-6 -4463)))) (-4374 (($ $) 90)) (-3229 (($ $) 68 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4462))) (($ (-112) $) 69 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-2326 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-2832 (((-112) $ (-576) (-112)) 53 (|has| $ (-6 -4463)))) (-2767 (((-112) $ (-576)) 55)) (-2627 (((-576) (-112) $ (-576)) 95 (|has| (-112) (-1119))) (((-576) (-112) $) 94 (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) 93)) (-3975 (((-656 (-112)) $) 45 (|has| $ (-6 -4462)))) (-3212 (($ $ $) 108)) (-3189 (($ $) 106)) (-3863 (($ $ $) 29)) (-2327 (($ (-783) (-112)) 78)) (-3476 (($ $ $) 30)) (-3639 (((-112) $ (-783)) 36)) (-2440 (((-576) $) 63 (|has| (-576) (-862)))) (-1950 (($ $ $) 14)) (-3343 (($ $ $) 96 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3531 (((-656 (-112)) $) 46 (|has| $ (-6 -4462)))) (-3606 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 62 (|has| (-576) (-862)))) (-1492 (($ $ $) 15)) (-2822 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-1684 (((-112) $ (-783)) 35)) (-2143 (((-1178) $) 10)) (-2163 (($ $ $ (-576)) 87) (($ (-112) $ (-576)) 86)) (-2928 (((-656 (-576)) $) 60)) (-1449 (((-112) (-576) $) 59)) (-3887 (((-1139) $) 11)) (-1989 (((-112) $) 64 (|has| (-576) (-862)))) (-3557 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-4040 (($ $ (-112)) 65 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-112)) (-656 (-112))) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) 49 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1974 (((-112) $ $) 31)) (-4317 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3584 (((-656 (-112)) $) 58)) (-3001 (((-112) $) 34)) (-3849 (($) 33)) (-2099 (($ $ (-1254 (-576))) 77) (((-112) $ (-576)) 57) (((-112) $ (-576) (-112)) 56)) (-3213 (($ $ (-1254 (-576))) 85) (($ $ (-576)) 84)) (-3902 (((-783) (-112) $) 47 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4462)))) (-3272 (($ $ $ (-576)) 99 (|has| $ (-6 -4463)))) (-3052 (($ $) 32)) (-2610 (((-548) $) 67 (|has| (-112) (-626 (-548))))) (-2869 (($ (-656 (-112))) 76)) (-1534 (($ (-656 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2714 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4462)))) (-3200 (($ $ $) 107)) (-2899 (($ $ $) 105)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-2885 (($ $ $) 104)) (-2845 (((-783) $) 39 (|has| $ (-6 -4462)))))
(((-124) (-141)) (T -124))
-((-3891 (*1 *1 *1 *1) (-4 *1 (-124))) (-3768 (*1 *1 *1 *1) (-4 *1 (-124))) (-1964 (*1 *1 *1 *1) (-4 *1 (-124))))
-(-13 (-861) (-113) (-672) (-19 (-112)) (-10 -8 (-15 -3891 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -1964 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-113) . T) ((-624 (-873)) . T) ((-152 #0=(-112)) . T) ((-625 (-547)) |has| (-112) (-625 (-547))) ((-295 #1=(-575) #0#) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #1# #0#) . T) ((-318 #0#) -12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))) ((-383 #0#) . T) ((-500 #0#) . T) ((-615 #1# #0#) . T) ((-525 #0# #0#) -12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))) ((-662 #0#) . T) ((-672) . T) ((-19 #0#) . T) ((-861) . T) ((-1117) . T) ((-1235) . T))
-((-2844 (($ (-1 |#2| |#2|) $) 22)) (-3076 (($ $) 16)) (-2869 (((-782) $) 25)))
-(((-125 |#1| |#2|) (-10 -8 (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3076 (|#1| |#1|))) (-126 |#2|) (-1117)) (T -125))
-NIL
-(-10 -8 (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3076 (|#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3853 (($ $ $) 53 (|has| $ (-6 -4461)))) (-3451 (($ $ $) 55 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) (($ $ "left" $) 56 (|has| $ (-6 -4461))) (($ $ "right" $) 54 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3261 (($) 7 T CONST)) (-2429 (($ $) 58)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2526 (($ $ |#1| $) 61)) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-2412 (($ $) 60)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-1816 (((-575) $ $) 45)) (-3482 (((-112) $) 47)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-126 |#1|) (-141) (-1117)) (T -126))
-((-2526 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1117)))))
-(-13 (-120 |t#1|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2526 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-120 |#1|) . T) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) 18)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) 22 (|has| $ (-6 -4461)))) (-3853 (($ $ $) 23 (|has| $ (-6 -4461)))) (-3451 (($ $ $) 21 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2429 (($ $) 24)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2526 (($ $ |#1| $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2412 (($ $) NIL)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4218 (($ |#1| $) 15)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 17)) (-1393 (($) 11)) (-2065 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1816 (((-575) $ $) NIL)) (-3482 (((-112) $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 20)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2181 (($ (-655 |#1|)) 16)) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-15 -2181 ($ (-655 |#1|))) (-15 -4218 ($ |#1| $)))) (-861)) (T -127))
-((-2181 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))) (-4218 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861)))))
-(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-15 -2181 ($ (-655 |#1|))) (-15 -4218 ($ |#1| $))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) 30)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) 32 (|has| $ (-6 -4461)))) (-3853 (($ $ $) 36 (|has| $ (-6 -4461)))) (-3451 (($ $ $) 34 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2429 (($ $) 23)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2526 (($ $ |#1| $) 16)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2412 (($ $) 22)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) 25)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 20)) (-1393 (($) 11)) (-2065 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1816 (((-575) $ $) NIL)) (-3482 (((-112) $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1809 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 10 (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1809 ($ |#1|)) (-15 -1809 ($ $ |#1| $)))) (-1117)) (T -128))
-((-1809 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117)))) (-1809 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117)))))
-(-13 (-126 |#1|) (-10 -8 (-15 -1809 ($ |#1|)) (-15 -1809 ($ $ |#1| $))))
-((-2859 (((-112) $ $) NIL (|has| (-130) (-1117)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-861)))) (-3175 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-861))))) (-2025 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 (((-130) $ (-575) (-130)) 26 (|has| $ (-6 -4461))) (((-130) $ (-1252 (-575)) (-130)) NIL (|has| $ (-6 -4461)))) (-3089 (((-782) $ (-782)) 34)) (-3983 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-3631 (($ (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4460))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4460)))) (-2857 (((-130) $ (-575) (-130)) 25 (|has| $ (-6 -4461)))) (-2786 (((-130) $ (-575)) 20)) (-2630 (((-575) (-1 (-112) (-130)) $) NIL) (((-575) (-130) $) NIL (|has| (-130) (-1117))) (((-575) (-130) $ (-575)) NIL (|has| (-130) (-1117)))) (-3999 (((-655 (-130)) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) (-130)) 14)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 27 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| (-130) (-861)))) (-4167 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-861)))) (-4252 (((-655 (-130)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-2263 (((-575) $) 30 (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-130) (-861)))) (-2844 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| (-130) (-1117)))) (-2129 (($ (-130) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| (-130) (-1117)))) (-1955 (((-130) $) NIL (|has| (-575) (-861)))) (-1540 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1652 (($ $ (-130)) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-130)))) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117)))) (($ $ (-303 (-130))) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117)))) (($ $ (-655 (-130)) (-655 (-130))) NIL (-12 (|has| (-130) (-318 (-130))) (|has| (-130) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-2697 (((-655 (-130)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 12)) (-2065 (((-130) $ (-575) (-130)) NIL) (((-130) $ (-575)) 23) (($ $ (-1252 (-575))) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460))) (((-782) (-130) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-130) (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-130) (-625 (-547))))) (-2893 (($ (-655 (-130))) 46)) (-1513 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-655 $)) NIL)) (-2882 (((-973 (-130)) $) 35) (((-1176) $) 43) (((-873) $) NIL (|has| (-130) (-624 (-873))))) (-2527 (((-782) $) 18)) (-4064 (($ (-782)) 8)) (-3685 (((-112) $ $) NIL (|has| (-130) (-1117)))) (-4121 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3913 (((-112) $ $) 32 (|has| (-130) (-1117)))) (-3967 (((-112) $ $) NIL (|has| (-130) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-130) (-861)))) (-2869 (((-782) $) 15 (|has| $ (-6 -4460)))))
-(((-129) (-13 (-19 (-130)) (-624 (-973 (-130))) (-624 (-1176)) (-10 -8 (-15 -4064 ($ (-782))) (-15 -2527 ((-782) $)) (-15 -3089 ((-782) $ (-782))) (-6 -4460)))) (T -129))
-((-4064 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-129)))) (-3089 (*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129)))))
-(-13 (-19 (-130)) (-624 (-973 (-130))) (-624 (-1176)) (-10 -8 (-15 -4064 ($ (-782))) (-15 -2527 ((-782) $)) (-15 -3089 ((-782) $ (-782))) (-6 -4460)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) 26)) (-3261 (($) NIL T CONST)) (-2073 (($) 35)) (-1914 (($ $ $) NIL) (($) 24 T CONST)) (-3503 (($ $ $) NIL) (($) 25 T CONST)) (-1894 (((-936) $) 33)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) 31)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2424 (($ (-782)) 8)) (-1484 (($ $ $) 37)) (-3380 (($ $ $) 36)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) 22)) (-3955 (((-112) $ $) 20)) (-3913 (((-112) $ $) 18)) (-3967 (((-112) $ $) 21)) (-3940 (((-112) $ $) 19)))
-(((-130) (-13 (-855) (-501 (-145)) (-10 -8 (-15 -2424 ($ (-782))) (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))) (T -130))
-((-2424 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-130)))) (-3380 (*1 *1 *1 *1) (-5 *1 (-130))) (-1484 (*1 *1 *1 *1) (-5 *1 (-130))) (-3261 (*1 *1) (-5 *1 (-130))))
-(-13 (-855) (-501 (-145)) (-10 -8 (-15 -2424 ($ (-782))) (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))
+((-3476 (*1 *1 *1 *1) (-4 *1 (-124))) (-3863 (*1 *1 *1 *1) (-4 *1 (-124))) (-1998 (*1 *1 *1 *1) (-4 *1 (-124))))
+(-13 (-862) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -3476 ($ $ $)) (-15 -3863 ($ $ $)) (-15 -1998 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-862) . T) ((-1119) . T) ((-1237) . T))
+((-2822 (($ (-1 |#2| |#2|) $) 22)) (-3052 (($ $) 16)) (-2845 (((-783) $) 25)))
+(((-125 |#1| |#2|) (-10 -8 (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -3052 (|#1| |#1|))) (-126 |#2|) (-1119)) (T -125))
+NIL
+(-10 -8 (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -3052 (|#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2216 (($ $ $) 53 (|has| $ (-6 -4463)))) (-3232 (($ $ $) 55 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) (($ $ "left" $) 56 (|has| $ (-6 -4463))) (($ $ "right" $) 54 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-2574 (($) 7 T CONST)) (-2442 (($ $) 58)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2532 (($ $ |#1| $) 61)) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2425 (($ $) 60)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3599 (((-576) $ $) 45)) (-2133 (((-112) $) 47)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-126 |#1|) (-141) (-1119)) (T -126))
+((-2532 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1119)))))
+(-13 (-120 |t#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2532 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-120 |#1|) . T) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) 18)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) 22 (|has| $ (-6 -4463)))) (-2216 (($ $ $) 23 (|has| $ (-6 -4463)))) (-3232 (($ $ $) 21 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2442 (($ $) 24)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2532 (($ $ |#1| $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2425 (($ $) NIL)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2329 (($ |#1| $) 15)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 17)) (-3849 (($) 11)) (-2099 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3599 (((-576) $ $) NIL)) (-2133 (((-112) $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 20)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2421 (($ (-656 |#1|)) 16)) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4463) (-15 -2421 ($ (-656 |#1|))) (-15 -2329 ($ |#1| $)))) (-862)) (T -127))
+((-2421 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-2329 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))))
+(-13 (-126 |#1|) (-10 -8 (-6 -4463) (-15 -2421 ($ (-656 |#1|))) (-15 -2329 ($ |#1| $))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) 30)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) 32 (|has| $ (-6 -4463)))) (-2216 (($ $ $) 36 (|has| $ (-6 -4463)))) (-3232 (($ $ $) 34 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2442 (($ $) 23)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2532 (($ $ |#1| $) 16)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2425 (($ $) 22)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) 25)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 20)) (-3849 (($) 11)) (-2099 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3599 (((-576) $ $) NIL)) (-2133 (((-112) $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2188 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 10 (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2188 ($ |#1|)) (-15 -2188 ($ $ |#1| $)))) (-1119)) (T -128))
+((-2188 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))) (-2188 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))))
+(-13 (-126 |#1|) (-10 -8 (-15 -2188 ($ |#1|)) (-15 -2188 ($ $ |#1| $))))
+((-2835 (((-112) $ $) NIL (|has| (-130) (-1119)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-1426 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-862))))) (-2059 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4463))) (((-130) $ (-1254 (-576)) (-130)) NIL (|has| $ (-6 -4463)))) (-1433 (((-783) $ (-783)) 34)) (-3959 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-3607 (($ (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4462))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4462)))) (-2832 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4463)))) (-2767 (((-130) $ (-576)) 20)) (-2627 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1119))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1119)))) (-3975 (((-656 (-130)) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) (-130)) 14)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 27 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| (-130) (-862)))) (-3343 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-3531 (((-656 (-130)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-4048 (((-576) $) 30 (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-130) (-862)))) (-2822 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| (-130) (-1119)))) (-2163 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| (-130) (-1119)))) (-1989 (((-130) $) NIL (|has| (-576) (-862)))) (-3557 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-4040 (($ $ (-130)) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-3584 (((-656 (-130)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 12)) (-2099 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1254 (-576))) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-2869 (($ (-656 (-130))) 46)) (-1534 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-2858 (((-975 (-130)) $) 35) (((-1178) $) 43) (((-874) $) NIL (|has| (-130) (-625 (-874))))) (-3033 (((-783) $) 18)) (-3964 (($ (-783)) 8)) (-2690 (((-112) $ $) NIL (|has| (-130) (-1119)))) (-2714 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3889 (((-112) $ $) 32 (|has| (-130) (-1119)))) (-3944 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2845 (((-783) $) 15 (|has| $ (-6 -4462)))))
+(((-129) (-13 (-19 (-130)) (-625 (-975 (-130))) (-625 (-1178)) (-10 -8 (-15 -3964 ($ (-783))) (-15 -3033 ((-783) $)) (-15 -1433 ((-783) $ (-783))) (-6 -4462)))) (T -129))
+((-3964 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-1433 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(-13 (-19 (-130)) (-625 (-975 (-130))) (-625 (-1178)) (-10 -8 (-15 -3964 ($ (-783))) (-15 -3033 ((-783) $)) (-15 -1433 ((-783) $ (-783))) (-6 -4462)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) 26)) (-2574 (($) NIL T CONST)) (-2107 (($) 35)) (-1950 (($ $ $) NIL) (($) 24 T CONST)) (-1492 (($ $ $) NIL) (($) 25 T CONST)) (-1654 (((-938) $) 33)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) 31)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2438 (($ (-783)) 8)) (-1502 (($ $ $) 37)) (-3356 (($ $ $) 36)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) 22)) (-3930 (((-112) $ $) 20)) (-3889 (((-112) $ $) 18)) (-3944 (((-112) $ $) 21)) (-3916 (((-112) $ $) 19)))
+(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -2438 ($ (-783))) (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))) (T -130))
+((-2438 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-3356 (*1 *1 *1 *1) (-5 *1 (-130))) (-1502 (*1 *1 *1 *1) (-5 *1 (-130))) (-2574 (*1 *1) (-5 *1 (-130))))
+(-13 (-856) (-502 (-145)) (-10 -8 (-15 -2438 ($ (-783))) (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))
((|NonNegativeInteger|) (|%ilt| |#1| 256))
-((-2859 (((-112) $ $) NIL)) (-2440 (($) 6 T CONST)) (-3084 (($) 7 T CONST)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 14)) (-1654 (($) 8 T CONST)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 10)))
-(((-131) (-13 (-1117) (-10 -8 (-15 -3084 ($) -3736) (-15 -1654 ($) -3736) (-15 -2440 ($) -3736)))) (T -131))
-((-3084 (*1 *1) (-5 *1 (-131))) (-1654 (*1 *1) (-5 *1 (-131))) (-2440 (*1 *1) (-5 *1 (-131))))
-(-13 (-1117) (-10 -8 (-15 -3084 ($) -3736) (-15 -1654 ($) -3736) (-15 -2440 ($) -3736)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16)))
+((-2835 (((-112) $ $) NIL)) (-3207 (($) 6 T CONST)) (-2106 (($) 7 T CONST)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 14)) (-3042 (($) 8 T CONST)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 10)))
+(((-131) (-13 (-1119) (-10 -8 (-15 -2106 ($) -3712) (-15 -3042 ($) -3712) (-15 -3207 ($) -3712)))) (T -131))
+((-2106 (*1 *1) (-5 *1 (-131))) (-3042 (*1 *1) (-5 *1 (-131))) (-3207 (*1 *1) (-5 *1 (-131))))
+(-13 (-1119) (-10 -8 (-15 -2106 ($) -3712) (-15 -3042 ($) -3712) (-15 -3207 ($) -3712)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16)))
(((-132) (-141)) (T -132))
-((-1708 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-23) (-10 -8 (-15 -1708 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-3834 (((-1290) $ (-782)) 14)) (-2630 (((-782) $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
+((-3161 (*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-23) (-10 -8 (-15 -3161 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-3030 (((-1292) $ (-783)) 14)) (-2627 (((-783) $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
(((-133) (-141)) (T -133))
-((-2630 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-782)))) (-3834 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-782)) (-5 *2 (-1290)))))
-(-13 (-1117) (-10 -8 (-15 -2630 ((-782) $)) (-15 -3834 ((-1290) $ (-782)))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-134) (-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $))))) (T -134))
-((-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-134)))))
-(-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $))))
-((-2859 (((-112) $ $) 49)) (-2045 (((-112) $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-782) "failed") $) 58)) (-4400 (((-782) $) 56)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) 37)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2376 (((-112)) 59)) (-1970 (((-112) (-112)) 61)) (-3314 (((-112) $) 30)) (-2594 (((-112) $) 55)) (-2882 (((-873) $) 28) (($ (-782)) 20)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 18 T CONST)) (-2005 (($) 19 T CONST)) (-3260 (($ (-782)) 21)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) 40)) (-3913 (((-112) $ $) 32)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 35)) (-4027 (((-3 $ "failed") $ $) 42)) (-4015 (($ $ $) 38)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL) (($ $ $) 54)) (* (($ (-782) $) 48) (($ (-936) $) NIL) (($ $ $) 45)))
-(((-135) (-13 (-861) (-23) (-737) (-1055 (-782)) (-10 -8 (-6 (-4462 "*")) (-15 -4027 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3260 ($ (-782))) (-15 -3314 ((-112) $)) (-15 -2594 ((-112) $)) (-15 -2376 ((-112))) (-15 -1970 ((-112) (-112)))))) (T -135))
-((-4027 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-135)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2376 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(-13 (-861) (-23) (-737) (-1055 (-782)) (-10 -8 (-6 (-4462 "*")) (-15 -4027 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3260 ($ (-782))) (-15 -3314 ((-112) $)) (-15 -2594 ((-112) $)) (-15 -2376 ((-112))) (-15 -1970 ((-112) (-112)))))
-((-2500 (((-137 |#1| |#2| |#4|) (-655 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2544 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
-(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-137 |#1| |#2| |#4|) (-655 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2544 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-575) (-782) (-174) (-174)) (T -136))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575)) (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575)) (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2500 ((-137 |#1| |#2| |#4|) (-655 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2544 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
-((-2859 (((-112) $ $) NIL)) (-1699 (($ (-655 |#3|)) 61)) (-3153 (($ $) 123) (($ $ (-575) (-575)) 122)) (-3261 (($) 20)) (-2443 (((-3 |#3| "failed") $) 83)) (-4400 ((|#3| $) NIL)) (-3794 (($ $ (-655 (-575))) 124)) (-2483 (((-655 |#3|) $) 56)) (-4422 (((-782) $) 66)) (-3431 (($ $ $) 117)) (-3066 (($) 65)) (-4264 (((-1176) $) NIL)) (-3882 (($) 19)) (-3912 (((-1137) $) NIL)) (-2065 ((|#3| $ (-575)) 69) ((|#3| $) 68) ((|#3| $ (-575) (-575)) 70) ((|#3| $ (-575) (-575) (-575)) 71) ((|#3| $ (-575) (-575) (-575) (-575)) 72) ((|#3| $ (-655 (-575))) 73)) (-1753 (((-782) $) 67)) (-1505 (($ $ (-575) $ (-575)) 118) (($ $ (-575) (-575)) 120)) (-2882 (((-873) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1159 |#2| |#3|)) 102) (($ (-655 |#3|)) 74) (($ (-655 $)) 80)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 93 T CONST)) (-2005 (($) 94 T CONST)) (-3913 (((-112) $ $) 104)) (-4027 (($ $) 110) (($ $ $) 108)) (-4015 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-575)) 113) (($ (-575) $) 112) (($ $ $) 119)))
-(((-137 |#1| |#2| |#3|) (-13 (-476 |#3| (-782)) (-481 (-575) (-782)) (-295 (-575) |#3|) (-10 -8 (-15 -2882 ($ (-245 |#2| |#3|))) (-15 -2882 ($ (-1159 |#2| |#3|))) (-15 -2882 ($ (-655 |#3|))) (-15 -2882 ($ (-655 $))) (-15 -4422 ((-782) $)) (-15 -2065 (|#3| $)) (-15 -2065 (|#3| $ (-575) (-575))) (-15 -2065 (|#3| $ (-575) (-575) (-575))) (-15 -2065 (|#3| $ (-575) (-575) (-575) (-575))) (-15 -2065 (|#3| $ (-655 (-575)))) (-15 -3431 ($ $ $)) (-15 * ($ $ $)) (-15 -1505 ($ $ (-575) $ (-575))) (-15 -1505 ($ $ (-575) (-575))) (-15 -3153 ($ $)) (-15 -3153 ($ $ (-575) (-575))) (-15 -3794 ($ $ (-655 (-575)))) (-15 -3882 ($)) (-15 -3066 ($)) (-15 -2483 ((-655 |#3|) $)) (-15 -1699 ($ (-655 |#3|))) (-15 -3261 ($)))) (-575) (-782) (-174)) (T -137))
-((-3431 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 *2) (-4 *5 (-174)))) (-2065 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-575)) (-14 *4 (-782)))) (-2065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-782)))) (-2065 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-782)))) (-2065 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-782)))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 (-655 (-575))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-575)) (-14 *5 (-782)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-1505 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-782)) (-4 *5 (-174)))) (-1505 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-782)) (-4 *5 (-174)))) (-3153 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-3153 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-782)) (-4 *5 (-174)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) (-3882 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-3066 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-655 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174)))) (-1699 (*1 *1 *2) (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575)) (-14 *4 (-782)))) (-3261 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782)) (-4 *4 (-174)))))
-(-13 (-476 |#3| (-782)) (-481 (-575) (-782)) (-295 (-575) |#3|) (-10 -8 (-15 -2882 ($ (-245 |#2| |#3|))) (-15 -2882 ($ (-1159 |#2| |#3|))) (-15 -2882 ($ (-655 |#3|))) (-15 -2882 ($ (-655 $))) (-15 -4422 ((-782) $)) (-15 -2065 (|#3| $)) (-15 -2065 (|#3| $ (-575) (-575))) (-15 -2065 (|#3| $ (-575) (-575) (-575))) (-15 -2065 (|#3| $ (-575) (-575) (-575) (-575))) (-15 -2065 (|#3| $ (-655 (-575)))) (-15 -3431 ($ $ $)) (-15 * ($ $ $)) (-15 -1505 ($ $ (-575) $ (-575))) (-15 -1505 ($ $ (-575) (-575))) (-15 -3153 ($ $)) (-15 -3153 ($ $ (-575) (-575))) (-15 -3794 ($ $ (-655 (-575)))) (-15 -3882 ($)) (-15 -3066 ($)) (-15 -2483 ((-655 |#3|) $)) (-15 -1699 ($ (-655 |#3|))) (-15 -3261 ($))))
-((-2859 (((-112) $ $) NIL)) (-3890 (((-1152) $) 11)) (-3878 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-138) (-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))) (T -138))
-((-3878 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138)))))
-(-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-1559 (((-188) $) 10)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 13)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-139) (-13 (-1100) (-10 -8 (-15 -1559 ((-188) $)) (-15 -1788 ((-655 (-1152)) $))))) (T -139))
-((-1559 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-139)))))
-(-13 (-1100) (-10 -8 (-15 -1559 ((-188) $)) (-15 -1788 ((-655 (-1152)) $))))
-((-2859 (((-112) $ $) NIL)) (-3020 (((-655 (-876)) $) NIL)) (-1777 (((-517) $) NIL)) (-4264 (((-1176) $) NIL)) (-1559 (((-188) $) NIL)) (-3371 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-3386 (((-655 (-112)) $) NIL)) (-2882 (((-873) $) NIL) (((-189) $) 6)) (-3685 (((-112) $ $) NIL)) (-3425 (((-55) $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-140) (-13 (-187) (-624 (-189)))) (T -140))
-NIL
-(-13 (-187) (-624 (-189)))
-((-2856 (((-655 (-185 (-140))) $) 13)) (-4021 (((-655 (-185 (-140))) $) 14)) (-1587 (((-655 (-849)) $) 10)) (-3741 (((-140) $) 7)) (-2882 (((-873) $) 16)))
-(((-141) (-13 (-624 (-873)) (-10 -8 (-15 -3741 ((-140) $)) (-15 -1587 ((-655 (-849)) $)) (-15 -2856 ((-655 (-185 (-140))) $)) (-15 -4021 ((-655 (-185 (-140))) $))))) (T -141))
-((-3741 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-655 (-849))) (-5 *1 (-141)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -3741 ((-140) $)) (-15 -1587 ((-655 (-849)) $)) (-15 -2856 ((-655 (-185 (-140))) $)) (-15 -4021 ((-655 (-185 (-140))) $))))
-((-2859 (((-112) $ $) NIL)) (-2722 (($) 17 T CONST)) (-4258 (($) NIL (|has| (-145) (-378)))) (-1644 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2081 (($ $ $) NIL)) (-2210 (((-112) $ $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| (-145) (-378)))) (-1330 (($) NIL) (($ (-655 (-145))) NIL)) (-1932 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2375 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (($ (-145) $) 60 (|has| $ (-6 -4460)))) (-3631 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2302 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2073 (($) NIL (|has| (-145) (-378)))) (-3999 (((-655 (-145)) $) 69 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-1914 (((-145) $) NIL (|has| (-145) (-861)))) (-4252 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3503 (((-145) $) NIL (|has| (-145) (-861)))) (-2844 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-145) (-145)) $) 64)) (-2167 (($) 18 T CONST)) (-1894 (((-936) $) NIL (|has| (-145) (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1872 (($ $ $) 30)) (-4030 (((-145) $) 61)) (-4218 (($ (-145) $) 59)) (-4317 (($ (-936)) NIL (|has| (-145) (-378)))) (-4296 (($) 16 T CONST)) (-3912 (((-1137) $) NIL)) (-1540 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3773 (((-145) $) 62)) (-2718 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-145)) (-655 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-303 (-145)))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 57)) (-2300 (($) 15 T CONST)) (-4050 (($ $ $) 32) (($ $ (-145)) NIL)) (-3323 (($ (-655 (-145))) NIL) (($) NIL)) (-3922 (((-782) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (((-782) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-1176) $) 37) (((-547) $) NIL (|has| (-145) (-625 (-547)))) (((-655 (-145)) $) 35)) (-2893 (($ (-655 (-145))) NIL)) (-2127 (($ $) 33 (|has| (-145) (-378)))) (-2882 (((-873) $) 53)) (-1883 (($ (-1176)) 14) (($ (-655 (-145))) 50)) (-1833 (((-782) $) NIL)) (-2550 (($) 58) (($ (-655 (-145))) NIL)) (-3685 (((-112) $ $) NIL)) (-2908 (($ (-655 (-145))) NIL)) (-4121 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-1525 (($) 21 T CONST)) (-3146 (($) 20 T CONST)) (-3913 (((-112) $ $) 24)) (-2869 (((-782) $) 56 (|has| $ (-6 -4460)))))
-(((-142) (-13 (-1117) (-625 (-1176)) (-436 (-145)) (-625 (-655 (-145))) (-10 -8 (-15 -1883 ($ (-1176))) (-15 -1883 ($ (-655 (-145)))) (-15 -2300 ($) -3736) (-15 -4296 ($) -3736) (-15 -2722 ($) -3736) (-15 -2167 ($) -3736) (-15 -3146 ($) -3736) (-15 -1525 ($) -3736)))) (T -142))
-((-1883 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-142)))) (-1883 (*1 *1 *2) (-12 (-5 *2 (-655 (-145))) (-5 *1 (-142)))) (-2300 (*1 *1) (-5 *1 (-142))) (-4296 (*1 *1) (-5 *1 (-142))) (-2722 (*1 *1) (-5 *1 (-142))) (-2167 (*1 *1) (-5 *1 (-142))) (-3146 (*1 *1) (-5 *1 (-142))) (-1525 (*1 *1) (-5 *1 (-142))))
-(-13 (-1117) (-625 (-1176)) (-436 (-145)) (-625 (-655 (-145))) (-10 -8 (-15 -1883 ($ (-1176))) (-15 -1883 ($ (-655 (-145)))) (-15 -2300 ($) -3736) (-15 -4296 ($) -3736) (-15 -2722 ($) -3736) (-15 -2167 ($) -3736) (-15 -3146 ($) -3736) (-15 -1525 ($) -3736)))
-((-1657 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2693 ((|#1| |#3|) 9)) (-3439 ((|#3| |#3|) 15)))
-(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -1657 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-567) (-1009 |#1|) (-383 |#2|)) (T -143))
-((-1657 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-383 *5)))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-383 *4)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-383 *4)))))
-(-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -1657 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3732 (($ $ $) 8)) (-2031 (($ $) 7)) (-2266 (($ $ $) 6)))
+((-2627 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1292)))))
+(-13 (-1119) (-10 -8 (-15 -2627 ((-783) $)) (-15 -3030 ((-1292) $ (-783)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-656 (-1154)) $) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-134) (-13 (-1102) (-10 -8 (-15 -1822 ((-656 (-1154)) $))))) (T -134))
+((-1822 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-134)))))
+(-13 (-1102) (-10 -8 (-15 -1822 ((-656 (-1154)) $))))
+((-2835 (((-112) $ $) 49)) (-3203 (((-112) $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-783) "failed") $) 58)) (-4397 (((-783) $) 56)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) 37)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3122 (((-112)) 59)) (-2770 (((-112) (-112)) 61)) (-3384 (((-112) $) 30)) (-3121 (((-112) $) 55)) (-2858 (((-874) $) 28) (($ (-783)) 20)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 18 T CONST)) (-2038 (($) 19 T CONST)) (-2452 (($ (-783)) 21)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) 40)) (-3889 (((-112) $ $) 32)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 35)) (-4002 (((-3 $ "failed") $ $) 42)) (-3990 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-938) $) NIL) (($ $ $) 45)))
+(((-135) (-13 (-862) (-23) (-738) (-1057 (-783)) (-10 -8 (-6 (-4464 "*")) (-15 -4002 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2452 ($ (-783))) (-15 -3384 ((-112) $)) (-15 -3121 ((-112) $)) (-15 -3122 ((-112))) (-15 -2770 ((-112) (-112)))))) (T -135))
+((-4002 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3122 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(-13 (-862) (-23) (-738) (-1057 (-783)) (-10 -8 (-6 (-4464 "*")) (-15 -4002 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2452 ($ (-783))) (-15 -3384 ((-112) $)) (-15 -3121 ((-112) $)) (-15 -3122 ((-112))) (-15 -2770 ((-112) (-112)))))
+((-2509 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2548 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18)))
+(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2509 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2548 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2509 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2548 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
+((-2835 (((-112) $ $) NIL)) (-1377 (($ (-656 |#3|)) 61)) (-2948 (($ $) 123) (($ $ (-576) (-576)) 122)) (-2574 (($) 20)) (-2454 (((-3 |#3| "failed") $) 83)) (-4397 ((|#3| $) NIL)) (-2323 (($ $ (-656 (-576))) 124)) (-2494 (((-656 |#3|) $) 56)) (-4422 (((-783) $) 66)) (-1904 (($ $ $) 117)) (-4155 (($) 65)) (-2143 (((-1178) $) NIL)) (-4072 (($) 19)) (-3887 (((-1139) $) NIL)) (-2099 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-4436 (((-783) $) 67)) (-2612 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-2858 (((-874) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1161 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 93 T CONST)) (-2038 (($) 94 T CONST)) (-3889 (((-112) $ $) 104)) (-4002 (($ $) 110) (($ $ $) 108)) (-3990 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119)))
+(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -2858 ($ (-245 |#2| |#3|))) (-15 -2858 ($ (-1161 |#2| |#3|))) (-15 -2858 ($ (-656 |#3|))) (-15 -2858 ($ (-656 $))) (-15 -4422 ((-783) $)) (-15 -2099 (|#3| $)) (-15 -2099 (|#3| $ (-576) (-576))) (-15 -2099 (|#3| $ (-576) (-576) (-576))) (-15 -2099 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2099 (|#3| $ (-656 (-576)))) (-15 -1904 ($ $ $)) (-15 * ($ $ $)) (-15 -2612 ($ $ (-576) $ (-576))) (-15 -2612 ($ $ (-576) (-576))) (-15 -2948 ($ $)) (-15 -2948 ($ $ (-576) (-576))) (-15 -2323 ($ $ (-656 (-576)))) (-15 -4072 ($)) (-15 -4155 ($)) (-15 -2494 ((-656 |#3|) $)) (-15 -1377 ($ (-656 |#3|))) (-15 -2574 ($)))) (-576) (-783) (-174)) (T -137))
+((-1904 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2099 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2099 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2099 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2099 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2612 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2612 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2948 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2323 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4072 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4155 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2574 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))))
+(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -2858 ($ (-245 |#2| |#3|))) (-15 -2858 ($ (-1161 |#2| |#3|))) (-15 -2858 ($ (-656 |#3|))) (-15 -2858 ($ (-656 $))) (-15 -4422 ((-783) $)) (-15 -2099 (|#3| $)) (-15 -2099 (|#3| $ (-576) (-576))) (-15 -2099 (|#3| $ (-576) (-576) (-576))) (-15 -2099 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2099 (|#3| $ (-656 (-576)))) (-15 -1904 ($ $ $)) (-15 * ($ $ $)) (-15 -2612 ($ $ (-576) $ (-576))) (-15 -2612 ($ $ (-576) (-576))) (-15 -2948 ($ $)) (-15 -2948 ($ $ (-576) (-576))) (-15 -2323 ($ $ (-656 (-576)))) (-15 -4072 ($)) (-15 -4155 ($)) (-15 -2494 ((-656 |#3|) $)) (-15 -1377 ($ (-656 |#3|))) (-15 -2574 ($))))
+((-2835 (((-112) $ $) NIL)) (-3866 (((-1154) $) 11)) (-3854 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-138) (-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))) (T -138))
+((-3854 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))))
+(-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1584 (((-188) $) 10)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-656 (-1154)) $) 13)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-139) (-13 (-1102) (-10 -8 (-15 -1584 ((-188) $)) (-15 -1822 ((-656 (-1154)) $))))) (T -139))
+((-1584 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-139)))))
+(-13 (-1102) (-10 -8 (-15 -1584 ((-188) $)) (-15 -1822 ((-656 (-1154)) $))))
+((-2835 (((-112) $ $) NIL)) (-2996 (((-656 (-877)) $) NIL)) (-1811 (((-518) $) NIL)) (-2143 (((-1178) $) NIL)) (-1584 (((-188) $) NIL)) (-2729 (((-112) $ (-518)) NIL)) (-3887 (((-1139) $) NIL)) (-3742 (((-656 (-112)) $) NIL)) (-2858 (((-874) $) NIL) (((-189) $) 6)) (-2690 (((-112) $ $) NIL)) (-2727 (((-55) $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-140) (-13 (-187) (-625 (-189)))) (T -140))
+NIL
+(-13 (-187) (-625 (-189)))
+((-2921 (((-656 (-185 (-140))) $) 13)) (-3996 (((-656 (-185 (-140))) $) 14)) (-3166 (((-656 (-850)) $) 10)) (-3717 (((-140) $) 7)) (-2858 (((-874) $) 16)))
+(((-141) (-13 (-625 (-874)) (-10 -8 (-15 -3717 ((-140) $)) (-15 -3166 ((-656 (-850)) $)) (-15 -2921 ((-656 (-185 (-140))) $)) (-15 -3996 ((-656 (-185 (-140))) $))))) (T -141))
+((-3717 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3717 ((-140) $)) (-15 -3166 ((-656 (-850)) $)) (-15 -2921 ((-656 (-185 (-140))) $)) (-15 -3996 ((-656 (-185 (-140))) $))))
+((-2835 (((-112) $ $) NIL)) (-2257 (($) 17 T CONST)) (-2808 (($) NIL (|has| (-145) (-379)))) (-1675 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3178 (($ $ $) NIL)) (-3483 (((-112) $ $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| (-145) (-379)))) (-1333 (($) NIL) (($ (-656 (-145))) NIL)) (-3423 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3007 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (($ (-145) $) 60 (|has| $ (-6 -4462)))) (-3607 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2326 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2107 (($) NIL (|has| (-145) (-379)))) (-3975 (((-656 (-145)) $) 69 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-1950 (((-145) $) NIL (|has| (-145) (-862)))) (-3531 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-1492 (((-145) $) NIL (|has| (-145) (-862)))) (-2822 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-145) (-145)) $) 64)) (-1597 (($) 18 T CONST)) (-1654 (((-938) $) NIL (|has| (-145) (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3310 (($ $ $) 30)) (-2395 (((-145) $) 61)) (-2329 (($ (-145) $) 59)) (-4308 (($ (-938)) NIL (|has| (-145) (-379)))) (-1429 (($) 16 T CONST)) (-3887 (((-1139) $) NIL)) (-3557 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3079 (((-145) $) 62)) (-1910 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 57)) (-1937 (($) 15 T CONST)) (-3797 (($ $ $) 32) (($ $ (-145)) NIL)) (-1801 (($ (-656 (-145))) NIL) (($) NIL)) (-3902 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-1178) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-2869 (($ (-656 (-145))) NIL)) (-3805 (($ $) 33 (|has| (-145) (-379)))) (-2858 (((-874) $) 53)) (-1867 (($ (-1178)) 14) (($ (-656 (-145))) 50)) (-1830 (((-783) $) NIL)) (-2554 (($) 58) (($ (-656 (-145))) NIL)) (-2690 (((-112) $ $) NIL)) (-3195 (($ (-656 (-145))) NIL)) (-2714 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-1909 (($) 21 T CONST)) (-1563 (($) 20 T CONST)) (-3889 (((-112) $ $) 24)) (-2845 (((-783) $) 56 (|has| $ (-6 -4462)))))
+(((-142) (-13 (-1119) (-626 (-1178)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -1867 ($ (-1178))) (-15 -1867 ($ (-656 (-145)))) (-15 -1937 ($) -3712) (-15 -1429 ($) -3712) (-15 -2257 ($) -3712) (-15 -1597 ($) -3712) (-15 -1563 ($) -3712) (-15 -1909 ($) -3712)))) (T -142))
+((-1867 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-142)))) (-1867 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-1937 (*1 *1) (-5 *1 (-142))) (-1429 (*1 *1) (-5 *1 (-142))) (-2257 (*1 *1) (-5 *1 (-142))) (-1597 (*1 *1) (-5 *1 (-142))) (-1563 (*1 *1) (-5 *1 (-142))) (-1909 (*1 *1) (-5 *1 (-142))))
+(-13 (-1119) (-626 (-1178)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -1867 ($ (-1178))) (-15 -1867 ($ (-656 (-145)))) (-15 -1937 ($) -3712) (-15 -1429 ($) -3712) (-15 -2257 ($) -3712) (-15 -1597 ($) -3712) (-15 -1563 ($) -3712) (-15 -1909 ($) -3712)))
+((-3363 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4414 ((|#1| |#3|) 9)) (-1432 ((|#3| |#3|) 15)))
+(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4414 (|#1| |#3|)) (-15 -1432 (|#3| |#3|)) (-15 -3363 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1011 |#1|) (-384 |#2|)) (T -143))
+((-3363 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-4414 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4)))))
+(-10 -7 (-15 -4414 (|#1| |#3|)) (-15 -1432 (|#3| |#3|)) (-15 -3363 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1840 (($ $ $) 8)) (-2878 (($ $) 7)) (-3176 (($ $ $) 6)))
(((-144) (-141)) (T -144))
-((-3732 (*1 *1 *1 *1) (-4 *1 (-144))) (-2031 (*1 *1 *1) (-4 *1 (-144))) (-2266 (*1 *1 *1 *1) (-4 *1 (-144))))
-(-13 (-10 -8 (-15 -2266 ($ $ $)) (-15 -2031 ($ $)) (-15 -3732 ($ $ $))))
-((-2859 (((-112) $ $) NIL)) (-3611 (((-112) $) 39)) (-2722 (($ $) 55)) (-3996 (($) 26 T CONST)) (-2409 (((-782)) 13)) (-2073 (($) 25)) (-2147 (($) 27 T CONST)) (-2118 (((-782) $) 21)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-4410 (((-112) $) 41)) (-2167 (($ $) 56)) (-1894 (((-936) $) 23)) (-4264 (((-1176) $) 49)) (-4317 (($ (-936)) 20)) (-2349 (((-112) $) 37)) (-3912 (((-1137) $) NIL)) (-3114 (($) 28 T CONST)) (-3160 (((-112) $) 35)) (-2882 (((-873) $) 30)) (-1472 (($ (-782)) 19) (($ (-1176)) 54)) (-3685 (((-112) $ $) NIL)) (-1919 (((-112) $) 45)) (-4158 (((-112) $) 43)) (-3980 (((-112) $ $) 11)) (-3955 (((-112) $ $) 9)) (-3913 (((-112) $ $) 7)) (-3967 (((-112) $ $) 10)) (-3940 (((-112) $ $) 8)))
-(((-145) (-13 (-855) (-10 -8 (-15 -2118 ((-782) $)) (-15 -1472 ($ (-782))) (-15 -1472 ($ (-1176))) (-15 -3996 ($) -3736) (-15 -2147 ($) -3736) (-15 -3114 ($) -3736) (-15 -2722 ($ $)) (-15 -2167 ($ $)) (-15 -3160 ((-112) $)) (-15 -2349 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -4410 ((-112) $)) (-15 -1919 ((-112) $))))) (T -145))
-((-2118 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-145)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-145)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-145)))) (-3996 (*1 *1) (-5 *1 (-145))) (-2147 (*1 *1) (-5 *1 (-145))) (-3114 (*1 *1) (-5 *1 (-145))) (-2722 (*1 *1 *1) (-5 *1 (-145))) (-2167 (*1 *1 *1) (-5 *1 (-145))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4410 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1919 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(-13 (-855) (-10 -8 (-15 -2118 ((-782) $)) (-15 -1472 ($ (-782))) (-15 -1472 ($ (-1176))) (-15 -3996 ($) -3736) (-15 -2147 ($) -3736) (-15 -3114 ($) -3736) (-15 -2722 ($ $)) (-15 -2167 ($ $)) (-15 -3160 ((-112) $)) (-15 -2349 ((-112) $)) (-15 -4158 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -4410 ((-112) $)) (-15 -1919 ((-112) $))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-1724 (((-3 $ "failed") $) 39)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
+((-1840 (*1 *1 *1 *1) (-4 *1 (-144))) (-2878 (*1 *1 *1) (-4 *1 (-144))) (-3176 (*1 *1 *1 *1) (-4 *1 (-144))))
+(-13 (-10 -8 (-15 -3176 ($ $ $)) (-15 -2878 ($ $)) (-15 -1840 ($ $ $))))
+((-2835 (((-112) $ $) NIL)) (-4190 (((-112) $) 39)) (-2257 (($ $) 55)) (-3692 (($) 26 T CONST)) (-2422 (((-783)) 13)) (-2107 (($) 25)) (-2109 (($) 27 T CONST)) (-2144 (((-783) $) 21)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-4311 (((-112) $) 41)) (-1597 (($ $) 56)) (-1654 (((-938) $) 23)) (-2143 (((-1178) $) 49)) (-4308 (($ (-938)) 20)) (-2374 (((-112) $) 37)) (-3887 (((-1139) $) NIL)) (-2252 (($) 28 T CONST)) (-2419 (((-112) $) 35)) (-2858 (((-874) $) 30)) (-1488 (($ (-783)) 19) (($ (-1178)) 54)) (-2690 (((-112) $ $) NIL)) (-4406 (((-112) $) 45)) (-3536 (((-112) $) 43)) (-3956 (((-112) $ $) 11)) (-3930 (((-112) $ $) 9)) (-3889 (((-112) $ $) 7)) (-3944 (((-112) $ $) 10)) (-3916 (((-112) $ $) 8)))
+(((-145) (-13 (-856) (-10 -8 (-15 -2144 ((-783) $)) (-15 -1488 ($ (-783))) (-15 -1488 ($ (-1178))) (-15 -3692 ($) -3712) (-15 -2109 ($) -3712) (-15 -2252 ($) -3712) (-15 -2257 ($ $)) (-15 -1597 ($ $)) (-15 -2419 ((-112) $)) (-15 -2374 ((-112) $)) (-15 -3536 ((-112) $)) (-15 -4190 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -4406 ((-112) $))))) (T -145))
+((-2144 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-1488 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-1488 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-145)))) (-3692 (*1 *1) (-5 *1 (-145))) (-2109 (*1 *1) (-5 *1 (-145))) (-2252 (*1 *1) (-5 *1 (-145))) (-2257 (*1 *1 *1) (-5 *1 (-145))) (-1597 (*1 *1 *1) (-5 *1 (-145))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4406 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(-13 (-856) (-10 -8 (-15 -2144 ((-783) $)) (-15 -1488 ($ (-783))) (-15 -1488 ($ (-1178))) (-15 -3692 ($) -3712) (-15 -2109 ($) -3712) (-15 -2252 ($) -3712) (-15 -2257 ($ $)) (-15 -1597 ($ $)) (-15 -2419 ((-112) $)) (-15 -2374 ((-112) $)) (-15 -3536 ((-112) $)) (-15 -4190 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -4406 ((-112) $))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-3689 (((-3 $ "failed") $) 39)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-146) (-141)) (T -146))
-((-1724 (*1 *1 *1) (|partial| -4 *1 (-146))))
-(-13 (-1066) (-10 -8 (-15 -1724 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2765 ((|#1| (-700 |#1|) |#1|) 19)))
-(((-147 |#1|) (-10 -7 (-15 -2765 (|#1| (-700 |#1|) |#1|))) (-174)) (T -147))
-((-2765 (*1 *2 *3 *2) (-12 (-5 *3 (-700 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
-(-10 -7 (-15 -2765 (|#1| (-700 |#1|) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
+((-3689 (*1 *1 *1) (|partial| -4 *1 (-146))))
+(-13 (-1068) (-10 -8 (-15 -3689 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2528 ((|#1| (-701 |#1|) |#1|) 19)))
+(((-147 |#1|) (-10 -7 (-15 -2528 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147))
+((-2528 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))))
+(-10 -7 (-15 -2528 (|#1| (-701 |#1|) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-148) (-141)) (T -148))
NIL
-(-13 (-1066))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2850 (((-2 (|:| -1658 (-782)) (|:| -1754 (-418 |#2|)) (|:| |radicand| |#2|)) (-418 |#2|) (-782)) 76)) (-2956 (((-3 (-2 (|:| |radicand| (-418 |#2|)) (|:| |deg| (-782))) "failed") |#3|) 56)) (-1783 (((-2 (|:| -1754 (-418 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2217 ((|#1| |#3| |#3|) 44)) (-3046 ((|#3| |#3| (-418 |#2|) (-418 |#2|)) 20)) (-2142 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| |deg| (-782))) |#3| |#3|) 53)))
-(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1783 ((-2 (|:| -1754 (-418 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2956 ((-3 (-2 (|:| |radicand| (-418 |#2|)) (|:| |deg| (-782))) "failed") |#3|)) (-15 -2850 ((-2 (|:| -1658 (-782)) (|:| -1754 (-418 |#2|)) (|:| |radicand| |#2|)) (-418 |#2|) (-782))) (-15 -2217 (|#1| |#3| |#3|)) (-15 -3046 (|#3| |#3| (-418 |#2|) (-418 |#2|))) (-15 -2142 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| |deg| (-782))) |#3| |#3|))) (-1239) (-1261 |#1|) (-1261 (-418 |#2|))) (T -149))
-((-2142 (*1 *2 *3 *3) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-418 *5)) (|:| |c2| (-418 *5)) (|:| |deg| (-782)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))) (-3046 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-418 *5)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1261 *3)))) (-2217 (*1 *2 *3 *3) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1239)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1261 (-418 *4))))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *6)) (-4 *5 (-1239)) (-4 *6 (-1261 *5)) (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-782)) (-4 *7 (-1261 *3)))) (-2956 (*1 *2 *3) (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| |radicand| (-418 *5)) (|:| |deg| (-782)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))) (-1783 (*1 *2 *3) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -1754 (-418 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))))
-(-10 -7 (-15 -1783 ((-2 (|:| -1754 (-418 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2956 ((-3 (-2 (|:| |radicand| (-418 |#2|)) (|:| |deg| (-782))) "failed") |#3|)) (-15 -2850 ((-2 (|:| -1658 (-782)) (|:| -1754 (-418 |#2|)) (|:| |radicand| |#2|)) (-418 |#2|) (-782))) (-15 -2217 (|#1| |#3| |#3|)) (-15 -3046 (|#3| |#3| (-418 |#2|) (-418 |#2|))) (-15 -2142 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| |deg| (-782))) |#3| |#3|)))
-((-4047 (((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)) 35)))
-(((-150 |#1| |#2|) (-10 -7 (-15 -4047 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)))) (-556) (-167 |#1|)) (T -150))
-((-4047 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-167 *4)) (-4 *4 (-556)) (-5 *1 (-150 *4 *5)))))
-(-10 -7 (-15 -4047 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|))))
-((-3983 (($ (-1 (-112) |#2|) $) 37)) (-4070 (($ $) 44)) (-3631 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2302 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1540 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-2718 (((-112) (-1 (-112) |#2|) $) 24)) (-3922 (((-782) (-1 (-112) |#2|) $) 18) (((-782) |#2| $) NIL)) (-4121 (((-112) (-1 (-112) |#2|) $) 21)) (-2869 (((-782) $) 12)))
-(((-151 |#1| |#2|) (-10 -8 (-15 -4070 (|#1| |#1|)) (-15 -3631 (|#1| |#2| |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3983 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1540 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2869 ((-782) |#1|))) (-152 |#2|) (-1235)) (T -151))
-NIL
-(-10 -8 (-15 -4070 (|#1| |#1|)) (-15 -3631 (|#1| |#2| |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3983 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1540 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2869 ((-782) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-3983 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-4070 (($ $) 42 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460))) (($ |#1| $) 43 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 41 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 50)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-152 |#1|) (-141) (-1235)) (T -152))
-((-2893 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-152 *3)))) (-1540 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-2302 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-2302 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-3631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3)) (-4 *3 (-1235)))) (-3983 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3)) (-4 *3 (-1235)))) (-2302 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)))) (-3631 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) (-4070 (*1 *1 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))))
-(-13 (-500 |t#1|) (-10 -8 (-15 -2893 ($ (-655 |t#1|))) (-15 -1540 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2302 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2302 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3631 ($ (-1 (-112) |t#1|) $)) (-15 -3983 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2302 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3631 ($ |t#1| $)) (-15 -4070 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) 111)) (-3900 (((-112) $) NIL)) (-2414 (($ |#2| (-655 (-936))) 71)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2520 (($ (-936)) 57)) (-1605 (((-135)) 23)) (-2882 (((-873) $) 86) (($ (-575)) 53) (($ |#2|) 54)) (-3002 ((|#2| $ (-655 (-936))) 74)) (-4421 (((-782)) 20 T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 47 T CONST)) (-2005 (($) 51 T CONST)) (-3913 (((-112) $ $) 33)) (-4038 (($ $ |#2|) NIL)) (-4027 (($ $) 42) (($ $ $) 40)) (-4015 (($ $ $) 38)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
-(((-153 |#1| |#2| |#3|) (-13 (-1066) (-38 |#2|) (-1292 |#2|) (-10 -8 (-15 -2520 ($ (-936))) (-15 -2414 ($ |#2| (-655 (-936)))) (-15 -3002 (|#2| $ (-655 (-936)))) (-15 -4162 ((-3 $ "failed") $)))) (-936) (-373) (-1010 |#1| |#2|)) (T -153))
-((-4162 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-936)) (-4 *3 (-373)) (-14 *4 (-1010 *2 *3)))) (-2520 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-373)) (-14 *5 (-1010 *3 *4)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-936)) (-4 *2 (-373)) (-14 *5 (-1010 *4 *2)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-655 (-936))) (-4 *2 (-373)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-936)) (-14 *5 (-1010 *4 *2)))))
-(-13 (-1066) (-38 |#2|) (-1292 |#2|) (-10 -8 (-15 -2520 ($ (-936))) (-15 -2414 ($ |#2| (-655 (-936)))) (-15 -3002 (|#2| $ (-655 (-936)))) (-15 -4162 ((-3 $ "failed") $))))
-((-2011 (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-3119 (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575))) 95) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942)) 96)) (-4178 (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227))))) 99) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-958 (-227)))) 98) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575))) 90) (((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942)) 91)))
-(((-154) (-10 -7 (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -3119 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -3119 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -2011 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))) (-227) (-227) (-227) (-227))) (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-958 (-227))))) (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))))))) (T -154))
-((-4178 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 (-227))))))) (-4178 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)) (-5 *3 (-655 (-958 (-227)))))) (-2011 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 *4)))) (|:| |xValues| (-1111 *4)) (|:| |yValues| (-1111 *4)))) (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 *4)))))) (-3119 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575))) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))) (-4178 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575))) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-942)) (-5 *2 (-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227))))) (-5 *1 (-154)))))
-(-10 -7 (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -3119 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942))) (-15 -3119 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-942) (-418 (-575)) (-418 (-575)))) (-15 -2011 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))) (-227) (-227) (-227) (-227))) (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-958 (-227))))) (-15 -4178 ((-2 (|:| |brans| (-655 (-655 (-958 (-227))))) (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))) (-655 (-655 (-958 (-227)))))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-1452 (((-655 (-1152)) $) 20)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 27) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 9)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-155) (-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $))))) (T -155))
-((-1452 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-155)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-155)))))
-(-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $))))
-((-2745 (((-655 (-171 |#2|)) |#1| |#2|) 50)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -2745 ((-655 (-171 |#2|)) |#1| |#2|))) (-1261 (-171 (-575))) (-13 (-373) (-859))) (T -156))
-((-2745 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1261 (-171 (-575)))) (-4 *4 (-13 (-373) (-859))))))
-(-10 -7 (-15 -2745 ((-655 (-171 |#2|)) |#1| |#2|)))
-((-2859 (((-112) $ $) NIL)) (-3890 (((-1234) $) 12)) (-3878 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-157) (-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1234) $))))) (T -157))
-((-3878 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-157)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-157)))))
-(-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1234) $))))
-((-2859 (((-112) $ $) NIL)) (-3440 (($) 41)) (-2726 (($) 40)) (-1645 (((-936)) 46)) (-4264 (((-1176) $) NIL)) (-3803 (((-575) $) 44)) (-3912 (((-1137) $) NIL)) (-3563 (($) 42)) (-4177 (($ (-575)) 47)) (-2882 (((-873) $) 53)) (-4031 (($) 43)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 38)) (-4015 (($ $ $) 35)) (* (($ (-936) $) 45) (($ (-227) $) 11)))
-(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-936) $)) (-15 * ($ (-227) $)) (-15 -4015 ($ $ $)) (-15 -2726 ($)) (-15 -3440 ($)) (-15 -3563 ($)) (-15 -4031 ($)) (-15 -3803 ((-575) $)) (-15 -1645 ((-936))) (-15 -4177 ($ (-575)))))) (T -158))
-((-4015 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-2726 (*1 *1) (-5 *1 (-158))) (-3440 (*1 *1) (-5 *1 (-158))) (-3563 (*1 *1) (-5 *1 (-158))) (-4031 (*1 *1) (-5 *1 (-158))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-158)))) (-1645 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-158)))) (-4177 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-158)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-936) $)) (-15 * ($ (-227) $)) (-15 -4015 ($ $ $)) (-15 -2726 ($)) (-15 -3440 ($)) (-15 -3563 ($)) (-15 -4031 ($)) (-15 -3803 ((-575) $)) (-15 -1645 ((-936))) (-15 -4177 ($ (-575)))))
-((-4020 ((|#2| |#2| (-1109 |#2|)) 98) ((|#2| |#2| (-1194)) 75)) (-3431 ((|#2| |#2| (-1109 |#2|)) 97) ((|#2| |#2| (-1194)) 74)) (-3732 ((|#2| |#2| |#2|) 25)) (-2567 (((-115) (-115)) 111)) (-1642 ((|#2| (-655 |#2|)) 130)) (-2116 ((|#2| (-655 |#2|)) 151)) (-3042 ((|#2| (-655 |#2|)) 138)) (-4240 ((|#2| |#2|) 136)) (-2175 ((|#2| (-655 |#2|)) 124)) (-2739 ((|#2| (-655 |#2|)) 125)) (-2030 ((|#2| (-655 |#2|)) 149)) (-1631 ((|#2| |#2| (-1194)) 63) ((|#2| |#2|) 62)) (-2031 ((|#2| |#2|) 21)) (-2266 ((|#2| |#2| |#2|) 24)) (-1825 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-159 |#1| |#2|) (-10 -7 (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2266 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -2031 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1631 (|#2| |#2| (-1194))) (-15 -4020 (|#2| |#2| (-1194))) (-15 -4020 (|#2| |#2| (-1109 |#2|))) (-15 -3431 (|#2| |#2| (-1194))) (-15 -3431 (|#2| |#2| (-1109 |#2|))) (-15 -4240 (|#2| |#2|)) (-15 -2030 (|#2| (-655 |#2|))) (-15 -3042 (|#2| (-655 |#2|))) (-15 -2116 (|#2| (-655 |#2|))) (-15 -2175 (|#2| (-655 |#2|))) (-15 -2739 (|#2| (-655 |#2|))) (-15 -1642 (|#2| (-655 |#2|)))) (-567) (-441 |#1|)) (T -159))
-((-1642 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-567)))) (-4240 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) (-4 *2 (-441 *4)))) (-4020 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)))) (-4020 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) (-4 *2 (-441 *4)))) (-1631 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2)) (-4 *2 (-441 *4)))) (-1631 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-2031 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-3732 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-2266 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-159 *3 *4)) (-4 *4 (-441 *3)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-441 *4)))))
-(-10 -7 (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -2266 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2|)) (-15 -2031 (|#2| |#2|)) (-15 -1631 (|#2| |#2|)) (-15 -1631 (|#2| |#2| (-1194))) (-15 -4020 (|#2| |#2| (-1194))) (-15 -4020 (|#2| |#2| (-1109 |#2|))) (-15 -3431 (|#2| |#2| (-1194))) (-15 -3431 (|#2| |#2| (-1109 |#2|))) (-15 -4240 (|#2| |#2|)) (-15 -2030 (|#2| (-655 |#2|))) (-15 -3042 (|#2| (-655 |#2|))) (-15 -2116 (|#2| (-655 |#2|))) (-15 -2175 (|#2| (-655 |#2|))) (-15 -2739 (|#2| (-655 |#2|))) (-15 -1642 (|#2| (-655 |#2|))))
-((-2159 ((|#1| |#1| |#1|) 64)) (-4115 ((|#1| |#1| |#1|) 61)) (-3732 ((|#1| |#1| |#1|) 55)) (-4349 ((|#1| |#1|) 42)) (-2338 ((|#1| |#1| (-655 |#1|)) 53)) (-2031 ((|#1| |#1|) 46)) (-2266 ((|#1| |#1| |#1|) 49)))
-(((-160 |#1|) (-10 -7 (-15 -2266 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -2338 (|#1| |#1| (-655 |#1|))) (-15 -4349 (|#1| |#1|)) (-15 -3732 (|#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| |#1|)) (-15 -2159 (|#1| |#1| |#1|))) (-556)) (T -160))
-((-2159 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-4115 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-3732 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-4349 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-2338 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-556)) (-5 *1 (-160 *2)))) (-2031 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))) (-2266 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))))
-(-10 -7 (-15 -2266 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -2338 (|#1| |#1| (-655 |#1|))) (-15 -4349 (|#1| |#1|)) (-15 -3732 (|#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| |#1|)) (-15 -2159 (|#1| |#1| |#1|)))
-((-4020 (($ $ (-1194)) 12) (($ $ (-1109 $)) 11)) (-3431 (($ $ (-1194)) 10) (($ $ (-1109 $)) 9)) (-3732 (($ $ $) 8)) (-1631 (($ $) 14) (($ $ (-1194)) 13)) (-2031 (($ $) 7)) (-2266 (($ $ $) 6)))
+(-13 (-1068))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2353 (((-2 (|:| -2273 (-783)) (|:| -1788 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-3904 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-2195 (((-2 (|:| -1788 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1917 ((|#1| |#3| |#3|) 44)) (-3022 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-2817 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53)))
+(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2195 ((-2 (|:| -1788 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3904 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -2353 ((-2 (|:| -2273 (-783)) (|:| -1788 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -1917 (|#1| |#3| |#3|)) (-15 -3022 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2817 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1241) (-1263 |#1|) (-1263 (-419 |#2|))) (T -149))
+((-2817 (*1 *2 *3 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-3022 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1263 *3)))) (-1917 (*1 *2 *3 *3) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1241)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1263 *3)))) (-3904 (*1 *2 *3) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -1788 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))))
+(-10 -7 (-15 -2195 ((-2 (|:| -1788 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3904 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -2353 ((-2 (|:| -2273 (-783)) (|:| -1788 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -1917 (|#1| |#3| |#3|)) (-15 -3022 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2817 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|)))
+((-1667 (((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)) 35)))
+(((-150 |#1| |#2|) (-10 -7 (-15 -1667 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)))) (-557) (-167 |#1|)) (T -150))
+((-1667 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))))
+(-10 -7 (-15 -1667 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))))
+((-3959 (($ (-1 (-112) |#2|) $) 37)) (-3229 (($ $) 44)) (-3607 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2326 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-3557 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1910 (((-112) (-1 (-112) |#2|) $) 24)) (-3902 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2714 (((-112) (-1 (-112) |#2|) $) 21)) (-2845 (((-783) $) 12)))
+(((-151 |#1| |#2|) (-10 -8 (-15 -3229 (|#1| |#1|)) (-15 -3607 (|#1| |#2| |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3959 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3557 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-783) |#1|))) (-152 |#2|) (-1237)) (T -151))
+NIL
+(-10 -8 (-15 -3229 (|#1| |#1|)) (-15 -3607 (|#1| |#2| |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3959 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3557 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-783) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-3959 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3229 (($ $) 42 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462))) (($ |#1| $) 43 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 50)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-152 |#1|) (-141) (-1237)) (T -152))
+((-2869 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-152 *3)))) (-3557 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2326 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2326 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-3607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3)) (-4 *3 (-1237)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3)) (-4 *3 (-1237)))) (-2326 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-3607 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) (-3229 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))))
+(-13 (-501 |t#1|) (-10 -8 (-15 -2869 ($ (-656 |t#1|))) (-15 -3557 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2326 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2326 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3607 ($ (-1 (-112) |t#1|) $)) (-15 -3959 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -2326 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3607 ($ |t#1| $)) (-15 -3229 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) 111)) (-1838 (((-112) $) NIL)) (-2428 (($ |#2| (-656 (-938))) 71)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2526 (($ (-938)) 57)) (-4340 (((-135)) 23)) (-2858 (((-874) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-4417 ((|#2| $ (-656 (-938))) 74)) (-2981 (((-783)) 20 T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 47 T CONST)) (-2038 (($) 51 T CONST)) (-3889 (((-112) $ $) 33)) (-4013 (($ $ |#2|) NIL)) (-4002 (($ $) 42) (($ $ $) 40)) (-3990 (($ $ $) 38)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL)))
+(((-153 |#1| |#2| |#3|) (-13 (-1068) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -2526 ($ (-938))) (-15 -2428 ($ |#2| (-656 (-938)))) (-15 -4417 (|#2| $ (-656 (-938)))) (-15 -4011 ((-3 $ "failed") $)))) (-938) (-374) (-1012 |#1| |#2|)) (T -153))
+((-4011 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-374)) (-14 *4 (-1012 *2 *3)))) (-2526 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1012 *3 *4)))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) (-4 *2 (-374)) (-14 *5 (-1012 *4 *2)))) (-4417 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-938))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) (-14 *5 (-1012 *4 *2)))))
+(-13 (-1068) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -2526 ($ (-938))) (-15 -2428 ($ |#2| (-656 (-938)))) (-15 -4417 (|#2| $ (-656 (-938)))) (-15 -4011 ((-3 $ "failed") $))))
+((-1702 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2933 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944)) 96)) (-1962 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944)) 91)))
+(((-154) (-10 -7 (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -2933 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2933 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -1702 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227))))) (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))))))) (T -154))
+((-1962 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 (-227))))))) (-1962 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-960 (-227)))))) (-1702 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 *4)))) (|:| |xValues| (-1113 *4)) (|:| |yValues| (-1113 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 *4)))))) (-2933 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-1962 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))))
+(-10 -7 (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -2933 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2933 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -1702 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227))))) (-15 -1962 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1466 (((-656 (-1154)) $) 20)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 27) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-1154) $) 9)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-155) (-13 (-1102) (-10 -8 (-15 -1466 ((-656 (-1154)) $)) (-15 -1822 ((-1154) $))))) (T -155))
+((-1466 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-155)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-155)))))
+(-13 (-1102) (-10 -8 (-15 -1466 ((-656 (-1154)) $)) (-15 -1822 ((-1154) $))))
+((-2165 (((-656 (-171 |#2|)) |#1| |#2|) 50)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -2165 ((-656 (-171 |#2|)) |#1| |#2|))) (-1263 (-171 (-576))) (-13 (-374) (-860))) (T -156))
+((-2165 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1263 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -2165 ((-656 (-171 |#2|)) |#1| |#2|)))
+((-2835 (((-112) $ $) NIL)) (-3866 (((-1236) $) 12)) (-3854 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-157) (-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1236) $))))) (T -157))
+((-3854 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-157)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-157)))))
+(-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1236) $))))
+((-2835 (((-112) $ $) NIL)) (-1527 (($) 41)) (-1361 (($) 40)) (-1559 (((-938)) 46)) (-2143 (((-1178) $) NIL)) (-3702 (((-576) $) 44)) (-3887 (((-1139) $) NIL)) (-3425 (($) 42)) (-1862 (($ (-576)) 47)) (-2858 (((-874) $) 53)) (-2525 (($) 43)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 38)) (-3990 (($ $ $) 35)) (* (($ (-938) $) 45) (($ (-227) $) 11)))
+(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-227) $)) (-15 -3990 ($ $ $)) (-15 -1361 ($)) (-15 -1527 ($)) (-15 -3425 ($)) (-15 -2525 ($)) (-15 -3702 ((-576) $)) (-15 -1559 ((-938))) (-15 -1862 ($ (-576)))))) (T -158))
+((-3990 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1361 (*1 *1) (-5 *1 (-158))) (-1527 (*1 *1) (-5 *1 (-158))) (-3425 (*1 *1) (-5 *1 (-158))) (-2525 (*1 *1) (-5 *1 (-158))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-1559 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-227) $)) (-15 -3990 ($ $ $)) (-15 -1361 ($)) (-15 -1527 ($)) (-15 -3425 ($)) (-15 -2525 ($)) (-15 -3702 ((-576) $)) (-15 -1559 ((-938))) (-15 -1862 ($ (-576)))))
+((-4246 ((|#2| |#2| (-1111 |#2|)) 98) ((|#2| |#2| (-1196)) 75)) (-1904 ((|#2| |#2| (-1111 |#2|)) 97) ((|#2| |#2| (-1196)) 74)) (-1840 ((|#2| |#2| |#2|) 25)) (-2569 (((-115) (-115)) 111)) (-1331 ((|#2| (-656 |#2|)) 130)) (-1889 ((|#2| (-656 |#2|)) 151)) (-2879 ((|#2| (-656 |#2|)) 138)) (-3750 ((|#2| |#2|) 136)) (-3046 ((|#2| (-656 |#2|)) 124)) (-1661 ((|#2| (-656 |#2|)) 125)) (-3035 ((|#2| (-656 |#2|)) 149)) (-1674 ((|#2| |#2| (-1196)) 63) ((|#2| |#2|) 62)) (-2878 ((|#2| |#2|) 21)) (-3176 ((|#2| |#2| |#2|) 24)) (-3410 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-159 |#1| |#2|) (-10 -7 (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3176 (|#2| |#2| |#2|)) (-15 -1840 (|#2| |#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1674 (|#2| |#2| (-1196))) (-15 -4246 (|#2| |#2| (-1196))) (-15 -4246 (|#2| |#2| (-1111 |#2|))) (-15 -1904 (|#2| |#2| (-1196))) (-15 -1904 (|#2| |#2| (-1111 |#2|))) (-15 -3750 (|#2| |#2|)) (-15 -3035 (|#2| (-656 |#2|))) (-15 -2879 (|#2| (-656 |#2|))) (-15 -1889 (|#2| (-656 |#2|))) (-15 -3046 (|#2| (-656 |#2|))) (-15 -1661 (|#2| (-656 |#2|))) (-15 -1331 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159))
+((-1331 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3750 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1904 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-1904 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4246 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4246 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1674 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2878 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1840 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3176 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))))
+(-10 -7 (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3176 (|#2| |#2| |#2|)) (-15 -1840 (|#2| |#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1674 (|#2| |#2| (-1196))) (-15 -4246 (|#2| |#2| (-1196))) (-15 -4246 (|#2| |#2| (-1111 |#2|))) (-15 -1904 (|#2| |#2| (-1196))) (-15 -1904 (|#2| |#2| (-1111 |#2|))) (-15 -3750 (|#2| |#2|)) (-15 -3035 (|#2| (-656 |#2|))) (-15 -2879 (|#2| (-656 |#2|))) (-15 -1889 (|#2| (-656 |#2|))) (-15 -3046 (|#2| (-656 |#2|))) (-15 -1661 (|#2| (-656 |#2|))) (-15 -1331 (|#2| (-656 |#2|))))
+((-3833 ((|#1| |#1| |#1|) 64)) (-3344 ((|#1| |#1| |#1|) 61)) (-1840 ((|#1| |#1| |#1|) 55)) (-1366 ((|#1| |#1|) 42)) (-2515 ((|#1| |#1| (-656 |#1|)) 53)) (-2878 ((|#1| |#1|) 46)) (-3176 ((|#1| |#1| |#1|) 49)))
+(((-160 |#1|) (-10 -7 (-15 -3176 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -2515 (|#1| |#1| (-656 |#1|))) (-15 -1366 (|#1| |#1|)) (-15 -1840 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|))) (-557)) (T -160))
+((-3833 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3344 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1840 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1366 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2515 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-2878 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3176 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(-10 -7 (-15 -3176 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -2515 (|#1| |#1| (-656 |#1|))) (-15 -1366 (|#1| |#1|)) (-15 -1840 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)))
+((-4246 (($ $ (-1196)) 12) (($ $ (-1111 $)) 11)) (-1904 (($ $ (-1196)) 10) (($ $ (-1111 $)) 9)) (-1840 (($ $ $) 8)) (-1674 (($ $) 14) (($ $ (-1196)) 13)) (-2878 (($ $) 7)) (-3176 (($ $ $) 6)))
(((-161) (-141)) (T -161))
-((-1631 (*1 *1 *1) (-4 *1 (-161))) (-1631 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) (-4020 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161)))) (-3431 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161)))))
-(-13 (-144) (-10 -8 (-15 -1631 ($ $)) (-15 -1631 ($ $ (-1194))) (-15 -4020 ($ $ (-1194))) (-15 -4020 ($ $ (-1109 $))) (-15 -3431 ($ $ (-1194))) (-15 -3431 ($ $ (-1109 $)))))
+((-1674 (*1 *1 *1) (-4 *1 (-161))) (-1674 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-4246 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) (-1904 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-1904 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))))
+(-13 (-144) (-10 -8 (-15 -1674 ($ $)) (-15 -1674 ($ $ (-1196))) (-15 -4246 ($ $ (-1196))) (-15 -4246 ($ $ (-1111 $))) (-15 -1904 ($ $ (-1196))) (-15 -1904 ($ $ (-1111 $)))))
(((-144) . T))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-162) (-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $))))) (T -162))
-((-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-162)))))
-(-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $))))
-((-2859 (((-112) $ $) NIL)) (-1359 (($ (-575)) 14) (($ $ $) 15)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 18)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 9)))
-(((-163) (-13 (-1117) (-10 -8 (-15 -1359 ($ (-575))) (-15 -1359 ($ $ $))))) (T -163))
-((-1359 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-163)))) (-1359 (*1 *1 *1 *1) (-5 *1 (-163))))
-(-13 (-1117) (-10 -8 (-15 -1359 ($ (-575))) (-15 -1359 ($ $ $))))
-((-2567 (((-115) (-1194)) 102)))
-(((-164) (-10 -7 (-15 -2567 ((-115) (-1194))))) (T -164))
-((-2567 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-115)) (-5 *1 (-164)))))
-(-10 -7 (-15 -2567 ((-115) (-1194))))
-((-2572 ((|#3| |#3|) 19)))
-(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2572 (|#3| |#3|))) (-1066) (-1261 |#1|) (-1261 |#2|)) (T -165))
-((-2572 (*1 *2 *2) (-12 (-4 *3 (-1066)) (-4 *4 (-1261 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1261 *4)))))
-(-10 -7 (-15 -2572 (|#3| |#3|)))
-((-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 223)) (-1448 ((|#2| $) 102)) (-3921 (($ $) 256)) (-3784 (($ $) 250)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 47)) (-3895 (($ $) 254)) (-3759 (($ $) 248)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4400 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 144)) (-2800 (($ $ $) 229)) (-2862 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 160) (((-700 |#2|) (-700 $)) 154) (((-700 |#2|) (-1285 $)) NIL)) (-2302 (($ (-1190 |#2|)) 125) (((-3 $ "failed") (-418 (-1190 |#2|))) NIL)) (-4162 (((-3 $ "failed") $) 214)) (-2157 (((-3 (-418 (-575)) "failed") $) 204)) (-2188 (((-112) $) 199)) (-1622 (((-418 (-575)) $) 202)) (-4422 (((-936)) 96)) (-2811 (($ $ $) 231)) (-3998 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1632 (($) 245)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 193) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 198)) (-3390 ((|#2| $) 100)) (-3977 (((-1190 |#2|) $) 127)) (-2544 (($ (-1 |#2| |#2|) $) 108)) (-3461 (($ $) 247)) (-2290 (((-1190 |#2|) $) 126)) (-4332 (($ $) 207)) (-2436 (($) 103)) (-1343 (((-429 (-1190 $)) (-1190 $)) 95)) (-3154 (((-429 (-1190 $)) (-1190 $)) 64)) (-2849 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2663 (($ $) 246)) (-1720 (((-782) $) 226)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 236)) (-2801 ((|#2| (-1285 $)) NIL) ((|#2|) 98)) (-2382 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-4436 (((-1190 |#2|)) 120)) (-3907 (($ $) 255)) (-3772 (($ $) 249)) (-2209 (((-1285 |#2|) $ (-1285 $)) 136) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $) 116) (((-700 |#2|) (-1285 $)) NIL)) (-2613 (((-1285 |#2|) $) NIL) (($ (-1285 |#2|)) NIL) (((-1190 |#2|) $) NIL) (($ (-1190 |#2|)) NIL) (((-904 (-575)) $) 184) (((-904 (-389)) $) 188) (((-171 (-389)) $) 172) (((-171 (-227)) $) 167) (((-547) $) 180)) (-3516 (($ $) 104)) (-2882 (((-873) $) 143) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-418 (-575))) NIL) (($ $) NIL)) (-2765 (((-1190 |#2|) $) 32)) (-4421 (((-782)) 106)) (-3685 (((-112) $ $) 13)) (-1569 (($ $) 259)) (-3850 (($ $) 253)) (-1544 (($ $) 257)) (-3826 (($ $) 251)) (-1387 ((|#2| $) 242)) (-1554 (($ $) 258)) (-3837 (($ $) 252)) (-3863 (($ $) 162)) (-3913 (((-112) $ $) 110)) (-4027 (($ $) 112) (($ $ $) NIL)) (-4015 (($ $ $) 111)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-418 (-575))) 276) (($ $ $) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL)))
-(((-166 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2882 (|#1| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1984 ((-2 (|:| -2942 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1720 ((-782) |#1|)) (-15 -4416 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2613 ((-547) |#1|)) (-15 -2613 ((-171 (-227)) |#1|)) (-15 -2613 ((-171 (-389)) |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1632 (|#1|)) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -3154 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1343 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -3998 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1387 (|#2| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -2436 (|#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2302 ((-3 |#1| "failed") (-418 (-1190 |#2|)))) (-15 -2290 ((-1190 |#2|) |#1|)) (-15 -2613 (|#1| (-1190 |#2|))) (-15 -2302 (|#1| (-1190 |#2|))) (-15 -4436 ((-1190 |#2|))) (-15 -2862 ((-700 |#2|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2613 ((-1190 |#2|) |#1|)) (-15 -2801 (|#2|)) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -3977 ((-1190 |#2|) |#1|)) (-15 -2765 ((-1190 |#2|) |#1|)) (-15 -2801 (|#2| (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -3390 (|#2| |#1|)) (-15 -1448 (|#2| |#1|)) (-15 -4422 ((-936))) (-15 -2882 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -3685 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
-((-4421 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4422 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-936)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-2801 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-4436 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1190 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
-(-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2882 (|#1| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1984 ((-2 (|:| -2942 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1720 ((-782) |#1|)) (-15 -4416 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2613 ((-547) |#1|)) (-15 -2613 ((-171 (-227)) |#1|)) (-15 -2613 ((-171 (-389)) |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1632 (|#1|)) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -3154 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1343 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -3998 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1387 (|#2| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -2436 (|#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2302 ((-3 |#1| "failed") (-418 (-1190 |#2|)))) (-15 -2290 ((-1190 |#2|) |#1|)) (-15 -2613 (|#1| (-1190 |#2|))) (-15 -2302 (|#1| (-1190 |#2|))) (-15 -4436 ((-1190 |#2|))) (-15 -2862 ((-700 |#2|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2613 ((-1190 |#2|) |#1|)) (-15 -2801 (|#2|)) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -3977 ((-1190 |#2|) |#1|)) (-15 -2765 ((-1190 |#2|) |#1|)) (-15 -2801 (|#2| (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -3390 (|#2| |#1|)) (-15 -1448 (|#2| |#1|)) (-15 -4422 ((-936))) (-15 -2882 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -3685 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 105 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-2456 (($ $) 106 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3978 (((-112) $) 108 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3831 (((-700 |#1|) (-1285 $)) 53) (((-700 |#1|)) 68)) (-1448 ((|#1| $) 59)) (-3921 (($ $) 234 (|has| |#1| (-1220)))) (-3784 (($ $) 217 (|has| |#1| (-1220)))) (-2309 (((-1207 (-936) (-782)) (-575)) 158 (|has| |#1| (-359)))) (-1708 (((-3 $ "failed") $ $) 20)) (-4005 (((-429 (-1190 $)) (-1190 $)) 248 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-3312 (($ $) 125 (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-4281 (((-429 $) $) 126 (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2467 (($ $) 247 (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 251 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-3599 (((-112) $ $) 116 (|has| |#1| (-316)))) (-2409 (((-782)) 99 (|has| |#1| (-378)))) (-3895 (($ $) 233 (|has| |#1| (-1220)))) (-3759 (($ $) 218 (|has| |#1| (-1220)))) (-1521 (($ $) 232 (|has| |#1| (-1220)))) (-3805 (($ $) 219 (|has| |#1| (-1220)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 183 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 181 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 178)) (-4400 (((-575) $) 182 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 180 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 179)) (-3898 (($ (-1285 |#1|) (-1285 $)) 55) (($ (-1285 |#1|)) 71)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-359)))) (-2800 (($ $ $) 120 (|has| |#1| (-316)))) (-3405 (((-700 |#1|) $ (-1285 $)) 60) (((-700 |#1|) $) 66)) (-2862 (((-700 (-575)) (-1285 $)) 177 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 174) (((-700 |#1|) (-700 $)) 173) (((-700 |#1|) (-1285 $)) 172)) (-2302 (($ (-1190 |#1|)) 169) (((-3 $ "failed") (-418 (-1190 |#1|))) 166 (|has| |#1| (-373)))) (-4162 (((-3 $ "failed") $) 37)) (-2481 ((|#1| $) 259)) (-2157 (((-3 (-418 (-575)) "failed") $) 252 (|has| |#1| (-556)))) (-2188 (((-112) $) 254 (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) 253 (|has| |#1| (-556)))) (-4422 (((-936)) 61)) (-2073 (($) 102 (|has| |#1| (-378)))) (-2811 (($ $ $) 119 (|has| |#1| (-316)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 114 (|has| |#1| (-316)))) (-1758 (($) 160 (|has| |#1| (-359)))) (-3228 (((-112) $) 161 (|has| |#1| (-359)))) (-2457 (($ $ (-782)) 152 (|has| |#1| (-359))) (($ $) 151 (|has| |#1| (-359)))) (-3559 (((-112) $) 127 (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-3998 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 255 (-12 (|has| |#1| (-1077)) (|has| |#1| (-1220))))) (-1632 (($) 244 (|has| |#1| (-1220)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 267 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 266 (|has| |#1| (-898 (-389))))) (-3369 (((-936) $) 163 (|has| |#1| (-359))) (((-844 (-936)) $) 149 (|has| |#1| (-359)))) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 246 (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-3390 ((|#1| $) 58)) (-2808 (((-3 $ "failed") $) 153 (|has| |#1| (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 123 (|has| |#1| (-316)))) (-3977 (((-1190 |#1|) $) 51 (|has| |#1| (-373)))) (-2544 (($ (-1 |#1| |#1|) $) 268)) (-1894 (((-936) $) 101 (|has| |#1| (-378)))) (-3461 (($ $) 241 (|has| |#1| (-1220)))) (-2290 (((-1190 |#1|) $) 167)) (-3886 (($ (-655 $)) 112 (-3763 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (($ $ $) 111 (-3763 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-4264 (((-1176) $) 10)) (-4332 (($ $) 128 (|has| |#1| (-373)))) (-3472 (($) 154 (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) 100 (|has| |#1| (-378)))) (-2436 (($) 263)) (-1965 ((|#1| $) 260)) (-3912 (((-1137) $) 11)) (-3657 (($) 171)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 113 (-3763 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3923 (($ (-655 $)) 110 (-3763 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (($ $ $) 109 (-3763 (|has| |#1| (-316)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 157 (|has| |#1| (-359)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 250 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-3154 (((-429 (-1190 $)) (-1190 $)) 249 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2347 (((-429 $) $) 124 (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-316))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 121 (|has| |#1| (-316)))) (-2849 (((-3 $ "failed") $ |#1|) 258 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 104 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 115 (|has| |#1| (-316)))) (-2663 (($ $) 242 (|has| |#1| (-1220)))) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) 274 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 273 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 272 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 271 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 270 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 269 (|has| |#1| (-525 (-1194) |#1|)))) (-1720 (((-782) $) 117 (|has| |#1| (-316)))) (-2065 (($ $ |#1|) 275 (|has| |#1| (-295 |#1| |#1|)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 118 (|has| |#1| (-316)))) (-2801 ((|#1| (-1285 $)) 54) ((|#1|) 67)) (-2619 (((-782) $) 162 (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) 150 (|has| |#1| (-359)))) (-2382 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-782)) 135) (($ $ (-655 (-1194)) (-655 (-782))) 141 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) 140 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) 139 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) 137 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) 147 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3224 (|has| |#1| (-237)) (|has| |#1| (-373))))) (($ $) 145 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3224 (|has| |#1| (-237)) (|has| |#1| (-373)))))) (-3797 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-373)))) (-4436 (((-1190 |#1|)) 170)) (-1531 (($ $) 231 (|has| |#1| (-1220)))) (-3815 (($ $) 220 (|has| |#1| (-1220)))) (-1847 (($) 159 (|has| |#1| (-359)))) (-3935 (($ $) 230 (|has| |#1| (-1220)))) (-3795 (($ $) 221 (|has| |#1| (-1220)))) (-3907 (($ $) 229 (|has| |#1| (-1220)))) (-3772 (($ $) 222 (|has| |#1| (-1220)))) (-2209 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56) (((-1285 |#1|) $) 73) (((-700 |#1|) (-1285 $)) 72)) (-2613 (((-1285 |#1|) $) 70) (($ (-1285 |#1|)) 69) (((-1190 |#1|) $) 184) (($ (-1190 |#1|)) 168) (((-904 (-575)) $) 265 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 264 (|has| |#1| (-625 (-904 (-389))))) (((-171 (-389)) $) 216 (|has| |#1| (-1039))) (((-171 (-227)) $) 215 (|has| |#1| (-1039))) (((-547) $) 214 (|has| |#1| (-625 (-547))))) (-3516 (($ $) 262)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 156 (-3763 (-3224 (|has| $ (-146)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (|has| |#1| (-359))))) (-3501 (($ |#1| |#1|) 261)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ (-418 (-575))) 98 (-3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) 103 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-1724 (($ $) 155 (|has| |#1| (-359))) (((-3 $ "failed") $) 50 (-3763 (-3224 (|has| $ (-146)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))) (|has| |#1| (-146))))) (-2765 (((-1190 |#1|) $) 52)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-2098 (((-1285 $)) 74)) (-1569 (($ $) 240 (|has| |#1| (-1220)))) (-3850 (($ $) 228 (|has| |#1| (-1220)))) (-3930 (((-112) $ $) 107 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))) (-1544 (($ $) 239 (|has| |#1| (-1220)))) (-3826 (($ $) 227 (|has| |#1| (-1220)))) (-1593 (($ $) 238 (|has| |#1| (-1220)))) (-3871 (($ $) 226 (|has| |#1| (-1220)))) (-1387 ((|#1| $) 256 (|has| |#1| (-1220)))) (-2912 (($ $) 237 (|has| |#1| (-1220)))) (-3883 (($ $) 225 (|has| |#1| (-1220)))) (-1583 (($ $) 236 (|has| |#1| (-1220)))) (-3861 (($ $) 224 (|has| |#1| (-1220)))) (-1554 (($ $) 235 (|has| |#1| (-1220)))) (-3837 (($ $) 223 (|has| |#1| (-1220)))) (-3863 (($ $) 257 (|has| |#1| (-1077)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-782)) 133) (($ $ (-655 (-1194)) (-655 (-782))) 144 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) 143 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) 142 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) 138 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) 148 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3224 (|has| |#1| (-237)) (|has| |#1| (-373))))) (($ $) 146 (-3763 (-3224 (|has| |#1| (-373)) (|has| |#1| (-237))) (-3224 (|has| |#1| (-373)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3224 (|has| |#1| (-237)) (|has| |#1| (-373)))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 132 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-418 (-575))) 245 (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220)))) (($ $ $) 243 (|has| |#1| (-1220))) (($ $ (-575)) 129 (|has| |#1| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-418 (-575)) $) 131 (|has| |#1| (-373))) (($ $ (-418 (-575))) 130 (|has| |#1| (-373)))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-656 (-1154)) $) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-162) (-13 (-1102) (-10 -8 (-15 -1822 ((-656 (-1154)) $))))) (T -162))
+((-1822 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-162)))))
+(-13 (-1102) (-10 -8 (-15 -1822 ((-656 (-1154)) $))))
+((-2835 (((-112) $ $) NIL)) (-1541 (($ (-576)) 14) (($ $ $) 15)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 18)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 9)))
+(((-163) (-13 (-1119) (-10 -8 (-15 -1541 ($ (-576))) (-15 -1541 ($ $ $))))) (T -163))
+((-1541 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-1541 (*1 *1 *1 *1) (-5 *1 (-163))))
+(-13 (-1119) (-10 -8 (-15 -1541 ($ (-576))) (-15 -1541 ($ $ $))))
+((-2569 (((-115) (-1196)) 102)))
+(((-164) (-10 -7 (-15 -2569 ((-115) (-1196))))) (T -164))
+((-2569 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-164)))))
+(-10 -7 (-15 -2569 ((-115) (-1196))))
+((-2646 ((|#3| |#3|) 19)))
+(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2646 (|#3| |#3|))) (-1068) (-1263 |#1|) (-1263 |#2|)) (T -165))
+((-2646 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-1263 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1263 *4)))))
+(-10 -7 (-15 -2646 (|#3| |#3|)))
+((-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 223)) (-1462 ((|#2| $) 102)) (-3897 (($ $) 256)) (-3760 (($ $) 250)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 47)) (-3871 (($ $) 254)) (-3735 (($ $) 248)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4397 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-2780 (($ $ $) 229)) (-2085 (((-701 (-576)) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 160) (((-701 |#2|) (-701 $)) 154) (((-701 |#2|) (-1287 $)) NIL)) (-2326 (($ (-1192 |#2|)) 125) (((-3 $ "failed") (-419 (-1192 |#2|))) NIL)) (-4011 (((-3 $ "failed") $) 214)) (-3660 (((-3 (-419 (-576)) "failed") $) 204)) (-1946 (((-112) $) 199)) (-3269 (((-419 (-576)) $) 202)) (-4422 (((-938)) 96)) (-2790 (($ $ $) 231)) (-3898 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1663 (($) 245)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 193) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198)) (-3075 ((|#2| $) 100)) (-2510 (((-1192 |#2|) $) 127)) (-2548 (($ (-1 |#2| |#2|) $) 108)) (-3437 (($ $) 247)) (-2315 (((-1192 |#2|) $) 126)) (-4324 (($ $) 207)) (-3976 (($) 103)) (-3642 (((-430 (-1192 $)) (-1192 $)) 95)) (-3068 (((-430 (-1192 $)) (-1192 $)) 64)) (-2825 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2656 (($ $) 246)) (-3076 (((-783) $) 226)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 236)) (-3880 ((|#2| (-1287 $)) NIL) ((|#2|) 98)) (-2399 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-1953 (((-1192 |#2|)) 120)) (-3883 (($ $) 255)) (-3748 (($ $) 249)) (-3392 (((-1287 |#2|) $ (-1287 $)) 136) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 116) (((-701 |#2|) (-1287 $)) NIL)) (-2610 (((-1287 |#2|) $) NIL) (($ (-1287 |#2|)) NIL) (((-1192 |#2|) $) NIL) (($ (-1192 |#2|)) NIL) (((-905 (-576)) $) 184) (((-905 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-2480 (($ $) 104)) (-2858 (((-874) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2528 (((-1192 |#2|) $) 32)) (-2981 (((-783)) 106)) (-2690 (((-112) $ $) 13)) (-1593 (($ $) 259)) (-3826 (($ $) 253)) (-1567 (($ $) 257)) (-3802 (($ $) 251)) (-3248 ((|#2| $) 242)) (-1578 (($ $) 258)) (-3813 (($ $) 252)) (-3680 (($ $) 162)) (-3889 (((-112) $ $) 110)) (-4002 (($ $) 112) (($ $ $) NIL)) (-3990 (($ $ $) 111)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL)))
+(((-166 |#1| |#2|) (-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2858 (|#1| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3149 ((-2 (|:| -2857 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3076 ((-783) |#1|)) (-15 -3684 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -2790 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -4324 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2610 ((-548) |#1|)) (-15 -2610 ((-171 (-227)) |#1|)) (-15 -2610 ((-171 (-390)) |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -3437 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1663 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3068 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3642 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3898 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3248 (|#2| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2480 (|#1| |#1|)) (-15 -3976 (|#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2326 ((-3 |#1| "failed") (-419 (-1192 |#2|)))) (-15 -2315 ((-1192 |#2|) |#1|)) (-15 -2610 (|#1| (-1192 |#2|))) (-15 -2326 (|#1| (-1192 |#2|))) (-15 -1953 ((-1192 |#2|))) (-15 -2085 ((-701 |#2|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2610 ((-1192 |#2|) |#1|)) (-15 -3880 (|#2|)) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -2510 ((-1192 |#2|) |#1|)) (-15 -2528 ((-1192 |#2|) |#1|)) (-15 -3880 (|#2| (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3075 (|#2| |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -4422 ((-938))) (-15 -2858 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2690 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166))
+((-2981 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4422 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-938)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3880 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1953 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))))
+(-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2858 (|#1| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3149 ((-2 (|:| -2857 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3076 ((-783) |#1|)) (-15 -3684 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -2790 (|#1| |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -4324 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2610 ((-548) |#1|)) (-15 -2610 ((-171 (-227)) |#1|)) (-15 -2610 ((-171 (-390)) |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -3437 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1663 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3068 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3642 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3898 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3248 (|#2| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2480 (|#1| |#1|)) (-15 -3976 (|#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2326 ((-3 |#1| "failed") (-419 (-1192 |#2|)))) (-15 -2315 ((-1192 |#2|) |#1|)) (-15 -2610 (|#1| (-1192 |#2|))) (-15 -2326 (|#1| (-1192 |#2|))) (-15 -1953 ((-1192 |#2|))) (-15 -2085 ((-701 |#2|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2610 ((-1192 |#2|) |#1|)) (-15 -3880 (|#2|)) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -2510 ((-1192 |#2|) |#1|)) (-15 -2528 ((-1192 |#2|) |#1|)) (-15 -3880 (|#2| (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3075 (|#2| |#1|)) (-15 -1462 (|#2| |#1|)) (-15 -4422 ((-938))) (-15 -2858 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2690 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 105 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2150 (($ $) 106 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2637 (((-112) $) 108 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3940 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-1462 ((|#1| $) 59)) (-3897 (($ $) 234 (|has| |#1| (-1222)))) (-3760 (($ $) 217 (|has| |#1| (-1222)))) (-1398 (((-1209 (-938) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-3161 (((-3 $ "failed") $ $) 20)) (-3389 (((-430 (-1192 $)) (-1192 $)) 248 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3179 (($ $) 125 (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2464 (((-430 $) $) 126 (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2477 (($ $) 247 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3417 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2422 (((-783)) 99 (|has| |#1| (-379)))) (-3871 (($ $) 233 (|has| |#1| (-1222)))) (-3735 (($ $) 218 (|has| |#1| (-1222)))) (-1542 (($ $) 232 (|has| |#1| (-1222)))) (-3781 (($ $) 219 (|has| |#1| (-1222)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 183 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 181 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 178)) (-4397 (((-576) $) 182 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 180 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 179)) (-2876 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-2780 (($ $ $) 120 (|has| |#1| (-317)))) (-3313 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-2085 (((-701 (-576)) (-1287 $)) 177 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 174) (((-701 |#1|) (-701 $)) 173) (((-701 |#1|) (-1287 $)) 172)) (-2326 (($ (-1192 |#1|)) 169) (((-3 $ "failed") (-419 (-1192 |#1|))) 166 (|has| |#1| (-374)))) (-4011 (((-3 $ "failed") $) 37)) (-2490 ((|#1| $) 259)) (-3660 (((-3 (-419 (-576)) "failed") $) 252 (|has| |#1| (-557)))) (-1946 (((-112) $) 254 (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) 253 (|has| |#1| (-557)))) (-4422 (((-938)) 61)) (-2107 (($) 102 (|has| |#1| (-379)))) (-2790 (($ $ $) 119 (|has| |#1| (-317)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-3602 (($) 160 (|has| |#1| (-360)))) (-4429 (((-112) $) 161 (|has| |#1| (-360)))) (-2244 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-3011 (((-112) $) 127 (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-3898 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 255 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1222))))) (-1663 (($) 244 (|has| |#1| (-1222)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 267 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 266 (|has| |#1| (-899 (-390))))) (-2620 (((-938) $) 163 (|has| |#1| (-360))) (((-845 (-938)) $) 149 (|has| |#1| (-360)))) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 246 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-3075 ((|#1| $) 58)) (-3397 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-2510 (((-1192 |#1|) $) 51 (|has| |#1| (-374)))) (-2548 (($ (-1 |#1| |#1|) $) 268)) (-1654 (((-938) $) 101 (|has| |#1| (-379)))) (-3437 (($ $) 241 (|has| |#1| (-1222)))) (-2315 (((-1192 |#1|) $) 167)) (-3862 (($ (-656 $)) 112 (-3739 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (($ $ $) 111 (-3739 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2143 (((-1178) $) 10)) (-4324 (($ $) 128 (|has| |#1| (-374)))) (-3448 (($) 154 (|has| |#1| (-360)) CONST)) (-4308 (($ (-938)) 100 (|has| |#1| (-379)))) (-3976 (($) 263)) (-1999 ((|#1| $) 260)) (-3887 (((-1139) $) 11)) (-3633 (($) 171)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 113 (-3739 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3901 (($ (-656 $)) 110 (-3739 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (($ $ $) 109 (-3739 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 157 (|has| |#1| (-360)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3068 (((-430 (-1192 $)) (-1192 $)) 249 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-2367 (((-430 $) $) 124 (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 121 (|has| |#1| (-317)))) (-2825 (((-3 $ "failed") $ |#1|) 258 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-2656 (($ $) 242 (|has| |#1| (-1222)))) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 273 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 272 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 271 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 270 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 269 (|has| |#1| (-526 (-1196) |#1|)))) (-3076 (((-783) $) 117 (|has| |#1| (-317)))) (-2099 (($ $ |#1|) 275 (|has| |#1| (-296 |#1| |#1|)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 118 (|has| |#1| (-317)))) (-3880 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3447 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2399 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) 140 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) 139 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) 137 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) 147 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-237))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3200 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-237))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3200 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-4370 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1953 (((-1192 |#1|)) 170)) (-1553 (($ $) 231 (|has| |#1| (-1222)))) (-3791 (($ $) 220 (|has| |#1| (-1222)))) (-1861 (($) 159 (|has| |#1| (-360)))) (-3911 (($ $) 230 (|has| |#1| (-1222)))) (-3771 (($ $) 221 (|has| |#1| (-1222)))) (-3883 (($ $) 229 (|has| |#1| (-1222)))) (-3748 (($ $) 222 (|has| |#1| (-1222)))) (-3392 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-2610 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69) (((-1192 |#1|) $) 184) (($ (-1192 |#1|)) 168) (((-905 (-576)) $) 265 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 264 (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) 216 (|has| |#1| (-1041))) (((-171 (-227)) $) 215 (|has| |#1| (-1041))) (((-548) $) 214 (|has| |#1| (-626 (-548))))) (-2480 (($ $) 262)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 156 (-3739 (-3200 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (|has| |#1| (-360))))) (-3477 (($ |#1| |#1|) 261)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) 103 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3689 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-3739 (-3200 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (|has| |#1| (-146))))) (-2528 (((-1192 |#1|) $) 52)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-4261 (((-1287 $)) 74)) (-1593 (($ $) 240 (|has| |#1| (-1222)))) (-3826 (($ $) 228 (|has| |#1| (-1222)))) (-3199 (((-112) $ $) 107 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-1567 (($ $) 239 (|has| |#1| (-1222)))) (-3802 (($ $) 227 (|has| |#1| (-1222)))) (-1620 (($ $) 238 (|has| |#1| (-1222)))) (-3847 (($ $) 226 (|has| |#1| (-1222)))) (-3248 ((|#1| $) 256 (|has| |#1| (-1222)))) (-2888 (($ $) 237 (|has| |#1| (-1222)))) (-3859 (($ $) 225 (|has| |#1| (-1222)))) (-1609 (($ $) 236 (|has| |#1| (-1222)))) (-3837 (($ $) 224 (|has| |#1| (-1222)))) (-1578 (($ $) 235 (|has| |#1| (-1222)))) (-3813 (($ $) 223 (|has| |#1| (-1222)))) (-3680 (($ $) 257 (|has| |#1| (-1079)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) 143 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) 142 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) 138 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) 148 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-237))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3200 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-3739 (-3200 (|has| |#1| (-374)) (|has| |#1| (-237))) (-3200 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-3200 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 132 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 245 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222)))) (($ $ $) 243 (|has| |#1| (-1222))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374)))))
(((-167 |#1|) (-141) (-174)) (T -167))
-((-3390 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2436 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3501 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2849 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-3863 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) (-1387 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1220)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1077)) (-4 *3 (-1220)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-2157 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))))
-(-13 (-735 |t#1| (-1190 |t#1|)) (-422 |t#1|) (-232 |t#1|) (-348 |t#1|) (-411 |t#1|) (-896 |t#1|) (-387 |t#1|) (-174) (-10 -8 (-6 -3501) (-15 -2436 ($)) (-15 -3516 ($ $)) (-15 -3501 ($ |t#1| |t#1|)) (-15 -1965 (|t#1| $)) (-15 -2481 (|t#1| $)) (-15 -3390 (|t#1| $)) (IF (|has| |t#1| (-567)) (PROGN (-6 (-567)) (-15 -2849 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-316)) (-6 (-316)) |%noBranch|) (IF (|has| |t#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#1| (-6 -4456)) (-6 -4456) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-625 (-171 (-227)))) (-6 (-625 (-171 (-389))))) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -3863 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1220)) (PROGN (-6 (-1220)) (-15 -1387 (|t#1| $)) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -3998 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-924)) (IF (|has| |t#1| (-316)) (-6 (-924)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-38 |#1|) . T) ((-38 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-35) |has| |#1| (-1220)) ((-95) |has| |#1| (-1220)) ((-102) . T) ((-111 #0# #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3763 (|has| |#1| (-359)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-359)) (|has| |#1| (-373))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-624 (-873)) . T) ((-174) . T) ((-625 (-171 (-227))) |has| |#1| (-1039)) ((-625 (-171 (-389))) |has| |#1| (-1039)) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-625 #1=(-1190 |#1|)) . T) ((-234 $) -3763 (|has| |#1| (-359)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -3763 (|has| |#1| (-359)) (|has| |#1| (-238))) ((-237) -3763 (|has| |#1| (-359)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-248) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-293) |has| |#1| (-1220)) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-299) -3763 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-316) -3763 (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-373) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-413) |has| |#1| (-359)) ((-378) -3763 (|has| |#1| (-378)) (|has| |#1| (-359))) ((-359) |has| |#1| (-359)) ((-380 |#1| #1#) . T) ((-420 |#1| #1#) . T) ((-348 |#1|) . T) ((-387 |#1|) . T) ((-411 |#1|) . T) ((-422 |#1|) . T) ((-463) -3763 (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-504) |has| |#1| (-1220)) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-567) -3763 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-657 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-659 #2=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-651 |#1|) . T) ((-651 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-650 #2#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-728 |#1|) . T) ((-728 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-735 |#1| #1#) . T) ((-737) . T) ((-908 $ #3=(-1194)) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #3#) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-924) -12 (|has| |#1| (-316)) (|has| |#1| (-924))) ((-935) -3763 (|has| |#1| (-359)) (|has| |#1| (-373)) (|has| |#1| (-316))) ((-1019) -12 (|has| |#1| (-1019)) (|has| |#1| (-1220))) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-359)) ((-1220) |has| |#1| (-1220)) ((-1223) |has| |#1| (-1220)) ((-1235) . T) ((-1239) -3763 (|has| |#1| (-359)) (|has| |#1| (-373)) (-12 (|has| |#1| (-316)) (|has| |#1| (-924)))))
-((-2347 (((-429 |#2|) |#2|) 67)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -2347 ((-429 |#2|) |#2|))) (-316) (-1261 (-171 |#1|))) (T -168))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1261 (-171 *4))))))
-(-10 -7 (-15 -2347 ((-429 |#2|) |#2|)))
-((-3479 (((-1152) (-1152) (-300)) 8)) (-3195 (((-655 (-702 (-289))) (-1176)) 81)) (-2504 (((-702 (-289)) (-1152)) 76)))
-(((-169) (-13 (-1235) (-10 -7 (-15 -3479 ((-1152) (-1152) (-300))) (-15 -2504 ((-702 (-289)) (-1152))) (-15 -3195 ((-655 (-702 (-289))) (-1176)))))) (T -169))
-((-3479 (*1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-300)) (-5 *1 (-169)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-702 (-289))) (-5 *1 (-169)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-702 (-289)))) (-5 *1 (-169)))))
-(-13 (-1235) (-10 -7 (-15 -3479 ((-1152) (-1152) (-300))) (-15 -2504 ((-702 (-289)) (-1152))) (-15 -3195 ((-655 (-702 (-289))) (-1176)))))
-((-2544 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -2544 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
-(-10 -7 (-15 -2544 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 34)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-2456 (($ $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-3978 (((-112) $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-3831 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) NIL)) (-1448 ((|#1| $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-1220)))) (-3784 (($ $) NIL (|has| |#1| (-1220)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-359)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-3312 (($ $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-4281 (((-429 $) $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-2467 (($ $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-316)))) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-3895 (($ $) NIL (|has| |#1| (-1220)))) (-3759 (($ $) NIL (|has| |#1| (-1220)))) (-1521 (($ $) NIL (|has| |#1| (-1220)))) (-3805 (($ $) NIL (|has| |#1| (-1220)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-3898 (($ (-1285 |#1|) (-1285 $)) NIL) (($ (-1285 |#1|)) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2800 (($ $ $) NIL (|has| |#1| (-316)))) (-3405 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2302 (($ (-1190 |#1|)) NIL) (((-3 $ "failed") (-418 (-1190 |#1|))) NIL (|has| |#1| (-373)))) (-4162 (((-3 $ "failed") $) NIL)) (-2481 ((|#1| $) 13)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-556)))) (-2188 (((-112) $) NIL (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) NIL (|has| |#1| (-556)))) (-4422 (((-936)) NIL)) (-2073 (($) NIL (|has| |#1| (-378)))) (-2811 (($ $ $) NIL (|has| |#1| (-316)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-316)))) (-1758 (($) NIL (|has| |#1| (-359)))) (-3228 (((-112) $) NIL (|has| |#1| (-359)))) (-2457 (($ $ (-782)) NIL (|has| |#1| (-359))) (($ $) NIL (|has| |#1| (-359)))) (-3559 (((-112) $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-3998 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1077)) (|has| |#1| (-1220))))) (-1632 (($) NIL (|has| |#1| (-1220)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| |#1| (-898 (-389))))) (-3369 (((-936) $) NIL (|has| |#1| (-359))) (((-844 (-936)) $) NIL (|has| |#1| (-359)))) (-3900 (((-112) $) 36)) (-2111 (($ $ (-575)) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220))))) (-3390 ((|#1| $) 47)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-316)))) (-3977 (((-1190 |#1|) $) NIL (|has| |#1| (-373)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-3461 (($ $) NIL (|has| |#1| (-1220)))) (-2290 (((-1190 |#1|) $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-316))) (($ $ $) NIL (|has| |#1| (-316)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-3472 (($) NIL (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-2436 (($) NIL)) (-1965 ((|#1| $) 15)) (-3912 (((-1137) $) NIL)) (-3657 (($) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-316)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-316))) (($ $ $) NIL (|has| |#1| (-316)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| |#1| (-359)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#1| (-316)) (|has| |#1| (-924))))) (-2347 (((-429 $) $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-373))))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-316))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-316)))) (-2849 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 48 (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-316)))) (-2663 (($ $) NIL (|has| |#1| (-1220)))) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-1720 (((-782) $) NIL (|has| |#1| (-316)))) (-2065 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-316)))) (-2801 ((|#1| (-1285 $)) NIL) ((|#1|) NIL)) (-2619 (((-782) $) NIL (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) NIL (|has| |#1| (-359)))) (-2382 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237)))) (($ $) NIL (-3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237))))) (-3797 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-373)))) (-4436 (((-1190 |#1|)) NIL)) (-1531 (($ $) NIL (|has| |#1| (-1220)))) (-3815 (($ $) NIL (|has| |#1| (-1220)))) (-1847 (($) NIL (|has| |#1| (-359)))) (-3935 (($ $) NIL (|has| |#1| (-1220)))) (-3795 (($ $) NIL (|has| |#1| (-1220)))) (-3907 (($ $) NIL (|has| |#1| (-1220)))) (-3772 (($ $) NIL (|has| |#1| (-1220)))) (-2209 (((-1285 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) (-1285 $) (-1285 $)) NIL) (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2613 (((-1285 |#1|) $) NIL) (($ (-1285 |#1|)) NIL) (((-1190 |#1|) $) NIL) (($ (-1190 |#1|)) NIL) (((-904 (-575)) $) NIL (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#1| (-625 (-904 (-389))))) (((-171 (-389)) $) NIL (|has| |#1| (-1039))) (((-171 (-227)) $) NIL (|has| |#1| (-1039))) (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-3516 (($ $) 46)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-359))))) (-3501 (($ |#1| |#1|) 38)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) 37) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-1724 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-2765 (((-1190 |#1|) $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL)) (-1569 (($ $) NIL (|has| |#1| (-1220)))) (-3850 (($ $) NIL (|has| |#1| (-1220)))) (-3930 (((-112) $ $) NIL (-3763 (-12 (|has| |#1| (-316)) (|has| |#1| (-924))) (|has| |#1| (-567))))) (-1544 (($ $) NIL (|has| |#1| (-1220)))) (-3826 (($ $) NIL (|has| |#1| (-1220)))) (-1593 (($ $) NIL (|has| |#1| (-1220)))) (-3871 (($ $) NIL (|has| |#1| (-1220)))) (-1387 ((|#1| $) NIL (|has| |#1| (-1220)))) (-2912 (($ $) NIL (|has| |#1| (-1220)))) (-3883 (($ $) NIL (|has| |#1| (-1220)))) (-1583 (($ $) NIL (|has| |#1| (-1220)))) (-3861 (($ $) NIL (|has| |#1| (-1220)))) (-1554 (($ $) NIL (|has| |#1| (-1220)))) (-3837 (($ $) NIL (|has| |#1| (-1220)))) (-3863 (($ $) NIL (|has| |#1| (-1077)))) (-1989 (($) 28 T CONST)) (-2005 (($) 30 T CONST)) (-2225 (((-1176) $) 23 (|has| |#1| (-839))) (((-1176) $ (-112)) 25 (|has| |#1| (-839))) (((-1290) (-833) $) 26 (|has| |#1| (-839))) (((-1290) (-833) $ (-112)) 27 (|has| |#1| (-839)))) (-3428 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) (|has| |#1| (-915 (-1194))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237)))) (($ $) NIL (-3763 (-12 (|has| |#1| (-238)) (|has| |#1| (-373))) (|has| |#1| (-237))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 40)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-418 (-575))) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1220)))) (($ $ $) NIL (|has| |#1| (-1220))) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-373))) (($ $ (-418 (-575))) NIL (|has| |#1| (-373)))))
-(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|))) (-174)) (T -171))
-NIL
-(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|)))
-((-2613 (((-904 |#1|) |#3|) 22)))
-(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-904 |#1|) |#3|))) (-1117) (-13 (-625 (-904 |#1|)) (-174)) (-167 |#2|)) (T -172))
-((-2613 (*1 *2 *3) (-12 (-4 *5 (-13 (-625 *2) (-174))) (-5 *2 (-904 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1117)) (-4 *3 (-167 *5)))))
-(-10 -7 (-15 -2613 ((-904 |#1|) |#3|)))
-((-2859 (((-112) $ $) NIL)) (-3571 (((-112) $) 9)) (-2261 (((-112) $ (-112)) 11)) (-2303 (($) 13)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3076 (($ $) 14)) (-2882 (((-873) $) 18)) (-2887 (((-112) $) 8)) (-2454 (((-112) $ (-112)) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-173) (-13 (-1117) (-10 -8 (-15 -2303 ($)) (-15 -2887 ((-112) $)) (-15 -3571 ((-112) $)) (-15 -2454 ((-112) $ (-112))) (-15 -2261 ((-112) $ (-112))) (-15 -3076 ($ $))))) (T -173))
-((-2303 (*1 *1) (-5 *1 (-173))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2454 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2261 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3076 (*1 *1 *1) (-5 *1 (-173))))
-(-13 (-1117) (-10 -8 (-15 -2303 ($)) (-15 -2887 ((-112) $)) (-15 -3571 ((-112) $)) (-15 -2454 ((-112) $ (-112))) (-15 -2261 ((-112) $ (-112))) (-15 -3076 ($ $))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
+((-3075 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3976 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3477 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2825 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3680 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1222)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1079)) (-4 *3 (-1222)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3660 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))))
+(-13 (-736 |t#1| (-1192 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-897 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -3477) (-15 -3976 ($)) (-15 -2480 ($ $)) (-15 -3477 ($ |t#1| |t#1|)) (-15 -1999 (|t#1| $)) (-15 -2490 (|t#1| $)) (-15 -3075 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -2825 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1041)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3680 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1222)) (PROGN (-6 (-1222)) (-15 -3248 (|t#1| $)) (IF (|has| |t#1| (-1021)) (-6 (-1021)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3898 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-926)) (IF (|has| |t#1| (-317)) (-6 (-926)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1222)) ((-95) |has| |#1| (-1222)) ((-102) . T) ((-111 #0# #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3739 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-874)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1041)) ((-626 (-171 (-390))) |has| |#1| (-1041)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-626 #1=(-1192 |#1|)) . T) ((-234 $) -3739 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -3739 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -3739 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1222)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3739 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -3739 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3739 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -3739 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1222)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -3739 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-909 $ #3=(-1196)) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #3#) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-926) -12 (|has| |#1| (-317)) (|has| |#1| (-926))) ((-937) -3739 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1021) -12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-360)) ((-1222) |has| |#1| (-1222)) ((-1225) |has| |#1| (-1222)) ((-1237) . T) ((-1241) -3739 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))
+((-2367 (((-430 |#2|) |#2|) 67)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -2367 ((-430 |#2|) |#2|))) (-317) (-1263 (-171 |#1|))) (T -168))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1263 (-171 *4))))))
+(-10 -7 (-15 -2367 ((-430 |#2|) |#2|)))
+((-3455 (((-1154) (-1154) (-301)) 8)) (-4195 (((-656 (-703 (-290))) (-1178)) 81)) (-2896 (((-703 (-290)) (-1154)) 76)))
+(((-169) (-13 (-1237) (-10 -7 (-15 -3455 ((-1154) (-1154) (-301))) (-15 -2896 ((-703 (-290)) (-1154))) (-15 -4195 ((-656 (-703 (-290))) (-1178)))))) (T -169))
+((-3455 (*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-301)) (-5 *1 (-169)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169)))))
+(-13 (-1237) (-10 -7 (-15 -3455 ((-1154) (-1154) (-301))) (-15 -2896 ((-703 (-290)) (-1154))) (-15 -4195 ((-656 (-703 (-290))) (-1178)))))
+((-2548 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -2548 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))))
+(-10 -7 (-15 -2548 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 34)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-2150 (($ $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-2637 (((-112) $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-3940 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-1462 ((|#1| $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-1222)))) (-3760 (($ $) NIL (|has| |#1| (-1222)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3179 (($ $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2464 (((-430 $) $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2477 (($ $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-3871 (($ $) NIL (|has| |#1| (-1222)))) (-3735 (($ $) NIL (|has| |#1| (-1222)))) (-1542 (($ $) NIL (|has| |#1| (-1222)))) (-3781 (($ $) NIL (|has| |#1| (-1222)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2876 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-2780 (($ $ $) NIL (|has| |#1| (-317)))) (-3313 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2326 (($ (-1192 |#1|)) NIL) (((-3 $ "failed") (-419 (-1192 |#1|))) NIL (|has| |#1| (-374)))) (-4011 (((-3 $ "failed") $) NIL)) (-2490 ((|#1| $) 13)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-1946 (((-112) $) NIL (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4422 (((-938)) NIL)) (-2107 (($) NIL (|has| |#1| (-379)))) (-2790 (($ $ $) NIL (|has| |#1| (-317)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-3602 (($) NIL (|has| |#1| (-360)))) (-4429 (((-112) $) NIL (|has| |#1| (-360)))) (-2244 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-3011 (((-112) $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-3898 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1079)) (|has| |#1| (-1222))))) (-1663 (($) NIL (|has| |#1| (-1222)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-2620 (((-938) $) NIL (|has| |#1| (-360))) (((-845 (-938)) $) NIL (|has| |#1| (-360)))) (-1838 (((-112) $) 36)) (-1404 (($ $ (-576)) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-3075 ((|#1| $) 47)) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2510 (((-1192 |#1|) $) NIL (|has| |#1| (-374)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-3437 (($ $) NIL (|has| |#1| (-1222)))) (-2315 (((-1192 |#1|) $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-3448 (($) NIL (|has| |#1| (-360)) CONST)) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-3976 (($) NIL)) (-1999 ((|#1| $) 15)) (-3887 (((-1139) $) NIL)) (-3633 (($) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-317)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| |#1| (-360)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-2367 (((-430 $) $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-317)))) (-2825 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2656 (($ $) NIL (|has| |#1| (-1222)))) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-3076 (((-783) $) NIL (|has| |#1| (-317)))) (-2099 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-317)))) (-3880 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-3447 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2399 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-4370 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1953 (((-1192 |#1|)) NIL)) (-1553 (($ $) NIL (|has| |#1| (-1222)))) (-3791 (($ $) NIL (|has| |#1| (-1222)))) (-1861 (($) NIL (|has| |#1| (-360)))) (-3911 (($ $) NIL (|has| |#1| (-1222)))) (-3771 (($ $) NIL (|has| |#1| (-1222)))) (-3883 (($ $) NIL (|has| |#1| (-1222)))) (-3748 (($ $) NIL (|has| |#1| (-1222)))) (-3392 (((-1287 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2610 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL) (((-1192 |#1|) $) NIL) (($ (-1192 |#1|)) NIL) (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1041))) (((-171 (-227)) $) NIL (|has| |#1| (-1041))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2480 (($ $) 46)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-360))))) (-3477 (($ |#1| |#1|) 38)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-3689 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2528 (((-1192 |#1|) $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL)) (-1593 (($ $) NIL (|has| |#1| (-1222)))) (-3826 (($ $) NIL (|has| |#1| (-1222)))) (-3199 (((-112) $ $) NIL (-3739 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-1567 (($ $) NIL (|has| |#1| (-1222)))) (-3802 (($ $) NIL (|has| |#1| (-1222)))) (-1620 (($ $) NIL (|has| |#1| (-1222)))) (-3847 (($ $) NIL (|has| |#1| (-1222)))) (-3248 ((|#1| $) NIL (|has| |#1| (-1222)))) (-2888 (($ $) NIL (|has| |#1| (-1222)))) (-3859 (($ $) NIL (|has| |#1| (-1222)))) (-1609 (($ $) NIL (|has| |#1| (-1222)))) (-3837 (($ $) NIL (|has| |#1| (-1222)))) (-1578 (($ $) NIL (|has| |#1| (-1222)))) (-3813 (($ $) NIL (|has| |#1| (-1222)))) (-3680 (($ $) NIL (|has| |#1| (-1079)))) (-2022 (($) 28 T CONST)) (-2038 (($) 30 T CONST)) (-1445 (((-1178) $) 23 (|has| |#1| (-840))) (((-1178) $ (-112)) 25 (|has| |#1| (-840))) (((-1292) (-834) $) 26 (|has| |#1| (-840))) (((-1292) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-3404 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3739 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 40)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222)))) (($ $ $) NIL (|has| |#1| (-1222))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374)))))
+(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171))
+NIL
+(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|)))
+((-2610 (((-905 |#1|) |#3|) 22)))
+(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-905 |#1|) |#3|))) (-1119) (-13 (-626 (-905 |#1|)) (-174)) (-167 |#2|)) (T -172))
+((-2610 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1119)) (-4 *3 (-167 *5)))))
+(-10 -7 (-15 -2610 ((-905 |#1|) |#3|)))
+((-2835 (((-112) $ $) NIL)) (-1689 (((-112) $) 9)) (-3782 (((-112) $ (-112)) 11)) (-2327 (($) 13)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3052 (($ $) 14)) (-2858 (((-874) $) 18)) (-1721 (((-112) $) 8)) (-2463 (((-112) $ (-112)) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-173) (-13 (-1119) (-10 -8 (-15 -2327 ($)) (-15 -1721 ((-112) $)) (-15 -1689 ((-112) $)) (-15 -2463 ((-112) $ (-112))) (-15 -3782 ((-112) $ (-112))) (-15 -3052 ($ $))))) (T -173))
+((-2327 (*1 *1) (-5 *1 (-173))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2463 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3782 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3052 (*1 *1 *1) (-5 *1 (-173))))
+(-13 (-1119) (-10 -8 (-15 -2327 ($)) (-15 -1721 ((-112) $)) (-15 -1689 ((-112) $)) (-15 -2463 ((-112) $ (-112))) (-15 -3782 ((-112) $ (-112))) (-15 -3052 ($ $))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-174) (-141)) (T -174))
NIL
-(-13 (-1066) (-111 $ $) (-10 -7 (-6 (-4462 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-3265 (($ $) 6)))
+(-13 (-1068) (-111 $ $) (-10 -7 (-6 (-4464 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-1723 (($ $) 6)))
(((-175) (-141)) (T -175))
-((-3265 (*1 *1 *1) (-4 *1 (-175))))
-(-13 (-10 -8 (-15 -3265 ($ $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 ((|#1| $) 81)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-3271 (($ $) 21)) (-2755 (($ |#1| (-1174 |#1|)) 50)) (-4162 (((-3 $ "failed") $) 123)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2600 (((-1174 |#1|) $) 88)) (-2292 (((-1174 |#1|) $) 85)) (-1673 (((-1174 |#1|) $) 86)) (-3900 (((-112) $) NIL)) (-2610 (((-1174 |#1|) $) 94)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3886 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-1985 (($ $ (-575)) 97)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-3728 (((-1174 |#1|) $) 95)) (-2916 (((-1174 (-418 |#1|)) $) 14)) (-4313 (($ (-418 |#1|)) 17) (($ |#1| (-1174 |#1|) (-1174 |#1|)) 40)) (-3575 (($ $) 99)) (-2882 (((-873) $) 139) (($ (-575)) 53) (($ |#1|) 54) (($ (-418 |#1|)) 38) (($ (-418 (-575))) NIL) (($ $) NIL)) (-4421 (((-782)) 69 T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1636 (((-1174 (-418 |#1|)) $) 20)) (-1989 (($) 27 T CONST)) (-2005 (($) 30 T CONST)) (-3913 (((-112) $ $) 37)) (-4038 (($ $ $) 121)) (-4027 (($ $) 112) (($ $ $) 109)) (-4015 (($ $ $) 107)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-418 |#1|) $) 117) (($ $ (-418 |#1|)) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL)))
-(((-176 |#1|) (-13 (-38 |#1|) (-38 (-418 |#1|)) (-373) (-10 -8 (-15 -4313 ($ (-418 |#1|))) (-15 -4313 ($ |#1| (-1174 |#1|) (-1174 |#1|))) (-15 -2755 ($ |#1| (-1174 |#1|))) (-15 -2292 ((-1174 |#1|) $)) (-15 -1673 ((-1174 |#1|) $)) (-15 -2600 ((-1174 |#1|) $)) (-15 -3824 (|#1| $)) (-15 -3271 ($ $)) (-15 -1636 ((-1174 (-418 |#1|)) $)) (-15 -2916 ((-1174 (-418 |#1|)) $)) (-15 -2610 ((-1174 |#1|) $)) (-15 -3728 ((-1174 |#1|) $)) (-15 -1985 ($ $ (-575))) (-15 -3575 ($ $)))) (-316)) (T -176))
-((-4313 (*1 *1 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-316)) (-5 *1 (-176 *3)))) (-4313 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2)))) (-2755 (*1 *1 *2 *3) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3824 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))) (-3271 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-176 *3)) (-4 *3 (-316)))) (-3575 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))))
-(-13 (-38 |#1|) (-38 (-418 |#1|)) (-373) (-10 -8 (-15 -4313 ($ (-418 |#1|))) (-15 -4313 ($ |#1| (-1174 |#1|) (-1174 |#1|))) (-15 -2755 ($ |#1| (-1174 |#1|))) (-15 -2292 ((-1174 |#1|) $)) (-15 -1673 ((-1174 |#1|) $)) (-15 -2600 ((-1174 |#1|) $)) (-15 -3824 (|#1| $)) (-15 -3271 ($ $)) (-15 -1636 ((-1174 (-418 |#1|)) $)) (-15 -2916 ((-1174 (-418 |#1|)) $)) (-15 -2610 ((-1174 |#1|) $)) (-15 -3728 ((-1174 |#1|) $)) (-15 -1985 ($ $ (-575))) (-15 -3575 ($ $))))
-((-2144 (($ (-109) $) 15)) (-2256 (((-702 (-109)) (-517) $) 14)) (-2882 (((-873) $) 18)) (-4147 (((-655 (-109)) $) 8)))
-(((-177) (-13 (-624 (-873)) (-10 -8 (-15 -4147 ((-655 (-109)) $)) (-15 -2144 ($ (-109) $)) (-15 -2256 ((-702 (-109)) (-517) $))))) (T -177))
-((-4147 (*1 *2 *1) (-12 (-5 *2 (-655 (-109))) (-5 *1 (-177)))) (-2144 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2256 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-177)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -4147 ((-655 (-109)) $)) (-15 -2144 ($ (-109) $)) (-15 -2256 ((-702 (-109)) (-517) $))))
-((-3525 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 38)) (-2082 (((-958 |#1|) (-958 |#1|)) 22)) (-2034 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 34)) (-1923 (((-958 |#1|) (-958 |#1|)) 20)) (-2438 (((-958 |#1|) (-958 |#1|)) 28)) (-2707 (((-958 |#1|) (-958 |#1|)) 27)) (-3616 (((-958 |#1|) (-958 |#1|)) 26)) (-3964 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 35)) (-2406 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 33)) (-1331 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 32)) (-3560 (((-958 |#1|) (-958 |#1|)) 21)) (-2559 (((-1 (-958 |#1|) (-958 |#1|)) |#1| |#1|) 41)) (-1706 (((-958 |#1|) (-958 |#1|)) 8)) (-4401 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 37)) (-3050 (((-1 (-958 |#1|) (-958 |#1|)) |#1|) 36)))
-(((-178 |#1|) (-10 -7 (-15 -1706 ((-958 |#1|) (-958 |#1|))) (-15 -1923 ((-958 |#1|) (-958 |#1|))) (-15 -3560 ((-958 |#1|) (-958 |#1|))) (-15 -2082 ((-958 |#1|) (-958 |#1|))) (-15 -3616 ((-958 |#1|) (-958 |#1|))) (-15 -2707 ((-958 |#1|) (-958 |#1|))) (-15 -2438 ((-958 |#1|) (-958 |#1|))) (-15 -1331 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2406 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2034 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3964 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3050 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -4401 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3525 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2559 ((-1 (-958 |#1|) (-958 |#1|)) |#1| |#1|))) (-13 (-373) (-1220) (-1019))) (T -178))
-((-2559 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-3525 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-4401 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-3964 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-2034 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-1331 (*1 *2 *3) (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-2707 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-3560 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019))) (-5 *1 (-178 *3)))))
-(-10 -7 (-15 -1706 ((-958 |#1|) (-958 |#1|))) (-15 -1923 ((-958 |#1|) (-958 |#1|))) (-15 -3560 ((-958 |#1|) (-958 |#1|))) (-15 -2082 ((-958 |#1|) (-958 |#1|))) (-15 -3616 ((-958 |#1|) (-958 |#1|))) (-15 -2707 ((-958 |#1|) (-958 |#1|))) (-15 -2438 ((-958 |#1|) (-958 |#1|))) (-15 -1331 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2406 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2034 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3964 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3050 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -4401 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -3525 ((-1 (-958 |#1|) (-958 |#1|)) |#1|)) (-15 -2559 ((-1 (-958 |#1|) (-958 |#1|)) |#1| |#1|)))
-((-2765 ((|#2| |#3|) 28)))
-(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2765 (|#2| |#3|))) (-174) (-1261 |#1|) (-735 |#1| |#2|)) (T -179))
-((-2765 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1261 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-735 *4 *2)))))
-(-10 -7 (-15 -2765 (|#2| |#3|)))
-((-1806 (((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)) 44 (|has| (-967 |#2|) (-898 |#1|)))))
-(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-967 |#2|) (-898 |#1|)) (-15 -1806 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) |%noBranch|)) (-1117) (-13 (-898 |#1|) (-174)) (-167 |#2|)) (T -180))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *3 (-167 *6)) (-4 (-967 *6) (-898 *5)) (-4 *6 (-13 (-898 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-967 |#2|) (-898 |#1|)) (-15 -1806 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) |%noBranch|))
-((-2970 (((-655 |#1|) (-655 |#1|) |#1|) 41)) (-2727 (((-655 |#1|) |#1| (-655 |#1|)) 20)) (-4238 (((-655 |#1|) (-655 (-655 |#1|)) (-655 |#1|)) 36) ((|#1| (-655 |#1|) (-655 |#1|)) 32)))
-(((-181 |#1|) (-10 -7 (-15 -2727 ((-655 |#1|) |#1| (-655 |#1|))) (-15 -4238 (|#1| (-655 |#1|) (-655 |#1|))) (-15 -4238 ((-655 |#1|) (-655 (-655 |#1|)) (-655 |#1|))) (-15 -2970 ((-655 |#1|) (-655 |#1|) |#1|))) (-316)) (T -181))
-((-2970 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3)))) (-4238 (*1 *2 *3 *2) (-12 (-5 *3 (-655 (-655 *4))) (-5 *2 (-655 *4)) (-4 *4 (-316)) (-5 *1 (-181 *4)))) (-4238 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-181 *2)) (-4 *2 (-316)))) (-2727 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3)))))
-(-10 -7 (-15 -2727 ((-655 |#1|) |#1| (-655 |#1|))) (-15 -4238 (|#1| (-655 |#1|) (-655 |#1|))) (-15 -4238 ((-655 |#1|) (-655 (-655 |#1|)) (-655 |#1|))) (-15 -2970 ((-655 |#1|) (-655 |#1|) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2937 (((-1234) $) 13)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3827 (((-1152) $) 10)) (-2882 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-182) (-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2937 ((-1234) $))))) (T -182))
-((-3827 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-182)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-182)))))
-(-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2937 ((-1234) $))))
-((-4072 (((-2 (|:| |start| |#2|) (|:| -1366 (-429 |#2|))) |#2|) 66)) (-1907 ((|#1| |#1|) 58)) (-1793 (((-171 |#1|) |#2|) 93)) (-2148 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-2058 ((|#2| |#2|) 91)) (-4062 (((-429 |#2|) |#2| |#1|) 118) (((-429 |#2|) |#2| |#1| (-112)) 88)) (-3390 ((|#1| |#2|) 117)) (-3120 ((|#2| |#2|) 130)) (-2347 (((-429 |#2|) |#2|) 153) (((-429 |#2|) |#2| |#1|) 33) (((-429 |#2|) |#2| |#1| (-112)) 152)) (-4183 (((-655 (-2 (|:| -1366 (-655 |#2|)) (|:| -3082 |#1|))) |#2| |#2|) 151) (((-655 (-2 (|:| -1366 (-655 |#2|)) (|:| -3082 |#1|))) |#2| |#2| (-112)) 81)) (-2745 (((-655 (-171 |#1|)) |#2| |#1|) 42) (((-655 (-171 |#1|)) |#2|) 43)))
-(((-183 |#1| |#2|) (-10 -7 (-15 -2745 ((-655 (-171 |#1|)) |#2|)) (-15 -2745 ((-655 (-171 |#1|)) |#2| |#1|)) (-15 -4183 ((-655 (-2 (|:| -1366 (-655 |#2|)) (|:| -3082 |#1|))) |#2| |#2| (-112))) (-15 -4183 ((-655 (-2 (|:| -1366 (-655 |#2|)) (|:| -3082 |#1|))) |#2| |#2|)) (-15 -2347 ((-429 |#2|) |#2| |#1| (-112))) (-15 -2347 ((-429 |#2|) |#2| |#1|)) (-15 -2347 ((-429 |#2|) |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3390 (|#1| |#2|)) (-15 -4062 ((-429 |#2|) |#2| |#1| (-112))) (-15 -4062 ((-429 |#2|) |#2| |#1|)) (-15 -2058 (|#2| |#2|)) (-15 -2148 (|#1| |#2| |#1|)) (-15 -2148 (|#1| |#2|)) (-15 -1793 ((-171 |#1|) |#2|)) (-15 -1907 (|#1| |#1|)) (-15 -4072 ((-2 (|:| |start| |#2|) (|:| -1366 (-429 |#2|))) |#2|))) (-13 (-373) (-859)) (-1261 (-171 |#1|))) (T -183))
-((-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-2 (|:| |start| *3) (|:| -1366 (-429 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-1907 (*1 *2 *2) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-1793 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-373) (-859))) (-4 *3 (-1261 *2)))) (-2148 (*1 *2 *3) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-2148 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-2058 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1261 (-171 *3))))) (-4062 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-4062 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-3390 (*1 *2 *3) (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1261 (-171 *2))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1261 (-171 *3))))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-2347 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-2347 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-4183 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-2 (|:| -1366 (-655 *3)) (|:| -3082 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-4183 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-373) (-859))) (-5 *2 (-655 (-2 (|:| -1366 (-655 *3)) (|:| -3082 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1261 (-171 *5))))) (-2745 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))))
-(-10 -7 (-15 -2745 ((-655 (-171 |#1|)) |#2|)) (-15 -2745 ((-655 (-171 |#1|)) |#2| |#1|)) (-15 -4183 ((-655 (-2 (|:| -1366 (-655 |#2|)) (|:| -3082 |#1|))) |#2| |#2| (-112))) (-15 -4183 ((-655 (-2 (|:| -1366 (-655 |#2|)) (|:| -3082 |#1|))) |#2| |#2|)) (-15 -2347 ((-429 |#2|) |#2| |#1| (-112))) (-15 -2347 ((-429 |#2|) |#2| |#1|)) (-15 -2347 ((-429 |#2|) |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3390 (|#1| |#2|)) (-15 -4062 ((-429 |#2|) |#2| |#1| (-112))) (-15 -4062 ((-429 |#2|) |#2| |#1|)) (-15 -2058 (|#2| |#2|)) (-15 -2148 (|#1| |#2| |#1|)) (-15 -2148 (|#1| |#2|)) (-15 -1793 ((-171 |#1|) |#2|)) (-15 -1907 (|#1| |#1|)) (-15 -4072 ((-2 (|:| |start| |#2|) (|:| -1366 (-429 |#2|))) |#2|)))
-((-3047 (((-3 |#2| "failed") |#2|) 16)) (-3510 (((-782) |#2|) 18)) (-2242 ((|#2| |#2| |#2|) 20)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -3047 ((-3 |#2| "failed") |#2|)) (-15 -3510 ((-782) |#2|)) (-15 -2242 (|#2| |#2| |#2|))) (-1235) (-685 |#1|)) (T -184))
-((-2242 (*1 *2 *2 *2) (-12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) (-4 *2 (-685 *3)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-1235)) (-5 *2 (-782)) (-5 *1 (-184 *4 *3)) (-4 *3 (-685 *4)))) (-3047 (*1 *2 *2) (|partial| -12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) (-4 *2 (-685 *3)))))
-(-10 -7 (-15 -3047 ((-3 |#2| "failed") |#2|)) (-15 -3510 ((-782) |#2|)) (-15 -2242 (|#2| |#2| |#2|)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3741 ((|#1| $) 7)) (-2882 (((-873) $) 14)) (-3685 (((-112) $ $) NIL)) (-4223 (((-655 (-1199)) $) 10)) (-3913 (((-112) $ $) 12)))
-(((-185 |#1|) (-13 (-1117) (-10 -8 (-15 -3741 (|#1| $)) (-15 -4223 ((-655 (-1199)) $)))) (-187)) (T -185))
-((-3741 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
-(-13 (-1117) (-10 -8 (-15 -3741 (|#1| $)) (-15 -4223 ((-655 (-1199)) $))))
-((-3020 (((-655 (-876)) $) 16)) (-1559 (((-188) $) 8)) (-3386 (((-655 (-112)) $) 13)) (-3425 (((-55) $) 10)))
-(((-186 |#1|) (-10 -8 (-15 -3020 ((-655 (-876)) |#1|)) (-15 -3386 ((-655 (-112)) |#1|)) (-15 -1559 ((-188) |#1|)) (-15 -3425 ((-55) |#1|))) (-187)) (T -186))
-NIL
-(-10 -8 (-15 -3020 ((-655 (-876)) |#1|)) (-15 -3386 ((-655 (-112)) |#1|)) (-15 -1559 ((-188) |#1|)) (-15 -3425 ((-55) |#1|)))
-((-2859 (((-112) $ $) 7)) (-3020 (((-655 (-876)) $) 19)) (-1777 (((-517) $) 16)) (-4264 (((-1176) $) 10)) (-1559 (((-188) $) 21)) (-3371 (((-112) $ (-517)) 14)) (-3912 (((-1137) $) 11)) (-3386 (((-655 (-112)) $) 20)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3425 (((-55) $) 15)) (-3913 (((-112) $ $) 6)))
+((-1723 (*1 *1 *1) (-4 *1 (-175))))
+(-13 (-10 -8 (-15 -1723 ($ $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 ((|#1| $) 81)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-4196 (($ $) 21)) (-3773 (($ |#1| (-1176 |#1|)) 50)) (-4011 (((-3 $ "failed") $) 123)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2578 (((-1176 |#1|) $) 88)) (-3470 (((-1176 |#1|) $) 85)) (-4055 (((-1176 |#1|) $) 86)) (-1838 (((-112) $) NIL)) (-2254 (((-1176 |#1|) $) 94)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3862 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-3262 (($ $ (-576)) 97)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2589 (((-1176 |#1|) $) 95)) (-2516 (((-1176 (-419 |#1|)) $) 14)) (-2601 (($ (-419 |#1|)) 17) (($ |#1| (-1176 |#1|) (-1176 |#1|)) 40)) (-2137 (($ $) 99)) (-2858 (((-874) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2981 (((-783)) 69 T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2016 (((-1176 (-419 |#1|)) $) 20)) (-2022 (($) 27 T CONST)) (-2038 (($) 30 T CONST)) (-3889 (((-112) $ $) 37)) (-4013 (($ $ $) 121)) (-4002 (($ $) 112) (($ $ $) 109)) (-3990 (($ $ $) 107)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL)))
+(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2601 ($ (-419 |#1|))) (-15 -2601 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -3773 ($ |#1| (-1176 |#1|))) (-15 -3470 ((-1176 |#1|) $)) (-15 -4055 ((-1176 |#1|) $)) (-15 -2578 ((-1176 |#1|) $)) (-15 -1463 (|#1| $)) (-15 -4196 ($ $)) (-15 -2016 ((-1176 (-419 |#1|)) $)) (-15 -2516 ((-1176 (-419 |#1|)) $)) (-15 -2254 ((-1176 |#1|) $)) (-15 -2589 ((-1176 |#1|) $)) (-15 -3262 ($ $ (-576))) (-15 -2137 ($ $)))) (-317)) (T -176))
+((-2601 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-2601 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3773 (*1 *1 *2 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1463 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-4196 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2137 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))))
+(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -2601 ($ (-419 |#1|))) (-15 -2601 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -3773 ($ |#1| (-1176 |#1|))) (-15 -3470 ((-1176 |#1|) $)) (-15 -4055 ((-1176 |#1|) $)) (-15 -2578 ((-1176 |#1|) $)) (-15 -1463 (|#1| $)) (-15 -4196 ($ $)) (-15 -2016 ((-1176 (-419 |#1|)) $)) (-15 -2516 ((-1176 (-419 |#1|)) $)) (-15 -2254 ((-1176 |#1|) $)) (-15 -2589 ((-1176 |#1|) $)) (-15 -3262 ($ $ (-576))) (-15 -2137 ($ $))))
+((-1807 (($ (-109) $) 15)) (-1353 (((-703 (-109)) (-518) $) 14)) (-2858 (((-874) $) 18)) (-1614 (((-656 (-109)) $) 8)))
+(((-177) (-13 (-625 (-874)) (-10 -8 (-15 -1614 ((-656 (-109)) $)) (-15 -1807 ($ (-109) $)) (-15 -1353 ((-703 (-109)) (-518) $))))) (T -177))
+((-1614 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-1807 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-1353 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -1614 ((-656 (-109)) $)) (-15 -1807 ($ (-109) $)) (-15 -1353 ((-703 (-109)) (-518) $))))
+((-1939 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 38)) (-3263 (((-960 |#1|) (-960 |#1|)) 22)) (-3253 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 34)) (-3613 (((-960 |#1|) (-960 |#1|)) 20)) (-2979 (((-960 |#1|) (-960 |#1|)) 28)) (-3373 (((-960 |#1|) (-960 |#1|)) 27)) (-3532 (((-960 |#1|) (-960 |#1|)) 26)) (-3947 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 35)) (-2302 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 33)) (-1624 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 32)) (-3093 (((-960 |#1|) (-960 |#1|)) 21)) (-3009 (((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|) 41)) (-4360 (((-960 |#1|) (-960 |#1|)) 8)) (-2875 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 37)) (-2309 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 36)))
+(((-178 |#1|) (-10 -7 (-15 -4360 ((-960 |#1|) (-960 |#1|))) (-15 -3613 ((-960 |#1|) (-960 |#1|))) (-15 -3093 ((-960 |#1|) (-960 |#1|))) (-15 -3263 ((-960 |#1|) (-960 |#1|))) (-15 -3532 ((-960 |#1|) (-960 |#1|))) (-15 -3373 ((-960 |#1|) (-960 |#1|))) (-15 -2979 ((-960 |#1|) (-960 |#1|))) (-15 -1624 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2302 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3253 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3947 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2309 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2875 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1939 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3009 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|))) (-13 (-374) (-1222) (-1021))) (T -178))
+((-3009 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-2875 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-2309 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-3253 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-1624 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-3373 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-4360 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))))
+(-10 -7 (-15 -4360 ((-960 |#1|) (-960 |#1|))) (-15 -3613 ((-960 |#1|) (-960 |#1|))) (-15 -3093 ((-960 |#1|) (-960 |#1|))) (-15 -3263 ((-960 |#1|) (-960 |#1|))) (-15 -3532 ((-960 |#1|) (-960 |#1|))) (-15 -3373 ((-960 |#1|) (-960 |#1|))) (-15 -2979 ((-960 |#1|) (-960 |#1|))) (-15 -1624 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2302 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3253 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3947 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2309 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2875 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1939 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3009 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|)))
+((-2528 ((|#2| |#3|) 28)))
+(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -2528 (|#2| |#3|))) (-174) (-1263 |#1|) (-736 |#1| |#2|)) (T -179))
+((-2528 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1263 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2)))))
+(-10 -7 (-15 -2528 (|#2| |#3|)))
+((-1835 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 44 (|has| (-969 |#2|) (-899 |#1|)))))
+(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-969 |#2|) (-899 |#1|)) (-15 -1835 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) (-1119) (-13 (-899 |#1|) (-174)) (-167 |#2|)) (T -180))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *3 (-167 *6)) (-4 (-969 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-969 |#2|) (-899 |#1|)) (-15 -1835 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|))
+((-2859 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-1448 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-3567 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32)))
+(((-181 |#1|) (-10 -7 (-15 -1448 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3567 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3567 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2859 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181))
+((-2859 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-3567 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-3567 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-1448 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))))
+(-10 -7 (-15 -1448 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -3567 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -3567 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2859 ((-656 |#1|) (-656 |#1|) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-2913 (((-1236) $) 13)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3803 (((-1154) $) 10)) (-2858 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-182) (-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2913 ((-1236) $))))) (T -182))
+((-3803 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-182)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-182)))))
+(-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2913 ((-1236) $))))
+((-2233 (((-2 (|:| |start| |#2|) (|:| -1603 (-430 |#2|))) |#2|) 66)) (-2390 ((|#1| |#1|) 58)) (-2025 (((-171 |#1|) |#2|) 93)) (-2194 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-1814 ((|#2| |#2|) 91)) (-1738 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-3075 ((|#1| |#2|) 117)) (-3024 ((|#2| |#2|) 130)) (-2367 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-4191 (((-656 (-2 (|:| -1603 (-656 |#2|)) (|:| -3058 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -1603 (-656 |#2|)) (|:| -3058 |#1|))) |#2| |#2| (-112)) 81)) (-2165 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43)))
+(((-183 |#1| |#2|) (-10 -7 (-15 -2165 ((-656 (-171 |#1|)) |#2|)) (-15 -2165 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -4191 ((-656 (-2 (|:| -1603 (-656 |#2|)) (|:| -3058 |#1|))) |#2| |#2| (-112))) (-15 -4191 ((-656 (-2 (|:| -1603 (-656 |#2|)) (|:| -3058 |#1|))) |#2| |#2|)) (-15 -2367 ((-430 |#2|) |#2| |#1| (-112))) (-15 -2367 ((-430 |#2|) |#2| |#1|)) (-15 -2367 ((-430 |#2|) |#2|)) (-15 -3024 (|#2| |#2|)) (-15 -3075 (|#1| |#2|)) (-15 -1738 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1738 ((-430 |#2|) |#2| |#1|)) (-15 -1814 (|#2| |#2|)) (-15 -2194 (|#1| |#2| |#1|)) (-15 -2194 (|#1| |#2|)) (-15 -2025 ((-171 |#1|) |#2|)) (-15 -2390 (|#1| |#1|)) (-15 -2233 ((-2 (|:| |start| |#2|) (|:| -1603 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1263 (-171 |#1|))) (T -183))
+((-2233 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -1603 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2390 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-2025 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1263 *2)))) (-2194 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-2194 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-1738 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1738 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3075 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-3024 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2367 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4191 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1603 (-656 *3)) (|:| -3058 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4191 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1603 (-656 *3)) (|:| -3058 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1263 (-171 *5))))) (-2165 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2165 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))))
+(-10 -7 (-15 -2165 ((-656 (-171 |#1|)) |#2|)) (-15 -2165 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -4191 ((-656 (-2 (|:| -1603 (-656 |#2|)) (|:| -3058 |#1|))) |#2| |#2| (-112))) (-15 -4191 ((-656 (-2 (|:| -1603 (-656 |#2|)) (|:| -3058 |#1|))) |#2| |#2|)) (-15 -2367 ((-430 |#2|) |#2| |#1| (-112))) (-15 -2367 ((-430 |#2|) |#2| |#1|)) (-15 -2367 ((-430 |#2|) |#2|)) (-15 -3024 (|#2| |#2|)) (-15 -3075 (|#1| |#2|)) (-15 -1738 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1738 ((-430 |#2|) |#2| |#1|)) (-15 -1814 (|#2| |#2|)) (-15 -2194 (|#1| |#2| |#1|)) (-15 -2194 (|#1| |#2|)) (-15 -2025 ((-171 |#1|) |#2|)) (-15 -2390 (|#1| |#1|)) (-15 -2233 ((-2 (|:| |start| |#2|) (|:| -1603 (-430 |#2|))) |#2|)))
+((-3209 (((-3 |#2| "failed") |#2|) 16)) (-2988 (((-783) |#2|) 18)) (-2473 ((|#2| |#2| |#2|) 20)))
+(((-184 |#1| |#2|) (-10 -7 (-15 -3209 ((-3 |#2| "failed") |#2|)) (-15 -2988 ((-783) |#2|)) (-15 -2473 (|#2| |#2| |#2|))) (-1237) (-686 |#1|)) (T -184))
+((-2473 (*1 *2 *2 *2) (-12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-2988 (*1 *2 *3) (-12 (-4 *4 (-1237)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-3209 (*1 *2 *2) (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))))
+(-10 -7 (-15 -3209 ((-3 |#2| "failed") |#2|)) (-15 -2988 ((-783) |#2|)) (-15 -2473 (|#2| |#2| |#2|)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3717 ((|#1| $) 7)) (-2858 (((-874) $) 14)) (-2690 (((-112) $ $) NIL)) (-4200 (((-656 (-1201)) $) 10)) (-3889 (((-112) $ $) 12)))
+(((-185 |#1|) (-13 (-1119) (-10 -8 (-15 -3717 (|#1| $)) (-15 -4200 ((-656 (-1201)) $)))) (-187)) (T -185))
+((-3717 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+(-13 (-1119) (-10 -8 (-15 -3717 (|#1| $)) (-15 -4200 ((-656 (-1201)) $))))
+((-2996 (((-656 (-877)) $) 16)) (-1584 (((-188) $) 8)) (-3742 (((-656 (-112)) $) 13)) (-2727 (((-55) $) 10)))
+(((-186 |#1|) (-10 -8 (-15 -2996 ((-656 (-877)) |#1|)) (-15 -3742 ((-656 (-112)) |#1|)) (-15 -1584 ((-188) |#1|)) (-15 -2727 ((-55) |#1|))) (-187)) (T -186))
+NIL
+(-10 -8 (-15 -2996 ((-656 (-877)) |#1|)) (-15 -3742 ((-656 (-112)) |#1|)) (-15 -1584 ((-188) |#1|)) (-15 -2727 ((-55) |#1|)))
+((-2835 (((-112) $ $) 7)) (-2996 (((-656 (-877)) $) 19)) (-1811 (((-518) $) 16)) (-2143 (((-1178) $) 10)) (-1584 (((-188) $) 21)) (-2729 (((-112) $ (-518)) 14)) (-3887 (((-1139) $) 11)) (-3742 (((-656 (-112)) $) 20)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2727 (((-55) $) 15)) (-3889 (((-112) $ $) 6)))
(((-187) (-141)) (T -187))
-((-1559 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-112))))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-876))))))
-(-13 (-846 (-517)) (-10 -8 (-15 -1559 ((-188) $)) (-15 -3386 ((-655 (-112)) $)) (-15 -3020 ((-655 (-876)) $))))
-(((-102) . T) ((-624 (-873)) . T) ((-846 (-517)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-8 (($) 7 T CONST)) (-2882 (((-873) $) 12)) (-9 (($) 6 T CONST)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 10)))
-(((-188) (-13 (-1117) (-10 -8 (-15 -9 ($) -3736) (-15 -8 ($) -3736) (-15 -7 ($) -3736)))) (T -188))
+((-1584 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877))))))
+(-13 (-847 (-518)) (-10 -8 (-15 -1584 ((-188) $)) (-15 -3742 ((-656 (-112)) $)) (-15 -2996 ((-656 (-877)) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-847 (-518)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-8 (($) 7 T CONST)) (-2858 (((-874) $) 12)) (-9 (($) 6 T CONST)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 10)))
+(((-188) (-13 (-1119) (-10 -8 (-15 -9 ($) -3712) (-15 -8 ($) -3712) (-15 -7 ($) -3712)))) (T -188))
((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188))))
-(-13 (-1117) (-10 -8 (-15 -9 ($) -3736) (-15 -8 ($) -3736) (-15 -7 ($) -3736)))
-((-2859 (((-112) $ $) NIL)) (-3020 (((-655 (-876)) $) NIL)) (-1777 (((-517) $) 8)) (-4264 (((-1176) $) NIL)) (-1559 (((-188) $) 10)) (-3371 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-1800 (((-702 $) (-517)) 17)) (-3386 (((-655 (-112)) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3425 (((-55) $) 12)) (-3913 (((-112) $ $) NIL)))
-(((-189) (-13 (-187) (-10 -8 (-15 -1800 ((-702 $) (-517)))))) (T -189))
-((-1800 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-189))) (-5 *1 (-189)))))
-(-13 (-187) (-10 -8 (-15 -1800 ((-702 $) (-517)))))
-((-3250 ((|#2| |#2|) 28)) (-3465 (((-112) |#2|) 19)) (-2481 (((-325 |#1|) |#2|) 12)) (-1965 (((-325 |#1|) |#2|) 14)) (-3925 ((|#2| |#2| (-1194)) 69) ((|#2| |#2|) 70)) (-3172 (((-171 (-325 |#1|)) |#2|) 10)) (-2033 ((|#2| |#2| (-1194)) 66) ((|#2| |#2|) 60)))
-(((-190 |#1| |#2|) (-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3925 (|#2| |#2| (-1194))) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-1194))) (-15 -2481 ((-325 |#1|) |#2|)) (-15 -1965 ((-325 |#1|) |#2|)) (-15 -3465 ((-112) |#2|)) (-15 -3250 (|#2| |#2|)) (-15 -3172 ((-171 (-325 |#1|)) |#2|))) (-13 (-567) (-1055 (-575))) (-13 (-27) (-1220) (-441 (-171 |#1|)))) (T -190))
-((-3172 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-171 (-325 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) (-3465 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-2033 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4)))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3)))))))
-(-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3925 (|#2| |#2| (-1194))) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-1194))) (-15 -2481 ((-325 |#1|) |#2|)) (-15 -1965 ((-325 |#1|) |#2|)) (-15 -3465 ((-112) |#2|)) (-15 -3250 (|#2| |#2|)) (-15 -3172 ((-171 (-325 |#1|)) |#2|)))
-((-4084 (((-1285 (-700 (-967 |#1|))) (-1285 (-700 |#1|))) 26)) (-2882 (((-1285 (-700 (-418 (-967 |#1|)))) (-1285 (-700 |#1|))) 37)))
-(((-191 |#1|) (-10 -7 (-15 -4084 ((-1285 (-700 (-967 |#1|))) (-1285 (-700 |#1|)))) (-15 -2882 ((-1285 (-700 (-418 (-967 |#1|)))) (-1285 (-700 |#1|))))) (-174)) (T -191))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174)) (-5 *2 (-1285 (-700 (-418 (-967 *4))))) (-5 *1 (-191 *4)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174)) (-5 *2 (-1285 (-700 (-967 *4)))) (-5 *1 (-191 *4)))))
-(-10 -7 (-15 -4084 ((-1285 (-700 (-967 |#1|))) (-1285 (-700 |#1|)))) (-15 -2882 ((-1285 (-700 (-418 (-967 |#1|)))) (-1285 (-700 |#1|)))))
-((-1426 (((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575)))) 93)) (-3308 (((-1196 (-418 (-575))) (-655 (-575)) (-655 (-575))) 107)) (-3532 (((-1196 (-418 (-575))) (-936)) 54)) (-4392 (((-1196 (-418 (-575))) (-936)) 79)) (-3046 (((-418 (-575)) (-1196 (-418 (-575)))) 89)) (-4303 (((-1196 (-418 (-575))) (-936)) 37)) (-1742 (((-1196 (-418 (-575))) (-936)) 66)) (-1421 (((-1196 (-418 (-575))) (-936)) 61)) (-3325 (((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575)))) 87)) (-3575 (((-1196 (-418 (-575))) (-936)) 29)) (-2012 (((-418 (-575)) (-1196 (-418 (-575))) (-1196 (-418 (-575)))) 91)) (-1819 (((-1196 (-418 (-575))) (-936)) 35)) (-3423 (((-1196 (-418 (-575))) (-655 (-936))) 100)))
-(((-192) (-10 -7 (-15 -3575 ((-1196 (-418 (-575))) (-936))) (-15 -3532 ((-1196 (-418 (-575))) (-936))) (-15 -4303 ((-1196 (-418 (-575))) (-936))) (-15 -1819 ((-1196 (-418 (-575))) (-936))) (-15 -1421 ((-1196 (-418 (-575))) (-936))) (-15 -1742 ((-1196 (-418 (-575))) (-936))) (-15 -4392 ((-1196 (-418 (-575))) (-936))) (-15 -2012 ((-418 (-575)) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3325 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3046 ((-418 (-575)) (-1196 (-418 (-575))))) (-15 -1426 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3423 ((-1196 (-418 (-575))) (-655 (-936)))) (-15 -3308 ((-1196 (-418 (-575))) (-655 (-575)) (-655 (-575)))))) (T -192))
-((-3308 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-1426 (*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-192)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-2012 (*1 *2 *3 *3) (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-192)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-4303 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(-10 -7 (-15 -3575 ((-1196 (-418 (-575))) (-936))) (-15 -3532 ((-1196 (-418 (-575))) (-936))) (-15 -4303 ((-1196 (-418 (-575))) (-936))) (-15 -1819 ((-1196 (-418 (-575))) (-936))) (-15 -1421 ((-1196 (-418 (-575))) (-936))) (-15 -1742 ((-1196 (-418 (-575))) (-936))) (-15 -4392 ((-1196 (-418 (-575))) (-936))) (-15 -2012 ((-418 (-575)) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3325 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3046 ((-418 (-575)) (-1196 (-418 (-575))))) (-15 -1426 ((-1196 (-418 (-575))) (-1196 (-418 (-575))) (-1196 (-418 (-575))))) (-15 -3423 ((-1196 (-418 (-575))) (-655 (-936)))) (-15 -3308 ((-1196 (-418 (-575))) (-655 (-575)) (-655 (-575)))))
-((-3491 (((-429 (-1190 (-575))) (-575)) 38)) (-4328 (((-655 (-1190 (-575))) (-575)) 33)) (-2245 (((-1190 (-575)) (-575)) 28)))
-(((-193) (-10 -7 (-15 -4328 ((-655 (-1190 (-575))) (-575))) (-15 -2245 ((-1190 (-575)) (-575))) (-15 -3491 ((-429 (-1190 (-575))) (-575))))) (T -193))
-((-3491 (*1 *2 *3) (-12 (-5 *2 (-429 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-193)) (-5 *3 (-575)))) (-4328 (*1 *2 *3) (-12 (-5 *2 (-655 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575)))))
-(-10 -7 (-15 -4328 ((-655 (-1190 (-575))) (-575))) (-15 -2245 ((-1190 (-575)) (-575))) (-15 -3491 ((-429 (-1190 (-575))) (-575))))
-((-1798 (((-1174 (-227)) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2705 (((-655 (-1176)) (-1174 (-227))) NIL)) (-1794 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2854 (((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227)))) NIL)) (-3215 (((-655 (-1176)) (-655 (-227))) NIL)) (-1814 (((-227) (-1111 (-854 (-227)))) 31)) (-1676 (((-227) (-1111 (-854 (-227)))) 32)) (-3296 (((-389) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-1473 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-1527 (((-1176) (-227)) NIL)) (-1616 (((-1176) (-655 (-1176))) 27)) (-1655 (((-1052) (-1194) (-1194) (-1052)) 13)))
-(((-194) (-10 -7 (-15 -1794 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1473 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1814 ((-227) (-1111 (-854 (-227))))) (-15 -1676 ((-227) (-1111 (-854 (-227))))) (-15 -3296 ((-389) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2854 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -1798 ((-1174 (-227)) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1527 ((-1176) (-227))) (-15 -3215 ((-655 (-1176)) (-655 (-227)))) (-15 -2705 ((-655 (-1176)) (-1174 (-227)))) (-15 -1616 ((-1176) (-655 (-1176)))) (-15 -1655 ((-1052) (-1194) (-1194) (-1052))))) (T -194))
-((-1655 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-194)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-194)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-194)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-194)))) (-2854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194)) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-194)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-194)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
-(-10 -7 (-15 -1794 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1473 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1814 ((-227) (-1111 (-854 (-227))))) (-15 -1676 ((-227) (-1111 (-854 (-227))))) (-15 -3296 ((-389) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2854 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -1798 ((-1174 (-227)) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1527 ((-1176) (-227))) (-15 -3215 ((-655 (-1176)) (-655 (-227)))) (-15 -2705 ((-655 (-1176)) (-1174 (-227)))) (-15 -1616 ((-1176) (-655 (-1176)))) (-15 -1655 ((-1052) (-1194) (-1194) (-1052))))
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 61) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-195) (-798)) (T -195))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 66) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-196) (-798)) (T -196))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 81) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-197) (-798)) (T -197))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 63) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-198) (-798)) (T -198))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 75) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-199) (-798)) (T -199))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 93) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-200) (-798)) (T -200))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 90) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-201) (-798)) (T -201))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 77) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-202) (-798)) (T -202))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 76)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-203) (-798)) (T -203))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 77)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-204) (-798)) (T -204))
-NIL
-(-798)
-((-2859 (((-112) $ $) NIL)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 105) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-205) (-798)) (T -205))
-NIL
-(-798)
-((-1429 (((-3 (-2 (|:| -1575 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-4340 (((-575) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3336 (((-3 (-655 (-227)) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
-(((-206) (-10 -7 (-15 -1429 ((-3 (-2 (|:| -1575 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3336 ((-3 (-655 (-227)) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4340 ((-575) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
-((-4340 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-575)) (-5 *1 (-206)))) (-3336 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-206)))) (-1429 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1575 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(-10 -7 (-15 -1429 ((-3 (-2 (|:| -1575 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3336 ((-3 (-655 (-227)) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4340 ((-575) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2686 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3774 (((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-1666 (((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-700 (-325 (-227)))) 112)) (-2102 (((-389) (-700 (-325 (-227)))) 140)) (-2305 (((-700 (-325 (-227))) (-1285 (-325 (-227))) (-655 (-1194))) 136)) (-4079 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3512 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3046 (((-700 (-325 (-227))) (-700 (-325 (-227))) (-655 (-1194)) (-1285 (-325 (-227)))) 125)) (-1351 (((-389) (-389) (-655 (-389))) 133) (((-389) (-389) (-389)) 128)) (-4249 (((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
-(((-207) (-10 -7 (-15 -1351 ((-389) (-389) (-389))) (-15 -1351 ((-389) (-389) (-655 (-389)))) (-15 -2102 ((-389) (-700 (-325 (-227))))) (-15 -2305 ((-700 (-325 (-227))) (-1285 (-325 (-227))) (-655 (-1194)))) (-15 -3046 ((-700 (-325 (-227))) (-700 (-325 (-227))) (-655 (-1194)) (-1285 (-325 (-227))))) (-15 -1666 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-700 (-325 (-227))))) (-15 -3774 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2686 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3512 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4249 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4079 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
-((-4079 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389)))) (-5 *1 (-207)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-700 (-325 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389)))) (-5 *1 (-207)))) (-3046 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-700 (-325 (-227)))) (-5 *3 (-655 (-1194))) (-5 *4 (-1285 (-325 (-227)))) (-5 *1 (-207)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194))) (-5 *2 (-700 (-325 (-227)))) (-5 *1 (-207)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-700 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))) (-1351 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-389))) (-5 *2 (-389)) (-5 *1 (-207)))) (-1351 (*1 *2 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-207)))))
-(-10 -7 (-15 -1351 ((-389) (-389) (-389))) (-15 -1351 ((-389) (-389) (-655 (-389)))) (-15 -2102 ((-389) (-700 (-325 (-227))))) (-15 -2305 ((-700 (-325 (-227))) (-1285 (-325 (-227))) (-655 (-1194)))) (-15 -3046 ((-700 (-325 (-227))) (-700 (-325 (-227))) (-655 (-1194)) (-1285 (-325 (-227))))) (-15 -1666 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-700 (-325 (-227))))) (-15 -3774 ((-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2686 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3512 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4249 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4079 ((-389) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2859 (((-112) $ $) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-2529 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3913 (((-112) $ $) NIL)))
-(((-208) (-811)) (T -208))
-NIL
-(-811)
-((-2859 (((-112) $ $) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-2529 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3913 (((-112) $ $) NIL)))
-(((-209) (-811)) (T -209))
-NIL
-(-811)
-((-2859 (((-112) $ $) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-2529 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3913 (((-112) $ $) NIL)))
-(((-210) (-811)) (T -210))
-NIL
-(-811)
-((-2859 (((-112) $ $) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-2529 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3913 (((-112) $ $) NIL)))
-(((-211) (-811)) (T -211))
-NIL
-(-811)
-((-3486 (((-655 (-1194)) (-1194) (-782)) 26)) (-1542 (((-325 (-227)) (-325 (-227))) 35)) (-4341 (((-112) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 87)) (-2055 (((-112) (-227) (-227) (-655 (-325 (-227)))) 47)))
-(((-212) (-10 -7 (-15 -3486 ((-655 (-1194)) (-1194) (-782))) (-15 -1542 ((-325 (-227)) (-325 (-227)))) (-15 -2055 ((-112) (-227) (-227) (-655 (-325 (-227))))) (-15 -4341 ((-112) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))))) (T -212))
-((-4341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2055 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-655 (-325 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-212)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-655 (-1194))) (-5 *1 (-212)) (-5 *3 (-1194)))))
-(-10 -7 (-15 -3486 ((-655 (-1194)) (-1194) (-782))) (-15 -1542 ((-325 (-227)) (-325 (-227)))) (-15 -2055 ((-112) (-227) (-227) (-655 (-325 (-227))))) (-15 -4341 ((-112) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))))
-((-2859 (((-112) $ $) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 28)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1922 (((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 70)) (-3913 (((-112) $ $) NIL)))
-(((-213) (-909)) (T -213))
-NIL
-(-909)
-((-2859 (((-112) $ $) NIL)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 24)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1922 (((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-214) (-909)) (T -214))
-NIL
-(-909)
-((-2859 (((-112) $ $) NIL)) (-2793 ((|#2| $ (-782) |#2|) 11)) (-2786 ((|#2| $ (-782)) 10)) (-2303 (($) 8)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 23)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 13)))
-(((-215 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -2303 ($)) (-15 -2786 (|#2| $ (-782))) (-15 -2793 (|#2| $ (-782) |#2|)))) (-936) (-1117)) (T -215))
-((-2303 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1117)))) (-2786 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *2 (-1117)) (-5 *1 (-215 *4 *2)) (-14 *4 (-936)))) (-2793 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-215 *4 *2)) (-14 *4 (-936)) (-4 *2 (-1117)))))
-(-13 (-1117) (-10 -8 (-15 -2303 ($)) (-15 -2786 (|#2| $ (-782))) (-15 -2793 (|#2| $ (-782) |#2|))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3411 (((-1290) $) 37) (((-1290) $ (-936) (-936)) 41)) (-2065 (($ $ (-1006)) 19) (((-250 (-1176)) $ (-1194)) 15)) (-2478 (((-1290) $) 35)) (-2882 (((-873) $) 32) (($ (-655 |#1|)) 8)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $ $) 27)) (-4015 (($ $ $) 22)))
-(((-216 |#1|) (-13 (-1117) (-627 (-655 |#1|)) (-10 -8 (-15 -2065 ($ $ (-1006))) (-15 -2065 ((-250 (-1176)) $ (-1194))) (-15 -4015 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $)) (-15 -3411 ((-1290) $ (-936) (-936))))) (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $))))) (T -216))
-((-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-1006)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $))))))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-250 (-1176))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ *3)) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $))))))) (-4015 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $))))))) (-4027 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $))))))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 (*2 $)) (-15 -3411 (*2 $))))))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 (*2 $)) (-15 -3411 (*2 $))))))) (-3411 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 (*2 $)) (-15 -3411 (*2 $))))))))
-(-13 (-1117) (-627 (-655 |#1|)) (-10 -8 (-15 -2065 ($ $ (-1006))) (-15 -2065 ((-250 (-1176)) $ (-1194))) (-15 -4015 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $)) (-15 -3411 ((-1290) $ (-936) (-936)))))
-((-4352 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4352 (|#2| |#4| (-1 |#2| |#2|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -217))
-((-4352 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-373)) (-4 *6 (-1261 (-418 *2))) (-4 *2 (-1261 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-352 *5 *2 *6)))))
-(-10 -7 (-15 -4352 (|#2| |#4| (-1 |#2| |#2|))))
-((-2207 ((|#2| |#2| (-782) |#2|) 55)) (-1703 ((|#2| |#2| (-782) |#2|) 51)) (-1968 (((-655 |#2|) (-655 (-2 (|:| |deg| (-782)) (|:| -3989 |#2|)))) 79)) (-3985 (((-655 (-2 (|:| |deg| (-782)) (|:| -3989 |#2|))) |#2|) 73)) (-4086 (((-112) |#2|) 71)) (-1326 (((-429 |#2|) |#2|) 91)) (-2347 (((-429 |#2|) |#2|) 90)) (-2071 ((|#2| |#2| (-782) |#2|) 49)) (-3124 (((-2 (|:| |cont| |#1|) (|:| -1366 (-655 (-2 (|:| |irr| |#2|) (|:| -2205 (-575)))))) |#2| (-112)) 85)))
-(((-218 |#1| |#2|) (-10 -7 (-15 -2347 ((-429 |#2|) |#2|)) (-15 -1326 ((-429 |#2|) |#2|)) (-15 -3124 ((-2 (|:| |cont| |#1|) (|:| -1366 (-655 (-2 (|:| |irr| |#2|) (|:| -2205 (-575)))))) |#2| (-112))) (-15 -3985 ((-655 (-2 (|:| |deg| (-782)) (|:| -3989 |#2|))) |#2|)) (-15 -1968 ((-655 |#2|) (-655 (-2 (|:| |deg| (-782)) (|:| -3989 |#2|))))) (-15 -2071 (|#2| |#2| (-782) |#2|)) (-15 -1703 (|#2| |#2| (-782) |#2|)) (-15 -2207 (|#2| |#2| (-782) |#2|)) (-15 -4086 ((-112) |#2|))) (-359) (-1261 |#1|)) (T -218))
-((-4086 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))) (-2207 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1261 *4)))) (-1703 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1261 *4)))) (-2071 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1261 *4)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |deg| (-782)) (|:| -3989 *5)))) (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *2 (-655 *5)) (-5 *1 (-218 *4 *5)))) (-3985 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -3989 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-359)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1261 *5)))) (-1326 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -2347 ((-429 |#2|) |#2|)) (-15 -1326 ((-429 |#2|) |#2|)) (-15 -3124 ((-2 (|:| |cont| |#1|) (|:| -1366 (-655 (-2 (|:| |irr| |#2|) (|:| -2205 (-575)))))) |#2| (-112))) (-15 -3985 ((-655 (-2 (|:| |deg| (-782)) (|:| -3989 |#2|))) |#2|)) (-15 -1968 ((-655 |#2|) (-655 (-2 (|:| |deg| (-782)) (|:| -3989 |#2|))))) (-15 -2071 (|#2| |#2| (-782) |#2|)) (-15 -1703 (|#2| |#2| (-782) |#2|)) (-15 -2207 (|#2| |#2| (-782) |#2|)) (-15 -4086 ((-112) |#2|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-575) $) NIL (|has| (-575) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-575) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-575) (-1055 (-575))))) (-4400 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-575) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| (-575) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-575) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-1721 (((-112) $) NIL (|has| (-575) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-575) (-861)))) (-2544 (($ (-1 (-575) (-575)) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-575) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) NIL)) (-3920 (((-575) $) NIL (|has| (-575) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-575) $) NIL)) (-2684 (($ (-418 (-575))) 9)) (-2613 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 8) (($ (-575)) NIL) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL) (((-1021 10) $) 10)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 (((-575) $) NIL (|has| (-575) (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| (-575) (-831)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-575) (-861)))) (-4038 (($ $ $) NIL) (($ (-575) (-575)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL)))
-(((-219) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 10)) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -2684 ($ (-418 (-575))))))) (T -219))
-((-1931 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219)))) (-2684 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219)))))
-(-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 10)) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -2684 ($ (-418 (-575))))))
-((-2859 (((-112) $ $) NIL)) (-1380 (((-1135) $) 13)) (-4264 (((-1176) $) NIL)) (-1327 (((-494) $) 10)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 23) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 15)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-220) (-13 (-1100) (-10 -8 (-15 -1327 ((-494) $)) (-15 -1380 ((-1135) $)) (-15 -1788 ((-1152) $))))) (T -220))
-((-1327 (*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-220)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-220)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-220)))))
-(-13 (-1100) (-10 -8 (-15 -1327 ((-494) $)) (-15 -1380 ((-1135) $)) (-15 -1788 ((-1152) $))))
-((-4388 (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)) (-1176)) 29) (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|))) 25)) (-1867 (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1194) (-854 |#2|) (-854 |#2|) (-112)) 17)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -4388 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)))) (-15 -4388 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)) (-1176))) (-15 -1867 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1194) (-854 |#2|) (-854 |#2|) (-112)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-29 |#1|))) (T -221))
-((-1867 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1194)) (-5 *6 (-112)) (-4 *7 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-4 *3 (-13 (-1220) (-974) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-854 *3)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1109 (-854 *3))) (-5 *5 (-1176)) (-4 *3 (-13 (-1220) (-974) (-29 *6))) (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-854 *3))) (-4 *3 (-13 (-1220) (-974) (-29 *5))) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
-(-10 -7 (-15 -4388 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)))) (-15 -4388 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1109 (-854 |#2|)) (-1176))) (-15 -1867 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-655 (-854 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1194) (-854 |#2|) (-854 |#2|) (-112))))
-((-4388 (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))) (-1176)) 49) (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|))))) 46) (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))) (-1176)) 50) (((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|)))) 22)))
-(((-222 |#1|) (-10 -7 (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))))) (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))) (-1176))) (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))))) (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))) (-1176)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (T -222))
-((-4388 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1109 (-854 (-418 (-967 *6))))) (-5 *5 (-1176)) (-5 *3 (-418 (-967 *6))) (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-854 (-418 (-967 *5))))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1109 (-854 (-325 *6)))) (-5 *5 (-1176)) (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1109 (-854 (-325 *5)))) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
-(-10 -7 (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))))) (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-325 |#1|))) (-1176))) (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))))) (-15 -4388 ((-3 (|:| |f1| (-854 (-325 |#1|))) (|:| |f2| (-655 (-854 (-325 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-418 (-967 |#1|)) (-1109 (-854 (-418 (-967 |#1|)))) (-1176))))
-((-2302 (((-2 (|:| -4408 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|)) 26)) (-3943 (((-655 (-325 |#2|)) (-325 |#2|) (-936)) 51)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -2302 ((-2 (|:| -4408 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|))) (-15 -3943 ((-655 (-325 |#2|)) (-325 |#2|) (-936)))) (-1066) (-567)) (T -223))
-((-3943 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *6 (-567)) (-5 *2 (-655 (-325 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-325 *6)) (-4 *5 (-1066)))) (-2302 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-2 (|:| -4408 (-1190 *4)) (|:| |deg| (-936)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1190 *4)) (-4 *5 (-567)))))
-(-10 -7 (-15 -2302 ((-2 (|:| -4408 (-1190 |#1|)) (|:| |deg| (-936))) (-1190 |#1|))) (-15 -3943 ((-655 (-325 |#2|)) (-325 |#2|) (-936))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1715 ((|#1| $) NIL)) (-2006 ((|#1| $) 30)) (-3133 (((-112) $ (-782)) NIL)) (-3261 (($) NIL T CONST)) (-2706 (($ $) NIL)) (-3086 (($ $) 39)) (-3107 ((|#1| |#1| $) NIL)) (-1597 ((|#1| $) NIL)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-1840 (((-782) $) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4030 ((|#1| $) NIL)) (-3647 ((|#1| |#1| $) 35)) (-2731 ((|#1| |#1| $) 37)) (-4218 (($ |#1| $) NIL)) (-3340 (((-782) $) 33)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-4225 ((|#1| $) NIL)) (-3867 ((|#1| $) 31)) (-3441 ((|#1| $) 29)) (-3773 ((|#1| $) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3420 ((|#1| |#1| $) NIL)) (-2017 (((-112) $) 9)) (-1393 (($) NIL)) (-2191 ((|#1| $) NIL)) (-2552 (($) NIL) (($ (-655 |#1|)) 16)) (-3321 (((-782) $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-4434 ((|#1| $) 13)) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) NIL)) (-1917 ((|#1| $) NIL)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-224 |#1|) (-13 (-260 |#1|) (-10 -8 (-15 -2552 ($ (-655 |#1|))))) (-1117)) (T -224))
-((-2552 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-224 *3)))))
-(-13 (-260 |#1|) (-10 -8 (-15 -2552 ($ (-655 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2293 (($ (-325 |#1|)) 24)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2332 (((-112) $) NIL)) (-2443 (((-3 (-325 |#1|) "failed") $) NIL)) (-4400 (((-325 |#1|) $) NIL)) (-4406 (($ $) 32)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-2544 (($ (-1 (-325 |#1|) (-325 |#1|)) $) NIL)) (-4383 (((-325 |#1|) $) NIL)) (-3711 (($ $) 31)) (-4264 (((-1176) $) NIL)) (-3779 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3657 (($ (-782)) NIL)) (-2899 (($ $) 33)) (-1753 (((-575) $) NIL)) (-2882 (((-873) $) 65) (($ (-575)) NIL) (($ (-325 |#1|)) NIL)) (-3002 (((-325 |#1|) $ $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 26 T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) 29)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 20)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 25) (($ (-325 |#1|) $) 19)))
-(((-225 |#1| |#2|) (-13 (-631 (-325 |#1|)) (-1055 (-325 |#1|)) (-10 -8 (-15 -4383 ((-325 |#1|) $)) (-15 -3711 ($ $)) (-15 -4406 ($ $)) (-15 -3002 ((-325 |#1|) $ $)) (-15 -3657 ($ (-782))) (-15 -3779 ((-112) $)) (-15 -2332 ((-112) $)) (-15 -1753 ((-575) $)) (-15 -2544 ($ (-1 (-325 |#1|) (-325 |#1|)) $)) (-15 -2293 ($ (-325 |#1|))) (-15 -2899 ($ $)))) (-13 (-1066) (-861)) (-655 (-1194))) (T -225))
-((-4383 (*1 *2 *1) (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-3711 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) (-14 *3 (-655 (-1194))))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) (-14 *3 (-655 (-1194))))) (-3002 (*1 *2 *1 *1) (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-3779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194))))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-325 *3) (-325 *3))) (-4 *3 (-13 (-1066) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194))))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-325 *3)) (-4 *3 (-13 (-1066) (-861))) (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194))))) (-2899 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861))) (-14 *3 (-655 (-1194))))))
-(-13 (-631 (-325 |#1|)) (-1055 (-325 |#1|)) (-10 -8 (-15 -4383 ((-325 |#1|) $)) (-15 -3711 ($ $)) (-15 -4406 ($ $)) (-15 -3002 ((-325 |#1|) $ $)) (-15 -3657 ($ (-782))) (-15 -3779 ((-112) $)) (-15 -2332 ((-112) $)) (-15 -1753 ((-575) $)) (-15 -2544 ($ (-1 (-325 |#1|) (-325 |#1|)) $)) (-15 -2293 ($ (-325 |#1|))) (-15 -2899 ($ $))))
-((-2041 (((-112) (-1176)) 26)) (-1446 (((-3 (-854 |#2|) "failed") (-623 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-112)) 35)) (-3382 (((-3 (-112) "failed") (-1190 |#2|) (-854 |#2|) (-854 |#2|) (-112)) 84) (((-3 (-112) "failed") (-967 |#1|) (-1194) (-854 |#2|) (-854 |#2|) (-112)) 85)))
-(((-226 |#1| |#2|) (-10 -7 (-15 -2041 ((-112) (-1176))) (-15 -1446 ((-3 (-854 |#2|) "failed") (-623 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-112))) (-15 -3382 ((-3 (-112) "failed") (-967 |#1|) (-1194) (-854 |#2|) (-854 |#2|) (-112))) (-15 -3382 ((-3 (-112) "failed") (-1190 |#2|) (-854 |#2|) (-854 |#2|) (-112)))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-29 |#1|))) (T -226))
-((-3382 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1190 *6)) (-5 *4 (-854 *6)) (-4 *6 (-13 (-1220) (-29 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-226 *5 *6)))) (-3382 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-967 *6)) (-5 *4 (-1194)) (-5 *5 (-854 *7)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *7 (-13 (-1220) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-1446 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-854 *4)) (-5 *3 (-623 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1220) (-29 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-226 *6 *4)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1220) (-29 *4))))))
-(-10 -7 (-15 -2041 ((-112) (-1176))) (-15 -1446 ((-3 (-854 |#2|) "failed") (-623 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-112))) (-15 -3382 ((-3 (-112) "failed") (-967 |#1|) (-1194) (-854 |#2|) (-854 |#2|) (-112))) (-15 -3382 ((-3 (-112) "failed") (-1190 |#2|) (-854 |#2|) (-854 |#2|) (-112))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 98)) (-3824 (((-575) $) 35)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-3449 (($ $) NIL)) (-3921 (($ $) 87)) (-3784 (($ $) 75)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-2467 (($ $) 66)) (-3599 (((-112) $ $) NIL)) (-3895 (($ $) 85)) (-3759 (($ $) 73)) (-2326 (((-575) $) 128)) (-1521 (($ $) 90)) (-3805 (($ $) 77)) (-3261 (($) NIL T CONST)) (-3069 (($ $) NIL)) (-2443 (((-3 (-575) "failed") $) 127) (((-3 (-418 (-575)) "failed") $) 124)) (-4400 (((-575) $) 125) (((-418 (-575)) $) 122)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) 103)) (-3652 (((-418 (-575)) $ (-782)) 117) (((-418 (-575)) $ (-782) (-782)) 116)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-1500 (((-936)) 29) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-2359 (((-112) $) NIL)) (-1632 (($) 46)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL)) (-3369 (((-575) $) 42)) (-3900 (((-112) $) 99)) (-2111 (($ $ (-575)) NIL)) (-3390 (($ $) NIL)) (-1721 (((-112) $) 97)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) 63) (($) 38 (-12 (-3213 (|has| $ (-6 -4443))) (-3213 (|has| $ (-6 -4451)))))) (-3503 (($ $ $) 62) (($) 37 (-12 (-3213 (|has| $ (-6 -4443))) (-3213 (|has| $ (-6 -4451)))))) (-3661 (((-575) $) 27)) (-2884 (($ $) 33)) (-3370 (($ $) 67)) (-3461 (($ $) 72)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-4367 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-3912 (((-1137) $) 101)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL)) (-3920 (($ $) NIL)) (-1539 (($ (-575) (-575)) NIL) (($ (-575) (-575) (-936)) 110)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1658 (((-575) $) 28)) (-2316 (($) 45)) (-2663 (($ $) 71)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2323 (((-936)) NIL) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-2382 (($ $) 104) (($ $ (-782)) NIL)) (-4366 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-1531 (($ $) 88)) (-3815 (($ $) 78)) (-3935 (($ $) 89)) (-3795 (($ $) 76)) (-3907 (($ $) 86)) (-3772 (($ $) 74)) (-2613 (((-389) $) 113) (((-227) $) 14) (((-904 (-389)) $) NIL) (((-547) $) 52)) (-2882 (((-873) $) 49) (($ (-575)) 70) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-575)) 70) (($ (-418 (-575))) NIL)) (-4421 (((-782)) NIL T CONST)) (-4248 (($ $) NIL)) (-4189 (((-936)) 36) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-3685 (((-112) $ $) NIL)) (-1548 (((-936)) 25)) (-1569 (($ $) 93)) (-3850 (($ $) 81) (($ $ $) 120)) (-3930 (((-112) $ $) NIL)) (-1544 (($ $) 91)) (-3826 (($ $) 79)) (-1593 (($ $) 96)) (-3871 (($ $) 84)) (-2912 (($ $) 94)) (-3883 (($ $) 82)) (-1583 (($ $) 95)) (-3861 (($ $) 83)) (-1554 (($ $) 92)) (-3837 (($ $) 80)) (-3863 (($ $) 119)) (-1989 (($) 23 T CONST)) (-2005 (($) 43 T CONST)) (-2225 (((-1176) $) 18) (((-1176) $ (-112)) 20) (((-1290) (-833) $) 21) (((-1290) (-833) $ (-112)) 22)) (-2023 (($ $) 107)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3550 (($ $ $) 109)) (-3980 (((-112) $ $) 56)) (-3955 (((-112) $ $) 54)) (-3913 (((-112) $ $) 64)) (-3967 (((-112) $ $) 55)) (-3940 (((-112) $ $) 53)) (-4038 (($ $ $) 44) (($ $ (-575)) 65)) (-4027 (($ $) 57) (($ $ $) 59)) (-4015 (($ $ $) 58)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 68) (($ $ (-418 (-575))) 152) (($ $ $) 69)) (* (($ (-936) $) 34) (($ (-782) $) NIL) (($ (-575) $) 61) (($ $ $) 60) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-227) (-13 (-415) (-238) (-839) (-1220) (-625 (-547)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -2316 ($)) (-15 -2884 ($ $)) (-15 -3370 ($ $)) (-15 -3850 ($ $ $)) (-15 -2023 ($ $)) (-15 -3550 ($ $ $)) (-15 -3652 ((-418 (-575)) $ (-782))) (-15 -3652 ((-418 (-575)) $ (-782) (-782)))))) (T -227))
-((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-227)))) (-2316 (*1 *1) (-5 *1 (-227))) (-2884 (*1 *1 *1) (-5 *1 (-227))) (-3370 (*1 *1 *1) (-5 *1 (-227))) (-3850 (*1 *1 *1 *1) (-5 *1 (-227))) (-2023 (*1 *1 *1) (-5 *1 (-227))) (-3550 (*1 *1 *1 *1) (-5 *1 (-227))) (-3652 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227)))) (-3652 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227)))))
-(-13 (-415) (-238) (-839) (-1220) (-625 (-547)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -2316 ($)) (-15 -2884 ($ $)) (-15 -3370 ($ $)) (-15 -3850 ($ $ $)) (-15 -2023 ($ $)) (-15 -3550 ($ $ $)) (-15 -3652 ((-418 (-575)) $ (-782))) (-15 -3652 ((-418 (-575)) $ (-782) (-782)))))
-((-3306 (((-171 (-227)) (-782) (-171 (-227))) 11) (((-227) (-782) (-227)) 12)) (-2576 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-4373 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-2605 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-1610 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2416 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3477 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2986 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-4118 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3579 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2023 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3550 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
-(((-228) (-10 -7 (-15 -2023 ((-227) (-227))) (-15 -2023 ((-171 (-227)) (-171 (-227)))) (-15 -3550 ((-227) (-227) (-227))) (-15 -3550 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2576 ((-227) (-227))) (-15 -2576 ((-171 (-227)) (-171 (-227)))) (-15 -2605 ((-227) (-227))) (-15 -2605 ((-171 (-227)) (-171 (-227)))) (-15 -3306 ((-227) (-782) (-227))) (-15 -3306 ((-171 (-227)) (-782) (-171 (-227)))) (-15 -3477 ((-227) (-227) (-227))) (-15 -3477 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1610 ((-227) (-227) (-227))) (-15 -1610 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2986 ((-227) (-227) (-227))) (-15 -2986 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2416 ((-227) (-227) (-227))) (-15 -2416 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3579 ((-171 (-227)) (-171 (-227)))) (-15 -3579 ((-227) (-227))) (-15 -4118 ((-227) (-227))) (-15 -4118 ((-171 (-227)) (-171 (-227)))) (-15 -4373 ((-227) (-227) (-227))) (-15 -4373 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
-((-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2416 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2416 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2986 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2986 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1610 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1610 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3477 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3477 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3306 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-782)) (-5 *1 (-228)))) (-3306 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-782)) (-5 *1 (-228)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
-(-10 -7 (-15 -2023 ((-227) (-227))) (-15 -2023 ((-171 (-227)) (-171 (-227)))) (-15 -3550 ((-227) (-227) (-227))) (-15 -3550 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2576 ((-227) (-227))) (-15 -2576 ((-171 (-227)) (-171 (-227)))) (-15 -2605 ((-227) (-227))) (-15 -2605 ((-171 (-227)) (-171 (-227)))) (-15 -3306 ((-227) (-782) (-227))) (-15 -3306 ((-171 (-227)) (-782) (-171 (-227)))) (-15 -3477 ((-227) (-227) (-227))) (-15 -3477 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1610 ((-227) (-227) (-227))) (-15 -1610 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2986 ((-227) (-227) (-227))) (-15 -2986 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2416 ((-227) (-227) (-227))) (-15 -2416 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3579 ((-171 (-227)) (-171 (-227)))) (-15 -3579 ((-227) (-227))) (-15 -4118 ((-227) (-227))) (-15 -4118 ((-171 (-227)) (-171 (-227)))) (-15 -4373 ((-227) (-227) (-227))) (-15 -4373 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2878 (($ (-782) (-782)) NIL)) (-2564 (($ $ $) NIL)) (-3153 (($ (-1285 |#1|)) NIL) (($ $) NIL)) (-3531 (($ |#1| |#1| |#1|) 33)) (-3684 (((-112) $) NIL)) (-3246 (($ $ (-575) (-575)) NIL)) (-1926 (($ $ (-575) (-575)) NIL)) (-2766 (($ $ (-575) (-575) (-575) (-575)) NIL)) (-1370 (($ $) NIL)) (-1938 (((-112) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2198 (($ $ (-575) (-575) $) NIL)) (-3052 ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) NIL)) (-2657 (($ $ (-575) (-1285 |#1|)) NIL)) (-1471 (($ $ (-575) (-1285 |#1|)) NIL)) (-4283 (($ |#1| |#1| |#1|) 32)) (-1890 (($ (-782) |#1|) NIL)) (-3261 (($) NIL T CONST)) (-3699 (($ $) NIL (|has| |#1| (-316)))) (-2320 (((-1285 |#1|) $ (-575)) NIL)) (-3513 (($ |#1|) 31)) (-2601 (($ |#1|) 30)) (-2311 (($ |#1|) 29)) (-4422 (((-782) $) NIL (|has| |#1| (-567)))) (-2857 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2786 ((|#1| $ (-575) (-575)) NIL)) (-3999 (((-655 |#1|) $) NIL)) (-3202 (((-782) $) NIL (|has| |#1| (-567)))) (-3216 (((-655 (-1285 |#1|)) $) NIL (|has| |#1| (-567)))) (-4243 (((-782) $) NIL)) (-2303 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2314 ((|#1| $) NIL (|has| |#1| (-6 (-4462 "*"))))) (-4274 (((-575) $) NIL)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3093 (((-575) $) NIL)) (-4180 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#1|))) 11)) (-2844 (($ (-1 |#1| |#1|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3194 (((-655 (-655 |#1|)) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-1729 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-1364 (($) 12)) (-3231 (($ $ $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575))) NIL)) (-2377 (($ (-655 |#1|)) NIL) (($ (-655 $)) NIL)) (-1940 (((-112) $) NIL)) (-4029 ((|#1| $) NIL (|has| |#1| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2324 (((-1285 |#1|) $ (-575)) NIL)) (-2882 (($ (-1285 |#1|)) NIL) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3229 (((-112) $) NIL)) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-575) $) NIL) (((-1285 |#1|) $ (-1285 |#1|)) 15) (((-1285 |#1|) (-1285 |#1|) $) NIL) (((-958 |#1|) $ (-958 |#1|)) 21)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-229 |#1|) (-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 * ((-958 |#1|) $ (-958 |#1|))) (-15 -1364 ($)) (-15 -2311 ($ |#1|)) (-15 -2601 ($ |#1|)) (-15 -3513 ($ |#1|)) (-15 -4283 ($ |#1| |#1| |#1|)) (-15 -3531 ($ |#1| |#1| |#1|)))) (-13 (-373) (-1220))) (T -229))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220))) (-5 *1 (-229 *3)))) (-1364 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-2311 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-2601 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-3513 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-4283 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))) (-3531 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))))
-(-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 * ((-958 |#1|) $ (-958 |#1|))) (-15 -1364 ($)) (-15 -2311 ($ |#1|)) (-15 -2601 ($ |#1|)) (-15 -3513 ($ |#1|)) (-15 -4283 ($ |#1| |#1| |#1|)) (-15 -3531 ($ |#1| |#1| |#1|))))
-((-1932 (($ (-1 (-112) |#2|) $) 16)) (-2375 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3323 (($) NIL) (($ (-655 |#2|)) 11)) (-3913 (((-112) $ $) 26)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -1932 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -3323 (|#1| (-655 |#2|))) (-15 -3323 (|#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-231 |#2|) (-1117)) (T -230))
-NIL
-(-10 -8 (-15 -1932 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -3323 (|#1| (-655 |#2|))) (-15 -3323 (|#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-1932 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-4070 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3323 (($) 50) (($ (-655 |#1|)) 49)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 51)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-231 |#1|) (-141) (-1117)) (T -231))
+(-13 (-1119) (-10 -8 (-15 -9 ($) -3712) (-15 -8 ($) -3712) (-15 -7 ($) -3712)))
+((-2835 (((-112) $ $) NIL)) (-2996 (((-656 (-877)) $) NIL)) (-1811 (((-518) $) 8)) (-2143 (((-1178) $) NIL)) (-1584 (((-188) $) 10)) (-2729 (((-112) $ (-518)) NIL)) (-3887 (((-1139) $) NIL)) (-1340 (((-703 $) (-518)) 17)) (-3742 (((-656 (-112)) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2727 (((-55) $) 12)) (-3889 (((-112) $ $) NIL)))
+(((-189) (-13 (-187) (-10 -8 (-15 -1340 ((-703 $) (-518)))))) (T -189))
+((-1340 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189)))))
+(-13 (-187) (-10 -8 (-15 -1340 ((-703 $) (-518)))))
+((-3857 ((|#2| |#2|) 28)) (-2894 (((-112) |#2|) 19)) (-2490 (((-326 |#1|) |#2|) 12)) (-1999 (((-326 |#1|) |#2|) 14)) (-4023 ((|#2| |#2| (-1196)) 69) ((|#2| |#2|) 70)) (-4272 (((-171 (-326 |#1|)) |#2|) 10)) (-3152 ((|#2| |#2| (-1196)) 66) ((|#2| |#2|) 60)))
+(((-190 |#1| |#2|) (-10 -7 (-15 -4023 (|#2| |#2|)) (-15 -4023 (|#2| |#2| (-1196))) (-15 -3152 (|#2| |#2|)) (-15 -3152 (|#2| |#2| (-1196))) (-15 -2490 ((-326 |#1|) |#2|)) (-15 -1999 ((-326 |#1|) |#2|)) (-15 -2894 ((-112) |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -4272 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1057 (-576))) (-13 (-27) (-1222) (-442 (-171 |#1|)))) (T -190))
+((-4272 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3152 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) (-4023 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))))
+(-10 -7 (-15 -4023 (|#2| |#2|)) (-15 -4023 (|#2| |#2| (-1196))) (-15 -3152 (|#2| |#2|)) (-15 -3152 (|#2| |#2| (-1196))) (-15 -2490 ((-326 |#1|) |#2|)) (-15 -1999 ((-326 |#1|) |#2|)) (-15 -2894 ((-112) |#2|)) (-15 -3857 (|#2| |#2|)) (-15 -4272 ((-171 (-326 |#1|)) |#2|)))
+((-4152 (((-1287 (-701 (-969 |#1|))) (-1287 (-701 |#1|))) 26)) (-2858 (((-1287 (-701 (-419 (-969 |#1|)))) (-1287 (-701 |#1|))) 37)))
+(((-191 |#1|) (-10 -7 (-15 -4152 ((-1287 (-701 (-969 |#1|))) (-1287 (-701 |#1|)))) (-15 -2858 ((-1287 (-701 (-419 (-969 |#1|)))) (-1287 (-701 |#1|))))) (-174)) (T -191))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1287 (-701 (-419 (-969 *4))))) (-5 *1 (-191 *4)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1287 (-701 (-969 *4)))) (-5 *1 (-191 *4)))))
+(-10 -7 (-15 -4152 ((-1287 (-701 (-969 |#1|))) (-1287 (-701 |#1|)))) (-15 -2858 ((-1287 (-701 (-419 (-969 |#1|)))) (-1287 (-701 |#1|)))))
+((-4037 (((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 93)) (-3922 (((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-4169 (((-1198 (-419 (-576))) (-938)) 54)) (-4121 (((-1198 (-419 (-576))) (-938)) 79)) (-3022 (((-419 (-576)) (-1198 (-419 (-576)))) 89)) (-4021 (((-1198 (-419 (-576))) (-938)) 37)) (-2787 (((-1198 (-419 (-576))) (-938)) 66)) (-2989 (((-1198 (-419 (-576))) (-938)) 61)) (-2043 (((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 87)) (-2137 (((-1198 (-419 (-576))) (-938)) 29)) (-3686 (((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 91)) (-3965 (((-1198 (-419 (-576))) (-938)) 35)) (-2543 (((-1198 (-419 (-576))) (-656 (-938))) 100)))
+(((-192) (-10 -7 (-15 -2137 ((-1198 (-419 (-576))) (-938))) (-15 -4169 ((-1198 (-419 (-576))) (-938))) (-15 -4021 ((-1198 (-419 (-576))) (-938))) (-15 -3965 ((-1198 (-419 (-576))) (-938))) (-15 -2989 ((-1198 (-419 (-576))) (-938))) (-15 -2787 ((-1198 (-419 (-576))) (-938))) (-15 -4121 ((-1198 (-419 (-576))) (-938))) (-15 -3686 ((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2043 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -3022 ((-419 (-576)) (-1198 (-419 (-576))))) (-15 -4037 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2543 ((-1198 (-419 (-576))) (-656 (-938)))) (-15 -3922 ((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192))
+((-3922 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-4037 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2043 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3686 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(-10 -7 (-15 -2137 ((-1198 (-419 (-576))) (-938))) (-15 -4169 ((-1198 (-419 (-576))) (-938))) (-15 -4021 ((-1198 (-419 (-576))) (-938))) (-15 -3965 ((-1198 (-419 (-576))) (-938))) (-15 -2989 ((-1198 (-419 (-576))) (-938))) (-15 -2787 ((-1198 (-419 (-576))) (-938))) (-15 -4121 ((-1198 (-419 (-576))) (-938))) (-15 -3686 ((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2043 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -3022 ((-419 (-576)) (-1198 (-419 (-576))))) (-15 -4037 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2543 ((-1198 (-419 (-576))) (-656 (-938)))) (-15 -3922 ((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576)))))
+((-1585 (((-430 (-1192 (-576))) (-576)) 38)) (-1368 (((-656 (-1192 (-576))) (-576)) 33)) (-2716 (((-1192 (-576)) (-576)) 28)))
+(((-193) (-10 -7 (-15 -1368 ((-656 (-1192 (-576))) (-576))) (-15 -2716 ((-1192 (-576)) (-576))) (-15 -1585 ((-430 (-1192 (-576))) (-576))))) (T -193))
+((-1585 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-2716 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-1368 (*1 *2 *3) (-12 (-5 *2 (-656 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))))
+(-10 -7 (-15 -1368 ((-656 (-1192 (-576))) (-576))) (-15 -2716 ((-1192 (-576)) (-576))) (-15 -1585 ((-430 (-1192 (-576))) (-576))))
+((-4215 (((-1176 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3197 (((-656 (-1178)) (-1176 (-227))) NIL)) (-2111 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2752 (((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227)))) NIL)) (-2622 (((-656 (-1178)) (-656 (-227))) NIL)) (-1476 (((-227) (-1113 (-855 (-227)))) 31)) (-3026 (((-227) (-1113 (-855 (-227)))) 32)) (-1984 (((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-1392 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-2120 (((-1178) (-227)) NIL)) (-3906 (((-1178) (-656 (-1178))) 27)) (-3151 (((-1054) (-1196) (-1196) (-1054)) 13)))
+(((-194) (-10 -7 (-15 -2111 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1392 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1476 ((-227) (-1113 (-855 (-227))))) (-15 -3026 ((-227) (-1113 (-855 (-227))))) (-15 -1984 ((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2752 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -4215 ((-1176 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2120 ((-1178) (-227))) (-15 -2622 ((-656 (-1178)) (-656 (-227)))) (-15 -3197 ((-656 (-1178)) (-1176 (-227)))) (-15 -3906 ((-1178) (-656 (-1178)))) (-15 -3151 ((-1054) (-1196) (-1196) (-1054))))) (T -194))
+((-3151 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-194)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-194)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-194)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-194)))) (-2752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194)))))
+(-10 -7 (-15 -2111 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1392 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1476 ((-227) (-1113 (-855 (-227))))) (-15 -3026 ((-227) (-1113 (-855 (-227))))) (-15 -1984 ((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2752 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -4215 ((-1176 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2120 ((-1178) (-227))) (-15 -2622 ((-656 (-1178)) (-656 (-227)))) (-15 -3197 ((-656 (-1178)) (-1176 (-227)))) (-15 -3906 ((-1178) (-656 (-1178)))) (-15 -3151 ((-1054) (-1196) (-1196) (-1054))))
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 61) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-195) (-799)) (T -195))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 66) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-196) (-799)) (T -196))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 81) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-197) (-799)) (T -197))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 63) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-198) (-799)) (T -198))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 75) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-199) (-799)) (T -199))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 93) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-200) (-799)) (T -200))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 90) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-201) (-799)) (T -201))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 77) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-202) (-799)) (T -202))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 76)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-203) (-799)) (T -203))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 77)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-204) (-799)) (T -204))
+NIL
+(-799)
+((-2835 (((-112) $ $) NIL)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 105) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-205) (-799)) (T -205))
+NIL
+(-799)
+((-3766 (((-3 (-2 (|:| -1600 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2917 (((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-3793 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90)))
+(((-206) (-10 -7 (-15 -3766 ((-3 (-2 (|:| -1600 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3793 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2917 ((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206))
+((-2917 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-3793 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1600 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
+(-10 -7 (-15 -3766 ((-3 (-2 (|:| -1600 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3793 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2917 ((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-1945 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3186 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-1662 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-1773 (((-390) (-701 (-326 (-227)))) 140)) (-2291 (((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196))) 136)) (-1782 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3220 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3022 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227)))) 125)) (-3333 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-3267 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45)))
+(((-207) (-10 -7 (-15 -3333 ((-390) (-390) (-390))) (-15 -3333 ((-390) (-390) (-656 (-390)))) (-15 -1773 ((-390) (-701 (-326 (-227))))) (-15 -2291 ((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196)))) (-15 -3022 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227))))) (-15 -1662 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -3186 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1945 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3220 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3267 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1782 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207))
+((-1782 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3022 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1196))) (-5 *4 (-1287 (-326 (-227)))) (-5 *1 (-207)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3333 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))))
+(-10 -7 (-15 -3333 ((-390) (-390) (-390))) (-15 -3333 ((-390) (-390) (-656 (-390)))) (-15 -1773 ((-390) (-701 (-326 (-227))))) (-15 -2291 ((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196)))) (-15 -3022 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227))))) (-15 -1662 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -3186 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1945 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3220 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3267 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1782 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-2835 (((-112) $ $) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3257 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3889 (((-112) $ $) NIL)))
+(((-208) (-812)) (T -208))
+NIL
+(-812)
+((-2835 (((-112) $ $) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3257 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3889 (((-112) $ $) NIL)))
+(((-209) (-812)) (T -209))
+NIL
+(-812)
+((-2835 (((-112) $ $) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3257 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3889 (((-112) $ $) NIL)))
+(((-210) (-812)) (T -210))
+NIL
+(-812)
+((-2835 (((-112) $ $) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3257 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3889 (((-112) $ $) NIL)))
+(((-211) (-812)) (T -211))
+NIL
+(-812)
+((-3463 (((-656 (-1196)) (-1196) (-783)) 26)) (-3732 (((-326 (-227)) (-326 (-227))) 35)) (-1805 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 87)) (-2755 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47)))
+(((-212) (-10 -7 (-15 -3463 ((-656 (-1196)) (-1196) (-783))) (-15 -3732 ((-326 (-227)) (-326 (-227)))) (-15 -2755 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -1805 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))))) (T -212))
+((-1805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2755 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-212)) (-5 *3 (-1196)))))
+(-10 -7 (-15 -3463 ((-656 (-1196)) (-1196) (-783))) (-15 -3732 ((-326 (-227)) (-326 (-227)))) (-15 -2755 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -1805 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))))
+((-2835 (((-112) $ $) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 28)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3523 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 70)) (-3889 (((-112) $ $) NIL)))
+(((-213) (-910)) (T -213))
+NIL
+(-910)
+((-2835 (((-112) $ $) NIL)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 24)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3523 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-214) (-910)) (T -214))
+NIL
+(-910)
+((-2835 (((-112) $ $) NIL)) (-2775 ((|#2| $ (-783) |#2|) 11)) (-2767 ((|#2| $ (-783)) 10)) (-2327 (($) 8)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 23)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 13)))
+(((-215 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -2327 ($)) (-15 -2767 (|#2| $ (-783))) (-15 -2775 (|#2| $ (-783) |#2|)))) (-938) (-1119)) (T -215))
+((-2327 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1119)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1119)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)))) (-2775 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)) (-4 *2 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -2327 ($)) (-15 -2767 (|#2| $ (-783))) (-15 -2775 (|#2| $ (-783) |#2|))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2720 (((-1292) $) 37) (((-1292) $ (-938) (-938)) 41)) (-2099 (($ $ (-1008)) 19) (((-250 (-1178)) $ (-1196)) 15)) (-2486 (((-1292) $) 35)) (-2858 (((-874) $) 32) (($ (-656 |#1|)) 8)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $ $) 27)) (-3990 (($ $ $) 22)))
+(((-216 |#1|) (-13 (-1119) (-628 (-656 |#1|)) (-10 -8 (-15 -2099 ($ $ (-1008))) (-15 -2099 ((-250 (-1178)) $ (-1196))) (-15 -3990 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $)) (-15 -2720 ((-1292) $ (-938) (-938))))) (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $))))) (T -216))
+((-2099 (*1 *1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $))))))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-250 (-1178))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ *3)) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $))))))) (-3990 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $))))))) (-4002 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $))))))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 (*2 $)) (-15 -2720 (*2 $))))))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 (*2 $)) (-15 -2720 (*2 $))))))) (-2720 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 (*2 $)) (-15 -2720 (*2 $))))))))
+(-13 (-1119) (-628 (-656 |#1|)) (-10 -8 (-15 -2099 ($ $ (-1008))) (-15 -2099 ((-250 (-1178)) $ (-1196))) (-15 -3990 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $)) (-15 -2720 ((-1292) $ (-938) (-938)))))
+((-1618 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1618 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217))
+((-1618 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1263 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6)))))
+(-10 -7 (-15 -1618 (|#2| |#4| (-1 |#2| |#2|))))
+((-3173 ((|#2| |#2| (-783) |#2|) 55)) (-3755 ((|#2| |#2| (-783) |#2|) 51)) (-2663 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -4253 |#2|)))) 79)) (-1933 (((-656 (-2 (|:| |deg| (-783)) (|:| -4253 |#2|))) |#2|) 73)) (-4392 (((-112) |#2|) 71)) (-4384 (((-430 |#2|) |#2|) 91)) (-2367 (((-430 |#2|) |#2|) 90)) (-3576 ((|#2| |#2| (-783) |#2|) 49)) (-3367 (((-2 (|:| |cont| |#1|) (|:| -1603 (-656 (-2 (|:| |irr| |#2|) (|:| -2972 (-576)))))) |#2| (-112)) 85)))
+(((-218 |#1| |#2|) (-10 -7 (-15 -2367 ((-430 |#2|) |#2|)) (-15 -4384 ((-430 |#2|) |#2|)) (-15 -3367 ((-2 (|:| |cont| |#1|) (|:| -1603 (-656 (-2 (|:| |irr| |#2|) (|:| -2972 (-576)))))) |#2| (-112))) (-15 -1933 ((-656 (-2 (|:| |deg| (-783)) (|:| -4253 |#2|))) |#2|)) (-15 -2663 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -4253 |#2|))))) (-15 -3576 (|#2| |#2| (-783) |#2|)) (-15 -3755 (|#2| |#2| (-783) |#2|)) (-15 -3173 (|#2| |#2| (-783) |#2|)) (-15 -4392 ((-112) |#2|))) (-360) (-1263 |#1|)) (T -218))
+((-4392 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-3173 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-3755 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-3576 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -4253 *5)))) (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4253 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1263 *5)))) (-4384 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -2367 ((-430 |#2|) |#2|)) (-15 -4384 ((-430 |#2|) |#2|)) (-15 -3367 ((-2 (|:| |cont| |#1|) (|:| -1603 (-656 (-2 (|:| |irr| |#2|) (|:| -2972 (-576)))))) |#2| (-112))) (-15 -1933 ((-656 (-2 (|:| |deg| (-783)) (|:| -4253 |#2|))) |#2|)) (-15 -2663 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -4253 |#2|))))) (-15 -3576 (|#2| |#2| (-783) |#2|)) (-15 -3755 (|#2| |#2| (-783) |#2|)) (-15 -3173 (|#2| |#2| (-783) |#2|)) (-15 -4392 ((-112) |#2|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-576) $) NIL (|has| (-576) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-576) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-4397 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-576) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| (-576) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-576) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3196 (((-112) $) NIL (|has| (-576) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-576) (-862)))) (-2548 (($ (-1 (-576) (-576)) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-576) (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3807 (((-576) $) NIL (|has| (-576) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-576) $) NIL)) (-1722 (($ (-419 (-576))) 9)) (-2610 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL) (((-1023 10) $) 10)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 (((-576) $) NIL (|has| (-576) (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| (-576) (-832)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4013 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL)))
+(((-219) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 10)) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -1722 ($ (-419 (-576))))))) (T -219))
+((-3328 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))))
+(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 10)) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -1722 ($ (-419 (-576))))))
+((-2835 (((-112) $ $) NIL)) (-1389 (((-1137) $) 13)) (-2143 (((-1178) $) NIL)) (-1371 (((-495) $) 10)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 23) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-1154) $) 15)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-220) (-13 (-1102) (-10 -8 (-15 -1371 ((-495) $)) (-15 -1389 ((-1137) $)) (-15 -1822 ((-1154) $))))) (T -220))
+((-1371 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-220)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-220)))))
+(-13 (-1102) (-10 -8 (-15 -1371 ((-495) $)) (-15 -1389 ((-1137) $)) (-15 -1822 ((-1154) $))))
+((-1850 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1178)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|))) 25)) (-4005 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)) 17)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -1850 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)))) (-15 -1850 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1178))) (-15 -4005 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-29 |#1|))) (T -221))
+((-4005 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1196)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1222) (-976) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-1850 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-855 *3))) (-5 *5 (-1178)) (-4 *3 (-13 (-1222) (-976) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-855 *3))) (-4 *3 (-13 (-1222) (-976) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3)))))
+(-10 -7 (-15 -1850 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)))) (-15 -1850 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1178))) (-15 -4005 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112))))
+((-1850 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1178)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1178)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|)))) 22)))
+(((-222 |#1|) (-10 -7 (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))))) (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1178))) (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))))) (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1178)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (T -222))
+((-1850 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-855 (-419 (-969 *6))))) (-5 *5 (-1178)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-855 (-419 (-969 *5))))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1111 (-855 (-326 *6)))) (-5 *5 (-1178)) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1111 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))))
+(-10 -7 (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))))) (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1178))) (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))))) (-15 -1850 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1178))))
+((-2326 (((-2 (|:| -2279 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|)) 26)) (-3918 (((-656 (-326 |#2|)) (-326 |#2|) (-938)) 51)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -2326 ((-2 (|:| -2279 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|))) (-15 -3918 ((-656 (-326 |#2|)) (-326 |#2|) (-938)))) (-1068) (-568)) (T -223))
+((-3918 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2279 (-1192 *4)) (|:| |deg| (-938)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-568)))))
+(-10 -7 (-15 -2326 ((-2 (|:| -2279 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|))) (-15 -3918 ((-656 (-326 |#2|)) (-326 |#2|) (-938))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1489 ((|#1| $) NIL)) (-2039 ((|#1| $) 30)) (-2746 (((-112) $ (-783)) NIL)) (-2574 (($) NIL T CONST)) (-3296 (($ $) NIL)) (-2338 (($ $) 39)) (-4398 ((|#1| |#1| $) NIL)) (-1748 ((|#1| $) NIL)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-1873 (((-783) $) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2395 ((|#1| $) NIL)) (-3629 ((|#1| |#1| $) 35)) (-3690 ((|#1| |#1| $) 37)) (-2329 (($ |#1| $) NIL)) (-3317 (((-783) $) 33)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2833 ((|#1| $) NIL)) (-4073 ((|#1| $) 31)) (-1641 ((|#1| $) 29)) (-3079 ((|#1| $) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3496 ((|#1| |#1| $) NIL)) (-3001 (((-112) $) 9)) (-3849 (($) NIL)) (-2280 ((|#1| $) NIL)) (-3635 (($) NIL) (($ (-656 |#1|)) 16)) (-3297 (((-783) $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1742 ((|#1| $) 13)) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) NIL)) (-4170 ((|#1| $) NIL)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -3635 ($ (-656 |#1|))))) (-1119)) (T -224))
+((-3635 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-224 *3)))))
+(-13 (-261 |#1|) (-10 -8 (-15 -3635 ($ (-656 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2376 (($ (-326 |#1|)) 24)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3097 (((-112) $) NIL)) (-2454 (((-3 (-326 |#1|) "failed") $) NIL)) (-4397 (((-326 |#1|) $) NIL)) (-4404 (($ $) 32)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-2548 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-4379 (((-326 |#1|) $) NIL)) (-2089 (($ $) 31)) (-2143 (((-1178) $) NIL)) (-3460 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-3633 (($ (-783)) NIL)) (-1475 (($ $) 33)) (-4436 (((-576) $) NIL)) (-2858 (((-874) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-4417 (((-326 |#1|) $ $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 26 T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) 29)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19)))
+(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -4379 ((-326 |#1|) $)) (-15 -2089 ($ $)) (-15 -4404 ($ $)) (-15 -4417 ((-326 |#1|) $ $)) (-15 -3633 ($ (-783))) (-15 -3460 ((-112) $)) (-15 -3097 ((-112) $)) (-15 -4436 ((-576) $)) (-15 -2548 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2376 ($ (-326 |#1|))) (-15 -1475 ($ $)))) (-13 (-1068) (-862)) (-656 (-1196))) (T -225))
+((-4379 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-2089 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1196))))) (-4404 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1196))))) (-4417 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) (-2376 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) (-1475 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1196))))))
+(-13 (-632 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -4379 ((-326 |#1|) $)) (-15 -2089 ($ $)) (-15 -4404 ($ $)) (-15 -4417 ((-326 |#1|) $ $)) (-15 -3633 ($ (-783))) (-15 -3460 ((-112) $)) (-15 -3097 ((-112) $)) (-15 -4436 ((-576) $)) (-15 -2548 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2376 ($ (-326 |#1|))) (-15 -1475 ($ $))))
+((-4053 (((-112) (-1178)) 26)) (-1685 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-1387 (((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-969 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112)) 85)))
+(((-226 |#1| |#2|) (-10 -7 (-15 -4053 ((-112) (-1178))) (-15 -1685 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -1387 ((-3 (-112) "failed") (-969 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112))) (-15 -1387 ((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-29 |#1|))) (T -226))
+((-1387 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1222) (-29 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-1387 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-969 *6)) (-5 *4 (-1196)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-1685 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1222) (-29 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4))))))
+(-10 -7 (-15 -4053 ((-112) (-1178))) (-15 -1685 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -1387 ((-3 (-112) "failed") (-969 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112))) (-15 -1387 ((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 98)) (-1463 (((-576) $) 35)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3019 (($ $) NIL)) (-3897 (($ $) 87)) (-3760 (($ $) 75)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-2477 (($ $) 66)) (-3417 (((-112) $ $) NIL)) (-3871 (($ $) 85)) (-3735 (($ $) 73)) (-1727 (((-576) $) 128)) (-1542 (($ $) 90)) (-3781 (($ $) 77)) (-2574 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-2454 (((-3 (-576) "failed") $) 127) (((-3 (-419 (-576)) "failed") $) 124)) (-4397 (((-576) $) 125) (((-419 (-576)) $) 122)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) 103)) (-2902 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1518 (((-938)) 29) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-2127 (((-112) $) NIL)) (-1663 (($) 46)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-2620 (((-576) $) 42)) (-1838 (((-112) $) 99)) (-1404 (($ $ (-576)) NIL)) (-3075 (($ $) NIL)) (-3196 (((-112) $) 97)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) 63) (($) 38 (-12 (-3189 (|has| $ (-6 -4445))) (-3189 (|has| $ (-6 -4453)))))) (-1492 (($ $ $) 62) (($) 37 (-12 (-3189 (|has| $ (-6 -4445))) (-3189 (|has| $ (-6 -4453)))))) (-3637 (((-576) $) 27)) (-2628 (($ $) 33)) (-3346 (($ $) 67)) (-3437 (($ $) 72)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-1468 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-3887 (((-1139) $) 101)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL)) (-3807 (($ $) NIL)) (-1562 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-938)) 110)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2273 (((-576) $) 28)) (-2943 (($) 45)) (-2656 (($ $) 71)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-4107 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-2399 (($ $) 104) (($ $ (-783)) NIL)) (-2535 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-1553 (($ $) 88)) (-3791 (($ $) 78)) (-3911 (($ $) 89)) (-3771 (($ $) 76)) (-3883 (($ $) 86)) (-3748 (($ $) 74)) (-2610 (((-390) $) 113) (((-227) $) 14) (((-905 (-390)) $) NIL) (((-548) $) 52)) (-2858 (((-874) $) 49) (($ (-576)) 70) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 70) (($ (-419 (-576))) NIL)) (-2981 (((-783)) NIL T CONST)) (-3156 (($ $) NIL)) (-1568 (((-938)) 36) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-2690 (((-112) $ $) NIL)) (-1572 (((-938)) 25)) (-1593 (($ $) 93)) (-3826 (($ $) 81) (($ $ $) 120)) (-3199 (((-112) $ $) NIL)) (-1567 (($ $) 91)) (-3802 (($ $) 79)) (-1620 (($ $) 96)) (-3847 (($ $) 84)) (-2888 (($ $) 94)) (-3859 (($ $) 82)) (-1609 (($ $) 95)) (-3837 (($ $) 83)) (-1578 (($ $) 92)) (-3813 (($ $) 80)) (-3680 (($ $) 119)) (-2022 (($) 23 T CONST)) (-2038 (($) 43 T CONST)) (-1445 (((-1178) $) 18) (((-1178) $ (-112)) 20) (((-1292) (-834) $) 21) (((-1292) (-834) $ (-112)) 22)) (-2079 (($ $) 107)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-1458 (($ $ $) 109)) (-3956 (((-112) $ $) 56)) (-3930 (((-112) $ $) 54)) (-3889 (((-112) $ $) 64)) (-3944 (((-112) $ $) 55)) (-3916 (((-112) $ $) 53)) (-4013 (($ $ $) 44) (($ $ (-576)) 65)) (-4002 (($ $) 57) (($ $ $) 59)) (-3990 (($ $ $) 58)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 152) (($ $ $) 69)) (* (($ (-938) $) 34) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-227) (-13 (-416) (-238) (-840) (-1222) (-626 (-548)) (-10 -8 (-15 -4013 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2943 ($)) (-15 -2628 ($ $)) (-15 -3346 ($ $)) (-15 -3826 ($ $ $)) (-15 -2079 ($ $)) (-15 -1458 ($ $ $)) (-15 -2902 ((-419 (-576)) $ (-783))) (-15 -2902 ((-419 (-576)) $ (-783) (-783)))))) (T -227))
+((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-2943 (*1 *1) (-5 *1 (-227))) (-2628 (*1 *1 *1) (-5 *1 (-227))) (-3346 (*1 *1 *1) (-5 *1 (-227))) (-3826 (*1 *1 *1 *1) (-5 *1 (-227))) (-2079 (*1 *1 *1) (-5 *1 (-227))) (-1458 (*1 *1 *1 *1) (-5 *1 (-227))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-2902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))))
+(-13 (-416) (-238) (-840) (-1222) (-626 (-548)) (-10 -8 (-15 -4013 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2943 ($)) (-15 -2628 ($ $)) (-15 -3346 ($ $)) (-15 -3826 ($ $ $)) (-15 -2079 ($ $)) (-15 -1458 ($ $ $)) (-15 -2902 ((-419 (-576)) $ (-783))) (-15 -2902 ((-419 (-576)) $ (-783) (-783)))))
+((-3678 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-1865 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2918 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1784 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3466 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-1601 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1487 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2011 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2411 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-4266 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2079 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1458 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31)))
+(((-228) (-10 -7 (-15 -2079 ((-227) (-227))) (-15 -2079 ((-171 (-227)) (-171 (-227)))) (-15 -1458 ((-227) (-227) (-227))) (-15 -1458 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1865 ((-227) (-227))) (-15 -1865 ((-171 (-227)) (-171 (-227)))) (-15 -1784 ((-227) (-227))) (-15 -1784 ((-171 (-227)) (-171 (-227)))) (-15 -3678 ((-227) (-783) (-227))) (-15 -3678 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1487 ((-227) (-227) (-227))) (-15 -1487 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3466 ((-227) (-227) (-227))) (-15 -3466 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2011 ((-227) (-227) (-227))) (-15 -2011 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1601 ((-227) (-227) (-227))) (-15 -1601 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4266 ((-171 (-227)) (-171 (-227)))) (-15 -4266 ((-227) (-227))) (-15 -2411 ((-227) (-227))) (-15 -2411 ((-171 (-227)) (-171 (-227)))) (-15 -2918 ((-227) (-227) (-227))) (-15 -2918 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228))
+((-2918 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2918 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1601 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1601 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2011 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2011 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1487 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1487 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3678 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3678 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))))
+(-10 -7 (-15 -2079 ((-227) (-227))) (-15 -2079 ((-171 (-227)) (-171 (-227)))) (-15 -1458 ((-227) (-227) (-227))) (-15 -1458 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1865 ((-227) (-227))) (-15 -1865 ((-171 (-227)) (-171 (-227)))) (-15 -1784 ((-227) (-227))) (-15 -1784 ((-171 (-227)) (-171 (-227)))) (-15 -3678 ((-227) (-783) (-227))) (-15 -3678 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1487 ((-227) (-227) (-227))) (-15 -1487 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3466 ((-227) (-227) (-227))) (-15 -3466 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2011 ((-227) (-227) (-227))) (-15 -2011 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1601 ((-227) (-227) (-227))) (-15 -1601 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4266 ((-171 (-227)) (-171 (-227)))) (-15 -4266 ((-227) (-227))) (-15 -2411 ((-227) (-227))) (-15 -2411 ((-171 (-227)) (-171 (-227)))) (-15 -2918 ((-227) (-227) (-227))) (-15 -2918 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2854 (($ (-783) (-783)) NIL)) (-2346 (($ $ $) NIL)) (-2948 (($ (-1287 |#1|)) NIL) (($ $) NIL)) (-3507 (($ |#1| |#1| |#1|) 33)) (-2561 (((-112) $) NIL)) (-1581 (($ $ (-576) (-576)) NIL)) (-3982 (($ $ (-576) (-576)) NIL)) (-2652 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3879 (($ $) NIL)) (-1625 (((-112) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3592 (($ $ (-576) (-576) $) NIL)) (-3028 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3029 (($ $ (-576) (-1287 |#1|)) NIL)) (-4405 (($ $ (-576) (-1287 |#1|)) NIL)) (-2687 (($ |#1| |#1| |#1|) 32)) (-4351 (($ (-783) |#1|) NIL)) (-2574 (($) NIL T CONST)) (-1607 (($ $) NIL (|has| |#1| (-317)))) (-3475 (((-1287 |#1|) $ (-576)) NIL)) (-3312 (($ |#1|) 31)) (-2683 (($ |#1|) 30)) (-1640 (($ |#1|) 29)) (-4422 (((-783) $) NIL (|has| |#1| (-568)))) (-2832 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2767 ((|#1| $ (-576) (-576)) NIL)) (-3975 (((-656 |#1|) $) NIL)) (-3664 (((-783) $) NIL (|has| |#1| (-568)))) (-2732 (((-656 (-1287 |#1|)) $) NIL (|has| |#1| (-568)))) (-4227 (((-783) $) NIL)) (-2327 (($ (-783) (-783) |#1|) NIL)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-3891 ((|#1| $) NIL (|has| |#1| (-6 (-4464 "*"))))) (-2923 (((-576) $) NIL)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3698 (((-576) $) NIL)) (-2171 (((-576) $) NIL)) (-4307 (($ (-656 (-656 |#1|))) 11)) (-2822 (($ (-1 |#1| |#1|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4101 (((-656 (-656 |#1|)) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2975 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-2763 (($) 12)) (-1498 (($ $ $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-3245 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1856 (((-112) $) NIL)) (-3497 ((|#1| $) NIL (|has| |#1| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-3146 (((-1287 |#1|) $ (-576)) NIL)) (-2858 (($ (-1287 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1402 (((-112) $) NIL)) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1287 |#1|) $ (-1287 |#1|)) 15) (((-1287 |#1|) (-1287 |#1|) $) NIL) (((-960 |#1|) $ (-960 |#1|)) 21)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-229 |#1|) (-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -2763 ($)) (-15 -1640 ($ |#1|)) (-15 -2683 ($ |#1|)) (-15 -3312 ($ |#1|)) (-15 -2687 ($ |#1| |#1| |#1|)) (-15 -3507 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1222))) (T -229))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222))) (-5 *1 (-229 *3)))) (-2763 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-1640 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-2683 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-3312 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-2687 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-3507 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))))
+(-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -2763 ($)) (-15 -1640 ($ |#1|)) (-15 -2683 ($ |#1|)) (-15 -3312 ($ |#1|)) (-15 -2687 ($ |#1| |#1| |#1|)) (-15 -3507 ($ |#1| |#1| |#1|))))
+((-3423 (($ (-1 (-112) |#2|) $) 16)) (-3007 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1801 (($) NIL) (($ (-656 |#2|)) 11)) (-3889 (((-112) $ $) 26)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -3423 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3007 (|#1| |#2| |#1|)) (-15 -1801 (|#1| (-656 |#2|))) (-15 -1801 (|#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-231 |#2|) (-1119)) (T -230))
+NIL
+(-10 -8 (-15 -3423 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3007 (|#1| |#2| |#1|)) (-15 -1801 (|#1| (-656 |#2|))) (-15 -1801 (|#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-3423 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3229 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-1801 (($) 50) (($ (-656 |#1|)) 49)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 51)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-231 |#1|) (-141) (-1119)) (T -231))
NIL
(-13 (-240 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2382 (($ $ (-1 |#1| |#1|) (-782)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1194)) 55 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 53 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 52 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 51 (|has| |#1| (-915 (-1194)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-782)) 45 (|has| |#1| (-237)))) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 |#1| |#1|) (-782)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1194)) 54 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 50 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 49 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 48 (|has| |#1| (-915 (-1194)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-782)) 44 (|has| |#1| (-237)))) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-232 |#1|) (-141) (-1066)) (T -232))
-NIL
-(-13 (-1066) (-271 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-234 $) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-908 $ #0=(-1194)) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #0#) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-3428 ((|#2| $) 9)))
-(((-233 |#1| |#2|) (-10 -8 (-15 -3428 (|#2| |#1|))) (-234 |#2|) (-1235)) (T -233))
-NIL
-(-10 -8 (-15 -3428 (|#2| |#1|)))
-((-2382 ((|#1| $) 7)) (-3428 ((|#1| $) 6)))
-(((-234 |#1|) (-141) (-1235)) (T -234))
-((-2382 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2382 (|t#1| $)) (-15 -3428 (|t#1| $))))
-(((-1235) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2382 (($ $ (-782)) 36) (($ $) 34)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3428 (($ $ (-782)) 37) (($ $) 35)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-235 |#1|) (-141) (-174)) (T -235))
-NIL
-(-13 (-728 |t#1|) (-237))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-234 $) . T) ((-237) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T) ((-1235) . T))
-((-2382 (($ $) NIL) (($ $ (-782)) 9)) (-3428 (($ $) NIL) (($ $ (-782)) 11)))
-(((-236 |#1|) (-10 -8 (-15 -3428 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-782))) (-15 -3428 (|#1| |#1|)) (-15 -2382 (|#1| |#1|))) (-237)) (T -236))
-NIL
-(-10 -8 (-15 -3428 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-782))) (-15 -3428 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)))
-((-2382 (($ $) 7) (($ $ (-782)) 10)) (-3428 (($ $) 6) (($ $ (-782)) 9)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1196)) 55 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 53 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 52 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 51 (|has| |#1| (-917 (-1196)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1196)) 54 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 50 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 49 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 48 (|has| |#1| (-917 (-1196)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-232 |#1|) (-141) (-1068)) (T -232))
+NIL
+(-13 (-1068) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-234 $) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ #0=(-1196)) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #0#) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-3404 ((|#2| $) 9)))
+(((-233 |#1| |#2|) (-10 -8 (-15 -3404 (|#2| |#1|))) (-234 |#2|) (-1237)) (T -233))
+NIL
+(-10 -8 (-15 -3404 (|#2| |#1|)))
+((-2399 ((|#1| $) 7)) (-3404 ((|#1| $) 6)))
+(((-234 |#1|) (-141) (-1237)) (T -234))
+((-2399 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2399 (|t#1| $)) (-15 -3404 (|t#1| $))))
+(((-1237) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $ (-783)) 37) (($ $) 35)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3404 (($ $ (-783)) 38) (($ $) 36)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-235 |#1|) (-141) (-1068)) (T -235))
+NIL
+(-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-2399 (($ $) NIL) (($ $ (-783)) 9)) (-3404 (($ $) NIL) (($ $ (-783)) 11)))
+(((-236 |#1|) (-10 -8 (-15 -3404 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-783))) (-15 -3404 (|#1| |#1|)) (-15 -2399 (|#1| |#1|))) (-237)) (T -236))
+NIL
+(-10 -8 (-15 -3404 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-783))) (-15 -3404 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)))
+((-2399 (($ $) 7) (($ $ (-783)) 10)) (-3404 (($ $) 6) (($ $ (-783)) 9)))
(((-237) (-141)) (T -237))
-((-2382 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782)))) (-3428 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782)))))
-(-13 (-234 $) (-10 -8 (-15 -2382 ($ $ (-782))) (-15 -3428 ($ $ (-782)))))
-(((-234 $) . T) ((-1235) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2382 (($ $ (-782)) 42) (($ $) 40)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-782)) 43) (($ $) 41)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
+((-2399 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-3404 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))))
+(-13 (-234 $) (-10 -8 (-15 -2399 ($ $ (-783))) (-15 -3404 ($ $ (-783)))))
+(((-234 $) . T) ((-1237) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $ (-783)) 42) (($ $) 40)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-783)) 43) (($ $) 41)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-238) (-141)) (T -238))
NIL
-(-13 (-1066) (-237))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-234 $) . T) ((-237) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-3323 (($) 12) (($ (-655 |#2|)) NIL)) (-3076 (($ $) 14)) (-2893 (($ (-655 |#2|)) 10)) (-2882 (((-873) $) 21)))
-(((-239 |#1| |#2|) (-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -3323 (|#1| (-655 |#2|))) (-15 -3323 (|#1|)) (-15 -2893 (|#1| (-655 |#2|))) (-15 -3076 (|#1| |#1|))) (-240 |#2|) (-1117)) (T -239))
-NIL
-(-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -3323 (|#1| (-655 |#2|))) (-15 -3323 (|#1|)) (-15 -2893 (|#1| (-655 |#2|))) (-15 -3076 (|#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-1932 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-4070 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3323 (($) 50) (($ (-655 |#1|)) 49)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 51)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-240 |#1|) (-141) (-1117)) (T -240))
-((-3323 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1117)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-240 *3)))) (-2375 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-240 *2)) (-4 *2 (-1117)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3)) (-4 *3 (-1117)))) (-1932 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3)) (-4 *3 (-1117)))))
-(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3323 ($)) (-15 -3323 ($ (-655 |t#1|))) (IF (|has| $ (-6 -4460)) (PROGN (-15 -2375 ($ |t#1| $)) (-15 -2375 ($ (-1 (-112) |t#1|) $)) (-15 -1932 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-1661 (((-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782))))) (-303 (-967 (-575)))) 42)))
-(((-241) (-10 -7 (-15 -1661 ((-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782))))) (-303 (-967 (-575))))))) (T -241))
-((-1661 (*1 *2 *3) (-12 (-5 *3 (-303 (-967 (-575)))) (-5 *2 (-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782)))))) (-5 *1 (-241)))))
-(-10 -7 (-15 -1661 ((-2 (|:| |varOrder| (-655 (-1194))) (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed")) (|:| |hom| (-655 (-1285 (-782))))) (-303 (-967 (-575))))))
-((-2409 (((-782)) 56)) (-2862 (((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) 53) (((-700 |#3|) (-700 $)) 44) (((-700 |#3|) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-1605 (((-135)) 62)) (-2382 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-2882 (((-1285 |#3|) $) NIL) (($ |#3|) NIL) (((-873) $) NIL) (($ (-575)) 12) (($ (-418 (-575))) NIL)) (-4421 (((-782)) 15)) (-4038 (($ $ |#3|) 59)))
-(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| (-575))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2882 ((-873) |#1|)) (-15 -4421 ((-782))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2882 (|#1| |#3|)) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2862 ((-700 |#3|) (-1285 |#1|))) (-15 -2862 ((-700 |#3|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -2409 ((-782))) (-15 -4038 (|#1| |#1| |#3|)) (-15 -1605 ((-135))) (-15 -2882 ((-1285 |#3|) |#1|))) (-243 |#2| |#3|) (-782) (-1235)) (T -242))
-((-1605 (*1 *2) (-12 (-14 *4 (-782)) (-4 *5 (-1235)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2409 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-4421 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))))
-(-10 -8 (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| (-575))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2882 ((-873) |#1|)) (-15 -4421 ((-782))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2882 (|#1| |#3|)) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2862 ((-700 |#3|) (-1285 |#1|))) (-15 -2862 ((-700 |#3|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -2409 ((-782))) (-15 -4038 (|#1| |#1| |#3|)) (-15 -1605 ((-135))) (-15 -2882 ((-1285 |#3|) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#2| (-1117)))) (-2045 (((-112) $) 76 (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4126 (($ (-936)) 127 (|has| |#2| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3081 (($ $ $) 123 (|has| |#2| (-804)))) (-1708 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-3133 (((-112) $ (-782)) 8)) (-2409 (((-782)) 113 (|has| |#2| (-378)))) (-3052 ((|#2| $ (-575) |#2|) 53 (|has| $ (-6 -4461)))) (-3261 (($) 7 T CONST)) (-2443 (((-3 (-575) "failed") $) 71 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) 68 (-3224 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1117)))) (-4400 (((-575) $) 70 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) 67 (-3224 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) 66 (|has| |#2| (-1117)))) (-2862 (((-700 (-575)) (-1285 $)) 112 (-3224 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) 111 (-3224 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 110 (-3224 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 109 (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) 108 (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) 107 (|has| |#2| (-1066)))) (-4162 (((-3 $ "failed") $) 86 (|has| |#2| (-1066)))) (-2073 (($) 116 (|has| |#2| (-378)))) (-2857 ((|#2| $ (-575) |#2|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#2| $ (-575)) 52)) (-3999 (((-655 |#2|) $) 31 (|has| $ (-6 -4460)))) (-3900 (((-112) $) 88 (|has| |#2| (-1066)))) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 122 (|has| |#2| (-861)))) (-4252 (((-655 |#2|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 121 (|has| |#2| (-861)))) (-2844 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2|) $) 36)) (-1894 (((-936) $) 115 (|has| |#2| (-378)))) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#2| (-1117)))) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-4317 (($ (-936)) 114 (|has| |#2| (-378)))) (-3912 (((-1137) $) 21 (|has| |#2| (-1117)))) (-1955 ((|#2| $) 43 (|has| (-575) (-861)))) (-1652 (($ $ |#2|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) 27 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 26 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 24 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#2| $ (-575) |#2|) 51) ((|#2| $ (-575)) 50)) (-2988 ((|#2| $ $) 126 (|has| |#2| (-1066)))) (-1975 (($ (-1285 |#2|)) 128)) (-1605 (((-135)) 125 (|has| |#2| (-373)))) (-2382 (($ $ (-782)) 105 (-3224 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) 103 (-3224 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) 99 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) 98 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) 97 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) 95 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) 93 (|has| |#2| (-1066)))) (-3922 (((-782) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4460))) (((-782) |#2| $) 29 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-1285 |#2|) $) 129) (($ (-575)) 72 (-3763 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) 69 (-3224 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) 64 (|has| |#2| (-1117))) (((-873) $) 18 (|has| |#2| (-624 (-873))))) (-4421 (((-782)) 90 (|has| |#2| (-1066)) CONST)) (-3685 (((-112) $ $) 23 (|has| |#2| (-1117)))) (-4121 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4460)))) (-1989 (($) 75 (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2005 (($) 89 (|has| |#2| (-1066)) CONST)) (-3428 (($ $ (-782)) 106 (-3224 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) 104 (-3224 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) 102 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) 101 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) 100 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) 96 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) 91 (|has| |#2| (-1066)))) (-3980 (((-112) $ $) 119 (|has| |#2| (-861)))) (-3955 (((-112) $ $) 118 (|has| |#2| (-861)))) (-3913 (((-112) $ $) 20 (|has| |#2| (-1117)))) (-3967 (((-112) $ $) 120 (|has| |#2| (-861)))) (-3940 (((-112) $ $) 117 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) 124 (|has| |#2| (-373)))) (-4027 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-4015 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-782)) 87 (|has| |#2| (-1066))) (($ $ (-936)) 84 (|has| |#2| (-1066)))) (* (($ $ $) 85 (|has| |#2| (-1066))) (($ $ |#2|) 83 (|has| |#2| (-737))) (($ |#2| $) 82 (|has| |#2| (-737))) (($ (-575) $) 79 (|has| |#2| (-21))) (($ (-782) $) 77 (|has| |#2| (-23))) (($ (-936) $) 74 (|has| |#2| (-25)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-243 |#1| |#2|) (-141) (-782) (-1235)) (T -243))
-((-1975 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1235)) (-4 *1 (-243 *3 *4)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1066)) (-4 *4 (-1235)))) (-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))))
-(-13 (-615 (-575) |t#2|) (-624 (-1285 |t#2|)) (-10 -8 (-6 -4460) (-15 -1975 ($ (-1285 |t#2|))) (IF (|has| |t#2| (-1117)) (-6 (-422 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1066)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-387 |t#2|)) (-15 -4126 ($ (-936))) (-15 -2988 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-737)) (-6 (-651 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-378)) (-6 (-378)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-728 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-804)) (-6 (-804)) |%noBranch|) (IF (|has| |t#2| (-373)) (-6 (-1292 |t#2|)) |%noBranch|)))
-(((-21) -3763 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3763 (|has| |#2| (-1066)) (|has| |#2| (-804)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3763 (|has| |#2| (-1066)) (|has| |#2| (-804)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3763 (|has| |#2| (-1117)) (|has| |#2| (-1066)) (|has| |#2| (-861)) (|has| |#2| (-804)) (|has| |#2| (-737)) (|has| |#2| (-378)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3763 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-132) -3763 (|has| |#2| (-1066)) (|has| |#2| (-804)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-627 #0=(-418 (-575))) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))) ((-627 (-575)) -3763 (|has| |#2| (-1066)) (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) ((-627 |#2|) |has| |#2| (-1117)) ((-624 (-873)) -3763 (|has| |#2| (-1117)) (|has| |#2| (-1066)) (|has| |#2| (-861)) (|has| |#2| (-804)) (|has| |#2| (-737)) (|has| |#2| (-378)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-624 (-873))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-624 (-1285 |#2|)) . T) ((-234 $) -3763 (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))) ((-232 |#2|) |has| |#2| (-1066)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1066))) ((-237) -3763 (-12 (|has| |#2| (-237)) (|has| |#2| (-1066))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1066)))) ((-271 |#2|) |has| |#2| (-1066)) ((-295 #1=(-575) |#2|) . T) ((-297 #1# |#2|) . T) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-378) |has| |#2| (-378)) ((-387 |#2|) |has| |#2| (-1066)) ((-422 |#2|) |has| |#2| (-1117)) ((-500 |#2|) . T) ((-615 #1# |#2|) . T) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-657 (-575)) -3763 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-657 |#2|) -3763 (|has| |#2| (-1066)) (|has| |#2| (-737)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-657 $) |has| |#2| (-1066)) ((-659 #2=(-575)) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))) ((-659 |#2|) -3763 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-659 $) |has| |#2| (-1066)) ((-651 |#2|) -3763 (|has| |#2| (-737)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-650 #2#) -12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066))) ((-650 |#2|) |has| |#2| (-1066)) ((-728 |#2|) -3763 (|has| |#2| (-373)) (|has| |#2| (-174))) ((-737) |has| |#2| (-1066)) ((-803) |has| |#2| (-804)) ((-804) |has| |#2| (-804)) ((-805) |has| |#2| (-804)) ((-806) |has| |#2| (-804)) ((-861) -3763 (|has| |#2| (-861)) (|has| |#2| (-804))) ((-908 $ #3=(-1194)) -3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) ((-913 (-1194)) -12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066))) ((-915 #3#) -3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066))) (-12 (|has| |#2| (-913 (-1194))) (|has| |#2| (-1066)))) ((-1055 #0#) -12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117))) ((-1055 (-575)) -12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) ((-1055 |#2|) |has| |#2| (-1117)) ((-1068 |#2|) -3763 (|has| |#2| (-1066)) (|has| |#2| (-737)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-1073 |#2|) -3763 (|has| |#2| (-1066)) (|has| |#2| (-373)) (|has| |#2| (-174))) ((-1066) |has| |#2| (-1066)) ((-1075) |has| |#2| (-1066)) ((-1129) |has| |#2| (-1066)) ((-1117) -3763 (|has| |#2| (-1117)) (|has| |#2| (-1066)) (|has| |#2| (-861)) (|has| |#2| (-804)) (|has| |#2| (-737)) (|has| |#2| (-378)) (|has| |#2| (-373)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1235) . T) ((-1292 |#2|) |has| |#2| (-373)))
-((-3436 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2302 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-2544 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18)))
-(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -3436 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2302 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2544 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-782) (-1235) (-1235)) (T -244))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782)) (-4 *6 (-1235)) (-4 *2 (-1235)) (-5 *1 (-244 *5 *6 *2)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-782)) (-4 *7 (-1235)) (-4 *5 (-1235)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5)))))
-(-10 -7 (-15 -3436 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2302 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2544 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|))))
-((-2859 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-2045 (((-112) $) NIL (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4126 (($ (-936)) 62 (|has| |#2| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3081 (($ $ $) 68 (|has| |#2| (-804)))) (-1708 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#2| (-378)))) (-3052 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1117)))) (-4400 (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) 28 (|has| |#2| (-1117)))) (-2862 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) NIL (|has| |#2| (-1066)))) (-4162 (((-3 $ "failed") $) 58 (|has| |#2| (-1066)))) (-2073 (($) NIL (|has| |#2| (-378)))) (-2857 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ (-575)) 56)) (-3999 (((-655 |#2|) $) 14 (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL (|has| |#2| (-1066)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 19 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#2| (-861)))) (-4252 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#2| (-861)))) (-2844 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#2| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#2| (-1117)))) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#2| (-378)))) (-3912 (((-1137) $) NIL (|has| |#2| (-1117)))) (-1955 ((|#2| $) NIL (|has| (-575) (-861)))) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) 20)) (-2988 ((|#2| $ $) NIL (|has| |#2| (-1066)))) (-1975 (($ (-1285 |#2|)) 17)) (-1605 (((-135)) NIL (|has| |#2| (-373)))) (-2382 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3922 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1285 |#2|) $) 9) (($ (-575)) NIL (-3763 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) 12 (|has| |#2| (-1117))) (((-873) $) NIL (|has| |#2| (-624 (-873))))) (-4421 (((-782)) NIL (|has| |#2| (-1066)) CONST)) (-3685 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-4121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-1989 (($) 36 (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2005 (($) 40 (|has| |#2| (-1066)) CONST)) (-3428 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3980 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3913 (((-112) $ $) 27 (|has| |#2| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3940 (((-112) $ $) 66 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4015 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-782)) NIL (|has| |#2| (-1066))) (($ $ (-936)) NIL (|has| |#2| (-1066)))) (* (($ $ $) 46 (|has| |#2| (-1066))) (($ $ |#2|) 44 (|has| |#2| (-737))) (($ |#2| $) 45 (|has| |#2| (-737))) (($ (-575) $) NIL (|has| |#2| (-21))) (($ (-782) $) NIL (|has| |#2| (-23))) (($ (-936) $) NIL (|has| |#2| (-25)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-245 |#1| |#2|) (-243 |#1| |#2|) (-782) (-1235)) (T -245))
+(-13 (-1068) (-237))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-1801 (($) 12) (($ (-656 |#2|)) NIL)) (-3052 (($ $) 14)) (-2869 (($ (-656 |#2|)) 10)) (-2858 (((-874) $) 21)))
+(((-239 |#1| |#2|) (-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -1801 (|#1| (-656 |#2|))) (-15 -1801 (|#1|)) (-15 -2869 (|#1| (-656 |#2|))) (-15 -3052 (|#1| |#1|))) (-240 |#2|) (-1119)) (T -239))
+NIL
+(-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -1801 (|#1| (-656 |#2|))) (-15 -1801 (|#1|)) (-15 -2869 (|#1| (-656 |#2|))) (-15 -3052 (|#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-3423 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3229 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-1801 (($) 50) (($ (-656 |#1|)) 49)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 51)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-240 |#1|) (-141) (-1119)) (T -240))
+((-1801 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1119)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-240 *3)))) (-3007 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-240 *2)) (-4 *2 (-1119)))) (-3007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3)) (-4 *3 (-1119)))) (-3423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3)) (-4 *3 (-1119)))))
+(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1801 ($)) (-15 -1801 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3007 ($ |t#1| $)) (-15 -3007 ($ (-1 (-112) |t#1|) $)) (-15 -3423 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2479 (((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-969 (-576)))) 42)))
+(((-241) (-10 -7 (-15 -2479 ((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-969 (-576))))))) (T -241))
+((-2479 (*1 *2 *3) (-12 (-5 *3 (-304 (-969 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783)))))) (-5 *1 (-241)))))
+(-10 -7 (-15 -2479 ((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-969 (-576))))))
+((-2422 (((-783)) 56)) (-2085 (((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-701 |#3|) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-4340 (((-135)) 62)) (-2399 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2858 (((-1287 |#3|) $) NIL) (($ |#3|) NIL) (((-874) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-2981 (((-783)) 15)) (-4013 (($ $ |#3|) 59)))
+(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| (-576))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2858 ((-874) |#1|)) (-15 -2981 ((-783))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2858 (|#1| |#3|)) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2085 ((-701 |#3|) (-1287 |#1|))) (-15 -2085 ((-701 |#3|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2422 ((-783))) (-15 -4013 (|#1| |#1| |#3|)) (-15 -4340 ((-135))) (-15 -2858 ((-1287 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1237)) (T -242))
+((-4340 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1237)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2422 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2981 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))))
+(-10 -8 (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| (-576))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2858 ((-874) |#1|)) (-15 -2981 ((-783))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2858 (|#1| |#3|)) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2085 ((-701 |#3|) (-1287 |#1|))) (-15 -2085 ((-701 |#3|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2422 ((-783))) (-15 -4013 (|#1| |#1| |#3|)) (-15 -4340 ((-135))) (-15 -2858 ((-1287 |#3|) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#2| (-1119)))) (-3203 (((-112) $) 76 (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2002 (($ (-938)) 127 (|has| |#2| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-1869 (($ $ $) 123 (|has| |#2| (-805)))) (-3161 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-2746 (((-112) $ (-783)) 8)) (-2422 (((-783)) 113 (|has| |#2| (-379)))) (-3028 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4463)))) (-2574 (($) 7 T CONST)) (-2454 (((-3 (-576) "failed") $) 71 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) 68 (-3200 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1119)))) (-4397 (((-576) $) 70 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) 67 (-3200 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) 66 (|has| |#2| (-1119)))) (-2085 (((-701 (-576)) (-1287 $)) 112 (-3200 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) 111 (-3200 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 110 (-3200 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 109 (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) 108 (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) 107 (|has| |#2| (-1068)))) (-4011 (((-3 $ "failed") $) 86 (|has| |#2| (-1068)))) (-2107 (($) 116 (|has| |#2| (-379)))) (-2832 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#2| $ (-576)) 52)) (-3975 (((-656 |#2|) $) 31 (|has| $ (-6 -4462)))) (-1838 (((-112) $) 88 (|has| |#2| (-1068)))) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 122 (|has| |#2| (-862)))) (-3531 (((-656 |#2|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 121 (|has| |#2| (-862)))) (-2822 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2|) $) 36)) (-1654 (((-938) $) 115 (|has| |#2| (-379)))) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#2| (-1119)))) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-4308 (($ (-938)) 114 (|has| |#2| (-379)))) (-3887 (((-1139) $) 21 (|has| |#2| (-1119)))) (-1989 ((|#2| $) 43 (|has| (-576) (-862)))) (-4040 (($ $ |#2|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-2139 ((|#2| $ $) 126 (|has| |#2| (-1068)))) (-2009 (($ (-1287 |#2|)) 128)) (-4340 (((-135)) 125 (|has| |#2| (-374)))) (-2399 (($ $ (-783)) 105 (-3200 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) 103 (-3200 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) 99 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) 98 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) 97 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) 95 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1068)))) (-3902 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4462))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-1287 |#2|) $) 129) (($ (-576)) 72 (-3739 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) 69 (-3200 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) 64 (|has| |#2| (-1119))) (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-2981 (((-783)) 90 (|has| |#2| (-1068)) CONST)) (-2690 (((-112) $ $) 23 (|has| |#2| (-1119)))) (-2714 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4462)))) (-2022 (($) 75 (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2038 (($) 89 (|has| |#2| (-1068)) CONST)) (-3404 (($ $ (-783)) 106 (-3200 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) 104 (-3200 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) 102 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) 101 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) 100 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) 96 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1068)))) (-3956 (((-112) $ $) 119 (|has| |#2| (-862)))) (-3930 (((-112) $ $) 118 (|has| |#2| (-862)))) (-3889 (((-112) $ $) 20 (|has| |#2| (-1119)))) (-3944 (((-112) $ $) 120 (|has| |#2| (-862)))) (-3916 (((-112) $ $) 117 (|has| |#2| (-862)))) (-4013 (($ $ |#2|) 124 (|has| |#2| (-374)))) (-4002 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3990 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1068))) (($ $ (-938)) 84 (|has| |#2| (-1068)))) (* (($ $ $) 85 (|has| |#2| (-1068))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-938) $) 74 (|has| |#2| (-25)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-243 |#1| |#2|) (-141) (-783) (-1237)) (T -243))
+((-2009 (*1 *1 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-243 *3 *4)))) (-2002 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1068)) (-4 *4 (-1237)))) (-2139 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))))
+(-13 (-616 (-576) |t#2|) (-625 (-1287 |t#2|)) (-10 -8 (-6 -4462) (-15 -2009 ($ (-1287 |t#2|))) (IF (|has| |t#2| (-1119)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1068)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -2002 ($ (-938))) (-15 -2139 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1294 |t#2|)) |%noBranch|)))
+(((-21) -3739 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3739 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3739 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3739 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3739 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -3739 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))) ((-628 (-576)) -3739 (|has| |#2| (-1068)) (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) ((-628 |#2|) |has| |#2| (-1119)) ((-625 (-874)) -3739 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-874))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1287 |#2|)) . T) ((-234 $) -3739 (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))) ((-232 |#2|) |has| |#2| (-1068)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1068))) ((-237) -3739 (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))) ((-272 |#2|) |has| |#2| (-1068)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1068)) ((-423 |#2|) |has| |#2| (-1119)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-658 (-576)) -3739 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -3739 (|has| |#2| (-1068)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1068)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))) ((-660 |#2|) -3739 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1068)) ((-652 |#2|) -3739 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))) ((-651 |#2|) |has| |#2| (-1068)) ((-729 |#2|) -3739 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1068)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-862) -3739 (|has| |#2| (-862)) (|has| |#2| (-805))) ((-909 $ #3=(-1196)) -3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) ((-915 (-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) ((-917 #3#) -3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) ((-1057 #0#) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))) ((-1057 (-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) ((-1057 |#2|) |has| |#2| (-1119)) ((-1070 |#2|) -3739 (|has| |#2| (-1068)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1075 |#2|) -3739 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1068) |has| |#2| (-1068)) ((-1077) |has| |#2| (-1068)) ((-1131) |has| |#2| (-1068)) ((-1119) -3739 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1237) . T) ((-1294 |#2|) |has| |#2| (-374)))
+((-4244 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2326 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-2548 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18)))
+(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -4244 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2326 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2548 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1237) (-1237)) (T -244))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-244 *5 *6 *2)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5)))))
+(-10 -7 (-15 -4244 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2326 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2548 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|))))
+((-2835 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3203 (((-112) $) NIL (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2002 (($ (-938)) 62 (|has| |#2| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-1869 (($ $ $) 68 (|has| |#2| (-805)))) (-3161 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#2| (-379)))) (-3028 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1119)))) (-4397 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) 28 (|has| |#2| (-1119)))) (-2085 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1068)))) (-4011 (((-3 $ "failed") $) 58 (|has| |#2| (-1068)))) (-2107 (($) NIL (|has| |#2| (-379)))) (-2832 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ (-576)) 56)) (-3975 (((-656 |#2|) $) 14 (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL (|has| |#2| (-1068)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 19 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#2| (-862)))) (-3531 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#2| (-862)))) (-2822 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#2| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#2| (-1119)))) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-4308 (($ (-938)) NIL (|has| |#2| (-379)))) (-3887 (((-1139) $) NIL (|has| |#2| (-1119)))) (-1989 ((|#2| $) NIL (|has| (-576) (-862)))) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-2139 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-2009 (($ (-1287 |#2|)) 17)) (-4340 (((-135)) NIL (|has| |#2| (-374)))) (-2399 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3902 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1287 |#2|) $) 9) (($ (-576)) NIL (-3739 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) 12 (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-2981 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-2690 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2714 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2022 (($) 36 (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2038 (($) 40 (|has| |#2| (-1068)) CONST)) (-3404 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3889 (((-112) $ $) 27 (|has| |#2| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3916 (((-112) $ $) 66 (|has| |#2| (-862)))) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3990 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) 46 (|has| |#2| (-1068))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1237)) (T -245))
NIL
(-243 |#1| |#2|)
-((-2002 (((-575) (-655 (-1176))) 36) (((-575) (-1176)) 29)) (-3586 (((-1290) (-655 (-1176))) 40) (((-1290) (-1176)) 39)) (-3287 (((-1176)) 16)) (-2519 (((-1176) (-575) (-1176)) 23)) (-1751 (((-655 (-1176)) (-655 (-1176)) (-575) (-1176)) 37) (((-1176) (-1176) (-575) (-1176)) 35)) (-3019 (((-655 (-1176)) (-655 (-1176))) 15) (((-655 (-1176)) (-1176)) 11)))
-(((-246) (-10 -7 (-15 -3019 ((-655 (-1176)) (-1176))) (-15 -3019 ((-655 (-1176)) (-655 (-1176)))) (-15 -3287 ((-1176))) (-15 -2519 ((-1176) (-575) (-1176))) (-15 -1751 ((-1176) (-1176) (-575) (-1176))) (-15 -1751 ((-655 (-1176)) (-655 (-1176)) (-575) (-1176))) (-15 -3586 ((-1290) (-1176))) (-15 -3586 ((-1290) (-655 (-1176)))) (-15 -2002 ((-575) (-1176))) (-15 -2002 ((-575) (-655 (-1176)))))) (T -246))
-((-2002 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-575)) (-5 *1 (-246)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-246)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1290)) (-5 *1 (-246)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-246)))) (-1751 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-655 (-1176))) (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *1 (-246)))) (-1751 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246)))) (-3287 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-246)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)))) (-3019 (*1 *2 *3) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)) (-5 *3 (-1176)))))
-(-10 -7 (-15 -3019 ((-655 (-1176)) (-1176))) (-15 -3019 ((-655 (-1176)) (-655 (-1176)))) (-15 -3287 ((-1176))) (-15 -2519 ((-1176) (-575) (-1176))) (-15 -1751 ((-1176) (-1176) (-575) (-1176))) (-15 -1751 ((-655 (-1176)) (-655 (-1176)) (-575) (-1176))) (-15 -3586 ((-1290) (-1176))) (-15 -3586 ((-1290) (-655 (-1176)))) (-15 -2002 ((-575) (-1176))) (-15 -2002 ((-575) (-655 (-1176)))))
-((** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 20)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ (-418 (-575)) $) 27) (($ $ (-418 (-575))) NIL)))
-(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-248)) (T -247))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-575))) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 47)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 51)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 48)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ (-418 (-575)) $) 50) (($ $ (-418 (-575))) 49)))
+((-2118 (((-576) (-656 (-1178))) 36) (((-576) (-1178)) 29)) (-3562 (((-1292) (-656 (-1178))) 40) (((-1292) (-1178)) 39)) (-3382 (((-1178)) 16)) (-3631 (((-1178) (-576) (-1178)) 23)) (-1785 (((-656 (-1178)) (-656 (-1178)) (-576) (-1178)) 37) (((-1178) (-1178) (-576) (-1178)) 35)) (-2995 (((-656 (-1178)) (-656 (-1178))) 15) (((-656 (-1178)) (-1178)) 11)))
+(((-246) (-10 -7 (-15 -2995 ((-656 (-1178)) (-1178))) (-15 -2995 ((-656 (-1178)) (-656 (-1178)))) (-15 -3382 ((-1178))) (-15 -3631 ((-1178) (-576) (-1178))) (-15 -1785 ((-1178) (-1178) (-576) (-1178))) (-15 -1785 ((-656 (-1178)) (-656 (-1178)) (-576) (-1178))) (-15 -3562 ((-1292) (-1178))) (-15 -3562 ((-1292) (-656 (-1178)))) (-15 -2118 ((-576) (-1178))) (-15 -2118 ((-576) (-656 (-1178)))))) (T -246))
+((-2118 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-576)) (-5 *1 (-246)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-246)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1292)) (-5 *1 (-246)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-246)))) (-1785 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1178))) (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *1 (-246)))) (-1785 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) (-3631 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) (-3382 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-246)))) (-2995 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)))) (-2995 (*1 *2 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)) (-5 *3 (-1178)))))
+(-10 -7 (-15 -2995 ((-656 (-1178)) (-1178))) (-15 -2995 ((-656 (-1178)) (-656 (-1178)))) (-15 -3382 ((-1178))) (-15 -3631 ((-1178) (-576) (-1178))) (-15 -1785 ((-1178) (-1178) (-576) (-1178))) (-15 -1785 ((-656 (-1178)) (-656 (-1178)) (-576) (-1178))) (-15 -3562 ((-1292) (-1178))) (-15 -3562 ((-1292) (-656 (-1178)))) (-15 -2118 ((-576) (-1178))) (-15 -2118 ((-576) (-656 (-1178)))))
+((** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL)))
+(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-248)) (T -247))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 47)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49)))
(((-248) (-141)) (T -248))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-575)))) (-4332 (*1 *1 *1) (-4 *1 (-248))))
-(-13 (-299) (-38 (-418 (-575))) (-10 -8 (-15 ** ($ $ (-575))) (-15 -4332 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-299) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-728 #0#) . T) ((-737) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-3460 (($ $) 58)) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-1773 (($ $ $) 54 (|has| $ (-6 -4461)))) (-1553 (($ $ $) 53 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3261 (($) 7 T CONST)) (-1674 (($ $) 57)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2079 (($ $) 56)) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3651 ((|#1| $) 60)) (-1327 (($ $) 59)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48)) (-1816 (((-575) $ $) 45)) (-3482 (((-112) $) 47)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-3357 (($ $ $) 55 (|has| $ (-6 -4461)))) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-249 |#1|) (-141) (-1235)) (T -249))
-((-3651 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-1327 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-1674 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-2079 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-3357 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-1773 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))) (-1553 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))))
-(-13 (-1027 |t#1|) (-10 -8 (-15 -3651 (|t#1| $)) (-15 -1327 ($ $)) (-15 -3460 ($ $)) (-15 -1674 ($ $)) (-15 -2079 ($ $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3357 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1553 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) NIL)) (-2987 ((|#1| $) NIL)) (-3460 (($ $) NIL)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3175 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2025 (($ $) 10 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-2089 (($ $ $) NIL (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "rest" $) NIL (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) |#1|) $) NIL)) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2975 ((|#1| $) NIL)) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-1969 (($ $) NIL) (($ $ (-782)) NIL)) (-1413 (($ $) NIL (|has| |#1| (-1117)))) (-4070 (($ $) 7 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3631 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2335 (((-112) $) NIL)) (-2630 (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117))) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) NIL)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (($ |#1|) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3651 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-4218 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2129 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-4213 (((-112) $) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) NIL) ((|#1| $ (-575) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-782) $ "count") 16)) (-1816 (((-575) $ $) NIL)) (-3997 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3237 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-1463 (($ (-655 |#1|)) 22)) (-3482 (((-112) $) NIL)) (-3247 (($ $) NIL)) (-1774 (($ $) NIL (|has| $ (-6 -4461)))) (-3984 (((-782) $) NIL)) (-1431 (($ $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) NIL)) (-3357 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1513 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-655 $)) NIL) (($ $ |#1|) NIL)) (-2882 (($ (-655 |#1|)) 17) (((-655 |#1|) $) 18) (((-873) $) 21 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) 14 (|has| $ (-6 -4460)))))
-(((-250 |#1|) (-13 (-677 |#1|) (-501 (-655 |#1|)) (-10 -8 (-15 -1463 ($ (-655 |#1|))) (-15 -2065 ($ $ "unique")) (-15 -2065 ($ $ "sort")) (-15 -2065 ((-782) $ "count")))) (-861)) (T -250))
-((-1463 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861)))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-782)) (-5 *1 (-250 *4)) (-4 *4 (-861)))))
-(-13 (-677 |#1|) (-501 (-655 |#1|)) (-10 -8 (-15 -1463 ($ (-655 |#1|))) (-15 -2065 ($ $ "unique")) (-15 -2065 ($ $ "sort")) (-15 -2065 ((-782) $ "count"))))
-((-2640 (((-3 (-782) "failed") |#1| |#1| (-782)) 40)))
-(((-251 |#1|) (-10 -7 (-15 -2640 ((-3 (-782) "failed") |#1| |#1| (-782)))) (-13 (-737) (-378) (-10 -7 (-15 ** (|#1| |#1| (-575)))))) (T -251))
-((-2640 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-782)) (-4 *3 (-13 (-737) (-378) (-10 -7 (-15 ** (*3 *3 (-575)))))) (-5 *1 (-251 *3)))))
-(-10 -7 (-15 -2640 ((-3 (-782) "failed") |#1| |#1| (-782))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-875 |#1|)) $) NIL)) (-3462 (((-1190 $) $ (-875 |#1|)) NIL) (((-1190 |#2|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-2456 (($ $) NIL (|has| |#2| (-567)))) (-3978 (((-112) $) NIL (|has| |#2| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-875 |#1|))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3312 (($ $) NIL (|has| |#2| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#2| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4171 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-3043 (($ $ (-655 (-575))) NIL)) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#2| (-924)))) (-4384 (($ $ |#2| (-245 (-2869 |#1|) (-782)) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#2|) (-875 |#1|)) NIL) (($ (-1190 $) (-875 |#1|)) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#2| (-245 (-2869 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-875 |#1|)) NIL)) (-3143 (((-245 (-2869 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-1946 (($ (-1 (-245 (-2869 |#1|) (-782)) (-245 (-2869 |#1|) (-782))) $) NIL)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2187 (((-3 (-875 |#1|) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -1658 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) NIL) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) NIL) (($ $ (-875 |#1|) $) NIL) (($ $ (-655 (-875 |#1|)) (-655 $)) NIL)) (-2801 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2382 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-1753 (((-245 (-2869 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-3696 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-875 |#1|)) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-245 (-2869 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-252 |#1| |#2|) (-13 (-964 |#2| (-245 (-2869 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -3043 ($ $ (-655 (-575)))))) (-655 (-1194)) (-1066)) (T -252))
-((-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-252 *3 *4)) (-14 *3 (-655 (-1194))) (-4 *4 (-1066)))))
-(-13 (-964 |#2| (-245 (-2869 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -3043 ($ $ (-655 (-575))))))
-((-2859 (((-112) $ $) NIL)) (-2568 (((-1290) $) 17)) (-2196 (((-185 (-254)) $) 11)) (-4044 (($ (-185 (-254))) 12)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3741 (((-254) $) 7)) (-2882 (((-873) $) 9)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 15)))
-(((-253) (-13 (-1117) (-10 -8 (-15 -3741 ((-254) $)) (-15 -2196 ((-185 (-254)) $)) (-15 -4044 ($ (-185 (-254)))) (-15 -2568 ((-1290) $))))) (T -253))
-((-3741 (*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-253)))))
-(-13 (-1117) (-10 -8 (-15 -3741 ((-254) $)) (-15 -2196 ((-185 (-254)) $)) (-15 -4044 ($ (-185 (-254)))) (-15 -2568 ((-1290) $))))
-((-2859 (((-112) $ $) NIL)) (-3020 (((-655 (-876)) $) NIL)) (-1777 (((-517) $) NIL)) (-4264 (((-1176) $) NIL)) (-1559 (((-188) $) NIL)) (-3371 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-3838 (((-342) $) 7)) (-3386 (((-655 (-112)) $) NIL)) (-2882 (((-873) $) NIL) (((-189) $) 8)) (-3685 (((-112) $ $) NIL)) (-3425 (((-55) $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-254) (-13 (-187) (-624 (-189)) (-10 -8 (-15 -3838 ((-342) $))))) (T -254))
-((-3838 (*1 *2 *1) (-12 (-5 *2 (-342)) (-5 *1 (-254)))))
-(-13 (-187) (-624 (-189)) (-10 -8 (-15 -3838 ((-342) $))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2065 (((-1199) $ (-782)) 13)) (-2882 (((-873) $) 20)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 16)) (-2869 (((-782) $) 9)))
-(((-255) (-13 (-1117) (-295 (-782) (-1199)) (-10 -8 (-15 -2869 ((-782) $))))) (T -255))
-((-2869 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-255)))))
-(-13 (-1117) (-295 (-782) (-1199)) (-10 -8 (-15 -2869 ((-782) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-4126 (($ (-936)) NIL (|has| |#4| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3081 (($ $ $) NIL (|has| |#4| (-804)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#4| (-378)))) (-3052 ((|#4| $ (-575) |#4|) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1117))) (((-3 (-575) "failed") $) NIL (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))) (-4400 ((|#4| $) NIL (|has| |#4| (-1117))) (((-575) $) NIL (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))) (-2862 (((-2 (|:| -3415 (-700 |#4|)) (|:| |vec| (-1285 |#4|))) (-700 $) (-1285 $)) NIL (|has| |#4| (-1066))) (((-700 |#4|) (-700 $)) NIL (|has| |#4| (-1066))) (((-700 |#4|) (-1285 $)) NIL (|has| |#4| (-1066))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#4| (-650 (-575))) (|has| |#4| (-1066))))) (-4162 (((-3 $ "failed") $) NIL (|has| |#4| (-1066)))) (-2073 (($) NIL (|has| |#4| (-378)))) (-2857 ((|#4| $ (-575) |#4|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#4| $ (-575)) NIL)) (-3999 (((-655 |#4|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL (|has| |#4| (-1066)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#4| (-861)))) (-4252 (((-655 |#4|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#4| (-861)))) (-2844 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#4| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#4| (-378)))) (-3912 (((-1137) $) NIL)) (-1955 ((|#4| $) NIL (|has| (-575) (-861)))) (-1652 (($ $ |#4|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2697 (((-655 |#4|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#4| $ (-575) |#4|) NIL) ((|#4| $ (-575)) 12)) (-2988 ((|#4| $ $) NIL (|has| |#4| (-1066)))) (-1975 (($ (-1285 |#4|)) NIL)) (-1605 (((-135)) NIL (|has| |#4| (-373)))) (-2382 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1066))) (($ $ (-1 |#4| |#4|) (-782)) NIL (|has| |#4| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066))))) (($ $) NIL (-3763 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066)))))) (-3922 (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1285 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1117))) (((-873) $) NIL) (($ (-575)) NIL (-3763 (-12 (|has| |#4| (-1055 (-575))) (|has| |#4| (-1117))) (|has| |#4| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#4| (-1055 (-418 (-575)))) (|has| |#4| (-1117))))) (-4421 (((-782)) NIL (|has| |#4| (-1066)) CONST)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL (|has| |#4| (-1066)) CONST)) (-3428 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1066))) (($ $ (-1 |#4| |#4|) (-782)) NIL (|has| |#4| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#4| (-913 (-1194))) (|has| |#4| (-1066))) (-12 (|has| |#4| (-915 (-1194))) (|has| |#4| (-1066))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066))))) (($ $) NIL (-3763 (-12 (|has| |#4| (-238)) (|has| |#4| (-1066))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1066)))))) (-3980 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#4| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#4| (-861)))) (-4038 (($ $ |#4|) NIL (|has| |#4| (-373)))) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL (|has| |#4| (-1066))) (($ $ (-936)) NIL (|has| |#4| (-1066)))) (* (($ |#2| $) 14) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-737))) (($ |#4| $) NIL (|has| |#4| (-737))) (($ $ $) NIL (|has| |#4| (-1066)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-256 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-659 |#2|) (-659 |#3|)) (-936) (-1066) (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-659 |#2|)) (T -256))
-NIL
-(-13 (-243 |#1| |#4|) (-659 |#2|) (-659 |#3|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-4126 (($ (-936)) NIL (|has| |#3| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3081 (($ $ $) NIL (|has| |#3| (-804)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#3| (-378)))) (-3052 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1117))) (((-3 (-575) "failed") $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))) (-4400 ((|#3| $) NIL (|has| |#3| (-1117))) (((-575) $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))) (-2862 (((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-700 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-1285 $)) NIL (|has| |#3| (-1066))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066))))) (-4162 (((-3 $ "failed") $) NIL (|has| |#3| (-1066)))) (-2073 (($) NIL (|has| |#3| (-378)))) (-2857 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#3| $ (-575)) NIL)) (-3999 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL (|has| |#3| (-1066)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#3| (-861)))) (-4252 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#3| (-861)))) (-2844 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#3| |#3|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#3| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#3| (-378)))) (-3912 (((-1137) $) NIL)) (-1955 ((|#3| $) NIL (|has| (-575) (-861)))) (-1652 (($ $ |#3|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#3|))) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 |#3|) (-655 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-2697 (((-655 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#3| $ (-575) |#3|) NIL) ((|#3| $ (-575)) 11)) (-2988 ((|#3| $ $) NIL (|has| |#3| (-1066)))) (-1975 (($ (-1285 |#3|)) NIL)) (-1605 (((-135)) NIL (|has| |#3| (-373)))) (-2382 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))) (($ $) NIL (-3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))))) (-3922 (((-782) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460))) (((-782) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1285 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1117))) (((-873) $) NIL) (($ (-575)) NIL (-3763 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117))))) (-4421 (((-782)) NIL (|has| |#3| (-1066)) CONST)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL (|has| |#3| (-1066)) CONST)) (-3428 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#3| (-913 (-1194))) (|has| |#3| (-1066))) (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066))))) (($ $) NIL (-3763 (-12 (|has| |#3| (-238)) (|has| |#3| (-1066))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))))) (-3980 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#3| (-861)))) (-4038 (($ $ |#3|) NIL (|has| |#3| (-373)))) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL (|has| |#3| (-1066))) (($ $ (-936)) NIL (|has| |#3| (-1066)))) (* (($ |#2| $) 13) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-737))) (($ |#3| $) NIL (|has| |#3| (-737))) (($ $ $) NIL (|has| |#3| (-1066)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-257 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-659 |#2|)) (-782) (-1066) (-659 |#2|)) (T -257))
-NIL
-(-13 (-243 |#1| |#3|) (-659 |#2|))
-((-3552 (((-655 (-782)) $) 56) (((-655 (-782)) $ |#3|) 59)) (-2213 (((-782) $) 58) (((-782) $ |#3|) 61)) (-3783 (($ $) 76)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3369 (((-782) $ |#3|) 43) (((-782) $) 38)) (-1470 (((-1 $ (-782)) |#3|) 15) (((-1 $ (-782)) $) 88)) (-2141 ((|#4| $) 69)) (-3187 (((-112) $) 67)) (-2814 (($ $) 75)) (-3046 (($ $ (-655 (-303 $))) 111) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-655 |#4|) (-655 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-655 |#4|) (-655 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-655 |#3|) (-655 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-655 |#3|) (-655 |#2|)) 97)) (-2382 (($ $ (-655 |#4|) (-655 (-782))) NIL) (($ $ |#4| (-782)) NIL) (($ $ (-655 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $) NIL) (($ $ (-782)) NIL)) (-2425 (((-655 |#3|) $) 86)) (-1753 ((|#5| $) NIL) (((-782) $ |#4|) NIL) (((-655 (-782)) $ (-655 |#4|)) NIL) (((-782) $ |#3|) 49)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-418 (-575))) NIL) (($ $) NIL)))
-(((-258 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2882 (|#1| |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -3046 (|#1| |#1| (-655 |#3|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#3| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#3|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#3| |#1|)) (-15 -1470 ((-1 |#1| (-782)) |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2141 (|#4| |#1|)) (-15 -3187 ((-112) |#1|)) (-15 -2213 ((-782) |#1| |#3|)) (-15 -3552 ((-655 (-782)) |#1| |#3|)) (-15 -2213 ((-782) |#1|)) (-15 -3552 ((-655 (-782)) |#1|)) (-15 -1753 ((-782) |#1| |#3|)) (-15 -3369 ((-782) |#1|)) (-15 -3369 ((-782) |#1| |#3|)) (-15 -2425 ((-655 |#3|) |#1|)) (-15 -1470 ((-1 |#1| (-782)) |#3|)) (-15 -2882 (|#1| |#3|)) (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1753 ((-655 (-782)) |#1| (-655 |#4|))) (-15 -1753 ((-782) |#1| |#4|)) (-15 -2882 (|#1| |#4|)) (-15 -2443 ((-3 |#4| "failed") |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#4| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#4| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1753 (|#5| |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2382 (|#1| |#1| |#4|)) (-15 -2382 (|#1| |#1| (-655 |#4|))) (-15 -2382 (|#1| |#1| |#4| (-782))) (-15 -2382 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-259 |#2| |#3| |#4| |#5|) (-1066) (-861) (-274 |#3|) (-804)) (T -258))
-NIL
-(-10 -8 (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2882 (|#1| |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -3046 (|#1| |#1| (-655 |#3|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#3| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#3|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#3| |#1|)) (-15 -1470 ((-1 |#1| (-782)) |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -2814 (|#1| |#1|)) (-15 -2141 (|#4| |#1|)) (-15 -3187 ((-112) |#1|)) (-15 -2213 ((-782) |#1| |#3|)) (-15 -3552 ((-655 (-782)) |#1| |#3|)) (-15 -2213 ((-782) |#1|)) (-15 -3552 ((-655 (-782)) |#1|)) (-15 -1753 ((-782) |#1| |#3|)) (-15 -3369 ((-782) |#1|)) (-15 -3369 ((-782) |#1| |#3|)) (-15 -2425 ((-655 |#3|) |#1|)) (-15 -1470 ((-1 |#1| (-782)) |#3|)) (-15 -2882 (|#1| |#3|)) (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1753 ((-655 (-782)) |#1| (-655 |#4|))) (-15 -1753 ((-782) |#1| |#4|)) (-15 -2882 (|#1| |#4|)) (-15 -2443 ((-3 |#4| "failed") |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#4| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#4| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1753 (|#5| |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2382 (|#1| |#1| |#4|)) (-15 -2382 (|#1| |#1| (-655 |#4|))) (-15 -2382 (|#1| |#1| |#4| (-782))) (-15 -2382 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3552 (((-655 (-782)) $) 234) (((-655 (-782)) $ |#2|) 232)) (-2213 (((-782) $) 233) (((-782) $ |#2|) 231)) (-1606 (((-655 |#3|) $) 113)) (-3462 (((-1190 $) $ |#3|) 128) (((-1190 |#1|) $) 127)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-2456 (($ $) 91 (|has| |#1| (-567)))) (-3978 (((-112) $) 93 (|has| |#1| (-567)))) (-3508 (((-782) $) 115) (((-782) $ (-655 |#3|)) 114)) (-1708 (((-3 $ "failed") $ $) 20)) (-4005 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-3312 (($ $) 101 (|has| |#1| (-463)))) (-4281 (((-429 $) $) 100 (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-3783 (($ $) 227)) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 241)) (-4400 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) ((|#3| $) 142) ((|#2| $) 242)) (-4171 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4406 (($ $) 159)) (-2862 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-4162 (((-3 $ "failed") $) 37)) (-2379 (($ $) 181 (|has| |#1| (-463))) (($ $ |#3|) 108 (|has| |#1| (-463)))) (-4393 (((-655 $) $) 112)) (-3559 (((-112) $) 99 (|has| |#1| (-924)))) (-4384 (($ $ |#1| |#4| $) 177)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| |#3| (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| |#3| (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3369 (((-782) $ |#2|) 237) (((-782) $) 236)) (-3900 (((-112) $) 35)) (-1403 (((-782) $) 174)) (-2430 (($ (-1190 |#1|) |#3|) 120) (($ (-1190 $) |#3|) 119)) (-1719 (((-655 $) $) 129)) (-3135 (((-112) $) 157)) (-2414 (($ |#1| |#4|) 158) (($ $ |#3| (-782)) 122) (($ $ (-655 |#3|) (-655 (-782))) 121)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#3|) 123)) (-3143 ((|#4| $) 175) (((-782) $ |#3|) 125) (((-655 (-782)) $ (-655 |#3|)) 124)) (-1946 (($ (-1 |#4| |#4|) $) 176)) (-2544 (($ (-1 |#1| |#1|) $) 156)) (-1470 (((-1 $ (-782)) |#2|) 239) (((-1 $ (-782)) $) 226 (|has| |#1| (-238)))) (-2187 (((-3 |#3| "failed") $) 126)) (-4370 (($ $) 154)) (-4383 ((|#1| $) 153)) (-2141 ((|#3| $) 229)) (-3886 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-4264 (((-1176) $) 10)) (-3187 (((-112) $) 230)) (-1445 (((-3 (-655 $) "failed") $) 117)) (-1512 (((-3 (-655 $) "failed") $) 118)) (-2329 (((-3 (-2 (|:| |var| |#3|) (|:| -1658 (-782))) "failed") $) 116)) (-2814 (($ $) 228)) (-3912 (((-1137) $) 11)) (-4346 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3923 (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2347 (((-429 $) $) 102 (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-655 |#3|) (-655 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-655 |#3|) (-655 $)) 143) (($ $ |#2| $) 225 (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 $)) 224 (|has| |#1| (-238))) (($ $ |#2| |#1|) 223 (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 |#1|)) 222 (|has| |#1| (-238)))) (-2801 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2382 (($ $ (-655 |#3|) (-655 (-782))) 44) (($ $ |#3| (-782)) 43) (($ $ (-655 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-782)) 245) (($ $) 221 (|has| |#1| (-237))) (($ $ (-782)) 219 (|has| |#1| (-237))) (($ $ (-1194)) 217 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 215 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 214 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 213 (|has| |#1| (-915 (-1194))))) (-2425 (((-655 |#2|) $) 238)) (-1753 ((|#4| $) 155) (((-782) $ |#3|) 133) (((-655 (-782)) $ (-655 |#3|)) 132) (((-782) $ |#2|) 235)) (-2613 (((-904 (-389)) $) 85 (-12 (|has| |#3| (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| |#3| (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| |#3| (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ |#3|) 109 (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3224 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 240) (($ (-418 (-575))) 81 (-3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575)))))) (($ $) 88 (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) 173)) (-3002 ((|#1| $ |#4|) 160) (($ $ |#3| (-782)) 131) (($ $ (-655 |#3|) (-655 (-782))) 130)) (-1724 (((-3 $ "failed") $) 82 (-3763 (-3224 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) 32 T CONST)) (-1982 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-655 |#3|) (-655 (-782))) 47) (($ $ |#3| (-782)) 46) (($ $ (-655 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) (-782)) 243) (($ $) 220 (|has| |#1| (-237))) (($ $ (-782)) 218 (|has| |#1| (-237))) (($ $ (-1194)) 216 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 212 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 211 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 210 (|has| |#1| (-915 (-1194))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-259 |#1| |#2| |#3| |#4|) (-141) (-1066) (-861) (-274 |t#2|) (-804)) (T -259))
-((-1470 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *4 *3 *5 *6)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 *4)))) (-3369 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782)))) (-1753 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 (-782))))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782)))) (-3552 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-655 (-782))))) (-2213 (*1 *2 *1 *3) (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-112)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-804)) (-4 *2 (-274 *4)))) (-2814 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861)) (-4 *4 (-274 *3)) (-4 *5 (-804)))) (-3783 (*1 *1 *1) (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861)) (-4 *4 (-274 *3)) (-4 *5 (-804)))) (-1470 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *3 *4 *5 *6)))))
-(-13 (-964 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1055 |t#2|) (-10 -8 (-15 -1470 ((-1 $ (-782)) |t#2|)) (-15 -2425 ((-655 |t#2|) $)) (-15 -3369 ((-782) $ |t#2|)) (-15 -3369 ((-782) $)) (-15 -1753 ((-782) $ |t#2|)) (-15 -3552 ((-655 (-782)) $)) (-15 -2213 ((-782) $)) (-15 -3552 ((-655 (-782)) $ |t#2|)) (-15 -2213 ((-782) $ |t#2|)) (-15 -3187 ((-112) $)) (-15 -2141 (|t#3| $)) (-15 -2814 ($ $)) (-15 -3783 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-525 |t#2| |t#1|)) (-6 (-525 |t#2| $)) (-6 (-318 $)) (-15 -1470 ((-1 $ (-782)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 |#2|) . T) ((-627 |#3|) . T) ((-627 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) ((-234 $) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-299) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-318 $) . T) ((-335 |#1| |#4|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3763 (|has| |#1| (-924)) (|has| |#1| (-463))) ((-525 |#2| |#1|) |has| |#1| (-238)) ((-525 |#2| $) |has| |#1| (-238)) ((-525 |#3| |#1|) . T) ((-525 |#3| $) . T) ((-525 $ $) . T) ((-567) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-737) . T) ((-908 $ #2=(-1194)) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-908 $ |#3|) . T) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-913 |#3|) . T) ((-915 #2#) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-915 |#3|) . T) ((-898 (-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) ((-964 |#1| |#4| |#3|) . T) ((-924) |has| |#1| (-924)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1055 |#2|) . T) ((-1055 |#3|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-924)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-1715 ((|#1| $) 55)) (-2006 ((|#1| $) 45)) (-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-2706 (($ $) 61)) (-3086 (($ $) 49)) (-3107 ((|#1| |#1| $) 47)) (-1597 ((|#1| $) 46)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-1840 (((-782) $) 62)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-3647 ((|#1| |#1| $) 53)) (-2731 ((|#1| |#1| $) 52)) (-4218 (($ |#1| $) 41)) (-3340 (((-782) $) 56)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-4225 ((|#1| $) 63)) (-3867 ((|#1| $) 51)) (-3441 ((|#1| $) 50)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3420 ((|#1| |#1| $) 59)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2191 ((|#1| $) 60)) (-2552 (($) 58) (($ (-655 |#1|)) 57)) (-3321 (((-782) $) 44)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-4434 ((|#1| $) 54)) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-1917 ((|#1| $) 64)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-260 |#1|) (-141) (-1235)) (T -260))
-((-2552 (*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-260 *3)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-4434 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-3647 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-2731 (*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))) (-3086 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(-13 (-1138 |t#1|) (-1012 |t#1|) (-10 -8 (-15 -2552 ($)) (-15 -2552 ($ (-655 |t#1|))) (-15 -3340 ((-782) $)) (-15 -1715 (|t#1| $)) (-15 -4434 (|t#1| $)) (-15 -3647 (|t#1| |t#1| $)) (-15 -2731 (|t#1| |t#1| $)) (-15 -3867 (|t#1| $)) (-15 -3441 (|t#1| $)) (-15 -3086 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1012 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1138 |#1|) . T) ((-1235) . T))
-((-3628 (((-1 (-958 (-227)) (-227) (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1741 (((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389))) 173) (((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 171) (((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 176) (((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 172) (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 164) (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 163) (((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389))) 145) (((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269))) 143) (((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389))) 144) (((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269))) 141)) (-1698 (((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389))) 175) (((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 174) (((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 178) (((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 177) (((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389))) 166) (((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269))) 165) (((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389))) 151) (((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269))) 150) (((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389))) 149) (((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269))) 148) (((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389))) 113) (((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269))) 112) (((-1286) (-1 (-227) (-227)) (-1111 (-389))) 107) (((-1286) (-1 (-227) (-227)) (-1111 (-389)) (-655 (-269))) 105)))
-(((-261) (-10 -7 (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -3628 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -261))
-((-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *2 (-1286)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *2 (-1286)) (-5 *1 (-261)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261)))))
-(-10 -7 (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-1 (-227) (-227)) (-1111 (-389)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 (-1 (-227) (-227))) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-389)) (-1111 (-389)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 (-1 (-227) (-227) (-227))) (-1111 (-389)) (-1111 (-389)))) (-15 -3628 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-1698 (((-1286) (-303 |#2|) (-1194) (-1194) (-655 (-269))) 101)))
-(((-262 |#1| |#2|) (-10 -7 (-15 -1698 ((-1286) (-303 |#2|) (-1194) (-1194) (-655 (-269))))) (-13 (-567) (-861) (-1055 (-575))) (-441 |#1|)) (T -262))
-((-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-303 *7)) (-5 *4 (-1194)) (-5 *5 (-655 (-269))) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-861) (-1055 (-575)))) (-5 *2 (-1286)) (-5 *1 (-262 *6 *7)))))
-(-10 -7 (-15 -1698 ((-1286) (-303 |#2|) (-1194) (-1194) (-655 (-269)))))
-((-4345 (((-575) (-575)) 71)) (-3634 (((-575) (-575)) 72)) (-4387 (((-227) (-227)) 73)) (-3061 (((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227))) 70)) (-1443 (((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)) (-112)) 68)))
-(((-263) (-10 -7 (-15 -1443 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)) (-112))) (-15 -3061 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -4345 ((-575) (-575))) (-15 -3634 ((-575) (-575))) (-15 -4387 ((-227) (-227))))) (T -263))
-((-4387 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263)))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263)))) (-3061 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227))) (-5 *2 (-1287)) (-5 *1 (-263)))) (-1443 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227))) (-5 *5 (-112)) (-5 *2 (-1287)) (-5 *1 (-263)))))
-(-10 -7 (-15 -1443 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)) (-112))) (-15 -3061 ((-1287) (-1 (-171 (-227)) (-171 (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -4345 ((-575) (-575))) (-15 -3634 ((-575) (-575))) (-15 -4387 ((-227) (-227))))
-((-2882 (((-1109 (-389)) (-1109 (-325 |#1|))) 16)))
-(((-264 |#1|) (-10 -7 (-15 -2882 ((-1109 (-389)) (-1109 (-325 |#1|))))) (-13 (-861) (-567) (-625 (-389)))) (T -264))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-1109 (-325 *4))) (-4 *4 (-13 (-861) (-567) (-625 (-389)))) (-5 *2 (-1109 (-389))) (-5 *1 (-264 *4)))))
-(-10 -7 (-15 -2882 ((-1109 (-389)) (-1109 (-325 |#1|)))))
-((-1741 (((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389))) 75) (((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 74) (((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389))) 65) (((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 64) (((-1150 (-227)) (-891 |#1|) (-1109 (-389))) 56) (((-1150 (-227)) (-891 |#1|) (-1109 (-389)) (-655 (-269))) 55)) (-1698 (((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389))) 78) (((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 77) (((-1287) |#1| (-1109 (-389)) (-1109 (-389))) 68) (((-1287) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269))) 67) (((-1287) (-891 |#1|) (-1109 (-389))) 60) (((-1287) (-891 |#1|) (-1109 (-389)) (-655 (-269))) 59) (((-1286) (-889 |#1|) (-1109 (-389))) 47) (((-1286) (-889 |#1|) (-1109 (-389)) (-655 (-269))) 46) (((-1286) |#1| (-1109 (-389))) 38) (((-1286) |#1| (-1109 (-389)) (-655 (-269))) 36)))
-(((-265 |#1|) (-10 -7 (-15 -1698 ((-1286) |#1| (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) |#1| (-1109 (-389)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389))))) (-13 (-625 (-547)) (-1117))) (T -265))
-((-1741 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *5)))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *5)))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *6)))) (-1741 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1741 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1698 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1287)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1698 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *5)))) (-1741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *5)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287)) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1109 (-389))) (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286)) (-5 *1 (-265 *5)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286)) (-5 *1 (-265 *6)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1286)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117))))))
-(-10 -7 (-15 -1698 ((-1286) |#1| (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) |#1| (-1109 (-389)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1286) (-889 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-891 |#1|) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-891 |#1|) (-1109 (-389)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) |#1| (-1109 (-389)) (-1109 (-389)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1698 ((-1287) (-894 |#1|) (-1109 (-389)) (-1109 (-389)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)) (-655 (-269)))) (-15 -1741 ((-1150 (-227)) (-894 |#1|) (-1109 (-389)) (-1109 (-389)))))
-((-1698 (((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)) (-655 (-269))) 23) (((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227))) 24) (((-1286) (-655 (-958 (-227))) (-655 (-269))) 16) (((-1286) (-655 (-958 (-227)))) 17) (((-1286) (-655 (-227)) (-655 (-227)) (-655 (-269))) 20) (((-1286) (-655 (-227)) (-655 (-227))) 21)))
-(((-266) (-10 -7 (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)) (-655 (-269)))) (-15 -1698 ((-1286) (-655 (-958 (-227))))) (-15 -1698 ((-1286) (-655 (-958 (-227))) (-655 (-269)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)) (-655 (-269)))))) (T -266))
-((-1698 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1287)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-266)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *2 (-1286)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-266)))) (-1698 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1286)) (-5 *1 (-266)))))
-(-10 -7 (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1286) (-655 (-227)) (-655 (-227)) (-655 (-269)))) (-15 -1698 ((-1286) (-655 (-958 (-227))))) (-15 -1698 ((-1286) (-655 (-958 (-227))) (-655 (-269)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)))) (-15 -1698 ((-1287) (-655 (-227)) (-655 (-227)) (-655 (-227)) (-655 (-269)))))
-((-3188 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-655 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2046 (((-936) (-655 (-269)) (-936)) 52)) (-1451 (((-936) (-655 (-269)) (-936)) 51)) (-2490 (((-655 (-389)) (-655 (-269)) (-655 (-389))) 68)) (-2049 (((-389) (-655 (-269)) (-389)) 57)) (-1432 (((-936) (-655 (-269)) (-936)) 53)) (-4306 (((-112) (-655 (-269)) (-112)) 27)) (-2482 (((-1176) (-655 (-269)) (-1176)) 19)) (-4385 (((-1176) (-655 (-269)) (-1176)) 26)) (-3996 (((-1150 (-227)) (-655 (-269))) 46)) (-3072 (((-655 (-1111 (-389))) (-655 (-269)) (-655 (-1111 (-389)))) 40)) (-4323 (((-885) (-655 (-269)) (-885)) 32)) (-1831 (((-885) (-655 (-269)) (-885)) 33)) (-2522 (((-1 (-958 (-227)) (-958 (-227))) (-655 (-269)) (-1 (-958 (-227)) (-958 (-227)))) 63)) (-3446 (((-112) (-655 (-269)) (-112)) 14)) (-3181 (((-112) (-655 (-269)) (-112)) 13)))
-(((-267) (-10 -7 (-15 -3181 ((-112) (-655 (-269)) (-112))) (-15 -3446 ((-112) (-655 (-269)) (-112))) (-15 -3188 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-655 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2482 ((-1176) (-655 (-269)) (-1176))) (-15 -4385 ((-1176) (-655 (-269)) (-1176))) (-15 -4306 ((-112) (-655 (-269)) (-112))) (-15 -4323 ((-885) (-655 (-269)) (-885))) (-15 -1831 ((-885) (-655 (-269)) (-885))) (-15 -3072 ((-655 (-1111 (-389))) (-655 (-269)) (-655 (-1111 (-389))))) (-15 -1451 ((-936) (-655 (-269)) (-936))) (-15 -2046 ((-936) (-655 (-269)) (-936))) (-15 -3996 ((-1150 (-227)) (-655 (-269)))) (-15 -1432 ((-936) (-655 (-269)) (-936))) (-15 -2049 ((-389) (-655 (-269)) (-389))) (-15 -2522 ((-1 (-958 (-227)) (-958 (-227))) (-655 (-269)) (-1 (-958 (-227)) (-958 (-227))))) (-15 -2490 ((-655 (-389)) (-655 (-269)) (-655 (-389)))))) (T -267))
-((-2490 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-389))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2522 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2049 (*1 *2 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-1432 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-267)))) (-2046 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-1451 (*1 *2 *3 *2) (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3072 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-1831 (*1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4323 (*1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4306 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-4385 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-2482 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3446 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))) (-3181 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))))
-(-10 -7 (-15 -3181 ((-112) (-655 (-269)) (-112))) (-15 -3446 ((-112) (-655 (-269)) (-112))) (-15 -3188 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-655 (-269)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2482 ((-1176) (-655 (-269)) (-1176))) (-15 -4385 ((-1176) (-655 (-269)) (-1176))) (-15 -4306 ((-112) (-655 (-269)) (-112))) (-15 -4323 ((-885) (-655 (-269)) (-885))) (-15 -1831 ((-885) (-655 (-269)) (-885))) (-15 -3072 ((-655 (-1111 (-389))) (-655 (-269)) (-655 (-1111 (-389))))) (-15 -1451 ((-936) (-655 (-269)) (-936))) (-15 -2046 ((-936) (-655 (-269)) (-936))) (-15 -3996 ((-1150 (-227)) (-655 (-269)))) (-15 -1432 ((-936) (-655 (-269)) (-936))) (-15 -2049 ((-389) (-655 (-269)) (-389))) (-15 -2522 ((-1 (-958 (-227)) (-958 (-227))) (-655 (-269)) (-1 (-958 (-227)) (-958 (-227))))) (-15 -2490 ((-655 (-389)) (-655 (-269)) (-655 (-389)))))
-((-1848 (((-3 |#1| "failed") (-655 (-269)) (-1194)) 17)))
-(((-268 |#1|) (-10 -7 (-15 -1848 ((-3 |#1| "failed") (-655 (-269)) (-1194)))) (-1235)) (T -268))
-((-1848 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *1 (-268 *2)) (-4 *2 (-1235)))))
-(-10 -7 (-15 -1848 ((-3 |#1| "failed") (-655 (-269)) (-1194))))
-((-2859 (((-112) $ $) NIL)) (-3188 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2046 (($ (-936)) 81)) (-1451 (($ (-936)) 80)) (-2942 (($ (-655 (-389))) 87)) (-2049 (($ (-389)) 66)) (-1432 (($ (-936)) 82)) (-4306 (($ (-112)) 33)) (-2482 (($ (-1176)) 28)) (-4385 (($ (-1176)) 29)) (-3996 (($ (-1150 (-227))) 76)) (-3072 (($ (-655 (-1111 (-389)))) 72)) (-1974 (($ (-655 (-1111 (-389)))) 68) (($ (-655 (-1111 (-418 (-575))))) 71)) (-2608 (($ (-389)) 38) (($ (-885)) 42)) (-2596 (((-112) (-655 $) (-1194)) 100)) (-1848 (((-3 (-52) "failed") (-655 $) (-1194)) 102)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2484 (($ (-389)) 43) (($ (-885)) 44)) (-2209 (($ (-1 (-958 (-227)) (-958 (-227)))) 65)) (-2522 (($ (-1 (-958 (-227)) (-958 (-227)))) 83)) (-3384 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2882 (((-873) $) 93)) (-4178 (($ (-112)) 34) (($ (-655 (-1111 (-389)))) 60)) (-3685 (((-112) $ $) NIL)) (-3181 (($ (-112)) 35)) (-3913 (((-112) $ $) 97)))
-(((-269) (-13 (-1117) (-10 -8 (-15 -3181 ($ (-112))) (-15 -4178 ($ (-112))) (-15 -3188 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2482 ($ (-1176))) (-15 -4385 ($ (-1176))) (-15 -4306 ($ (-112))) (-15 -4178 ($ (-655 (-1111 (-389))))) (-15 -2209 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -2608 ($ (-389))) (-15 -2608 ($ (-885))) (-15 -2484 ($ (-389))) (-15 -2484 ($ (-885))) (-15 -3384 ($ (-1 (-227) (-227)))) (-15 -3384 ($ (-1 (-227) (-227) (-227)))) (-15 -3384 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2049 ($ (-389))) (-15 -1974 ($ (-655 (-1111 (-389))))) (-15 -1974 ($ (-655 (-1111 (-418 (-575)))))) (-15 -3072 ($ (-655 (-1111 (-389))))) (-15 -3996 ($ (-1150 (-227)))) (-15 -1451 ($ (-936))) (-15 -2046 ($ (-936))) (-15 -1432 ($ (-936))) (-15 -2522 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -2942 ($ (-655 (-389)))) (-15 -1848 ((-3 (-52) "failed") (-655 $) (-1194))) (-15 -2596 ((-112) (-655 $) (-1194)))))) (T -269))
-((-3181 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-3188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-269)))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269)))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269)))) (-4306 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-418 (-575))))) (-5 *1 (-269)))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))) (-3996 (*1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-269)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))) (-1432 (*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))) (-2522 (*1 *1 *2) (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-269)))) (-1848 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-52)) (-5 *1 (-269)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-112)) (-5 *1 (-269)))))
-(-13 (-1117) (-10 -8 (-15 -3181 ($ (-112))) (-15 -4178 ($ (-112))) (-15 -3188 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2482 ($ (-1176))) (-15 -4385 ($ (-1176))) (-15 -4306 ($ (-112))) (-15 -4178 ($ (-655 (-1111 (-389))))) (-15 -2209 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -2608 ($ (-389))) (-15 -2608 ($ (-885))) (-15 -2484 ($ (-389))) (-15 -2484 ($ (-885))) (-15 -3384 ($ (-1 (-227) (-227)))) (-15 -3384 ($ (-1 (-227) (-227) (-227)))) (-15 -3384 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2049 ($ (-389))) (-15 -1974 ($ (-655 (-1111 (-389))))) (-15 -1974 ($ (-655 (-1111 (-418 (-575)))))) (-15 -3072 ($ (-655 (-1111 (-389))))) (-15 -3996 ($ (-1150 (-227)))) (-15 -1451 ($ (-936))) (-15 -2046 ($ (-936))) (-15 -1432 ($ (-936))) (-15 -2522 ($ (-1 (-958 (-227)) (-958 (-227))))) (-15 -2942 ($ (-655 (-389)))) (-15 -1848 ((-3 (-52) "failed") (-655 $) (-1194))) (-15 -2596 ((-112) (-655 $) (-1194)))))
-((-2382 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) 11) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) 19) (($ $ (-782)) NIL) (($ $) 16)) (-3428 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-782)) 14) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)))
-(((-270 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -3428 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -3428 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3428 (|#1| |#1| (-655 (-1194)))) (-15 -3428 (|#1| |#1| (-1194) (-782))) (-15 -3428 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3428 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -3428 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|)))) (-271 |#2|) (-1235)) (T -270))
-NIL
-(-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -3428 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -3428 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3428 (|#1| |#1| (-655 (-1194)))) (-15 -3428 (|#1| |#1| (-1194) (-782))) (-15 -3428 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -3428 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -3428 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))))
-((-2382 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-782)) 22) (($ $ (-655 (-1194)) (-655 (-782))) 16 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 15 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 14 (|has| |#1| (-915 (-1194)))) (($ $ (-1194)) 12 (|has| |#1| (-915 (-1194)))) (($ $ (-782)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-3428 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-782)) 20) (($ $ (-655 (-1194)) (-655 (-782))) 19 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 18 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 17 (|has| |#1| (-915 (-1194)))) (($ $ (-1194)) 13 (|has| |#1| (-915 (-1194)))) (($ $ (-782)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237)))))
-(((-271 |#1|) (-141) (-1235)) (T -271))
-((-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4)) (-4 *4 (-1235)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235)))) (-3428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4)) (-4 *4 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2382 ($ $ (-1 |t#1| |t#1|))) (-15 -2382 ($ $ (-1 |t#1| |t#1|) (-782))) (-15 -3428 ($ $ (-1 |t#1| |t#1|))) (-15 -3428 ($ $ (-1 |t#1| |t#1|) (-782))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-915 (-1194))) (-6 (-915 (-1194))) |%noBranch|)))
-(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-908 $ #0=(-1194)) |has| |#1| (-915 (-1194))) ((-915 #0#) |has| |#1| (-915 (-1194))) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3552 (((-655 (-782)) $) NIL) (((-655 (-782)) $ |#2|) NIL)) (-2213 (((-782) $) NIL) (((-782) $ |#2|) NIL)) (-1606 (((-655 |#3|) $) NIL)) (-3462 (((-1190 $) $ |#3|) NIL) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 |#3|)) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3783 (($ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1142 |#1| |#2|) "failed") $) 23)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1142 |#1| |#2|) $) NIL)) (-4171 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ |#3|) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-542 |#3|) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))))) (-3369 (((-782) $ |#2|) NIL) (((-782) $) 10)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#1|) |#3|) NIL) (($ (-1190 $) |#3|) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-542 |#3|)) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#3|) NIL)) (-3143 (((-542 |#3|) $) NIL) (((-782) $ |#3|) NIL) (((-655 (-782)) $ (-655 |#3|)) NIL)) (-1946 (($ (-1 (-542 |#3|) (-542 |#3|)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-1470 (((-1 $ (-782)) |#2|) NIL) (((-1 $ (-782)) $) NIL (|has| |#1| (-238)))) (-2187 (((-3 |#3| "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2141 ((|#3| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-3187 (((-112) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| |#3|) (|:| -1658 (-782))) "failed") $) NIL)) (-2814 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-655 |#3|) (-655 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-655 |#3|) (-655 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-655 |#2|) (-655 |#1|)) NIL (|has| |#1| (-238)))) (-2801 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 |#3|) (-655 (-782))) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-2425 (((-655 |#2|) $) NIL)) (-1753 (((-542 |#3|) $) NIL) (((-782) $ |#3|) NIL) (((-655 (-782)) $ (-655 |#3|)) NIL) (((-782) $ |#2|) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))))) (-3696 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ |#3|) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1142 |#1| |#2|)) 32) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-542 |#3|)) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 |#3|) (-655 (-782))) NIL) (($ $ |#3| (-782)) NIL) (($ $ (-655 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-272 |#1| |#2| |#3|) (-13 (-259 |#1| |#2| |#3| (-542 |#3|)) (-1055 (-1142 |#1| |#2|))) (-1066) (-861) (-274 |#2|)) (T -272))
-NIL
-(-13 (-259 |#1| |#2| |#3| (-542 |#3|)) (-1055 (-1142 |#1| |#2|)))
-((-2213 (((-782) $) 37)) (-2443 (((-3 |#2| "failed") $) 22)) (-4400 ((|#2| $) 33)) (-2382 (($ $ (-782)) 18) (($ $) 14)) (-2882 (((-873) $) 32) (($ |#2|) 11)) (-3913 (((-112) $ $) 26)) (-3940 (((-112) $ $) 36)))
-(((-273 |#1| |#2|) (-10 -8 (-15 -2213 ((-782) |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -3940 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-274 |#2|) (-861)) (T -273))
-NIL
-(-10 -8 (-15 -2213 ((-782) |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -3940 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2213 (((-782) $) 22)) (-1441 ((|#1| $) 23)) (-2443 (((-3 |#1| "failed") $) 27)) (-4400 ((|#1| $) 28)) (-3369 (((-782) $) 24)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-1470 (($ |#1| (-782)) 25)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2382 (($ $ (-782)) 31) (($ $) 29)) (-2882 (((-873) $) 12) (($ |#1|) 26)) (-3685 (((-112) $ $) 9)) (-3428 (($ $ (-782)) 32) (($ $) 30)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)))
-(((-274 |#1|) (-141) (-861)) (T -274))
-((-2882 (*1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861)))) (-1470 (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-274 *2)) (-4 *2 (-861)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782)))))
-(-13 (-861) (-237) (-1055 |t#1|) (-10 -8 (-15 -1470 ($ |t#1| (-782))) (-15 -3369 ((-782) $)) (-15 -1441 (|t#1| $)) (-15 -2213 ((-782) $)) (-15 -2882 ($ |t#1|))))
-(((-102) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-234 $) . T) ((-237) . T) ((-861) . T) ((-1055 |#1|) . T) ((-1117) . T) ((-1235) . T))
-((-1606 (((-655 (-1194)) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 53)) (-3486 (((-655 (-1194)) (-325 (-227)) (-782)) 94)) (-2296 (((-3 (-325 (-227)) "failed") (-325 (-227))) 63)) (-3849 (((-325 (-227)) (-325 (-227))) 79)) (-2060 (((-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 38)) (-1726 (((-112) (-655 (-325 (-227)))) 104)) (-3819 (((-112) (-325 (-227))) 36)) (-3272 (((-655 (-1176)) (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))))) 132)) (-3934 (((-655 (-325 (-227))) (-655 (-325 (-227)))) 108)) (-3800 (((-655 (-325 (-227))) (-655 (-325 (-227)))) 106)) (-2991 (((-700 (-227)) (-655 (-325 (-227))) (-782)) 120)) (-2971 (((-112) (-325 (-227))) 31) (((-112) (-655 (-325 (-227)))) 105)) (-4110 (((-655 (-227)) (-655 (-854 (-227))) (-227)) 15)) (-3404 (((-389) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 126)) (-3152 (((-1052) (-1194) (-1052)) 46)))
-(((-275) (-10 -7 (-15 -4110 ((-655 (-227)) (-655 (-854 (-227))) (-227))) (-15 -2060 ((-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2296 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -3849 ((-325 (-227)) (-325 (-227)))) (-15 -1726 ((-112) (-655 (-325 (-227))))) (-15 -2971 ((-112) (-655 (-325 (-227))))) (-15 -2971 ((-112) (-325 (-227)))) (-15 -2991 ((-700 (-227)) (-655 (-325 (-227))) (-782))) (-15 -3800 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -3934 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -3819 ((-112) (-325 (-227)))) (-15 -1606 ((-655 (-1194)) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -3486 ((-655 (-1194)) (-325 (-227)) (-782))) (-15 -3152 ((-1052) (-1194) (-1052))) (-15 -3404 ((-389) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -3272 ((-655 (-1176)) (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))))))) (T -275))
-((-3272 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))))) (-5 *2 (-655 (-1176))) (-5 *1 (-275)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) (-5 *2 (-389)) (-5 *1 (-275)))) (-3152 (*1 *2 *3 *2) (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-275)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-782)) (-5 *2 (-655 (-1194))) (-5 *1 (-275)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) (-5 *2 (-655 (-1194))) (-5 *1 (-275)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *4 (-782)) (-5 *2 (-700 (-227))) (-5 *1 (-275)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-275)))) (-2296 (*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-275)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *1 (-275)))) (-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-854 (-227)))) (-5 *4 (-227)) (-5 *2 (-655 *4)) (-5 *1 (-275)))))
-(-10 -7 (-15 -4110 ((-655 (-227)) (-655 (-854 (-227))) (-227))) (-15 -2060 ((-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2296 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -3849 ((-325 (-227)) (-325 (-227)))) (-15 -1726 ((-112) (-655 (-325 (-227))))) (-15 -2971 ((-112) (-655 (-325 (-227))))) (-15 -2971 ((-112) (-325 (-227)))) (-15 -2991 ((-700 (-227)) (-655 (-325 (-227))) (-782))) (-15 -3800 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -3934 ((-655 (-325 (-227))) (-655 (-325 (-227))))) (-15 -3819 ((-112) (-325 (-227)))) (-15 -1606 ((-655 (-1194)) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -3486 ((-655 (-1194)) (-325 (-227)) (-782))) (-15 -3152 ((-1052) (-1194) (-1052))) (-15 -3404 ((-389) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -3272 ((-655 (-1176)) (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))))))
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 56)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 32) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-276) (-850)) (T -276))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 72) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 63)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 41) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 43)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-277) (-850)) (T -277))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 90) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 85)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 52) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 65)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-278) (-850)) (T -278))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 73)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 45) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-279) (-850)) (T -279))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 65)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 31) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-280) (-850)) (T -280))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 90)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 33) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-281) (-850)) (T -281))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 87)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 32) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-282) (-850)) (T -282))
-NIL
-(-850)
-((-2859 (((-112) $ $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4000 (((-655 (-575)) $) 29)) (-1753 (((-782) $) 27)) (-2882 (((-873) $) 33) (($ (-655 (-575))) 23)) (-3685 (((-112) $ $) NIL)) (-3706 (($ (-782)) 30)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 9)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 17)))
-(((-283) (-13 (-861) (-10 -8 (-15 -2882 ($ (-655 (-575)))) (-15 -1753 ((-782) $)) (-15 -4000 ((-655 (-575)) $)) (-15 -3706 ($ (-782)))))) (T -283))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-283)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-283)))))
-(-13 (-861) (-10 -8 (-15 -2882 ($ (-655 (-575)))) (-15 -1753 ((-782) $)) (-15 -4000 ((-655 (-575)) $)) (-15 -3706 ($ (-782)))))
-((-3921 ((|#2| |#2|) 77)) (-3784 ((|#2| |#2|) 65)) (-1704 (((-3 |#2| "failed") |#2| (-655 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3895 ((|#2| |#2|) 75)) (-3759 ((|#2| |#2|) 63)) (-1521 ((|#2| |#2|) 79)) (-3805 ((|#2| |#2|) 67)) (-1632 ((|#2|) 46)) (-2567 (((-115) (-115)) 100)) (-3461 ((|#2| |#2|) 61)) (-3163 (((-112) |#2|) 147)) (-1815 ((|#2| |#2|) 195)) (-4105 ((|#2| |#2|) 171)) (-3659 ((|#2|) 59)) (-1861 ((|#2|) 58)) (-3268 ((|#2| |#2|) 191)) (-3059 ((|#2| |#2|) 167)) (-2035 ((|#2| |#2|) 199)) (-2355 ((|#2| |#2|) 175)) (-3519 ((|#2| |#2|) 163)) (-2881 ((|#2| |#2|) 165)) (-2238 ((|#2| |#2|) 201)) (-1836 ((|#2| |#2|) 177)) (-4437 ((|#2| |#2|) 197)) (-2446 ((|#2| |#2|) 173)) (-1385 ((|#2| |#2|) 193)) (-2154 ((|#2| |#2|) 169)) (-2179 ((|#2| |#2|) 207)) (-2363 ((|#2| |#2|) 183)) (-3670 ((|#2| |#2|) 203)) (-1520 ((|#2| |#2|) 179)) (-3972 ((|#2| |#2|) 211)) (-3162 ((|#2| |#2|) 187)) (-1522 ((|#2| |#2|) 213)) (-1813 ((|#2| |#2|) 189)) (-2007 ((|#2| |#2|) 209)) (-2509 ((|#2| |#2|) 185)) (-4151 ((|#2| |#2|) 205)) (-4278 ((|#2| |#2|) 181)) (-2663 ((|#2| |#2|) 62)) (-1531 ((|#2| |#2|) 80)) (-3815 ((|#2| |#2|) 68)) (-3935 ((|#2| |#2|) 78)) (-3795 ((|#2| |#2|) 66)) (-3907 ((|#2| |#2|) 76)) (-3772 ((|#2| |#2|) 64)) (-1825 (((-112) (-115)) 98)) (-1569 ((|#2| |#2|) 83)) (-3850 ((|#2| |#2|) 71)) (-1544 ((|#2| |#2|) 81)) (-3826 ((|#2| |#2|) 69)) (-1593 ((|#2| |#2|) 85)) (-3871 ((|#2| |#2|) 73)) (-2912 ((|#2| |#2|) 86)) (-3883 ((|#2| |#2|) 74)) (-1583 ((|#2| |#2|) 84)) (-3861 ((|#2| |#2|) 72)) (-1554 ((|#2| |#2|) 82)) (-3837 ((|#2| |#2|) 70)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -2663 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3784 (|#2| |#2|)) (-15 -3795 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -1632 (|#2|)) (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -1861 (|#2|)) (-15 -3659 (|#2|)) (-15 -2881 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3059 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -2446 (|#2| |#2|)) (-15 -2355 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -4278 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -3162 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -3268 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1815 (|#2| |#2|)) (-15 -4437 (|#2| |#2|)) (-15 -2035 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#2| (-655 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3163 ((-112) |#2|))) (-567) (-13 (-441 |#1|) (-1019))) (T -284))
-((-3163 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-441 *4) (-1019))))) (-1704 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-655 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-441 *4) (-1019))) (-4 *4 (-567)) (-5 *1 (-284 *4 *2)))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3972 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2007 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2035 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4437 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1815 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3268 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3162 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4278 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1836 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2355 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3059 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2881 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3659 (*1 *2) (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) (-4 *3 (-567)))) (-1861 (*1 *2) (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) (-4 *3 (-567)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-284 *3 *4)) (-4 *4 (-13 (-441 *3) (-1019))))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019))))) (-1632 (*1 *2) (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2)) (-4 *3 (-567)))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))) (-2663 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019))))))
-(-10 -7 (-15 -2663 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3784 (|#2| |#2|)) (-15 -3795 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3861 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3895 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3935 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1583 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -1632 (|#2|)) (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -1861 (|#2|)) (-15 -3659 (|#2|)) (-15 -2881 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3059 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -2446 (|#2| |#2|)) (-15 -2355 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -4278 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -3162 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -3268 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -1815 (|#2| |#2|)) (-15 -4437 (|#2| |#2|)) (-15 -2035 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -3972 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1704 ((-3 |#2| "failed") |#2| (-655 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3163 ((-112) |#2|)))
-((-2895 (((-3 |#2| "failed") (-655 (-623 |#2|)) |#2| (-1194)) 151)) (-2243 ((|#2| (-418 (-575)) |#2|) 49)) (-3092 ((|#2| |#2| (-623 |#2|)) 144)) (-4236 (((-2 (|:| |func| |#2|) (|:| |kers| (-655 (-623 |#2|))) (|:| |vals| (-655 |#2|))) |#2| (-1194)) 143)) (-1727 ((|#2| |#2| (-1194)) 20) ((|#2| |#2|) 23)) (-2226 ((|#2| |#2| (-1194)) 157) ((|#2| |#2|) 155)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -2226 (|#2| |#2|)) (-15 -2226 (|#2| |#2| (-1194))) (-15 -4236 ((-2 (|:| |func| |#2|) (|:| |kers| (-655 (-623 |#2|))) (|:| |vals| (-655 |#2|))) |#2| (-1194))) (-15 -1727 (|#2| |#2|)) (-15 -1727 (|#2| |#2| (-1194))) (-15 -2895 ((-3 |#2| "failed") (-655 (-623 |#2|)) |#2| (-1194))) (-15 -3092 (|#2| |#2| (-623 |#2|))) (-15 -2243 (|#2| (-418 (-575)) |#2|))) (-13 (-567) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -285))
-((-2243 (*1 *2 *3 *2) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-3092 (*1 *2 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)))) (-2895 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-1194)) (-4 *2 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *5 *2)))) (-1727 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-655 (-623 *3))) (|:| |vals| (-655 *3)))) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-2226 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))))
-(-10 -7 (-15 -2226 (|#2| |#2|)) (-15 -2226 (|#2| |#2| (-1194))) (-15 -4236 ((-2 (|:| |func| |#2|) (|:| |kers| (-655 (-623 |#2|))) (|:| |vals| (-655 |#2|))) |#2| (-1194))) (-15 -1727 (|#2| |#2|)) (-15 -1727 (|#2| |#2| (-1194))) (-15 -2895 ((-3 |#2| "failed") (-655 (-623 |#2|)) |#2| (-1194))) (-15 -3092 (|#2| |#2| (-623 |#2|))) (-15 -2243 (|#2| (-418 (-575)) |#2|)))
-((-1925 (((-3 |#3| "failed") |#3|) 120)) (-3921 ((|#3| |#3|) 142)) (-1630 (((-3 |#3| "failed") |#3|) 89)) (-3784 ((|#3| |#3|) 132)) (-2367 (((-3 |#3| "failed") |#3|) 65)) (-3895 ((|#3| |#3|) 140)) (-3257 (((-3 |#3| "failed") |#3|) 53)) (-3759 ((|#3| |#3|) 130)) (-1875 (((-3 |#3| "failed") |#3|) 122)) (-1521 ((|#3| |#3|) 144)) (-2787 (((-3 |#3| "failed") |#3|) 91)) (-3805 ((|#3| |#3|) 134)) (-2829 (((-3 |#3| "failed") |#3| (-782)) 41)) (-3787 (((-3 |#3| "failed") |#3|) 81)) (-3461 ((|#3| |#3|) 129)) (-1581 (((-3 |#3| "failed") |#3|) 51)) (-2663 ((|#3| |#3|) 128)) (-2863 (((-3 |#3| "failed") |#3|) 123)) (-1531 ((|#3| |#3|) 145)) (-2890 (((-3 |#3| "failed") |#3|) 92)) (-3815 ((|#3| |#3|) 135)) (-1337 (((-3 |#3| "failed") |#3|) 121)) (-3935 ((|#3| |#3|) 143)) (-3555 (((-3 |#3| "failed") |#3|) 90)) (-3795 ((|#3| |#3|) 133)) (-3547 (((-3 |#3| "failed") |#3|) 67)) (-3907 ((|#3| |#3|) 141)) (-2240 (((-3 |#3| "failed") |#3|) 55)) (-3772 ((|#3| |#3|) 131)) (-1999 (((-3 |#3| "failed") |#3|) 73)) (-1569 ((|#3| |#3|) 148)) (-3263 (((-3 |#3| "failed") |#3|) 114)) (-3850 ((|#3| |#3|) 152)) (-3973 (((-3 |#3| "failed") |#3|) 69)) (-1544 ((|#3| |#3|) 146)) (-1628 (((-3 |#3| "failed") |#3|) 57)) (-3826 ((|#3| |#3|) 136)) (-2696 (((-3 |#3| "failed") |#3|) 77)) (-1593 ((|#3| |#3|) 150)) (-3553 (((-3 |#3| "failed") |#3|) 61)) (-3871 ((|#3| |#3|) 138)) (-2555 (((-3 |#3| "failed") |#3|) 79)) (-2912 ((|#3| |#3|) 151)) (-3707 (((-3 |#3| "failed") |#3|) 63)) (-3883 ((|#3| |#3|) 139)) (-3546 (((-3 |#3| "failed") |#3|) 75)) (-1583 ((|#3| |#3|) 149)) (-3254 (((-3 |#3| "failed") |#3|) 117)) (-3861 ((|#3| |#3|) 153)) (-3058 (((-3 |#3| "failed") |#3|) 71)) (-1554 ((|#3| |#3|) 147)) (-3206 (((-3 |#3| "failed") |#3|) 59)) (-3837 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-418 (-575))) 47 (|has| |#1| (-373)))))
-(((-286 |#1| |#2| |#3|) (-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2663 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1531 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -2912 (|#3| |#3|)))) (-38 (-418 (-575))) (-1276 |#1|) (-1247 |#1| |#2|)) (T -286))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3)) (-4 *5 (-1276 *4)) (-5 *1 (-286 *4 *5 *2)) (-4 *2 (-1247 *4 *5)))) (-2663 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3)) (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4)))))
-(-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2663 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1531 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -2912 (|#3| |#3|))))
-((-1925 (((-3 |#3| "failed") |#3|) 70)) (-3921 ((|#3| |#3|) 137)) (-1630 (((-3 |#3| "failed") |#3|) 54)) (-3784 ((|#3| |#3|) 125)) (-2367 (((-3 |#3| "failed") |#3|) 66)) (-3895 ((|#3| |#3|) 135)) (-3257 (((-3 |#3| "failed") |#3|) 50)) (-3759 ((|#3| |#3|) 123)) (-1875 (((-3 |#3| "failed") |#3|) 74)) (-1521 ((|#3| |#3|) 139)) (-2787 (((-3 |#3| "failed") |#3|) 58)) (-3805 ((|#3| |#3|) 127)) (-2829 (((-3 |#3| "failed") |#3| (-782)) 38)) (-3787 (((-3 |#3| "failed") |#3|) 48)) (-3461 ((|#3| |#3|) 111)) (-1581 (((-3 |#3| "failed") |#3|) 46)) (-2663 ((|#3| |#3|) 122)) (-2863 (((-3 |#3| "failed") |#3|) 76)) (-1531 ((|#3| |#3|) 140)) (-2890 (((-3 |#3| "failed") |#3|) 60)) (-3815 ((|#3| |#3|) 128)) (-1337 (((-3 |#3| "failed") |#3|) 72)) (-3935 ((|#3| |#3|) 138)) (-3555 (((-3 |#3| "failed") |#3|) 56)) (-3795 ((|#3| |#3|) 126)) (-3547 (((-3 |#3| "failed") |#3|) 68)) (-3907 ((|#3| |#3|) 136)) (-2240 (((-3 |#3| "failed") |#3|) 52)) (-3772 ((|#3| |#3|) 124)) (-1999 (((-3 |#3| "failed") |#3|) 78)) (-1569 ((|#3| |#3|) 143)) (-3263 (((-3 |#3| "failed") |#3|) 62)) (-3850 ((|#3| |#3|) 131)) (-3973 (((-3 |#3| "failed") |#3|) 112)) (-1544 ((|#3| |#3|) 141)) (-1628 (((-3 |#3| "failed") |#3|) 100)) (-3826 ((|#3| |#3|) 129)) (-2696 (((-3 |#3| "failed") |#3|) 116)) (-1593 ((|#3| |#3|) 145)) (-3553 (((-3 |#3| "failed") |#3|) 107)) (-3871 ((|#3| |#3|) 133)) (-2555 (((-3 |#3| "failed") |#3|) 117)) (-2912 ((|#3| |#3|) 146)) (-3707 (((-3 |#3| "failed") |#3|) 109)) (-3883 ((|#3| |#3|) 134)) (-3546 (((-3 |#3| "failed") |#3|) 80)) (-1583 ((|#3| |#3|) 144)) (-3254 (((-3 |#3| "failed") |#3|) 64)) (-3861 ((|#3| |#3|) 132)) (-3058 (((-3 |#3| "failed") |#3|) 113)) (-1554 ((|#3| |#3|) 142)) (-3206 (((-3 |#3| "failed") |#3|) 103)) (-3837 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-418 (-575))) 44 (|has| |#1| (-373)))))
-(((-287 |#1| |#2| |#3| |#4|) (-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2663 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1531 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -2912 (|#3| |#3|)))) (-38 (-418 (-575))) (-1245 |#1|) (-1268 |#1| |#2|) (-1000 |#2|)) (T -287))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-287 *4 *5 *2 *6)) (-4 *2 (-1268 *4 *5)) (-4 *6 (-1000 *5)))) (-2663 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3784 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3861 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-3935 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3)) (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4)))))
-(-13 (-1000 |#3|) (-10 -7 (IF (|has| |#1| (-373)) (-15 ** (|#3| |#3| (-418 (-575)))) |%noBranch|) (-15 -2663 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3772 (|#3| |#3|)) (-15 -3784 (|#3| |#3|)) (-15 -3795 (|#3| |#3|)) (-15 -3805 (|#3| |#3|)) (-15 -3815 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3861 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3895 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3935 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1531 (|#3| |#3|)) (-15 -1544 (|#3| |#3|)) (-15 -1554 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1583 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -2912 (|#3| |#3|))))
-((-1871 (((-112) $) 20)) (-2794 (((-1199) $) 7)) (-3578 (((-3 (-517) "failed") $) 14)) (-2754 (((-3 (-655 $) "failed") $) NIL)) (-1953 (((-3 (-517) "failed") $) 21)) (-4234 (((-3 (-1121) "failed") $) 18)) (-3054 (((-112) $) 16)) (-2882 (((-873) $) NIL)) (-3694 (((-112) $) 9)))
-(((-288) (-13 (-624 (-873)) (-10 -8 (-15 -2794 ((-1199) $)) (-15 -3054 ((-112) $)) (-15 -4234 ((-3 (-1121) "failed") $)) (-15 -1871 ((-112) $)) (-15 -1953 ((-3 (-517) "failed") $)) (-15 -3694 ((-112) $)) (-15 -3578 ((-3 (-517) "failed") $)) (-15 -2754 ((-3 (-655 $) "failed") $))))) (T -288))
-((-2794 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-288)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) (-4234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1121)) (-5 *1 (-288)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) (-1953 (*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))) (-3578 (*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288)))) (-2754 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-288))) (-5 *1 (-288)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2794 ((-1199) $)) (-15 -3054 ((-112) $)) (-15 -4234 ((-3 (-1121) "failed") $)) (-15 -1871 ((-112) $)) (-15 -1953 ((-3 (-517) "failed") $)) (-15 -3694 ((-112) $)) (-15 -3578 ((-3 (-517) "failed") $)) (-15 -2754 ((-3 (-655 $) "failed") $))))
-((-1796 (((-608) $) 10)) (-2458 (((-596) $) 8)) (-2954 (((-300) $) 12)) (-1541 (($ (-596) (-608) (-300)) NIL)) (-2882 (((-873) $) 19)))
-(((-289) (-13 (-624 (-873)) (-10 -8 (-15 -1541 ($ (-596) (-608) (-300))) (-15 -2458 ((-596) $)) (-15 -1796 ((-608) $)) (-15 -2954 ((-300) $))))) (T -289))
-((-1541 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-596)) (-5 *3 (-608)) (-5 *4 (-300)) (-5 *1 (-289)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-596)) (-5 *1 (-289)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-608)) (-5 *1 (-289)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-300)) (-5 *1 (-289)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1541 ($ (-596) (-608) (-300))) (-15 -2458 ((-596) $)) (-15 -1796 ((-608) $)) (-15 -2954 ((-300) $))))
-((-3983 (($ (-1 (-112) |#2|) $) 24)) (-4070 (($ $) 38)) (-2375 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3631 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3167 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2129 (($ |#2| $ (-575)) 20) (($ $ $ (-575)) 22)) (-3237 (($ $ (-575)) 11) (($ $ (-1252 (-575))) 14)) (-3357 (($ $ |#2|) 32) (($ $ $) NIL)) (-1513 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-655 $)) NIL)))
-(((-290 |#1| |#2|) (-10 -8 (-15 -3167 (|#1| |#1| |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -3167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3357 (|#1| |#1| |#1|)) (-15 -3357 (|#1| |#1| |#2|)) (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -3237 (|#1| |#1| (-1252 (-575)))) (-15 -3237 (|#1| |#1| (-575))) (-15 -1513 (|#1| (-655 |#1|))) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#2|)) (-15 -3631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3983 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3631 (|#1| |#2| |#1|)) (-15 -4070 (|#1| |#1|))) (-291 |#2|) (-1235)) (T -290))
-NIL
-(-10 -8 (-15 -3167 (|#1| |#1| |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -3167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3357 (|#1| |#1| |#1|)) (-15 -3357 (|#1| |#1| |#2|)) (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -3237 (|#1| |#1| (-1252 (-575)))) (-15 -3237 (|#1| |#1| (-575))) (-15 -1513 (|#1| (-655 |#1|))) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#2|)) (-15 -3631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3983 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3631 (|#1| |#2| |#1|)) (-15 -4070 (|#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) |#1|) $) 88)) (-3983 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-1413 (($ $) 86 (|has| |#1| (-1117)))) (-4070 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1117)))) (-3631 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 52)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-3167 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4218 (($ |#1| $ (-575)) 91) (($ $ $ (-575)) 90)) (-2129 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 43 (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1652 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3997 (($ $ (-575)) 94) (($ $ (-1252 (-575))) 93)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 72)) (-3357 (($ $ |#1|) 96) (($ $ $) 95)) (-1513 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-291 |#1|) (-141) (-1235)) (T -291))
-((-3357 (*1 *1 *1 *2) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)))) (-3357 (*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-4218 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-291 *2)) (-4 *2 (-1235)))) (-4218 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-3167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-1932 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))) (-2375 (*1 *1 *2 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) (-1413 (*1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))))
-(-13 (-662 |t#1|) (-10 -8 (-6 -4461) (-15 -3357 ($ $ |t#1|)) (-15 -3357 ($ $ $)) (-15 -3997 ($ $ (-575))) (-15 -3997 ($ $ (-1252 (-575)))) (-15 -2375 ($ (-1 (-112) |t#1|) $)) (-15 -4218 ($ |t#1| $ (-575))) (-15 -4218 ($ $ $ (-575))) (-15 -3167 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1932 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2375 ($ |t#1| $)) (-15 -1413 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -3167 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-4324 (*1 *1 *1) (-4 *1 (-248))))
+(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -4324 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-3436 (($ $) 58)) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2481 (($ $ $) 54 (|has| $ (-6 -4463)))) (-3445 (($ $ $) 53 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-2574 (($) 7 T CONST)) (-1707 (($ $) 57)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2113 (($ $) 56)) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3627 ((|#1| $) 60)) (-1371 (($ $) 59)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48)) (-3599 (((-576) $ $) 45)) (-2133 (((-112) $) 47)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-3925 (($ $ $) 55 (|has| $ (-6 -4463)))) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-249 |#1|) (-141) (-1237)) (T -249))
+((-3627 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-1371 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-1707 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3925 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-2481 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3445 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))))
+(-13 (-1029 |t#1|) (-10 -8 (-15 -3627 (|t#1| $)) (-15 -1371 ($ $)) (-15 -3436 ($ $)) (-15 -1707 ($ $)) (-15 -2113 ($ $)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3925 ($ $ $)) (-15 -2481 ($ $ $)) (-15 -3445 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) NIL)) (-2963 ((|#1| $) NIL)) (-3436 (($ $) NIL)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1426 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2059 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2744 (($ $ $) NIL (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "rest" $) NIL (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) |#1|) $) NIL)) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2951 ((|#1| $) NIL)) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-2003 (($ $) NIL) (($ $ (-783)) NIL)) (-3444 (($ $) NIL (|has| |#1| (-1119)))) (-3229 (($ $) 7 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3607 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2225 (((-112) $) NIL)) (-2627 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1932 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3343 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1718 (($ |#1|) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3627 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2329 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2163 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3137 (((-112) $) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-3599 (((-576) $ $) NIL)) (-3804 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3213 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-1479 (($ (-656 |#1|)) 22)) (-2133 (((-112) $) NIL)) (-3579 (($ $) NIL)) (-2604 (($ $) NIL (|has| $ (-6 -4463)))) (-1836 (((-783) $) NIL)) (-1668 (($ $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) NIL)) (-3925 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1534 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2858 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-874) $) 21 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) 14 (|has| $ (-6 -4462)))))
+(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -1479 ($ (-656 |#1|))) (-15 -2099 ($ $ "unique")) (-15 -2099 ($ $ "sort")) (-15 -2099 ((-783) $ "count")))) (-862)) (T -250))
+((-1479 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-862)))))
+(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -1479 ($ (-656 |#1|))) (-15 -2099 ($ $ "unique")) (-15 -2099 ($ $ "sort")) (-15 -2099 ((-783) $ "count"))))
+((-3707 (((-3 (-783) "failed") |#1| |#1| (-783)) 40)))
+(((-251 |#1|) (-10 -7 (-15 -3707 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251))
+((-3707 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3)))))
+(-10 -7 (-15 -3707 ((-3 (-783) "failed") |#1| |#1| (-783))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1196)) 50 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 48 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 47 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 46 (|has| |#1| (-917 (-1196)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3404 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1196)) 49 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 45 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 44 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 43 (|has| |#1| (-917 (-1196)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-252 |#1|) (-141) (-1068)) (T -252))
+NIL
+(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-917 (-1196))) (-6 (-914 |t#1| (-1196))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -3739 (-12 (|has| |#1| (-174)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -3739 (-12 (|has| |#1| (-174)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-909 $ #0=(-1196)) |has| |#1| (-917 (-1196))) ((-914 |#1| (-1196)) |has| |#1| (-917 (-1196))) ((-917 #0#) |has| |#1| (-917 (-1196))) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-876 |#1|)) $) NIL)) (-3440 (((-1192 $) $ (-876 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2150 (($ $) NIL (|has| |#2| (-568)))) (-2637 (((-112) $) NIL (|has| |#2| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3179 (($ $) NIL (|has| |#2| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2495 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2980 (($ $ (-656 (-576))) NIL)) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#2| (-926)))) (-2611 (($ $ |#2| (-245 (-2845 |#1|) (-783)) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#2|) (-876 |#1|)) NIL) (($ (-1192 $) (-876 |#1|)) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#2| (-245 (-2845 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-876 |#1|)) NIL)) (-4389 (((-245 (-2845 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-4149 (($ (-1 (-245 (-2845 |#1|) (-783)) (-245 (-2845 |#1|) (-783))) $) NIL)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1848 (((-3 (-876 |#1|) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#2| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2273 (-783))) "failed") $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#2| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-3880 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2399 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-4436 (((-245 (-2845 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-245 (-2845 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-253 |#1| |#2|) (-13 (-966 |#2| (-245 (-2845 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2980 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1068)) (T -253))
+((-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1196))) (-4 *4 (-1068)))))
+(-13 (-966 |#2| (-245 (-2845 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2980 ($ $ (-656 (-576))))))
+((-2835 (((-112) $ $) NIL)) (-2570 (((-1292) $) 17)) (-1494 (((-185 (-255)) $) 11)) (-4415 (($ (-185 (-255))) 12)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3717 (((-255) $) 7)) (-2858 (((-874) $) 9)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 15)))
+(((-254) (-13 (-1119) (-10 -8 (-15 -3717 ((-255) $)) (-15 -1494 ((-185 (-255)) $)) (-15 -4415 ($ (-185 (-255)))) (-15 -2570 ((-1292) $))))) (T -254))
+((-3717 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-4415 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-254)))))
+(-13 (-1119) (-10 -8 (-15 -3717 ((-255) $)) (-15 -1494 ((-185 (-255)) $)) (-15 -4415 ($ (-185 (-255)))) (-15 -2570 ((-1292) $))))
+((-2835 (((-112) $ $) NIL)) (-2996 (((-656 (-877)) $) NIL)) (-1811 (((-518) $) NIL)) (-2143 (((-1178) $) NIL)) (-1584 (((-188) $) NIL)) (-2729 (((-112) $ (-518)) NIL)) (-3887 (((-1139) $) NIL)) (-3380 (((-343) $) 7)) (-3742 (((-656 (-112)) $) NIL)) (-2858 (((-874) $) NIL) (((-189) $) 8)) (-2690 (((-112) $ $) NIL)) (-2727 (((-55) $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -3380 ((-343) $))))) (T -255))
+((-3380 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255)))))
+(-13 (-187) (-625 (-189)) (-10 -8 (-15 -3380 ((-343) $))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2099 (((-1201) $ (-783)) 13)) (-2858 (((-874) $) 20)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 16)) (-2845 (((-783) $) 9)))
+(((-256) (-13 (-1119) (-296 (-783) (-1201)) (-10 -8 (-15 -2845 ((-783) $))))) (T -256))
+((-2845 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))))
+(-13 (-1119) (-296 (-783) (-1201)) (-10 -8 (-15 -2845 ((-783) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2002 (($ (-938)) NIL (|has| |#4| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-1869 (($ $ $) NIL (|has| |#4| (-805)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#4| (-379)))) (-3028 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1119))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-4397 ((|#4| $) NIL (|has| |#4| (-1119))) (((-576) $) NIL (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-2085 (((-2 (|:| -3260 (-701 |#4|)) (|:| |vec| (-1287 |#4|))) (-701 $) (-1287 $)) NIL (|has| |#4| (-1068))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1068))) (((-701 |#4|) (-1287 $)) NIL (|has| |#4| (-1068))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068))))) (-4011 (((-3 $ "failed") $) NIL (|has| |#4| (-1068)))) (-2107 (($) NIL (|has| |#4| (-379)))) (-2832 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#4| $ (-576)) NIL)) (-3975 (((-656 |#4|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL (|has| |#4| (-1068)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#4| (-862)))) (-3531 (((-656 |#4|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#4| (-862)))) (-2822 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#4| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-4308 (($ (-938)) NIL (|has| |#4| (-379)))) (-3887 (((-1139) $) NIL)) (-1989 ((|#4| $) NIL (|has| (-576) (-862)))) (-4040 (($ $ |#4|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3584 (((-656 |#4|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-2139 ((|#4| $ $) NIL (|has| |#4| (-1068)))) (-2009 (($ (-1287 |#4|)) NIL)) (-4340 (((-135)) NIL (|has| |#4| (-374)))) (-2399 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) (($ $) NIL (-3739 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))) (-3902 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1287 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1119))) (((-874) $) NIL) (($ (-576)) NIL (-3739 (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (|has| |#4| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-2981 (((-783)) NIL (|has| |#4| (-1068)) CONST)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL (|has| |#4| (-1068)) CONST)) (-3404 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) (($ $) NIL (-3739 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))) (-3956 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#4| (-862)))) (-4013 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1068))) (($ $ (-938)) NIL (|has| |#4| (-1068)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1068)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-938) (-1068) (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-660 |#2|)) (T -257))
+NIL
+(-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2002 (($ (-938)) NIL (|has| |#3| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-1869 (($ $ $) NIL (|has| |#3| (-805)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#3| (-379)))) (-3028 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1119))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-4397 ((|#3| $) NIL (|has| |#3| (-1119))) (((-576) $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-2085 (((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-1287 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))) (-4011 (((-3 $ "failed") $) NIL (|has| |#3| (-1068)))) (-2107 (($) NIL (|has| |#3| (-379)))) (-2832 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#3| $ (-576)) NIL)) (-3975 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL (|has| |#3| (-1068)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#3| (-862)))) (-3531 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#3| (-862)))) (-2822 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#3| |#3|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#3| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-4308 (($ (-938)) NIL (|has| |#3| (-379)))) (-3887 (((-1139) $) NIL)) (-1989 ((|#3| $) NIL (|has| (-576) (-862)))) (-4040 (($ $ |#3|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3584 (((-656 |#3|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-2139 ((|#3| $ $) NIL (|has| |#3| (-1068)))) (-2009 (($ (-1287 |#3|)) NIL)) (-4340 (((-135)) NIL (|has| |#3| (-374)))) (-2399 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) (($ $) NIL (-3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))) (-3902 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1287 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1119))) (((-874) $) NIL) (($ (-576)) NIL (-3739 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-2981 (((-783)) NIL (|has| |#3| (-1068)) CONST)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL (|has| |#3| (-1068)) CONST)) (-3404 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) (($ $) NIL (-3739 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))) (-3956 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#3| (-862)))) (-4013 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1068))) (($ $ (-938)) NIL (|has| |#3| (-1068)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1068)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-660 |#2|)) (-783) (-1068) (-660 |#2|)) (T -258))
+NIL
+(-13 (-243 |#1| |#3|) (-660 |#2|))
+((-3525 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2551 (((-783) $) 58) (((-783) $ |#3|) 61)) (-2635 (($ $) 76)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2620 (((-783) $ |#3|) 43) (((-783) $) 38)) (-4271 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-2175 ((|#4| $) 69)) (-1511 (((-112) $) 67)) (-2793 (($ $) 75)) (-3022 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-2399 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4133 (((-656 |#3|) $) 86)) (-4436 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL)))
+(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2858 (|#1| |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -3022 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#3| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#3| |#1|)) (-15 -4271 ((-1 |#1| (-783)) |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2175 (|#4| |#1|)) (-15 -1511 ((-112) |#1|)) (-15 -2551 ((-783) |#1| |#3|)) (-15 -3525 ((-656 (-783)) |#1| |#3|)) (-15 -2551 ((-783) |#1|)) (-15 -3525 ((-656 (-783)) |#1|)) (-15 -4436 ((-783) |#1| |#3|)) (-15 -2620 ((-783) |#1|)) (-15 -2620 ((-783) |#1| |#3|)) (-15 -4133 ((-656 |#3|) |#1|)) (-15 -4271 ((-1 |#1| (-783)) |#3|)) (-15 -2858 (|#1| |#3|)) (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4436 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -4436 ((-783) |#1| |#4|)) (-15 -2858 (|#1| |#4|)) (-15 -2454 ((-3 |#4| "failed") |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#4| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#4| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -4436 (|#5| |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2399 (|#1| |#1| |#4|)) (-15 -2399 (|#1| |#1| (-656 |#4|))) (-15 -2399 (|#1| |#1| |#4| (-783))) (-15 -2399 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1068) (-862) (-275 |#3|) (-805)) (T -259))
+NIL
+(-10 -8 (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2858 (|#1| |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -3022 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#3| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#3| |#1|)) (-15 -4271 ((-1 |#1| (-783)) |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2175 (|#4| |#1|)) (-15 -1511 ((-112) |#1|)) (-15 -2551 ((-783) |#1| |#3|)) (-15 -3525 ((-656 (-783)) |#1| |#3|)) (-15 -2551 ((-783) |#1|)) (-15 -3525 ((-656 (-783)) |#1|)) (-15 -4436 ((-783) |#1| |#3|)) (-15 -2620 ((-783) |#1|)) (-15 -2620 ((-783) |#1| |#3|)) (-15 -4133 ((-656 |#3|) |#1|)) (-15 -4271 ((-1 |#1| (-783)) |#3|)) (-15 -2858 (|#1| |#3|)) (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4436 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -4436 ((-783) |#1| |#4|)) (-15 -2858 (|#1| |#4|)) (-15 -2454 ((-3 |#4| "failed") |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#4| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#4| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -4436 (|#5| |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2399 (|#1| |#1| |#4|)) (-15 -2399 (|#1| |#1| (-656 |#4|))) (-15 -2399 (|#1| |#1| |#4| (-783))) (-15 -2399 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3525 (((-656 (-783)) $) 234) (((-656 (-783)) $ |#2|) 232)) (-2551 (((-783) $) 233) (((-783) $ |#2|) 231)) (-1634 (((-656 |#3|) $) 113)) (-3440 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2150 (($ $) 91 (|has| |#1| (-568)))) (-2637 (((-112) $) 93 (|has| |#1| (-568)))) (-3988 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3161 (((-3 $ "failed") $ $) 20)) (-3389 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-3179 (($ $) 101 (|has| |#1| (-464)))) (-2464 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-2635 (($ $) 227)) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 141) (((-3 |#2| "failed") $) 241)) (-4397 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1057 (-576)))) ((|#3| $) 142) ((|#2| $) 242)) (-2495 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4404 (($ $) 159)) (-2085 (((-701 (-576)) (-1287 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1287 $)) 134)) (-4011 (((-3 $ "failed") $) 37)) (-3420 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-4391 (((-656 $) $) 112)) (-3011 (((-112) $) 99 (|has| |#1| (-926)))) (-2611 (($ $ |#1| |#4| $) 177)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2620 (((-783) $ |#2|) 237) (((-783) $) 236)) (-1838 (((-112) $) 35)) (-1890 (((-783) $) 174)) (-2441 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-2936 (((-656 $) $) 129)) (-1711 (((-112) $) 157)) (-2428 (($ |#1| |#4|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#3|) 123)) (-4389 ((|#4| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-4149 (($ (-1 |#4| |#4|) $) 176)) (-2548 (($ (-1 |#1| |#1|) $) 156)) (-4271 (((-1 $ (-783)) |#2|) 239) (((-1 $ (-783)) $) 226 (|has| |#1| (-238)))) (-1848 (((-3 |#3| "failed") $) 126)) (-4366 (($ $) 154)) (-4379 ((|#1| $) 153)) (-2175 ((|#3| $) 229)) (-3862 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2143 (((-1178) $) 10)) (-1511 (((-112) $) 230)) (-2829 (((-3 (-656 $) "failed") $) 117)) (-1972 (((-3 (-656 $) "failed") $) 118)) (-2994 (((-3 (-2 (|:| |var| |#3|) (|:| -2273 (-783))) "failed") $) 116)) (-2793 (($ $) 228)) (-3887 (((-1139) $) 11)) (-4336 (((-112) $) 171)) (-4347 ((|#1| $) 172)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3901 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-2367 (((-430 $) $) 102 (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143) (($ $ |#2| $) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 224 (|has| |#1| (-238))) (($ $ |#2| |#1|) 223 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 222 (|has| |#1| (-238)))) (-3880 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2399 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 221 (|has| |#1| (-237))) (($ $ (-783)) 219 (|has| |#1| (-237))) (($ $ (-1196)) 217 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 215 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 214 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 213 (|has| |#1| (-917 (-1196))))) (-4133 (((-656 |#2|) $) 238)) (-4436 ((|#4| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 235)) (-2610 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 107 (-3200 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ |#2|) 240) (($ (-419 (-576))) 81 (-3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) 173)) (-4417 ((|#1| $ |#4|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3689 (((-3 $ "failed") $) 82 (-3739 (-3200 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) 32 T CONST)) (-2986 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 244) (($ $ (-1 |#1| |#1|) (-783)) 243) (($ $) 220 (|has| |#1| (-237))) (($ $ (-783)) 218 (|has| |#1| (-237))) (($ $ (-1196)) 216 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 212 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 211 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 210 (|has| |#1| (-917 (-1196))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-260 |#1| |#2| |#3| |#4|) (-141) (-1068) (-862) (-275 |t#2|) (-805)) (T -260))
+((-4271 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-2620 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4436 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3525 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2551 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-2793 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2635 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-4271 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))))
+(-13 (-966 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1057 |t#2|) (-10 -8 (-15 -4271 ((-1 $ (-783)) |t#2|)) (-15 -4133 ((-656 |t#2|) $)) (-15 -2620 ((-783) $ |t#2|)) (-15 -2620 ((-783) $)) (-15 -4436 ((-783) $ |t#2|)) (-15 -3525 ((-656 (-783)) $)) (-15 -2551 ((-783) $)) (-15 -3525 ((-656 (-783)) $ |t#2|)) (-15 -2551 ((-783) $ |t#2|)) (-15 -1511 ((-112) $)) (-15 -2175 (|t#3| $)) (-15 -2793 ($ $)) (-15 -2635 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -4271 ((-1 $ (-783)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-234 $) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3739 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ #2=(-1196)) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-909 $ |#3|) . T) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-915 |#3|) . T) ((-917 #2#) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-966 |#1| |#4| |#3|) . T) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#2|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-926)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1489 ((|#1| $) 55)) (-2039 ((|#1| $) 45)) (-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-3296 (($ $) 61)) (-2338 (($ $) 49)) (-4398 ((|#1| |#1| $) 47)) (-1748 ((|#1| $) 46)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-1873 (((-783) $) 62)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-3629 ((|#1| |#1| $) 53)) (-3690 ((|#1| |#1| $) 52)) (-2329 (($ |#1| $) 41)) (-3317 (((-783) $) 56)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2833 ((|#1| $) 63)) (-4073 ((|#1| $) 51)) (-1641 ((|#1| $) 50)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3496 ((|#1| |#1| $) 59)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2280 ((|#1| $) 60)) (-3635 (($) 58) (($ (-656 |#1|)) 57)) (-3297 (((-783) $) 44)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1742 ((|#1| $) 54)) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-4170 ((|#1| $) 64)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-261 |#1|) (-141) (-1237)) (T -261))
+((-3635 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-261 *3)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3629 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3690 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-2338 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(-13 (-1140 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -3635 ($)) (-15 -3635 ($ (-656 |t#1|))) (-15 -3317 ((-783) $)) (-15 -1489 (|t#1| $)) (-15 -1742 (|t#1| $)) (-15 -3629 (|t#1| |t#1| $)) (-15 -3690 (|t#1| |t#1| $)) (-15 -4073 (|t#1| $)) (-15 -1641 (|t#1| $)) (-15 -2338 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1014 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1140 |#1|) . T) ((-1237) . T))
+((-2335 (((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1775 (((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390))) 173) (((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 171) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 176) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 172) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 164) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 163) (((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390))) 145) (((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270))) 143) (((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390))) 144) (((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 141)) (-1732 (((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390))) 175) (((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 174) (((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 178) (((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 177) (((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 166) (((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 165) (((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390))) 151) (((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270))) 150) (((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390))) 149) (((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 148) (((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390))) 113) (((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 112) (((-1288) (-1 (-227) (-227)) (-1113 (-390))) 107) (((-1288) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270))) 105)))
+(((-262) (-10 -7 (-15 -1732 ((-1288) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) (-1 (-227) (-227)) (-1113 (-390)))) (-15 -1732 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1732 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1732 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1732 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -2335 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262))
+((-2335 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))))
+(-10 -7 (-15 -1732 ((-1288) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) (-1 (-227) (-227)) (-1113 (-390)))) (-15 -1732 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1732 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1732 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1732 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -1775 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -2335 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-1732 (((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))) 101)))
+(((-263 |#1| |#2|) (-10 -7 (-15 -1732 ((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))))) (-13 (-568) (-862) (-1057 (-576))) (-442 |#1|)) (T -263))
+((-1732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1196)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1057 (-576)))) (-5 *2 (-1288)) (-5 *1 (-263 *6 *7)))))
+(-10 -7 (-15 -1732 ((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270)))))
+((-2261 (((-576) (-576)) 71)) (-1638 (((-576) (-576)) 72)) (-1713 (((-227) (-227)) 73)) (-3747 (((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227))) 70)) (-4309 (((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112)) 68)))
+(((-264) (-10 -7 (-15 -4309 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112))) (-15 -3747 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -2261 ((-576) (-576))) (-15 -1638 ((-576) (-576))) (-15 -1713 ((-227) (-227))))) (T -264))
+((-1713 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-2261 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) (-5 *2 (-1289)) (-5 *1 (-264)))) (-4309 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) (-5 *5 (-112)) (-5 *2 (-1289)) (-5 *1 (-264)))))
+(-10 -7 (-15 -4309 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112))) (-15 -3747 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -2261 ((-576) (-576))) (-15 -1638 ((-576) (-576))) (-15 -1713 ((-227) (-227))))
+((-2858 (((-1111 (-390)) (-1111 (-326 |#1|))) 16)))
+(((-265 |#1|) (-10 -7 (-15 -2858 ((-1111 (-390)) (-1111 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-1111 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1111 (-390))) (-5 *1 (-265 *4)))))
+(-10 -7 (-15 -2858 ((-1111 (-390)) (-1111 (-326 |#1|)))))
+((-1775 (((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))) 75) (((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 74) (((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390))) 65) (((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 64) (((-1152 (-227)) (-892 |#1|) (-1111 (-390))) 56) (((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270))) 55)) (-1732 (((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390))) 78) (((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 77) (((-1289) |#1| (-1111 (-390)) (-1111 (-390))) 68) (((-1289) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 67) (((-1289) (-892 |#1|) (-1111 (-390))) 60) (((-1289) (-892 |#1|) (-1111 (-390)) (-656 (-270))) 59) (((-1288) (-890 |#1|) (-1111 (-390))) 47) (((-1288) (-890 |#1|) (-1111 (-390)) (-656 (-270))) 46) (((-1288) |#1| (-1111 (-390))) 38) (((-1288) |#1| (-1111 (-390)) (-656 (-270))) 36)))
+(((-266 |#1|) (-10 -7 (-15 -1732 ((-1288) |#1| (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) |#1| (-1111 (-390)))) (-15 -1732 ((-1288) (-890 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) (-890 |#1|) (-1111 (-390)))) (-15 -1732 ((-1289) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-892 |#1|) (-1111 (-390)))) (-15 -1775 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)))) (-15 -1732 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1775 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1732 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))) (-15 -1775 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))))) (-13 (-626 (-548)) (-1119))) (T -266))
+((-1775 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *5)))) (-1775 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *6)))) (-1732 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-1732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-1775 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1775 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1732 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1775 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *5)))) (-1775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *6)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))))
+(-10 -7 (-15 -1732 ((-1288) |#1| (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) |#1| (-1111 (-390)))) (-15 -1732 ((-1288) (-890 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1288) (-890 |#1|) (-1111 (-390)))) (-15 -1732 ((-1289) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-892 |#1|) (-1111 (-390)))) (-15 -1775 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)))) (-15 -1732 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1775 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1732 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1732 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))) (-15 -1775 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1775 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))))
+((-1732 (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1288) (-656 (-960 (-227))) (-656 (-270))) 16) (((-1288) (-656 (-960 (-227)))) 17) (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1288) (-656 (-227)) (-656 (-227))) 21)))
+(((-267) (-10 -7 (-15 -1732 ((-1288) (-656 (-227)) (-656 (-227)))) (-15 -1732 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1732 ((-1288) (-656 (-960 (-227))))) (-15 -1732 ((-1288) (-656 (-960 (-227))) (-656 (-270)))) (-15 -1732 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1732 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267))
+((-1732 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1732 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1732 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1732 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1732 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))))
+(-10 -7 (-15 -1732 ((-1288) (-656 (-227)) (-656 (-227)))) (-15 -1732 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1732 ((-1288) (-656 (-960 (-227))))) (-15 -1732 ((-1288) (-656 (-960 (-227))) (-656 (-270)))) (-15 -1732 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1732 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))
+((-1623 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3289 (((-938) (-656 (-270)) (-938)) 52)) (-2045 (((-938) (-656 (-270)) (-938)) 51)) (-2498 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-2317 (((-390) (-656 (-270)) (-390)) 57)) (-2388 (((-938) (-656 (-270)) (-938)) 53)) (-3141 (((-112) (-656 (-270)) (-112)) 27)) (-2491 (((-1178) (-656 (-270)) (-1178)) 19)) (-2701 (((-1178) (-656 (-270)) (-1178)) 26)) (-3692 (((-1152 (-227)) (-656 (-270))) 46)) (-3433 (((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390)))) 40)) (-2183 (((-886) (-656 (-270)) (-886)) 32)) (-2860 (((-886) (-656 (-270)) (-886)) 33)) (-3829 (((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227)))) 63)) (-3910 (((-112) (-656 (-270)) (-112)) 14)) (-2161 (((-112) (-656 (-270)) (-112)) 13)))
+(((-268) (-10 -7 (-15 -2161 ((-112) (-656 (-270)) (-112))) (-15 -3910 ((-112) (-656 (-270)) (-112))) (-15 -1623 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2491 ((-1178) (-656 (-270)) (-1178))) (-15 -2701 ((-1178) (-656 (-270)) (-1178))) (-15 -3141 ((-112) (-656 (-270)) (-112))) (-15 -2183 ((-886) (-656 (-270)) (-886))) (-15 -2860 ((-886) (-656 (-270)) (-886))) (-15 -3433 ((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390))))) (-15 -2045 ((-938) (-656 (-270)) (-938))) (-15 -3289 ((-938) (-656 (-270)) (-938))) (-15 -3692 ((-1152 (-227)) (-656 (-270)))) (-15 -2388 ((-938) (-656 (-270)) (-938))) (-15 -2317 ((-390) (-656 (-270)) (-390))) (-15 -3829 ((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227))))) (-15 -2498 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268))
+((-2498 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3829 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2317 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2388 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-268)))) (-3289 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3433 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2860 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2183 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3141 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2701 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2491 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1623 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3910 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2161 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(-10 -7 (-15 -2161 ((-112) (-656 (-270)) (-112))) (-15 -3910 ((-112) (-656 (-270)) (-112))) (-15 -1623 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2491 ((-1178) (-656 (-270)) (-1178))) (-15 -2701 ((-1178) (-656 (-270)) (-1178))) (-15 -3141 ((-112) (-656 (-270)) (-112))) (-15 -2183 ((-886) (-656 (-270)) (-886))) (-15 -2860 ((-886) (-656 (-270)) (-886))) (-15 -3433 ((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390))))) (-15 -2045 ((-938) (-656 (-270)) (-938))) (-15 -3289 ((-938) (-656 (-270)) (-938))) (-15 -3692 ((-1152 (-227)) (-656 (-270)))) (-15 -2388 ((-938) (-656 (-270)) (-938))) (-15 -2317 ((-390) (-656 (-270)) (-390))) (-15 -3829 ((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227))))) (-15 -2498 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))
+((-1882 (((-3 |#1| "failed") (-656 (-270)) (-1196)) 17)))
+(((-269 |#1|) (-10 -7 (-15 -1882 ((-3 |#1| "failed") (-656 (-270)) (-1196)))) (-1237)) (T -269))
+((-1882 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *1 (-269 *2)) (-4 *2 (-1237)))))
+(-10 -7 (-15 -1882 ((-3 |#1| "failed") (-656 (-270)) (-1196))))
+((-2835 (((-112) $ $) NIL)) (-1623 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3289 (($ (-938)) 81)) (-2045 (($ (-938)) 80)) (-2857 (($ (-656 (-390))) 87)) (-2317 (($ (-390)) 66)) (-2388 (($ (-938)) 82)) (-3141 (($ (-112)) 33)) (-2491 (($ (-1178)) 28)) (-2701 (($ (-1178)) 29)) (-3692 (($ (-1152 (-227))) 76)) (-3433 (($ (-656 (-1113 (-390)))) 72)) (-3672 (($ (-656 (-1113 (-390)))) 68) (($ (-656 (-1113 (-419 (-576))))) 71)) (-2083 (($ (-390)) 38) (($ (-886)) 42)) (-3334 (((-112) (-656 $) (-1196)) 100)) (-1882 (((-3 (-52) "failed") (-656 $) (-1196)) 102)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3614 (($ (-390)) 43) (($ (-886)) 44)) (-3392 (($ (-1 (-960 (-227)) (-960 (-227)))) 65)) (-3829 (($ (-1 (-960 (-227)) (-960 (-227)))) 83)) (-1656 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-2858 (((-874) $) 93)) (-1962 (($ (-112)) 34) (($ (-656 (-1113 (-390)))) 60)) (-2690 (((-112) $ $) NIL)) (-2161 (($ (-112)) 35)) (-3889 (((-112) $ $) 97)))
+(((-270) (-13 (-1119) (-10 -8 (-15 -2161 ($ (-112))) (-15 -1962 ($ (-112))) (-15 -1623 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2491 ($ (-1178))) (-15 -2701 ($ (-1178))) (-15 -3141 ($ (-112))) (-15 -1962 ($ (-656 (-1113 (-390))))) (-15 -3392 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -2083 ($ (-390))) (-15 -2083 ($ (-886))) (-15 -3614 ($ (-390))) (-15 -3614 ($ (-886))) (-15 -1656 ($ (-1 (-227) (-227)))) (-15 -1656 ($ (-1 (-227) (-227) (-227)))) (-15 -1656 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2317 ($ (-390))) (-15 -3672 ($ (-656 (-1113 (-390))))) (-15 -3672 ($ (-656 (-1113 (-419 (-576)))))) (-15 -3433 ($ (-656 (-1113 (-390))))) (-15 -3692 ($ (-1152 (-227)))) (-15 -2045 ($ (-938))) (-15 -3289 ($ (-938))) (-15 -2388 ($ (-938))) (-15 -3829 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -2857 ($ (-656 (-390)))) (-15 -1882 ((-3 (-52) "failed") (-656 $) (-1196))) (-15 -3334 ((-112) (-656 $) (-1196)))))) (T -270))
+((-2161 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1623 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-2701 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-419 (-576))))) (-5 *1 (-270)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-3692 (*1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-270)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-3829 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) (-2857 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-1882 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-112)) (-5 *1 (-270)))))
+(-13 (-1119) (-10 -8 (-15 -2161 ($ (-112))) (-15 -1962 ($ (-112))) (-15 -1623 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2491 ($ (-1178))) (-15 -2701 ($ (-1178))) (-15 -3141 ($ (-112))) (-15 -1962 ($ (-656 (-1113 (-390))))) (-15 -3392 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -2083 ($ (-390))) (-15 -2083 ($ (-886))) (-15 -3614 ($ (-390))) (-15 -3614 ($ (-886))) (-15 -1656 ($ (-1 (-227) (-227)))) (-15 -1656 ($ (-1 (-227) (-227) (-227)))) (-15 -1656 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2317 ($ (-390))) (-15 -3672 ($ (-656 (-1113 (-390))))) (-15 -3672 ($ (-656 (-1113 (-419 (-576)))))) (-15 -3433 ($ (-656 (-1113 (-390))))) (-15 -3692 ($ (-1152 (-227)))) (-15 -2045 ($ (-938))) (-15 -3289 ($ (-938))) (-15 -2388 ($ (-938))) (-15 -3829 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -2857 ($ (-656 (-390)))) (-15 -1882 ((-3 (-52) "failed") (-656 $) (-1196))) (-15 -3334 ((-112) (-656 $) (-1196)))))
+((-2399 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-3404 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)))
+(((-271 |#1| |#2|) (-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -3404 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -3404 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3404 (|#1| |#1| (-656 (-1196)))) (-15 -3404 (|#1| |#1| (-1196) (-783))) (-15 -3404 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3404 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3404 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1237)) (T -271))
+NIL
+(-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -3404 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -3404 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3404 (|#1| |#1| (-656 (-1196)))) (-15 -3404 (|#1| |#1| (-1196) (-783))) (-15 -3404 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3404 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3404 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))))
+((-2399 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1196)) (-656 (-783))) 16 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 15 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 14 (|has| |#1| (-917 (-1196)))) (($ $ (-1196)) 12 (|has| |#1| (-917 (-1196)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-3404 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1196)) (-656 (-783))) 19 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 18 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 17 (|has| |#1| (-917 (-1196)))) (($ $ (-1196)) 13 (|has| |#1| (-917 (-1196)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237)))))
+(((-272 |#1|) (-141) (-1237)) (T -272))
+((-2399 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) (-2399 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1237)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2399 ($ $ (-1 |t#1| |t#1|))) (-15 -2399 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -3404 ($ $ (-1 |t#1| |t#1|))) (-15 -3404 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-917 (-1196))) (-6 (-917 (-1196))) |%noBranch|)))
+(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-909 $ #0=(-1196)) |has| |#1| (-917 (-1196))) ((-917 #0#) |has| |#1| (-917 (-1196))) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3525 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2551 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1634 (((-656 |#3|) $) NIL)) (-3440 (((-1192 $) $ |#3|) NIL) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2635 (($ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1144 |#1| |#2|) "failed") $) 23)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1144 |#1| |#2|) $) NIL)) (-2495 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-543 |#3|) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))))) (-2620 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#1|) |#3|) NIL) (($ (-1192 $) |#3|) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#3|) NIL)) (-4389 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-4149 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-4271 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-1848 (((-3 |#3| "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2175 ((|#3| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-1511 (((-112) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| |#3|) (|:| -2273 (-783))) "failed") $) NIL)) (-2793 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-3880 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4133 (((-656 |#2|) $) NIL)) (-4436 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1144 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1057 (-1144 |#1| |#2|))) (-1068) (-862) (-275 |#2|)) (T -273))
+NIL
+(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1057 (-1144 |#1| |#2|)))
+((-2551 (((-783) $) 37)) (-2454 (((-3 |#2| "failed") $) 22)) (-4397 ((|#2| $) 33)) (-2399 (($ $ (-783)) 18) (($ $) 14)) (-2858 (((-874) $) 32) (($ |#2|) 11)) (-3889 (((-112) $ $) 26)) (-3916 (((-112) $ $) 36)))
+(((-274 |#1| |#2|) (-10 -8 (-15 -2551 ((-783) |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -3916 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274))
+NIL
+(-10 -8 (-15 -2551 ((-783) |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -3916 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-2551 (((-783) $) 22)) (-1455 ((|#1| $) 23)) (-2454 (((-3 |#1| "failed") $) 27)) (-4397 ((|#1| $) 28)) (-2620 (((-783) $) 24)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-4271 (($ |#1| (-783)) 25)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $ (-783)) 31) (($ $) 29)) (-2858 (((-874) $) 12) (($ |#1|) 26)) (-2690 (((-112) $ $) 9)) (-3404 (($ $ (-783)) 32) (($ $) 30)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)))
+(((-275 |#1|) (-141) (-862)) (T -275))
+((-2858 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-4271 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))))
+(-13 (-862) (-237) (-1057 |t#1|) (-10 -8 (-15 -4271 ($ |t#1| (-783))) (-15 -2620 ((-783) $)) (-15 -1455 (|t#1| $)) (-15 -2551 ((-783) $)) (-15 -2858 ($ |t#1|))))
+(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-862) . T) ((-1057 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-1634 (((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 53)) (-3463 (((-656 (-1196)) (-326 (-227)) (-783)) 94)) (-2710 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-1918 (((-326 (-227)) (-326 (-227))) 79)) (-2046 (((-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-3892 (((-112) (-656 (-326 (-227)))) 104)) (-2176 (((-112) (-326 (-227))) 36)) (-4298 (((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))))) 132)) (-2380 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-1523 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-4258 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-2969 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-4042 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-3208 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 126)) (-4050 (((-1054) (-1196) (-1054)) 46)))
+(((-276) (-10 -7 (-15 -4042 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -2046 ((-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2710 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1918 ((-326 (-227)) (-326 (-227)))) (-15 -3892 ((-112) (-656 (-326 (-227))))) (-15 -2969 ((-112) (-656 (-326 (-227))))) (-15 -2969 ((-112) (-326 (-227)))) (-15 -4258 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1523 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2380 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2176 ((-112) (-326 (-227)))) (-15 -1634 ((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -3463 ((-656 (-1196)) (-326 (-227)) (-783))) (-15 -4050 ((-1054) (-1196) (-1054))) (-15 -3208 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -4298 ((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))))))) (T -276))
+((-4298 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))))) (-5 *2 (-656 (-1178))) (-5 *1 (-276)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-4050 (*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-276)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2380 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2710 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276)))))
+(-10 -7 (-15 -4042 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -2046 ((-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2710 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1918 ((-326 (-227)) (-326 (-227)))) (-15 -3892 ((-112) (-656 (-326 (-227))))) (-15 -2969 ((-112) (-656 (-326 (-227))))) (-15 -2969 ((-112) (-326 (-227)))) (-15 -4258 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -1523 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2380 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2176 ((-112) (-326 (-227)))) (-15 -1634 ((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -3463 ((-656 (-1196)) (-326 (-227)) (-783))) (-15 -4050 ((-1054) (-1196) (-1054))) (-15 -3208 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -4298 ((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))))))
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-277) (-851)) (T -277))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 72) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 43)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-278) (-851)) (T -278))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 90) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 65)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-279) (-851)) (T -279))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-280) (-851)) (T -280))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-281) (-851)) (T -281))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-282) (-851)) (T -282))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-283) (-851)) (T -283))
+NIL
+(-851)
+((-2835 (((-112) $ $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4030 (((-656 (-576)) $) 29)) (-4436 (((-783) $) 27)) (-2858 (((-874) $) 33) (($ (-656 (-576))) 23)) (-2690 (((-112) $ $) NIL)) (-3128 (($ (-783)) 30)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 9)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 17)))
+(((-284) (-13 (-862) (-10 -8 (-15 -2858 ($ (-656 (-576)))) (-15 -4436 ((-783) $)) (-15 -4030 ((-656 (-576)) $)) (-15 -3128 ($ (-783)))))) (T -284))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284)))))
+(-13 (-862) (-10 -8 (-15 -2858 ($ (-656 (-576)))) (-15 -4436 ((-783) $)) (-15 -4030 ((-656 (-576)) $)) (-15 -3128 ($ (-783)))))
+((-3897 ((|#2| |#2|) 77)) (-3760 ((|#2| |#2|) 65)) (-3865 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3871 ((|#2| |#2|) 75)) (-3735 ((|#2| |#2|) 63)) (-1542 ((|#2| |#2|) 79)) (-3781 ((|#2| |#2|) 67)) (-1663 ((|#2|) 46)) (-2569 (((-115) (-115)) 100)) (-3437 ((|#2| |#2|) 61)) (-2723 (((-112) |#2|) 147)) (-3499 ((|#2| |#2|) 195)) (-3632 ((|#2| |#2|) 171)) (-2333 ((|#2|) 59)) (-3533 ((|#2|) 58)) (-2068 ((|#2| |#2|) 191)) (-3580 ((|#2| |#2|) 167)) (-3351 ((|#2| |#2|) 199)) (-2898 ((|#2| |#2|) 175)) (-2673 ((|#2| |#2|) 163)) (-2392 ((|#2| |#2|) 165)) (-3375 ((|#2| |#2|) 201)) (-2140 ((|#2| |#2|) 177)) (-2075 ((|#2| |#2|) 197)) (-2579 ((|#2| |#2|) 173)) (-3604 ((|#2| |#2|) 193)) (-1484 ((|#2| |#2|) 169)) (-3456 ((|#2| |#2|) 207)) (-4333 ((|#2| |#2|) 183)) (-2095 ((|#2| |#2|) 203)) (-2721 ((|#2| |#2|) 179)) (-3298 ((|#2| |#2|) 211)) (-2644 ((|#2| |#2|) 187)) (-2838 ((|#2| |#2|) 213)) (-1362 ((|#2| |#2|) 189)) (-4289 ((|#2| |#2|) 209)) (-2126 ((|#2| |#2|) 185)) (-2114 ((|#2| |#2|) 205)) (-3357 ((|#2| |#2|) 181)) (-2656 ((|#2| |#2|) 62)) (-1553 ((|#2| |#2|) 80)) (-3791 ((|#2| |#2|) 68)) (-3911 ((|#2| |#2|) 78)) (-3771 ((|#2| |#2|) 66)) (-3883 ((|#2| |#2|) 76)) (-3748 ((|#2| |#2|) 64)) (-3410 (((-112) (-115)) 98)) (-1593 ((|#2| |#2|) 83)) (-3826 ((|#2| |#2|) 71)) (-1567 ((|#2| |#2|) 81)) (-3802 ((|#2| |#2|) 69)) (-1620 ((|#2| |#2|) 85)) (-3847 ((|#2| |#2|) 73)) (-2888 ((|#2| |#2|) 86)) (-3859 ((|#2| |#2|) 74)) (-1609 ((|#2| |#2|) 84)) (-3837 ((|#2| |#2|) 72)) (-1578 ((|#2| |#2|) 82)) (-3813 ((|#2| |#2|) 70)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -2656 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -3748 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -2888 (|#2| |#2|)) (-15 -1663 (|#2|)) (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -3533 (|#2|)) (-15 -2333 (|#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2673 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -1484 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2140 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -4333 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -2068 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -3351 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -2095 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -4289 (|#2| |#2|)) (-15 -3298 (|#2| |#2|)) (-15 -2838 (|#2| |#2|)) (-15 -3865 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2723 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1021))) (T -285))
+((-2723 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1021))))) (-3865 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1021))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3298 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4289 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2114 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2095 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3351 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2075 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2068 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2126 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4333 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2721 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2579 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1484 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2333 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3533 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1021))))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021))))) (-1663 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2888 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3748 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))))
+(-10 -7 (-15 -2656 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3735 (|#2| |#2|)) (-15 -3748 (|#2| |#2|)) (-15 -3760 (|#2| |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3781 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -1578 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1620 (|#2| |#2|)) (-15 -2888 (|#2| |#2|)) (-15 -1663 (|#2|)) (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -3533 (|#2|)) (-15 -2333 (|#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2673 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -1484 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -2579 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2140 (|#2| |#2|)) (-15 -2721 (|#2| |#2|)) (-15 -3357 (|#2| |#2|)) (-15 -4333 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -1362 (|#2| |#2|)) (-15 -2068 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -3351 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -2095 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -4289 (|#2| |#2|)) (-15 -3298 (|#2| |#2|)) (-15 -2838 (|#2| |#2|)) (-15 -3865 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2723 ((-112) |#2|)))
+((-4241 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196)) 151)) (-2595 ((|#2| (-419 (-576)) |#2|) 49)) (-1712 ((|#2| |#2| (-624 |#2|)) 144)) (-1464 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196)) 143)) (-3993 ((|#2| |#2| (-1196)) 20) ((|#2| |#2|) 23)) (-3485 ((|#2| |#2| (-1196)) 157) ((|#2| |#2|) 155)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -3485 (|#2| |#2|)) (-15 -3485 (|#2| |#2| (-1196))) (-15 -1464 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196))) (-15 -3993 (|#2| |#2|)) (-15 -3993 (|#2| |#2| (-1196))) (-15 -4241 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196))) (-15 -1712 (|#2| |#2| (-624 |#2|))) (-15 -2595 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -286))
+((-2595 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-1712 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-4241 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1196)) (-4 *2 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-3993 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-1464 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))))
+(-10 -7 (-15 -3485 (|#2| |#2|)) (-15 -3485 (|#2| |#2| (-1196))) (-15 -1464 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196))) (-15 -3993 (|#2| |#2|)) (-15 -3993 (|#2| |#2| (-1196))) (-15 -4241 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196))) (-15 -1712 (|#2| |#2| (-624 |#2|))) (-15 -2595 (|#2| (-419 (-576)) |#2|)))
+((-3855 (((-3 |#3| "failed") |#3|) 120)) (-3897 ((|#3| |#3|) 142)) (-2800 (((-3 |#3| "failed") |#3|) 89)) (-3760 ((|#3| |#3|) 132)) (-1655 (((-3 |#3| "failed") |#3|) 65)) (-3871 ((|#3| |#3|) 140)) (-3377 (((-3 |#3| "failed") |#3|) 53)) (-3735 ((|#3| |#3|) 130)) (-3495 (((-3 |#3| "failed") |#3|) 122)) (-1542 ((|#3| |#3|) 144)) (-3984 (((-3 |#3| "failed") |#3|) 91)) (-3781 ((|#3| |#3|) 134)) (-1324 (((-3 |#3| "failed") |#3| (-783)) 41)) (-1731 (((-3 |#3| "failed") |#3|) 81)) (-3437 ((|#3| |#3|) 129)) (-3864 (((-3 |#3| "failed") |#3|) 51)) (-2656 ((|#3| |#3|) 128)) (-2186 (((-3 |#3| "failed") |#3|) 123)) (-1553 ((|#3| |#3|) 145)) (-1943 (((-3 |#3| "failed") |#3|) 92)) (-3791 ((|#3| |#3|) 135)) (-4166 (((-3 |#3| "failed") |#3|) 121)) (-3911 ((|#3| |#3|) 143)) (-3800 (((-3 |#3| "failed") |#3|) 90)) (-3771 ((|#3| |#3|) 133)) (-2998 (((-3 |#3| "failed") |#3|) 67)) (-3883 ((|#3| |#3|) 141)) (-2278 (((-3 |#3| "failed") |#3|) 55)) (-3748 ((|#3| |#3|) 131)) (-1881 (((-3 |#3| "failed") |#3|) 73)) (-1593 ((|#3| |#3|) 148)) (-2747 (((-3 |#3| "failed") |#3|) 114)) (-3826 ((|#3| |#3|) 152)) (-3405 (((-3 |#3| "failed") |#3|) 69)) (-1567 ((|#3| |#3|) 146)) (-2606 (((-3 |#3| "failed") |#3|) 57)) (-3802 ((|#3| |#3|) 136)) (-1605 (((-3 |#3| "failed") |#3|) 77)) (-1620 ((|#3| |#3|) 150)) (-3625 (((-3 |#3| "failed") |#3|) 61)) (-3847 ((|#3| |#3|) 138)) (-3878 (((-3 |#3| "failed") |#3|) 79)) (-2888 ((|#3| |#3|) 151)) (-3250 (((-3 |#3| "failed") |#3|) 63)) (-3859 ((|#3| |#3|) 139)) (-2915 (((-3 |#3| "failed") |#3|) 75)) (-1609 ((|#3| |#3|) 149)) (-3060 (((-3 |#3| "failed") |#3|) 117)) (-3837 ((|#3| |#3|) 153)) (-1613 (((-3 |#3| "failed") |#3|) 71)) (-1578 ((|#3| |#3|) 147)) (-2946 (((-3 |#3| "failed") |#3|) 59)) (-3813 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374)))))
+(((-287 |#1| |#2| |#3|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -3437 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3748 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -1542 (|#3| |#3|)) (-15 -1553 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)) (-15 -1578 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -2888 (|#3| |#3|)))) (-38 (-419 (-576))) (-1278 |#1|) (-1249 |#1| |#2|)) (T -287))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1278 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1249 *4 *5)))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3748 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2888 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))))
+(-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -3437 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3748 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -1542 (|#3| |#3|)) (-15 -1553 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)) (-15 -1578 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -2888 (|#3| |#3|))))
+((-3855 (((-3 |#3| "failed") |#3|) 70)) (-3897 ((|#3| |#3|) 137)) (-2800 (((-3 |#3| "failed") |#3|) 54)) (-3760 ((|#3| |#3|) 125)) (-1655 (((-3 |#3| "failed") |#3|) 66)) (-3871 ((|#3| |#3|) 135)) (-3377 (((-3 |#3| "failed") |#3|) 50)) (-3735 ((|#3| |#3|) 123)) (-3495 (((-3 |#3| "failed") |#3|) 74)) (-1542 ((|#3| |#3|) 139)) (-3984 (((-3 |#3| "failed") |#3|) 58)) (-3781 ((|#3| |#3|) 127)) (-1324 (((-3 |#3| "failed") |#3| (-783)) 38)) (-1731 (((-3 |#3| "failed") |#3|) 48)) (-3437 ((|#3| |#3|) 111)) (-3864 (((-3 |#3| "failed") |#3|) 46)) (-2656 ((|#3| |#3|) 122)) (-2186 (((-3 |#3| "failed") |#3|) 76)) (-1553 ((|#3| |#3|) 140)) (-1943 (((-3 |#3| "failed") |#3|) 60)) (-3791 ((|#3| |#3|) 128)) (-4166 (((-3 |#3| "failed") |#3|) 72)) (-3911 ((|#3| |#3|) 138)) (-3800 (((-3 |#3| "failed") |#3|) 56)) (-3771 ((|#3| |#3|) 126)) (-2998 (((-3 |#3| "failed") |#3|) 68)) (-3883 ((|#3| |#3|) 136)) (-2278 (((-3 |#3| "failed") |#3|) 52)) (-3748 ((|#3| |#3|) 124)) (-1881 (((-3 |#3| "failed") |#3|) 78)) (-1593 ((|#3| |#3|) 143)) (-2747 (((-3 |#3| "failed") |#3|) 62)) (-3826 ((|#3| |#3|) 131)) (-3405 (((-3 |#3| "failed") |#3|) 112)) (-1567 ((|#3| |#3|) 141)) (-2606 (((-3 |#3| "failed") |#3|) 100)) (-3802 ((|#3| |#3|) 129)) (-1605 (((-3 |#3| "failed") |#3|) 116)) (-1620 ((|#3| |#3|) 145)) (-3625 (((-3 |#3| "failed") |#3|) 107)) (-3847 ((|#3| |#3|) 133)) (-3878 (((-3 |#3| "failed") |#3|) 117)) (-2888 ((|#3| |#3|) 146)) (-3250 (((-3 |#3| "failed") |#3|) 109)) (-3859 ((|#3| |#3|) 134)) (-2915 (((-3 |#3| "failed") |#3|) 80)) (-1609 ((|#3| |#3|) 144)) (-3060 (((-3 |#3| "failed") |#3|) 64)) (-3837 ((|#3| |#3|) 132)) (-1613 (((-3 |#3| "failed") |#3|) 113)) (-1578 ((|#3| |#3|) 142)) (-2946 (((-3 |#3| "failed") |#3|) 103)) (-3813 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374)))))
+(((-288 |#1| |#2| |#3| |#4|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -3437 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3748 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -1542 (|#3| |#3|)) (-15 -1553 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)) (-15 -1578 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -2888 (|#3| |#3|)))) (-38 (-419 (-576))) (-1247 |#1|) (-1270 |#1| |#2|) (-1002 |#2|)) (T -288))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1247 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1270 *4 *5)) (-4 *6 (-1002 *5)))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3735 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3748 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3781 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1578 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2888 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))))
+(-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -2656 (|#3| |#3|)) (-15 -3437 (|#3| |#3|)) (-15 -3735 (|#3| |#3|)) (-15 -3748 (|#3| |#3|)) (-15 -3760 (|#3| |#3|)) (-15 -3771 (|#3| |#3|)) (-15 -3781 (|#3| |#3|)) (-15 -3791 (|#3| |#3|)) (-15 -3802 (|#3| |#3|)) (-15 -3813 (|#3| |#3|)) (-15 -3826 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3859 (|#3| |#3|)) (-15 -3871 (|#3| |#3|)) (-15 -3883 (|#3| |#3|)) (-15 -3897 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -1542 (|#3| |#3|)) (-15 -1553 (|#3| |#3|)) (-15 -1567 (|#3| |#3|)) (-15 -1578 (|#3| |#3|)) (-15 -1593 (|#3| |#3|)) (-15 -1609 (|#3| |#3|)) (-15 -1620 (|#3| |#3|)) (-15 -2888 (|#3| |#3|))))
+((-3202 (((-112) $) 20)) (-2774 (((-1201) $) 7)) (-4168 (((-3 (-518) "failed") $) 14)) (-3682 (((-3 (-656 $) "failed") $) NIL)) (-3713 (((-3 (-518) "failed") $) 21)) (-4388 (((-3 (-1123) "failed") $) 18)) (-2565 (((-112) $) 16)) (-2858 (((-874) $) NIL)) (-2242 (((-112) $) 9)))
+(((-289) (-13 (-625 (-874)) (-10 -8 (-15 -2774 ((-1201) $)) (-15 -2565 ((-112) $)) (-15 -4388 ((-3 (-1123) "failed") $)) (-15 -3202 ((-112) $)) (-15 -3713 ((-3 (-518) "failed") $)) (-15 -2242 ((-112) $)) (-15 -4168 ((-3 (-518) "failed") $)) (-15 -3682 ((-3 (-656 $) "failed") $))))) (T -289))
+((-2774 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-289)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-4388 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-289)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3713 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-4168 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-3682 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2774 ((-1201) $)) (-15 -2565 ((-112) $)) (-15 -4388 ((-3 (-1123) "failed") $)) (-15 -3202 ((-112) $)) (-15 -3713 ((-3 (-518) "failed") $)) (-15 -2242 ((-112) $)) (-15 -4168 ((-3 (-518) "failed") $)) (-15 -3682 ((-3 (-656 $) "failed") $))))
+((-1829 (((-609) $) 10)) (-4180 (((-597) $) 8)) (-3621 (((-301) $) 12)) (-3647 (($ (-597) (-609) (-301)) NIL)) (-2858 (((-874) $) 19)))
+(((-290) (-13 (-625 (-874)) (-10 -8 (-15 -3647 ($ (-597) (-609) (-301))) (-15 -4180 ((-597) $)) (-15 -1829 ((-609) $)) (-15 -3621 ((-301) $))))) (T -290))
+((-3647 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3647 ($ (-597) (-609) (-301))) (-15 -4180 ((-597) $)) (-15 -1829 ((-609) $)) (-15 -3621 ((-301) $))))
+((-3959 (($ (-1 (-112) |#2|) $) 24)) (-3229 (($ $) 38)) (-3007 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3607 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1932 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2163 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3213 (($ $ (-576)) 11) (($ $ (-1254 (-576))) 14)) (-3925 (($ $ |#2|) 32) (($ $ $) NIL)) (-1534 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL)))
+(((-291 |#1| |#2|) (-10 -8 (-15 -1932 (|#1| |#1| |#1|)) (-15 -3007 (|#1| |#2| |#1|)) (-15 -1932 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3925 (|#1| |#1| |#2|)) (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -3213 (|#1| |#1| (-1254 (-576)))) (-15 -3213 (|#1| |#1| (-576))) (-15 -1534 (|#1| (-656 |#1|))) (-15 -1534 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#2|)) (-15 -3607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3607 (|#1| |#2| |#1|)) (-15 -3229 (|#1| |#1|))) (-292 |#2|) (-1237)) (T -291))
+NIL
+(-10 -8 (-15 -1932 (|#1| |#1| |#1|)) (-15 -3007 (|#1| |#2| |#1|)) (-15 -1932 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3925 (|#1| |#1| |#2|)) (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -3213 (|#1| |#1| (-1254 (-576)))) (-15 -3213 (|#1| |#1| (-576))) (-15 -1534 (|#1| (-656 |#1|))) (-15 -1534 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#2|)) (-15 -3607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3959 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3607 (|#1| |#2| |#1|)) (-15 -3229 (|#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) |#1|) $) 88)) (-3959 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3444 (($ $) 86 (|has| |#1| (-1119)))) (-3229 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1119)))) (-3607 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 52)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1932 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2329 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2163 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 43 (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4040 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-3804 (($ $ (-576)) 94) (($ $ (-1254 (-576))) 93)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 72)) (-3925 (($ $ |#1|) 96) (($ $ $) 95)) (-1534 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-292 |#1|) (-141) (-1237)) (T -292))
+((-3925 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-3925 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3007 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-2329 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-2329 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-1932 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3007 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) (-1932 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))))
+(-13 (-663 |t#1|) (-10 -8 (-6 -4463) (-15 -3925 ($ $ |t#1|)) (-15 -3925 ($ $ $)) (-15 -3804 ($ $ (-576))) (-15 -3804 ($ $ (-1254 (-576)))) (-15 -3007 ($ (-1 (-112) |t#1|) $)) (-15 -2329 ($ |t#1| $ (-576))) (-15 -2329 ($ $ $ (-576))) (-15 -1932 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3423 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3007 ($ |t#1| $)) (-15 -3444 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -1932 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
((** (($ $ $) 10)))
-(((-292 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-293)) (T -292))
+(((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-3461 (($ $) 6)) (-2663 (($ $) 7)) (** (($ $ $) 8)))
-(((-293) (-141)) (T -293))
-((** (*1 *1 *1 *1) (-4 *1 (-293))) (-2663 (*1 *1 *1) (-4 *1 (-293))) (-3461 (*1 *1 *1) (-4 *1 (-293))))
-(-13 (-10 -8 (-15 -3461 ($ $)) (-15 -2663 ($ $)) (-15 ** ($ $ $))))
-((-3293 (((-655 (-1174 |#1|)) (-1174 |#1|) |#1|) 35)) (-3070 ((|#2| |#2| |#1|) 39)) (-2508 ((|#2| |#2| |#1|) 41)) (-3331 ((|#2| |#2| |#1|) 40)))
-(((-294 |#1| |#2|) (-10 -7 (-15 -3070 (|#2| |#2| |#1|)) (-15 -3331 (|#2| |#2| |#1|)) (-15 -2508 (|#2| |#2| |#1|)) (-15 -3293 ((-655 (-1174 |#1|)) (-1174 |#1|) |#1|))) (-373) (-1276 |#1|)) (T -294))
-((-3293 (*1 *2 *3 *4) (-12 (-4 *4 (-373)) (-5 *2 (-655 (-1174 *4))) (-5 *1 (-294 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-1276 *4)))) (-2508 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))) (-3331 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))) (-3070 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))))
-(-10 -7 (-15 -3070 (|#2| |#2| |#1|)) (-15 -3331 (|#2| |#2| |#1|)) (-15 -2508 (|#2| |#2| |#1|)) (-15 -3293 ((-655 (-1174 |#1|)) (-1174 |#1|) |#1|)))
-((-2065 ((|#2| $ |#1|) 6)))
-(((-295 |#1| |#2|) (-141) (-1235) (-1235)) (T -295))
-((-2065 (*1 *2 *1 *3) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1235)) (-4 *2 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2065 (|t#2| $ |t#1|))))
-(((-1235) . T))
-((-2857 ((|#3| $ |#2| |#3|) 12)) (-2786 ((|#3| $ |#2|) 10)))
-(((-296 |#1| |#2| |#3|) (-10 -8 (-15 -2857 (|#3| |#1| |#2| |#3|)) (-15 -2786 (|#3| |#1| |#2|))) (-297 |#2| |#3|) (-1117) (-1235)) (T -296))
-NIL
-(-10 -8 (-15 -2857 (|#3| |#1| |#2| |#3|)) (-15 -2786 (|#3| |#1| |#2|)))
-((-3052 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4461)))) (-2857 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) 11)) (-2065 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-297 |#1| |#2|) (-141) (-1117) (-1235)) (T -297))
-((-2065 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-2786 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-3052 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-2857 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))))
-(-13 (-295 |t#1| |t#2|) (-10 -8 (-15 -2065 (|t#2| $ |t#1| |t#2|)) (-15 -2786 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3052 (|t#2| $ |t#1| |t#2|)) (-15 -2857 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-295 |#1| |#2|) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 37)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 44)) (-2456 (($ $) 41)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) 35)) (-2302 (($ |#2| |#3|) 18)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1444 ((|#3| $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 19)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1720 (((-782) $) 36)) (-2065 ((|#2| $ |#2|) 46)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 23)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 31 T CONST)) (-2005 (($) 39 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 40)))
-(((-298 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-316) (-295 |#2| |#2|) (-10 -8 (-15 -1444 (|#3| $)) (-15 -2882 (|#2| $)) (-15 -2302 ($ |#2| |#3|)) (-15 -2998 ((-3 $ "failed") $ $)) (-15 -4162 ((-3 $ "failed") $)) (-15 -4332 ($ $)))) (-174) (-1261 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -298))
-((-4162 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1444 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-298 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1261 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-298 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2302 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-298 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1261 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2998 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4332 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
-(-13 (-316) (-295 |#2| |#2|) (-10 -8 (-15 -1444 (|#3| $)) (-15 -2882 (|#2| $)) (-15 -2302 ($ |#2| |#3|)) (-15 -2998 ((-3 $ "failed") $ $)) (-15 -4162 ((-3 $ "failed") $)) (-15 -4332 ($ $))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-299) (-141)) (T -299))
-NIL
-(-13 (-1066) (-111 $ $) (-10 -7 (-6 -4453)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2650 (((-655 (-1102)) $) 10)) (-1562 (($ (-517) (-517) (-1121) $) 19)) (-4165 (($ (-517) (-655 (-980)) $) 23)) (-3012 (($) 25)) (-1779 (((-702 (-1121)) (-517) (-517) $) 18)) (-1345 (((-655 (-980)) (-517) $) 22)) (-1393 (($) 7)) (-3914 (($) 24)) (-2882 (((-873) $) 29)) (-3139 (($) 26)))
-(((-300) (-13 (-624 (-873)) (-10 -8 (-15 -1393 ($)) (-15 -2650 ((-655 (-1102)) $)) (-15 -1779 ((-702 (-1121)) (-517) (-517) $)) (-15 -1562 ($ (-517) (-517) (-1121) $)) (-15 -1345 ((-655 (-980)) (-517) $)) (-15 -4165 ($ (-517) (-655 (-980)) $)) (-15 -3914 ($)) (-15 -3012 ($)) (-15 -3139 ($))))) (T -300))
-((-1393 (*1 *1) (-5 *1 (-300))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-655 (-1102))) (-5 *1 (-300)))) (-1779 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-1121))) (-5 *1 (-300)))) (-1562 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-300)))) (-1345 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-655 (-980))) (-5 *1 (-300)))) (-4165 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-300)))) (-3914 (*1 *1) (-5 *1 (-300))) (-3012 (*1 *1) (-5 *1 (-300))) (-3139 (*1 *1) (-5 *1 (-300))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1393 ($)) (-15 -2650 ((-655 (-1102)) $)) (-15 -1779 ((-702 (-1121)) (-517) (-517) $)) (-15 -1562 ($ (-517) (-517) (-1121) $)) (-15 -1345 ((-655 (-980)) (-517) $)) (-15 -4165 ($ (-517) (-655 (-980)) $)) (-15 -3914 ($)) (-15 -3012 ($)) (-15 -3139 ($))))
-((-2612 (((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))) 102)) (-1368 (((-655 (-700 (-418 (-967 |#1|)))) (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|)))))) (-700 (-418 (-967 |#1|)))) 97) (((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))) (-782) (-782)) 41)) (-3203 (((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))) 99)) (-2395 (((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|)))) 75)) (-2485 (((-655 (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (-700 (-418 (-967 |#1|)))) 74)) (-2765 (((-967 |#1|) (-700 (-418 (-967 |#1|)))) 55) (((-967 |#1|) (-700 (-418 (-967 |#1|))) (-1194)) 56)))
-(((-301 |#1|) (-10 -7 (-15 -2765 ((-967 |#1|) (-700 (-418 (-967 |#1|))) (-1194))) (-15 -2765 ((-967 |#1|) (-700 (-418 (-967 |#1|))))) (-15 -2485 ((-655 (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (-700 (-418 (-967 |#1|))))) (-15 -2395 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))))) (-15 -1368 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))) (-782) (-782))) (-15 -1368 ((-655 (-700 (-418 (-967 |#1|)))) (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|)))))) (-700 (-418 (-967 |#1|))))) (-15 -2612 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|))))) (-15 -3203 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|)))))) (-463)) (T -301))
-((-3203 (*1 *2 *3) (-12 (-4 *4 (-463)) (-5 *2 (-655 (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 *4)))))))) (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4)))))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-463)) (-5 *2 (-655 (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 *4)))))))) (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4)))))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 *4)))) (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5))))) (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5)))))) (-1368 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-418 (-967 *6)) (-1183 (-1194) (-967 *6)))) (-5 *5 (-782)) (-4 *6 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *6))))) (-5 *1 (-301 *6)) (-5 *4 (-700 (-418 (-967 *6)))))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5)))) (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5))))) (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5)))))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-4 *4 (-463)) (-5 *2 (-655 (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4))))) (-5 *1 (-301 *4)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-5 *2 (-967 *4)) (-5 *1 (-301 *4)) (-4 *4 (-463)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-967 *5)))) (-5 *4 (-1194)) (-5 *2 (-967 *5)) (-5 *1 (-301 *5)) (-4 *5 (-463)))))
-(-10 -7 (-15 -2765 ((-967 |#1|) (-700 (-418 (-967 |#1|))) (-1194))) (-15 -2765 ((-967 |#1|) (-700 (-418 (-967 |#1|))))) (-15 -2485 ((-655 (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (-700 (-418 (-967 |#1|))))) (-15 -2395 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))))) (-15 -1368 ((-655 (-700 (-418 (-967 |#1|)))) (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|))) (-700 (-418 (-967 |#1|))) (-782) (-782))) (-15 -1368 ((-655 (-700 (-418 (-967 |#1|)))) (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|)))))) (-700 (-418 (-967 |#1|))))) (-15 -2612 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |geneigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|))))) (-15 -3203 ((-655 (-2 (|:| |eigval| (-3 (-418 (-967 |#1|)) (-1183 (-1194) (-967 |#1|)))) (|:| |eigmult| (-782)) (|:| |eigvec| (-655 (-700 (-418 (-967 |#1|))))))) (-700 (-418 (-967 |#1|))))))
-((-2544 (((-303 |#2|) (-1 |#2| |#1|) (-303 |#1|)) 14)))
-(((-302 |#1| |#2|) (-10 -7 (-15 -2544 ((-303 |#2|) (-1 |#2| |#1|) (-303 |#1|)))) (-1235) (-1235)) (T -302))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-303 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-303 *6)) (-5 *1 (-302 *5 *6)))))
-(-10 -7 (-15 -2544 ((-303 |#2|) (-1 |#2| |#1|) (-303 |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2045 (((-112) $) NIL (|has| |#1| (-21)))) (-2572 (($ $) 12)) (-1708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1475 (($ $ $) 95 (|has| |#1| (-311)))) (-3261 (($) NIL (-3763 (|has| |#1| (-21)) (|has| |#1| (-737))) CONST)) (-1827 (($ $) 51 (|has| |#1| (-21)))) (-4386 (((-3 $ "failed") $) 62 (|has| |#1| (-737)))) (-3890 ((|#1| $) 11)) (-4162 (((-3 $ "failed") $) 60 (|has| |#1| (-737)))) (-3900 (((-112) $) NIL (|has| |#1| (-737)))) (-2544 (($ (-1 |#1| |#1|) $) 14)) (-3878 ((|#1| $) 10)) (-2513 (($ $) 50 (|has| |#1| (-21)))) (-2298 (((-3 $ "failed") $) 61 (|has| |#1| (-737)))) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4332 (($ $) 64 (-3763 (|has| |#1| (-373)) (|has| |#1| (-484))))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2433 (((-655 $) $) 85 (|has| |#1| (-567)))) (-3046 (($ $ $) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 $)) 28 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-1194) |#1|) 17 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 21 (|has| |#1| (-525 (-1194) |#1|)))) (-2674 (($ |#1| |#1|) 9)) (-1605 (((-135)) 90 (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) 87 (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-913 (-1194))))) (-3516 (($ $ $) NIL (|has| |#1| (-484)))) (-4152 (($ $ $) NIL (|has| |#1| (-484)))) (-2882 (($ (-575)) NIL (|has| |#1| (-1066))) (((-112) $) 37 (|has| |#1| (-1117))) (((-873) $) 36 (|has| |#1| (-1117)))) (-4421 (((-782)) 67 (|has| |#1| (-1066)) CONST)) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1989 (($) 47 (|has| |#1| (-21)) CONST)) (-2005 (($) 57 (|has| |#1| (-737)) CONST)) (-3428 (($ $ (-1194)) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-913 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-913 (-1194))))) (-3913 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 92 (-3763 (|has| |#1| (-373)) (|has| |#1| (-484))))) (-4027 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4015 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-575)) NIL (|has| |#1| (-484))) (($ $ (-782)) NIL (|has| |#1| (-737))) (($ $ (-936)) NIL (|has| |#1| (-1129)))) (* (($ $ |#1|) 55 (|has| |#1| (-1129))) (($ |#1| $) 54 (|has| |#1| (-1129))) (($ $ $) 53 (|has| |#1| (-1129))) (($ (-575) $) 70 (|has| |#1| (-21))) (($ (-782) $) NIL (|has| |#1| (-21))) (($ (-936) $) NIL (|has| |#1| (-25)))))
-(((-303 |#1|) (-13 (-1235) (-10 -8 (-15 -3913 ($ |#1| |#1|)) (-15 -2674 ($ |#1| |#1|)) (-15 -2572 ($ $)) (-15 -3878 (|#1| $)) (-15 -3890 (|#1| $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-525 (-1194) |#1|)) (-6 (-525 (-1194) |#1|)) |%noBranch|) (IF (|has| |#1| (-1117)) (PROGN (-6 (-1117)) (-6 (-624 (-112))) (IF (|has| |#1| (-318 |#1|)) (PROGN (-15 -3046 ($ $ $)) (-15 -3046 ($ $ (-655 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4015 ($ |#1| $)) (-15 -4015 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2513 ($ $)) (-15 -1827 ($ $)) (-15 -4027 ($ |#1| $)) (-15 -4027 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1129)) (PROGN (-6 (-1129)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-737)) (PROGN (-6 (-737)) (-15 -2298 ((-3 $ "failed") $)) (-15 -4386 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-6 (-484)) (-15 -2298 ((-3 $ "failed") $)) (-15 -4386 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|) (IF (|has| |#1| (-567)) (-15 -2433 ((-655 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-1292 |#1|)) (-15 -4038 ($ $ $)) (-15 -4332 ($ $))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -1475 ($ $ $)) |%noBranch|))) (-1235)) (T -303))
-((-3913 (*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-2674 (*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-2572 (*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-3878 (*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-3890 (*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-303 *3)))) (-3046 (*1 *1 *1 *1) (-12 (-4 *2 (-318 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)) (-5 *1 (-303 *2)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *3))) (-4 *3 (-318 *3)) (-4 *3 (-1117)) (-4 *3 (-1235)) (-5 *1 (-303 *3)))) (-4015 (*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235)))) (-2513 (*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-1827 (*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-4027 (*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-4027 (*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))) (-2298 (*1 *1 *1) (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235)))) (-4386 (*1 *1 *1) (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-655 (-303 *3))) (-5 *1 (-303 *3)) (-4 *3 (-567)) (-4 *3 (-1235)))) (-1475 (*1 *1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-311)) (-4 *2 (-1235)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235)))) (-4038 (*1 *1 *1 *1) (-3763 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235))) (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235))))) (-4332 (*1 *1 *1) (-3763 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235))) (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235))))))
-(-13 (-1235) (-10 -8 (-15 -3913 ($ |#1| |#1|)) (-15 -2674 ($ |#1| |#1|)) (-15 -2572 ($ $)) (-15 -3878 (|#1| $)) (-15 -3890 (|#1| $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-525 (-1194) |#1|)) (-6 (-525 (-1194) |#1|)) |%noBranch|) (IF (|has| |#1| (-1117)) (PROGN (-6 (-1117)) (-6 (-624 (-112))) (IF (|has| |#1| (-318 |#1|)) (PROGN (-15 -3046 ($ $ $)) (-15 -3046 ($ $ (-655 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4015 ($ |#1| $)) (-15 -4015 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2513 ($ $)) (-15 -1827 ($ $)) (-15 -4027 ($ |#1| $)) (-15 -4027 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1129)) (PROGN (-6 (-1129)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-737)) (PROGN (-6 (-737)) (-15 -2298 ((-3 $ "failed") $)) (-15 -4386 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-6 (-484)) (-15 -2298 ((-3 $ "failed") $)) (-15 -4386 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|) (IF (|has| |#1| (-567)) (-15 -2433 ((-655 $) $)) |%noBranch|) (IF (|has| |#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-1292 |#1|)) (-15 -4038 ($ $ $)) (-15 -4332 ($ $))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -1475 ($ $ $)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#2| $ |#1| |#2|) NIL)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1995 (((-655 |#1|) $) NIL)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1653 (((-655 |#1|) $) NIL)) (-1801 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-304 |#1| |#2|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117)) (T -304))
-NIL
-(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460)))
-((-3082 (((-321) (-1176) (-655 (-1176))) 17) (((-321) (-1176) (-1176)) 16) (((-321) (-655 (-1176))) 15) (((-321) (-1176)) 14)))
-(((-305) (-10 -7 (-15 -3082 ((-321) (-1176))) (-15 -3082 ((-321) (-655 (-1176)))) (-15 -3082 ((-321) (-1176) (-1176))) (-15 -3082 ((-321) (-1176) (-655 (-1176)))))) (T -305))
-((-3082 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1176))) (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))) (-3082 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-321)) (-5 *1 (-305)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305)))))
-(-10 -7 (-15 -3082 ((-321) (-1176))) (-15 -3082 ((-321) (-655 (-1176)))) (-15 -3082 ((-321) (-1176) (-1176))) (-15 -3082 ((-321) (-1176) (-655 (-1176)))))
-((-2544 ((|#2| (-1 |#2| |#1|) (-1176) (-623 |#1|)) 18)))
-(((-306 |#1| |#2|) (-10 -7 (-15 -2544 (|#2| (-1 |#2| |#1|) (-1176) (-623 |#1|)))) (-311) (-1235)) (T -306))
-((-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1176)) (-5 *5 (-623 *6)) (-4 *6 (-311)) (-4 *2 (-1235)) (-5 *1 (-306 *6 *2)))))
-(-10 -7 (-15 -2544 (|#2| (-1 |#2| |#1|) (-1176) (-623 |#1|))))
-((-2544 ((|#2| (-1 |#2| |#1|) (-623 |#1|)) 17)))
-(((-307 |#1| |#2|) (-10 -7 (-15 -2544 (|#2| (-1 |#2| |#1|) (-623 |#1|)))) (-311) (-311)) (T -307))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-623 *5)) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-307 *5 *2)))))
-(-10 -7 (-15 -2544 (|#2| (-1 |#2| |#1|) (-623 |#1|))))
-((-1329 (((-112) (-227)) 12)))
-(((-308 |#1| |#2|) (-10 -7 (-15 -1329 ((-112) (-227)))) (-227) (-227)) (T -308))
-((-1329 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-308 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1329 ((-112) (-227))))
-((-2767 (((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227)))) 118)) (-1798 (((-1174 (-227)) (-1285 (-325 (-227))) (-655 (-1194)) (-1111 (-854 (-227)))) 135) (((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227)))) 72)) (-2705 (((-655 (-1176)) (-1174 (-227))) NIL)) (-2854 (((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227)))) 69)) (-3286 (((-655 (-227)) (-967 (-418 (-575))) (-1194) (-1111 (-854 (-227)))) 59)) (-3215 (((-655 (-1176)) (-655 (-227))) NIL)) (-1814 (((-227) (-1111 (-854 (-227)))) 29)) (-1676 (((-227) (-1111 (-854 (-227)))) 30)) (-4059 (((-112) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-1527 (((-1176) (-227)) NIL)))
-(((-309) (-10 -7 (-15 -1814 ((-227) (-1111 (-854 (-227))))) (-15 -1676 ((-227) (-1111 (-854 (-227))))) (-15 -4059 ((-112) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2854 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -2767 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1798 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1798 ((-1174 (-227)) (-1285 (-325 (-227))) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -3286 ((-655 (-227)) (-967 (-418 (-575))) (-1194) (-1111 (-854 (-227))))) (-15 -1527 ((-1176) (-227))) (-15 -3215 ((-655 (-1176)) (-655 (-227)))) (-15 -2705 ((-655 (-1176)) (-1174 (-227)))))) (T -309))
-((-2705 (*1 *2 *3) (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-309)))) (-3286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *4 (-1194)) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194))) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194))) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) (-2767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194))) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))) (-2854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194)) (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-309)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))))
-(-10 -7 (-15 -1814 ((-227) (-1111 (-854 (-227))))) (-15 -1676 ((-227) (-1111 (-854 (-227))))) (-15 -4059 ((-112) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2854 ((-655 (-227)) (-325 (-227)) (-1194) (-1111 (-854 (-227))))) (-15 -2767 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1798 ((-1174 (-227)) (-325 (-227)) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -1798 ((-1174 (-227)) (-1285 (-325 (-227))) (-655 (-1194)) (-1111 (-854 (-227))))) (-15 -3286 ((-655 (-227)) (-967 (-418 (-575))) (-1194) (-1111 (-854 (-227))))) (-15 -1527 ((-1176) (-227))) (-15 -3215 ((-655 (-1176)) (-655 (-227)))) (-15 -2705 ((-655 (-1176)) (-1174 (-227)))))
-((-4270 (((-655 (-623 $)) $) 27)) (-1475 (($ $ (-303 $)) 78) (($ $ (-655 (-303 $))) 139) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-2443 (((-3 (-623 $) "failed") $) 127)) (-4400 (((-623 $) $) 126)) (-1412 (($ $) 17) (($ (-655 $)) 54)) (-4075 (((-655 (-115)) $) 35)) (-2567 (((-115) (-115)) 88)) (-4254 (((-112) $) 150)) (-2544 (($ (-1 $ $) (-623 $)) 86)) (-1934 (((-3 (-623 $) "failed") $) 94)) (-1672 (($ (-115) $) 59) (($ (-115) (-655 $)) 110)) (-3371 (((-112) $ (-115)) 132) (((-112) $ (-1194)) 131)) (-3340 (((-782) $) 44)) (-4284 (((-112) $ $) 57) (((-112) $ (-1194)) 49)) (-3095 (((-112) $) 148)) (-3046 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) 137) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 81) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) 67) (($ $ (-1194) (-1 $ $)) 72) (($ $ (-655 (-115)) (-655 (-1 $ $))) 80) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 82) (($ $ (-115) (-1 $ (-655 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2065 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-655 $)) 123)) (-3197 (($ $) 51) (($ $ $) 135)) (-2394 (($ $) 15) (($ (-655 $)) 53)) (-1825 (((-112) (-115)) 21)))
-(((-310 |#1|) (-10 -8 (-15 -4254 ((-112) |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -4284 ((-112) |#1| (-1194))) (-15 -4284 ((-112) |#1| |#1|)) (-15 -2544 (|#1| (-1 |#1| |#1|) (-623 |#1|))) (-15 -1672 (|#1| (-115) (-655 |#1|))) (-15 -1672 (|#1| (-115) |#1|)) (-15 -3371 ((-112) |#1| (-1194))) (-15 -3371 ((-112) |#1| (-115))) (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -4075 ((-655 (-115)) |#1|)) (-15 -4270 ((-655 (-623 |#1|)) |#1|)) (-15 -1934 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3340 ((-782) |#1|)) (-15 -3197 (|#1| |#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -1412 (|#1| (-655 |#1|))) (-15 -1412 (|#1| |#1|)) (-15 -2394 (|#1| (-655 |#1|))) (-15 -2394 (|#1| |#1|)) (-15 -1475 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1475 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1475 (|#1| |#1| (-303 |#1|))) (-15 -2065 (|#1| (-115) (-655 |#1|))) (-15 -2065 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3046 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2443 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4400 ((-623 |#1|) |#1|))) (-311)) (T -310))
-((-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-310 *3)) (-4 *3 (-311)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-310 *4)) (-4 *4 (-311)))))
-(-10 -8 (-15 -4254 ((-112) |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -4284 ((-112) |#1| (-1194))) (-15 -4284 ((-112) |#1| |#1|)) (-15 -2544 (|#1| (-1 |#1| |#1|) (-623 |#1|))) (-15 -1672 (|#1| (-115) (-655 |#1|))) (-15 -1672 (|#1| (-115) |#1|)) (-15 -3371 ((-112) |#1| (-1194))) (-15 -3371 ((-112) |#1| (-115))) (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -4075 ((-655 (-115)) |#1|)) (-15 -4270 ((-655 (-623 |#1|)) |#1|)) (-15 -1934 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -3340 ((-782) |#1|)) (-15 -3197 (|#1| |#1| |#1|)) (-15 -3197 (|#1| |#1|)) (-15 -1412 (|#1| (-655 |#1|))) (-15 -1412 (|#1| |#1|)) (-15 -2394 (|#1| (-655 |#1|))) (-15 -2394 (|#1| |#1|)) (-15 -1475 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1475 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1475 (|#1| |#1| (-303 |#1|))) (-15 -2065 (|#1| (-115) (-655 |#1|))) (-15 -2065 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3046 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2443 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4400 ((-623 |#1|) |#1|)))
-((-2859 (((-112) $ $) 7)) (-4270 (((-655 (-623 $)) $) 39)) (-1475 (($ $ (-303 $)) 51) (($ $ (-655 (-303 $))) 50) (($ $ (-655 (-623 $)) (-655 $)) 49)) (-2443 (((-3 (-623 $) "failed") $) 64)) (-4400 (((-623 $) $) 65)) (-1412 (($ $) 46) (($ (-655 $)) 45)) (-4075 (((-655 (-115)) $) 38)) (-2567 (((-115) (-115)) 37)) (-4254 (((-112) $) 17 (|has| $ (-1055 (-575))))) (-4088 (((-1190 $) (-623 $)) 20 (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) 31)) (-1934 (((-3 (-623 $) "failed") $) 41)) (-4264 (((-1176) $) 10)) (-2551 (((-655 (-623 $)) $) 40)) (-1672 (($ (-115) $) 33) (($ (-115) (-655 $)) 32)) (-3371 (((-112) $ (-115)) 35) (((-112) $ (-1194)) 34)) (-3340 (((-782) $) 42)) (-3912 (((-1137) $) 11)) (-4284 (((-112) $ $) 30) (((-112) $ (-1194)) 29)) (-3095 (((-112) $) 18 (|has| $ (-1055 (-575))))) (-3046 (($ $ (-623 $) $) 62) (($ $ (-655 (-623 $)) (-655 $)) 61) (($ $ (-655 (-303 $))) 60) (($ $ (-303 $)) 59) (($ $ $ $) 58) (($ $ (-655 $) (-655 $)) 57) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 28) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 27) (($ $ (-1194) (-1 $ (-655 $))) 26) (($ $ (-1194) (-1 $ $)) 25) (($ $ (-655 (-115)) (-655 (-1 $ $))) 24) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 23) (($ $ (-115) (-1 $ (-655 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2065 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-655 $)) 52)) (-3197 (($ $) 44) (($ $ $) 43)) (-4436 (($ $) 19 (|has| $ (-1066)))) (-2882 (((-873) $) 12) (($ (-623 $)) 63)) (-2394 (($ $) 48) (($ (-655 $)) 47)) (-1825 (((-112) (-115)) 36)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-311) (-141)) (T -311))
-((-2065 (*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2065 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2065 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2065 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-2065 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311)))) (-1475 (*1 *1 *1 *2) (-12 (-5 *2 (-303 *1)) (-4 *1 (-311)))) (-1475 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *1))) (-4 *1 (-311)))) (-1475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-623 *1))) (-5 *3 (-655 *1)) (-4 *1 (-311)))) (-2394 (*1 *1 *1) (-4 *1 (-311))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311)))) (-1412 (*1 *1 *1) (-4 *1 (-311))) (-1412 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311)))) (-3197 (*1 *1 *1) (-4 *1 (-311))) (-3197 (*1 *1 *1 *1) (-4 *1 (-311))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-782)))) (-1934 (*1 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-311)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311)))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-655 (-115))))) (-2567 (*1 *2 *2) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-1825 (*1 *2 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3371 (*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3371 (*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112)))) (-1672 (*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115)))) (-1672 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311)))) (-2544 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-623 *1)) (-4 *1 (-311)))) (-4284 (*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112)))) (-4284 (*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-1066)) (-4 *1 (-311)) (-5 *2 (-1190 *1)))) (-4436 (*1 *1 *1) (-12 (-4 *1 (-1066)) (-4 *1 (-311)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112)))) (-4254 (*1 *2 *1) (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112)))))
-(-13 (-1117) (-1055 (-623 $)) (-525 (-623 $) $) (-318 $) (-10 -8 (-15 -2065 ($ (-115) $)) (-15 -2065 ($ (-115) $ $)) (-15 -2065 ($ (-115) $ $ $)) (-15 -2065 ($ (-115) $ $ $ $)) (-15 -2065 ($ (-115) (-655 $))) (-15 -1475 ($ $ (-303 $))) (-15 -1475 ($ $ (-655 (-303 $)))) (-15 -1475 ($ $ (-655 (-623 $)) (-655 $))) (-15 -2394 ($ $)) (-15 -2394 ($ (-655 $))) (-15 -1412 ($ $)) (-15 -1412 ($ (-655 $))) (-15 -3197 ($ $)) (-15 -3197 ($ $ $)) (-15 -3340 ((-782) $)) (-15 -1934 ((-3 (-623 $) "failed") $)) (-15 -2551 ((-655 (-623 $)) $)) (-15 -4270 ((-655 (-623 $)) $)) (-15 -4075 ((-655 (-115)) $)) (-15 -2567 ((-115) (-115))) (-15 -1825 ((-112) (-115))) (-15 -3371 ((-112) $ (-115))) (-15 -3371 ((-112) $ (-1194))) (-15 -1672 ($ (-115) $)) (-15 -1672 ($ (-115) (-655 $))) (-15 -2544 ($ (-1 $ $) (-623 $))) (-15 -4284 ((-112) $ $)) (-15 -4284 ((-112) $ (-1194))) (-15 -3046 ($ $ (-655 (-1194)) (-655 (-1 $ $)))) (-15 -3046 ($ $ (-655 (-1194)) (-655 (-1 $ (-655 $))))) (-15 -3046 ($ $ (-1194) (-1 $ (-655 $)))) (-15 -3046 ($ $ (-1194) (-1 $ $))) (-15 -3046 ($ $ (-655 (-115)) (-655 (-1 $ $)))) (-15 -3046 ($ $ (-655 (-115)) (-655 (-1 $ (-655 $))))) (-15 -3046 ($ $ (-115) (-1 $ (-655 $)))) (-15 -3046 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1066)) (PROGN (-15 -4088 ((-1190 $) (-623 $))) (-15 -4436 ($ $))) |%noBranch|) (IF (|has| $ (-1055 (-575))) (PROGN (-15 -3095 ((-112) $)) (-15 -4254 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-627 #0=(-623 $)) . T) ((-624 (-873)) . T) ((-318 $) . T) ((-525 (-623 $) $) . T) ((-525 $ $) . T) ((-1055 #0#) . T) ((-1117) . T))
-((-3498 (((-655 |#1|) (-655 |#1|)) 10)))
-(((-312 |#1|) (-10 -7 (-15 -3498 ((-655 |#1|) (-655 |#1|)))) (-859)) (T -312))
-((-3498 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-859)) (-5 *1 (-312 *3)))))
-(-10 -7 (-15 -3498 ((-655 |#1|) (-655 |#1|))))
-((-2544 (((-700 |#2|) (-1 |#2| |#1|) (-700 |#1|)) 17)))
-(((-313 |#1| |#2|) (-10 -7 (-15 -2544 ((-700 |#2|) (-1 |#2| |#1|) (-700 |#1|)))) (-1066) (-1066)) (T -313))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-700 *6)) (-5 *1 (-313 *5 *6)))))
-(-10 -7 (-15 -2544 ((-700 |#2|) (-1 |#2| |#1|) (-700 |#1|))))
-((-3281 (((-1285 (-325 (-389))) (-1285 (-325 (-227)))) 110)) (-1555 (((-1111 (-854 (-227))) (-1111 (-854 (-389)))) 43)) (-2705 (((-655 (-1176)) (-1174 (-227))) 92)) (-1390 (((-325 (-389)) (-967 (-227))) 53)) (-1743 (((-227) (-967 (-227))) 49)) (-2450 (((-1176) (-389)) 195)) (-2348 (((-854 (-227)) (-854 (-389))) 37)) (-3362 (((-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))) (-1285 (-325 (-227)))) 165)) (-1951 (((-1052) (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) 207) (((-1052) (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) 205)) (-3415 (((-700 (-227)) (-655 (-227)) (-782)) 19)) (-1651 (((-1285 (-710)) (-655 (-227))) 99)) (-3215 (((-655 (-1176)) (-655 (-227))) 79)) (-3292 (((-3 (-325 (-227)) "failed") (-325 (-227))) 128)) (-1329 (((-112) (-227) (-1111 (-854 (-227)))) 117)) (-1725 (((-1052) (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))) 224)) (-1814 (((-227) (-1111 (-854 (-227)))) 112)) (-1676 (((-227) (-1111 (-854 (-227)))) 113)) (-2586 (((-227) (-418 (-575))) 31)) (-3864 (((-1176) (-389)) 77)) (-3122 (((-227) (-389)) 22)) (-3404 (((-389) (-1285 (-325 (-227)))) 177)) (-3612 (((-325 (-227)) (-325 (-389))) 28)) (-3253 (((-418 (-575)) (-325 (-227))) 56)) (-1634 (((-325 (-418 (-575))) (-325 (-227))) 73)) (-2343 (((-325 (-389)) (-325 (-227))) 103)) (-3581 (((-227) (-325 (-227))) 57)) (-3887 (((-655 (-227)) (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) 68)) (-3080 (((-1111 (-854 (-227))) (-1111 (-854 (-227)))) 65)) (-1527 (((-1176) (-227)) 76)) (-3442 (((-710) (-227)) 95)) (-3391 (((-418 (-575)) (-227)) 58)) (-2155 (((-325 (-389)) (-227)) 52)) (-2613 (((-655 (-1111 (-854 (-227)))) (-655 (-1111 (-854 (-389))))) 46)) (-1513 (((-1052) (-655 (-1052))) 191) (((-1052) (-1052) (-1052)) 185)) (-4343 (((-1052) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
-(((-314) (-10 -7 (-15 -3122 ((-227) (-389))) (-15 -3612 ((-325 (-227)) (-325 (-389)))) (-15 -2348 ((-854 (-227)) (-854 (-389)))) (-15 -1555 ((-1111 (-854 (-227))) (-1111 (-854 (-389))))) (-15 -2613 ((-655 (-1111 (-854 (-227)))) (-655 (-1111 (-854 (-389)))))) (-15 -3391 ((-418 (-575)) (-227))) (-15 -3253 ((-418 (-575)) (-325 (-227)))) (-15 -3581 ((-227) (-325 (-227)))) (-15 -3292 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -3404 ((-389) (-1285 (-325 (-227))))) (-15 -3362 ((-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))) (-1285 (-325 (-227))))) (-15 -1634 ((-325 (-418 (-575))) (-325 (-227)))) (-15 -3080 ((-1111 (-854 (-227))) (-1111 (-854 (-227))))) (-15 -3887 ((-655 (-227)) (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))) (-15 -3442 ((-710) (-227))) (-15 -1651 ((-1285 (-710)) (-655 (-227)))) (-15 -2343 ((-325 (-389)) (-325 (-227)))) (-15 -3281 ((-1285 (-325 (-389))) (-1285 (-325 (-227))))) (-15 -1329 ((-112) (-227) (-1111 (-854 (-227))))) (-15 -1527 ((-1176) (-227))) (-15 -3864 ((-1176) (-389))) (-15 -3215 ((-655 (-1176)) (-655 (-227)))) (-15 -2705 ((-655 (-1176)) (-1174 (-227)))) (-15 -1814 ((-227) (-1111 (-854 (-227))))) (-15 -1676 ((-227) (-1111 (-854 (-227))))) (-15 -1513 ((-1052) (-1052) (-1052))) (-15 -1513 ((-1052) (-655 (-1052)))) (-15 -2450 ((-1176) (-389))) (-15 -1951 ((-1052) (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))))) (-15 -1951 ((-1052) (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))) (-15 -4343 ((-1052) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1725 ((-1052) (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))) (-15 -1390 ((-325 (-389)) (-967 (-227)))) (-15 -1743 ((-227) (-967 (-227)))) (-15 -2155 ((-325 (-389)) (-227))) (-15 -2586 ((-227) (-418 (-575)))) (-15 -3415 ((-700 (-227)) (-655 (-227)) (-782))))) (T -314))
-((-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-227))) (-5 *4 (-782)) (-5 *2 (-700 (-227))) (-5 *1 (-314)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-418 (-575))) (-5 *2 (-227)) (-5 *1 (-314)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-325 (-389))) (-5 *1 (-314)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-967 (-227))) (-5 *2 (-227)) (-5 *1 (-314)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-967 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-655 (-1052))) (-5 *2 (-1052)) (-5 *1 (-314)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-1052)) (-5 *1 (-314)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-314)))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-854 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-314)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-1285 (-325 (-389)))) (-5 *1 (-314)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1285 (-710))) (-5 *1 (-314)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-710)) (-5 *1 (-314)))) (-3887 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *2 (-655 (-227))) (-5 *1 (-314)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-1111 (-854 (-227)))) (-5 *1 (-314)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-418 (-575)))) (-5 *1 (-314)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575)))) (-5 *1 (-314)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-314)))) (-3292 (*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-314)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-227)) (-5 *1 (-314)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-418 (-575))) (-5 *1 (-314)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-418 (-575))) (-5 *1 (-314)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-655 (-1111 (-854 (-389))))) (-5 *2 (-655 (-1111 (-854 (-227))))) (-5 *1 (-314)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-1111 (-854 (-389)))) (-5 *2 (-1111 (-854 (-227)))) (-5 *1 (-314)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-854 (-389))) (-5 *2 (-854 (-227))) (-5 *1 (-314)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-325 (-389))) (-5 *2 (-325 (-227))) (-5 *1 (-314)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-314)))))
-(-10 -7 (-15 -3122 ((-227) (-389))) (-15 -3612 ((-325 (-227)) (-325 (-389)))) (-15 -2348 ((-854 (-227)) (-854 (-389)))) (-15 -1555 ((-1111 (-854 (-227))) (-1111 (-854 (-389))))) (-15 -2613 ((-655 (-1111 (-854 (-227)))) (-655 (-1111 (-854 (-389)))))) (-15 -3391 ((-418 (-575)) (-227))) (-15 -3253 ((-418 (-575)) (-325 (-227)))) (-15 -3581 ((-227) (-325 (-227)))) (-15 -3292 ((-3 (-325 (-227)) "failed") (-325 (-227)))) (-15 -3404 ((-389) (-1285 (-325 (-227))))) (-15 -3362 ((-2 (|:| |additions| (-575)) (|:| |multiplications| (-575)) (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))) (-1285 (-325 (-227))))) (-15 -1634 ((-325 (-418 (-575))) (-325 (-227)))) (-15 -3080 ((-1111 (-854 (-227))) (-1111 (-854 (-227))))) (-15 -3887 ((-655 (-227)) (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))) (-15 -3442 ((-710) (-227))) (-15 -1651 ((-1285 (-710)) (-655 (-227)))) (-15 -2343 ((-325 (-389)) (-325 (-227)))) (-15 -3281 ((-1285 (-325 (-389))) (-1285 (-325 (-227))))) (-15 -1329 ((-112) (-227) (-1111 (-854 (-227))))) (-15 -1527 ((-1176) (-227))) (-15 -3864 ((-1176) (-389))) (-15 -3215 ((-655 (-1176)) (-655 (-227)))) (-15 -2705 ((-655 (-1176)) (-1174 (-227)))) (-15 -1814 ((-227) (-1111 (-854 (-227))))) (-15 -1676 ((-227) (-1111 (-854 (-227))))) (-15 -1513 ((-1052) (-1052) (-1052))) (-15 -1513 ((-1052) (-655 (-1052)))) (-15 -2450 ((-1176) (-389))) (-15 -1951 ((-1052) (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))))) (-15 -1951 ((-1052) (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))) (-15 -4343 ((-1052) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1725 ((-1052) (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))) (-15 -1390 ((-325 (-389)) (-967 (-227)))) (-15 -1743 ((-227) (-967 (-227)))) (-15 -2155 ((-325 (-389)) (-227))) (-15 -2586 ((-227) (-418 (-575)))) (-15 -3415 ((-700 (-227)) (-655 (-227)) (-782))))
-((-3599 (((-112) $ $) 14)) (-2800 (($ $ $) 18)) (-2811 (($ $ $) 17)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 50)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 65)) (-3923 (($ $ $) 25) (($ (-655 $)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2849 (((-3 $ "failed") $ $) 21)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 53)))
-(((-315 |#1|) (-10 -8 (-15 -4418 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -3523 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3523 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3657 |#1|)) |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -3599 ((-112) |#1| |#1|)) (-15 -2880 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -2105 ((-2 (|:| -1754 (-655 |#1|)) (|:| -3657 |#1|)) (-655 |#1|))) (-15 -3923 (|#1| (-655 |#1|))) (-15 -3923 (|#1| |#1| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|))) (-316)) (T -315))
-NIL
-(-10 -8 (-15 -4418 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -3523 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3523 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3657 |#1|)) |#1| |#1|)) (-15 -2800 (|#1| |#1| |#1|)) (-15 -2811 (|#1| |#1| |#1|)) (-15 -3599 ((-112) |#1| |#1|)) (-15 -2880 ((-3 (-655 |#1|) "failed") (-655 |#1|) |#1|)) (-15 -2105 ((-2 (|:| -1754 (-655 |#1|)) (|:| -3657 |#1|)) (-655 |#1|))) (-15 -3923 (|#1| (-655 |#1|))) (-15 -3923 (|#1| |#1| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3900 (((-112) $) 35)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-316) (-141)) (T -316))
-((-3599 (*1 *2 *1 *1) (-12 (-4 *1 (-316)) (-5 *2 (-112)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-316)) (-5 *2 (-782)))) (-4416 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-316)))) (-2811 (*1 *1 *1 *1) (-4 *1 (-316))) (-2800 (*1 *1 *1 *1) (-4 *1 (-316))) (-3523 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3657 *1))) (-4 *1 (-316)))) (-3523 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-316)))) (-4418 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-316)))))
-(-13 (-935) (-10 -8 (-15 -3599 ((-112) $ $)) (-15 -1720 ((-782) $)) (-15 -4416 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -2811 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -3523 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $)) (-15 -3523 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4418 ((-3 (-655 $) "failed") (-655 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-3046 (($ $ (-655 |#2|) (-655 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-303 |#2|)) 11) (($ $ (-655 (-303 |#2|))) NIL)))
-(((-317 |#1| |#2|) (-10 -8 (-15 -3046 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3046 (|#1| |#1| (-303 |#2|))) (-15 -3046 (|#1| |#1| |#2| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#2|)))) (-318 |#2|) (-1117)) (T -317))
-NIL
-(-10 -8 (-15 -3046 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3046 (|#1| |#1| (-303 |#2|))) (-15 -3046 (|#1| |#1| |#2| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#2|))))
-((-3046 (($ $ (-655 |#1|) (-655 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-303 |#1|)) 11) (($ $ (-655 (-303 |#1|))) 10)))
-(((-318 |#1|) (-141) (-1117)) (T -318))
-((-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-303 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1117)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *3))) (-4 *1 (-318 *3)) (-4 *3 (-1117)))))
-(-13 (-525 |t#1| |t#1|) (-10 -8 (-15 -3046 ($ $ (-303 |t#1|))) (-15 -3046 ($ $ (-655 (-303 |t#1|))))))
-(((-525 |#1| |#1|) . T))
-((-3046 ((|#1| (-1 |#1| (-575)) (-1196 (-418 (-575)))) 26)))
-(((-319 |#1|) (-10 -7 (-15 -3046 (|#1| (-1 |#1| (-575)) (-1196 (-418 (-575)))))) (-38 (-418 (-575)))) (T -319))
-((-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-575))) (-5 *4 (-1196 (-418 (-575)))) (-5 *1 (-319 *2)) (-4 *2 (-38 (-418 (-575)))))))
-(-10 -7 (-15 -3046 (|#1| (-1 |#1| (-575)) (-1196 (-418 (-575))))))
-((-2859 (((-112) $ $) NIL)) (-2625 (((-575) $) 12)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3827 (((-1152) $) 9)) (-2882 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-320) (-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2625 ((-575) $))))) (T -320))
-((-3827 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-320)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-320)))))
-(-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2625 ((-575) $))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 7)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 9)))
-(((-321) (-1117)) (T -321))
-NIL
-(-1117)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 60)) (-3824 (((-1271 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-1271 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-3 (-1270 |#2| |#3| |#4|) "failed") $) 26)) (-4400 (((-1271 |#1| |#2| |#3| |#4|) $) NIL) (((-1194) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-575) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-575)))) (((-1270 |#2| |#3| |#4|) $) NIL)) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-1271 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1285 (-1271 |#1| |#2| |#3| |#4|)))) (-700 $) (-1285 $)) NIL) (((-700 (-1271 |#1| |#2| |#3| |#4|)) (-700 $)) NIL) (((-700 (-1271 |#1| |#2| |#3| |#4|)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-1271 |#1| |#2| |#3| |#4|) $) 22)) (-2808 (((-3 $ "failed") $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1169)))) (-1721 (((-112) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3503 (($ $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-2544 (($ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) $) NIL)) (-1918 (((-3 (-854 |#2|) "failed") $) 80)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-316)))) (-3920 (((-1271 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-1271 |#1| |#2| |#3| |#4|)) (-655 (-1271 |#1| |#2| |#3| |#4|))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-303 (-1271 |#1| |#2| |#3| |#4|))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-655 (-303 (-1271 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-318 (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-655 (-1194)) (-655 (-1271 |#1| |#2| |#3| |#4|))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-525 (-1194) (-1271 |#1| |#2| |#3| |#4|)))) (($ $ (-1194) (-1271 |#1| |#2| |#3| |#4|)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-525 (-1194) (-1271 |#1| |#2| |#3| |#4|))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-1271 |#1| |#2| |#3| |#4|)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-295 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-1271 |#1| |#2| |#3| |#4|) $) 19)) (-2613 (((-904 (-575)) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-625 (-547)))) (((-389) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1039))) (((-227) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3| |#4|) (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-1271 |#1| |#2| |#3| |#4|)) 30) (($ (-1194)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-1055 (-1194)))) (($ (-1270 |#2| |#3| |#4|)) 37)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-1271 |#1| |#2| |#3| |#4|) (-924))) (|has| (-1271 |#1| |#2| |#3| |#4|) (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 (((-1271 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-831)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-915 (-1194)))) (($ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-782)) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-1271 |#1| |#2| |#3| |#4|) (-861)))) (-4038 (($ $ $) 35) (($ (-1271 |#1| |#2| |#3| |#4|) (-1271 |#1| |#2| |#3| |#4|)) 32)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-1271 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1271 |#1| |#2| |#3| |#4|)) NIL)))
-(((-322 |#1| |#2| |#3| |#4|) (-13 (-1009 (-1271 |#1| |#2| |#3| |#4|)) (-1055 (-1270 |#2| |#3| |#4|)) (-10 -8 (-15 -1918 ((-3 (-854 |#2|) "failed") $)) (-15 -2882 ($ (-1270 |#2| |#3| |#4|))))) (-13 (-1055 (-575)) (-650 (-575)) (-463)) (-13 (-27) (-1220) (-441 |#1|)) (-1194) |#2|) (T -322))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1270 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4) (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *1 (-322 *3 *4 *5 *6)))) (-1918 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *2 (-854 *4)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4))))
-(-13 (-1009 (-1271 |#1| |#2| |#3| |#4|)) (-1055 (-1270 |#2| |#3| |#4|)) (-10 -8 (-15 -1918 ((-3 (-854 |#2|) "failed") $)) (-15 -2882 ($ (-1270 |#2| |#3| |#4|)))))
-((-2544 (((-325 |#2|) (-1 |#2| |#1|) (-325 |#1|)) 13)))
-(((-323 |#1| |#2|) (-10 -7 (-15 -2544 ((-325 |#2|) (-1 |#2| |#1|) (-325 |#1|)))) (-1117) (-1117)) (T -323))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-325 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-325 *6)) (-5 *1 (-323 *5 *6)))))
-(-10 -7 (-15 -2544 ((-325 |#2|) (-1 |#2| |#1|) (-325 |#1|))))
-((-4290 (((-52) |#2| (-303 |#2|) (-782)) 40) (((-52) |#2| (-303 |#2|)) 32) (((-52) |#2| (-782)) 35) (((-52) |#2|) 33) (((-52) (-1194)) 26)) (-1873 (((-52) |#2| (-303 |#2|) (-418 (-575))) 59) (((-52) |#2| (-303 |#2|)) 56) (((-52) |#2| (-418 (-575))) 58) (((-52) |#2|) 57) (((-52) (-1194)) 55)) (-4311 (((-52) |#2| (-303 |#2|) (-418 (-575))) 54) (((-52) |#2| (-303 |#2|)) 51) (((-52) |#2| (-418 (-575))) 53) (((-52) |#2|) 52) (((-52) (-1194)) 50)) (-4301 (((-52) |#2| (-303 |#2|) (-575)) 47) (((-52) |#2| (-303 |#2|)) 44) (((-52) |#2| (-575)) 46) (((-52) |#2|) 45) (((-52) (-1194)) 43)))
-(((-324 |#1| |#2|) (-10 -7 (-15 -4290 ((-52) (-1194))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-782))) (-15 -4290 ((-52) |#2| (-303 |#2|))) (-15 -4290 ((-52) |#2| (-303 |#2|) (-782))) (-15 -4301 ((-52) (-1194))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-575))) (-15 -4301 ((-52) |#2| (-303 |#2|))) (-15 -4301 ((-52) |#2| (-303 |#2|) (-575))) (-15 -4311 ((-52) (-1194))) (-15 -4311 ((-52) |#2|)) (-15 -4311 ((-52) |#2| (-418 (-575)))) (-15 -4311 ((-52) |#2| (-303 |#2|))) (-15 -4311 ((-52) |#2| (-303 |#2|) (-418 (-575)))) (-15 -1873 ((-52) (-1194))) (-15 -1873 ((-52) |#2|)) (-15 -1873 ((-52) |#2| (-418 (-575)))) (-15 -1873 ((-52) |#2| (-303 |#2|))) (-15 -1873 ((-52) |#2| (-303 |#2|) (-418 (-575))))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -324))
-((-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-418 (-575))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) (-4311 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-4311 (*1 *2 *3 *4) (-12 (-5 *4 (-418 (-575))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-4311 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 *5) (-650 *5))) (-5 *5 (-575)) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-4 *5 (-13 (-463) (-1055 *4) (-650 *4))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-4301 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-303 *3)) (-5 *5 (-782)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-4290 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4))))))
-(-10 -7 (-15 -4290 ((-52) (-1194))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-782))) (-15 -4290 ((-52) |#2| (-303 |#2|))) (-15 -4290 ((-52) |#2| (-303 |#2|) (-782))) (-15 -4301 ((-52) (-1194))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-575))) (-15 -4301 ((-52) |#2| (-303 |#2|))) (-15 -4301 ((-52) |#2| (-303 |#2|) (-575))) (-15 -4311 ((-52) (-1194))) (-15 -4311 ((-52) |#2|)) (-15 -4311 ((-52) |#2| (-418 (-575)))) (-15 -4311 ((-52) |#2| (-303 |#2|))) (-15 -4311 ((-52) |#2| (-303 |#2|) (-418 (-575)))) (-15 -1873 ((-52) (-1194))) (-15 -1873 ((-52) |#2|)) (-15 -1873 ((-52) |#2| (-418 (-575)))) (-15 -1873 ((-52) |#2| (-303 |#2|))) (-15 -1873 ((-52) |#2| (-303 |#2|) (-418 (-575)))))
-((-2859 (((-112) $ $) NIL)) (-2767 (((-655 $) $ (-1194)) NIL (|has| |#1| (-567))) (((-655 $) $) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $) (-1194)) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $)) NIL (|has| |#1| (-567))) (((-655 $) (-967 $)) NIL (|has| |#1| (-567)))) (-3088 (($ $ (-1194)) NIL (|has| |#1| (-567))) (($ $) NIL (|has| |#1| (-567))) (($ (-1190 $) (-1194)) NIL (|has| |#1| (-567))) (($ (-1190 $)) NIL (|has| |#1| (-567))) (($ (-967 $)) NIL (|has| |#1| (-567)))) (-2045 (((-112) $) 27 (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-1606 (((-655 (-1194)) $) 368)) (-3462 (((-418 (-1190 $)) $ (-623 $)) NIL (|has| |#1| (-567)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-4270 (((-655 (-623 $)) $) NIL)) (-3921 (($ $) 171 (|has| |#1| (-567)))) (-3784 (($ $) 147 (|has| |#1| (-567)))) (-4020 (($ $ (-1109 $)) 232 (|has| |#1| (-567))) (($ $ (-1194)) 228 (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) NIL (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-1475 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) 386) (($ $ (-655 (-623 $)) (-655 $)) 430)) (-4005 (((-429 (-1190 $)) (-1190 $)) 308 (-12 (|has| |#1| (-463)) (|has| |#1| (-567))))) (-3312 (($ $) NIL (|has| |#1| (-567)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-567)))) (-2467 (($ $) NIL (|has| |#1| (-567)))) (-3599 (((-112) $ $) NIL (|has| |#1| (-567)))) (-3895 (($ $) 167 (|has| |#1| (-567)))) (-3759 (($ $) 143 (|has| |#1| (-567)))) (-4389 (($ $ (-575)) 73 (|has| |#1| (-567)))) (-1521 (($ $) 175 (|has| |#1| (-567)))) (-3805 (($ $) 151 (|has| |#1| (-567)))) (-3261 (($) NIL (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) (|has| |#1| (-1129))) CONST)) (-4285 (((-655 $) $ (-1194)) NIL (|has| |#1| (-567))) (((-655 $) $) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $) (-1194)) NIL (|has| |#1| (-567))) (((-655 $) (-1190 $)) NIL (|has| |#1| (-567))) (((-655 $) (-967 $)) NIL (|has| |#1| (-567)))) (-3151 (($ $ (-1194)) NIL (|has| |#1| (-567))) (($ $) NIL (|has| |#1| (-567))) (($ (-1190 $) (-1194)) 134 (|has| |#1| (-567))) (($ (-1190 $)) NIL (|has| |#1| (-567))) (($ (-967 $)) NIL (|has| |#1| (-567)))) (-2443 (((-3 (-623 $) "failed") $) 18) (((-3 (-1194) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-967 |#1|)) "failed") $) NIL (|has| |#1| (-567))) (((-3 (-967 |#1|) "failed") $) NIL (|has| |#1| (-1066))) (((-3 (-418 (-575)) "failed") $) 46 (-3763 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-4400 (((-623 $) $) 12) (((-1194) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-967 |#1|)) $) NIL (|has| |#1| (-567))) (((-967 |#1|) $) NIL (|has| |#1| (-1066))) (((-418 (-575)) $) 319 (-3763 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2800 (($ $ $) NIL (|has| |#1| (-567)))) (-2862 (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 125 (|has| |#1| (-1066))) (((-700 |#1|) (-700 $)) 115 (|has| |#1| (-1066))) (((-700 |#1|) (-1285 $)) NIL (|has| |#1| (-1066))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (-2302 (($ $) 96 (|has| |#1| (-567)))) (-4162 (((-3 $ "failed") $) NIL (|has| |#1| (-1129)))) (-2811 (($ $ $) NIL (|has| |#1| (-567)))) (-3431 (($ $ (-1109 $)) 236 (|has| |#1| (-567))) (($ $ (-1194)) 234 (|has| |#1| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-567)))) (-3559 (((-112) $) NIL (|has| |#1| (-567)))) (-3306 (($ $ $) 202 (|has| |#1| (-567)))) (-1632 (($) 137 (|has| |#1| (-567)))) (-3732 (($ $ $) 222 (|has| |#1| (-567)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 392 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 399 (|has| |#1| (-898 (-389))))) (-1412 (($ $) NIL) (($ (-655 $)) NIL)) (-4075 (((-655 (-115)) $) NIL)) (-2567 (((-115) (-115)) 276)) (-3900 (((-112) $) 25 (|has| |#1| (-1129)))) (-4254 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-4300 (($ $) 72 (|has| |#1| (-1066)))) (-1595 (((-1142 |#1| (-623 $)) $) 91 (|has| |#1| (-1066)))) (-2252 (((-112) $) 62 (|has| |#1| (-567)))) (-2111 (($ $ (-575)) NIL (|has| |#1| (-567)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-567)))) (-4088 (((-1190 $) (-623 $)) 277 (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) 426)) (-1934 (((-3 (-623 $) "failed") $) NIL)) (-3461 (($ $) 141 (|has| |#1| (-567)))) (-2322 (($ $) 247 (|has| |#1| (-567)))) (-3886 (($ (-655 $)) NIL (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-4264 (((-1176) $) NIL)) (-2551 (((-655 (-623 $)) $) 49)) (-1672 (($ (-115) $) NIL) (($ (-115) (-655 $)) 431)) (-1445 (((-3 (-655 $) "failed") $) NIL (|has| |#1| (-1129)))) (-1963 (((-3 (-2 (|:| |val| $) (|:| -1658 (-575))) "failed") $) NIL (|has| |#1| (-1066)))) (-1512 (((-3 (-655 $) "failed") $) 436 (|has| |#1| (-25)))) (-3383 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2329 (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $) NIL (|has| |#1| (-1129))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-115)) NIL (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-1194)) NIL (|has| |#1| (-1066)))) (-3371 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) 51)) (-4332 (($ $) NIL (-3763 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-3738 (($ $ (-1194)) 251 (|has| |#1| (-567))) (($ $ (-1109 $)) 253 (|has| |#1| (-567)))) (-3340 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) 43)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 301 (|has| |#1| (-567)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-4284 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-1631 (($ $ (-1194)) 226 (|has| |#1| (-567))) (($ $) 224 (|has| |#1| (-567)))) (-2031 (($ $) 218 (|has| |#1| (-567)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 306 (-12 (|has| |#1| (-463)) (|has| |#1| (-567))))) (-2347 (((-429 $) $) NIL (|has| |#1| (-567)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-567))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-567)))) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-567)))) (-2663 (($ $) 139 (|has| |#1| (-567)))) (-3095 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3046 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) 425) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) 379) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-625 (-547)))) (($ $) NIL (|has| |#1| (-625 (-547)))) (($ $ (-115) $ (-1194)) 366 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-115)) (-655 $) (-1194)) 365 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ (-655 $))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ $)) NIL (|has| |#1| (-1066)))) (-1720 (((-782) $) NIL (|has| |#1| (-567)))) (-3715 (($ $) 239 (|has| |#1| (-567)))) (-2065 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3197 (($ $) NIL) (($ $ $) NIL)) (-3747 (($ $) 249 (|has| |#1| (-567)))) (-2605 (($ $) 200 (|has| |#1| (-567)))) (-2382 (($ $ (-1194)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-1066)))) (-2325 (($ $) 74 (|has| |#1| (-567)))) (-1608 (((-1142 |#1| (-623 $)) $) 93 (|has| |#1| (-567)))) (-4436 (($ $) 317 (|has| $ (-1066)))) (-1531 (($ $) 177 (|has| |#1| (-567)))) (-3815 (($ $) 153 (|has| |#1| (-567)))) (-3935 (($ $) 173 (|has| |#1| (-567)))) (-3795 (($ $) 149 (|has| |#1| (-567)))) (-3907 (($ $) 169 (|has| |#1| (-567)))) (-3772 (($ $) 145 (|has| |#1| (-567)))) (-2613 (((-904 (-575)) $) NIL (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#1| (-625 (-904 (-389))))) (($ (-429 $)) NIL (|has| |#1| (-567))) (((-547) $) 363 (|has| |#1| (-625 (-547))))) (-3516 (($ $ $) NIL (|has| |#1| (-484)))) (-4152 (($ $ $) NIL (|has| |#1| (-484)))) (-2882 (((-873) $) 424) (($ (-623 $)) 415) (($ (-1194)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-567))) (($ (-48)) 312 (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) (($ (-1142 |#1| (-623 $))) 95 (|has| |#1| (-1066))) (($ (-418 |#1|)) NIL (|has| |#1| (-567))) (($ (-967 (-418 |#1|))) NIL (|has| |#1| (-567))) (($ (-418 (-967 (-418 |#1|)))) NIL (|has| |#1| (-567))) (($ (-418 (-967 |#1|))) NIL (|has| |#1| (-567))) (($ (-967 |#1|)) NIL (|has| |#1| (-1066))) (($ (-575)) 34 (-3763 (|has| |#1| (-1055 (-575))) (|has| |#1| (-1066)))) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-567)) (|has| |#1| (-1055 (-418 (-575))))))) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL (|has| |#1| (-1066)) CONST)) (-2394 (($ $) NIL) (($ (-655 $)) NIL)) (-2266 (($ $ $) 220 (|has| |#1| (-567)))) (-1610 (($ $ $) 206 (|has| |#1| (-567)))) (-2416 (($ $ $) 210 (|has| |#1| (-567)))) (-3477 (($ $ $) 204 (|has| |#1| (-567)))) (-2986 (($ $ $) 208 (|has| |#1| (-567)))) (-1825 (((-112) (-115)) 10)) (-3685 (((-112) $ $) 86)) (-1569 (($ $) 183 (|has| |#1| (-567)))) (-3850 (($ $) 159 (|has| |#1| (-567)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 179 (|has| |#1| (-567)))) (-3826 (($ $) 155 (|has| |#1| (-567)))) (-1593 (($ $) 187 (|has| |#1| (-567)))) (-3871 (($ $) 163 (|has| |#1| (-567)))) (-1627 (($ (-1194) $) NIL) (($ (-1194) $ $) NIL) (($ (-1194) $ $ $) NIL) (($ (-1194) $ $ $ $) NIL) (($ (-1194) (-655 $)) NIL)) (-4118 (($ $) 214 (|has| |#1| (-567)))) (-3579 (($ $) 212 (|has| |#1| (-567)))) (-2912 (($ $) 189 (|has| |#1| (-567)))) (-3883 (($ $) 165 (|has| |#1| (-567)))) (-1583 (($ $) 185 (|has| |#1| (-567)))) (-3861 (($ $) 161 (|has| |#1| (-567)))) (-1554 (($ $) 181 (|has| |#1| (-567)))) (-3837 (($ $) 157 (|has| |#1| (-567)))) (-3863 (($ $) 192 (|has| |#1| (-567)))) (-1989 (($) 21 (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) CONST)) (-3182 (($ $) 243 (|has| |#1| (-567)))) (-2005 (($) 23 (|has| |#1| (-1129)) CONST)) (-2023 (($ $) 194 (|has| |#1| (-567))) (($ $ $) 196 (|has| |#1| (-567)))) (-2833 (($ $) 241 (|has| |#1| (-567)))) (-3428 (($ $ (-1194)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-1066))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-1066)))) (-2734 (($ $) 245 (|has| |#1| (-567)))) (-3550 (($ $ $) 198 (|has| |#1| (-567)))) (-3913 (((-112) $ $) 88)) (-4038 (($ (-1142 |#1| (-623 $)) (-1142 |#1| (-623 $))) 106 (|has| |#1| (-567))) (($ $ $) 42 (-3763 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-4027 (($ $ $) 40 (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (($ $) 29 (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (-4015 (($ $ $) 38 (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))) (** (($ $ $) 64 (|has| |#1| (-567))) (($ $ (-418 (-575))) 314 (|has| |#1| (-567))) (($ $ (-575)) 80 (-3763 (|has| |#1| (-484)) (|has| |#1| (-567)))) (($ $ (-782)) 75 (|has| |#1| (-1129))) (($ $ (-936)) 84 (|has| |#1| (-1129)))) (* (($ (-418 (-575)) $) NIL (|has| |#1| (-567))) (($ $ (-418 (-575))) NIL (|has| |#1| (-567))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1066))) (($ $ $) 36 (|has| |#1| (-1129))) (($ (-575) $) 32 (-3763 (|has| |#1| (-21)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (($ (-782) $) NIL (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))))) (($ (-936) $) NIL (-3763 (|has| |#1| (-25)) (-12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))))))
-(((-325 |#1|) (-13 (-441 |#1|) (-10 -8 (IF (|has| |#1| (-567)) (PROGN (-6 (-29 |#1|)) (-6 (-1220)) (-6 (-161)) (-6 (-640)) (-6 (-1156)) (-15 -2302 ($ $)) (-15 -2252 ((-112) $)) (-15 -4389 ($ $ (-575))) (IF (|has| |#1| (-463)) (PROGN (-15 -3154 ((-429 (-1190 $)) (-1190 $))) (-15 -4005 ((-429 (-1190 $)) (-1190 $)))) |%noBranch|) (IF (|has| |#1| (-1055 (-575))) (-6 (-1055 (-48))) |%noBranch|)) |%noBranch|))) (-1117)) (T -325))
-((-2302 (*1 *1 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-567)) (-4 *2 (-1117)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))) (-3154 (*1 *2 *3) (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1)) (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117)))) (-4005 (*1 *2 *3) (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1)) (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117)))))
-(-13 (-441 |#1|) (-10 -8 (IF (|has| |#1| (-567)) (PROGN (-6 (-29 |#1|)) (-6 (-1220)) (-6 (-161)) (-6 (-640)) (-6 (-1156)) (-15 -2302 ($ $)) (-15 -2252 ((-112) $)) (-15 -4389 ($ $ (-575))) (IF (|has| |#1| (-463)) (PROGN (-15 -3154 ((-429 (-1190 $)) (-1190 $))) (-15 -4005 ((-429 (-1190 $)) (-1190 $)))) |%noBranch|) (IF (|has| |#1| (-1055 (-575))) (-6 (-1055 (-48))) |%noBranch|)) |%noBranch|)))
-((-2203 (((-52) |#2| (-115) (-303 |#2|) (-655 |#2|)) 89) (((-52) |#2| (-115) (-303 |#2|) (-303 |#2|)) 85) (((-52) |#2| (-115) (-303 |#2|) |#2|) 87) (((-52) (-303 |#2|) (-115) (-303 |#2|) |#2|) 88) (((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|))) 81) (((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 |#2|)) 83) (((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 |#2|)) 84) (((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|))) 82) (((-52) (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|)) 90) (((-52) (-303 |#2|) (-115) (-303 |#2|) (-303 |#2|)) 86)))
-(((-326 |#1| |#2|) (-10 -7 (-15 -2203 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-303 |#2|))) (-15 -2203 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -2203 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -2203 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -2203 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -2203 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -2203 ((-52) (-303 |#2|) (-115) (-303 |#2|) |#2|)) (-15 -2203 ((-52) |#2| (-115) (-303 |#2|) |#2|)) (-15 -2203 ((-52) |#2| (-115) (-303 |#2|) (-303 |#2|))) (-15 -2203 ((-52) |#2| (-115) (-303 |#2|) (-655 |#2|)))) (-13 (-567) (-625 (-547))) (-441 |#1|)) (T -326))
-((-2203 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-5 *6 (-655 *3)) (-4 *3 (-441 *7)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *7 *3)))) (-2203 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-2203 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-2203 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-303 *5)) (-5 *4 (-115)) (-4 *5 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *5)))) (-2203 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-115))) (-5 *6 (-655 (-303 *8))) (-4 *8 (-441 *7)) (-5 *5 (-303 *8)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *7 *8)))) (-2203 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7)) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *7)))) (-2203 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-655 (-303 *8))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *8)) (-5 *6 (-655 *8)) (-4 *8 (-441 *7)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *7 *8)))) (-2203 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7)) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *7)))) (-2203 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-655 *7)) (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *7)))) (-2203 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-303 *6)) (-5 *4 (-115)) (-4 *6 (-441 *5)) (-4 *5 (-13 (-567) (-625 (-547)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *6)))))
-(-10 -7 (-15 -2203 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-303 |#2|))) (-15 -2203 ((-52) (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -2203 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -2203 ((-52) (-655 (-303 |#2|)) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -2203 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 |#2|))) (-15 -2203 ((-52) (-655 |#2|) (-655 (-115)) (-303 |#2|) (-655 (-303 |#2|)))) (-15 -2203 ((-52) (-303 |#2|) (-115) (-303 |#2|) |#2|)) (-15 -2203 ((-52) |#2| (-115) (-303 |#2|) |#2|)) (-15 -2203 ((-52) |#2| (-115) (-303 |#2|) (-303 |#2|))) (-15 -2203 ((-52) |#2| (-115) (-303 |#2|) (-655 |#2|))))
-((-1944 (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575) (-1176)) 67) (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575)) 68) (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575) (-1176)) 64) (((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575)) 65)) (-2125 (((-1 (-227) (-227)) (-227)) 66)))
-(((-327) (-10 -7 (-15 -2125 ((-1 (-227) (-227)) (-227))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575) (-1176))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575) (-1176))))) (T -327))
-((-1944 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) (-5 *8 (-1176)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-1944 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-1944 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *7 (-1176)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-1944 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *2 (-1230 (-941))) (-5 *1 (-327)))) (-2125 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-327)) (-5 *3 (-227)))))
-(-10 -7 (-15 -2125 ((-1 (-227) (-227)) (-227))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-1 (-227) (-227)) (-575) (-1176))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575))) (-15 -1944 ((-1230 (-941)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-227) (-575) (-1176))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 26)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 20)) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 36)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) 16)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-418 (-575))) NIL) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4388 (($ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220)))))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) NIL)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3378 (((-418 (-575)) $) 17)) (-2262 (($ (-1270 |#1| |#2| |#3|)) 11)) (-1658 (((-1270 |#1| |#2| |#3|) $) 12)) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-1753 (((-418 (-575)) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 10)) (-2882 (((-873) $) 42) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) 34)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) NIL)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 28)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 37)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-328 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-803) (-10 -8 (-15 -2262 ($ (-1270 |#1| |#2| |#3|))) (-15 -1658 ((-1270 |#1| |#2| |#3|) $)) (-15 -3378 ((-418 (-575)) $)))) (-373) (-1194) |#1|) (T -328))
-((-2262 (*1 *1 *2) (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-328 *3 *4 *5)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-1270 *3 *4 *5)) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) (-14 *5 *3))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194)) (-14 *5 *3))))
-(-13 (-1266 |#1|) (-803) (-10 -8 (-15 -2262 ($ (-1270 |#1| |#2| |#3|))) (-15 -1658 ((-1270 |#1| |#2| |#3|) $)) (-15 -3378 ((-418 (-575)) $))))
-((-2111 (((-2 (|:| -1658 (-782)) (|:| -1754 |#1|) (|:| |radicand| (-655 |#1|))) (-429 |#1|) (-782)) 35)) (-3461 (((-655 (-2 (|:| -1754 (-782)) (|:| |logand| |#1|))) (-429 |#1|)) 40)))
-(((-329 |#1|) (-10 -7 (-15 -2111 ((-2 (|:| -1658 (-782)) (|:| -1754 |#1|) (|:| |radicand| (-655 |#1|))) (-429 |#1|) (-782))) (-15 -3461 ((-655 (-2 (|:| -1754 (-782)) (|:| |logand| |#1|))) (-429 |#1|)))) (-567)) (T -329))
-((-3461 (*1 *2 *3) (-12 (-5 *3 (-429 *4)) (-4 *4 (-567)) (-5 *2 (-655 (-2 (|:| -1754 (-782)) (|:| |logand| *4)))) (-5 *1 (-329 *4)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-429 *5)) (-4 *5 (-567)) (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *5) (|:| |radicand| (-655 *5)))) (-5 *1 (-329 *5)) (-5 *4 (-782)))))
-(-10 -7 (-15 -2111 ((-2 (|:| -1658 (-782)) (|:| -1754 |#1|) (|:| |radicand| (-655 |#1|))) (-429 |#1|) (-782))) (-15 -3461 ((-655 (-2 (|:| -1754 (-782)) (|:| |logand| |#1|))) (-429 |#1|))))
-((-1606 (((-655 |#2|) (-1190 |#4|)) 44)) (-1328 ((|#3| (-575)) 47)) (-3289 (((-1190 |#4|) (-1190 |#3|)) 30)) (-2701 (((-1190 |#4|) (-1190 |#4|) (-575)) 66)) (-3173 (((-1190 |#3|) (-1190 |#4|)) 21)) (-1753 (((-655 (-782)) (-1190 |#4|) (-655 |#2|)) 41)) (-2464 (((-1190 |#3|) (-1190 |#4|) (-655 |#2|) (-655 |#3|)) 35)))
-(((-330 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-1190 |#3|) (-1190 |#4|) (-655 |#2|) (-655 |#3|))) (-15 -1753 ((-655 (-782)) (-1190 |#4|) (-655 |#2|))) (-15 -1606 ((-655 |#2|) (-1190 |#4|))) (-15 -3173 ((-1190 |#3|) (-1190 |#4|))) (-15 -3289 ((-1190 |#4|) (-1190 |#3|))) (-15 -2701 ((-1190 |#4|) (-1190 |#4|) (-575))) (-15 -1328 (|#3| (-575)))) (-804) (-861) (-1066) (-964 |#3| |#1| |#2|)) (T -330))
-((-1328 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1066)) (-5 *1 (-330 *4 *5 *2 *6)) (-4 *6 (-964 *2 *4 *5)))) (-2701 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 *7)) (-5 *3 (-575)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *1 (-330 *4 *5 *6 *7)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-1190 *6)) (-4 *6 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-1190 *7)) (-5 *1 (-330 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-1190 *6)) (-5 *1 (-330 *4 *5 *6 *7)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-655 *5)) (-5 *1 (-330 *4 *5 *6 *7)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *8)) (-5 *4 (-655 *6)) (-4 *6 (-861)) (-4 *8 (-964 *7 *5 *6)) (-4 *5 (-804)) (-4 *7 (-1066)) (-5 *2 (-655 (-782))) (-5 *1 (-330 *5 *6 *7 *8)))) (-2464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 *8)) (-4 *7 (-861)) (-4 *8 (-1066)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-5 *2 (-1190 *8)) (-5 *1 (-330 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2464 ((-1190 |#3|) (-1190 |#4|) (-655 |#2|) (-655 |#3|))) (-15 -1753 ((-655 (-782)) (-1190 |#4|) (-655 |#2|))) (-15 -1606 ((-655 |#2|) (-1190 |#4|))) (-15 -3173 ((-1190 |#3|) (-1190 |#4|))) (-15 -3289 ((-1190 |#4|) (-1190 |#3|))) (-15 -2701 ((-1190 |#4|) (-1190 |#4|) (-575))) (-15 -1328 (|#3| (-575))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 19)) (-3149 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-575)))) $) 21)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2409 (((-782) $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-2834 ((|#1| $ (-575)) NIL)) (-3385 (((-575) $ (-575)) NIL)) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-1335 (($ (-1 |#1| |#1|) $) NIL)) (-2560 (($ (-1 (-575) (-575)) $) 11)) (-4264 (((-1176) $) NIL)) (-4336 (($ $ $) NIL (|has| (-575) (-803)))) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ |#1|) NIL)) (-3002 (((-575) |#1| $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) 29 (|has| |#1| (-861)))) (-4027 (($ $) 12) (($ $ $) 28)) (-4015 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL) (($ (-575) |#1|) 27)))
-(((-331 |#1|) (-13 (-21) (-728 (-575)) (-332 |#1| (-575)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1117)) (T -331))
-NIL
-(-13 (-21) (-728 (-575)) (-332 |#1| (-575)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3149 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))) $) 28)) (-1708 (((-3 $ "failed") $ $) 20)) (-2409 (((-782) $) 29)) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 33)) (-4400 ((|#1| $) 34)) (-2834 ((|#1| $ (-575)) 26)) (-3385 ((|#2| $ (-575)) 27)) (-1335 (($ (-1 |#1| |#1|) $) 23)) (-2560 (($ (-1 |#2| |#2|) $) 24)) (-4264 (((-1176) $) 10)) (-4336 (($ $ $) 22 (|has| |#2| (-803)))) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ |#1|) 32)) (-3002 ((|#2| |#1| $) 25)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4015 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ |#2| |#1|) 30)))
-(((-332 |#1| |#2|) (-141) (-1117) (-132)) (T -332))
-((-4015 (*1 *1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)) (-5 *2 (-782)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)) (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 *4)))))) (-3385 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-332 *4 *2)) (-4 *4 (-1117)) (-4 *2 (-132)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-332 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1117)))) (-3002 (*1 *2 *3 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132)))) (-2560 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)))) (-1335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132)))) (-4336 (*1 *1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132)) (-4 *3 (-803)))))
-(-13 (-132) (-1055 |t#1|) (-10 -8 (-15 -4015 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2409 ((-782) $)) (-15 -3149 ((-655 (-2 (|:| |gen| |t#1|) (|:| -2663 |t#2|))) $)) (-15 -3385 (|t#2| $ (-575))) (-15 -2834 (|t#1| $ (-575))) (-15 -3002 (|t#2| |t#1| $)) (-15 -2560 ($ (-1 |t#2| |t#2|) $)) (-15 -1335 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-803)) (-15 -4336 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-1055 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3149 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-782)))) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2409 (((-782) $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-2834 ((|#1| $ (-575)) NIL)) (-3385 (((-782) $ (-575)) NIL)) (-1335 (($ (-1 |#1| |#1|) $) NIL)) (-2560 (($ (-1 (-782) (-782)) $) NIL)) (-4264 (((-1176) $) NIL)) (-4336 (($ $ $) NIL (|has| (-782) (-803)))) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ |#1|) NIL)) (-3002 (((-782) |#1| $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4015 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-782) |#1|) NIL)))
-(((-333 |#1|) (-332 |#1| (-782)) (-1117)) (T -333))
-NIL
-(-332 |#1| (-782))
-((-2379 (($ $) 72)) (-4384 (($ $ |#2| |#3| $) 14)) (-1946 (($ (-1 |#3| |#3|) $) 51)) (-4346 (((-112) $) 42)) (-4353 ((|#2| $) 44)) (-2849 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3696 ((|#2| $) 68)) (-2212 (((-655 |#2|) $) 56)) (-1982 (($ $ $ (-782)) 37)) (-4038 (($ $ |#2|) 60)))
-(((-334 |#1| |#2| |#3|) (-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1982 (|#1| |#1| |#1| (-782))) (-15 -4384 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1946 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2212 ((-655 |#2|) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4038 (|#1| |#1| |#2|))) (-335 |#2| |#3|) (-1066) (-803)) (T -334))
-NIL
-(-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1982 (|#1| |#1| |#1| (-782))) (-15 -4384 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1946 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2212 ((-655 |#2|) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4038 (|#1| |#1| |#2|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 100 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 98 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 95)) (-4400 (((-575) $) 99 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 97 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 96)) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2379 (($ $) 84 (|has| |#1| (-463)))) (-4384 (($ $ |#1| |#2| $) 88)) (-3900 (((-112) $) 35)) (-1403 (((-782) $) 91)) (-3135 (((-112) $) 74)) (-2414 (($ |#1| |#2|) 73)) (-3143 ((|#2| $) 90)) (-1946 (($ (-1 |#2| |#2|) $) 89)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4346 (((-112) $) 94)) (-4353 ((|#1| $) 93)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-567)))) (-1753 ((|#2| $) 76)) (-3696 ((|#1| $) 85 (|has| |#1| (-463)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59) (($ (-418 (-575))) 69 (-3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))))) (-2212 (((-655 |#1|) $) 92)) (-3002 ((|#1| $ |#2|) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-1982 (($ $ $ (-782)) 87 (|has| |#1| (-174)))) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-335 |#1| |#2|) (-141) (-1066) (-803)) (T -335))
-((-4346 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-112)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-655 *3)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-782)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-1946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)))) (-4384 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))) (-1982 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-4 *3 (-174)))) (-2849 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *2 (-567)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)) (-4 *2 (-463)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *2 (-463)))))
-(-13 (-47 |t#1| |t#2|) (-422 |t#1|) (-10 -8 (-15 -4346 ((-112) $)) (-15 -4353 (|t#1| $)) (-15 -2212 ((-655 |t#1|) $)) (-15 -1403 ((-782) $)) (-15 -3143 (|t#2| $)) (-15 -1946 ($ (-1 |t#2| |t#2|) $)) (-15 -4384 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1982 ($ $ $ (-782))) |%noBranch|) (IF (|has| |t#1| (-567)) (-15 -2849 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-15 -3696 (|t#1| $)) (-15 -2379 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-299) |has| |#1| (-567)) ((-422 |#1|) . T) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-4268 (((-112) (-112)) NIL)) (-3052 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) |#1|) $) NIL)) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-1413 (($ $) NIL (|has| |#1| (-1117)))) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-2474 (($ $ (-575)) NIL)) (-2106 (((-782) $) NIL)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4218 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2872 (($ (-655 |#1|)) NIL)) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3997 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) NIL)) (-3357 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-336 |#1|) (-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2872 ($ (-655 |#1|))) (-15 -2106 ((-782) $)) (-15 -2474 ($ $ (-575))) (-15 -4268 ((-112) (-112))))) (-1235)) (T -336))
-((-2872 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-336 *3)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-336 *3)) (-4 *3 (-1235)))))
-(-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2872 ($ (-655 |#1|))) (-15 -2106 ((-782) $)) (-15 -2474 ($ $ (-575))) (-15 -4268 ((-112) (-112)))))
-((-2770 (((-112) $) 47)) (-4142 (((-782)) 23)) (-1448 ((|#2| $) 51) (($ $ (-936)) 121)) (-2409 (((-782)) 122)) (-3898 (($ (-1285 |#2|)) 20)) (-2313 (((-112) $) 134)) (-3390 ((|#2| $) 53) (($ $ (-936)) 118)) (-3977 (((-1190 |#2|) $) NIL) (((-1190 $) $ (-936)) 109)) (-2815 (((-1190 |#2|) $) 95)) (-3388 (((-1190 |#2|) $) 91) (((-3 (-1190 |#2|) "failed") $ $) 88)) (-2281 (($ $ (-1190 |#2|)) 58)) (-2113 (((-844 (-936))) 30) (((-936)) 48)) (-1605 (((-135)) 27)) (-1753 (((-844 (-936)) $) 32) (((-936) $) 137)) (-1908 (($) 128)) (-2209 (((-1285 |#2|) $) NIL) (((-700 |#2|) (-1285 $)) 42)) (-1724 (($ $) NIL) (((-3 $ "failed") $) 98)) (-4060 (((-112) $) 45)))
-(((-337 |#1| |#2|) (-10 -8 (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -2409 ((-782))) (-15 -1724 (|#1| |#1|)) (-15 -3388 ((-3 (-1190 |#2|) "failed") |#1| |#1|)) (-15 -3388 ((-1190 |#2|) |#1|)) (-15 -2815 ((-1190 |#2|) |#1|)) (-15 -2281 (|#1| |#1| (-1190 |#2|))) (-15 -2313 ((-112) |#1|)) (-15 -1908 (|#1|)) (-15 -1448 (|#1| |#1| (-936))) (-15 -3390 (|#1| |#1| (-936))) (-15 -3977 ((-1190 |#1|) |#1| (-936))) (-15 -1448 (|#2| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -1753 ((-936) |#1|)) (-15 -2113 ((-936))) (-15 -3977 ((-1190 |#2|) |#1|)) (-15 -3898 (|#1| (-1285 |#2|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -4142 ((-782))) (-15 -2113 ((-844 (-936)))) (-15 -1753 ((-844 (-936)) |#1|)) (-15 -2770 ((-112) |#1|)) (-15 -4060 ((-112) |#1|)) (-15 -1605 ((-135)))) (-338 |#2|) (-373)) (T -337))
-((-1605 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-135)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2113 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-844 (-936))) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-4142 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2113 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-936)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))) (-2409 (*1 *2) (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4)) (-4 *3 (-338 *4)))))
-(-10 -8 (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -2409 ((-782))) (-15 -1724 (|#1| |#1|)) (-15 -3388 ((-3 (-1190 |#2|) "failed") |#1| |#1|)) (-15 -3388 ((-1190 |#2|) |#1|)) (-15 -2815 ((-1190 |#2|) |#1|)) (-15 -2281 (|#1| |#1| (-1190 |#2|))) (-15 -2313 ((-112) |#1|)) (-15 -1908 (|#1|)) (-15 -1448 (|#1| |#1| (-936))) (-15 -3390 (|#1| |#1| (-936))) (-15 -3977 ((-1190 |#1|) |#1| (-936))) (-15 -1448 (|#2| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -1753 ((-936) |#1|)) (-15 -2113 ((-936))) (-15 -3977 ((-1190 |#2|) |#1|)) (-15 -3898 (|#1| (-1285 |#2|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -4142 ((-782))) (-15 -2113 ((-844 (-936)))) (-15 -1753 ((-844 (-936)) |#1|)) (-15 -2770 ((-112) |#1|)) (-15 -4060 ((-112) |#1|)) (-15 -1605 ((-135))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-2770 (((-112) $) 104)) (-4142 (((-782)) 100)) (-1448 ((|#1| $) 151) (($ $ (-936)) 148 (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) 133 (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-3599 (((-112) $ $) 65)) (-2409 (((-782)) 123 (|has| |#1| (-378)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 111)) (-4400 ((|#1| $) 112)) (-3898 (($ (-1285 |#1|)) 157)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-378)))) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2073 (($) 120 (|has| |#1| (-378)))) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-1758 (($) 135 (|has| |#1| (-378)))) (-3228 (((-112) $) 136 (|has| |#1| (-378)))) (-2457 (($ $ (-782)) 97 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) 96 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) 79)) (-3369 (((-936) $) 138 (|has| |#1| (-378))) (((-844 (-936)) $) 94 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) 35)) (-2772 (($) 146 (|has| |#1| (-378)))) (-2313 (((-112) $) 145 (|has| |#1| (-378)))) (-3390 ((|#1| $) 152) (($ $ (-936)) 149 (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) 124 (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3977 (((-1190 |#1|) $) 156) (((-1190 $) $ (-936)) 150 (|has| |#1| (-378)))) (-1894 (((-936) $) 121 (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) 142 (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) 141 (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) 140 (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) 143 (|has| |#1| (-378)))) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3472 (($) 125 (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 122 (|has| |#1| (-378)))) (-3953 (((-112) $) 103)) (-3912 (((-1137) $) 11)) (-3657 (($) 144 (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 132 (|has| |#1| (-378)))) (-2347 (((-429 $) $) 82)) (-2113 (((-844 (-936))) 101) (((-936)) 154)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2619 (((-782) $) 137 (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) 95 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) 109)) (-2382 (($ $ (-782)) 128 (|has| |#1| (-378))) (($ $) 126 (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) 102) (((-936) $) 153)) (-4436 (((-1190 |#1|)) 155)) (-1847 (($) 134 (|has| |#1| (-378)))) (-1908 (($) 147 (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) 159) (((-700 |#1|) (-1285 $)) 158)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 131 (|has| |#1| (-378)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ |#1|) 110)) (-1724 (($ $) 130 (|has| |#1| (-378))) (((-3 $ "failed") $) 93 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-2098 (((-1285 $)) 161) (((-1285 $) (-936)) 160)) (-3930 (((-112) $ $) 45)) (-4060 (((-112) $) 105)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-1514 (($ $) 99 (|has| |#1| (-378))) (($ $ (-782)) 98 (|has| |#1| (-378)))) (-3428 (($ $ (-782)) 129 (|has| |#1| (-378))) (($ $) 127 (|has| |#1| (-378)))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73) (($ $ |#1|) 108)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-338 |#1|) (-141) (-373)) (T -338))
-((-2098 (*1 *2) (-12 (-4 *3 (-373)) (-5 *2 (-1285 *1)) (-4 *1 (-338 *3)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-373)) (-5 *2 (-1285 *1)) (-4 *1 (-338 *4)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1285 *3)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-338 *4)) (-4 *4 (-373)) (-5 *2 (-700 *4)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-4 *1 (-338 *3)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3)))) (-4436 (*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3)))) (-2113 (*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373)))) (-3977 (*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-4 *4 (-378)) (-4 *4 (-373)) (-5 *2 (-1190 *1)) (-4 *1 (-338 *4)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) (-1448 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)))) (-1908 (*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) (-2772 (*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-112)))) (-3657 (*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))) (-2281 (*1 *1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-378)) (-4 *1 (-338 *3)) (-4 *3 (-373)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-1190 *3)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-1190 *3)))) (-3388 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-1190 *3)))))
-(-13 (-1304 |t#1|) (-1055 |t#1|) (-10 -8 (-15 -2098 ((-1285 $))) (-15 -2098 ((-1285 $) (-936))) (-15 -2209 ((-1285 |t#1|) $)) (-15 -2209 ((-700 |t#1|) (-1285 $))) (-15 -3898 ($ (-1285 |t#1|))) (-15 -3977 ((-1190 |t#1|) $)) (-15 -4436 ((-1190 |t#1|))) (-15 -2113 ((-936))) (-15 -1753 ((-936) $)) (-15 -3390 (|t#1| $)) (-15 -1448 (|t#1| $)) (IF (|has| |t#1| (-378)) (PROGN (-6 (-359)) (-15 -3977 ((-1190 $) $ (-936))) (-15 -3390 ($ $ (-936))) (-15 -1448 ($ $ (-936))) (-15 -1908 ($)) (-15 -2772 ($)) (-15 -2313 ((-112) $)) (-15 -3657 ($)) (-15 -2281 ($ $ (-1190 |t#1|))) (-15 -2815 ((-1190 |t#1|) $)) (-15 -3388 ((-1190 |t#1|) $)) (-15 -3388 ((-3 (-1190 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3763 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-234 $) |has| |#1| (-378)) ((-238) |has| |#1| (-378)) ((-237) |has| |#1| (-378)) ((-248) . T) ((-299) . T) ((-316) . T) ((-1304 |#1|) . T) ((-373) . T) ((-413) -3763 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-378) |has| |#1| (-378)) ((-359) |has| |#1| (-378)) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 |#1|) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-378)) ((-1235) |has| |#1| (-378)) ((-1239) . T) ((-1292 |#1|) . T))
-((-2859 (((-112) $ $) NIL)) (-2204 (($ (-1193) $) 100)) (-4214 (($) 89)) (-2789 (((-1137) (-1137)) 9)) (-3053 (($) 90)) (-3916 (($) 104) (($ (-325 (-710))) 112) (($ (-325 (-712))) 108) (($ (-325 (-705))) 116) (($ (-325 (-389))) 123) (($ (-325 (-575))) 119) (($ (-325 (-171 (-389)))) 127)) (-3456 (($ (-1193) $) 101)) (-1438 (($ (-655 (-873))) 91)) (-3733 (((-1290) $) 87)) (-1532 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3582 (($ (-1137)) 58)) (-3329 (((-1121) $) 30)) (-3316 (($ (-1109 (-967 (-575))) $) 97) (($ (-1109 (-967 (-575))) (-967 (-575)) $) 98)) (-2014 (($ (-1137)) 99)) (-1510 (($ (-1193) $) 129) (($ (-1193) $ $) 130)) (-3721 (($ (-1194) (-655 (-1194))) 88)) (-4291 (($ (-1176)) 94) (($ (-655 (-1176))) 92)) (-2882 (((-873) $) 132)) (-2553 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2017 (-112)) (|:| -4181 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |blockBranch| (-655 $)) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -1974 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 $))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 $))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873)))) $) 50)) (-2840 (($ (-1176)) 202)) (-4144 (($ (-655 $)) 128)) (-3685 (((-112) $ $) NIL)) (-4069 (($ (-1194) (-1176)) 135) (($ (-1194) (-325 (-712))) 175) (($ (-1194) (-325 (-710))) 176) (($ (-1194) (-325 (-705))) 177) (($ (-1194) (-700 (-712))) 138) (($ (-1194) (-700 (-710))) 141) (($ (-1194) (-700 (-705))) 144) (($ (-1194) (-1285 (-712))) 147) (($ (-1194) (-1285 (-710))) 150) (($ (-1194) (-1285 (-705))) 153) (($ (-1194) (-700 (-325 (-712)))) 156) (($ (-1194) (-700 (-325 (-710)))) 159) (($ (-1194) (-700 (-325 (-705)))) 162) (($ (-1194) (-1285 (-325 (-712)))) 165) (($ (-1194) (-1285 (-325 (-710)))) 168) (($ (-1194) (-1285 (-325 (-705)))) 171) (($ (-1194) (-655 (-967 (-575))) (-325 (-712))) 172) (($ (-1194) (-655 (-967 (-575))) (-325 (-710))) 173) (($ (-1194) (-655 (-967 (-575))) (-325 (-705))) 174) (($ (-1194) (-325 (-575))) 199) (($ (-1194) (-325 (-389))) 200) (($ (-1194) (-325 (-171 (-389)))) 201) (($ (-1194) (-700 (-325 (-575)))) 180) (($ (-1194) (-700 (-325 (-389)))) 183) (($ (-1194) (-700 (-325 (-171 (-389))))) 186) (($ (-1194) (-1285 (-325 (-575)))) 189) (($ (-1194) (-1285 (-325 (-389)))) 192) (($ (-1194) (-1285 (-325 (-171 (-389))))) 195) (($ (-1194) (-655 (-967 (-575))) (-325 (-575))) 196) (($ (-1194) (-655 (-967 (-575))) (-325 (-389))) 197) (($ (-1194) (-655 (-967 (-575))) (-325 (-171 (-389)))) 198)) (-3913 (((-112) $ $) NIL)))
-(((-339) (-13 (-1117) (-10 -8 (-15 -3316 ($ (-1109 (-967 (-575))) $)) (-15 -3316 ($ (-1109 (-967 (-575))) (-967 (-575)) $)) (-15 -2204 ($ (-1193) $)) (-15 -3456 ($ (-1193) $)) (-15 -3582 ($ (-1137))) (-15 -2014 ($ (-1137))) (-15 -4291 ($ (-1176))) (-15 -4291 ($ (-655 (-1176)))) (-15 -2840 ($ (-1176))) (-15 -3916 ($)) (-15 -3916 ($ (-325 (-710)))) (-15 -3916 ($ (-325 (-712)))) (-15 -3916 ($ (-325 (-705)))) (-15 -3916 ($ (-325 (-389)))) (-15 -3916 ($ (-325 (-575)))) (-15 -3916 ($ (-325 (-171 (-389))))) (-15 -1510 ($ (-1193) $)) (-15 -1510 ($ (-1193) $ $)) (-15 -4069 ($ (-1194) (-1176))) (-15 -4069 ($ (-1194) (-325 (-712)))) (-15 -4069 ($ (-1194) (-325 (-710)))) (-15 -4069 ($ (-1194) (-325 (-705)))) (-15 -4069 ($ (-1194) (-700 (-712)))) (-15 -4069 ($ (-1194) (-700 (-710)))) (-15 -4069 ($ (-1194) (-700 (-705)))) (-15 -4069 ($ (-1194) (-1285 (-712)))) (-15 -4069 ($ (-1194) (-1285 (-710)))) (-15 -4069 ($ (-1194) (-1285 (-705)))) (-15 -4069 ($ (-1194) (-700 (-325 (-712))))) (-15 -4069 ($ (-1194) (-700 (-325 (-710))))) (-15 -4069 ($ (-1194) (-700 (-325 (-705))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-712))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-710))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-705))))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-712)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-710)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-705)))) (-15 -4069 ($ (-1194) (-325 (-575)))) (-15 -4069 ($ (-1194) (-325 (-389)))) (-15 -4069 ($ (-1194) (-325 (-171 (-389))))) (-15 -4069 ($ (-1194) (-700 (-325 (-575))))) (-15 -4069 ($ (-1194) (-700 (-325 (-389))))) (-15 -4069 ($ (-1194) (-700 (-325 (-171 (-389)))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-575))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-389))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-171 (-389)))))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-575)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-389)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-171 (-389))))) (-15 -4144 ($ (-655 $))) (-15 -4214 ($)) (-15 -3053 ($)) (-15 -1438 ($ (-655 (-873)))) (-15 -3721 ($ (-1194) (-655 (-1194)))) (-15 -1532 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2553 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2017 (-112)) (|:| -4181 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |blockBranch| (-655 $)) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -1974 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 $))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 $))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873)))) $)) (-15 -3733 ((-1290) $)) (-15 -3329 ((-1121) $)) (-15 -2789 ((-1137) (-1137)))))) (T -339))
-((-3316 (*1 *1 *2 *1) (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *1 (-339)))) (-3316 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *3 (-967 (-575))) (-5 *1 (-339)))) (-2204 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-339)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339)))) (-3916 (*1 *1) (-5 *1 (-339))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-325 (-710))) (-5 *1 (-339)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-325 (-712))) (-5 *1 (-339)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-325 (-705))) (-5 *1 (-339)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-339)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-339)))) (-3916 (*1 *1 *2) (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-339)))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-1510 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-712))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-710))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-705))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-712))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-710))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-705))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-712))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-710))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-705))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-712)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-710)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-705)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-712)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-710)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-705)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-712))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-710))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-705))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-575))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-389))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-171 (-389)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-575)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-389)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-171 (-389))))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-575)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-389)))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-171 (-389))))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-575))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-389))) (-5 *1 (-339)))) (-4069 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-325 (-171 (-389)))) (-5 *1 (-339)))) (-4144 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-5 *1 (-339)))) (-4214 (*1 *1) (-5 *1 (-339))) (-3053 (*1 *1) (-5 *1 (-339))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-339)))) (-3721 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-339)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-339)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| (-339)) (|:| |elseClause| (-339)))) (|:| |returnBranch| (-2 (|:| -2017 (-112)) (|:| -4181 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |blockBranch| (-655 (-339))) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -1974 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 (-339)))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 (-339)))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873))))) (-5 *1 (-339)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-339)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-339)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))))
-(-13 (-1117) (-10 -8 (-15 -3316 ($ (-1109 (-967 (-575))) $)) (-15 -3316 ($ (-1109 (-967 (-575))) (-967 (-575)) $)) (-15 -2204 ($ (-1193) $)) (-15 -3456 ($ (-1193) $)) (-15 -3582 ($ (-1137))) (-15 -2014 ($ (-1137))) (-15 -4291 ($ (-1176))) (-15 -4291 ($ (-655 (-1176)))) (-15 -2840 ($ (-1176))) (-15 -3916 ($)) (-15 -3916 ($ (-325 (-710)))) (-15 -3916 ($ (-325 (-712)))) (-15 -3916 ($ (-325 (-705)))) (-15 -3916 ($ (-325 (-389)))) (-15 -3916 ($ (-325 (-575)))) (-15 -3916 ($ (-325 (-171 (-389))))) (-15 -1510 ($ (-1193) $)) (-15 -1510 ($ (-1193) $ $)) (-15 -4069 ($ (-1194) (-1176))) (-15 -4069 ($ (-1194) (-325 (-712)))) (-15 -4069 ($ (-1194) (-325 (-710)))) (-15 -4069 ($ (-1194) (-325 (-705)))) (-15 -4069 ($ (-1194) (-700 (-712)))) (-15 -4069 ($ (-1194) (-700 (-710)))) (-15 -4069 ($ (-1194) (-700 (-705)))) (-15 -4069 ($ (-1194) (-1285 (-712)))) (-15 -4069 ($ (-1194) (-1285 (-710)))) (-15 -4069 ($ (-1194) (-1285 (-705)))) (-15 -4069 ($ (-1194) (-700 (-325 (-712))))) (-15 -4069 ($ (-1194) (-700 (-325 (-710))))) (-15 -4069 ($ (-1194) (-700 (-325 (-705))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-712))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-710))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-705))))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-712)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-710)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-705)))) (-15 -4069 ($ (-1194) (-325 (-575)))) (-15 -4069 ($ (-1194) (-325 (-389)))) (-15 -4069 ($ (-1194) (-325 (-171 (-389))))) (-15 -4069 ($ (-1194) (-700 (-325 (-575))))) (-15 -4069 ($ (-1194) (-700 (-325 (-389))))) (-15 -4069 ($ (-1194) (-700 (-325 (-171 (-389)))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-575))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-389))))) (-15 -4069 ($ (-1194) (-1285 (-325 (-171 (-389)))))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-575)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-389)))) (-15 -4069 ($ (-1194) (-655 (-967 (-575))) (-325 (-171 (-389))))) (-15 -4144 ($ (-655 $))) (-15 -4214 ($)) (-15 -3053 ($)) (-15 -1438 ($ (-655 (-873)))) (-15 -3721 ($ (-1194) (-655 (-1194)))) (-15 -1532 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2553 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1194)) (|:| |arrayIndex| (-655 (-967 (-575)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1194)) (|:| |rand| (-873)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1193)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2017 (-112)) (|:| -4181 (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873)))))) (|:| |blockBranch| (-655 $)) (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176)) (|:| |forBranch| (-2 (|:| -1974 (-1109 (-967 (-575)))) (|:| |span| (-967 (-575))) (|:| -1788 $))) (|:| |labelBranch| (-1137)) (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 $))) (|:| |commonBranch| (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194))))) (|:| |printBranch| (-655 (-873)))) $)) (-15 -3733 ((-1290) $)) (-15 -3329 ((-1121) $)) (-15 -2789 ((-1137) (-1137)))))
-((-2859 (((-112) $ $) NIL)) (-2018 (((-112) $) 13)) (-3759 (($ |#1|) 10)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3772 (($ |#1|) 12)) (-2882 (((-873) $) 19)) (-3685 (((-112) $ $) NIL)) (-1387 ((|#1| $) 14)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 21)))
-(((-340 |#1|) (-13 (-861) (-10 -8 (-15 -3759 ($ |#1|)) (-15 -3772 ($ |#1|)) (-15 -2018 ((-112) $)) (-15 -1387 (|#1| $)))) (-861)) (T -340))
-((-3759 (*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) (-3772 (*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-340 *3)) (-4 *3 (-861)))) (-1387 (*1 *2 *1) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861)))))
-(-13 (-861) (-10 -8 (-15 -3759 ($ |#1|)) (-15 -3772 ($ |#1|)) (-15 -2018 ((-112) $)) (-15 -1387 (|#1| $))))
-((-2614 (((-339) (-1194) (-967 (-575))) 23)) (-1400 (((-339) (-1194) (-967 (-575))) 27)) (-4297 (((-339) (-1194) (-1109 (-967 (-575))) (-1109 (-967 (-575)))) 26) (((-339) (-1194) (-967 (-575)) (-967 (-575))) 24)) (-4365 (((-339) (-1194) (-967 (-575))) 31)))
-(((-341) (-10 -7 (-15 -2614 ((-339) (-1194) (-967 (-575)))) (-15 -4297 ((-339) (-1194) (-967 (-575)) (-967 (-575)))) (-15 -4297 ((-339) (-1194) (-1109 (-967 (-575))) (-1109 (-967 (-575))))) (-15 -1400 ((-339) (-1194) (-967 (-575)))) (-15 -4365 ((-339) (-1194) (-967 (-575)))))) (T -341))
-((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))) (-4297 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-1109 (-967 (-575)))) (-5 *2 (-339)) (-5 *1 (-341)))) (-4297 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339)) (-5 *1 (-341)))))
-(-10 -7 (-15 -2614 ((-339) (-1194) (-967 (-575)))) (-15 -4297 ((-339) (-1194) (-967 (-575)) (-967 (-575)))) (-15 -4297 ((-339) (-1194) (-1109 (-967 (-575))) (-1109 (-967 (-575))))) (-15 -1400 ((-339) (-1194) (-967 (-575)))) (-15 -4365 ((-339) (-1194) (-967 (-575)))))
-((-2859 (((-112) $ $) NIL)) (-1382 (((-517) $) 20)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3144 (((-973 (-782)) $) 18)) (-3190 (((-255) $) 7)) (-2882 (((-873) $) 26)) (-3230 (((-973 (-185 (-140))) $) 16)) (-3685 (((-112) $ $) NIL)) (-1496 (((-655 (-884 (-1199) (-782))) $) 12)) (-3913 (((-112) $ $) 22)))
-(((-342) (-13 (-1117) (-10 -8 (-15 -3190 ((-255) $)) (-15 -1496 ((-655 (-884 (-1199) (-782))) $)) (-15 -3144 ((-973 (-782)) $)) (-15 -3230 ((-973 (-185 (-140))) $)) (-15 -1382 ((-517) $))))) (T -342))
-((-3190 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-342)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-1199) (-782)))) (-5 *1 (-342)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-973 (-782))) (-5 *1 (-342)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-973 (-185 (-140)))) (-5 *1 (-342)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-342)))))
-(-13 (-1117) (-10 -8 (-15 -3190 ((-255) $)) (-15 -1496 ((-655 (-884 (-1199) (-782))) $)) (-15 -3144 ((-973 (-782)) $)) (-15 -3230 ((-973 (-185 (-140))) $)) (-15 -1382 ((-517) $))))
-((-2544 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33)))
-(((-343 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2544 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|) (-373) (-1261 |#5|) (-1261 (-418 |#6|)) (-352 |#5| |#6| |#7|)) (T -343))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-373)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *9 (-373)) (-4 *10 (-1261 *9)) (-4 *11 (-1261 (-418 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-343 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-352 *9 *10 *11)))))
-(-10 -7 (-15 -2544 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|))))
-((-3906 (((-112) $) 14)))
-(((-344 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3906 ((-112) |#1|))) (-345 |#2| |#3| |#4| |#5|) (-373) (-1261 |#2|) (-1261 (-418 |#3|)) (-352 |#2| |#3| |#4|)) (T -344))
-NIL
-(-10 -8 (-15 -3906 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2302 (($ $) 29)) (-3906 (((-112) $) 28)) (-4264 (((-1176) $) 10)) (-4391 (((-424 |#2| (-418 |#2|) |#3| |#4|) $) 35)) (-3912 (((-1137) $) 11)) (-3657 (((-3 |#4| "failed") $) 27)) (-2389 (($ (-424 |#2| (-418 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-575)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3345 (((-2 (|:| -2051 (-424 |#2| (-418 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24)))
-(((-345 |#1| |#2| |#3| |#4|) (-141) (-373) (-1261 |t#1|) (-1261 (-418 |t#2|)) (-352 |t#1| |t#2| |t#3|)) (T -345))
-((-4391 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-424 *4 (-418 *4) *5 *6)))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-424 *4 (-418 *4) *5 *6)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-4 *3 (-373)) (-4 *1 (-345 *3 *4 *5 *6)))) (-2389 (*1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *1 (-345 *3 *4 *5 *2)) (-4 *2 (-352 *3 *4 *5)))) (-2389 (*1 *1 *2 *2) (-12 (-4 *2 (-373)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))) (-4 *1 (-345 *2 *3 *4 *5)) (-4 *5 (-352 *2 *3 *4)))) (-2389 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-575)) (-4 *2 (-373)) (-4 *4 (-1261 *2)) (-4 *5 (-1261 (-418 *4))) (-4 *1 (-345 *2 *4 *5 *6)) (-4 *6 (-352 *2 *4 *5)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-2 (|:| -2051 (-424 *4 (-418 *4) *5 *6)) (|:| |principalPart| *6))))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3 *4 *5)) (-4 *2 (-373)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))) (-4 *5 (-352 *2 *3 *4)))) (-3906 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-112)))) (-3657 (*1 *2 *1) (|partial| -12 (-4 *1 (-345 *3 *4 *5 *2)) (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *2 (-352 *3 *4 *5)))) (-2389 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-373)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-4 *1 (-345 *4 *3 *5 *2)) (-4 *2 (-352 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -4391 ((-424 |t#2| (-418 |t#2|) |t#3| |t#4|) $)) (-15 -2389 ($ (-424 |t#2| (-418 |t#2|) |t#3| |t#4|))) (-15 -2389 ($ |t#4|)) (-15 -2389 ($ |t#1| |t#1|)) (-15 -2389 ($ |t#1| |t#1| (-575))) (-15 -3345 ((-2 (|:| -2051 (-424 |t#2| (-418 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2302 ($ $)) (-15 -3906 ((-112) $)) (-15 -3657 ((-3 |t#4| "failed") $)) (-15 -2389 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2302 (($ $) 33)) (-3906 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-4405 (((-1285 |#4|) $) 134)) (-4391 (((-424 |#2| (-418 |#2|) |#3| |#4|) $) 31)) (-3912 (((-1137) $) NIL)) (-3657 (((-3 |#4| "failed") $) 36)) (-3744 (((-1285 |#4|) $) 126)) (-2389 (($ (-424 |#2| (-418 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-575)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3345 (((-2 (|:| -2051 (-424 |#2| (-418 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2882 (((-873) $) 17)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 14 T CONST)) (-3913 (((-112) $ $) 20)) (-4027 (($ $) 27) (($ $ $) NIL)) (-4015 (($ $ $) 25)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 23)))
-(((-346 |#1| |#2| |#3| |#4|) (-13 (-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3744 ((-1285 |#4|) $)) (-15 -4405 ((-1285 |#4|) $)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -346))
-((-3744 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-352 *3 *4 *5)))) (-4405 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-352 *3 *4 *5)))))
-(-13 (-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3744 ((-1285 |#4|) $)) (-15 -4405 ((-1285 |#4|) $))))
-((-3046 (($ $ (-1194) |#2|) NIL) (($ $ (-655 (-1194)) (-655 |#2|)) 20) (($ $ (-655 (-303 |#2|))) 15) (($ $ (-303 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-655 |#2|) (-655 |#2|)) NIL)) (-2065 (($ $ |#2|) 11)))
-(((-347 |#1| |#2|) (-10 -8 (-15 -2065 (|#1| |#1| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#2| |#2|)) (-15 -3046 (|#1| |#1| (-303 |#2|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 |#2|))) (-15 -3046 (|#1| |#1| (-1194) |#2|))) (-348 |#2|) (-1117)) (T -347))
-NIL
-(-10 -8 (-15 -2065 (|#1| |#1| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#2| |#2|)) (-15 -3046 (|#1| |#1| (-303 |#2|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 |#2|))) (-15 -3046 (|#1| |#1| (-1194) |#2|)))
-((-2544 (($ (-1 |#1| |#1|) $) 6)) (-3046 (($ $ (-1194) |#1|) 17 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 16 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-655 (-303 |#1|))) 15 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 14 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-318 |#1|))) (($ $ (-655 |#1|) (-655 |#1|)) 12 (|has| |#1| (-318 |#1|)))) (-2065 (($ $ |#1|) 11 (|has| |#1| (-295 |#1| |#1|)))))
-(((-348 |#1|) (-141) (-1117)) (T -348))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1117)))))
-(-13 (-10 -8 (-15 -2544 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-295 |t#1| |t#1|)) (-6 (-295 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-318 |t#1|)) (-6 (-318 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-525 (-1194) |t#1|)) (-6 (-525 (-1194) |t#1|)) |%noBranch|)))
-(((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-1235) |has| |#1| (-295 |#1| |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1194)) $) NIL)) (-3288 (((-112)) 96) (((-112) (-112)) 97)) (-4270 (((-655 (-623 $)) $) NIL)) (-3921 (($ $) NIL)) (-3784 (($ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1475 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-2467 (($ $) NIL)) (-3895 (($ $) NIL)) (-3759 (($ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-623 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-325 |#3|)) 76) (((-3 $ "failed") (-1194)) 103) (((-3 $ "failed") (-325 (-575))) 64 (|has| |#3| (-1055 (-575)))) (((-3 $ "failed") (-418 (-967 (-575)))) 70 (|has| |#3| (-1055 (-575)))) (((-3 $ "failed") (-967 (-575))) 65 (|has| |#3| (-1055 (-575)))) (((-3 $ "failed") (-325 (-389))) 94 (|has| |#3| (-1055 (-389)))) (((-3 $ "failed") (-418 (-967 (-389)))) 88 (|has| |#3| (-1055 (-389)))) (((-3 $ "failed") (-967 (-389))) 83 (|has| |#3| (-1055 (-389))))) (-4400 (((-623 $) $) NIL) ((|#3| $) NIL) (($ (-325 |#3|)) 77) (($ (-1194)) 104) (($ (-325 (-575))) 66 (|has| |#3| (-1055 (-575)))) (($ (-418 (-967 (-575)))) 71 (|has| |#3| (-1055 (-575)))) (($ (-967 (-575))) 67 (|has| |#3| (-1055 (-575)))) (($ (-325 (-389))) 95 (|has| |#3| (-1055 (-389)))) (($ (-418 (-967 (-389)))) 89 (|has| |#3| (-1055 (-389)))) (($ (-967 (-389))) 85 (|has| |#3| (-1055 (-389))))) (-4162 (((-3 $ "failed") $) NIL)) (-1632 (($) 101)) (-1412 (($ $) NIL) (($ (-655 $)) NIL)) (-4075 (((-655 (-115)) $) NIL)) (-2567 (((-115) (-115)) NIL)) (-3900 (((-112) $) NIL)) (-4254 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-4088 (((-1190 $) (-623 $)) NIL (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) NIL)) (-1934 (((-3 (-623 $) "failed") $) NIL)) (-3370 (($ $) 99)) (-3461 (($ $) NIL)) (-4264 (((-1176) $) NIL)) (-2551 (((-655 (-623 $)) $) NIL)) (-1672 (($ (-115) $) 98) (($ (-115) (-655 $)) NIL)) (-3371 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) NIL)) (-3340 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-4284 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2663 (($ $) NIL)) (-3095 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3046 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2065 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-3197 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-4436 (($ $) NIL (|has| $ (-1066)))) (-3907 (($ $) NIL)) (-3772 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-623 $)) NIL) (($ |#3|) NIL) (($ (-575)) NIL) (((-325 |#3|) $) 102)) (-4421 (((-782)) NIL T CONST)) (-2394 (($ $) NIL) (($ (-655 $)) NIL)) (-1825 (((-112) (-115)) NIL)) (-3685 (((-112) $ $) NIL)) (-3850 (($ $) NIL)) (-3826 (($ $) NIL)) (-3837 (($ $) NIL)) (-3863 (($ $) NIL)) (-1989 (($) 100 T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL)))
-(((-349 |#1| |#2| |#3|) (-13 (-311) (-38 |#3|) (-1055 |#3|) (-913 (-1194)) (-10 -8 (-15 -4400 ($ (-325 |#3|))) (-15 -2443 ((-3 $ "failed") (-325 |#3|))) (-15 -4400 ($ (-1194))) (-15 -2443 ((-3 $ "failed") (-1194))) (-15 -2882 ((-325 |#3|) $)) (IF (|has| |#3| (-1055 (-575))) (PROGN (-15 -4400 ($ (-325 (-575)))) (-15 -2443 ((-3 $ "failed") (-325 (-575)))) (-15 -4400 ($ (-418 (-967 (-575))))) (-15 -2443 ((-3 $ "failed") (-418 (-967 (-575))))) (-15 -4400 ($ (-967 (-575)))) (-15 -2443 ((-3 $ "failed") (-967 (-575))))) |%noBranch|) (IF (|has| |#3| (-1055 (-389))) (PROGN (-15 -4400 ($ (-325 (-389)))) (-15 -2443 ((-3 $ "failed") (-325 (-389)))) (-15 -4400 ($ (-418 (-967 (-389))))) (-15 -2443 ((-3 $ "failed") (-418 (-967 (-389))))) (-15 -4400 ($ (-967 (-389)))) (-15 -2443 ((-3 $ "failed") (-967 (-389))))) |%noBranch|) (-15 -3863 ($ $)) (-15 -2467 ($ $)) (-15 -2663 ($ $)) (-15 -3461 ($ $)) (-15 -3370 ($ $)) (-15 -3759 ($ $)) (-15 -3772 ($ $)) (-15 -3784 ($ $)) (-15 -3826 ($ $)) (-15 -3837 ($ $)) (-15 -3850 ($ $)) (-15 -3895 ($ $)) (-15 -3907 ($ $)) (-15 -3921 ($ $)) (-15 -1632 ($)) (-15 -1606 ((-655 (-1194)) $)) (-15 -3288 ((-112))) (-15 -3288 ((-112) (-112))))) (-655 (-1194)) (-655 (-1194)) (-398)) (T -349))
-((-4400 (*1 *1 *2) (-12 (-5 *2 (-325 *5)) (-4 *5 (-398)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 *5)) (-4 *5 (-398)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 *2)) (-14 *4 (-655 *2)) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 *2)) (-14 *4 (-655 *2)) (-4 *5 (-398)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-325 *5)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5)) (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-2467 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-2663 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3461 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3370 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3772 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3850 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3895 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3907 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-3921 (*1 *1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-1632 (*1 *1) (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194))) (-14 *3 (-655 (-1194))) (-4 *4 (-398)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-349 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-398)))) (-3288 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398)))))
-(-13 (-311) (-38 |#3|) (-1055 |#3|) (-913 (-1194)) (-10 -8 (-15 -4400 ($ (-325 |#3|))) (-15 -2443 ((-3 $ "failed") (-325 |#3|))) (-15 -4400 ($ (-1194))) (-15 -2443 ((-3 $ "failed") (-1194))) (-15 -2882 ((-325 |#3|) $)) (IF (|has| |#3| (-1055 (-575))) (PROGN (-15 -4400 ($ (-325 (-575)))) (-15 -2443 ((-3 $ "failed") (-325 (-575)))) (-15 -4400 ($ (-418 (-967 (-575))))) (-15 -2443 ((-3 $ "failed") (-418 (-967 (-575))))) (-15 -4400 ($ (-967 (-575)))) (-15 -2443 ((-3 $ "failed") (-967 (-575))))) |%noBranch|) (IF (|has| |#3| (-1055 (-389))) (PROGN (-15 -4400 ($ (-325 (-389)))) (-15 -2443 ((-3 $ "failed") (-325 (-389)))) (-15 -4400 ($ (-418 (-967 (-389))))) (-15 -2443 ((-3 $ "failed") (-418 (-967 (-389))))) (-15 -4400 ($ (-967 (-389)))) (-15 -2443 ((-3 $ "failed") (-967 (-389))))) |%noBranch|) (-15 -3863 ($ $)) (-15 -2467 ($ $)) (-15 -2663 ($ $)) (-15 -3461 ($ $)) (-15 -3370 ($ $)) (-15 -3759 ($ $)) (-15 -3772 ($ $)) (-15 -3784 ($ $)) (-15 -3826 ($ $)) (-15 -3837 ($ $)) (-15 -3850 ($ $)) (-15 -3895 ($ $)) (-15 -3907 ($ $)) (-15 -3921 ($ $)) (-15 -1632 ($)) (-15 -1606 ((-655 (-1194)) $)) (-15 -3288 ((-112))) (-15 -3288 ((-112) (-112)))))
-((-2544 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-350 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2544 (|#8| (-1 |#5| |#1|) |#4|))) (-1239) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|) (-1239) (-1261 |#5|) (-1261 (-418 |#6|)) (-352 |#5| |#6| |#7|)) (T -350))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1239)) (-4 *8 (-1239)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *9 (-1261 *8)) (-4 *2 (-352 *8 *9 *10)) (-5 *1 (-350 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-352 *5 *6 *7)) (-4 *10 (-1261 (-418 *9))))))
-(-10 -7 (-15 -2544 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2827 (((-2 (|:| |num| (-1285 |#3|)) (|:| |den| |#3|)) $) 39)) (-3898 (($ (-1285 (-418 |#3|)) (-1285 $)) NIL) (($ (-1285 (-418 |#3|))) NIL) (($ (-1285 |#3|) |#3|) 173)) (-2275 (((-1285 $) (-1285 $)) 156)) (-1395 (((-655 (-655 |#2|))) 126)) (-3945 (((-112) |#2| |#2|) 76)) (-2379 (($ $) 148)) (-1687 (((-782)) 172)) (-3830 (((-1285 $) (-1285 $)) 218)) (-2716 (((-655 (-967 |#2|)) (-1194)) 115)) (-2112 (((-112) $) 169)) (-4159 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2295 (((-3 |#3| "failed")) 52)) (-4002 (((-782)) 184)) (-2065 ((|#2| $ |#2| |#2|) 140)) (-1331 (((-3 |#3| "failed")) 71)) (-2382 (($ $ (-1 (-418 |#3|) (-418 |#3|))) NIL) (($ $ (-1 (-418 |#3|) (-418 |#3|)) (-782)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-2695 (((-1285 $) (-1285 $)) 162)) (-2339 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3185 (((-112)) 34)))
-(((-351 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -1395 ((-655 (-655 |#2|)))) (-15 -2716 ((-655 (-967 |#2|)) (-1194))) (-15 -2339 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2295 ((-3 |#3| "failed"))) (-15 -1331 ((-3 |#3| "failed"))) (-15 -2065 (|#2| |#1| |#2| |#2|)) (-15 -2379 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4159 ((-112) |#1| |#3|)) (-15 -4159 ((-112) |#1| |#2|)) (-15 -3898 (|#1| (-1285 |#3|) |#3|)) (-15 -2827 ((-2 (|:| |num| (-1285 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2275 ((-1285 |#1|) (-1285 |#1|))) (-15 -3830 ((-1285 |#1|) (-1285 |#1|))) (-15 -2695 ((-1285 |#1|) (-1285 |#1|))) (-15 -4159 ((-112) |#1|)) (-15 -2112 ((-112) |#1|)) (-15 -3945 ((-112) |#2| |#2|)) (-15 -3185 ((-112))) (-15 -4002 ((-782))) (-15 -1687 ((-782))) (-15 -2382 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)) (-782))) (-15 -2382 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)))) (-15 -3898 (|#1| (-1285 (-418 |#3|)))) (-15 -3898 (|#1| (-1285 (-418 |#3|)) (-1285 |#1|)))) (-352 |#2| |#3| |#4|) (-1239) (-1261 |#2|) (-1261 (-418 |#3|))) (T -351))
-((-1687 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) (-4002 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) (-3185 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))) (-3945 (*1 *2 *3 *3) (-12 (-4 *3 (-1239)) (-4 *5 (-1261 *3)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-112)) (-5 *1 (-351 *4 *3 *5 *6)) (-4 *4 (-352 *3 *5 *6)))) (-1331 (*1 *2) (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5)) (-4 *3 (-352 *4 *2 *5)))) (-2295 (*1 *2) (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5)) (-4 *3 (-352 *4 *2 *5)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *5 (-1239)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-5 *2 (-655 (-967 *5))) (-5 *1 (-351 *4 *5 *6 *7)) (-4 *4 (-352 *5 *6 *7)))) (-1395 (*1 *2) (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-655 (-655 *4))) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6)))))
-(-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -1395 ((-655 (-655 |#2|)))) (-15 -2716 ((-655 (-967 |#2|)) (-1194))) (-15 -2339 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2295 ((-3 |#3| "failed"))) (-15 -1331 ((-3 |#3| "failed"))) (-15 -2065 (|#2| |#1| |#2| |#2|)) (-15 -2379 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4159 ((-112) |#1| |#3|)) (-15 -4159 ((-112) |#1| |#2|)) (-15 -3898 (|#1| (-1285 |#3|) |#3|)) (-15 -2827 ((-2 (|:| |num| (-1285 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2275 ((-1285 |#1|) (-1285 |#1|))) (-15 -3830 ((-1285 |#1|) (-1285 |#1|))) (-15 -2695 ((-1285 |#1|) (-1285 |#1|))) (-15 -4159 ((-112) |#1|)) (-15 -2112 ((-112) |#1|)) (-15 -3945 ((-112) |#2| |#2|)) (-15 -3185 ((-112))) (-15 -4002 ((-782))) (-15 -1687 ((-782))) (-15 -2382 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)) (-782))) (-15 -2382 (|#1| |#1| (-1 (-418 |#3|) (-418 |#3|)))) (-15 -3898 (|#1| (-1285 (-418 |#3|)))) (-15 -3898 (|#1| (-1285 (-418 |#3|)) (-1285 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-2827 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 209)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 105 (|has| (-418 |#2|) (-373)))) (-2456 (($ $) 106 (|has| (-418 |#2|) (-373)))) (-3978 (((-112) $) 108 (|has| (-418 |#2|) (-373)))) (-3831 (((-700 (-418 |#2|)) (-1285 $)) 53) (((-700 (-418 |#2|))) 68)) (-1448 (((-418 |#2|) $) 59)) (-2309 (((-1207 (-936) (-782)) (-575)) 158 (|has| (-418 |#2|) (-359)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 125 (|has| (-418 |#2|) (-373)))) (-4281 (((-429 $) $) 126 (|has| (-418 |#2|) (-373)))) (-3599 (((-112) $ $) 116 (|has| (-418 |#2|) (-373)))) (-2409 (((-782)) 99 (|has| (-418 |#2|) (-378)))) (-3005 (((-112)) 226)) (-2528 (((-112) |#1|) 225) (((-112) |#2|) 224)) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 183 (|has| (-418 |#2|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 181 (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-3 (-418 |#2|) "failed") $) 178)) (-4400 (((-575) $) 182 (|has| (-418 |#2|) (-1055 (-575)))) (((-418 (-575)) $) 180 (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-418 |#2|) $) 179)) (-3898 (($ (-1285 (-418 |#2|)) (-1285 $)) 55) (($ (-1285 (-418 |#2|))) 71) (($ (-1285 |#2|) |#2|) 208)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-418 |#2|) (-359)))) (-2800 (($ $ $) 120 (|has| (-418 |#2|) (-373)))) (-3405 (((-700 (-418 |#2|)) $ (-1285 $)) 60) (((-700 (-418 |#2|)) $) 66)) (-2862 (((-700 (-575)) (-1285 $)) 177 (|has| (-418 |#2|) (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-418 |#2|))) (|:| |vec| (-1285 (-418 |#2|)))) (-700 $) (-1285 $)) 174) (((-700 (-418 |#2|)) (-700 $)) 173) (((-700 (-418 |#2|)) (-1285 $)) 172)) (-2275 (((-1285 $) (-1285 $)) 214)) (-2302 (($ |#3|) 169) (((-3 $ "failed") (-418 |#3|)) 166 (|has| (-418 |#2|) (-373)))) (-4162 (((-3 $ "failed") $) 37)) (-1395 (((-655 (-655 |#1|))) 195 (|has| |#1| (-378)))) (-3945 (((-112) |#1| |#1|) 230)) (-4422 (((-936)) 61)) (-2073 (($) 102 (|has| (-418 |#2|) (-378)))) (-1993 (((-112)) 223)) (-1356 (((-112) |#1|) 222) (((-112) |#2|) 221)) (-2811 (($ $ $) 119 (|has| (-418 |#2|) (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 114 (|has| (-418 |#2|) (-373)))) (-2379 (($ $) 201)) (-1758 (($) 160 (|has| (-418 |#2|) (-359)))) (-3228 (((-112) $) 161 (|has| (-418 |#2|) (-359)))) (-2457 (($ $ (-782)) 152 (|has| (-418 |#2|) (-359))) (($ $) 151 (|has| (-418 |#2|) (-359)))) (-3559 (((-112) $) 127 (|has| (-418 |#2|) (-373)))) (-3369 (((-936) $) 163 (|has| (-418 |#2|) (-359))) (((-844 (-936)) $) 149 (|has| (-418 |#2|) (-359)))) (-3900 (((-112) $) 35)) (-1687 (((-782)) 233)) (-3830 (((-1285 $) (-1285 $)) 215)) (-3390 (((-418 |#2|) $) 58)) (-2716 (((-655 (-967 |#1|)) (-1194)) 196 (|has| |#1| (-373)))) (-2808 (((-3 $ "failed") $) 153 (|has| (-418 |#2|) (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 123 (|has| (-418 |#2|) (-373)))) (-3977 ((|#3| $) 51 (|has| (-418 |#2|) (-373)))) (-1894 (((-936) $) 101 (|has| (-418 |#2|) (-378)))) (-2290 ((|#3| $) 167)) (-3886 (($ (-655 $)) 112 (|has| (-418 |#2|) (-373))) (($ $ $) 111 (|has| (-418 |#2|) (-373)))) (-4264 (((-1176) $) 10)) (-2020 (((-700 (-418 |#2|))) 210)) (-2194 (((-700 (-418 |#2|))) 212)) (-4332 (($ $) 128 (|has| (-418 |#2|) (-373)))) (-3169 (($ (-1285 |#2|) |#2|) 206)) (-3625 (((-700 (-418 |#2|))) 211)) (-2578 (((-700 (-418 |#2|))) 213)) (-4001 (((-2 (|:| |num| (-700 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 205)) (-2426 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 207)) (-3565 (((-1285 $)) 219)) (-3189 (((-1285 $)) 220)) (-2112 (((-112) $) 218)) (-4159 (((-112) $) 217) (((-112) $ |#1|) 204) (((-112) $ |#2|) 203)) (-3472 (($) 154 (|has| (-418 |#2|) (-359)) CONST)) (-4317 (($ (-936)) 100 (|has| (-418 |#2|) (-378)))) (-2295 (((-3 |#2| "failed")) 198)) (-3912 (((-1137) $) 11)) (-4002 (((-782)) 232)) (-3657 (($) 171)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 113 (|has| (-418 |#2|) (-373)))) (-3923 (($ (-655 $)) 110 (|has| (-418 |#2|) (-373))) (($ $ $) 109 (|has| (-418 |#2|) (-373)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 157 (|has| (-418 |#2|) (-359)))) (-2347 (((-429 $) $) 124 (|has| (-418 |#2|) (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-418 |#2|) (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 121 (|has| (-418 |#2|) (-373)))) (-2849 (((-3 $ "failed") $ $) 104 (|has| (-418 |#2|) (-373)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 115 (|has| (-418 |#2|) (-373)))) (-1720 (((-782) $) 117 (|has| (-418 |#2|) (-373)))) (-2065 ((|#1| $ |#1| |#1|) 200)) (-1331 (((-3 |#2| "failed")) 199)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 118 (|has| (-418 |#2|) (-373)))) (-2801 (((-418 |#2|) (-1285 $)) 54) (((-418 |#2|)) 67)) (-2619 (((-782) $) 162 (|has| (-418 |#2|) (-359))) (((-3 (-782) "failed") $ $) 150 (|has| (-418 |#2|) (-359)))) (-2382 (($ $ (-1 (-418 |#2|) (-418 |#2|))) 136 (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) 135 (|has| (-418 |#2|) (-373))) (($ $ (-1 |#2| |#2|)) 202) (($ $ (-655 (-1194)) (-655 (-782))) 141 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194) (-782)) 140 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-655 (-1194))) 139 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194)) 137 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-782)) 147 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3224 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) 145 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3224 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3797 (((-700 (-418 |#2|)) (-1285 $) (-1 (-418 |#2|) (-418 |#2|))) 165 (|has| (-418 |#2|) (-373)))) (-4436 ((|#3|) 170)) (-1847 (($) 159 (|has| (-418 |#2|) (-359)))) (-2209 (((-1285 (-418 |#2|)) $ (-1285 $)) 57) (((-700 (-418 |#2|)) (-1285 $) (-1285 $)) 56) (((-1285 (-418 |#2|)) $) 73) (((-700 (-418 |#2|)) (-1285 $)) 72)) (-2613 (((-1285 (-418 |#2|)) $) 70) (($ (-1285 (-418 |#2|))) 69) ((|#3| $) 184) (($ |#3|) 168)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 156 (|has| (-418 |#2|) (-359)))) (-2695 (((-1285 $) (-1285 $)) 216)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 |#2|)) 44) (($ (-418 (-575))) 98 (-3763 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-1055 (-418 (-575)))))) (($ $) 103 (|has| (-418 |#2|) (-373)))) (-1724 (($ $) 155 (|has| (-418 |#2|) (-359))) (((-3 $ "failed") $) 50 (|has| (-418 |#2|) (-146)))) (-2765 ((|#3| $) 52)) (-4421 (((-782)) 32 T CONST)) (-2903 (((-112)) 229)) (-2652 (((-112) |#1|) 228) (((-112) |#2|) 227)) (-3685 (((-112) $ $) 9)) (-2098 (((-1285 $)) 74)) (-3930 (((-112) $ $) 107 (|has| (-418 |#2|) (-373)))) (-2339 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 197)) (-3185 (((-112)) 231)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 (-418 |#2|) (-418 |#2|))) 134 (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) 133 (|has| (-418 |#2|) (-373))) (($ $ (-655 (-1194)) (-655 (-782))) 144 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194) (-782)) 143 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-655 (-1194))) 142 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-1194)) 138 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-3224 (|has| (-418 |#2|) (-915 (-1194))) (|has| (-418 |#2|) (-373))))) (($ $ (-782)) 148 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3224 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) 146 (-3763 (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-237))) (-3224 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-238))) (-3224 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 132 (|has| (-418 |#2|) (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 129 (|has| (-418 |#2|) (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 |#2|)) 46) (($ (-418 |#2|) $) 45) (($ (-418 (-575)) $) 131 (|has| (-418 |#2|) (-373))) (($ $ (-418 (-575))) 130 (|has| (-418 |#2|) (-373)))))
-(((-352 |#1| |#2| |#3|) (-141) (-1239) (-1261 |t#1|) (-1261 (-418 |t#2|))) (T -352))
-((-1687 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782)))) (-4002 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782)))) (-3185 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-3945 (*1 *2 *3 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-2903 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-2652 (*1 *2 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-2652 (*1 *2 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-3005 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-2528 (*1 *2 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-2528 (*1 *2 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-1993 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1356 (*1 *2 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-1356 (*1 *2 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-3189 (*1 *2) (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)))) (-3565 (*1 *2) (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-2578 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-2194 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-3625 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-2020 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4))))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239)) (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3))))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4))))) (-3169 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239)) (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3))))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-2 (|:| |num| (-700 *5)) (|:| |den| *5))))) (-4159 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))) (-4159 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))))) (-2065 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3))))) (-1331 (*1 *2) (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239)) (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3)))) (-2295 (*1 *2) (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239)) (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1239)) (-4 *6 (-1261 (-418 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-352 *4 *5 *6)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *4 (-373)) (-5 *2 (-655 (-967 *4))))) (-1395 (*1 *2) (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))) (-4 *3 (-378)) (-5 *2 (-655 (-655 *3))))))
-(-13 (-735 (-418 |t#2|) |t#3|) (-10 -8 (-15 -1687 ((-782))) (-15 -4002 ((-782))) (-15 -3185 ((-112))) (-15 -3945 ((-112) |t#1| |t#1|)) (-15 -2903 ((-112))) (-15 -2652 ((-112) |t#1|)) (-15 -2652 ((-112) |t#2|)) (-15 -3005 ((-112))) (-15 -2528 ((-112) |t#1|)) (-15 -2528 ((-112) |t#2|)) (-15 -1993 ((-112))) (-15 -1356 ((-112) |t#1|)) (-15 -1356 ((-112) |t#2|)) (-15 -3189 ((-1285 $))) (-15 -3565 ((-1285 $))) (-15 -2112 ((-112) $)) (-15 -4159 ((-112) $)) (-15 -2695 ((-1285 $) (-1285 $))) (-15 -3830 ((-1285 $) (-1285 $))) (-15 -2275 ((-1285 $) (-1285 $))) (-15 -2578 ((-700 (-418 |t#2|)))) (-15 -2194 ((-700 (-418 |t#2|)))) (-15 -3625 ((-700 (-418 |t#2|)))) (-15 -2020 ((-700 (-418 |t#2|)))) (-15 -2827 ((-2 (|:| |num| (-1285 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3898 ($ (-1285 |t#2|) |t#2|)) (-15 -2426 ((-2 (|:| |num| (-1285 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3169 ($ (-1285 |t#2|) |t#2|)) (-15 -4001 ((-2 (|:| |num| (-700 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4159 ((-112) $ |t#1|)) (-15 -4159 ((-112) $ |t#2|)) (-15 -2382 ($ $ (-1 |t#2| |t#2|))) (-15 -2379 ($ $)) (-15 -2065 (|t#1| $ |t#1| |t#1|)) (-15 -1331 ((-3 |t#2| "failed"))) (-15 -2295 ((-3 |t#2| "failed"))) (-15 -2339 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-373)) (-15 -2716 ((-655 (-967 |t#1|)) (-1194))) |%noBranch|) (IF (|has| |t#1| (-378)) (-15 -1395 ((-655 (-655 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-38 #1=(-418 |#2|)) . T) ((-38 $) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-102) . T) ((-111 #0# #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-146))) ((-148) |has| (-418 |#2|) (-148)) ((-627 #0#) -3763 (|has| (-418 |#2|) (-1055 (-418 (-575)))) (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-627 #1#) . T) ((-627 (-575)) . T) ((-627 $) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-624 (-873)) . T) ((-174) . T) ((-625 |#3|) . T) ((-234 $) -3763 (|has| (-418 |#2|) (-359)) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373)))) ((-232 #1#) |has| (-418 |#2|) (-373)) ((-238) -3763 (|has| (-418 |#2|) (-359)) (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373)))) ((-237) -3763 (|has| (-418 |#2|) (-359)) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373)))) ((-271 #1#) |has| (-418 |#2|) (-373)) ((-248) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-299) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-316) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-373) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-413) |has| (-418 |#2|) (-359)) ((-378) -3763 (|has| (-418 |#2|) (-378)) (|has| (-418 |#2|) (-359))) ((-359) |has| (-418 |#2|) (-359)) ((-380 #1# |#3|) . T) ((-420 #1# |#3|) . T) ((-387 #1#) . T) ((-422 #1#) . T) ((-463) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-567) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-657 #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-657 #1#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-659 #1#) . T) ((-659 #2=(-575)) |has| (-418 |#2|) (-650 (-575))) ((-659 $) . T) ((-651 #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-651 #1#) . T) ((-651 $) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-650 #1#) . T) ((-650 #2#) |has| (-418 |#2|) (-650 (-575))) ((-728 #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-728 #1#) . T) ((-728 $) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-735 #1# |#3|) . T) ((-737) . T) ((-908 $ #3=(-1194)) -3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194))))) ((-913 (-1194)) -12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) ((-915 #3#) -3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194))))) ((-935) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1055 (-418 (-575))) |has| (-418 |#2|) (-1055 (-418 (-575)))) ((-1055 #1#) . T) ((-1055 (-575)) |has| (-418 |#2|) (-1055 (-575))) ((-1068 #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1068 #1#) . T) ((-1068 $) . T) ((-1073 #0#) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1073 #1#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| (-418 |#2|) (-359)) ((-1235) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))) ((-1239) -3763 (|has| (-418 |#2|) (-359)) (|has| (-418 |#2|) (-373))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-925 |#1|) (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| (-925 |#1|) (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-925 |#1|) "failed") $) NIL)) (-4400 (((-925 |#1|) $) NIL)) (-3898 (($ (-1285 (-925 |#1|))) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-925 |#1|) (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| (-925 |#1|) (-378)))) (-3228 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378)))) (($ $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| (-925 |#1|) (-378))) (((-844 (-936)) $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| (-925 |#1|) (-378)))) (-2313 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-3390 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| (-925 |#1|) (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 (-925 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-1894 (((-936) $) NIL (|has| (-925 |#1|) (-378)))) (-2815 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378)))) (-3388 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-1190 (-925 |#1|)) "failed") $ $) NIL (|has| (-925 |#1|) (-378)))) (-2281 (($ $ (-1190 (-925 |#1|))) NIL (|has| (-925 |#1|) (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-925 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3946 (((-973 (-1137))) NIL)) (-3657 (($) NIL (|has| (-925 |#1|) (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-925 |#1|) (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 (-925 |#1|))) NIL)) (-1847 (($) NIL (|has| (-925 |#1|) (-378)))) (-1908 (($) NIL (|has| (-925 |#1|) (-378)))) (-2209 (((-1285 (-925 |#1|)) $) NIL) (((-700 (-925 |#1|)) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-925 |#1|) (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-925 |#1|)) NIL)) (-1724 (($ $) NIL (|has| (-925 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| (-925 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-925 |#1|) (-378)))) (-3428 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-925 |#1|)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-925 |#1|)) NIL) (($ (-925 |#1|) $) NIL)))
-(((-353 |#1| |#2|) (-13 (-338 (-925 |#1|)) (-10 -7 (-15 -3946 ((-973 (-1137)))))) (-936) (-936)) (T -353))
-((-3946 (*1 *2) (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-353 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))))
-(-13 (-338 (-925 |#1|)) (-10 -7 (-15 -3946 ((-973 (-1137))))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 58)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) 56 (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 142)) (-4400 ((|#1| $) 113)) (-3898 (($ (-1285 |#1|)) 130)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) 124 (|has| |#1| (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) 160 (|has| |#1| (-378)))) (-3228 (((-112) $) 66 (|has| |#1| (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) 60 (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) 62)) (-2772 (($) 162 (|has| |#1| (-378)))) (-2313 (((-112) $) NIL (|has| |#1| (-378)))) (-3390 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 |#1|) $) 117) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-1894 (((-936) $) 171 (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 178)) (-3472 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 96 (|has| |#1| (-378)))) (-3953 (((-112) $) 147)) (-3912 (((-1137) $) NIL)) (-3946 (((-973 (-1137))) 57)) (-3657 (($) 158 (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 119 (|has| |#1| (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) 90) (((-936)) 91)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) 161 (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) 154 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 |#1|)) 122)) (-1847 (($) 159 (|has| |#1| (-378)))) (-1908 (($) 167 (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) 77) (((-700 |#1|) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) 174) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 100)) (-1724 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) 155 T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) 144) (((-1285 $) (-936)) 98)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) 67 T CONST)) (-2005 (($) 103 T CONST)) (-1514 (($ $) 107 (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3428 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3913 (((-112) $ $) 65)) (-4038 (($ $ $) 176) (($ $ |#1|) 177)) (-4027 (($ $) 157) (($ $ $) NIL)) (-4015 (($ $ $) 86)) (** (($ $ (-936)) 180) (($ $ (-782)) 181) (($ $ (-575)) 179)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 102) (($ $ $) 101) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
-(((-354 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -3946 ((-973 (-1137)))))) (-359) (-1190 |#1|)) (T -354))
-((-3946 (*1 *2) (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-354 *3 *4)) (-4 *3 (-359)) (-14 *4 (-1190 *3)))))
-(-13 (-338 |#1|) (-10 -7 (-15 -3946 ((-973 (-1137))))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-3898 (($ (-1285 |#1|)) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| |#1| (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| |#1| (-378)))) (-3228 (((-112) $) NIL (|has| |#1| (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| |#1| (-378)))) (-2313 (((-112) $) NIL (|has| |#1| (-378)))) (-3390 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 |#1|) $) NIL) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3946 (((-973 (-1137))) NIL)) (-3657 (($) NIL (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| |#1| (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 |#1|)) NIL)) (-1847 (($) NIL (|has| |#1| (-378)))) (-1908 (($) NIL (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) NIL)) (-1724 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3428 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-355 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -3946 ((-973 (-1137)))))) (-359) (-936)) (T -355))
-((-3946 (*1 *2) (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-355 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))))
-(-13 (-338 |#1|) (-10 -7 (-15 -3946 ((-973 (-1137))))))
-((-1499 (((-782) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) 61)) (-2659 (((-973 (-1137)) (-1190 |#1|)) 112)) (-3879 (((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) (-1190 |#1|)) 103)) (-4033 (((-700 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) 113)) (-2981 (((-3 (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) "failed") (-936)) 13)) (-3573 (((-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) (-936)) 18)))
-(((-356 |#1|) (-10 -7 (-15 -2659 ((-973 (-1137)) (-1190 |#1|))) (-15 -3879 ((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) (-1190 |#1|))) (-15 -4033 ((-700 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -1499 ((-782) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -2981 ((-3 (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) "failed") (-936))) (-15 -3573 ((-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) (-936)))) (-359)) (T -356))
-((-3573 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-3 (-1190 *4) (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137))))))) (-5 *1 (-356 *4)) (-4 *4 (-359)))) (-2981 (*1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-5 *2 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137)))))) (-5 *1 (-356 *4)) (-4 *4 (-359)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137)))))) (-4 *4 (-359)) (-5 *2 (-782)) (-5 *1 (-356 *4)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137)))))) (-4 *4 (-359)) (-5 *2 (-700 *4)) (-5 *1 (-356 *4)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137)))))) (-5 *1 (-356 *4)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-973 (-1137))) (-5 *1 (-356 *4)))))
-(-10 -7 (-15 -2659 ((-973 (-1137)) (-1190 |#1|))) (-15 -3879 ((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) (-1190 |#1|))) (-15 -4033 ((-700 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -1499 ((-782) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -2981 ((-3 (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) "failed") (-936))) (-15 -3573 ((-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) (-936))))
-((-2882 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
-(((-357 |#1| |#2| |#3|) (-10 -7 (-15 -2882 (|#3| |#1|)) (-15 -2882 (|#1| |#3|))) (-338 |#2|) (-359) (-338 |#2|)) (T -357))
-((-2882 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *2 *4 *3)) (-4 *3 (-338 *4)))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *3 *4 *2)) (-4 *3 (-338 *4)))))
-(-10 -7 (-15 -2882 (|#3| |#1|)) (-15 -2882 (|#1| |#3|)))
-((-3228 (((-112) $) 60)) (-3369 (((-844 (-936)) $) 23) (((-936) $) 64)) (-2808 (((-3 $ "failed") $) 18)) (-3472 (($) 9)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 114)) (-2619 (((-3 (-782) "failed") $ $) 92) (((-782) $) 79)) (-2382 (($ $) 8) (($ $ (-782)) NIL)) (-1847 (($) 53)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 38)) (-1724 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-358 |#1|) (-10 -8 (-15 -3369 ((-936) |#1|)) (-15 -2619 ((-782) |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -1847 (|#1|)) (-15 -1511 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -1724 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2619 ((-3 (-782) "failed") |#1| |#1|)) (-15 -3369 ((-844 (-936)) |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) (-359)) (T -358))
-NIL
-(-10 -8 (-15 -3369 ((-936) |#1|)) (-15 -2619 ((-782) |#1|)) (-15 -3228 ((-112) |#1|)) (-15 -1847 (|#1|)) (-15 -1511 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -1724 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2619 ((-3 (-782) "failed") |#1| |#1|)) (-15 -3369 ((-844 (-936)) |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-2309 (((-1207 (-936) (-782)) (-575)) 102)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-3599 (((-112) $ $) 65)) (-2409 (((-782)) 112)) (-3261 (($) 18 T CONST)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2073 (($) 115)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-1758 (($) 100)) (-3228 (((-112) $) 99)) (-2457 (($ $) 87) (($ $ (-782)) 86)) (-3559 (((-112) $) 79)) (-3369 (((-844 (-936)) $) 89) (((-936) $) 97)) (-3900 (((-112) $) 35)) (-2808 (((-3 $ "failed") $) 111)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1894 (((-936) $) 114)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3472 (($) 110 T CONST)) (-4317 (($ (-936)) 113)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 103)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2619 (((-3 (-782) "failed") $ $) 88) (((-782) $) 98)) (-2382 (($ $) 109) (($ $ (-782)) 107)) (-1847 (($) 101)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 104)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-1724 (((-3 $ "failed") $) 90) (($ $) 105)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $) 108) (($ $ (-782)) 106)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75)))
-(((-359) (-141)) (T -359))
-((-1724 (*1 *1 *1) (-4 *1 (-359))) (-1511 (*1 *2 *3) (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-359)) (-5 *2 (-1285 *1)))) (-3397 (*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))))) (-2309 (*1 *2 *3) (-12 (-4 *1 (-359)) (-5 *3 (-575)) (-5 *2 (-1207 (-936) (-782))))) (-1847 (*1 *1) (-4 *1 (-359))) (-1758 (*1 *1) (-4 *1 (-359))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-782)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-936)))) (-3297 (*1 *2) (-12 (-4 *1 (-359)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-413) (-378) (-1169) (-238) (-10 -8 (-15 -1724 ($ $)) (-15 -1511 ((-3 (-1285 $) "failed") (-700 $))) (-15 -3397 ((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575)))))) (-15 -2309 ((-1207 (-936) (-782)) (-575))) (-15 -1847 ($)) (-15 -1758 ($)) (-15 -3228 ((-112) $)) (-15 -2619 ((-782) $)) (-15 -3369 ((-936) $)) (-15 -3297 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-413) . T) ((-378) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) . T) ((-1235) . T) ((-1239) . T))
-((-3056 (((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) |#1|) 55)) (-3189 (((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))) 53)))
-(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3189 ((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))))) (-15 -3056 ((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) |#1|))) (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))) (-1261 |#1|) (-420 |#1| |#2|)) (T -360))
-((-3056 (*1 *2 *3) (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *2 (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-3189 (*1 *2) (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *2 (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4)))))
-(-10 -7 (-15 -3189 ((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))))) (-15 -3056 ((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-925 |#1|) (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-1499 (((-782)) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| (-925 |#1|) (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-925 |#1|) "failed") $) NIL)) (-4400 (((-925 |#1|) $) NIL)) (-3898 (($ (-1285 (-925 |#1|))) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-925 |#1|) (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| (-925 |#1|) (-378)))) (-3228 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378)))) (($ $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| (-925 |#1|) (-378))) (((-844 (-936)) $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| (-925 |#1|) (-378)))) (-2313 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-3390 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| (-925 |#1|) (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 (-925 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-1894 (((-936) $) NIL (|has| (-925 |#1|) (-378)))) (-2815 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378)))) (-3388 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-1190 (-925 |#1|)) "failed") $ $) NIL (|has| (-925 |#1|) (-378)))) (-2281 (($ $ (-1190 (-925 |#1|))) NIL (|has| (-925 |#1|) (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-925 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-2460 (((-1285 (-655 (-2 (|:| -4181 (-925 |#1|)) (|:| -4317 (-1137)))))) NIL)) (-2448 (((-700 (-925 |#1|))) NIL)) (-3657 (($) NIL (|has| (-925 |#1|) (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-925 |#1|) (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 (-925 |#1|))) NIL)) (-1847 (($) NIL (|has| (-925 |#1|) (-378)))) (-1908 (($) NIL (|has| (-925 |#1|) (-378)))) (-2209 (((-1285 (-925 |#1|)) $) NIL) (((-700 (-925 |#1|)) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-925 |#1|) (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-925 |#1|)) NIL)) (-1724 (($ $) NIL (|has| (-925 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| (-925 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-925 |#1|) (-378)))) (-3428 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-925 |#1|)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-925 |#1|)) NIL) (($ (-925 |#1|) $) NIL)))
-(((-361 |#1| |#2|) (-13 (-338 (-925 |#1|)) (-10 -7 (-15 -2460 ((-1285 (-655 (-2 (|:| -4181 (-925 |#1|)) (|:| -4317 (-1137))))))) (-15 -2448 ((-700 (-925 |#1|)))) (-15 -1499 ((-782))))) (-936) (-936)) (T -361))
-((-2460 (*1 *2) (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4181 (-925 *3)) (|:| -4317 (-1137)))))) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-2448 (*1 *2) (-12 (-5 *2 (-700 (-925 *3))) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-1499 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))))
-(-13 (-338 (-925 |#1|)) (-10 -7 (-15 -2460 ((-1285 (-655 (-2 (|:| -4181 (-925 |#1|)) (|:| -4317 (-1137))))))) (-15 -2448 ((-700 (-925 |#1|)))) (-15 -1499 ((-782)))))
-((-2859 (((-112) $ $) 73)) (-2045 (((-112) $) 88)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 ((|#1| $) 106) (($ $ (-936)) 104 (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) 170 (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-1499 (((-782)) 103)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) 187 (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 127)) (-4400 ((|#1| $) 105)) (-3898 (($ (-1285 |#1|)) 71)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) 182 (|has| |#1| (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) 171 (|has| |#1| (-378)))) (-3228 (((-112) $) NIL (|has| |#1| (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) 113 (|has| |#1| (-378)))) (-2313 (((-112) $) 200 (|has| |#1| (-378)))) (-3390 ((|#1| $) 108) (($ $ (-936)) 107 (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 |#1|) $) 214) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-1894 (((-936) $) 148 (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) 87 (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) 84 (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) 96 (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) 83 (|has| |#1| (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 218)) (-3472 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 150 (|has| |#1| (-378)))) (-3953 (((-112) $) 123)) (-3912 (((-1137) $) NIL)) (-2460 (((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) 97)) (-2448 (((-700 |#1|)) 101)) (-3657 (($) 110 (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 173 (|has| |#1| (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) 174)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) 75)) (-4436 (((-1190 |#1|)) 175)) (-1847 (($) 147 (|has| |#1| (-378)))) (-1908 (($) NIL (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) 121) (((-700 |#1|) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) 140) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 70)) (-1724 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) 180 T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) 197) (((-1285 $) (-936)) 116)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) 186 T CONST)) (-2005 (($) 161 T CONST)) (-1514 (($ $) 122 (|has| |#1| (-378))) (($ $ (-782)) 114 (|has| |#1| (-378)))) (-3428 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3913 (((-112) $ $) 208)) (-4038 (($ $ $) 119) (($ $ |#1|) 120)) (-4027 (($ $) 202) (($ $ $) 206)) (-4015 (($ $ $) 204)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 153)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 211) (($ $ $) 164) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
-(((-362 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -2460 ((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -2448 ((-700 |#1|))) (-15 -1499 ((-782))))) (-359) (-3 (-1190 |#1|) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (T -362))
-((-2460 (*1 *2) (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137)))))) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) *2)))) (-2448 (*1 *2) (-12 (-5 *2 (-700 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137))))))))) (-1499 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137))))))))))
-(-13 (-338 |#1|) (-10 -7 (-15 -2460 ((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -2448 ((-700 |#1|))) (-15 -1499 ((-782)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-1499 (((-782)) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-3898 (($ (-1285 |#1|)) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| |#1| (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| |#1| (-378)))) (-3228 (((-112) $) NIL (|has| |#1| (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| |#1| (-378)))) (-2313 (((-112) $) NIL (|has| |#1| (-378)))) (-3390 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 |#1|) $) NIL) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-2460 (((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137)))))) NIL)) (-2448 (((-700 |#1|)) NIL)) (-3657 (($) NIL (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| |#1| (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 |#1|)) NIL)) (-1847 (($) NIL (|has| |#1| (-378)))) (-1908 (($) NIL (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) NIL)) (-1724 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3428 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-363 |#1| |#2|) (-13 (-338 |#1|) (-10 -7 (-15 -2460 ((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -2448 ((-700 |#1|))) (-15 -1499 ((-782))))) (-359) (-936)) (T -363))
-((-2460 (*1 *2) (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))) (-2448 (*1 *2) (-12 (-5 *2 (-700 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))) (-1499 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))))
-(-13 (-338 |#1|) (-10 -7 (-15 -2460 ((-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))))) (-15 -2448 ((-700 |#1|))) (-15 -1499 ((-782)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-925 |#1|) (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| (-925 |#1|) (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-925 |#1|) "failed") $) NIL)) (-4400 (((-925 |#1|) $) NIL)) (-3898 (($ (-1285 (-925 |#1|))) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-925 |#1|) (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| (-925 |#1|) (-378)))) (-3228 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378)))) (($ $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| (-925 |#1|) (-378))) (((-844 (-936)) $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| (-925 |#1|) (-378)))) (-2313 (((-112) $) NIL (|has| (-925 |#1|) (-378)))) (-3390 (((-925 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| (-925 |#1|) (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 (-925 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-1894 (((-936) $) NIL (|has| (-925 |#1|) (-378)))) (-2815 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378)))) (-3388 (((-1190 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-1190 (-925 |#1|)) "failed") $ $) NIL (|has| (-925 |#1|) (-378)))) (-2281 (($ $ (-1190 (-925 |#1|))) NIL (|has| (-925 |#1|) (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-925 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-925 |#1|) (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3657 (($) NIL (|has| (-925 |#1|) (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-925 |#1|) (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| (-925 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 (-925 |#1|))) NIL)) (-1847 (($) NIL (|has| (-925 |#1|) (-378)))) (-1908 (($) NIL (|has| (-925 |#1|) (-378)))) (-2209 (((-1285 (-925 |#1|)) $) NIL) (((-700 (-925 |#1|)) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-925 |#1|) (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-925 |#1|)) NIL)) (-1724 (($ $) NIL (|has| (-925 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| (-925 |#1|) (-146)) (|has| (-925 |#1|) (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| (-925 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-925 |#1|) (-378)))) (-3428 (($ $ (-782)) NIL (|has| (-925 |#1|) (-378))) (($ $) NIL (|has| (-925 |#1|) (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-925 |#1|)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-925 |#1|)) NIL) (($ (-925 |#1|) $) NIL)))
-(((-364 |#1| |#2|) (-338 (-925 |#1|)) (-936) (-936)) (T -364))
-NIL
-(-338 (-925 |#1|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) 129 (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) 155 (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 103)) (-4400 ((|#1| $) 100)) (-3898 (($ (-1285 |#1|)) 95)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) 92 (|has| |#1| (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) 51 (|has| |#1| (-378)))) (-3228 (((-112) $) NIL (|has| |#1| (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) 130 (|has| |#1| (-378)))) (-2313 (((-112) $) 84 (|has| |#1| (-378)))) (-3390 ((|#1| $) 47) (($ $ (-936)) 52 (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 |#1|) $) 75) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-1894 (((-936) $) 107 (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) 105 (|has| |#1| (-378)))) (-3953 (((-112) $) 157)) (-3912 (((-1137) $) NIL)) (-3657 (($) 44 (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 124 (|has| |#1| (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) 154)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) 67)) (-4436 (((-1190 |#1|)) 98)) (-1847 (($) 135 (|has| |#1| (-378)))) (-1908 (($) NIL (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) 63) (((-700 |#1|) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) 153) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 97)) (-1724 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) 159 T CONST)) (-3685 (((-112) $ $) 161)) (-2098 (((-1285 $)) 119) (((-1285 $) (-936)) 58)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) 121 T CONST)) (-2005 (($) 40 T CONST)) (-1514 (($ $) 78 (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3428 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3913 (((-112) $ $) 117)) (-4038 (($ $ $) 109) (($ $ |#1|) 110)) (-4027 (($ $) 90) (($ $ $) 115)) (-4015 (($ $ $) 113)) (** (($ $ (-936)) NIL) (($ $ (-782)) 53) (($ $ (-575)) 138)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 88) (($ $ $) 65) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
-(((-365 |#1| |#2|) (-338 |#1|) (-359) (-1190 |#1|)) (T -365))
-NIL
-(-338 |#1|)
-((-1624 ((|#1| (-1190 |#2|)) 59)))
-(((-366 |#1| |#2|) (-10 -7 (-15 -1624 (|#1| (-1190 |#2|)))) (-13 (-413) (-10 -7 (-15 -2882 (|#1| |#2|)) (-15 -1894 ((-936) |#1|)) (-15 -2098 ((-1285 |#1|) (-936))) (-15 -1514 (|#1| |#1|)))) (-359)) (T -366))
-((-1624 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-4 *2 (-13 (-413) (-10 -7 (-15 -2882 (*2 *4)) (-15 -1894 ((-936) *2)) (-15 -2098 ((-1285 *2) (-936))) (-15 -1514 (*2 *2))))) (-5 *1 (-366 *2 *4)))))
-(-10 -7 (-15 -1624 (|#1| (-1190 |#2|))))
-((-4320 (((-973 (-1190 |#1|)) (-1190 |#1|)) 49)) (-2073 (((-1190 |#1|) (-936) (-936)) 154) (((-1190 |#1|) (-936)) 150)) (-3228 (((-112) (-1190 |#1|)) 107)) (-2926 (((-936) (-936)) 85)) (-2358 (((-936) (-936)) 92)) (-1709 (((-936) (-936)) 83)) (-2313 (((-112) (-1190 |#1|)) 111)) (-3010 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 135)) (-2092 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 140)) (-2434 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 139)) (-4102 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 138)) (-1739 (((-3 (-1190 |#1|) "failed") (-1190 |#1|)) 131)) (-2666 (((-1190 |#1|) (-1190 |#1|)) 71)) (-2364 (((-1190 |#1|) (-936)) 145)) (-3030 (((-1190 |#1|) (-936)) 148)) (-1423 (((-1190 |#1|) (-936)) 147)) (-1829 (((-1190 |#1|) (-936)) 146)) (-3908 (((-1190 |#1|) (-936)) 143)))
-(((-367 |#1|) (-10 -7 (-15 -3228 ((-112) (-1190 |#1|))) (-15 -2313 ((-112) (-1190 |#1|))) (-15 -1709 ((-936) (-936))) (-15 -2926 ((-936) (-936))) (-15 -2358 ((-936) (-936))) (-15 -3908 ((-1190 |#1|) (-936))) (-15 -2364 ((-1190 |#1|) (-936))) (-15 -1829 ((-1190 |#1|) (-936))) (-15 -1423 ((-1190 |#1|) (-936))) (-15 -3030 ((-1190 |#1|) (-936))) (-15 -1739 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -3010 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -4102 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2434 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2092 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2073 ((-1190 |#1|) (-936))) (-15 -2073 ((-1190 |#1|) (-936) (-936))) (-15 -2666 ((-1190 |#1|) (-1190 |#1|))) (-15 -4320 ((-973 (-1190 |#1|)) (-1190 |#1|)))) (-359)) (T -367))
-((-4320 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-973 (-1190 *4))) (-5 *1 (-367 *4)) (-5 *3 (-1190 *4)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-2073 (*1 *2 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-2092 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-2434 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-4102 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-3010 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-1739 (*1 *2 *2) (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4)) (-4 *4 (-359)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-367 *4)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-367 *4)))))
-(-10 -7 (-15 -3228 ((-112) (-1190 |#1|))) (-15 -2313 ((-112) (-1190 |#1|))) (-15 -1709 ((-936) (-936))) (-15 -2926 ((-936) (-936))) (-15 -2358 ((-936) (-936))) (-15 -3908 ((-1190 |#1|) (-936))) (-15 -2364 ((-1190 |#1|) (-936))) (-15 -1829 ((-1190 |#1|) (-936))) (-15 -1423 ((-1190 |#1|) (-936))) (-15 -3030 ((-1190 |#1|) (-936))) (-15 -1739 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -3010 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -4102 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2434 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2092 ((-3 (-1190 |#1|) "failed") (-1190 |#1|))) (-15 -2073 ((-1190 |#1|) (-936))) (-15 -2073 ((-1190 |#1|) (-936) (-936))) (-15 -2666 ((-1190 |#1|) (-1190 |#1|))) (-15 -4320 ((-973 (-1190 |#1|)) (-1190 |#1|))))
-((-4047 (((-3 (-655 |#3|) "failed") (-655 |#3|) |#3|) 38)))
-(((-368 |#1| |#2| |#3|) (-10 -7 (-15 -4047 ((-3 (-655 |#3|) "failed") (-655 |#3|) |#3|))) (-359) (-1261 |#1|) (-1261 |#2|)) (T -368))
-((-4047 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *1 (-368 *4 *5 *3)))))
-(-10 -7 (-15 -4047 ((-3 (-655 |#3|) "failed") (-655 |#3|) |#3|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-3898 (($ (-1285 |#1|)) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| |#1| (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| |#1| (-378)))) (-3228 (((-112) $) NIL (|has| |#1| (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| |#1| (-378))) (((-844 (-936)) $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| |#1| (-378)))) (-2313 (((-112) $) NIL (|has| |#1| (-378)))) (-3390 ((|#1| $) NIL) (($ $ (-936)) NIL (|has| |#1| (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 |#1|) $) NIL) (((-1190 $) $ (-936)) NIL (|has| |#1| (-378)))) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-2815 (((-1190 |#1|) $) NIL (|has| |#1| (-378)))) (-3388 (((-1190 |#1|) $) NIL (|has| |#1| (-378))) (((-3 (-1190 |#1|) "failed") $ $) NIL (|has| |#1| (-378)))) (-2281 (($ $ (-1190 |#1|)) NIL (|has| |#1| (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| |#1| (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3657 (($) NIL (|has| |#1| (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| |#1| (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| |#1| (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 |#1|)) NIL)) (-1847 (($) NIL (|has| |#1| (-378)))) (-1908 (($) NIL (|has| |#1| (-378)))) (-2209 (((-1285 |#1|) $) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) NIL)) (-1724 (($ $) NIL (|has| |#1| (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| |#1| (-378))) (($ $ (-782)) NIL (|has| |#1| (-378)))) (-3428 (($ $ (-782)) NIL (|has| |#1| (-378))) (($ $) NIL (|has| |#1| (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-369 |#1| |#2|) (-338 |#1|) (-359) (-936)) (T -369))
-NIL
-(-338 |#1|)
-((-1439 (((-112) (-655 (-967 |#1|))) 41)) (-1956 (((-655 (-967 |#1|)) (-655 (-967 |#1|))) 53)) (-2286 (((-3 (-655 (-967 |#1|)) "failed") (-655 (-967 |#1|))) 48)))
-(((-370 |#1| |#2|) (-10 -7 (-15 -1439 ((-112) (-655 (-967 |#1|)))) (-15 -2286 ((-3 (-655 (-967 |#1|)) "failed") (-655 (-967 |#1|)))) (-15 -1956 ((-655 (-967 |#1|)) (-655 (-967 |#1|))))) (-463) (-655 (-1194))) (T -370))
-((-1956 (*1 *2 *2) (-12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) (-5 *1 (-370 *3 *4)) (-14 *4 (-655 (-1194))))) (-2286 (*1 *2 *2) (|partial| -12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) (-5 *1 (-370 *3 *4)) (-14 *4 (-655 (-1194))))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-112)) (-5 *1 (-370 *4 *5)) (-14 *5 (-655 (-1194))))))
-(-10 -7 (-15 -1439 ((-112) (-655 (-967 |#1|)))) (-15 -2286 ((-3 (-655 (-967 |#1|)) "failed") (-655 (-967 |#1|)))) (-15 -1956 ((-655 (-967 |#1|)) (-655 (-967 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782) $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) 17)) (-2834 ((|#1| $ (-575)) NIL)) (-1574 (((-575) $ (-575)) NIL)) (-1335 (($ (-1 |#1| |#1|) $) 34)) (-2860 (($ (-1 (-575) (-575)) $) 26)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 28)) (-3912 (((-1137) $) NIL)) (-1366 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-575)))) $) 30)) (-3516 (($ $ $) NIL)) (-4152 (($ $ $) NIL)) (-2882 (((-873) $) 40) (($ |#1|) NIL)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 11 T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ |#1| (-575)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-371 |#1|) (-13 (-484) (-1055 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-575))) (-15 -2409 ((-782) $)) (-15 -1574 ((-575) $ (-575))) (-15 -2834 (|#1| $ (-575))) (-15 -2860 ($ (-1 (-575) (-575)) $)) (-15 -1335 ($ (-1 |#1| |#1|) $)) (-15 -1366 ((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-575)))) $)))) (-1117)) (T -371))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) (-1574 (*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117)))) (-2860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-575) (-575))) (-5 *1 (-371 *3)) (-4 *3 (-1117)))) (-1335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-371 *3)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 (-575))))) (-5 *1 (-371 *3)) (-4 *3 (-1117)))))
-(-13 (-484) (-1055 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-575))) (-15 -2409 ((-782) $)) (-15 -1574 ((-575) $ (-575))) (-15 -2834 (|#1| $ (-575))) (-15 -2860 ($ (-1 (-575) (-575)) $)) (-15 -1335 ($ (-1 |#1| |#1|) $)) (-15 -1366 ((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-575)))) $))))
-((-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 13)) (-2456 (($ $) 14)) (-4281 (((-429 $) $) 34)) (-3559 (((-112) $) 30)) (-4332 (($ $) 19)) (-3923 (($ $ $) 25) (($ (-655 $)) NIL)) (-2347 (((-429 $) $) 35)) (-2849 (((-3 $ "failed") $ $) 24)) (-1720 (((-782) $) 28)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 39)) (-3930 (((-112) $ $) 16)) (-4038 (($ $ $) 37)))
-(((-372 |#1|) (-10 -8 (-15 -4038 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -3559 ((-112) |#1|)) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4416 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -1720 ((-782) |#1|)) (-15 -3923 (|#1| (-655 |#1|))) (-15 -3923 (|#1| |#1| |#1|)) (-15 -3930 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -1984 ((-2 (|:| -2942 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|))) (-373)) (T -372))
-NIL
-(-10 -8 (-15 -4038 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -3559 ((-112) |#1|)) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4416 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -1720 ((-782) |#1|)) (-15 -3923 (|#1| (-655 |#1|))) (-15 -3923 (|#1| |#1| |#1|)) (-15 -3930 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -1984 ((-2 (|:| -2942 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3559 (((-112) $) 79)) (-3900 (((-112) $) 35)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75)))
-(((-373) (-141)) (T -373))
-((-4038 (*1 *1 *1 *1) (-4 *1 (-373))))
-(-13 (-316) (-1239) (-248) (-10 -8 (-15 -4038 ($ $ $)) (-6 -4458) (-6 -4452)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-2859 (((-112) $ $) 7)) (-1730 ((|#2| $ |#2|) 14)) (-1899 (($ $ (-1176)) 19)) (-2419 ((|#2| $) 15)) (-2976 (($ |#1|) 21) (($ |#1| (-1176)) 20)) (-1777 ((|#1| $) 17)) (-4264 (((-1176) $) 10)) (-2050 (((-1176) $) 16)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3265 (($ $) 18)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-374 |#1| |#2|) (-141) (-1117) (-1117)) (T -374))
-((-2976 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2976 (*1 *1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *1 (-374 *2 *4)) (-4 *2 (-1117)) (-4 *4 (-1117)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3265 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-1176)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-1730 (*1 *2 *1 *2) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))))
-(-13 (-1117) (-10 -8 (-15 -2976 ($ |t#1|)) (-15 -2976 ($ |t#1| (-1176))) (-15 -1899 ($ $ (-1176))) (-15 -3265 ($ $)) (-15 -1777 (|t#1| $)) (-15 -2050 ((-1176) $)) (-15 -2419 (|t#2| $)) (-15 -1730 (|t#2| $ |t#2|))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-1730 ((|#1| $ |#1|) 31)) (-1899 (($ $ (-1176)) 23)) (-4229 (((-3 |#1| "failed") $) 30)) (-2419 ((|#1| $) 28)) (-2976 (($ (-399)) 22) (($ (-399) (-1176)) 21)) (-1777 (((-399) $) 25)) (-4264 (((-1176) $) NIL)) (-2050 (((-1176) $) 26)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 20)) (-3265 (($ $) 24)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 19)))
-(((-375 |#1|) (-13 (-374 (-399) |#1|) (-10 -8 (-15 -4229 ((-3 |#1| "failed") $)))) (-1117)) (T -375))
-((-4229 (*1 *2 *1) (|partial| -12 (-5 *1 (-375 *2)) (-4 *2 (-1117)))))
-(-13 (-374 (-399) |#1|) (-10 -8 (-15 -4229 ((-3 |#1| "failed") $))))
-((-2199 (((-1285 (-700 |#2|)) (-1285 $)) 67)) (-3636 (((-700 |#2|) (-1285 $)) 139)) (-3309 ((|#2| $) 36)) (-1454 (((-700 |#2|) $ (-1285 $)) 142)) (-3952 (((-3 $ "failed") $) 89)) (-1731 ((|#2| $) 39)) (-2864 (((-1190 |#2|) $) 98)) (-2530 ((|#2| (-1285 $)) 122)) (-3100 (((-1190 |#2|) $) 32)) (-3884 (((-112)) 116)) (-3898 (($ (-1285 |#2|) (-1285 $)) 132)) (-4162 (((-3 $ "failed") $) 93)) (-2948 (((-112)) 111)) (-3534 (((-112)) 106)) (-2043 (((-112)) 58)) (-3400 (((-700 |#2|) (-1285 $)) 137)) (-1455 ((|#2| $) 35)) (-3475 (((-700 |#2|) $ (-1285 $)) 141)) (-3284 (((-3 $ "failed") $) 87)) (-4339 ((|#2| $) 38)) (-1360 (((-1190 |#2|) $) 97)) (-4175 ((|#2| (-1285 $)) 120)) (-3557 (((-1190 |#2|) $) 30)) (-1509 (((-112)) 115)) (-3155 (((-112)) 108)) (-3872 (((-112)) 56)) (-4350 (((-112)) 103)) (-2279 (((-112)) 117)) (-2209 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) 128)) (-2122 (((-112)) 113)) (-2876 (((-655 (-1285 |#2|))) 102)) (-3220 (((-112)) 114)) (-3676 (((-112)) 112)) (-3198 (((-112)) 51)) (-3594 (((-112)) 118)))
-(((-376 |#1| |#2|) (-10 -8 (-15 -2864 ((-1190 |#2|) |#1|)) (-15 -1360 ((-1190 |#2|) |#1|)) (-15 -2876 ((-655 (-1285 |#2|)))) (-15 -3952 ((-3 |#1| "failed") |#1|)) (-15 -3284 ((-3 |#1| "failed") |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 -3534 ((-112))) (-15 -3155 ((-112))) (-15 -2948 ((-112))) (-15 -3872 ((-112))) (-15 -2043 ((-112))) (-15 -4350 ((-112))) (-15 -3594 ((-112))) (-15 -2279 ((-112))) (-15 -3884 ((-112))) (-15 -1509 ((-112))) (-15 -3198 ((-112))) (-15 -3220 ((-112))) (-15 -3676 ((-112))) (-15 -2122 ((-112))) (-15 -3100 ((-1190 |#2|) |#1|)) (-15 -3557 ((-1190 |#2|) |#1|)) (-15 -3636 ((-700 |#2|) (-1285 |#1|))) (-15 -3400 ((-700 |#2|) (-1285 |#1|))) (-15 -2530 (|#2| (-1285 |#1|))) (-15 -4175 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -1731 (|#2| |#1|)) (-15 -4339 (|#2| |#1|)) (-15 -3309 (|#2| |#1|)) (-15 -1455 (|#2| |#1|)) (-15 -1454 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -3475 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -2199 ((-1285 (-700 |#2|)) (-1285 |#1|)))) (-377 |#2|) (-174)) (T -376))
-((-2122 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3676 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3220 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3198 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-1509 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3884 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2279 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3594 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-4350 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2043 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3872 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2948 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3155 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-3534 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))) (-2876 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-655 (-1285 *4))) (-5 *1 (-376 *3 *4)) (-4 *3 (-377 *4)))))
-(-10 -8 (-15 -2864 ((-1190 |#2|) |#1|)) (-15 -1360 ((-1190 |#2|) |#1|)) (-15 -2876 ((-655 (-1285 |#2|)))) (-15 -3952 ((-3 |#1| "failed") |#1|)) (-15 -3284 ((-3 |#1| "failed") |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 -3534 ((-112))) (-15 -3155 ((-112))) (-15 -2948 ((-112))) (-15 -3872 ((-112))) (-15 -2043 ((-112))) (-15 -4350 ((-112))) (-15 -3594 ((-112))) (-15 -2279 ((-112))) (-15 -3884 ((-112))) (-15 -1509 ((-112))) (-15 -3198 ((-112))) (-15 -3220 ((-112))) (-15 -3676 ((-112))) (-15 -2122 ((-112))) (-15 -3100 ((-1190 |#2|) |#1|)) (-15 -3557 ((-1190 |#2|) |#1|)) (-15 -3636 ((-700 |#2|) (-1285 |#1|))) (-15 -3400 ((-700 |#2|) (-1285 |#1|))) (-15 -2530 (|#2| (-1285 |#1|))) (-15 -4175 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -1731 (|#2| |#1|)) (-15 -4339 (|#2| |#1|)) (-15 -3309 (|#2| |#1|)) (-15 -1455 (|#2| |#1|)) (-15 -1454 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -3475 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -2199 ((-1285 (-700 |#2|)) (-1285 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-2942 (((-3 $ "failed")) 42 (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) 20)) (-2199 (((-1285 (-700 |#1|)) (-1285 $)) 83)) (-2133 (((-1285 $)) 86)) (-3261 (($) 18 T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) 45 (|has| |#1| (-567)))) (-2146 (((-3 $ "failed")) 43 (|has| |#1| (-567)))) (-3636 (((-700 |#1|) (-1285 $)) 70)) (-3309 ((|#1| $) 79)) (-1454 (((-700 |#1|) $ (-1285 $)) 81)) (-3952 (((-3 $ "failed") $) 50 (|has| |#1| (-567)))) (-1810 (($ $ (-936)) 31)) (-1731 ((|#1| $) 77)) (-2864 (((-1190 |#1|) $) 47 (|has| |#1| (-567)))) (-2530 ((|#1| (-1285 $)) 72)) (-3100 (((-1190 |#1|) $) 68)) (-3884 (((-112)) 62)) (-3898 (($ (-1285 |#1|) (-1285 $)) 74)) (-4162 (((-3 $ "failed") $) 52 (|has| |#1| (-567)))) (-4422 (((-936)) 85)) (-3748 (((-112)) 59)) (-3905 (($ $ (-936)) 38)) (-2948 (((-112)) 55)) (-3534 (((-112)) 53)) (-2043 (((-112)) 57)) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) 46 (|has| |#1| (-567)))) (-1987 (((-3 $ "failed")) 44 (|has| |#1| (-567)))) (-3400 (((-700 |#1|) (-1285 $)) 71)) (-1455 ((|#1| $) 80)) (-3475 (((-700 |#1|) $ (-1285 $)) 82)) (-3284 (((-3 $ "failed") $) 51 (|has| |#1| (-567)))) (-3643 (($ $ (-936)) 32)) (-4339 ((|#1| $) 78)) (-1360 (((-1190 |#1|) $) 48 (|has| |#1| (-567)))) (-4175 ((|#1| (-1285 $)) 73)) (-3557 (((-1190 |#1|) $) 69)) (-1509 (((-112)) 63)) (-4264 (((-1176) $) 10)) (-3155 (((-112)) 54)) (-3872 (((-112)) 56)) (-4350 (((-112)) 58)) (-3912 (((-1137) $) 11)) (-2279 (((-112)) 61)) (-2209 (((-1285 |#1|) $ (-1285 $)) 76) (((-700 |#1|) (-1285 $) (-1285 $)) 75)) (-3600 (((-655 (-967 |#1|)) (-1285 $)) 84)) (-4152 (($ $ $) 28)) (-2122 (((-112)) 67)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2876 (((-655 (-1285 |#1|))) 49 (|has| |#1| (-567)))) (-3458 (($ $ $ $) 29)) (-3220 (((-112)) 65)) (-2337 (($ $ $) 27)) (-3676 (((-112)) 66)) (-3198 (((-112)) 64)) (-3594 (((-112)) 60)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-377 |#1|) (-141) (-174)) (T -377))
-((-2133 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-377 *3)))) (-4422 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-936)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-655 (-967 *4))))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-1285 (-700 *4))))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-1285 *4)))) (-2209 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174)) (-4 *1 (-377 *4)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3)))) (-2122 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3676 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3220 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3198 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1509 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3884 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2279 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3594 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3748 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4350 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2043 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3872 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2948 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3155 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3534 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4162 (*1 *1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-3284 (*1 *1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-3952 (*1 *1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567)))) (-2876 (*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) (-5 *2 (-655 (-1285 *3))))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) (-5 *2 (-1190 *3)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567)) (-5 *2 (-1190 *3)))) (-3303 (*1 *2) (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2098 (-655 *1)))) (-4 *1 (-377 *3)))) (-1906 (*1 *2) (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2098 (-655 *1)))) (-4 *1 (-377 *3)))) (-1987 (*1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))) (-2146 (*1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))) (-2942 (*1 *1) (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))))
-(-13 (-755 |t#1|) (-10 -8 (-15 -2133 ((-1285 $))) (-15 -4422 ((-936))) (-15 -3600 ((-655 (-967 |t#1|)) (-1285 $))) (-15 -2199 ((-1285 (-700 |t#1|)) (-1285 $))) (-15 -3475 ((-700 |t#1|) $ (-1285 $))) (-15 -1454 ((-700 |t#1|) $ (-1285 $))) (-15 -1455 (|t#1| $)) (-15 -3309 (|t#1| $)) (-15 -4339 (|t#1| $)) (-15 -1731 (|t#1| $)) (-15 -2209 ((-1285 |t#1|) $ (-1285 $))) (-15 -2209 ((-700 |t#1|) (-1285 $) (-1285 $))) (-15 -3898 ($ (-1285 |t#1|) (-1285 $))) (-15 -4175 (|t#1| (-1285 $))) (-15 -2530 (|t#1| (-1285 $))) (-15 -3400 ((-700 |t#1|) (-1285 $))) (-15 -3636 ((-700 |t#1|) (-1285 $))) (-15 -3557 ((-1190 |t#1|) $)) (-15 -3100 ((-1190 |t#1|) $)) (-15 -2122 ((-112))) (-15 -3676 ((-112))) (-15 -3220 ((-112))) (-15 -3198 ((-112))) (-15 -1509 ((-112))) (-15 -3884 ((-112))) (-15 -2279 ((-112))) (-15 -3594 ((-112))) (-15 -3748 ((-112))) (-15 -4350 ((-112))) (-15 -2043 ((-112))) (-15 -3872 ((-112))) (-15 -2948 ((-112))) (-15 -3155 ((-112))) (-15 -3534 ((-112))) (IF (|has| |t#1| (-567)) (PROGN (-15 -4162 ((-3 $ "failed") $)) (-15 -3284 ((-3 $ "failed") $)) (-15 -3952 ((-3 $ "failed") $)) (-15 -2876 ((-655 (-1285 |t#1|)))) (-15 -1360 ((-1190 |t#1|) $)) (-15 -2864 ((-1190 |t#1|) $)) (-15 -3303 ((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed"))) (-15 -1987 ((-3 $ "failed"))) (-15 -2146 ((-3 $ "failed"))) (-15 -2942 ((-3 $ "failed"))) (-6 -4457)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-731) . T) ((-755 |#1|) . T) ((-772) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-2409 (((-782)) 17)) (-2073 (($) 14)) (-1894 (((-936) $) 15)) (-4264 (((-1176) $) 10)) (-4317 (($ (-936)) 16)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-378) (-141)) (T -378))
-((-2409 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-782)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-378)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-936)))) (-2073 (*1 *1) (-4 *1 (-378))))
-(-13 (-1117) (-10 -8 (-15 -2409 ((-782))) (-15 -4317 ($ (-936))) (-15 -1894 ((-936) $)) (-15 -2073 ($))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-3831 (((-700 |#2|) (-1285 $)) 45)) (-3898 (($ (-1285 |#2|) (-1285 $)) 39)) (-3405 (((-700 |#2|) $ (-1285 $)) 47)) (-2801 ((|#2| (-1285 $)) 13)) (-2209 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) 27)))
-(((-379 |#1| |#2| |#3|) (-10 -8 (-15 -3831 ((-700 |#2|) (-1285 |#1|))) (-15 -2801 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -3405 ((-700 |#2|) |#1| (-1285 |#1|)))) (-380 |#2| |#3|) (-174) (-1261 |#2|)) (T -379))
-NIL
-(-10 -8 (-15 -3831 ((-700 |#2|) (-1285 |#1|))) (-15 -2801 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -3405 ((-700 |#2|) |#1| (-1285 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3831 (((-700 |#1|) (-1285 $)) 53)) (-1448 ((|#1| $) 59)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-3898 (($ (-1285 |#1|) (-1285 $)) 55)) (-3405 (((-700 |#1|) $ (-1285 $)) 60)) (-4162 (((-3 $ "failed") $) 37)) (-4422 (((-936)) 61)) (-3900 (((-112) $) 35)) (-3390 ((|#1| $) 58)) (-3977 ((|#2| $) 51 (|has| |#1| (-373)))) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2801 ((|#1| (-1285 $)) 54)) (-2209 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44)) (-1724 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2765 ((|#2| $) 52)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-380 |#1| |#2|) (-141) (-174) (-1261 |t#1|)) (T -380))
-((-4422 (*1 *2) (-12 (-4 *1 (-380 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-936)))) (-3405 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *4)))) (-2209 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174)) (-4 *1 (-380 *4 *5)) (-4 *5 (-1261 *4)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *2 *4)) (-4 *4 (-1261 *2)) (-4 *2 (-174)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-2765 (*1 *2 *1) (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) (-3977 (*1 *2 *1) (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *3 (-373)) (-4 *2 (-1261 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -4422 ((-936))) (-15 -3405 ((-700 |t#1|) $ (-1285 $))) (-15 -1448 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -2209 ((-1285 |t#1|) $ (-1285 $))) (-15 -2209 ((-700 |t#1|) (-1285 $) (-1285 $))) (-15 -3898 ($ (-1285 |t#1|) (-1285 $))) (-15 -2801 (|t#1| (-1285 $))) (-15 -3831 ((-700 |t#1|) (-1285 $))) (-15 -2765 (|t#2| $)) (IF (|has| |t#1| (-373)) (-15 -3977 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-3436 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2302 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2544 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2302 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3436 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1235) (-383 |#1|) (-1235) (-383 |#3|)) (T -381))
-((-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-4 *2 (-383 *5)) (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-383 *6)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-383 *5)) (-4 *6 (-383 *2)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-4 *2 (-383 *6)) (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-383 *5)))))
-(-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2302 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3436 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1905 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3175 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2025 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4380 (($ $) 25)) (-2630 (((-575) (-1 (-112) |#2|) $) NIL) (((-575) |#2| $) 11) (((-575) |#2| $ (-575)) NIL)) (-4167 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-382 |#1| |#2|) (-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -2025 (|#1| |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2630 ((-575) |#2| |#1| (-575))) (-15 -2630 ((-575) |#2| |#1|)) (-15 -2630 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -1905 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2025 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4380 (|#1| |#1|)) (-15 -4167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-383 |#2|) (-1235)) (T -382))
-NIL
-(-10 -8 (-15 -3175 (|#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -2025 (|#1| |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2630 ((-575) |#2| |#1| (-575))) (-15 -2630 ((-575) |#2| |#1|)) (-15 -2630 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -1905 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2025 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4380 (|#1| |#1|)) (-15 -4167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-3086 (($ $) 93 (|has| $ (-6 -4461)))) (-4380 (($ $) 103)) (-4070 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 52)) (-2630 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 90 (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 89 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 43 (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1652 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 72)) (-1513 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3967 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 85 (|has| |#1| (-861)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-383 |#1|) (-141) (-1235)) (T -383))
-((-4167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-4380 (*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)))) (-2025 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-1905 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-2630 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235)) (-5 *2 (-575)))) (-2630 (*1 *2 *3 *1) (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-575)))) (-2630 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) (-2025 (*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-861)) (-5 *2 (-112)))) (-2617 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-3086 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235)))) (-3175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4461)) (-4 *1 (-383 *3)) (-4 *3 (-1235)))) (-3175 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861)))))
-(-13 (-662 |t#1|) (-10 -8 (-6 -4460) (-15 -4167 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4380 ($ $)) (-15 -2025 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1905 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2630 ((-575) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2630 ((-575) |t#1| $)) (-15 -2630 ((-575) |t#1| $ (-575)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -4167 ($ $ $)) (-15 -2025 ($ $)) (-15 -1905 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2617 ($ $ $ (-575))) (-15 -3086 ($ $)) (-15 -3175 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -3175 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3486 (((-655 |#1|) $) 37)) (-2744 (($ $ (-782)) 38)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-1735 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 41)) (-1488 (($ $) 39)) (-2431 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 42)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3046 (($ $ |#1| $) 36) (($ $ (-655 |#1|) (-655 $)) 35)) (-1753 (((-782) $) 43)) (-2893 (($ $ $) 34)) (-2882 (((-873) $) 12) (($ |#1|) 46) (((-1300 |#1| |#2|) $) 45) (((-1309 |#1| |#2|) $) 44)) (-1754 ((|#2| (-1309 |#1| |#2|) $) 47)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-1507 (($ (-683 |#1|)) 40)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#2|) 33 (|has| |#2| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
-(((-384 |#1| |#2|) (-141) (-861) (-174)) (T -384))
-((-1754 (*1 *2 *3 *1) (-12 (-5 *3 (-1309 *4 *2)) (-4 *1 (-384 *4 *2)) (-4 *4 (-861)) (-4 *2 (-174)))) (-2882 (*1 *1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1300 *3 *4)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-1309 *3 *4)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-782)))) (-2431 (*1 *2 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1735 (*1 *2 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-4 *1 (-384 *3 *4)) (-4 *4 (-174)))) (-1488 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2744 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *2 (-655 *3)))) (-3046 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *1)) (-4 *1 (-384 *4 *5)) (-4 *4 (-861)) (-4 *5 (-174)))))
-(-13 (-645 |t#2|) (-10 -8 (-15 -1754 (|t#2| (-1309 |t#1| |t#2|) $)) (-15 -2882 ($ |t#1|)) (-15 -2882 ((-1300 |t#1| |t#2|) $)) (-15 -2882 ((-1309 |t#1| |t#2|) $)) (-15 -1753 ((-782) $)) (-15 -2431 ((-1309 |t#1| |t#2|) (-1309 |t#1| |t#2|) $)) (-15 -1735 ((-1309 |t#1| |t#2|) (-1309 |t#1| |t#2|) $)) (-15 -1507 ($ (-683 |t#1|))) (-15 -1488 ($ $)) (-15 -2744 ($ $ (-782))) (-15 -3486 ((-655 |t#1|) $)) (-15 -3046 ($ $ |t#1| $)) (-15 -3046 ($ $ (-655 |t#1|) (-655 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-659 |#2|) . T) ((-645 |#2|) . T) ((-651 |#2|) . T) ((-728 |#2|) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1117) . T))
-((-2545 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-2096 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2791 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
-(((-385 |#1| |#2|) (-10 -7 (-15 -2096 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2791 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2545 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1235) (-13 (-383 |#1|) (-10 -7 (-6 -4461)))) (T -385))
-((-2545 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))) (-2791 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))) (-2096 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2)) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))))
-(-10 -7 (-15 -2096 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2791 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2545 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-2862 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 22) (((-700 (-575)) (-700 $)) 14) (((-700 (-575)) (-1285 $)) NIL)))
-(((-386 |#1| |#2|) (-10 -8 (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-700 |#2|) (-1285 |#1|)))) (-387 |#2|) (-1066)) (T -386))
-NIL
-(-10 -8 (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-700 |#2|) (-1285 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2862 (((-700 |#1|) (-1285 $)) 31) (((-700 |#1|) (-700 $)) 30) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 29) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 39 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 38 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-1285 $)) 37 (|has| |#1| (-650 (-575))))) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27)))
-(((-387 |#1|) (-141) (-1066)) (T -387))
-NIL
-(-13 (-650 |t#1|) (-10 -7 (IF (|has| |t#1| (-650 (-575))) (-6 (-650 (-575))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 #0=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-650 #0#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-1117) . T))
-((-2103 (((-655 (-303 (-967 (-171 |#1|)))) (-303 (-418 (-967 (-171 (-575))))) |#1|) 51) (((-655 (-303 (-967 (-171 |#1|)))) (-418 (-967 (-171 (-575)))) |#1|) 50) (((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-303 (-418 (-967 (-171 (-575)))))) |#1|) 47) (((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-418 (-967 (-171 (-575))))) |#1|) 41)) (-3885 (((-655 (-655 (-171 |#1|))) (-655 (-418 (-967 (-171 (-575))))) (-655 (-1194)) |#1|) 30) (((-655 (-171 |#1|)) (-418 (-967 (-171 (-575)))) |#1|) 18)))
-(((-388 |#1|) (-10 -7 (-15 -2103 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -2103 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-303 (-418 (-967 (-171 (-575)))))) |#1|)) (-15 -2103 ((-655 (-303 (-967 (-171 |#1|)))) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -2103 ((-655 (-303 (-967 (-171 |#1|)))) (-303 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -3885 ((-655 (-171 |#1|)) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -3885 ((-655 (-655 (-171 |#1|))) (-655 (-418 (-967 (-171 (-575))))) (-655 (-1194)) |#1|))) (-13 (-373) (-859))) (T -388))
-((-3885 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575)))))) (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 (-171 *5)))) (-5 *1 (-388 *5)) (-4 *5 (-13 (-373) (-859))))) (-3885 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-171 (-575))))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 (-171 (-575)))))) (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-171 (-575))))) (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-303 (-418 (-967 (-171 (-575))))))) (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575)))))) (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859))))))
-(-10 -7 (-15 -2103 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -2103 ((-655 (-655 (-303 (-967 (-171 |#1|))))) (-655 (-303 (-418 (-967 (-171 (-575)))))) |#1|)) (-15 -2103 ((-655 (-303 (-967 (-171 |#1|)))) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -2103 ((-655 (-303 (-967 (-171 |#1|)))) (-303 (-418 (-967 (-171 (-575))))) |#1|)) (-15 -3885 ((-655 (-171 |#1|)) (-418 (-967 (-171 (-575)))) |#1|)) (-15 -3885 ((-655 (-655 (-171 |#1|))) (-655 (-418 (-967 (-171 (-575))))) (-655 (-1194)) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 35)) (-3824 (((-575) $) 62)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-3449 (($ $) 136)) (-3921 (($ $) 98)) (-3784 (($ $) 90)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-2467 (($ $) 47)) (-3599 (((-112) $ $) NIL)) (-3895 (($ $) 96)) (-3759 (($ $) 85)) (-2326 (((-575) $) 78)) (-3624 (($ $ (-575)) 73)) (-1521 (($ $) NIL)) (-3805 (($ $) NIL)) (-3261 (($) NIL T CONST)) (-3069 (($ $) 138)) (-2443 (((-3 (-575) "failed") $) 231) (((-3 (-418 (-575)) "failed") $) 227)) (-4400 (((-575) $) 229) (((-418 (-575)) $) 225)) (-2800 (($ $ $) NIL)) (-4233 (((-575) $ $) 125)) (-4162 (((-3 $ "failed") $) 141)) (-3652 (((-418 (-575)) $ (-782)) 232) (((-418 (-575)) $ (-782) (-782)) 224)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-1500 (((-936)) 121) (((-936) (-936)) 122 (|has| $ (-6 -4451)))) (-2359 (((-112) $) 130)) (-1632 (($) 41)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL)) (-2777 (((-1290) (-782)) 191)) (-2626 (((-1290)) 196) (((-1290) (-782)) 197)) (-3067 (((-1290)) 198) (((-1290) (-782)) 199)) (-2900 (((-1290)) 194) (((-1290) (-782)) 195)) (-3369 (((-575) $) 68)) (-3900 (((-112) $) 40)) (-2111 (($ $ (-575)) NIL)) (-2226 (($ $) 51)) (-3390 (($ $) NIL)) (-1721 (((-112) $) 37)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL) (($) NIL (-12 (-3213 (|has| $ (-6 -4443))) (-3213 (|has| $ (-6 -4451)))))) (-3503 (($ $ $) NIL) (($) NIL (-12 (-3213 (|has| $ (-6 -4443))) (-3213 (|has| $ (-6 -4451)))))) (-3661 (((-575) $) 17)) (-2884 (($) 106) (($ $) 113)) (-3370 (($) 112) (($ $) 114)) (-3461 (($ $) 101)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 143)) (-4367 (((-936) (-575)) 46 (|has| $ (-6 -4451)))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) 60)) (-3920 (($ $) 135)) (-1539 (($ (-575) (-575)) 131) (($ (-575) (-575) (-936)) 132)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1658 (((-575) $) 19)) (-2316 (($) 115)) (-2663 (($ $) 95)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2323 (((-936)) 123) (((-936) (-936)) 124 (|has| $ (-6 -4451)))) (-2382 (($ $) 142) (($ $ (-782)) NIL)) (-4366 (((-936) (-575)) 50 (|has| $ (-6 -4451)))) (-1531 (($ $) NIL)) (-3815 (($ $) NIL)) (-3935 (($ $) NIL)) (-3795 (($ $) NIL)) (-3907 (($ $) 97)) (-3772 (($ $) 89)) (-2613 (((-389) $) 216) (((-227) $) 218) (((-904 (-389)) $) NIL) (((-1176) $) 202) (((-547) $) 214) (($ (-227)) 223)) (-2882 (((-873) $) 206) (($ (-575)) 228) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-575)) 228) (($ (-418 (-575))) NIL) (((-227) $) 219)) (-4421 (((-782)) NIL T CONST)) (-4248 (($ $) 137)) (-4189 (((-936)) 61) (((-936) (-936)) 80 (|has| $ (-6 -4451)))) (-3685 (((-112) $ $) NIL)) (-1548 (((-936)) 126)) (-1569 (($ $) 104)) (-3850 (($ $) 49) (($ $ $) 59)) (-3930 (((-112) $ $) NIL)) (-1544 (($ $) 102)) (-3826 (($ $) 39)) (-1593 (($ $) NIL)) (-3871 (($ $) NIL)) (-2912 (($ $) NIL)) (-3883 (($ $) NIL)) (-1583 (($ $) NIL)) (-3861 (($ $) NIL)) (-1554 (($ $) 103)) (-3837 (($ $) 52)) (-3863 (($ $) 58)) (-1989 (($) 36 T CONST)) (-2005 (($) 43 T CONST)) (-2225 (((-1176) $) 27) (((-1176) $ (-112)) 29) (((-1290) (-833) $) 30) (((-1290) (-833) $ (-112)) 31)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3980 (((-112) $ $) 203)) (-3955 (((-112) $ $) 45)) (-3913 (((-112) $ $) 56)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 57)) (-4038 (($ $ $) 48) (($ $ (-575)) 42)) (-4027 (($ $) 38) (($ $ $) 53)) (-4015 (($ $ $) 72)) (** (($ $ (-936)) 83) (($ $ (-782)) NIL) (($ $ (-575)) 107) (($ $ (-418 (-575))) 154) (($ $ $) 145)) (* (($ (-936) $) 79) (($ (-782) $) NIL) (($ (-575) $) 84) (($ $ $) 71) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-389) (-13 (-415) (-238) (-625 (-1176)) (-839) (-624 (-227)) (-1220) (-625 (-547)) (-629 (-227)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -2226 ($ $)) (-15 -4233 ((-575) $ $)) (-15 -3624 ($ $ (-575))) (-15 -3652 ((-418 (-575)) $ (-782))) (-15 -3652 ((-418 (-575)) $ (-782) (-782))) (-15 -2884 ($)) (-15 -3370 ($)) (-15 -2316 ($)) (-15 -3850 ($ $ $)) (-15 -2884 ($ $)) (-15 -3370 ($ $)) (-15 -3067 ((-1290))) (-15 -3067 ((-1290) (-782))) (-15 -2900 ((-1290))) (-15 -2900 ((-1290) (-782))) (-15 -2626 ((-1290))) (-15 -2626 ((-1290) (-782))) (-15 -2777 ((-1290) (-782))) (-6 -4451) (-6 -4443)))) (T -389))
-((** (*1 *1 *1 *1) (-5 *1 (-389))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) (-2226 (*1 *1 *1) (-5 *1 (-389))) (-4233 (*1 *2 *1 *1) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389)))) (-3652 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389)))) (-3652 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389)))) (-2884 (*1 *1) (-5 *1 (-389))) (-3370 (*1 *1) (-5 *1 (-389))) (-2316 (*1 *1) (-5 *1 (-389))) (-3850 (*1 *1 *1 *1) (-5 *1 (-389))) (-2884 (*1 *1 *1) (-5 *1 (-389))) (-3370 (*1 *1 *1) (-5 *1 (-389))) (-3067 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) (-2900 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) (-2626 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))))
-(-13 (-415) (-238) (-625 (-1176)) (-839) (-624 (-227)) (-1220) (-625 (-547)) (-629 (-227)) (-10 -8 (-15 -4038 ($ $ (-575))) (-15 ** ($ $ $)) (-15 -2226 ($ $)) (-15 -4233 ((-575) $ $)) (-15 -3624 ($ $ (-575))) (-15 -3652 ((-418 (-575)) $ (-782))) (-15 -3652 ((-418 (-575)) $ (-782) (-782))) (-15 -2884 ($)) (-15 -3370 ($)) (-15 -2316 ($)) (-15 -3850 ($ $ $)) (-15 -2884 ($ $)) (-15 -3370 ($ $)) (-15 -3067 ((-1290))) (-15 -3067 ((-1290) (-782))) (-15 -2900 ((-1290))) (-15 -2900 ((-1290) (-782))) (-15 -2626 ((-1290))) (-15 -2626 ((-1290) (-782))) (-15 -2777 ((-1290) (-782))) (-6 -4451) (-6 -4443)))
-((-3520 (((-655 (-303 (-967 |#1|))) (-303 (-418 (-967 (-575)))) |#1|) 46) (((-655 (-303 (-967 |#1|))) (-418 (-967 (-575))) |#1|) 45) (((-655 (-655 (-303 (-967 |#1|)))) (-655 (-303 (-418 (-967 (-575))))) |#1|) 42) (((-655 (-655 (-303 (-967 |#1|)))) (-655 (-418 (-967 (-575)))) |#1|) 36)) (-3802 (((-655 |#1|) (-418 (-967 (-575))) |#1|) 20) (((-655 (-655 |#1|)) (-655 (-418 (-967 (-575)))) (-655 (-1194)) |#1|) 30)))
-(((-390 |#1|) (-10 -7 (-15 -3520 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-418 (-967 (-575)))) |#1|)) (-15 -3520 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-303 (-418 (-967 (-575))))) |#1|)) (-15 -3520 ((-655 (-303 (-967 |#1|))) (-418 (-967 (-575))) |#1|)) (-15 -3520 ((-655 (-303 (-967 |#1|))) (-303 (-418 (-967 (-575)))) |#1|)) (-15 -3802 ((-655 (-655 |#1|)) (-655 (-418 (-967 (-575)))) (-655 (-1194)) |#1|)) (-15 -3802 ((-655 |#1|) (-418 (-967 (-575))) |#1|))) (-13 (-859) (-373))) (T -390))
-((-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-418 (-967 (-575))))) (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 *5))) (-5 *1 (-390 *5)) (-4 *5 (-13 (-859) (-373))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 (-575))))) (-5 *2 (-655 (-303 (-967 *4)))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 (-303 (-967 *4)))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-303 (-418 (-967 (-575)))))) (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 (-575))))) (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373))))))
-(-10 -7 (-15 -3520 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-418 (-967 (-575)))) |#1|)) (-15 -3520 ((-655 (-655 (-303 (-967 |#1|)))) (-655 (-303 (-418 (-967 (-575))))) |#1|)) (-15 -3520 ((-655 (-303 (-967 |#1|))) (-418 (-967 (-575))) |#1|)) (-15 -3520 ((-655 (-303 (-967 |#1|))) (-303 (-418 (-967 (-575)))) |#1|)) (-15 -3802 ((-655 (-655 |#1|)) (-655 (-418 (-967 (-575)))) (-655 (-1194)) |#1|)) (-15 -3802 ((-655 |#1|) (-418 (-967 (-575))) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) 30)) (-4400 ((|#2| $) 32)) (-4406 (($ $) NIL)) (-1403 (((-782) $) 11)) (-1719 (((-655 $) $) 23)) (-3135 (((-112) $) NIL)) (-3692 (($ |#2| |#1|) 21)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2574 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4370 ((|#2| $) 18)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 51) (($ |#2|) 31)) (-2212 (((-655 |#1|) $) 20)) (-3002 ((|#1| $ |#2|) 55)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 33 T CONST)) (-1332 (((-655 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-391 |#1| |#2|) (-13 (-392 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1066) (-861)) (T -391))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-391 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861)))))
-(-13 (-392 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#2| "failed") $) 49)) (-4400 ((|#2| $) 50)) (-4406 (($ $) 35)) (-1403 (((-782) $) 39)) (-1719 (((-655 $) $) 40)) (-3135 (((-112) $) 43)) (-3692 (($ |#2| |#1|) 44)) (-2544 (($ (-1 |#1| |#1|) $) 45)) (-2574 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-4370 ((|#2| $) 38)) (-4383 ((|#1| $) 37)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ |#2|) 48)) (-2212 (((-655 |#1|) $) 41)) (-3002 ((|#1| $ |#2|) 46)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-1332 (((-655 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-392 |#1| |#2|) (-141) (-1066) (-1117)) (T -392))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117)))) (-3002 (*1 *2 *1 *3) (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)))) (-3692 (*1 *1 *2 *3) (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-112)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 *3)))) (-1719 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-392 *3 *4)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-782)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066)))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117)))))
-(-13 (-111 |t#1| |t#1|) (-1055 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3002 (|t#1| $ |t#2|)) (-15 -2544 ($ (-1 |t#1| |t#1|) $)) (-15 -3692 ($ |t#2| |t#1|)) (-15 -3135 ((-112) $)) (-15 -1332 ((-655 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2212 ((-655 |t#1|) $)) (-15 -1719 ((-655 $) $)) (-15 -1403 ((-782) $)) (-15 -4370 (|t#2| $)) (-15 -4383 (|t#1| $)) (-15 -2574 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4406 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-728 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-1055 |#2|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T))
-((-2244 (((-1290) $) 7)) (-2882 (((-873) $) 8) (($ (-700 (-710))) 14) (($ (-655 (-339))) 13) (($ (-339)) 12) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 11)))
-(((-393) (-141)) (T -393))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-700 (-710))) (-4 *1 (-393)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-393)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-393)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) (-4 *1 (-393)))))
-(-13 (-406) (-10 -8 (-15 -2882 ($ (-700 (-710)))) (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-339))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))))))
-(((-624 (-873)) . T) ((-406) . T) ((-1235) . T))
-((-2443 (((-3 $ "failed") (-700 (-325 (-389)))) 21) (((-3 $ "failed") (-700 (-325 (-575)))) 19) (((-3 $ "failed") (-700 (-967 (-389)))) 17) (((-3 $ "failed") (-700 (-967 (-575)))) 15) (((-3 $ "failed") (-700 (-418 (-967 (-389))))) 13) (((-3 $ "failed") (-700 (-418 (-967 (-575))))) 11)) (-4400 (($ (-700 (-325 (-389)))) 22) (($ (-700 (-325 (-575)))) 20) (($ (-700 (-967 (-389)))) 18) (($ (-700 (-967 (-575)))) 16) (($ (-700 (-418 (-967 (-389))))) 14) (($ (-700 (-418 (-967 (-575))))) 12)) (-2244 (((-1290) $) 7)) (-2882 (((-873) $) 8) (($ (-655 (-339))) 25) (($ (-339)) 24) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 23)))
+((-3437 (($ $) 6)) (-2656 (($ $) 7)) (** (($ $ $) 8)))
+(((-294) (-141)) (T -294))
+((** (*1 *1 *1 *1) (-4 *1 (-294))) (-2656 (*1 *1 *1) (-4 *1 (-294))) (-3437 (*1 *1 *1) (-4 *1 (-294))))
+(-13 (-10 -8 (-15 -3437 ($ $)) (-15 -2656 ($ $)) (-15 ** ($ $ $))))
+((-2645 (((-656 (-1176 |#1|)) (-1176 |#1|) |#1|) 35)) (-3048 ((|#2| |#2| |#1|) 39)) (-1992 ((|#2| |#2| |#1|) 41)) (-3307 ((|#2| |#2| |#1|) 40)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -3048 (|#2| |#2| |#1|)) (-15 -3307 (|#2| |#2| |#1|)) (-15 -1992 (|#2| |#2| |#1|)) (-15 -2645 ((-656 (-1176 |#1|)) (-1176 |#1|) |#1|))) (-374) (-1278 |#1|)) (T -295))
+((-2645 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1176 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1176 *4)) (-4 *5 (-1278 *4)))) (-1992 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))) (-3307 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))) (-3048 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))))
+(-10 -7 (-15 -3048 (|#2| |#2| |#1|)) (-15 -3307 (|#2| |#2| |#1|)) (-15 -1992 (|#2| |#2| |#1|)) (-15 -2645 ((-656 (-1176 |#1|)) (-1176 |#1|) |#1|)))
+((-2099 ((|#2| $ |#1|) 6)))
+(((-296 |#1| |#2|) (-141) (-1237) (-1237)) (T -296))
+((-2099 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2099 (|t#2| $ |t#1|))))
+(((-1237) . T))
+((-2832 ((|#3| $ |#2| |#3|) 12)) (-2767 ((|#3| $ |#2|) 10)))
+(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -2832 (|#3| |#1| |#2| |#3|)) (-15 -2767 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1119) (-1237)) (T -297))
+NIL
+(-10 -8 (-15 -2832 (|#3| |#1| |#2| |#3|)) (-15 -2767 (|#3| |#1| |#2|)))
+((-3028 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4463)))) (-2832 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) 11)) (-2099 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-298 |#1| |#2|) (-141) (-1119) (-1237)) (T -298))
+((-2099 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-2767 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-3028 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-2832 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))))
+(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2099 (|t#2| $ |t#1| |t#2|)) (-15 -2767 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3028 (|t#2| $ |t#1| |t#2|)) (-15 -2832 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-296 |#1| |#2|) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 37)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 44)) (-2150 (($ $) 41)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) 35)) (-2326 (($ |#2| |#3|) 18)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2703 ((|#3| $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 19)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2149 (((-3 $ "failed") $ $) NIL)) (-3076 (((-783) $) 36)) (-2099 ((|#2| $ |#2|) 46)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 23)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 31 T CONST)) (-2038 (($) 39 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40)))
+(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -2703 (|#3| $)) (-15 -2858 (|#2| $)) (-15 -2326 ($ |#2| |#3|)) (-15 -2149 ((-3 $ "failed") $ $)) (-15 -4011 ((-3 $ "failed") $)) (-15 -4324 ($ $)))) (-174) (-1263 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299))
+((-4011 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2703 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2858 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2326 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2149 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4324 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
+(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -2703 (|#3| $)) (-15 -2858 (|#2| $)) (-15 -2326 ($ |#2| |#3|)) (-15 -2149 ((-3 $ "failed") $ $)) (-15 -4011 ((-3 $ "failed") $)) (-15 -4324 ($ $))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-300) (-141)) (T -300))
+NIL
+(-13 (-1068) (-111 $ $) (-10 -7 (-6 -4455)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2520 (((-656 (-1104)) $) 10)) (-1710 (($ (-518) (-518) (-1123) $) 19)) (-3131 (($ (-518) (-656 (-982)) $) 23)) (-3103 (($) 25)) (-1751 (((-703 (-1123)) (-518) (-518) $) 18)) (-3872 (((-656 (-982)) (-518) $) 22)) (-3849 (($) 7)) (-3890 (($) 24)) (-2858 (((-874) $) 29)) (-2146 (($) 26)))
+(((-301) (-13 (-625 (-874)) (-10 -8 (-15 -3849 ($)) (-15 -2520 ((-656 (-1104)) $)) (-15 -1751 ((-703 (-1123)) (-518) (-518) $)) (-15 -1710 ($ (-518) (-518) (-1123) $)) (-15 -3872 ((-656 (-982)) (-518) $)) (-15 -3131 ($ (-518) (-656 (-982)) $)) (-15 -3890 ($)) (-15 -3103 ($)) (-15 -2146 ($))))) (T -301))
+((-3849 (*1 *1) (-5 *1 (-301))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-656 (-1104))) (-5 *1 (-301)))) (-1751 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1123))) (-5 *1 (-301)))) (-1710 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-301)))) (-3872 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-982))) (-5 *1 (-301)))) (-3131 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-301)))) (-3890 (*1 *1) (-5 *1 (-301))) (-3103 (*1 *1) (-5 *1 (-301))) (-2146 (*1 *1) (-5 *1 (-301))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3849 ($)) (-15 -2520 ((-656 (-1104)) $)) (-15 -1751 ((-703 (-1123)) (-518) (-518) $)) (-15 -1710 ($ (-518) (-518) (-1123) $)) (-15 -3872 ((-656 (-982)) (-518) $)) (-15 -3131 ($ (-518) (-656 (-982)) $)) (-15 -3890 ($)) (-15 -3103 ($)) (-15 -2146 ($))))
+((-4106 (((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))) 102)) (-2048 (((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|)))) 97) (((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783)) 41)) (-3794 (((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))) 99)) (-2295 (((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|)))) 75)) (-3709 (((-656 (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (-701 (-419 (-969 |#1|)))) 74)) (-2528 (((-969 |#1|) (-701 (-419 (-969 |#1|)))) 55) (((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1196)) 56)))
+(((-302 |#1|) (-10 -7 (-15 -2528 ((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1196))) (-15 -2528 ((-969 |#1|) (-701 (-419 (-969 |#1|))))) (-15 -3709 ((-656 (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (-701 (-419 (-969 |#1|))))) (-15 -2295 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))))) (-15 -2048 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783))) (-15 -2048 ((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|))))) (-15 -4106 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))) (-15 -3794 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))))) (-464)) (T -302))
+((-3794 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))) (-4106 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))) (-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))) (-2048 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-969 *6)) (-1185 (-1196) (-969 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-969 *6)))))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4))))) (-5 *1 (-302 *4)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-5 *2 (-969 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-969 *5)))) (-5 *4 (-1196)) (-5 *2 (-969 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))))
+(-10 -7 (-15 -2528 ((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1196))) (-15 -2528 ((-969 |#1|) (-701 (-419 (-969 |#1|))))) (-15 -3709 ((-656 (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (-701 (-419 (-969 |#1|))))) (-15 -2295 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))))) (-15 -2048 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783))) (-15 -2048 ((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|))))) (-15 -4106 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))) (-15 -3794 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))))
+((-2548 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14)))
+(((-303 |#1| |#2|) (-10 -7 (-15 -2548 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1237) (-1237)) (T -303))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))))
+(-10 -7 (-15 -2548 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3203 (((-112) $) NIL (|has| |#1| (-21)))) (-2646 (($ $) 12)) (-3161 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1490 (($ $ $) 95 (|has| |#1| (-312)))) (-2574 (($) NIL (-3739 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-2459 (($ $) 51 (|has| |#1| (-21)))) (-1552 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-3866 ((|#1| $) 11)) (-4011 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-1838 (((-112) $) NIL (|has| |#1| (-738)))) (-2548 (($ (-1 |#1| |#1|) $) 14)) (-3854 ((|#1| $) 10)) (-4363 (($ $) 50 (|has| |#1| (-21)))) (-2935 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-4324 (($ $) 64 (-3739 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3608 (((-656 $) $) 85 (|has| |#1| (-568)))) (-3022 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1196) |#1|)))) (-2666 (($ |#1| |#1|) 9)) (-4340 (((-135)) 90 (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) 87 (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-915 (-1196))))) (-2480 (($ $ $) NIL (|has| |#1| (-485)))) (-2220 (($ $ $) NIL (|has| |#1| (-485)))) (-2858 (($ (-576)) NIL (|has| |#1| (-1068))) (((-112) $) 37 (|has| |#1| (-1119))) (((-874) $) 36 (|has| |#1| (-1119)))) (-2981 (((-783)) 67 (|has| |#1| (-1068)) CONST)) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2022 (($) 47 (|has| |#1| (-21)) CONST)) (-2038 (($) 57 (|has| |#1| (-738)) CONST)) (-3404 (($ $ (-1196)) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-915 (-1196))))) (-3889 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1119)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-3739 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-4002 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3990 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-938)) NIL (|has| |#1| (-1131)))) (* (($ $ |#1|) 55 (|has| |#1| (-1131))) (($ |#1| $) 54 (|has| |#1| (-1131))) (($ $ $) 53 (|has| |#1| (-1131))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-25)))))
+(((-304 |#1|) (-13 (-1237) (-10 -8 (-15 -3889 ($ |#1| |#1|)) (-15 -2666 ($ |#1| |#1|)) (-15 -2646 ($ $)) (-15 -3854 (|#1| $)) (-15 -3866 (|#1| $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1119)) (PROGN (-6 (-1119)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3022 ($ $ $)) (-15 -3022 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3990 ($ |#1| $)) (-15 -3990 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4363 ($ $)) (-15 -2459 ($ $)) (-15 -4002 ($ |#1| $)) (-15 -4002 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2935 ((-3 $ "failed") $)) (-15 -1552 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2935 ((-3 $ "failed") $)) (-15 -1552 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3608 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1294 |#1|)) (-15 -4013 ($ $ $)) (-15 -4324 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1490 ($ $ $)) |%noBranch|))) (-1237)) (T -304))
+((-3889 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2666 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2646 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-3854 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-3866 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)) (-5 *1 (-304 *2)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1119)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) (-3990 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-3990 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-4363 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-2459 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4002 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4002 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-2935 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))) (-1552 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1237)))) (-1490 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1237)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237)))) (-4013 (*1 *1 *1 *1) (-3739 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) (-4324 (*1 *1 *1) (-3739 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))))
+(-13 (-1237) (-10 -8 (-15 -3889 ($ |#1| |#1|)) (-15 -2666 ($ |#1| |#1|)) (-15 -2646 ($ $)) (-15 -3854 (|#1| $)) (-15 -3866 (|#1| $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1119)) (PROGN (-6 (-1119)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3022 ($ $ $)) (-15 -3022 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3990 ($ |#1| $)) (-15 -3990 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4363 ($ $)) (-15 -2459 ($ $)) (-15 -4002 ($ |#1| $)) (-15 -4002 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -2935 ((-3 $ "failed") $)) (-15 -1552 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -2935 ((-3 $ "failed") $)) (-15 -1552 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3608 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1294 |#1|)) (-15 -4013 ($ $ $)) (-15 -4324 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1490 ($ $ $)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#2| $ |#1| |#2|) NIL)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2029 (((-656 |#1|) $) NIL)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2928 (((-656 |#1|) $) NIL)) (-1449 (((-112) |#1| $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-305 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119)) (T -305))
+NIL
+(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462)))
+((-3058 (((-322) (-1178) (-656 (-1178))) 17) (((-322) (-1178) (-1178)) 16) (((-322) (-656 (-1178))) 15) (((-322) (-1178)) 14)))
+(((-306) (-10 -7 (-15 -3058 ((-322) (-1178))) (-15 -3058 ((-322) (-656 (-1178)))) (-15 -3058 ((-322) (-1178) (-1178))) (-15 -3058 ((-322) (-1178) (-656 (-1178)))))) (T -306))
+((-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1178))) (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3058 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))))
+(-10 -7 (-15 -3058 ((-322) (-1178))) (-15 -3058 ((-322) (-656 (-1178)))) (-15 -3058 ((-322) (-1178) (-1178))) (-15 -3058 ((-322) (-1178) (-656 (-1178)))))
+((-2548 ((|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)) 18)))
+(((-307 |#1| |#2|) (-10 -7 (-15 -2548 (|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)))) (-312) (-1237)) (T -307))
+((-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1237)) (-5 *1 (-307 *6 *2)))))
+(-10 -7 (-15 -2548 (|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|))))
+((-2548 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17)))
+(((-308 |#1| |#2|) (-10 -7 (-15 -2548 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))))
+(-10 -7 (-15 -2548 (|#2| (-1 |#2| |#1|) (-624 |#1|))))
+((-1595 (((-112) (-227)) 12)))
+(((-309 |#1| |#2|) (-10 -7 (-15 -1595 ((-112) (-227)))) (-227) (-227)) (T -309))
+((-1595 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1595 ((-112) (-227))))
+((-2741 (((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227)))) 118)) (-4215 (((-1176 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1113 (-855 (-227)))) 135) (((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227)))) 72)) (-3197 (((-656 (-1178)) (-1176 (-227))) NIL)) (-2752 (((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227)))) 69)) (-3286 (((-656 (-227)) (-969 (-419 (-576))) (-1196) (-1113 (-855 (-227)))) 59)) (-2622 (((-656 (-1178)) (-656 (-227))) NIL)) (-1476 (((-227) (-1113 (-855 (-227)))) 29)) (-3026 (((-227) (-1113 (-855 (-227)))) 30)) (-4319 (((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-2120 (((-1178) (-227)) NIL)))
+(((-310) (-10 -7 (-15 -1476 ((-227) (-1113 (-855 (-227))))) (-15 -3026 ((-227) (-1113 (-855 (-227))))) (-15 -4319 ((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2752 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -2741 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -4215 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -4215 ((-1176 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -3286 ((-656 (-227)) (-969 (-419 (-576))) (-1196) (-1113 (-855 (-227))))) (-15 -2120 ((-1178) (-227))) (-15 -2622 ((-656 (-1178)) (-656 (-227)))) (-15 -3197 ((-656 (-1178)) (-1176 (-227)))))) (T -310))
+((-3197 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-310)))) (-3286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *4 (-1196)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-4215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-4215 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-2752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))))
+(-10 -7 (-15 -1476 ((-227) (-1113 (-855 (-227))))) (-15 -3026 ((-227) (-1113 (-855 (-227))))) (-15 -4319 ((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2752 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -2741 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -4215 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -4215 ((-1176 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -3286 ((-656 (-227)) (-969 (-419 (-576))) (-1196) (-1113 (-855 (-227))))) (-15 -2120 ((-1178) (-227))) (-15 -2622 ((-656 (-1178)) (-656 (-227)))) (-15 -3197 ((-656 (-1178)) (-1176 (-227)))))
+((-4256 (((-656 (-624 $)) $) 27)) (-1490 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2454 (((-3 (-624 $) "failed") $) 127)) (-4397 (((-624 $) $) 126)) (-1739 (($ $) 17) (($ (-656 $)) 54)) (-2538 (((-656 (-115)) $) 35)) (-2569 (((-115) (-115)) 88)) (-2531 (((-112) $) 150)) (-2548 (($ (-1 $ $) (-624 $)) 86)) (-2412 (((-3 (-624 $) "failed") $) 94)) (-1706 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-2729 (((-112) $ (-115)) 132) (((-112) $ (-1196)) 131)) (-3317 (((-783) $) 44)) (-2788 (((-112) $ $) 57) (((-112) $ (-1196)) 49)) (-3945 (((-112) $) 148)) (-3022 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) 67) (($ $ (-1196) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2099 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-1321 (($ $) 51) (($ $ $) 135)) (-2435 (($ $) 15) (($ (-656 $)) 53)) (-3410 (((-112) (-115)) 21)))
+(((-311 |#1|) (-10 -8 (-15 -2531 ((-112) |#1|)) (-15 -3945 ((-112) |#1|)) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -2788 ((-112) |#1| (-1196))) (-15 -2788 ((-112) |#1| |#1|)) (-15 -2548 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1706 (|#1| (-115) (-656 |#1|))) (-15 -1706 (|#1| (-115) |#1|)) (-15 -2729 ((-112) |#1| (-1196))) (-15 -2729 ((-112) |#1| (-115))) (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -2538 ((-656 (-115)) |#1|)) (-15 -4256 ((-656 (-624 |#1|)) |#1|)) (-15 -2412 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3317 ((-783) |#1|)) (-15 -1321 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1|)) (-15 -1739 (|#1| (-656 |#1|))) (-15 -1739 (|#1| |#1|)) (-15 -2435 (|#1| (-656 |#1|))) (-15 -2435 (|#1| |#1|)) (-15 -1490 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1490 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1490 (|#1| |#1| (-304 |#1|))) (-15 -2099 (|#1| (-115) (-656 |#1|))) (-15 -2099 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3022 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2454 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4397 ((-624 |#1|) |#1|))) (-312)) (T -311))
+((-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))))
+(-10 -8 (-15 -2531 ((-112) |#1|)) (-15 -3945 ((-112) |#1|)) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -2788 ((-112) |#1| (-1196))) (-15 -2788 ((-112) |#1| |#1|)) (-15 -2548 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1706 (|#1| (-115) (-656 |#1|))) (-15 -1706 (|#1| (-115) |#1|)) (-15 -2729 ((-112) |#1| (-1196))) (-15 -2729 ((-112) |#1| (-115))) (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -2538 ((-656 (-115)) |#1|)) (-15 -4256 ((-656 (-624 |#1|)) |#1|)) (-15 -2412 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3317 ((-783) |#1|)) (-15 -1321 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1|)) (-15 -1739 (|#1| (-656 |#1|))) (-15 -1739 (|#1| |#1|)) (-15 -2435 (|#1| (-656 |#1|))) (-15 -2435 (|#1| |#1|)) (-15 -1490 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1490 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1490 (|#1| |#1| (-304 |#1|))) (-15 -2099 (|#1| (-115) (-656 |#1|))) (-15 -2099 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3022 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2454 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4397 ((-624 |#1|) |#1|)))
+((-2835 (((-112) $ $) 7)) (-4256 (((-656 (-624 $)) $) 39)) (-1490 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2454 (((-3 (-624 $) "failed") $) 64)) (-4397 (((-624 $) $) 65)) (-1739 (($ $) 46) (($ (-656 $)) 45)) (-2538 (((-656 (-115)) $) 38)) (-2569 (((-115) (-115)) 37)) (-2531 (((-112) $) 17 (|has| $ (-1057 (-576))))) (-2658 (((-1192 $) (-624 $)) 20 (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) 31)) (-2412 (((-3 (-624 $) "failed") $) 41)) (-2143 (((-1178) $) 10)) (-2555 (((-656 (-624 $)) $) 40)) (-1706 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2729 (((-112) $ (-115)) 35) (((-112) $ (-1196)) 34)) (-3317 (((-783) $) 42)) (-3887 (((-1139) $) 11)) (-2788 (((-112) $ $) 30) (((-112) $ (-1196)) 29)) (-3945 (((-112) $) 18 (|has| $ (-1057 (-576))))) (-3022 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1196) (-1 $ (-656 $))) 26) (($ $ (-1196) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2099 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1321 (($ $) 44) (($ $ $) 43)) (-1953 (($ $) 19 (|has| $ (-1068)))) (-2858 (((-874) $) 12) (($ (-624 $)) 63)) (-2435 (($ $) 48) (($ (-656 $)) 47)) (-3410 (((-112) (-115)) 36)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-312) (-141)) (T -312))
+((-2099 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2099 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2099 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2099 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2099 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-1490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2435 (*1 *1 *1) (-4 *1 (-312))) (-2435 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1739 (*1 *1 *1) (-4 *1 (-312))) (-1739 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-1321 (*1 *1 *1) (-4 *1 (-312))) (-1321 (*1 *1 *1 *1) (-4 *1 (-312))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2412 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-2555 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4256 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-2569 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-3410 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2729 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2729 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) (-1706 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1706 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2548 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-2788 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1068)) (-4 *1 (-312)) (-5 *2 (-1192 *1)))) (-1953 (*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-312)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))))
+(-13 (-1119) (-1057 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2099 ($ (-115) $)) (-15 -2099 ($ (-115) $ $)) (-15 -2099 ($ (-115) $ $ $)) (-15 -2099 ($ (-115) $ $ $ $)) (-15 -2099 ($ (-115) (-656 $))) (-15 -1490 ($ $ (-304 $))) (-15 -1490 ($ $ (-656 (-304 $)))) (-15 -1490 ($ $ (-656 (-624 $)) (-656 $))) (-15 -2435 ($ $)) (-15 -2435 ($ (-656 $))) (-15 -1739 ($ $)) (-15 -1739 ($ (-656 $))) (-15 -1321 ($ $)) (-15 -1321 ($ $ $)) (-15 -3317 ((-783) $)) (-15 -2412 ((-3 (-624 $) "failed") $)) (-15 -2555 ((-656 (-624 $)) $)) (-15 -4256 ((-656 (-624 $)) $)) (-15 -2538 ((-656 (-115)) $)) (-15 -2569 ((-115) (-115))) (-15 -3410 ((-112) (-115))) (-15 -2729 ((-112) $ (-115))) (-15 -2729 ((-112) $ (-1196))) (-15 -1706 ($ (-115) $)) (-15 -1706 ($ (-115) (-656 $))) (-15 -2548 ($ (-1 $ $) (-624 $))) (-15 -2788 ((-112) $ $)) (-15 -2788 ((-112) $ (-1196))) (-15 -3022 ($ $ (-656 (-1196)) (-656 (-1 $ $)))) (-15 -3022 ($ $ (-656 (-1196)) (-656 (-1 $ (-656 $))))) (-15 -3022 ($ $ (-1196) (-1 $ (-656 $)))) (-15 -3022 ($ $ (-1196) (-1 $ $))) (-15 -3022 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -3022 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -3022 ($ $ (-115) (-1 $ (-656 $)))) (-15 -3022 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1068)) (PROGN (-15 -2658 ((-1192 $) (-624 $))) (-15 -1953 ($ $))) |%noBranch|) (IF (|has| $ (-1057 (-576))) (PROGN (-15 -3945 ((-112) $)) (-15 -2531 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-874)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1057 #0#) . T) ((-1119) . T))
+((-4148 (((-656 |#1|) (-656 |#1|)) 10)))
+(((-313 |#1|) (-10 -7 (-15 -4148 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313))
+((-4148 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3)))))
+(-10 -7 (-15 -4148 ((-656 |#1|) (-656 |#1|))))
+((-2548 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -2548 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1068) (-1068)) (T -314))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6)))))
+(-10 -7 (-15 -2548 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|))))
+((-3986 (((-1287 (-326 (-390))) (-1287 (-326 (-227)))) 110)) (-2336 (((-1113 (-855 (-227))) (-1113 (-855 (-390)))) 43)) (-3197 (((-656 (-1178)) (-1176 (-227))) 92)) (-3827 (((-326 (-390)) (-969 (-227))) 53)) (-2883 (((-227) (-969 (-227))) 49)) (-1740 (((-1178) (-390)) 195)) (-3467 (((-855 (-227)) (-855 (-390))) 37)) (-3129 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227)))) 165)) (-3519 (((-1054) (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) 207) (((-1054) (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) 205)) (-3260 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-3912 (((-1287 (-711)) (-656 (-227))) 99)) (-2622 (((-656 (-1178)) (-656 (-227))) 79)) (-3268 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-1595 (((-112) (-227) (-1113 (-855 (-227)))) 117)) (-3788 (((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-1476 (((-227) (-1113 (-855 (-227)))) 112)) (-3026 (((-227) (-1113 (-855 (-227)))) 113)) (-1525 (((-227) (-419 (-576))) 31)) (-3757 (((-1178) (-390)) 77)) (-3191 (((-227) (-390)) 22)) (-3208 (((-390) (-1287 (-326 (-227)))) 177)) (-4302 (((-326 (-227)) (-326 (-390))) 28)) (-2941 (((-419 (-576)) (-326 (-227))) 56)) (-1789 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-3157 (((-326 (-390)) (-326 (-227))) 103)) (-1344 (((-227) (-326 (-227))) 57)) (-3180 (((-656 (-227)) (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) 68)) (-1769 (((-1113 (-855 (-227))) (-1113 (-855 (-227)))) 65)) (-2120 (((-1178) (-227)) 76)) (-3610 (((-711) (-227)) 95)) (-3171 (((-419 (-576)) (-227)) 58)) (-1579 (((-326 (-390)) (-227)) 52)) (-2610 (((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390))))) 46)) (-1534 (((-1054) (-656 (-1054))) 191) (((-1054) (-1054) (-1054)) 185)) (-2034 (((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221)))
+(((-315) (-10 -7 (-15 -3191 ((-227) (-390))) (-15 -4302 ((-326 (-227)) (-326 (-390)))) (-15 -3467 ((-855 (-227)) (-855 (-390)))) (-15 -2336 ((-1113 (-855 (-227))) (-1113 (-855 (-390))))) (-15 -2610 ((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390)))))) (-15 -3171 ((-419 (-576)) (-227))) (-15 -2941 ((-419 (-576)) (-326 (-227)))) (-15 -1344 ((-227) (-326 (-227)))) (-15 -3268 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3208 ((-390) (-1287 (-326 (-227))))) (-15 -3129 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227))))) (-15 -1789 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -1769 ((-1113 (-855 (-227))) (-1113 (-855 (-227))))) (-15 -3180 ((-656 (-227)) (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))) (-15 -3610 ((-711) (-227))) (-15 -3912 ((-1287 (-711)) (-656 (-227)))) (-15 -3157 ((-326 (-390)) (-326 (-227)))) (-15 -3986 ((-1287 (-326 (-390))) (-1287 (-326 (-227))))) (-15 -1595 ((-112) (-227) (-1113 (-855 (-227))))) (-15 -2120 ((-1178) (-227))) (-15 -3757 ((-1178) (-390))) (-15 -2622 ((-656 (-1178)) (-656 (-227)))) (-15 -3197 ((-656 (-1178)) (-1176 (-227)))) (-15 -1476 ((-227) (-1113 (-855 (-227))))) (-15 -3026 ((-227) (-1113 (-855 (-227))))) (-15 -1534 ((-1054) (-1054) (-1054))) (-15 -1534 ((-1054) (-656 (-1054)))) (-15 -1740 ((-1178) (-390))) (-15 -3519 ((-1054) (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))))) (-15 -3519 ((-1054) (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))) (-15 -2034 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3788 ((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -3827 ((-326 (-390)) (-969 (-227)))) (-15 -2883 ((-227) (-969 (-227)))) (-15 -1579 ((-326 (-390)) (-227))) (-15 -1525 ((-227) (-419 (-576)))) (-15 -3260 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315))
+((-3260 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-1534 (*1 *2 *3) (-12 (-5 *3 (-656 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-3986 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-1287 (-326 (-390)))) (-5 *1 (-315)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287 (-711))) (-5 *1 (-315)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-3268 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-656 (-1113 (-855 (-390))))) (-5 *2 (-656 (-1113 (-855 (-227))))) (-5 *1 (-315)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-390)))) (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-4302 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315)))))
+(-10 -7 (-15 -3191 ((-227) (-390))) (-15 -4302 ((-326 (-227)) (-326 (-390)))) (-15 -3467 ((-855 (-227)) (-855 (-390)))) (-15 -2336 ((-1113 (-855 (-227))) (-1113 (-855 (-390))))) (-15 -2610 ((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390)))))) (-15 -3171 ((-419 (-576)) (-227))) (-15 -2941 ((-419 (-576)) (-326 (-227)))) (-15 -1344 ((-227) (-326 (-227)))) (-15 -3268 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3208 ((-390) (-1287 (-326 (-227))))) (-15 -3129 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227))))) (-15 -1789 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -1769 ((-1113 (-855 (-227))) (-1113 (-855 (-227))))) (-15 -3180 ((-656 (-227)) (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))) (-15 -3610 ((-711) (-227))) (-15 -3912 ((-1287 (-711)) (-656 (-227)))) (-15 -3157 ((-326 (-390)) (-326 (-227)))) (-15 -3986 ((-1287 (-326 (-390))) (-1287 (-326 (-227))))) (-15 -1595 ((-112) (-227) (-1113 (-855 (-227))))) (-15 -2120 ((-1178) (-227))) (-15 -3757 ((-1178) (-390))) (-15 -2622 ((-656 (-1178)) (-656 (-227)))) (-15 -3197 ((-656 (-1178)) (-1176 (-227)))) (-15 -1476 ((-227) (-1113 (-855 (-227))))) (-15 -3026 ((-227) (-1113 (-855 (-227))))) (-15 -1534 ((-1054) (-1054) (-1054))) (-15 -1534 ((-1054) (-656 (-1054)))) (-15 -1740 ((-1178) (-390))) (-15 -3519 ((-1054) (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))))) (-15 -3519 ((-1054) (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))) (-15 -2034 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3788 ((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -3827 ((-326 (-390)) (-969 (-227)))) (-15 -2883 ((-227) (-969 (-227)))) (-15 -1579 ((-326 (-390)) (-227))) (-15 -1525 ((-227) (-419 (-576)))) (-15 -3260 ((-701 (-227)) (-656 (-227)) (-783))))
+((-3417 (((-112) $ $) 14)) (-2780 (($ $ $) 18)) (-2790 (($ $ $) 17)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 50)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3901 (($ $ $) 25) (($ (-656 $)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2825 (((-3 $ "failed") $ $) 21)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 53)))
+(((-316 |#1|) (-10 -8 (-15 -3882 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1749 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1749 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3633 |#1|)) |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -2790 (|#1| |#1| |#1|)) (-15 -3417 ((-112) |#1| |#1|)) (-15 -2297 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2064 ((-2 (|:| -1788 (-656 |#1|)) (|:| -3633 |#1|)) (-656 |#1|))) (-15 -3901 (|#1| (-656 |#1|))) (-15 -3901 (|#1| |#1| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316))
+NIL
+(-10 -8 (-15 -3882 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1749 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1749 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3633 |#1|)) |#1| |#1|)) (-15 -2780 (|#1| |#1| |#1|)) (-15 -2790 (|#1| |#1| |#1|)) (-15 -3417 ((-112) |#1| |#1|)) (-15 -2297 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -2064 ((-2 (|:| -1788 (-656 |#1|)) (|:| -3633 |#1|)) (-656 |#1|))) (-15 -3901 (|#1| (-656 |#1|))) (-15 -3901 (|#1| |#1| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-1838 (((-112) $) 35)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-317) (-141)) (T -317))
+((-3417 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-3684 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-317)))) (-2790 (*1 *1 *1 *1) (-4 *1 (-317))) (-2780 (*1 *1 *1 *1) (-4 *1 (-317))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3633 *1))) (-4 *1 (-317)))) (-1749 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-3882 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317)))))
+(-13 (-937) (-10 -8 (-15 -3417 ((-112) $ $)) (-15 -3076 ((-783) $)) (-15 -3684 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -2790 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -1749 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $)) (-15 -1749 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3882 ((-3 (-656 $) "failed") (-656 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-3022 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL)))
+(((-318 |#1| |#2|) (-10 -8 (-15 -3022 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3022 (|#1| |#1| (-304 |#2|))) (-15 -3022 (|#1| |#1| |#2| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1119)) (T -318))
+NIL
+(-10 -8 (-15 -3022 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3022 (|#1| |#1| (-304 |#2|))) (-15 -3022 (|#1| |#1| |#2| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#2|))))
+((-3022 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10)))
+(((-319 |#1|) (-141) (-1119)) (T -319))
+((-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1119)))))
+(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3022 ($ $ (-304 |t#1|))) (-15 -3022 ($ $ (-656 (-304 |t#1|))))))
+(((-526 |#1| |#1|) . T))
+((-3022 ((|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))) 26)))
+(((-320 |#1|) (-10 -7 (-15 -3022 (|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320))
+((-3022 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1198 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))))
+(-10 -7 (-15 -3022 (|#1| (-1 |#1| (-576)) (-1198 (-419 (-576))))))
+((-2835 (((-112) $ $) NIL)) (-2621 (((-576) $) 12)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3803 (((-1154) $) 9)) (-2858 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-321) (-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2621 ((-576) $))))) (T -321))
+((-3803 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-321)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))))
+(-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2621 ((-576) $))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 7)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 9)))
+(((-322) (-1119)) (T -322))
+NIL
+(-1119)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 60)) (-1463 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-1273 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-1272 |#2| |#3| |#4|) "failed") $) 26)) (-4397 (((-1273 |#1| |#2| |#3| |#4|) $) NIL) (((-1196) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-576) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-1272 |#2| |#3| |#4|) $) NIL)) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1273 |#1| |#2| |#3| |#4|)))) (-701 $) (-1287 $)) NIL) (((-701 (-1273 |#1| |#2| |#3| |#4|)) (-701 $)) NIL) (((-701 (-1273 |#1| |#2| |#3| |#4|)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-1273 |#1| |#2| |#3| |#4|) $) 22)) (-3397 (((-3 $ "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1171)))) (-3196 (((-112) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-1492 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-2548 (($ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) $) NIL)) (-4291 (((-3 (-855 |#2|) "failed") $) 80)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-317)))) (-3807 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-1273 |#1| |#2| |#3| |#4|)) (-656 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1273 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1196)) (-656 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-1196) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-296 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-1273 |#1| |#2| |#3| |#4|) $) 19)) (-2610 (((-905 (-576)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1041))) (((-227) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1273 |#1| |#2| |#3| |#4|)) 30) (($ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196)))) (($ (-1272 |#2| |#3| |#4|)) 37)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-926))) (|has| (-1273 |#1| |#2| |#3| |#4|) (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-4013 (($ $ $) 35) (($ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) 32)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1273 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL)))
+(((-323 |#1| |#2| |#3| |#4|) (-13 (-1011 (-1273 |#1| |#2| |#3| |#4|)) (-1057 (-1272 |#2| |#3| |#4|)) (-10 -8 (-15 -4291 ((-3 (-855 |#2|) "failed") $)) (-15 -2858 ($ (-1272 |#2| |#3| |#4|))))) (-13 (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -323))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1272 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4) (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-4291 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4))))
+(-13 (-1011 (-1273 |#1| |#2| |#3| |#4|)) (-1057 (-1272 |#2| |#3| |#4|)) (-10 -8 (-15 -4291 ((-3 (-855 |#2|) "failed") $)) (-15 -2858 ($ (-1272 |#2| |#3| |#4|)))))
+((-2548 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13)))
+(((-324 |#1| |#2|) (-10 -7 (-15 -2548 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1119) (-1119)) (T -324))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))))
+(-10 -7 (-15 -2548 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|))))
+((-4278 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1196)) 26)) (-1907 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1196)) 55)) (-4301 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1196)) 50)) (-4290 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1196)) 43)))
+(((-325 |#1| |#2|) (-10 -7 (-15 -4278 ((-52) (-1196))) (-15 -4278 ((-52) |#2|)) (-15 -4278 ((-52) |#2| (-783))) (-15 -4278 ((-52) |#2| (-304 |#2|))) (-15 -4278 ((-52) |#2| (-304 |#2|) (-783))) (-15 -4290 ((-52) (-1196))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-576))) (-15 -4290 ((-52) |#2| (-304 |#2|))) (-15 -4290 ((-52) |#2| (-304 |#2|) (-576))) (-15 -4301 ((-52) (-1196))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-419 (-576)))) (-15 -4301 ((-52) |#2| (-304 |#2|))) (-15 -4301 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -1907 ((-52) (-1196))) (-15 -1907 ((-52) |#2|)) (-15 -1907 ((-52) |#2| (-419 (-576)))) (-15 -1907 ((-52) |#2| (-304 |#2|))) (-15 -1907 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -325))
+((-1907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4301 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-4301 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1057 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-4290 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-4290 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-4278 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-4278 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))))
+(-10 -7 (-15 -4278 ((-52) (-1196))) (-15 -4278 ((-52) |#2|)) (-15 -4278 ((-52) |#2| (-783))) (-15 -4278 ((-52) |#2| (-304 |#2|))) (-15 -4278 ((-52) |#2| (-304 |#2|) (-783))) (-15 -4290 ((-52) (-1196))) (-15 -4290 ((-52) |#2|)) (-15 -4290 ((-52) |#2| (-576))) (-15 -4290 ((-52) |#2| (-304 |#2|))) (-15 -4290 ((-52) |#2| (-304 |#2|) (-576))) (-15 -4301 ((-52) (-1196))) (-15 -4301 ((-52) |#2|)) (-15 -4301 ((-52) |#2| (-419 (-576)))) (-15 -4301 ((-52) |#2| (-304 |#2|))) (-15 -4301 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -1907 ((-52) (-1196))) (-15 -1907 ((-52) |#2|)) (-15 -1907 ((-52) |#2| (-419 (-576)))) (-15 -1907 ((-52) |#2| (-304 |#2|))) (-15 -1907 ((-52) |#2| (-304 |#2|) (-419 (-576)))))
+((-2835 (((-112) $ $) NIL)) (-2741 (((-656 $) $ (-1196)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $)) NIL (|has| |#1| (-568))) (((-656 $) (-969 $)) NIL (|has| |#1| (-568)))) (-4437 (($ $ (-1196)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (($ (-1192 $)) NIL (|has| |#1| (-568))) (($ (-969 $)) NIL (|has| |#1| (-568)))) (-3203 (((-112) $) 27 (-3739 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-1634 (((-656 (-1196)) $) 368)) (-3440 (((-419 (-1192 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-4256 (((-656 (-624 $)) $) NIL)) (-3897 (($ $) 171 (|has| |#1| (-568)))) (-3760 (($ $) 147 (|has| |#1| (-568)))) (-4246 (($ $ (-1111 $)) 232 (|has| |#1| (-568))) (($ $ (-1196)) 228 (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) NIL (-3739 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-1490 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-3389 (((-430 (-1192 $)) (-1192 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-3179 (($ $) NIL (|has| |#1| (-568)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-568)))) (-2477 (($ $) NIL (|has| |#1| (-568)))) (-3417 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3871 (($ $) 167 (|has| |#1| (-568)))) (-3735 (($ $) 143 (|has| |#1| (-568)))) (-1948 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-1542 (($ $) 175 (|has| |#1| (-568)))) (-3781 (($ $) 151 (|has| |#1| (-568)))) (-2574 (($) NIL (-3739 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) (|has| |#1| (-1131))) CONST)) (-1665 (((-656 $) $ (-1196)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $)) NIL (|has| |#1| (-568))) (((-656 $) (-969 $)) NIL (|has| |#1| (-568)))) (-3968 (($ $ (-1196)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1192 $) (-1196)) 134 (|has| |#1| (-568))) (($ (-1192 $)) NIL (|has| |#1| (-568))) (($ (-969 $)) NIL (|has| |#1| (-568)))) (-2454 (((-3 (-624 $) "failed") $) 18) (((-3 (-1196) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-969 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-969 |#1|) "failed") $) NIL (|has| |#1| (-1068))) (((-3 (-419 (-576)) "failed") $) 46 (-3739 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-4397 (((-624 $) $) 12) (((-1196) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-969 |#1|)) $) NIL (|has| |#1| (-568))) (((-969 |#1|) $) NIL (|has| |#1| (-1068))) (((-419 (-576)) $) 319 (-3739 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2780 (($ $ $) NIL (|has| |#1| (-568)))) (-2085 (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 125 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1068))) (((-701 |#1|) (-1287 $)) NIL (|has| |#1| (-1068))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (-2326 (($ $) 96 (|has| |#1| (-568)))) (-4011 (((-3 $ "failed") $) NIL (|has| |#1| (-1131)))) (-2790 (($ $ $) NIL (|has| |#1| (-568)))) (-1904 (($ $ (-1111 $)) 236 (|has| |#1| (-568))) (($ $ (-1196)) 234 (|has| |#1| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-3011 (((-112) $) NIL (|has| |#1| (-568)))) (-3678 (($ $ $) 202 (|has| |#1| (-568)))) (-1663 (($) 137 (|has| |#1| (-568)))) (-1840 (($ $ $) 222 (|has| |#1| (-568)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 392 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 399 (|has| |#1| (-899 (-390))))) (-1739 (($ $) NIL) (($ (-656 $)) NIL)) (-2538 (((-656 (-115)) $) NIL)) (-2569 (((-115) (-115)) 276)) (-1838 (((-112) $) 25 (|has| |#1| (-1131)))) (-2531 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3763 (($ $) 72 (|has| |#1| (-1068)))) (-1621 (((-1144 |#1| (-624 $)) $) 91 (|has| |#1| (-1068)))) (-4118 (((-112) $) 62 (|has| |#1| (-568)))) (-1404 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2658 (((-1192 $) (-624 $)) 277 (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) 426)) (-2412 (((-3 (-624 $) "failed") $) NIL)) (-3437 (($ $) 141 (|has| |#1| (-568)))) (-2345 (($ $) 247 (|has| |#1| (-568)))) (-3862 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2143 (((-1178) $) NIL)) (-2555 (((-656 (-624 $)) $) 49)) (-1706 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-2829 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1131)))) (-2321 (((-3 (-2 (|:| |val| $) (|:| -2273 (-576))) "failed") $) NIL (|has| |#1| (-1068)))) (-1972 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-1507 (((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2994 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $) NIL (|has| |#1| (-1131))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-1196)) NIL (|has| |#1| (-1068)))) (-2729 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) 51)) (-4324 (($ $) NIL (-3739 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2337 (($ $ (-1196)) 251 (|has| |#1| (-568))) (($ $ (-1111 $)) 253 (|has| |#1| (-568)))) (-3317 (((-783) $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) 43)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 301 (|has| |#1| (-568)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2788 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-1674 (($ $ (-1196)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-2878 (($ $) 218 (|has| |#1| (-568)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2367 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-568)))) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2656 (($ $) 139 (|has| |#1| (-568)))) (-3945 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3022 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1196)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ $)) NIL (|has| |#1| (-1068)))) (-3076 (((-783) $) NIL (|has| |#1| (-568)))) (-3691 (($ $) 239 (|has| |#1| (-568)))) (-2099 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-1321 (($ $) NIL) (($ $ $) NIL)) (-3723 (($ $) 249 (|has| |#1| (-568)))) (-1784 (($ $) 200 (|has| |#1| (-568)))) (-2399 (($ $ (-1196)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-1068)))) (-3560 (($ $) 74 (|has| |#1| (-568)))) (-1635 (((-1144 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-1953 (($ $) 317 (|has| $ (-1068)))) (-1553 (($ $) 177 (|has| |#1| (-568)))) (-3791 (($ $) 153 (|has| |#1| (-568)))) (-3911 (($ $) 173 (|has| |#1| (-568)))) (-3771 (($ $) 149 (|has| |#1| (-568)))) (-3883 (($ $) 169 (|has| |#1| (-568)))) (-3748 (($ $) 145 (|has| |#1| (-568)))) (-2610 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-2480 (($ $ $) NIL (|has| |#1| (-485)))) (-2220 (($ $ $) NIL (|has| |#1| (-485)))) (-2858 (((-874) $) 424) (($ (-624 $)) 415) (($ (-1196)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (($ (-1144 |#1| (-624 $))) 95 (|has| |#1| (-1068))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-969 |#1|))) NIL (|has| |#1| (-568))) (($ (-969 |#1|)) NIL (|has| |#1| (-1068))) (($ (-576)) 34 (-3739 (|has| |#1| (-1057 (-576))) (|has| |#1| (-1068)))) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-576))))))) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL (|has| |#1| (-1068)) CONST)) (-2435 (($ $) NIL) (($ (-656 $)) NIL)) (-3176 (($ $ $) 220 (|has| |#1| (-568)))) (-3466 (($ $ $) 206 (|has| |#1| (-568)))) (-1601 (($ $ $) 210 (|has| |#1| (-568)))) (-1487 (($ $ $) 204 (|has| |#1| (-568)))) (-2011 (($ $ $) 208 (|has| |#1| (-568)))) (-3410 (((-112) (-115)) 10)) (-2690 (((-112) $ $) 86)) (-1593 (($ $) 183 (|has| |#1| (-568)))) (-3826 (($ $) 159 (|has| |#1| (-568)))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) 179 (|has| |#1| (-568)))) (-3802 (($ $) 155 (|has| |#1| (-568)))) (-1620 (($ $) 187 (|has| |#1| (-568)))) (-3847 (($ $) 163 (|has| |#1| (-568)))) (-1657 (($ (-1196) $) NIL) (($ (-1196) $ $) NIL) (($ (-1196) $ $ $) NIL) (($ (-1196) $ $ $ $) NIL) (($ (-1196) (-656 $)) NIL)) (-2411 (($ $) 214 (|has| |#1| (-568)))) (-4266 (($ $) 212 (|has| |#1| (-568)))) (-2888 (($ $) 189 (|has| |#1| (-568)))) (-3859 (($ $) 165 (|has| |#1| (-568)))) (-1609 (($ $) 185 (|has| |#1| (-568)))) (-3837 (($ $) 161 (|has| |#1| (-568)))) (-1578 (($ $) 181 (|has| |#1| (-568)))) (-3813 (($ $) 157 (|has| |#1| (-568)))) (-3680 (($ $) 192 (|has| |#1| (-568)))) (-2022 (($) 21 (-3739 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) CONST)) (-2256 (($ $) 243 (|has| |#1| (-568)))) (-2038 (($) 23 (|has| |#1| (-1131)) CONST)) (-2079 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-1642 (($ $) 241 (|has| |#1| (-568)))) (-3404 (($ $ (-1196)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-1068)))) (-3974 (($ $) 245 (|has| |#1| (-568)))) (-1458 (($ $ $) 198 (|has| |#1| (-568)))) (-3889 (((-112) $ $) 88)) (-4013 (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-3739 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4002 (($ $ $) 40 (-3739 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ $) 29 (-3739 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-3990 (($ $ $) 38 (-3739 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-3739 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1131))) (($ $ (-938)) 84 (|has| |#1| (-1131)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1068))) (($ $ $) 36 (|has| |#1| (-1131))) (($ (-576) $) 32 (-3739 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ (-783) $) NIL (-3739 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ (-938) $) NIL (-3739 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))))
+(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-161)) (-6 (-641)) (-6 (-1158)) (-15 -2326 ($ $)) (-15 -4118 ((-112) $)) (-15 -1948 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3068 ((-430 (-1192 $)) (-1192 $))) (-15 -3389 ((-430 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-576))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|))) (-1119)) (T -326))
+((-2326 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1119)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-1948 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-3068 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) (-3389 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))))
+(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-161)) (-6 (-641)) (-6 (-1158)) (-15 -2326 ($ $)) (-15 -4118 ((-112) $)) (-15 -1948 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3068 ((-430 (-1192 $)) (-1192 $))) (-15 -3389 ((-430 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-576))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|)))
+((-3997 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86)))
+(((-327 |#1| |#2|) (-10 -7 (-15 -3997 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3997 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3997 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3997 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3997 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3997 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3997 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3997 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3997 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3997 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327))
+((-3997 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-3997 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3997 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3997 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-3997 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3997 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3997 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3997 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3997 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3997 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6)))))
+(-10 -7 (-15 -3997 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3997 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3997 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3997 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3997 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3997 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3997 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3997 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3997 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3997 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|))))
+((-2090 (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1178)) 67) (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576)) 68) (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1178)) 64) (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-3563 (((-1 (-227) (-227)) (-227)) 66)))
+(((-328) (-10 -7 (-15 -3563 ((-1 (-227) (-227)) (-227))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1178))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1178))))) (T -328))
+((-2090 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1178)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-2090 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-2090 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *7 (-1178)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-2090 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227)))))
+(-10 -7 (-15 -3563 ((-1 (-227) (-227)) (-227))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1178))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576))) (-15 -2090 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1178))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 26)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) 36)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-419 (-576))) NIL) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-1850 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222)))))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) NIL)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2281 (((-419 (-576)) $) 17)) (-3942 (($ (-1272 |#1| |#2| |#3|)) 11)) (-2273 (((-1272 |#1| |#2| |#3|) $) 12)) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4436 (((-419 (-576)) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 10)) (-2858 (((-874) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) 34)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) NIL)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 28)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 37)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-329 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-804) (-10 -8 (-15 -3942 ($ (-1272 |#1| |#2| |#3|))) (-15 -2273 ((-1272 |#1| |#2| |#3|) $)) (-15 -2281 ((-419 (-576)) $)))) (-374) (-1196) |#1|) (T -329))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3))))
+(-13 (-1268 |#1|) (-804) (-10 -8 (-15 -3942 ($ (-1272 |#1| |#2| |#3|))) (-15 -2273 ((-1272 |#1| |#2| |#3|) $)) (-15 -2281 ((-419 (-576)) $))))
+((-1404 (((-2 (|:| -2273 (-783)) (|:| -1788 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3437 (((-656 (-2 (|:| -1788 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40)))
+(((-330 |#1|) (-10 -7 (-15 -1404 ((-2 (|:| -2273 (-783)) (|:| -1788 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3437 ((-656 (-2 (|:| -1788 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330))
+((-3437 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1788 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783)))))
+(-10 -7 (-15 -1404 ((-2 (|:| -2273 (-783)) (|:| -1788 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3437 ((-656 (-2 (|:| -1788 (-783)) (|:| |logand| |#1|))) (-430 |#1|))))
+((-1634 (((-656 |#2|) (-1192 |#4|)) 44)) (-1486 ((|#3| (-576)) 47)) (-2362 (((-1192 |#4|) (-1192 |#3|)) 30)) (-3979 (((-1192 |#4|) (-1192 |#4|) (-576)) 66)) (-4343 (((-1192 |#3|) (-1192 |#4|)) 21)) (-4436 (((-656 (-783)) (-1192 |#4|) (-656 |#2|)) 41)) (-3539 (((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|)) 35)))
+(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 ((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -4436 ((-656 (-783)) (-1192 |#4|) (-656 |#2|))) (-15 -1634 ((-656 |#2|) (-1192 |#4|))) (-15 -4343 ((-1192 |#3|) (-1192 |#4|))) (-15 -2362 ((-1192 |#4|) (-1192 |#3|))) (-15 -3979 ((-1192 |#4|) (-1192 |#4|) (-576))) (-15 -1486 (|#3| (-576)))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|)) (T -331))
+((-1486 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1068)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-966 *2 *4 *5)))) (-3979 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *7)) (-5 *3 (-576)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1192 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-1192 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-4436 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) (-4 *8 (-966 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1068)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-3539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1192 *8)) (-5 *1 (-331 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3539 ((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -4436 ((-656 (-783)) (-1192 |#4|) (-656 |#2|))) (-15 -1634 ((-656 |#2|) (-1192 |#4|))) (-15 -4343 ((-1192 |#3|) (-1192 |#4|))) (-15 -2362 ((-1192 |#4|) (-1192 |#3|))) (-15 -3979 ((-1192 |#4|) (-1192 |#4|) (-576))) (-15 -1486 (|#3| (-576))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 19)) (-3754 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-576)))) $) 21)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2422 (((-783) $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-3601 ((|#1| $ (-576)) NIL)) (-3646 (((-576) $ (-576)) NIL)) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2124 (($ (-1 |#1| |#1|) $) NIL)) (-3124 (($ (-1 (-576) (-576)) $) 11)) (-2143 (((-1178) $) NIL)) (-2467 (($ $ $) NIL (|has| (-576) (-804)))) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ |#1|) NIL)) (-4417 (((-576) |#1| $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) 29 (|has| |#1| (-862)))) (-4002 (($ $) 12) (($ $ $) 28)) (-3990 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27)))
+(((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) (-1119)) (T -332))
+NIL
+(-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3754 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $) 28)) (-3161 (((-3 $ "failed") $ $) 20)) (-2422 (((-783) $) 29)) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 33)) (-4397 ((|#1| $) 34)) (-3601 ((|#1| $ (-576)) 26)) (-3646 ((|#2| $ (-576)) 27)) (-2124 (($ (-1 |#1| |#1|) $) 23)) (-3124 (($ (-1 |#2| |#2|) $) 24)) (-2143 (((-1178) $) 10)) (-2467 (($ $ $) 22 (|has| |#2| (-804)))) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ |#1|) 32)) (-4417 ((|#2| |#1| $) 25)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-3990 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30)))
+(((-333 |#1| |#2|) (-141) (-1119) (-132)) (T -333))
+((-3990 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) (-5 *2 (-783)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 *4)))))) (-3646 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1119)) (-4 *2 (-132)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1119)))) (-4417 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) (-3124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)))) (-2467 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)) (-4 *3 (-804)))))
+(-13 (-132) (-1057 |t#1|) (-10 -8 (-15 -3990 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2422 ((-783) $)) (-15 -3754 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2656 |t#2|))) $)) (-15 -3646 (|t#2| $ (-576))) (-15 -3601 (|t#1| $ (-576))) (-15 -4417 (|t#2| |t#1| $)) (-15 -3124 ($ (-1 |t#2| |t#2|) $)) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -2467 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-1057 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3754 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-783)))) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2422 (((-783) $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-3601 ((|#1| $ (-576)) NIL)) (-3646 (((-783) $ (-576)) NIL)) (-2124 (($ (-1 |#1| |#1|) $) NIL)) (-3124 (($ (-1 (-783) (-783)) $) NIL)) (-2143 (((-1178) $) NIL)) (-2467 (($ $ $) NIL (|has| (-783) (-804)))) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ |#1|) NIL)) (-4417 (((-783) |#1| $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-3990 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL)))
+(((-334 |#1|) (-333 |#1| (-783)) (-1119)) (T -334))
+NIL
+(-333 |#1| (-783))
+((-3420 (($ $) 72)) (-2611 (($ $ |#2| |#3| $) 14)) (-4149 (($ (-1 |#3| |#3|) $) 51)) (-4336 (((-112) $) 42)) (-4347 ((|#2| $) 44)) (-2825 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4325 ((|#2| $) 68)) (-2461 (((-656 |#2|) $) 56)) (-2986 (($ $ $ (-783)) 37)) (-4013 (($ $ |#2|) 60)))
+(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2986 (|#1| |#1| |#1| (-783))) (-15 -2611 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4149 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2461 ((-656 |#2|) |#1|)) (-15 -4347 (|#2| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4013 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1068) (-804)) (T -335))
+NIL
+(-10 -8 (-15 -3420 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2986 (|#1| |#1| |#1| (-783))) (-15 -2611 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4149 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2461 ((-656 |#2|) |#1|)) (-15 -4347 (|#2| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4013 (|#1| |#1| |#2|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-4397 (((-576) $) 99 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 96)) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-3420 (($ $) 84 (|has| |#1| (-464)))) (-2611 (($ $ |#1| |#2| $) 88)) (-1838 (((-112) $) 35)) (-1890 (((-783) $) 91)) (-1711 (((-112) $) 74)) (-2428 (($ |#1| |#2|) 73)) (-4389 ((|#2| $) 90)) (-4149 (($ (-1 |#2| |#2|) $) 89)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4336 (((-112) $) 94)) (-4347 ((|#1| $) 93)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-4436 ((|#2| $) 76)) (-4325 ((|#1| $) 85 (|has| |#1| (-464)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2461 (((-656 |#1|) $) 92)) (-4417 ((|#1| $ |#2|) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2986 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-336 |#1| |#2|) (-141) (-1068) (-804)) (T -336))
+((-4336 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-112)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-783)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-4149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-2611 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-2986 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *3 (-174)))) (-2825 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-568)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-464)))))
+(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -4336 ((-112) $)) (-15 -4347 (|t#1| $)) (-15 -2461 ((-656 |t#1|) $)) (-15 -1890 ((-783) $)) (-15 -4389 (|t#2| $)) (-15 -4149 ($ (-1 |t#2| |t#2|) $)) (-15 -2611 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2986 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -2825 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -4325 (|t#1| $)) (-15 -3420 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-4395 (((-112) (-112)) NIL)) (-3028 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) |#1|) $) NIL)) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3444 (($ $) NIL (|has| |#1| (-1119)))) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-1348 (($ $ (-576)) NIL)) (-2173 (((-783) $) NIL)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1932 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2329 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2865 (($ (-656 |#1|)) NIL)) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3804 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) NIL)) (-3925 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2865 ($ (-656 |#1|))) (-15 -2173 ((-783) $)) (-15 -1348 ($ $ (-576))) (-15 -4395 ((-112) (-112))))) (-1237)) (T -337))
+((-2865 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-337 *3)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) (-4395 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))))
+(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2865 ($ (-656 |#1|))) (-15 -2173 ((-783) $)) (-15 -1348 ($ $ (-576))) (-15 -4395 ((-112) (-112)))))
+((-1819 (((-112) $) 47)) (-4029 (((-783)) 23)) (-1462 ((|#2| $) 51) (($ $ (-938)) 121)) (-2422 (((-783)) 122)) (-2876 (($ (-1287 |#2|)) 20)) (-3776 (((-112) $) 134)) (-3075 ((|#2| $) 53) (($ $ (-938)) 118)) (-2510 (((-1192 |#2|) $) NIL) (((-1192 $) $ (-938)) 109)) (-2533 (((-1192 |#2|) $) 95)) (-4003 (((-1192 |#2|) $) 91) (((-3 (-1192 |#2|) "failed") $ $) 88)) (-4007 (($ $ (-1192 |#2|)) 58)) (-1651 (((-845 (-938))) 30) (((-938)) 48)) (-4340 (((-135)) 27)) (-4436 (((-845 (-938)) $) 32) (((-938) $) 137)) (-2496 (($) 128)) (-3392 (((-1287 |#2|) $) NIL) (((-701 |#2|) (-1287 $)) 42)) (-3689 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2576 (((-112) $) 45)))
+(((-338 |#1| |#2|) (-10 -8 (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -2422 ((-783))) (-15 -3689 (|#1| |#1|)) (-15 -4003 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -4003 ((-1192 |#2|) |#1|)) (-15 -2533 ((-1192 |#2|) |#1|)) (-15 -4007 (|#1| |#1| (-1192 |#2|))) (-15 -3776 ((-112) |#1|)) (-15 -2496 (|#1|)) (-15 -1462 (|#1| |#1| (-938))) (-15 -3075 (|#1| |#1| (-938))) (-15 -2510 ((-1192 |#1|) |#1| (-938))) (-15 -1462 (|#2| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -4436 ((-938) |#1|)) (-15 -1651 ((-938))) (-15 -2510 ((-1192 |#2|) |#1|)) (-15 -2876 (|#1| (-1287 |#2|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -4029 ((-783))) (-15 -1651 ((-845 (-938)))) (-15 -4436 ((-845 (-938)) |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -2576 ((-112) |#1|)) (-15 -4340 ((-135)))) (-339 |#2|) (-374)) (T -338))
+((-4340 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1651 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-938))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4029 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1651 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-938)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2422 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))))
+(-10 -8 (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -2422 ((-783))) (-15 -3689 (|#1| |#1|)) (-15 -4003 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -4003 ((-1192 |#2|) |#1|)) (-15 -2533 ((-1192 |#2|) |#1|)) (-15 -4007 (|#1| |#1| (-1192 |#2|))) (-15 -3776 ((-112) |#1|)) (-15 -2496 (|#1|)) (-15 -1462 (|#1| |#1| (-938))) (-15 -3075 (|#1| |#1| (-938))) (-15 -2510 ((-1192 |#1|) |#1| (-938))) (-15 -1462 (|#2| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -4436 ((-938) |#1|)) (-15 -1651 ((-938))) (-15 -2510 ((-1192 |#2|) |#1|)) (-15 -2876 (|#1| (-1287 |#2|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -4029 ((-783))) (-15 -1651 ((-845 (-938)))) (-15 -4436 ((-845 (-938)) |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -2576 ((-112) |#1|)) (-15 -4340 ((-135))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-1819 (((-112) $) 104)) (-4029 (((-783)) 100)) (-1462 ((|#1| $) 151) (($ $ (-938)) 148 (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-3417 (((-112) $ $) 65)) (-2422 (((-783)) 123 (|has| |#1| (-379)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 111)) (-4397 ((|#1| $) 112)) (-2876 (($ (-1287 |#1|)) 157)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2107 (($) 120 (|has| |#1| (-379)))) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3602 (($) 135 (|has| |#1| (-379)))) (-4429 (((-112) $) 136 (|has| |#1| (-379)))) (-2244 (($ $ (-783)) 97 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) 79)) (-2620 (((-938) $) 138 (|has| |#1| (-379))) (((-845 (-938)) $) 94 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) 35)) (-2010 (($) 146 (|has| |#1| (-379)))) (-3776 (((-112) $) 145 (|has| |#1| (-379)))) (-3075 ((|#1| $) 152) (($ $ (-938)) 149 (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2510 (((-1192 |#1|) $) 156) (((-1192 $) $ (-938)) 150 (|has| |#1| (-379)))) (-1654 (((-938) $) 121 (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) 142 (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) 143 (|has| |#1| (-379)))) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3448 (($) 125 (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) 122 (|has| |#1| (-379)))) (-2196 (((-112) $) 103)) (-3887 (((-1139) $) 11)) (-3633 (($) 144 (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 132 (|has| |#1| (-379)))) (-2367 (((-430 $) $) 82)) (-1651 (((-845 (-938))) 101) (((-938)) 154)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-3447 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) 109)) (-2399 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) 102) (((-938) $) 153)) (-1953 (((-1192 |#1|)) 155)) (-1861 (($) 134 (|has| |#1| (-379)))) (-2496 (($) 147 (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) 159) (((-701 |#1|) (-1287 $)) 158)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3689 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-4261 (((-1287 $)) 161) (((-1287 $) (-938)) 160)) (-3199 (((-112) $ $) 45)) (-2576 (((-112) $) 105)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-2086 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3404 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73) (($ $ |#1|) 108)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-339 |#1|) (-141) (-374)) (T -339))
+((-4261 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *3)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *4)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1287 *3)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) (-1953 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) (-1651 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2510 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1192 *1)) (-4 *1 (-339 *4)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2496 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2010 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-3633 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-4007 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))) (-4003 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))))
+(-13 (-1306 |t#1|) (-1057 |t#1|) (-10 -8 (-15 -4261 ((-1287 $))) (-15 -4261 ((-1287 $) (-938))) (-15 -3392 ((-1287 |t#1|) $)) (-15 -3392 ((-701 |t#1|) (-1287 $))) (-15 -2876 ($ (-1287 |t#1|))) (-15 -2510 ((-1192 |t#1|) $)) (-15 -1953 ((-1192 |t#1|))) (-15 -1651 ((-938))) (-15 -4436 ((-938) $)) (-15 -3075 (|t#1| $)) (-15 -1462 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -2510 ((-1192 $) $ (-938))) (-15 -3075 ($ $ (-938))) (-15 -1462 ($ $ (-938))) (-15 -2496 ($)) (-15 -2010 ($)) (-15 -3776 ((-112) $)) (-15 -3633 ($)) (-15 -4007 ($ $ (-1192 |t#1|))) (-15 -2533 ((-1192 |t#1|) $)) (-15 -4003 ((-1192 |t#1|) $)) (-15 -4003 ((-3 (-1192 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3739 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1306 |#1|) . T) ((-374) . T) ((-414) -3739 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-379)) ((-1237) |has| |#1| (-379)) ((-1241) . T) ((-1294 |#1|) . T))
+((-2835 (((-112) $ $) NIL)) (-4075 (($ (-1195) $) 100)) (-4198 (($) 89)) (-2954 (((-1139) (-1139)) 9)) (-3031 (($) 90)) (-1626 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-2497 (($ (-1195) $) 101)) (-1551 (($ (-656 (-874))) 91)) (-1928 (((-1292) $) 87)) (-1554 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1442 (($ (-1139)) 58)) (-4334 (((-1123) $) 30)) (-2373 (($ (-1111 (-969 (-576))) $) 97) (($ (-1111 (-969 (-576))) (-969 (-576)) $) 98)) (-2049 (($ (-1139)) 99)) (-1531 (($ (-1195) $) 129) (($ (-1195) $ $) 130)) (-3697 (($ (-1196) (-656 (-1196))) 88)) (-4279 (($ (-1178)) 94) (($ (-656 (-1178))) 92)) (-2858 (((-874) $) 132)) (-2556 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3001 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -3672 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -1822 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -1822 $))) (|:| |commonBranch| (-2 (|:| -1811 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874)))) $) 50)) (-4008 (($ (-1178)) 202)) (-4146 (($ (-656 $)) 128)) (-2690 (((-112) $ $) NIL)) (-3119 (($ (-1196) (-1178)) 135) (($ (-1196) (-326 (-713))) 175) (($ (-1196) (-326 (-711))) 176) (($ (-1196) (-326 (-706))) 177) (($ (-1196) (-701 (-713))) 138) (($ (-1196) (-701 (-711))) 141) (($ (-1196) (-701 (-706))) 144) (($ (-1196) (-1287 (-713))) 147) (($ (-1196) (-1287 (-711))) 150) (($ (-1196) (-1287 (-706))) 153) (($ (-1196) (-701 (-326 (-713)))) 156) (($ (-1196) (-701 (-326 (-711)))) 159) (($ (-1196) (-701 (-326 (-706)))) 162) (($ (-1196) (-1287 (-326 (-713)))) 165) (($ (-1196) (-1287 (-326 (-711)))) 168) (($ (-1196) (-1287 (-326 (-706)))) 171) (($ (-1196) (-656 (-969 (-576))) (-326 (-713))) 172) (($ (-1196) (-656 (-969 (-576))) (-326 (-711))) 173) (($ (-1196) (-656 (-969 (-576))) (-326 (-706))) 174) (($ (-1196) (-326 (-576))) 199) (($ (-1196) (-326 (-390))) 200) (($ (-1196) (-326 (-171 (-390)))) 201) (($ (-1196) (-701 (-326 (-576)))) 180) (($ (-1196) (-701 (-326 (-390)))) 183) (($ (-1196) (-701 (-326 (-171 (-390))))) 186) (($ (-1196) (-1287 (-326 (-576)))) 189) (($ (-1196) (-1287 (-326 (-390)))) 192) (($ (-1196) (-1287 (-326 (-171 (-390))))) 195) (($ (-1196) (-656 (-969 (-576))) (-326 (-576))) 196) (($ (-1196) (-656 (-969 (-576))) (-326 (-390))) 197) (($ (-1196) (-656 (-969 (-576))) (-326 (-171 (-390)))) 198)) (-3889 (((-112) $ $) NIL)))
+(((-340) (-13 (-1119) (-10 -8 (-15 -2373 ($ (-1111 (-969 (-576))) $)) (-15 -2373 ($ (-1111 (-969 (-576))) (-969 (-576)) $)) (-15 -4075 ($ (-1195) $)) (-15 -2497 ($ (-1195) $)) (-15 -1442 ($ (-1139))) (-15 -2049 ($ (-1139))) (-15 -4279 ($ (-1178))) (-15 -4279 ($ (-656 (-1178)))) (-15 -4008 ($ (-1178))) (-15 -1626 ($)) (-15 -1626 ($ (-326 (-711)))) (-15 -1626 ($ (-326 (-713)))) (-15 -1626 ($ (-326 (-706)))) (-15 -1626 ($ (-326 (-390)))) (-15 -1626 ($ (-326 (-576)))) (-15 -1626 ($ (-326 (-171 (-390))))) (-15 -1531 ($ (-1195) $)) (-15 -1531 ($ (-1195) $ $)) (-15 -3119 ($ (-1196) (-1178))) (-15 -3119 ($ (-1196) (-326 (-713)))) (-15 -3119 ($ (-1196) (-326 (-711)))) (-15 -3119 ($ (-1196) (-326 (-706)))) (-15 -3119 ($ (-1196) (-701 (-713)))) (-15 -3119 ($ (-1196) (-701 (-711)))) (-15 -3119 ($ (-1196) (-701 (-706)))) (-15 -3119 ($ (-1196) (-1287 (-713)))) (-15 -3119 ($ (-1196) (-1287 (-711)))) (-15 -3119 ($ (-1196) (-1287 (-706)))) (-15 -3119 ($ (-1196) (-701 (-326 (-713))))) (-15 -3119 ($ (-1196) (-701 (-326 (-711))))) (-15 -3119 ($ (-1196) (-701 (-326 (-706))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-713))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-711))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-706))))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-713)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-711)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-706)))) (-15 -3119 ($ (-1196) (-326 (-576)))) (-15 -3119 ($ (-1196) (-326 (-390)))) (-15 -3119 ($ (-1196) (-326 (-171 (-390))))) (-15 -3119 ($ (-1196) (-701 (-326 (-576))))) (-15 -3119 ($ (-1196) (-701 (-326 (-390))))) (-15 -3119 ($ (-1196) (-701 (-326 (-171 (-390)))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-576))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-390))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-171 (-390)))))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-576)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-390)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-171 (-390))))) (-15 -4146 ($ (-656 $))) (-15 -4198 ($)) (-15 -3031 ($)) (-15 -1551 ($ (-656 (-874)))) (-15 -3697 ($ (-1196) (-656 (-1196)))) (-15 -1554 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2556 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3001 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -3672 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -1822 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -1822 $))) (|:| |commonBranch| (-2 (|:| -1811 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -1928 ((-1292) $)) (-15 -4334 ((-1123) $)) (-15 -2954 ((-1139) (-1139)))))) (T -340))
+((-2373 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *1 (-340)))) (-2373 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *3 (-969 (-576))) (-5 *1 (-340)))) (-4075 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))) (-4279 (*1 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-340)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))) (-1626 (*1 *1) (-5 *1 (-340))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-1531 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-1531 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-713))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-711))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-706))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-711)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-706)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-576)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-390)))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-3119 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4198 (*1 *1) (-5 *1 (-340))) (-3031 (*1 *1) (-5 *1 (-340))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))) (-3697 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-340)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -3001 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -3672 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -1822 (-340)))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -1822 (-340)))) (|:| |commonBranch| (-2 (|:| -1811 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874))))) (-5 *1 (-340)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-340)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-340)))) (-2954 (*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))))
+(-13 (-1119) (-10 -8 (-15 -2373 ($ (-1111 (-969 (-576))) $)) (-15 -2373 ($ (-1111 (-969 (-576))) (-969 (-576)) $)) (-15 -4075 ($ (-1195) $)) (-15 -2497 ($ (-1195) $)) (-15 -1442 ($ (-1139))) (-15 -2049 ($ (-1139))) (-15 -4279 ($ (-1178))) (-15 -4279 ($ (-656 (-1178)))) (-15 -4008 ($ (-1178))) (-15 -1626 ($)) (-15 -1626 ($ (-326 (-711)))) (-15 -1626 ($ (-326 (-713)))) (-15 -1626 ($ (-326 (-706)))) (-15 -1626 ($ (-326 (-390)))) (-15 -1626 ($ (-326 (-576)))) (-15 -1626 ($ (-326 (-171 (-390))))) (-15 -1531 ($ (-1195) $)) (-15 -1531 ($ (-1195) $ $)) (-15 -3119 ($ (-1196) (-1178))) (-15 -3119 ($ (-1196) (-326 (-713)))) (-15 -3119 ($ (-1196) (-326 (-711)))) (-15 -3119 ($ (-1196) (-326 (-706)))) (-15 -3119 ($ (-1196) (-701 (-713)))) (-15 -3119 ($ (-1196) (-701 (-711)))) (-15 -3119 ($ (-1196) (-701 (-706)))) (-15 -3119 ($ (-1196) (-1287 (-713)))) (-15 -3119 ($ (-1196) (-1287 (-711)))) (-15 -3119 ($ (-1196) (-1287 (-706)))) (-15 -3119 ($ (-1196) (-701 (-326 (-713))))) (-15 -3119 ($ (-1196) (-701 (-326 (-711))))) (-15 -3119 ($ (-1196) (-701 (-326 (-706))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-713))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-711))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-706))))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-713)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-711)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-706)))) (-15 -3119 ($ (-1196) (-326 (-576)))) (-15 -3119 ($ (-1196) (-326 (-390)))) (-15 -3119 ($ (-1196) (-326 (-171 (-390))))) (-15 -3119 ($ (-1196) (-701 (-326 (-576))))) (-15 -3119 ($ (-1196) (-701 (-326 (-390))))) (-15 -3119 ($ (-1196) (-701 (-326 (-171 (-390)))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-576))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-390))))) (-15 -3119 ($ (-1196) (-1287 (-326 (-171 (-390)))))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-576)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-390)))) (-15 -3119 ($ (-1196) (-656 (-969 (-576))) (-326 (-171 (-390))))) (-15 -4146 ($ (-656 $))) (-15 -4198 ($)) (-15 -3031 ($)) (-15 -1551 ($ (-656 (-874)))) (-15 -3697 ($ (-1196) (-656 (-1196)))) (-15 -1554 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2556 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3001 (-112)) (|:| -4160 (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -3672 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -1822 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -1822 $))) (|:| |commonBranch| (-2 (|:| -1811 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -1928 ((-1292) $)) (-15 -4334 ((-1123) $)) (-15 -2954 ((-1139) (-1139)))))
+((-2835 (((-112) $ $) NIL)) (-3106 (((-112) $) 13)) (-3735 (($ |#1|) 10)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3748 (($ |#1|) 12)) (-2858 (((-874) $) 19)) (-2690 (((-112) $ $) NIL)) (-3248 ((|#1| $) 14)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 21)))
+(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -3735 ($ |#1|)) (-15 -3748 ($ |#1|)) (-15 -3106 ((-112) $)) (-15 -3248 (|#1| $)))) (-862)) (T -341))
+((-3735 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-3748 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-3248 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))))
+(-13 (-862) (-10 -8 (-15 -3735 ($ |#1|)) (-15 -3748 ($ |#1|)) (-15 -3106 ((-112) $)) (-15 -3248 (|#1| $))))
+((-3000 (((-340) (-1196) (-969 (-576))) 23)) (-3486 (((-340) (-1196) (-969 (-576))) 27)) (-1548 (((-340) (-1196) (-1111 (-969 (-576))) (-1111 (-969 (-576)))) 26) (((-340) (-1196) (-969 (-576)) (-969 (-576))) 24)) (-3514 (((-340) (-1196) (-969 (-576))) 31)))
+(((-342) (-10 -7 (-15 -3000 ((-340) (-1196) (-969 (-576)))) (-15 -1548 ((-340) (-1196) (-969 (-576)) (-969 (-576)))) (-15 -1548 ((-340) (-1196) (-1111 (-969 (-576))) (-1111 (-969 (-576))))) (-15 -3486 ((-340) (-1196) (-969 (-576)))) (-15 -3514 ((-340) (-1196) (-969 (-576)))))) (T -342))
+((-3514 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1548 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1111 (-969 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1548 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))))
+(-10 -7 (-15 -3000 ((-340) (-1196) (-969 (-576)))) (-15 -1548 ((-340) (-1196) (-969 (-576)) (-969 (-576)))) (-15 -1548 ((-340) (-1196) (-1111 (-969 (-576))) (-1111 (-969 (-576))))) (-15 -3486 ((-340) (-1196) (-969 (-576)))) (-15 -3514 ((-340) (-1196) (-969 (-576)))))
+((-2835 (((-112) $ $) NIL)) (-3843 (((-518) $) 20)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1354 (((-975 (-783)) $) 18)) (-1764 (((-256) $) 7)) (-2858 (((-874) $) 26)) (-3206 (((-975 (-185 (-140))) $) 16)) (-2690 (((-112) $ $) NIL)) (-3043 (((-656 (-885 (-1201) (-783))) $) 12)) (-3889 (((-112) $ $) 22)))
+(((-343) (-13 (-1119) (-10 -8 (-15 -1764 ((-256) $)) (-15 -3043 ((-656 (-885 (-1201) (-783))) $)) (-15 -1354 ((-975 (-783)) $)) (-15 -3206 ((-975 (-185 (-140))) $)) (-15 -3843 ((-518) $))))) (T -343))
+((-1764 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1201) (-783)))) (-5 *1 (-343)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-975 (-783))) (-5 *1 (-343)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-975 (-185 (-140)))) (-5 *1 (-343)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343)))))
+(-13 (-1119) (-10 -8 (-15 -1764 ((-256) $)) (-15 -3043 ((-656 (-885 (-1201) (-783))) $)) (-15 -1354 ((-975 (-783)) $)) (-15 -3206 ((-975 (-185 (-140))) $)) (-15 -3843 ((-518) $))))
+((-2548 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33)))
+(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2548 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1263 |#5|) (-1263 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11)))))
+(-10 -7 (-15 -2548 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|))))
+((-4209 (((-112) $) 14)))
+(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4209 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345))
+NIL
+(-10 -8 (-15 -4209 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2326 (($ $) 29)) (-4209 (((-112) $) 28)) (-2143 (((-1178) $) 10)) (-4052 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-3887 (((-1139) $) 11)) (-3633 (((-3 |#4| "failed") $) 27)) (-1875 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2294 (((-2 (|:| -2087 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24)))
+(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1263 |t#1|) (-1263 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346))
+((-4052 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1875 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1875 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1875 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1875 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1263 *2)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -2087 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-3633 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1875 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4052 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1875 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1875 ($ |t#4|)) (-15 -1875 ($ |t#1| |t#1|)) (-15 -1875 ($ |t#1| |t#1| (-576))) (-15 -2294 ((-2 (|:| -2087 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2326 ($ $)) (-15 -4209 ((-112) $)) (-15 -3633 ((-3 |t#4| "failed") $)) (-15 -1875 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2326 (($ $) 33)) (-4209 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-2092 (((-1287 |#4|) $) 134)) (-4052 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-3887 (((-1139) $) NIL)) (-3633 (((-3 |#4| "failed") $) 36)) (-2764 (((-1287 |#4|) $) 126)) (-1875 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2294 (((-2 (|:| -2087 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2858 (((-874) $) 17)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 14 T CONST)) (-3889 (((-112) $ $) 20)) (-4002 (($ $) 27) (($ $ $) NIL)) (-3990 (($ $ $) 25)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23)))
+(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2764 ((-1287 |#4|) $)) (-15 -2092 ((-1287 |#4|) $)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347))
+((-2764 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))))
+(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2764 ((-1287 |#4|) $)) (-15 -2092 ((-1287 |#4|) $))))
+((-3022 (($ $ (-1196) |#2|) NIL) (($ $ (-656 (-1196)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2099 (($ $ |#2|) 11)))
+(((-348 |#1| |#2|) (-10 -8 (-15 -2099 (|#1| |#1| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#2| |#2|)) (-15 -3022 (|#1| |#1| (-304 |#2|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 |#2|))) (-15 -3022 (|#1| |#1| (-1196) |#2|))) (-349 |#2|) (-1119)) (T -348))
+NIL
+(-10 -8 (-15 -2099 (|#1| |#1| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#2| |#2|)) (-15 -3022 (|#1| |#1| (-304 |#2|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 |#2|))) (-15 -3022 (|#1| |#1| (-1196) |#2|)))
+((-2548 (($ (-1 |#1| |#1|) $) 6)) (-3022 (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2099 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|)))))
+(((-349 |#1|) (-141) (-1119)) (T -349))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1119)))))
+(-13 (-10 -8 (-15 -2548 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1196) |t#1|)) (-6 (-526 (-1196) |t#1|)) |%noBranch|)))
+(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1237) |has| |#1| (-296 |#1| |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1196)) $) NIL)) (-3462 (((-112)) 96) (((-112) (-112)) 97)) (-4256 (((-656 (-624 $)) $) NIL)) (-3897 (($ $) NIL)) (-3760 (($ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1490 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2477 (($ $) NIL)) (-3871 (($ $) NIL)) (-3735 (($ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1196)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-419 (-969 (-576)))) 70 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-969 (-576))) 65 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1057 (-390)))) (((-3 $ "failed") (-419 (-969 (-390)))) 88 (|has| |#3| (-1057 (-390)))) (((-3 $ "failed") (-969 (-390))) 83 (|has| |#3| (-1057 (-390))))) (-4397 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1196)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1057 (-576)))) (($ (-419 (-969 (-576)))) 71 (|has| |#3| (-1057 (-576)))) (($ (-969 (-576))) 67 (|has| |#3| (-1057 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1057 (-390)))) (($ (-419 (-969 (-390)))) 89 (|has| |#3| (-1057 (-390)))) (($ (-969 (-390))) 85 (|has| |#3| (-1057 (-390))))) (-4011 (((-3 $ "failed") $) NIL)) (-1663 (($) 101)) (-1739 (($ $) NIL) (($ (-656 $)) NIL)) (-2538 (((-656 (-115)) $) NIL)) (-2569 (((-115) (-115)) NIL)) (-1838 (((-112) $) NIL)) (-2531 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2658 (((-1192 $) (-624 $)) NIL (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) NIL)) (-2412 (((-3 (-624 $) "failed") $) NIL)) (-3346 (($ $) 99)) (-3437 (($ $) NIL)) (-2143 (((-1178) $) NIL)) (-2555 (((-656 (-624 $)) $) NIL)) (-1706 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-2729 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-3317 (((-783) $) NIL)) (-3887 (((-1139) $) NIL)) (-2788 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-2656 (($ $) NIL)) (-3945 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3022 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2099 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1321 (($ $) NIL) (($ $ $) NIL)) (-2399 (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-1953 (($ $) NIL (|has| $ (-1068)))) (-3883 (($ $) NIL)) (-3748 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-2981 (((-783)) NIL T CONST)) (-2435 (($ $) NIL) (($ (-656 $)) NIL)) (-3410 (((-112) (-115)) NIL)) (-2690 (((-112) $ $) NIL)) (-3826 (($ $) NIL)) (-3802 (($ $) NIL)) (-3813 (($ $) NIL)) (-3680 (($ $) NIL)) (-2022 (($) 100 T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL)))
+(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1057 |#3|) (-915 (-1196)) (-10 -8 (-15 -4397 ($ (-326 |#3|))) (-15 -2454 ((-3 $ "failed") (-326 |#3|))) (-15 -4397 ($ (-1196))) (-15 -2454 ((-3 $ "failed") (-1196))) (-15 -2858 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-576))) (PROGN (-15 -4397 ($ (-326 (-576)))) (-15 -2454 ((-3 $ "failed") (-326 (-576)))) (-15 -4397 ($ (-419 (-969 (-576))))) (-15 -2454 ((-3 $ "failed") (-419 (-969 (-576))))) (-15 -4397 ($ (-969 (-576)))) (-15 -2454 ((-3 $ "failed") (-969 (-576))))) |%noBranch|) (IF (|has| |#3| (-1057 (-390))) (PROGN (-15 -4397 ($ (-326 (-390)))) (-15 -2454 ((-3 $ "failed") (-326 (-390)))) (-15 -4397 ($ (-419 (-969 (-390))))) (-15 -2454 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -4397 ($ (-969 (-390)))) (-15 -2454 ((-3 $ "failed") (-969 (-390))))) |%noBranch|) (-15 -3680 ($ $)) (-15 -2477 ($ $)) (-15 -2656 ($ $)) (-15 -3437 ($ $)) (-15 -3346 ($ $)) (-15 -3735 ($ $)) (-15 -3748 ($ $)) (-15 -3760 ($ $)) (-15 -3802 ($ $)) (-15 -3813 ($ $)) (-15 -3826 ($ $)) (-15 -3871 ($ $)) (-15 -3883 ($ $)) (-15 -3897 ($ $)) (-15 -1663 ($)) (-15 -1634 ((-656 (-1196)) $)) (-15 -3462 ((-112))) (-15 -3462 ((-112) (-112))))) (-656 (-1196)) (-656 (-1196)) (-399)) (T -350))
+((-4397 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-3680 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2477 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2656 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3346 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3735 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3748 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3760 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3826 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3871 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3883 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3897 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-1663 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-3462 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))))
+(-13 (-312) (-38 |#3|) (-1057 |#3|) (-915 (-1196)) (-10 -8 (-15 -4397 ($ (-326 |#3|))) (-15 -2454 ((-3 $ "failed") (-326 |#3|))) (-15 -4397 ($ (-1196))) (-15 -2454 ((-3 $ "failed") (-1196))) (-15 -2858 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-576))) (PROGN (-15 -4397 ($ (-326 (-576)))) (-15 -2454 ((-3 $ "failed") (-326 (-576)))) (-15 -4397 ($ (-419 (-969 (-576))))) (-15 -2454 ((-3 $ "failed") (-419 (-969 (-576))))) (-15 -4397 ($ (-969 (-576)))) (-15 -2454 ((-3 $ "failed") (-969 (-576))))) |%noBranch|) (IF (|has| |#3| (-1057 (-390))) (PROGN (-15 -4397 ($ (-326 (-390)))) (-15 -2454 ((-3 $ "failed") (-326 (-390)))) (-15 -4397 ($ (-419 (-969 (-390))))) (-15 -2454 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -4397 ($ (-969 (-390)))) (-15 -2454 ((-3 $ "failed") (-969 (-390))))) |%noBranch|) (-15 -3680 ($ $)) (-15 -2477 ($ $)) (-15 -2656 ($ $)) (-15 -3437 ($ $)) (-15 -3346 ($ $)) (-15 -3735 ($ $)) (-15 -3748 ($ $)) (-15 -3760 ($ $)) (-15 -3802 ($ $)) (-15 -3813 ($ $)) (-15 -3826 ($ $)) (-15 -3871 ($ $)) (-15 -3883 ($ $)) (-15 -3897 ($ $)) (-15 -1663 ($)) (-15 -1634 ((-656 (-1196)) $)) (-15 -3462 ((-112))) (-15 -3462 ((-112) (-112)))))
+((-2548 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2548 (|#8| (-1 |#5| |#1|) |#4|))) (-1241) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1241) (-1263 |#5|) (-1263 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1263 (-419 *9))))))
+(-10 -7 (-15 -2548 (|#8| (-1 |#5| |#1|) |#4|)))
+((-4231 (((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) $) 39)) (-2876 (($ (-1287 (-419 |#3|)) (-1287 $)) NIL) (($ (-1287 (-419 |#3|))) NIL) (($ (-1287 |#3|) |#3|) 173)) (-1728 (((-1287 $) (-1287 $)) 156)) (-2688 (((-656 (-656 |#2|))) 126)) (-2830 (((-112) |#2| |#2|) 76)) (-3420 (($ $) 148)) (-2719 (((-783)) 172)) (-3814 (((-1287 $) (-1287 $)) 218)) (-1716 (((-656 (-969 |#2|)) (-1196)) 115)) (-1524 (((-112) $) 169)) (-3630 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2598 (((-3 |#3| "failed")) 52)) (-3088 (((-783)) 184)) (-2099 ((|#2| $ |#2| |#2|) 140)) (-1624 (((-3 |#3| "failed")) 71)) (-2399 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-1477 (((-1287 $) (-1287 $)) 162)) (-2632 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-4418 (((-112)) 34)))
+(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2688 ((-656 (-656 |#2|)))) (-15 -1716 ((-656 (-969 |#2|)) (-1196))) (-15 -2632 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2598 ((-3 |#3| "failed"))) (-15 -1624 ((-3 |#3| "failed"))) (-15 -2099 (|#2| |#1| |#2| |#2|)) (-15 -3420 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3630 ((-112) |#1| |#3|)) (-15 -3630 ((-112) |#1| |#2|)) (-15 -2876 (|#1| (-1287 |#3|) |#3|)) (-15 -4231 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1728 ((-1287 |#1|) (-1287 |#1|))) (-15 -3814 ((-1287 |#1|) (-1287 |#1|))) (-15 -1477 ((-1287 |#1|) (-1287 |#1|))) (-15 -3630 ((-112) |#1|)) (-15 -1524 ((-112) |#1|)) (-15 -2830 ((-112) |#2| |#2|)) (-15 -4418 ((-112))) (-15 -3088 ((-783))) (-15 -2719 ((-783))) (-15 -2399 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2399 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2876 (|#1| (-1287 (-419 |#3|)))) (-15 -2876 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|)))) (-353 |#2| |#3| |#4|) (-1241) (-1263 |#2|) (-1263 (-419 |#3|))) (T -352))
+((-2719 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3088 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-4418 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2830 (*1 *2 *3 *3) (-12 (-4 *3 (-1241)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-1624 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2598 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-656 (-969 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-2688 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))))
+(-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2688 ((-656 (-656 |#2|)))) (-15 -1716 ((-656 (-969 |#2|)) (-1196))) (-15 -2632 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2598 ((-3 |#3| "failed"))) (-15 -1624 ((-3 |#3| "failed"))) (-15 -2099 (|#2| |#1| |#2| |#2|)) (-15 -3420 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3630 ((-112) |#1| |#3|)) (-15 -3630 ((-112) |#1| |#2|)) (-15 -2876 (|#1| (-1287 |#3|) |#3|)) (-15 -4231 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1728 ((-1287 |#1|) (-1287 |#1|))) (-15 -3814 ((-1287 |#1|) (-1287 |#1|))) (-15 -1477 ((-1287 |#1|) (-1287 |#1|))) (-15 -3630 ((-112) |#1|)) (-15 -1524 ((-112) |#1|)) (-15 -2830 ((-112) |#2| |#2|)) (-15 -4418 ((-112))) (-15 -3088 ((-783))) (-15 -2719 ((-783))) (-15 -2399 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2399 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2876 (|#1| (-1287 (-419 |#3|)))) (-15 -2876 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-4231 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 209)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-2150 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-2637 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-3940 (((-701 (-419 |#2|)) (-1287 $)) 53) (((-701 (-419 |#2|))) 68)) (-1462 (((-419 |#2|) $) 59)) (-1398 (((-1209 (-938) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-2464 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-3417 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2422 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-3515 (((-112)) 226)) (-3133 (((-112) |#1|) 225) (((-112) |#2|) 224)) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 183 (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 181 (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 178)) (-4397 (((-576) $) 182 (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) 180 (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) 179)) (-2876 (($ (-1287 (-419 |#2|)) (-1287 $)) 55) (($ (-1287 (-419 |#2|))) 71) (($ (-1287 |#2|) |#2|) 208)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-2780 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-3313 (((-701 (-419 |#2|)) $ (-1287 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-2085 (((-701 (-576)) (-1287 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 175 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) 174) (((-701 (-419 |#2|)) (-701 $)) 173) (((-701 (-419 |#2|)) (-1287 $)) 172)) (-1728 (((-1287 $) (-1287 $)) 214)) (-2326 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-4011 (((-3 $ "failed") $) 37)) (-2688 (((-656 (-656 |#1|))) 195 (|has| |#1| (-379)))) (-2830 (((-112) |#1| |#1|) 230)) (-4422 (((-938)) 61)) (-2107 (($) 102 (|has| (-419 |#2|) (-379)))) (-2768 (((-112)) 223)) (-3907 (((-112) |#1|) 222) (((-112) |#2|) 221)) (-2790 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-3420 (($ $) 201)) (-3602 (($) 160 (|has| (-419 |#2|) (-360)))) (-4429 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-2244 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-3011 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-2620 (((-938) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) 149 (|has| (-419 |#2|) (-360)))) (-1838 (((-112) $) 35)) (-2719 (((-783)) 233)) (-3814 (((-1287 $) (-1287 $)) 215)) (-3075 (((-419 |#2|) $) 58)) (-1716 (((-656 (-969 |#1|)) (-1196)) 196 (|has| |#1| (-374)))) (-3397 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-2510 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-1654 (((-938) $) 101 (|has| (-419 |#2|) (-379)))) (-2315 ((|#3| $) 167)) (-3862 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-2143 (((-1178) $) 10)) (-2939 (((-701 (-419 |#2|))) 210)) (-4413 (((-701 (-419 |#2|))) 212)) (-4324 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-2132 (($ (-1287 |#2|) |#2|) 206)) (-3235 (((-701 (-419 |#2|))) 211)) (-2115 (((-701 (-419 |#2|))) 213)) (-2959 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 205)) (-4242 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 207)) (-2383 (((-1287 $)) 219)) (-1666 (((-1287 $)) 220)) (-1524 (((-112) $) 218)) (-3630 (((-112) $) 217) (((-112) $ |#1|) 204) (((-112) $ |#2|) 203)) (-3448 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-4308 (($ (-938)) 100 (|has| (-419 |#2|) (-379)))) (-2598 (((-3 |#2| "failed")) 198)) (-3887 (((-1139) $) 11)) (-3088 (((-783)) 232)) (-3633 (($) 171)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 113 (|has| (-419 |#2|) (-374)))) (-3901 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-2367 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-2825 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-3076 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-2099 ((|#1| $ |#1| |#1|) 200)) (-1624 (((-3 |#2| "failed")) 199)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-3880 (((-419 |#2|) (-1287 $)) 54) (((-419 |#2|)) 67)) (-3447 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2399 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 202) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196) (-783)) 140 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1196))) 139 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196)) 137 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-3200 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-3200 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4370 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-1953 ((|#3|) 170)) (-1861 (($) 159 (|has| (-419 |#2|) (-360)))) (-3392 (((-1287 (-419 |#2|)) $ (-1287 $)) 57) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) 56) (((-1287 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1287 $)) 72)) (-2610 (((-1287 (-419 |#2|)) $) 70) (($ (-1287 (-419 |#2|))) 69) ((|#3| $) 184) (($ |#3|) 168)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-1477 (((-1287 $) (-1287 $)) 216)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-3739 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1057 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-3689 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-2528 ((|#3| $) 52)) (-2981 (((-783)) 32 T CONST)) (-3816 (((-112)) 229)) (-3252 (((-112) |#1|) 228) (((-112) |#2|) 227)) (-2690 (((-112) $ $) 9)) (-4261 (((-1287 $)) 74)) (-3199 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-2632 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 197)) (-4418 (((-112)) 231)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196) (-783)) 143 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1196))) 142 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196)) 138 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-3200 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-3200 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-3739 (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-3200 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-3200 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374)))))
+(((-353 |#1| |#2| |#3|) (-141) (-1241) (-1263 |t#1|) (-1263 (-419 |t#2|))) (T -353))
+((-2719 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) (-3088 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) (-4418 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2830 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3816 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3252 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3252 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-3515 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3133 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3133 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-2768 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3907 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3907 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-1666 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2383 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-2115 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4413 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3235 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2939 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-2876 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-4242 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-2132 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-3630 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3630 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-2399 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-2099 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-1624 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-2598 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-2632 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1241)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-969 *4))))) (-2688 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3))))))
+(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -2719 ((-783))) (-15 -3088 ((-783))) (-15 -4418 ((-112))) (-15 -2830 ((-112) |t#1| |t#1|)) (-15 -3816 ((-112))) (-15 -3252 ((-112) |t#1|)) (-15 -3252 ((-112) |t#2|)) (-15 -3515 ((-112))) (-15 -3133 ((-112) |t#1|)) (-15 -3133 ((-112) |t#2|)) (-15 -2768 ((-112))) (-15 -3907 ((-112) |t#1|)) (-15 -3907 ((-112) |t#2|)) (-15 -1666 ((-1287 $))) (-15 -2383 ((-1287 $))) (-15 -1524 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -1477 ((-1287 $) (-1287 $))) (-15 -3814 ((-1287 $) (-1287 $))) (-15 -1728 ((-1287 $) (-1287 $))) (-15 -2115 ((-701 (-419 |t#2|)))) (-15 -4413 ((-701 (-419 |t#2|)))) (-15 -3235 ((-701 (-419 |t#2|)))) (-15 -2939 ((-701 (-419 |t#2|)))) (-15 -4231 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2876 ($ (-1287 |t#2|) |t#2|)) (-15 -4242 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2132 ($ (-1287 |t#2|) |t#2|)) (-15 -2959 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3630 ((-112) $ |t#1|)) (-15 -3630 ((-112) $ |t#2|)) (-15 -2399 ($ $ (-1 |t#2| |t#2|))) (-15 -3420 ($ $)) (-15 -2099 (|t#1| $ |t#1| |t#1|)) (-15 -1624 ((-3 |t#2| "failed"))) (-15 -2598 ((-3 |t#2| "failed"))) (-15 -2632 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -1716 ((-656 (-969 |t#1|)) (-1196))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -2688 ((-656 (-656 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -3739 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -3739 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -3739 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -3739 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -3739 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-909 $ #3=(-1196)) -3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196))))) ((-915 (-1196)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) ((-917 #3#) -3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196))))) ((-937) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1057 (-419 (-576))) |has| (-419 |#2|) (-1057 (-419 (-576)))) ((-1057 #1#) . T) ((-1057 (-576)) |has| (-419 |#2|) (-1057 (-576))) ((-1070 #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1070 #1#) . T) ((-1070 $) . T) ((-1075 #0#) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1075 #1#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| (-419 |#2|) (-360)) ((-1237) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1241) -3739 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-927 |#1|) "failed") $) NIL)) (-4397 (((-927 |#1|) $) NIL)) (-2876 (($ (-1287 (-927 |#1|))) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-927 |#1|) (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| (-927 |#1|) (-379)))) (-4429 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| (-927 |#1|) (-379)))) (-3776 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-3075 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 (-927 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1654 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-2533 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-4003 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1192 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-4007 (($ $ (-1192 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-2930 (((-975 (-1139))) NIL)) (-3633 (($) NIL (|has| (-927 |#1|) (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 (-927 |#1|))) NIL)) (-1861 (($) NIL (|has| (-927 |#1|) (-379)))) (-2496 (($) NIL (|has| (-927 |#1|) (-379)))) (-3392 (((-1287 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-3689 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-3404 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL)))
+(((-354 |#1| |#2|) (-13 (-339 (-927 |#1|)) (-10 -7 (-15 -2930 ((-975 (-1139)))))) (-938) (-938)) (T -354))
+((-2930 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-354 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))))
+(-13 (-339 (-927 |#1|)) (-10 -7 (-15 -2930 ((-975 (-1139))))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 58)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 142)) (-4397 ((|#1| $) 113)) (-2876 (($ (-1287 |#1|)) 130)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) 124 (|has| |#1| (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) 160 (|has| |#1| (-379)))) (-4429 (((-112) $) 66 (|has| |#1| (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) 60 (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) 62)) (-2010 (($) 162 (|has| |#1| (-379)))) (-3776 (((-112) $) NIL (|has| |#1| (-379)))) (-3075 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 |#1|) $) 117) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1654 (((-938) $) 171 (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 178)) (-3448 (($) NIL (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) 96 (|has| |#1| (-379)))) (-2196 (((-112) $) 147)) (-3887 (((-1139) $) NIL)) (-2930 (((-975 (-1139))) 57)) (-3633 (($) 158 (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 119 (|has| |#1| (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) 90) (((-938)) 91)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 |#1|)) 122)) (-1861 (($) 159 (|has| |#1| (-379)))) (-2496 (($) 167 (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) 77) (((-701 |#1|) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3689 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) 155 T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) 144) (((-1287 $) (-938)) 98)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) 67 T CONST)) (-2038 (($) 103 T CONST)) (-2086 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3404 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3889 (((-112) $ $) 65)) (-4013 (($ $ $) 176) (($ $ |#1|) 177)) (-4002 (($ $) 157) (($ $ $) NIL)) (-3990 (($ $ $) 86)) (** (($ $ (-938)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175)))
+(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2930 ((-975 (-1139)))))) (-360) (-1192 |#1|)) (T -355))
+((-2930 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1192 *3)))))
+(-13 (-339 |#1|) (-10 -7 (-15 -2930 ((-975 (-1139))))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-2876 (($ (-1287 |#1|)) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| |#1| (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| |#1| (-379)))) (-4429 (((-112) $) NIL (|has| |#1| (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| |#1| (-379)))) (-3776 (((-112) $) NIL (|has| |#1| (-379)))) (-3075 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-2930 (((-975 (-1139))) NIL)) (-3633 (($) NIL (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| |#1| (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 |#1|)) NIL)) (-1861 (($) NIL (|has| |#1| (-379)))) (-2496 (($) NIL (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3689 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3404 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2930 ((-975 (-1139)))))) (-360) (-938)) (T -356))
+((-2930 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))))
+(-13 (-339 |#1|) (-10 -7 (-15 -2930 ((-975 (-1139))))))
+((-3352 (((-783) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) 61)) (-3163 (((-975 (-1139)) (-1192 |#1|)) 112)) (-3768 (((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) (-1192 |#1|)) 103)) (-2748 (((-701 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) 113)) (-2650 (((-3 (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) "failed") (-938)) 13)) (-1879 (((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) (-938)) 18)))
+(((-357 |#1|) (-10 -7 (-15 -3163 ((-975 (-1139)) (-1192 |#1|))) (-15 -3768 ((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) (-1192 |#1|))) (-15 -2748 ((-701 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -3352 ((-783) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -2650 ((-3 (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) "failed") (-938))) (-15 -1879 ((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) (-938)))) (-360)) (T -357))
+((-1879 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-3 (-1192 *4) (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2650 (*1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-5 *2 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139)))))) (-5 *1 (-357 *4)))) (-3163 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-975 (-1139))) (-5 *1 (-357 *4)))))
+(-10 -7 (-15 -3163 ((-975 (-1139)) (-1192 |#1|))) (-15 -3768 ((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) (-1192 |#1|))) (-15 -2748 ((-701 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -3352 ((-783) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -2650 ((-3 (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) "failed") (-938))) (-15 -1879 ((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) (-938))))
+((-2858 ((|#1| |#3|) 104) ((|#3| |#1|) 87)))
+(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -2858 (|#3| |#1|)) (-15 -2858 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358))
+((-2858 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-2858 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4)))))
+(-10 -7 (-15 -2858 (|#3| |#1|)) (-15 -2858 (|#1| |#3|)))
+((-4429 (((-112) $) 60)) (-2620 (((-845 (-938)) $) 23) (((-938) $) 64)) (-3397 (((-3 $ "failed") $) 18)) (-3448 (($) 9)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 114)) (-3447 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-2399 (($ $) 8) (($ $ (-783)) NIL)) (-1861 (($) 53)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 38)) (-3689 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-359 |#1|) (-10 -8 (-15 -2620 ((-938) |#1|)) (-15 -3447 ((-783) |#1|)) (-15 -4429 ((-112) |#1|)) (-15 -1861 (|#1|)) (-15 -1874 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3689 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -3447 ((-3 (-783) "failed") |#1| |#1|)) (-15 -2620 ((-845 (-938)) |#1|)) (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-360)) (T -359))
+NIL
+(-10 -8 (-15 -2620 ((-938) |#1|)) (-15 -3447 ((-783) |#1|)) (-15 -4429 ((-112) |#1|)) (-15 -1861 (|#1|)) (-15 -1874 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3689 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -3447 ((-3 (-783) "failed") |#1| |#1|)) (-15 -2620 ((-845 (-938)) |#1|)) (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-1398 (((-1209 (-938) (-783)) (-576)) 102)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-3417 (((-112) $ $) 65)) (-2422 (((-783)) 112)) (-2574 (($) 18 T CONST)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2107 (($) 115)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3602 (($) 100)) (-4429 (((-112) $) 99)) (-2244 (($ $) 87) (($ $ (-783)) 86)) (-3011 (((-112) $) 79)) (-2620 (((-845 (-938)) $) 89) (((-938) $) 97)) (-1838 (((-112) $) 35)) (-3397 (((-3 $ "failed") $) 111)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1654 (((-938) $) 114)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3448 (($) 110 T CONST)) (-4308 (($ (-938)) 113)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 103)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-3447 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-2399 (($ $) 109) (($ $ (-783)) 107)) (-1861 (($) 101)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 104)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3689 (((-3 $ "failed") $) 90) (($ $) 105)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $) 108) (($ $ (-783)) 106)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-360) (-141)) (T -360))
+((-3689 (*1 *1 *1) (-4 *1 (-360))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1287 *1)))) (-1481 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))))) (-1398 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1209 (-938) (-783))))) (-1861 (*1 *1) (-4 *1 (-360))) (-3602 (*1 *1) (-4 *1 (-360))) (-4429 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-938)))) (-2108 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-414) (-379) (-1171) (-238) (-10 -8 (-15 -3689 ($ $)) (-15 -1874 ((-3 (-1287 $) "failed") (-701 $))) (-15 -1481 ((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576)))))) (-15 -1398 ((-1209 (-938) (-783)) (-576))) (-15 -1861 ($)) (-15 -3602 ($)) (-15 -4429 ((-112) $)) (-15 -3447 ((-783) $)) (-15 -2620 ((-938) $)) (-15 -2108 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) . T) ((-1237) . T) ((-1241) . T))
+((-2784 (((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-1666 (((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53)))
+(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -1666 ((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2784 ((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))) (-1263 |#1|) (-421 |#1| |#2|)) (T -361))
+((-2784 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1666 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(-10 -7 (-15 -1666 ((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2784 ((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3352 (((-783)) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-927 |#1|) "failed") $) NIL)) (-4397 (((-927 |#1|) $) NIL)) (-2876 (($ (-1287 (-927 |#1|))) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-927 |#1|) (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| (-927 |#1|) (-379)))) (-4429 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| (-927 |#1|) (-379)))) (-3776 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-3075 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 (-927 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1654 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-2533 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-4003 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1192 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-4007 (($ $ (-1192 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-4381 (((-1287 (-656 (-2 (|:| -4160 (-927 |#1|)) (|:| -4308 (-1139)))))) NIL)) (-2771 (((-701 (-927 |#1|))) NIL)) (-3633 (($) NIL (|has| (-927 |#1|) (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 (-927 |#1|))) NIL)) (-1861 (($) NIL (|has| (-927 |#1|) (-379)))) (-2496 (($) NIL (|has| (-927 |#1|) (-379)))) (-3392 (((-1287 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-3689 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-3404 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL)))
+(((-362 |#1| |#2|) (-13 (-339 (-927 |#1|)) (-10 -7 (-15 -4381 ((-1287 (-656 (-2 (|:| -4160 (-927 |#1|)) (|:| -4308 (-1139))))))) (-15 -2771 ((-701 (-927 |#1|)))) (-15 -3352 ((-783))))) (-938) (-938)) (T -362))
+((-4381 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -4160 (-927 *3)) (|:| -4308 (-1139)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-2771 (*1 *2) (-12 (-5 *2 (-701 (-927 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3352 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))))
+(-13 (-339 (-927 |#1|)) (-10 -7 (-15 -4381 ((-1287 (-656 (-2 (|:| -4160 (-927 |#1|)) (|:| -4308 (-1139))))))) (-15 -2771 ((-701 (-927 |#1|)))) (-15 -3352 ((-783)))))
+((-2835 (((-112) $ $) 73)) (-3203 (((-112) $) 88)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 ((|#1| $) 106) (($ $ (-938)) 104 (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3352 (((-783)) 103)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) 187 (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 127)) (-4397 ((|#1| $) 105)) (-2876 (($ (-1287 |#1|)) 71)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) 182 (|has| |#1| (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) 171 (|has| |#1| (-379)))) (-4429 (((-112) $) NIL (|has| |#1| (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) 113 (|has| |#1| (-379)))) (-3776 (((-112) $) 200 (|has| |#1| (-379)))) (-3075 ((|#1| $) 108) (($ $ (-938)) 107 (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 |#1|) $) 214) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1654 (((-938) $) 148 (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) 87 (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) 83 (|has| |#1| (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 218)) (-3448 (($) NIL (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) 150 (|has| |#1| (-379)))) (-2196 (((-112) $) 123)) (-3887 (((-1139) $) NIL)) (-4381 (((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) 97)) (-2771 (((-701 |#1|)) 101)) (-3633 (($) 110 (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 173 (|has| |#1| (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) 174)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) 75)) (-1953 (((-1192 |#1|)) 175)) (-1861 (($) 147 (|has| |#1| (-379)))) (-2496 (($) NIL (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) 121) (((-701 |#1|) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3689 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) 180 T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) 197) (((-1287 $) (-938)) 116)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) 186 T CONST)) (-2038 (($) 161 T CONST)) (-2086 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-3404 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3889 (((-112) $ $) 208)) (-4013 (($ $ $) 119) (($ $ |#1|) 120)) (-4002 (($ $) 202) (($ $ $) 206)) (-3990 (($ $ $) 204)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118)))
+(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -4381 ((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -2771 ((-701 |#1|))) (-15 -3352 ((-783))))) (-360) (-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (T -363))
+((-4381 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) *2)))) (-2771 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139))))))))) (-3352 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139))))))))))
+(-13 (-339 |#1|) (-10 -7 (-15 -4381 ((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -2771 ((-701 |#1|))) (-15 -3352 ((-783)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3352 (((-783)) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-2876 (($ (-1287 |#1|)) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| |#1| (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| |#1| (-379)))) (-4429 (((-112) $) NIL (|has| |#1| (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| |#1| (-379)))) (-3776 (((-112) $) NIL (|has| |#1| (-379)))) (-3075 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-4381 (((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139)))))) NIL)) (-2771 (((-701 |#1|)) NIL)) (-3633 (($) NIL (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| |#1| (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 |#1|)) NIL)) (-1861 (($) NIL (|has| |#1| (-379)))) (-2496 (($) NIL (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3689 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3404 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -4381 ((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -2771 ((-701 |#1|))) (-15 -3352 ((-783))))) (-360) (-938)) (T -364))
+((-4381 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))) (-2771 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))) (-3352 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))))
+(-13 (-339 |#1|) (-10 -7 (-15 -4381 ((-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))))) (-15 -2771 ((-701 |#1|))) (-15 -3352 ((-783)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-927 |#1|) "failed") $) NIL)) (-4397 (((-927 |#1|) $) NIL)) (-2876 (($ (-1287 (-927 |#1|))) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-927 |#1|) (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| (-927 |#1|) (-379)))) (-4429 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| (-927 |#1|) (-379)))) (-3776 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-3075 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 (-927 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1654 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-2533 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-4003 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1192 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-4007 (($ $ (-1192 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-3633 (($) NIL (|has| (-927 |#1|) (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 (-927 |#1|))) NIL)) (-1861 (($) NIL (|has| (-927 |#1|) (-379)))) (-2496 (($) NIL (|has| (-927 |#1|) (-379)))) (-3392 (((-1287 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-3689 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-3404 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL)))
+(((-365 |#1| |#2|) (-339 (-927 |#1|)) (-938) (-938)) (T -365))
+NIL
+(-339 (-927 |#1|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) 155 (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 103)) (-4397 ((|#1| $) 100)) (-2876 (($ (-1287 |#1|)) 95)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) 92 (|has| |#1| (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) 51 (|has| |#1| (-379)))) (-4429 (((-112) $) NIL (|has| |#1| (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) 130 (|has| |#1| (-379)))) (-3776 (((-112) $) 84 (|has| |#1| (-379)))) (-3075 ((|#1| $) 47) (($ $ (-938)) 52 (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 |#1|) $) 75) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1654 (((-938) $) 107 (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) 105 (|has| |#1| (-379)))) (-2196 (((-112) $) 157)) (-3887 (((-1139) $) NIL)) (-3633 (($) 44 (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 124 (|has| |#1| (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) 154)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) 67)) (-1953 (((-1192 |#1|)) 98)) (-1861 (($) 135 (|has| |#1| (-379)))) (-2496 (($) NIL (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) 63) (((-701 |#1|) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3689 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) 159 T CONST)) (-2690 (((-112) $ $) 161)) (-4261 (((-1287 $)) 119) (((-1287 $) (-938)) 58)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) 121 T CONST)) (-2038 (($) 40 T CONST)) (-2086 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3404 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3889 (((-112) $ $) 117)) (-4013 (($ $ $) 109) (($ $ |#1|) 110)) (-4002 (($ $) 90) (($ $ $) 115)) (-3990 (($ $ $) 113)) (** (($ $ (-938)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86)))
+(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1192 |#1|)) (T -366))
+NIL
+(-339 |#1|)
+((-2267 ((|#1| (-1192 |#2|)) 59)))
+(((-367 |#1| |#2|) (-10 -7 (-15 -2267 (|#1| (-1192 |#2|)))) (-13 (-414) (-10 -7 (-15 -2858 (|#1| |#2|)) (-15 -1654 ((-938) |#1|)) (-15 -4261 ((-1287 |#1|) (-938))) (-15 -2086 (|#1| |#1|)))) (-360)) (T -367))
+((-2267 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -2858 (*2 *4)) (-15 -1654 ((-938) *2)) (-15 -4261 ((-1287 *2) (-938))) (-15 -2086 (*2 *2))))) (-5 *1 (-367 *2 *4)))))
+(-10 -7 (-15 -2267 (|#1| (-1192 |#2|))))
+((-1896 (((-975 (-1192 |#1|)) (-1192 |#1|)) 49)) (-2107 (((-1192 |#1|) (-938) (-938)) 154) (((-1192 |#1|) (-938)) 150)) (-4429 (((-112) (-1192 |#1|)) 107)) (-2130 (((-938) (-938)) 85)) (-1980 (((-938) (-938)) 92)) (-4248 (((-938) (-938)) 83)) (-3776 (((-112) (-1192 |#1|)) 111)) (-2884 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 135)) (-1797 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 140)) (-3703 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 139)) (-1443 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 138)) (-2629 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 131)) (-2599 (((-1192 |#1|) (-1192 |#1|)) 71)) (-1323 (((-1192 |#1|) (-938)) 145)) (-2209 (((-1192 |#1|) (-938)) 148)) (-4156 (((-1192 |#1|) (-938)) 147)) (-2662 (((-1192 |#1|) (-938)) 146)) (-4322 (((-1192 |#1|) (-938)) 143)))
+(((-368 |#1|) (-10 -7 (-15 -4429 ((-112) (-1192 |#1|))) (-15 -3776 ((-112) (-1192 |#1|))) (-15 -4248 ((-938) (-938))) (-15 -2130 ((-938) (-938))) (-15 -1980 ((-938) (-938))) (-15 -4322 ((-1192 |#1|) (-938))) (-15 -1323 ((-1192 |#1|) (-938))) (-15 -2662 ((-1192 |#1|) (-938))) (-15 -4156 ((-1192 |#1|) (-938))) (-15 -2209 ((-1192 |#1|) (-938))) (-15 -2629 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2884 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1443 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -3703 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1797 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2107 ((-1192 |#1|) (-938))) (-15 -2107 ((-1192 |#1|) (-938) (-938))) (-15 -2599 ((-1192 |#1|) (-1192 |#1|))) (-15 -1896 ((-975 (-1192 |#1|)) (-1192 |#1|)))) (-360)) (T -368))
+((-1896 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-975 (-1192 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1192 *4)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2107 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1797 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3703 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1443 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2884 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2629 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2130 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-4429 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))))
+(-10 -7 (-15 -4429 ((-112) (-1192 |#1|))) (-15 -3776 ((-112) (-1192 |#1|))) (-15 -4248 ((-938) (-938))) (-15 -2130 ((-938) (-938))) (-15 -1980 ((-938) (-938))) (-15 -4322 ((-1192 |#1|) (-938))) (-15 -1323 ((-1192 |#1|) (-938))) (-15 -2662 ((-1192 |#1|) (-938))) (-15 -4156 ((-1192 |#1|) (-938))) (-15 -2209 ((-1192 |#1|) (-938))) (-15 -2629 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2884 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1443 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -3703 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1797 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2107 ((-1192 |#1|) (-938))) (-15 -2107 ((-1192 |#1|) (-938) (-938))) (-15 -2599 ((-1192 |#1|) (-1192 |#1|))) (-15 -1896 ((-975 (-1192 |#1|)) (-1192 |#1|))))
+((-1667 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38)))
+(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -1667 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1263 |#1|) (-1263 |#2|)) (T -369))
+((-1667 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))))
+(-10 -7 (-15 -1667 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-2876 (($ (-1287 |#1|)) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| |#1| (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| |#1| (-379)))) (-4429 (((-112) $) NIL (|has| |#1| (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| |#1| (-379)))) (-3776 (((-112) $) NIL (|has| |#1| (-379)))) (-3075 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-2533 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4003 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4007 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| |#1| (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-3633 (($) NIL (|has| |#1| (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| |#1| (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 |#1|)) NIL)) (-1861 (($) NIL (|has| |#1| (-379)))) (-2496 (($) NIL (|has| |#1| (-379)))) (-3392 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3689 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-3404 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-370 |#1| |#2|) (-339 |#1|) (-360) (-938)) (T -370))
+NIL
+(-339 |#1|)
+((-1691 (((-112) (-656 (-969 |#1|))) 41)) (-3966 (((-656 (-969 |#1|)) (-656 (-969 |#1|))) 53)) (-3138 (((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|))) 48)))
+(((-371 |#1| |#2|) (-10 -7 (-15 -1691 ((-112) (-656 (-969 |#1|)))) (-15 -3138 ((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|)))) (-15 -3966 ((-656 (-969 |#1|)) (-656 (-969 |#1|))))) (-464) (-656 (-1196))) (T -371))
+((-3966 (*1 *2 *2) (-12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) (-3138 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1196))))))
+(-10 -7 (-15 -1691 ((-112) (-656 (-969 |#1|)))) (-15 -3138 ((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|)))) (-15 -3966 ((-656 (-969 |#1|)) (-656 (-969 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783) $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) 17)) (-3601 ((|#1| $ (-576)) NIL)) (-1478 (((-576) $ (-576)) NIL)) (-2124 (($ (-1 |#1| |#1|) $) 34)) (-1898 (($ (-1 (-576) (-576)) $) 26)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 28)) (-3887 (((-1139) $) NIL)) (-1603 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-576)))) $) 30)) (-2480 (($ $ $) NIL)) (-2220 (($ $ $) NIL)) (-2858 (((-874) $) 40) (($ |#1|) NIL)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 11 T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-372 |#1|) (-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2422 ((-783) $)) (-15 -1478 ((-576) $ (-576))) (-15 -3601 (|#1| $ (-576))) (-15 -1898 ($ (-1 (-576) (-576)) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (-15 -1603 ((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-576)))) $)))) (-1119)) (T -372))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-1478 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-372 *3)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1119)))))
+(-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2422 ((-783) $)) (-15 -1478 ((-576) $ (-576))) (-15 -3601 (|#1| $ (-576))) (-15 -1898 ($ (-1 (-576) (-576)) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)) (-15 -1603 ((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-576)))) $))))
+((-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 13)) (-2150 (($ $) 14)) (-2464 (((-430 $) $) 34)) (-3011 (((-112) $) 30)) (-4324 (($ $) 19)) (-3901 (($ $ $) 25) (($ (-656 $)) NIL)) (-2367 (((-430 $) $) 35)) (-2825 (((-3 $ "failed") $ $) 24)) (-3076 (((-783) $) 28)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 39)) (-3199 (((-112) $ $) 16)) (-4013 (($ $ $) 37)))
+(((-373 |#1|) (-10 -8 (-15 -4013 (|#1| |#1| |#1|)) (-15 -4324 (|#1| |#1|)) (-15 -3011 ((-112) |#1|)) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3684 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -3076 ((-783) |#1|)) (-15 -3901 (|#1| (-656 |#1|))) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3199 ((-112) |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -3149 ((-2 (|:| -2857 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373))
+NIL
+(-10 -8 (-15 -4013 (|#1| |#1| |#1|)) (-15 -4324 (|#1| |#1|)) (-15 -3011 ((-112) |#1|)) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3684 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -3076 ((-783) |#1|)) (-15 -3901 (|#1| (-656 |#1|))) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3199 ((-112) |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -3149 ((-2 (|:| -2857 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3011 (((-112) $) 79)) (-1838 (((-112) $) 35)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-374) (-141)) (T -374))
+((-4013 (*1 *1 *1 *1) (-4 *1 (-374))))
+(-13 (-317) (-1241) (-248) (-10 -8 (-15 -4013 ($ $ $)) (-6 -4460) (-6 -4454)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-2835 (((-112) $ $) 7)) (-3070 ((|#2| $ |#2|) 14)) (-4031 (($ $ (-1178)) 19)) (-1720 ((|#2| $) 15)) (-2952 (($ |#1|) 21) (($ |#1| (-1178)) 20)) (-1811 ((|#1| $) 17)) (-2143 (((-1178) $) 10)) (-2403 (((-1178) $) 16)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-1723 (($ $) 18)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-375 |#1| |#2|) (-141) (-1119) (-1119)) (T -375))
+((-2952 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2952 (*1 *1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1119)) (-4 *4 (-1119)))) (-4031 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-1723 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-1178)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-3070 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -2952 ($ |t#1|)) (-15 -2952 ($ |t#1| (-1178))) (-15 -4031 ($ $ (-1178))) (-15 -1723 ($ $)) (-15 -1811 (|t#1| $)) (-15 -2403 ((-1178) $)) (-15 -1720 (|t#2| $)) (-15 -3070 (|t#2| $ |t#2|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3070 ((|#1| $ |#1|) 31)) (-4031 (($ $ (-1178)) 23)) (-2019 (((-3 |#1| "failed") $) 30)) (-1720 ((|#1| $) 28)) (-2952 (($ (-400)) 22) (($ (-400) (-1178)) 21)) (-1811 (((-400) $) 25)) (-2143 (((-1178) $) NIL)) (-2403 (((-1178) $) 26)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 20)) (-1723 (($ $) 24)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 19)))
+(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -2019 ((-3 |#1| "failed") $)))) (-1119)) (T -376))
+((-2019 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1119)))))
+(-13 (-375 (-400) |#1|) (-10 -8 (-15 -2019 ((-3 |#1| "failed") $))))
+((-3685 (((-1287 (-701 |#2|)) (-1287 $)) 67)) (-1877 (((-701 |#2|) (-1287 $)) 139)) (-4036 ((|#2| $) 36)) (-2343 (((-701 |#2|) $ (-1287 $)) 142)) (-2100 (((-3 $ "failed") $) 89)) (-3136 ((|#2| $) 39)) (-2276 (((-1192 |#2|) $) 98)) (-3335 ((|#2| (-1287 $)) 122)) (-2950 (((-1192 |#2|) $) 32)) (-2965 (((-112)) 116)) (-2876 (($ (-1287 |#2|) (-1287 $)) 132)) (-4011 (((-3 $ "failed") $) 93)) (-2298 (((-112)) 111)) (-4393 (((-112)) 106)) (-3037 (((-112)) 58)) (-2213 (((-701 |#2|) (-1287 $)) 137)) (-2436 ((|#2| $) 35)) (-4409 (((-701 |#2|) $ (-1287 $)) 141)) (-3080 (((-3 $ "failed") $) 87)) (-2815 ((|#2| $) 38)) (-4205 (((-1192 |#2|) $) 97)) (-1659 ((|#2| (-1287 $)) 120)) (-4015 (((-1192 |#2|) $) 30)) (-1783 (((-112)) 115)) (-3167 (((-112)) 108)) (-3215 (((-112)) 56)) (-1480 (((-112)) 103)) (-3801 (((-112)) 117)) (-3392 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) 128)) (-1332 (((-112)) 113)) (-3308 (((-656 (-1287 |#2|))) 102)) (-1883 (((-112)) 114)) (-3072 (((-112)) 112)) (-1430 (((-112)) 51)) (-3044 (((-112)) 118)))
+(((-377 |#1| |#2|) (-10 -8 (-15 -2276 ((-1192 |#2|) |#1|)) (-15 -4205 ((-1192 |#2|) |#1|)) (-15 -3308 ((-656 (-1287 |#2|)))) (-15 -2100 ((-3 |#1| "failed") |#1|)) (-15 -3080 ((-3 |#1| "failed") |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 -4393 ((-112))) (-15 -3167 ((-112))) (-15 -2298 ((-112))) (-15 -3215 ((-112))) (-15 -3037 ((-112))) (-15 -1480 ((-112))) (-15 -3044 ((-112))) (-15 -3801 ((-112))) (-15 -2965 ((-112))) (-15 -1783 ((-112))) (-15 -1430 ((-112))) (-15 -1883 ((-112))) (-15 -3072 ((-112))) (-15 -1332 ((-112))) (-15 -2950 ((-1192 |#2|) |#1|)) (-15 -4015 ((-1192 |#2|) |#1|)) (-15 -1877 ((-701 |#2|) (-1287 |#1|))) (-15 -2213 ((-701 |#2|) (-1287 |#1|))) (-15 -3335 (|#2| (-1287 |#1|))) (-15 -1659 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3136 (|#2| |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -4036 (|#2| |#1|)) (-15 -2436 (|#2| |#1|)) (-15 -2343 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -4409 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3685 ((-1287 (-701 |#2|)) (-1287 |#1|)))) (-378 |#2|) (-174)) (T -377))
+((-1332 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3072 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1430 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1783 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2965 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3801 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3044 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1480 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3037 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3215 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2298 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3167 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4393 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3308 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1287 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))))
+(-10 -8 (-15 -2276 ((-1192 |#2|) |#1|)) (-15 -4205 ((-1192 |#2|) |#1|)) (-15 -3308 ((-656 (-1287 |#2|)))) (-15 -2100 ((-3 |#1| "failed") |#1|)) (-15 -3080 ((-3 |#1| "failed") |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 -4393 ((-112))) (-15 -3167 ((-112))) (-15 -2298 ((-112))) (-15 -3215 ((-112))) (-15 -3037 ((-112))) (-15 -1480 ((-112))) (-15 -3044 ((-112))) (-15 -3801 ((-112))) (-15 -2965 ((-112))) (-15 -1783 ((-112))) (-15 -1430 ((-112))) (-15 -1883 ((-112))) (-15 -3072 ((-112))) (-15 -1332 ((-112))) (-15 -2950 ((-1192 |#2|) |#1|)) (-15 -4015 ((-1192 |#2|) |#1|)) (-15 -1877 ((-701 |#2|) (-1287 |#1|))) (-15 -2213 ((-701 |#2|) (-1287 |#1|))) (-15 -3335 (|#2| (-1287 |#1|))) (-15 -1659 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3136 (|#2| |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -4036 (|#2| |#1|)) (-15 -2436 (|#2| |#1|)) (-15 -2343 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -4409 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3685 ((-1287 (-701 |#2|)) (-1287 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2857 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) 20)) (-3685 (((-1287 (-701 |#1|)) (-1287 $)) 83)) (-3142 (((-1287 $)) 86)) (-2574 (($) 18 T CONST)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-1985 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-1877 (((-701 |#1|) (-1287 $)) 70)) (-4036 ((|#1| $) 79)) (-2343 (((-701 |#1|) $ (-1287 $)) 81)) (-2100 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-4139 (($ $ (-938)) 31)) (-3136 ((|#1| $) 77)) (-2276 (((-1192 |#1|) $) 47 (|has| |#1| (-568)))) (-3335 ((|#1| (-1287 $)) 72)) (-2950 (((-1192 |#1|) $) 68)) (-2965 (((-112)) 62)) (-2876 (($ (-1287 |#1|) (-1287 $)) 74)) (-4011 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4422 (((-938)) 85)) (-1834 (((-112)) 59)) (-4141 (($ $ (-938)) 38)) (-2298 (((-112)) 55)) (-4393 (((-112)) 53)) (-3037 (((-112)) 57)) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3426 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2213 (((-701 |#1|) (-1287 $)) 71)) (-2436 ((|#1| $) 80)) (-4409 (((-701 |#1|) $ (-1287 $)) 82)) (-3080 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1406 (($ $ (-938)) 32)) (-2815 ((|#1| $) 78)) (-4205 (((-1192 |#1|) $) 48 (|has| |#1| (-568)))) (-1659 ((|#1| (-1287 $)) 73)) (-4015 (((-1192 |#1|) $) 69)) (-1783 (((-112)) 63)) (-2143 (((-1178) $) 10)) (-3167 (((-112)) 54)) (-3215 (((-112)) 56)) (-1480 (((-112)) 58)) (-3887 (((-1139) $) 11)) (-3801 (((-112)) 61)) (-3392 (((-1287 |#1|) $ (-1287 $)) 76) (((-701 |#1|) (-1287 $) (-1287 $)) 75)) (-3501 (((-656 (-969 |#1|)) (-1287 $)) 84)) (-2220 (($ $ $) 28)) (-1332 (((-112)) 67)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3308 (((-656 (-1287 |#1|))) 49 (|has| |#1| (-568)))) (-2591 (($ $ $ $) 29)) (-1883 (((-112)) 65)) (-2407 (($ $ $) 27)) (-3072 (((-112)) 66)) (-1430 (((-112)) 64)) (-3044 (((-112)) 60)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-378 |#1|) (-141) (-174)) (T -378))
+((-3142 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-378 *3)))) (-4422 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-938)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))))) (-4409 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3392 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1287 *4)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))) (-1332 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3072 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1883 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1430 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1783 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2965 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3801 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3044 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1834 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1480 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3037 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3215 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2298 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3167 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4393 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4011 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3080 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2100 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3308 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1287 *3))))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1192 *3)))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1192 *3)))) (-1434 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4261 (-656 *1)))) (-4 *1 (-378 *3)))) (-3510 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4261 (-656 *1)))) (-4 *1 (-378 *3)))) (-3426 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-1985 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2857 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))))
+(-13 (-756 |t#1|) (-10 -8 (-15 -3142 ((-1287 $))) (-15 -4422 ((-938))) (-15 -3501 ((-656 (-969 |t#1|)) (-1287 $))) (-15 -3685 ((-1287 (-701 |t#1|)) (-1287 $))) (-15 -4409 ((-701 |t#1|) $ (-1287 $))) (-15 -2343 ((-701 |t#1|) $ (-1287 $))) (-15 -2436 (|t#1| $)) (-15 -4036 (|t#1| $)) (-15 -2815 (|t#1| $)) (-15 -3136 (|t#1| $)) (-15 -3392 ((-1287 |t#1|) $ (-1287 $))) (-15 -3392 ((-701 |t#1|) (-1287 $) (-1287 $))) (-15 -2876 ($ (-1287 |t#1|) (-1287 $))) (-15 -1659 (|t#1| (-1287 $))) (-15 -3335 (|t#1| (-1287 $))) (-15 -2213 ((-701 |t#1|) (-1287 $))) (-15 -1877 ((-701 |t#1|) (-1287 $))) (-15 -4015 ((-1192 |t#1|) $)) (-15 -2950 ((-1192 |t#1|) $)) (-15 -1332 ((-112))) (-15 -3072 ((-112))) (-15 -1883 ((-112))) (-15 -1430 ((-112))) (-15 -1783 ((-112))) (-15 -2965 ((-112))) (-15 -3801 ((-112))) (-15 -3044 ((-112))) (-15 -1834 ((-112))) (-15 -1480 ((-112))) (-15 -3037 ((-112))) (-15 -3215 ((-112))) (-15 -2298 ((-112))) (-15 -3167 ((-112))) (-15 -4393 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -4011 ((-3 $ "failed") $)) (-15 -3080 ((-3 $ "failed") $)) (-15 -2100 ((-3 $ "failed") $)) (-15 -3308 ((-656 (-1287 |t#1|)))) (-15 -4205 ((-1192 |t#1|) $)) (-15 -2276 ((-1192 |t#1|) $)) (-15 -1434 ((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed"))) (-15 -3510 ((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed"))) (-15 -3426 ((-3 $ "failed"))) (-15 -1985 ((-3 $ "failed"))) (-15 -2857 ((-3 $ "failed"))) (-6 -4459)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-2422 (((-783)) 17)) (-2107 (($) 14)) (-1654 (((-938) $) 15)) (-2143 (((-1178) $) 10)) (-4308 (($ (-938)) 16)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-379) (-141)) (T -379))
+((-2422 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-4308 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-379)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-938)))) (-2107 (*1 *1) (-4 *1 (-379))))
+(-13 (-1119) (-10 -8 (-15 -2422 ((-783))) (-15 -4308 ($ (-938))) (-15 -1654 ((-938) $)) (-15 -2107 ($))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-3940 (((-701 |#2|) (-1287 $)) 45)) (-2876 (($ (-1287 |#2|) (-1287 $)) 39)) (-3313 (((-701 |#2|) $ (-1287 $)) 47)) (-3880 ((|#2| (-1287 $)) 13)) (-3392 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) 27)))
+(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -3940 ((-701 |#2|) (-1287 |#1|))) (-15 -3880 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3313 ((-701 |#2|) |#1| (-1287 |#1|)))) (-381 |#2| |#3|) (-174) (-1263 |#2|)) (T -380))
+NIL
+(-10 -8 (-15 -3940 ((-701 |#2|) (-1287 |#1|))) (-15 -3880 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3313 ((-701 |#2|) |#1| (-1287 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3940 (((-701 |#1|) (-1287 $)) 53)) (-1462 ((|#1| $) 59)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2876 (($ (-1287 |#1|) (-1287 $)) 55)) (-3313 (((-701 |#1|) $ (-1287 $)) 60)) (-4011 (((-3 $ "failed") $) 37)) (-4422 (((-938)) 61)) (-1838 (((-112) $) 35)) (-3075 ((|#1| $) 58)) (-2510 ((|#2| $) 51 (|has| |#1| (-374)))) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-3880 ((|#1| (-1287 $)) 54)) (-3392 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3689 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2528 ((|#2| $) 52)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-381 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -381))
+((-4422 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-938)))) (-3313 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-3392 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) (-3392 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-2876 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1263 *4)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1263 *2)) (-4 *2 (-174)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1263 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -4422 ((-938))) (-15 -3313 ((-701 |t#1|) $ (-1287 $))) (-15 -1462 (|t#1| $)) (-15 -3075 (|t#1| $)) (-15 -3392 ((-1287 |t#1|) $ (-1287 $))) (-15 -3392 ((-701 |t#1|) (-1287 $) (-1287 $))) (-15 -2876 ($ (-1287 |t#1|) (-1287 $))) (-15 -3880 (|t#1| (-1287 $))) (-15 -3940 ((-701 |t#1|) (-1287 $))) (-15 -2528 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -2510 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-4244 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2326 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2548 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2326 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4244 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1237) (-384 |#1|) (-1237) (-384 |#3|)) (T -382))
+((-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))))
+(-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2326 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4244 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3429 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1426 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2059 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4374 (($ $) 25)) (-2627 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-3343 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-383 |#1| |#2|) (-10 -8 (-15 -1426 (|#1| |#1|)) (-15 -1426 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3429 ((-112) |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3343 (|#1| |#1| |#1|)) (-15 -2627 ((-576) |#2| |#1| (-576))) (-15 -2627 ((-576) |#2| |#1|)) (-15 -2627 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3429 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2059 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -3343 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1237)) (T -383))
+NIL
+(-10 -8 (-15 -1426 (|#1| |#1|)) (-15 -1426 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3429 ((-112) |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3343 (|#1| |#1| |#1|)) (-15 -2627 ((-576) |#2| |#1| (-576))) (-15 -2627 ((-576) |#2| |#1|)) (-15 -2627 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3429 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2059 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -3343 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-2338 (($ $) 93 (|has| $ (-6 -4463)))) (-4374 (($ $) 103)) (-3229 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 52)) (-2627 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 90 (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 89 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 43 (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4040 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 72)) (-1534 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3944 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-384 |#1|) (-141) (-1237)) (T -384))
+((-3343 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)))) (-2059 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-3429 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-2627 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) (-5 *2 (-576)))) (-2627 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-576)))) (-2627 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)))) (-3343 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) (-2059 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-862)) (-5 *2 (-112)))) (-3272 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-2338 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237)))) (-1426 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4463)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-1426 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))))
+(-13 (-663 |t#1|) (-10 -8 (-6 -4462) (-15 -3343 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4374 ($ $)) (-15 -2059 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3429 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2627 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -2627 ((-576) |t#1| $)) (-15 -2627 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -3343 ($ $ $)) (-15 -2059 ($ $)) (-15 -3429 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3272 ($ $ $ (-576))) (-15 -2338 ($ $)) (-15 -1426 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -1426 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3463 (((-656 |#1|) $) 37)) (-2067 (($ $ (-783)) 38)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-3478 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 41)) (-1419 (($ $) 39)) (-1504 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 42)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-3022 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-4436 (((-783) $) 43)) (-2869 (($ $ $) 34)) (-2858 (((-874) $) 12) (($ |#1|) 46) (((-1302 |#1| |#2|) $) 45) (((-1311 |#1| |#2|) $) 44)) (-1788 ((|#2| (-1311 |#1| |#2|) $) 47)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2806 (($ (-684 |#1|)) 40)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+(((-385 |#1| |#2|) (-141) (-862) (-174)) (T -385))
+((-1788 (*1 *2 *3 *1) (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-2858 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1302 *3 *4)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1311 *3 *4)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-783)))) (-1504 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3478 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2067 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-3022 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174)))))
+(-13 (-646 |t#2|) (-10 -8 (-15 -1788 (|t#2| (-1311 |t#1| |t#2|) $)) (-15 -2858 ($ |t#1|)) (-15 -2858 ((-1302 |t#1| |t#2|) $)) (-15 -2858 ((-1311 |t#1| |t#2|) $)) (-15 -4436 ((-783) $)) (-15 -1504 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -3478 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -2806 ($ (-684 |t#1|))) (-15 -1419 ($ $)) (-15 -2067 ($ $ (-783))) (-15 -3463 ((-656 |t#1|) $)) (-15 -3022 ($ $ |t#1| $)) (-15 -3022 ($ $ (-656 |t#1|) (-656 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1119) . T))
+((-4314 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-2237 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3115 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33)))
+(((-386 |#1| |#2|) (-10 -7 (-15 -2237 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3115 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4314 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1237) (-13 (-384 |#1|) (-10 -7 (-6 -4463)))) (T -386))
+((-4314 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))) (-3115 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))) (-2237 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))))
+(-10 -7 (-15 -2237 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3115 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4314 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-2085 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 22) (((-701 (-576)) (-701 $)) 14) (((-701 (-576)) (-1287 $)) NIL)))
+(((-387 |#1| |#2|) (-10 -8 (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-701 |#2|) (-1287 |#1|)))) (-388 |#2|) (-1068)) (T -387))
+NIL
+(-10 -8 (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-701 |#2|) (-1287 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2085 (((-701 |#1|) (-1287 $)) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 29) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 38 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1287 $)) 37 (|has| |#1| (-651 (-576))))) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27)))
+(((-388 |#1|) (-141) (-1068)) (T -388))
+NIL
+(-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1119) . T))
+((-1876 (((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|) 41)) (-3073 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1196)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|) 18)))
+(((-389 |#1|) (-10 -7 (-15 -1876 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -1876 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|)) (-15 -1876 ((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -1876 ((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -3073 ((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -3073 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1196)) |#1|))) (-13 (-374) (-860))) (T -389))
+((-3073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 (-171 (-576)))))) (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -1876 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -1876 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|)) (-15 -1876 ((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -1876 ((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -3073 ((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -3073 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1196)) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 35)) (-1463 (((-576) $) 62)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3019 (($ $) 136)) (-3897 (($ $) 98)) (-3760 (($ $) 90)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-2477 (($ $) 47)) (-3417 (((-112) $ $) NIL)) (-3871 (($ $) 96)) (-3735 (($ $) 85)) (-1727 (((-576) $) 78)) (-3598 (($ $ (-576)) 73)) (-1542 (($ $) NIL)) (-3781 (($ $) NIL)) (-2574 (($) NIL T CONST)) (-3251 (($ $) 138)) (-2454 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-4397 (((-576) $) 229) (((-419 (-576)) $) 225)) (-2780 (($ $ $) NIL)) (-4275 (((-576) $ $) 125)) (-4011 (((-3 $ "failed") $) 141)) (-2902 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1518 (((-938)) 121) (((-938) (-938)) 122 (|has| $ (-6 -4453)))) (-2127 (((-112) $) 130)) (-1663 (($) 41)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-4341 (((-1292) (-783)) 191)) (-2792 (((-1292)) 196) (((-1292) (-783)) 197)) (-3081 (((-1292)) 198) (((-1292) (-783)) 199)) (-3500 (((-1292)) 194) (((-1292) (-783)) 195)) (-2620 (((-576) $) 68)) (-1838 (((-112) $) 40)) (-1404 (($ $ (-576)) NIL)) (-3485 (($ $) 51)) (-3075 (($ $) NIL)) (-3196 (((-112) $) 37)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL) (($) NIL (-12 (-3189 (|has| $ (-6 -4445))) (-3189 (|has| $ (-6 -4453)))))) (-1492 (($ $ $) NIL) (($) NIL (-12 (-3189 (|has| $ (-6 -4445))) (-3189 (|has| $ (-6 -4453)))))) (-3637 (((-576) $) 17)) (-2628 (($) 106) (($ $) 113)) (-3346 (($) 112) (($ $) 114)) (-3437 (($ $) 101)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 143)) (-1468 (((-938) (-576)) 46 (|has| $ (-6 -4453)))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) 60)) (-3807 (($ $) 135)) (-1562 (($ (-576) (-576)) 131) (($ (-576) (-576) (-938)) 132)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2273 (((-576) $) 19)) (-2943 (($) 115)) (-2656 (($ $) 95)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-4107 (((-938)) 123) (((-938) (-938)) 124 (|has| $ (-6 -4453)))) (-2399 (($ $) 142) (($ $ (-783)) NIL)) (-2535 (((-938) (-576)) 50 (|has| $ (-6 -4453)))) (-1553 (($ $) NIL)) (-3791 (($ $) NIL)) (-3911 (($ $) NIL)) (-3771 (($ $) NIL)) (-3883 (($ $) 97)) (-3748 (($ $) 89)) (-2610 (((-390) $) 216) (((-227) $) 218) (((-905 (-390)) $) NIL) (((-1178) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-2858 (((-874) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-2981 (((-783)) NIL T CONST)) (-3156 (($ $) 137)) (-1568 (((-938)) 61) (((-938) (-938)) 80 (|has| $ (-6 -4453)))) (-2690 (((-112) $ $) NIL)) (-1572 (((-938)) 126)) (-1593 (($ $) 104)) (-3826 (($ $) 49) (($ $ $) 59)) (-3199 (((-112) $ $) NIL)) (-1567 (($ $) 102)) (-3802 (($ $) 39)) (-1620 (($ $) NIL)) (-3847 (($ $) NIL)) (-2888 (($ $) NIL)) (-3859 (($ $) NIL)) (-1609 (($ $) NIL)) (-3837 (($ $) NIL)) (-1578 (($ $) 103)) (-3813 (($ $) 52)) (-3680 (($ $) 58)) (-2022 (($) 36 T CONST)) (-2038 (($) 43 T CONST)) (-1445 (((-1178) $) 27) (((-1178) $ (-112)) 29) (((-1292) (-834) $) 30) (((-1292) (-834) $ (-112)) 31)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3956 (((-112) $ $) 203)) (-3930 (((-112) $ $) 45)) (-3889 (((-112) $ $) 56)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 57)) (-4013 (($ $ $) 48) (($ $ (-576)) 42)) (-4002 (($ $) 38) (($ $ $) 53)) (-3990 (($ $ $) 72)) (** (($ $ (-938)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-938) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-390) (-13 (-416) (-238) (-626 (-1178)) (-840) (-625 (-227)) (-1222) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4013 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3485 ($ $)) (-15 -4275 ((-576) $ $)) (-15 -3598 ($ $ (-576))) (-15 -2902 ((-419 (-576)) $ (-783))) (-15 -2902 ((-419 (-576)) $ (-783) (-783))) (-15 -2628 ($)) (-15 -3346 ($)) (-15 -2943 ($)) (-15 -3826 ($ $ $)) (-15 -2628 ($ $)) (-15 -3346 ($ $)) (-15 -3081 ((-1292))) (-15 -3081 ((-1292) (-783))) (-15 -3500 ((-1292))) (-15 -3500 ((-1292) (-783))) (-15 -2792 ((-1292))) (-15 -2792 ((-1292) (-783))) (-15 -4341 ((-1292) (-783))) (-6 -4453) (-6 -4445)))) (T -390))
+((** (*1 *1 *1 *1) (-5 *1 (-390))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3485 (*1 *1 *1) (-5 *1 (-390))) (-4275 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2628 (*1 *1) (-5 *1 (-390))) (-3346 (*1 *1) (-5 *1 (-390))) (-2943 (*1 *1) (-5 *1 (-390))) (-3826 (*1 *1 *1 *1) (-5 *1 (-390))) (-2628 (*1 *1 *1) (-5 *1 (-390))) (-3346 (*1 *1 *1) (-5 *1 (-390))) (-3081 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-3500 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-2792 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))))
+(-13 (-416) (-238) (-626 (-1178)) (-840) (-625 (-227)) (-1222) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4013 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3485 ($ $)) (-15 -4275 ((-576) $ $)) (-15 -3598 ($ $ (-576))) (-15 -2902 ((-419 (-576)) $ (-783))) (-15 -2902 ((-419 (-576)) $ (-783) (-783))) (-15 -2628 ($)) (-15 -3346 ($)) (-15 -2943 ($)) (-15 -3826 ($ $ $)) (-15 -2628 ($ $)) (-15 -3346 ($ $)) (-15 -3081 ((-1292))) (-15 -3081 ((-1292) (-783))) (-15 -3500 ((-1292))) (-15 -3500 ((-1292) (-783))) (-15 -2792 ((-1292))) (-15 -2792 ((-1292) (-783))) (-15 -4341 ((-1292) (-783))) (-6 -4453) (-6 -4445)))
+((-2783 (((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|) 46) (((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|) 45) (((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|) 36)) (-3597 (((-656 |#1|) (-419 (-969 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1196)) |#1|) 30)))
+(((-391 |#1|) (-10 -7 (-15 -2783 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|)) (-15 -2783 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|)) (-15 -2783 ((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|)) (-15 -2783 ((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|)) (-15 -3597 ((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1196)) |#1|)) (-15 -3597 ((-656 |#1|) (-419 (-969 (-576))) |#1|))) (-13 (-860) (-374))) (T -391))
+((-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 (-576))))) (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 (-576)))))) (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))))
+(-10 -7 (-15 -2783 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|)) (-15 -2783 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|)) (-15 -2783 ((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|)) (-15 -2783 ((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|)) (-15 -3597 ((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1196)) |#1|)) (-15 -3597 ((-656 |#1|) (-419 (-969 (-576))) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) 30)) (-4397 ((|#2| $) 32)) (-4404 (($ $) NIL)) (-1890 (((-783) $) 11)) (-2936 (((-656 $) $) 23)) (-1711 (((-112) $) NIL)) (-3667 (($ |#2| |#1|) 21)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1652 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4366 ((|#2| $) 18)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 51) (($ |#2|) 31)) (-2461 (((-656 |#1|) $) 20)) (-4417 ((|#1| $ |#2|) 55)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 33 T CONST)) (-1754 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1068) (-862)) (T -392))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862)))))
+(-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#2| "failed") $) 49)) (-4397 ((|#2| $) 50)) (-4404 (($ $) 35)) (-1890 (((-783) $) 39)) (-2936 (((-656 $) $) 40)) (-1711 (((-112) $) 43)) (-3667 (($ |#2| |#1|) 44)) (-2548 (($ (-1 |#1| |#1|) $) 45)) (-1652 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-4366 ((|#2| $) 38)) (-4379 ((|#1| $) 37)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ |#2|) 48)) (-2461 (((-656 |#1|) $) 41)) (-4417 ((|#1| $ |#2|) 46)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-1754 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-393 |#1| |#2|) (-141) (-1068) (-1119)) (T -393))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119)))) (-4417 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)))) (-3667 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-112)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *3)))) (-2936 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-783)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4404 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119)))))
+(-13 (-111 |t#1| |t#1|) (-1057 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4417 (|t#1| $ |t#2|)) (-15 -2548 ($ (-1 |t#1| |t#1|) $)) (-15 -3667 ($ |t#2| |t#1|)) (-15 -1711 ((-112) $)) (-15 -1754 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2461 ((-656 |t#1|) $)) (-15 -2936 ((-656 $) $)) (-15 -1890 ((-783) $)) (-15 -4366 (|t#2| $)) (-15 -4379 (|t#1| $)) (-15 -1652 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4404 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1057 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T))
+((-2275 (((-1292) $) 7)) (-2858 (((-874) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 11)))
(((-394) (-141)) (T -394))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-394)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-394)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) (-4 *1 (-394)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394)))))
-(-13 (-406) (-10 -8 (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-339))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))) (-15 -4400 ($ (-700 (-325 (-389))))) (-15 -2443 ((-3 $ "failed") (-700 (-325 (-389))))) (-15 -4400 ($ (-700 (-325 (-575))))) (-15 -2443 ((-3 $ "failed") (-700 (-325 (-575))))) (-15 -4400 ($ (-700 (-967 (-389))))) (-15 -2443 ((-3 $ "failed") (-700 (-967 (-389))))) (-15 -4400 ($ (-700 (-967 (-575))))) (-15 -2443 ((-3 $ "failed") (-700 (-967 (-575))))) (-15 -4400 ($ (-700 (-418 (-967 (-389)))))) (-15 -2443 ((-3 $ "failed") (-700 (-418 (-967 (-389)))))) (-15 -4400 ($ (-700 (-418 (-967 (-575)))))) (-15 -2443 ((-3 $ "failed") (-700 (-418 (-967 (-575))))))))
-(((-624 (-873)) . T) ((-406) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2414 (($ |#1| |#2|) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4166 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 33)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 12 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-395 |#1| |#2|) (-13 (-111 |#1| |#1|) (-520 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|))) (-1066) (-861)) (T -395))
-NIL
-(-13 (-111 |#1| |#1|) (-520 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-728 |#1|)) |%noBranch|)))
-((-2859 (((-112) $ $) 7)) (-2409 (((-782) $) 34)) (-3261 (($) 19 T CONST)) (-1735 (((-3 $ "failed") $ $) 37)) (-2443 (((-3 |#1| "failed") $) 45)) (-4400 ((|#1| $) 46)) (-4162 (((-3 $ "failed") $) 16)) (-2387 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-3900 (((-112) $) 18)) (-2834 ((|#1| $ (-575)) 31)) (-1574 (((-782) $ (-575)) 32)) (-1914 (($ $ $) 28 (|has| |#1| (-861)))) (-3503 (($ $ $) 27 (|has| |#1| (-861)))) (-1335 (($ (-1 |#1| |#1|) $) 29)) (-2860 (($ (-1 (-782) (-782)) $) 30)) (-2431 (((-3 $ "failed") $ $) 38)) (-4264 (((-1176) $) 10)) (-2090 (($ $ $) 39)) (-2022 (($ $ $) 40)) (-3912 (((-1137) $) 11)) (-1366 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-782)))) $) 33)) (-4416 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2882 (((-873) $) 12) (($ |#1|) 44)) (-3685 (((-112) $ $) 9)) (-2005 (($) 20 T CONST)) (-3980 (((-112) $ $) 25 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 24 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 26 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 23 (|has| |#1| (-861)))) (** (($ $ (-936)) 14) (($ $ (-782)) 17) (($ |#1| (-782)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
-(((-396 |#1|) (-141) (-1117)) (T -396))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2022 (*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2090 (*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2431 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-1735 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-4416 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1117)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-396 *3)))) (-2387 (*1 *2 *1 *1) (-12 (-4 *3 (-1117)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-396 *3)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) (-5 *2 (-782)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 (-782))))))) (-1574 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-396 *4)) (-4 *4 (-1117)) (-5 *2 (-782)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-396 *2)) (-4 *2 (-1117)))) (-2860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-782) (-782))) (-4 *1 (-396 *3)) (-4 *3 (-1117)))) (-1335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-396 *3)) (-4 *3 (-1117)))))
-(-13 (-737) (-1055 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-782))) (-15 -2022 ($ $ $)) (-15 -2090 ($ $ $)) (-15 -2431 ((-3 $ "failed") $ $)) (-15 -1735 ((-3 $ "failed") $ $)) (-15 -4416 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2387 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2409 ((-782) $)) (-15 -1366 ((-655 (-2 (|:| |gen| |t#1|) (|:| -2663 (-782)))) $)) (-15 -1574 ((-782) $ (-575))) (-15 -2834 (|t#1| $ (-575))) (-15 -2860 ($ (-1 (-782) (-782)) $)) (-15 -1335 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|)))
-(((-102) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-737) . T) ((-861) |has| |#1| (-861)) ((-1055 |#1|) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782) $) 74)) (-3261 (($) NIL T CONST)) (-1735 (((-3 $ "failed") $ $) 77)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2387 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3900 (((-112) $) 17)) (-2834 ((|#1| $ (-575)) NIL)) (-1574 (((-782) $ (-575)) NIL)) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-1335 (($ (-1 |#1| |#1|) $) 40)) (-2860 (($ (-1 (-782) (-782)) $) 37)) (-2431 (((-3 $ "failed") $ $) 60)) (-4264 (((-1176) $) NIL)) (-2090 (($ $ $) 28)) (-2022 (($ $ $) 26)) (-3912 (((-1137) $) NIL)) (-1366 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-782)))) $) 34)) (-4416 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2882 (((-873) $) 24) (($ |#1|) NIL)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 11 T CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) 84 (|has| |#1| (-861)))) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ |#1| (-782)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-397 |#1|) (-396 |#1|) (-1117)) (T -397))
-NIL
-(-396 |#1|)
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 53)) (-4400 (((-575) $) 54)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-1914 (($ $ $) 60)) (-3503 (($ $ $) 59)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ $) 48)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-575)) 52)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 57)) (-3955 (((-112) $ $) 56)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 58)) (-3940 (((-112) $ $) 55)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-398) (-141)) (T -398))
-NIL
-(-13 (-567) (-861) (-1055 (-575)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-861) . T) ((-1055 (-575)) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2892 (((-112) $) 25)) (-3468 (((-112) $) 22)) (-2303 (($ (-1176) (-1176) (-1176)) 26)) (-1777 (((-1176) $) 16)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4186 (($ (-1176) (-1176) (-1176)) 14)) (-1374 (((-1176) $) 17)) (-4187 (((-112) $) 18)) (-4364 (((-1176) $) 15)) (-2882 (((-873) $) 12) (($ (-1176)) 13) (((-1176) $) 9)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 7)))
-(((-399) (-400)) (T -399))
-NIL
-(-400)
-((-2859 (((-112) $ $) 7)) (-2892 (((-112) $) 17)) (-3468 (((-112) $) 18)) (-2303 (($ (-1176) (-1176) (-1176)) 16)) (-1777 (((-1176) $) 21)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4186 (($ (-1176) (-1176) (-1176)) 23)) (-1374 (((-1176) $) 20)) (-4187 (((-112) $) 19)) (-4364 (((-1176) $) 22)) (-2882 (((-873) $) 12) (($ (-1176)) 25) (((-1176) $) 24)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-400) (-141)) (T -400))
-((-4186 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) (-1374 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))) (-2303 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400)))))
-(-13 (-1117) (-501 (-1176)) (-10 -8 (-15 -4186 ($ (-1176) (-1176) (-1176))) (-15 -4364 ((-1176) $)) (-15 -1777 ((-1176) $)) (-15 -1374 ((-1176) $)) (-15 -4187 ((-112) $)) (-15 -3468 ((-112) $)) (-15 -2892 ((-112) $)) (-15 -2303 ($ (-1176) (-1176) (-1176)))))
-(((-102) . T) ((-627 #0=(-1176)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1572 (((-873) $) 63)) (-3261 (($) NIL T CONST)) (-1810 (($ $ (-936)) NIL)) (-3905 (($ $ (-936)) NIL)) (-3643 (($ $ (-936)) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3657 (($ (-782)) 38)) (-1605 (((-782)) 18)) (-3602 (((-873) $) 65)) (-4152 (($ $ $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3458 (($ $ $ $) NIL)) (-2337 (($ $ $) NIL)) (-1989 (($) 24 T CONST)) (-3913 (((-112) $ $) 41)) (-4027 (($ $) 48) (($ $ $) 50)) (-4015 (($ $ $) 51)) (** (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-401 |#1| |#2| |#3|) (-13 (-755 |#3|) (-10 -8 (-15 -1605 ((-782))) (-15 -3602 ((-873) $)) (-15 -1572 ((-873) $)) (-15 -3657 ($ (-782))))) (-782) (-782) (-174)) (T -401))
-((-1605 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782)) (-14 *4 (-782)) (-4 *5 (-174)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782)) (-14 *4 (-782)) (-4 *5 (-174)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
-(-13 (-755 |#3|) (-10 -8 (-15 -1605 ((-782))) (-15 -3602 ((-873) $)) (-15 -1572 ((-873) $)) (-15 -3657 ($ (-782)))))
-((-1609 (((-1176)) 12)) (-2473 (((-1164 (-1176))) 30)) (-2221 (((-1290) (-1176)) 27) (((-1290) (-399)) 26)) (-2232 (((-1290)) 28)) (-2408 (((-1164 (-1176))) 29)))
-(((-402) (-10 -7 (-15 -2408 ((-1164 (-1176)))) (-15 -2473 ((-1164 (-1176)))) (-15 -2232 ((-1290))) (-15 -2221 ((-1290) (-399))) (-15 -2221 ((-1290) (-1176))) (-15 -1609 ((-1176))))) (T -402))
-((-1609 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-402)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-402)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-402)))) (-2232 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-402)))) (-2473 (*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402)))) (-2408 (*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402)))))
-(-10 -7 (-15 -2408 ((-1164 (-1176)))) (-15 -2473 ((-1164 (-1176)))) (-15 -2232 ((-1290))) (-15 -2221 ((-1290) (-399))) (-15 -2221 ((-1290) (-1176))) (-15 -1609 ((-1176))))
-((-3369 (((-782) (-346 |#1| |#2| |#3| |#4|)) 16)))
-(((-403 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3369 ((-782) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-378) (-373)) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -403))
-((-3369 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-378) (-373))) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *7 (-352 *4 *5 *6)) (-5 *2 (-782)) (-5 *1 (-403 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3369 ((-782) (-346 |#1| |#2| |#3| |#4|))))
-((-2882 (((-405) |#1|) 11)))
-(((-404 |#1|) (-10 -7 (-15 -2882 ((-405) |#1|))) (-1117)) (T -404))
-((-2882 (*1 *2 *3) (-12 (-5 *2 (-405)) (-5 *1 (-404 *3)) (-4 *3 (-1117)))))
-(-10 -7 (-15 -2882 ((-405) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-3075 (((-655 (-1176)) $ (-655 (-1176))) 42)) (-3071 (((-655 (-1176)) $ (-655 (-1176))) 43)) (-4104 (((-655 (-1176)) $ (-655 (-1176))) 44)) (-1373 (((-655 (-1176)) $) 39)) (-2303 (($) 30)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4204 (((-655 (-1176)) $) 40)) (-2702 (((-655 (-1176)) $) 41)) (-2478 (((-1290) $ (-575)) 37) (((-1290) $) 38)) (-2613 (($ (-873) (-575)) 35)) (-2882 (((-873) $) 49) (($ (-873)) 32)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-405) (-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2613 ($ (-873) (-575))) (-15 -2478 ((-1290) $ (-575))) (-15 -2478 ((-1290) $)) (-15 -2702 ((-655 (-1176)) $)) (-15 -4204 ((-655 (-1176)) $)) (-15 -2303 ($)) (-15 -1373 ((-655 (-1176)) $)) (-15 -4104 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3071 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3075 ((-655 (-1176)) $ (-655 (-1176))))))) (T -405))
-((-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-405)))) (-2478 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-405)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-405)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-2303 (*1 *1) (-5 *1 (-405))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-4104 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-3071 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))) (-3075 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))))
-(-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2613 ($ (-873) (-575))) (-15 -2478 ((-1290) $ (-575))) (-15 -2478 ((-1290) $)) (-15 -2702 ((-655 (-1176)) $)) (-15 -4204 ((-655 (-1176)) $)) (-15 -2303 ($)) (-15 -1373 ((-655 (-1176)) $)) (-15 -4104 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3071 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3075 ((-655 (-1176)) $ (-655 (-1176))))))
-((-2244 (((-1290) $) 7)) (-2882 (((-873) $) 8)))
-(((-406) (-141)) (T -406))
-((-2244 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-1290)))))
-(-13 (-1235) (-624 (-873)) (-10 -8 (-15 -2244 ((-1290) $))))
-(((-624 (-873)) . T) ((-1235) . T))
-((-2443 (((-3 $ "failed") (-325 (-389))) 21) (((-3 $ "failed") (-325 (-575))) 19) (((-3 $ "failed") (-967 (-389))) 17) (((-3 $ "failed") (-967 (-575))) 15) (((-3 $ "failed") (-418 (-967 (-389)))) 13) (((-3 $ "failed") (-418 (-967 (-575)))) 11)) (-4400 (($ (-325 (-389))) 22) (($ (-325 (-575))) 20) (($ (-967 (-389))) 18) (($ (-967 (-575))) 16) (($ (-418 (-967 (-389)))) 14) (($ (-418 (-967 (-575)))) 12)) (-2244 (((-1290) $) 7)) (-2882 (((-873) $) 8) (($ (-655 (-339))) 25) (($ (-339)) 24) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 23)))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) (-4 *1 (-394)))))
+(-13 (-407) (-10 -8 (-15 -2858 ($ (-701 (-711)))) (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-340))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1237) . T))
+((-2454 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-969 (-390)))) 17) (((-3 $ "failed") (-701 (-969 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 11)) (-4397 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-969 (-390)))) 18) (($ (-701 (-969 (-576)))) 16) (($ (-701 (-419 (-969 (-390))))) 14) (($ (-701 (-419 (-969 (-576))))) 12)) (-2275 (((-1292) $) 7)) (-2858 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 23)))
+(((-395) (-141)) (T -395))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) (-4 *1 (-395)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))))
+(-13 (-407) (-10 -8 (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-340))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))) (-15 -4397 ($ (-701 (-326 (-390))))) (-15 -2454 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -4397 ($ (-701 (-326 (-576))))) (-15 -2454 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -4397 ($ (-701 (-969 (-390))))) (-15 -2454 ((-3 $ "failed") (-701 (-969 (-390))))) (-15 -4397 ($ (-701 (-969 (-576))))) (-15 -2454 ((-3 $ "failed") (-701 (-969 (-576))))) (-15 -4397 ($ (-701 (-419 (-969 (-390)))))) (-15 -2454 ((-3 $ "failed") (-701 (-419 (-969 (-390)))))) (-15 -4397 ($ (-701 (-419 (-969 (-576)))))) (-15 -2454 ((-3 $ "failed") (-701 (-419 (-969 (-576))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-2428 (($ |#1| |#2|) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3230 ((|#2| $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 33)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 12 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1068) (-862)) (T -396))
+NIL
+(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|)))
+((-2835 (((-112) $ $) 7)) (-2422 (((-783) $) 34)) (-2574 (($) 19 T CONST)) (-3478 (((-3 $ "failed") $ $) 37)) (-2454 (((-3 |#1| "failed") $) 45)) (-4397 ((|#1| $) 46)) (-4011 (((-3 $ "failed") $) 16)) (-2882 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1838 (((-112) $) 18)) (-3601 ((|#1| $ (-576)) 31)) (-1478 (((-783) $ (-576)) 32)) (-1950 (($ $ $) 28 (|has| |#1| (-862)))) (-1492 (($ $ $) 27 (|has| |#1| (-862)))) (-2124 (($ (-1 |#1| |#1|) $) 29)) (-1898 (($ (-1 (-783) (-783)) $) 30)) (-1504 (((-3 $ "failed") $ $) 38)) (-2143 (((-1178) $) 10)) (-2819 (($ $ $) 39)) (-1765 (($ $ $) 40)) (-3887 (((-1139) $) 11)) (-1603 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-783)))) $) 33)) (-3684 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2858 (((-874) $) 12) (($ |#1|) 44)) (-2690 (((-112) $ $) 9)) (-2038 (($) 20 T CONST)) (-3956 (((-112) $ $) 25 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 24 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 26 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 23 (|has| |#1| (-862)))) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-397 |#1|) (-141) (-1119)) (T -397))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-1765 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-2819 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-1504 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-3478 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-3684 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1119)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2882 (*1 *2 *1 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 (-783))))))) (-1478 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1119)) (-5 *2 (-783)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1119)))))
+(-13 (-738) (-1057 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -1765 ($ $ $)) (-15 -2819 ($ $ $)) (-15 -1504 ((-3 $ "failed") $ $)) (-15 -3478 ((-3 $ "failed") $ $)) (-15 -3684 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2882 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2422 ((-783) $)) (-15 -1603 ((-656 (-2 (|:| |gen| |t#1|) (|:| -2656 (-783)))) $)) (-15 -1478 ((-783) $ (-576))) (-15 -3601 (|t#1| $ (-576))) (-15 -1898 ($ (-1 (-783) (-783)) $)) (-15 -2124 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|)))
+(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1057 |#1|) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783) $) 74)) (-2574 (($) NIL T CONST)) (-3478 (((-3 $ "failed") $ $) 77)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2882 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1838 (((-112) $) 17)) (-3601 ((|#1| $ (-576)) NIL)) (-1478 (((-783) $ (-576)) NIL)) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2124 (($ (-1 |#1| |#1|) $) 40)) (-1898 (($ (-1 (-783) (-783)) $) 37)) (-1504 (((-3 $ "failed") $ $) 60)) (-2143 (((-1178) $) NIL)) (-2819 (($ $ $) 28)) (-1765 (($ $ $) 26)) (-3887 (((-1139) $) NIL)) (-1603 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-783)))) $) 34)) (-3684 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2858 (((-874) $) 24) (($ |#1|) NIL)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 11 T CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-398 |#1|) (-397 |#1|) (-1119)) (T -398))
+NIL
+(-397 |#1|)
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 53)) (-4397 (((-576) $) 54)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-1950 (($ $ $) 60)) (-1492 (($ $ $) 59)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ $) 48)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 52)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 57)) (-3930 (((-112) $ $) 56)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 58)) (-3916 (((-112) $ $) 55)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-399) (-141)) (T -399))
+NIL
+(-13 (-568) (-862) (-1057 (-576)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2189 (((-112) $) 25)) (-1987 (((-112) $) 22)) (-2327 (($ (-1178) (-1178) (-1178)) 26)) (-1811 (((-1178) $) 16)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4164 (($ (-1178) (-1178) (-1178)) 14)) (-3216 (((-1178) $) 17)) (-1379 (((-112) $) 18)) (-4359 (((-1178) $) 15)) (-2858 (((-874) $) 12) (($ (-1178)) 13) (((-1178) $) 9)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 7)))
+(((-400) (-401)) (T -400))
+NIL
+(-401)
+((-2835 (((-112) $ $) 7)) (-2189 (((-112) $) 17)) (-1987 (((-112) $) 18)) (-2327 (($ (-1178) (-1178) (-1178)) 16)) (-1811 (((-1178) $) 21)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4164 (($ (-1178) (-1178) (-1178)) 23)) (-3216 (((-1178) $) 20)) (-1379 (((-112) $) 19)) (-4359 (((-1178) $) 22)) (-2858 (((-874) $) 12) (($ (-1178)) 25) (((-1178) $) 24)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-401) (-141)) (T -401))
+((-4164 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2327 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))))
+(-13 (-1119) (-502 (-1178)) (-10 -8 (-15 -4164 ($ (-1178) (-1178) (-1178))) (-15 -4359 ((-1178) $)) (-15 -1811 ((-1178) $)) (-15 -3216 ((-1178) $)) (-15 -1379 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -2189 ((-112) $)) (-15 -2327 ($ (-1178) (-1178) (-1178)))))
+(((-102) . T) ((-628 #0=(-1178)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-4401 (((-874) $) 63)) (-2574 (($) NIL T CONST)) (-4139 (($ $ (-938)) NIL)) (-4141 (($ $ (-938)) NIL)) (-1406 (($ $ (-938)) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3633 (($ (-783)) 38)) (-4340 (((-783)) 18)) (-2504 (((-874) $) 65)) (-2220 (($ $ $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2591 (($ $ $ $) NIL)) (-2407 (($ $ $) NIL)) (-2022 (($) 24 T CONST)) (-3889 (((-112) $ $) 41)) (-4002 (($ $) 48) (($ $ $) 50)) (-3990 (($ $ $) 51)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -4340 ((-783))) (-15 -2504 ((-874) $)) (-15 -4401 ((-874) $)) (-15 -3633 ($ (-783))))) (-783) (-783) (-174)) (T -402))
+((-4340 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))))
+(-13 (-756 |#3|) (-10 -8 (-15 -4340 ((-783))) (-15 -2504 ((-874) $)) (-15 -4401 ((-874) $)) (-15 -3633 ($ (-783)))))
+((-1423 (((-1178)) 12)) (-4368 (((-1166 (-1178))) 30)) (-2253 (((-1292) (-1178)) 27) (((-1292) (-400)) 26)) (-2263 (((-1292)) 28)) (-4357 (((-1166 (-1178))) 29)))
+(((-403) (-10 -7 (-15 -4357 ((-1166 (-1178)))) (-15 -4368 ((-1166 (-1178)))) (-15 -2263 ((-1292))) (-15 -2253 ((-1292) (-400))) (-15 -2253 ((-1292) (-1178))) (-15 -1423 ((-1178))))) (T -403))
+((-1423 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-403)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-403)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-403)))) (-2263 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-403)))) (-4368 (*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403)))) (-4357 (*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403)))))
+(-10 -7 (-15 -4357 ((-1166 (-1178)))) (-15 -4368 ((-1166 (-1178)))) (-15 -2263 ((-1292))) (-15 -2253 ((-1292) (-400))) (-15 -2253 ((-1292) (-1178))) (-15 -1423 ((-1178))))
+((-2620 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16)))
+(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2620 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404))
+((-2620 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2620 ((-783) (-347 |#1| |#2| |#3| |#4|))))
+((-2858 (((-406) |#1|) 11)))
+(((-405 |#1|) (-10 -7 (-15 -2858 ((-406) |#1|))) (-1119)) (T -405))
+((-2858 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -2858 ((-406) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-2547 (((-656 (-1178)) $ (-656 (-1178))) 42)) (-3340 (((-656 (-1178)) $ (-656 (-1178))) 43)) (-3546 (((-656 (-1178)) $ (-656 (-1178))) 44)) (-3127 (((-656 (-1178)) $) 39)) (-2327 (($) 30)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4184 (((-656 (-1178)) $) 40)) (-4076 (((-656 (-1178)) $) 41)) (-2486 (((-1292) $ (-576)) 37) (((-1292) $) 38)) (-2610 (($ (-874) (-576)) 35)) (-2858 (((-874) $) 49) (($ (-874)) 32)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-406) (-13 (-1119) (-628 (-874)) (-10 -8 (-15 -2610 ($ (-874) (-576))) (-15 -2486 ((-1292) $ (-576))) (-15 -2486 ((-1292) $)) (-15 -4076 ((-656 (-1178)) $)) (-15 -4184 ((-656 (-1178)) $)) (-15 -2327 ($)) (-15 -3127 ((-656 (-1178)) $)) (-15 -3546 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -3340 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2547 ((-656 (-1178)) $ (-656 (-1178))))))) (T -406))
+((-2610 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) (-2486 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-406)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-406)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2327 (*1 *1) (-5 *1 (-406))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-3546 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-3340 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2547 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))))
+(-13 (-1119) (-628 (-874)) (-10 -8 (-15 -2610 ($ (-874) (-576))) (-15 -2486 ((-1292) $ (-576))) (-15 -2486 ((-1292) $)) (-15 -4076 ((-656 (-1178)) $)) (-15 -4184 ((-656 (-1178)) $)) (-15 -2327 ($)) (-15 -3127 ((-656 (-1178)) $)) (-15 -3546 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -3340 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2547 ((-656 (-1178)) $ (-656 (-1178))))))
+((-2275 (((-1292) $) 7)) (-2858 (((-874) $) 8)))
(((-407) (-141)) (T -407))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-407)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-407)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) (-4 *1 (-407)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-4 *1 (-407)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-389))) (-4 *1 (-407)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-4 *1 (-407)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-575))) (-4 *1 (-407)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-967 (-389))) (-4 *1 (-407)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-389))) (-4 *1 (-407)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-407)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-575))) (-4 *1 (-407)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407)))))
-(-13 (-406) (-10 -8 (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-339))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))) (-15 -4400 ($ (-325 (-389)))) (-15 -2443 ((-3 $ "failed") (-325 (-389)))) (-15 -4400 ($ (-325 (-575)))) (-15 -2443 ((-3 $ "failed") (-325 (-575)))) (-15 -4400 ($ (-967 (-389)))) (-15 -2443 ((-3 $ "failed") (-967 (-389)))) (-15 -4400 ($ (-967 (-575)))) (-15 -2443 ((-3 $ "failed") (-967 (-575)))) (-15 -4400 ($ (-418 (-967 (-389))))) (-15 -2443 ((-3 $ "failed") (-418 (-967 (-389))))) (-15 -4400 ($ (-418 (-967 (-575))))) (-15 -2443 ((-3 $ "failed") (-418 (-967 (-575)))))))
-(((-624 (-873)) . T) ((-406) . T) ((-1235) . T))
-((-1761 (((-655 (-1176)) (-655 (-1176))) 9)) (-2244 (((-1290) (-399)) 26)) (-2748 (((-1121) (-1194) (-655 (-1194)) (-1197) (-655 (-1194))) 59) (((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)) (-1194)) 34) (((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194))) 33)))
-(((-408) (-10 -7 (-15 -2748 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)))) (-15 -2748 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)) (-1194))) (-15 -2748 ((-1121) (-1194) (-655 (-1194)) (-1197) (-655 (-1194)))) (-15 -2244 ((-1290) (-399))) (-15 -1761 ((-655 (-1176)) (-655 (-1176)))))) (T -408))
-((-1761 (*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-408)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-408)))) (-2748 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-655 (-1194))) (-5 *5 (-1197)) (-5 *3 (-1194)) (-5 *2 (-1121)) (-5 *1 (-408)))) (-2748 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194))))) (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121)) (-5 *1 (-408)))) (-2748 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194))))) (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121)) (-5 *1 (-408)))))
-(-10 -7 (-15 -2748 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)))) (-15 -2748 ((-1121) (-1194) (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194)))) (-655 (-655 (-3 (|:| |array| (-655 (-1194))) (|:| |scalar| (-1194))))) (-655 (-1194)) (-1194))) (-15 -2748 ((-1121) (-1194) (-655 (-1194)) (-1197) (-655 (-1194)))) (-15 -2244 ((-1290) (-399))) (-15 -1761 ((-655 (-1176)) (-655 (-1176)))))
-((-2244 (((-1290) $) 35)) (-2882 (((-873) $) 97) (($ (-339)) 99) (($ (-655 (-339))) 98) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 96) (($ (-325 (-712))) 52) (($ (-325 (-710))) 72) (($ (-325 (-705))) 85) (($ (-303 (-325 (-712)))) 67) (($ (-303 (-325 (-710)))) 80) (($ (-303 (-325 (-705)))) 93) (($ (-325 (-575))) 104) (($ (-325 (-389))) 117) (($ (-325 (-171 (-389)))) 130) (($ (-303 (-325 (-575)))) 112) (($ (-303 (-325 (-389)))) 125) (($ (-303 (-325 (-171 (-389))))) 138)))
-(((-409 |#1| |#2| |#3| |#4|) (-13 (-406) (-10 -8 (-15 -2882 ($ (-339))) (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))) (-15 -2882 ($ (-325 (-712)))) (-15 -2882 ($ (-325 (-710)))) (-15 -2882 ($ (-325 (-705)))) (-15 -2882 ($ (-303 (-325 (-712))))) (-15 -2882 ($ (-303 (-325 (-710))))) (-15 -2882 ($ (-303 (-325 (-705))))) (-15 -2882 ($ (-325 (-575)))) (-15 -2882 ($ (-325 (-389)))) (-15 -2882 ($ (-325 (-171 (-389))))) (-15 -2882 ($ (-303 (-325 (-575))))) (-15 -2882 ($ (-303 (-325 (-389))))) (-15 -2882 ($ (-303 (-325 (-171 (-389)))))))) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-1194)) (-1198)) (T -409))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-339)) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-325 (-712))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-325 (-710))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-325 (-705))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-712)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-710)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-705)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-575)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-389)))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-303 (-325 (-171 (-389))))) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-14 *5 (-655 (-1194))) (-14 *6 (-1198)))))
-(-13 (-406) (-10 -8 (-15 -2882 ($ (-339))) (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))) (-15 -2882 ($ (-325 (-712)))) (-15 -2882 ($ (-325 (-710)))) (-15 -2882 ($ (-325 (-705)))) (-15 -2882 ($ (-303 (-325 (-712))))) (-15 -2882 ($ (-303 (-325 (-710))))) (-15 -2882 ($ (-303 (-325 (-705))))) (-15 -2882 ($ (-325 (-575)))) (-15 -2882 ($ (-325 (-389)))) (-15 -2882 ($ (-325 (-171 (-389))))) (-15 -2882 ($ (-303 (-325 (-575))))) (-15 -2882 ($ (-303 (-325 (-389))))) (-15 -2882 ($ (-303 (-325 (-171 (-389))))))))
-((-2859 (((-112) $ $) NIL)) (-3320 ((|#2| $) 38)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3376 (($ (-418 |#2|)) 93)) (-2792 (((-655 (-2 (|:| -1658 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))) $) 39)) (-2382 (($ $ (-782)) 36) (($ $) 34)) (-2613 (((-418 |#2|) $) 49)) (-2893 (($ (-655 (-2 (|:| -1658 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|)))) 33)) (-2882 (((-873) $) 131)) (-3685 (((-112) $ $) NIL)) (-3428 (($ $ (-782)) 37) (($ $) 35)) (-3913 (((-112) $ $) NIL)) (-4015 (($ |#2| $) 41)))
-(((-410 |#1| |#2|) (-13 (-1117) (-237) (-625 (-418 |#2|)) (-10 -8 (-15 -4015 ($ |#2| $)) (-15 -3376 ($ (-418 |#2|))) (-15 -3320 (|#2| $)) (-15 -2792 ((-655 (-2 (|:| -1658 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))) $)) (-15 -2893 ($ (-655 (-2 (|:| -1658 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))))))) (-13 (-373) (-148)) (-1261 |#1|)) (T -410))
-((-4015 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *2)) (-4 *2 (-1261 *3)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)))) (-3320 (*1 *2 *1) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-410 *3 *2)) (-4 *3 (-13 (-373) (-148))))) (-2792 (*1 *2 *1) (-12 (-4 *3 (-13 (-373) (-148))) (-5 *2 (-655 (-2 (|:| -1658 (-782)) (|:| -1751 *4) (|:| |num| *4)))) (-5 *1 (-410 *3 *4)) (-4 *4 (-1261 *3)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -1658 (-782)) (|:| -1751 *4) (|:| |num| *4)))) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4)))))
-(-13 (-1117) (-237) (-625 (-418 |#2|)) (-10 -8 (-15 -4015 ($ |#2| $)) (-15 -3376 ($ (-418 |#2|))) (-15 -3320 (|#2| $)) (-15 -2792 ((-655 (-2 (|:| -1658 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|))) $)) (-15 -2893 ($ (-655 (-2 (|:| -1658 (-782)) (|:| -1751 |#2|) (|:| |num| |#2|)))))))
-((-2859 (((-112) $ $) 9 (-3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 16 (|has| |#1| (-898 (-389)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 15 (|has| |#1| (-898 (-575))))) (-4264 (((-1176) $) 13 (-3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-3912 (((-1137) $) 12 (-3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-2882 (((-873) $) 11 (-3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-3685 (((-112) $ $) 14 (-3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))) (-3913 (((-112) $ $) 10 (-3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))))))
-(((-411 |#1|) (-141) (-1235)) (T -411))
-NIL
-(-13 (-1235) (-10 -7 (IF (|has| |t#1| (-898 (-575))) (-6 (-898 (-575))) |%noBranch|) (IF (|has| |t#1| (-898 (-389))) (-6 (-898 (-389))) |%noBranch|)))
-(((-102) -3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))) ((-624 (-873)) -3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-1117) -3763 (|has| |#1| (-898 (-575))) (|has| |#1| (-898 (-389)))) ((-1235) . T))
-((-2457 (($ $) 10) (($ $ (-782)) 12)))
-(((-412 |#1|) (-10 -8 (-15 -2457 (|#1| |#1| (-782))) (-15 -2457 (|#1| |#1|))) (-413)) (T -412))
-NIL
-(-10 -8 (-15 -2457 (|#1| |#1| (-782))) (-15 -2457 (|#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-2457 (($ $) 87) (($ $ (-782)) 86)) (-3559 (((-112) $) 79)) (-3369 (((-844 (-936)) $) 89)) (-3900 (((-112) $) 35)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2619 (((-3 (-782) "failed") $ $) 88)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74)) (-1724 (((-3 $ "failed") $) 90)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75)))
-(((-413) (-141)) (T -413))
-((-3369 (*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-844 (-936))))) (-2619 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-413)) (-5 *2 (-782)))) (-2457 (*1 *1 *1) (-4 *1 (-413))) (-2457 (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-782)))))
-(-13 (-373) (-146) (-10 -8 (-15 -3369 ((-844 (-936)) $)) (-15 -2619 ((-3 (-782) "failed") $ $)) (-15 -2457 ($ $)) (-15 -2457 ($ $ (-782)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-1539 (($ (-575) (-575)) 11) (($ (-575) (-575) (-936)) NIL)) (-2323 (((-936)) 19) (((-936) (-936)) NIL)))
-(((-414 |#1|) (-10 -8 (-15 -2323 ((-936) (-936))) (-15 -2323 ((-936))) (-15 -1539 (|#1| (-575) (-575) (-936))) (-15 -1539 (|#1| (-575) (-575)))) (-415)) (T -414))
-((-2323 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415)))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415)))))
-(-10 -8 (-15 -2323 ((-936) (-936))) (-15 -2323 ((-936))) (-15 -1539 (|#1| (-575) (-575) (-936))) (-15 -1539 (|#1| (-575) (-575))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3824 (((-575) $) 97)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-3449 (($ $) 95)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-2467 (($ $) 105)) (-3599 (((-112) $ $) 65)) (-2326 (((-575) $) 122)) (-3261 (($) 18 T CONST)) (-3069 (($ $) 94)) (-2443 (((-3 (-575) "failed") $) 110) (((-3 (-418 (-575)) "failed") $) 107)) (-4400 (((-575) $) 111) (((-418 (-575)) $) 108)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3559 (((-112) $) 79)) (-1500 (((-936)) 138) (((-936) (-936)) 135 (|has| $ (-6 -4451)))) (-2359 (((-112) $) 120)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 101)) (-3369 (((-575) $) 144)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 104)) (-3390 (($ $) 100)) (-1721 (((-112) $) 121)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1914 (($ $ $) 119) (($) 132 (-12 (-3213 (|has| $ (-6 -4451))) (-3213 (|has| $ (-6 -4443)))))) (-3503 (($ $ $) 118) (($) 131 (-12 (-3213 (|has| $ (-6 -4451))) (-3213 (|has| $ (-6 -4443)))))) (-3661 (((-575) $) 141)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-4367 (((-936) (-575)) 134 (|has| $ (-6 -4451)))) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-1931 (($ $) 96)) (-3920 (($ $) 98)) (-1539 (($ (-575) (-575)) 146) (($ (-575) (-575) (-936)) 145)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1658 (((-575) $) 142)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2323 (((-936)) 139) (((-936) (-936)) 136 (|has| $ (-6 -4451)))) (-4366 (((-936) (-575)) 133 (|has| $ (-6 -4451)))) (-2613 (((-389) $) 113) (((-227) $) 112) (((-904 (-389)) $) 102)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ (-575)) 109) (($ (-418 (-575))) 106)) (-4421 (((-782)) 32 T CONST)) (-4248 (($ $) 99)) (-4189 (((-936)) 140) (((-936) (-936)) 137 (|has| $ (-6 -4451)))) (-3685 (((-112) $ $) 9)) (-1548 (((-936)) 143)) (-3930 (((-112) $ $) 45)) (-3863 (($ $) 123)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 116)) (-3955 (((-112) $ $) 115)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 117)) (-3940 (((-112) $ $) 114)) (-4038 (($ $ $) 73)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 103)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75)))
-(((-415) (-141)) (T -415))
-((-1539 (*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-415)))) (-1539 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-4 *1 (-415)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) (-1548 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575)))) (-4189 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-2323 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-1500 (*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) (-4189 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) (-2323 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415)) (-5 *2 (-936)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415)) (-5 *2 (-936)))) (-1914 (*1 *1) (-12 (-4 *1 (-415)) (-3213 (|has| *1 (-6 -4451))) (-3213 (|has| *1 (-6 -4443))))) (-3503 (*1 *1) (-12 (-4 *1 (-415)) (-3213 (|has| *1 (-6 -4451))) (-3213 (|has| *1 (-6 -4443))))))
-(-13 (-1077) (-10 -8 (-6 -3493) (-15 -1539 ($ (-575) (-575))) (-15 -1539 ($ (-575) (-575) (-936))) (-15 -3369 ((-575) $)) (-15 -1548 ((-936))) (-15 -1658 ((-575) $)) (-15 -3661 ((-575) $)) (-15 -4189 ((-936))) (-15 -2323 ((-936))) (-15 -1500 ((-936))) (IF (|has| $ (-6 -4451)) (PROGN (-15 -4189 ((-936) (-936))) (-15 -2323 ((-936) (-936))) (-15 -1500 ((-936) (-936))) (-15 -4367 ((-936) (-575))) (-15 -4366 ((-936) (-575)))) |%noBranch|) (IF (|has| $ (-6 -4443)) |%noBranch| (IF (|has| $ (-6 -4451)) |%noBranch| (PROGN (-15 -1914 ($)) (-15 -3503 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-227)) . T) ((-625 (-389)) . T) ((-625 (-904 (-389))) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-898 (-389)) . T) ((-935) . T) ((-1019) . T) ((-1039) . T) ((-1077) . T) ((-1055 (-418 (-575))) . T) ((-1055 (-575)) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-2544 (((-429 |#2|) (-1 |#2| |#1|) (-429 |#1|)) 20)))
-(((-416 |#1| |#2|) (-10 -7 (-15 -2544 ((-429 |#2|) (-1 |#2| |#1|) (-429 |#1|)))) (-567) (-567)) (T -416))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-429 *5)) (-4 *5 (-567)) (-4 *6 (-567)) (-5 *2 (-429 *6)) (-5 *1 (-416 *5 *6)))))
-(-10 -7 (-15 -2544 ((-429 |#2|) (-1 |#2| |#1|) (-429 |#1|))))
-((-2544 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 13)))
-(((-417 |#1| |#2|) (-10 -7 (-15 -2544 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-567) (-567)) (T -417))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-567)) (-4 *6 (-567)) (-5 *2 (-418 *6)) (-5 *1 (-417 *5 *6)))))
-(-10 -7 (-15 -2544 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 13)) (-3824 ((|#1| $) 21 (|has| |#1| (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| |#1| (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 17) (((-3 (-1194) "failed") $) NIL (|has| |#1| (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) 72 (|has| |#1| (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575))))) (-4400 ((|#1| $) 15) (((-1194) $) NIL (|has| |#1| (-1055 (-1194)))) (((-418 (-575)) $) 69 (|has| |#1| (-1055 (-575)))) (((-575) $) NIL (|has| |#1| (-1055 (-575))))) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) 51)) (-2073 (($) NIL (|has| |#1| (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| |#1| (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| |#1| (-898 (-389))))) (-3900 (((-112) $) 57)) (-4300 (($ $) NIL)) (-1595 ((|#1| $) 73)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-1721 (((-112) $) NIL (|has| |#1| (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 100)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| |#1| (-316)))) (-3920 ((|#1| $) 28 (|has| |#1| (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 145 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 138 (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-1720 (((-782) $) NIL)) (-2065 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-2325 (($ $) NIL)) (-1608 ((|#1| $) 75)) (-2613 (((-904 (-575)) $) NIL (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#1| (-625 (-904 (-389))))) (((-547) $) NIL (|has| |#1| (-625 (-547)))) (((-389) $) NIL (|has| |#1| (-1039))) (((-227) $) NIL (|has| |#1| (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 10) (($ (-1194)) NIL (|has| |#1| (-1055 (-1194))))) (-1724 (((-3 $ "failed") $) 102 (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) 103 T CONST)) (-4248 ((|#1| $) 26 (|has| |#1| (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| |#1| (-831)))) (-1989 (($) 22 T CONST)) (-2005 (($) 8 T CONST)) (-2225 (((-1176) $) 44 (-12 (|has| |#1| (-556)) (|has| |#1| (-839)))) (((-1176) $ (-112)) 45 (-12 (|has| |#1| (-556)) (|has| |#1| (-839)))) (((-1290) (-833) $) 46 (-12 (|has| |#1| (-556)) (|has| |#1| (-839)))) (((-1290) (-833) $ (-112)) 47 (-12 (|has| |#1| (-556)) (|has| |#1| (-839))))) (-3428 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) 66)) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) 24 (|has| |#1| (-861)))) (-4038 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4027 (($ $) 25) (($ $ $) 56)) (-4015 (($ $ $) 54)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 132)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 61) (($ $ $) 58) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-418 |#1|) (-13 (-1009 |#1|) (-10 -7 (IF (|has| |#1| (-556)) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (IF (|has| |#1| (-463)) (IF (|has| |#1| (-6 -4458)) (-6 -4447) |%noBranch|) |%noBranch|) |%noBranch|))) (-567)) (T -418))
-NIL
-(-13 (-1009 |#1|) (-10 -7 (IF (|has| |#1| (-556)) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4447)) (IF (|has| |#1| (-463)) (IF (|has| |#1| (-6 -4458)) (-6 -4447) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3831 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|)) 18)) (-3898 (($ (-1285 |#2|) (-1285 $)) NIL) (($ (-1285 |#2|)) 24)) (-3405 (((-700 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) $) 40)) (-3977 ((|#3| $) 69)) (-2801 ((|#2| (-1285 $)) NIL) ((|#2|) 20)) (-2209 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $) 22) (((-700 |#2|) (-1285 $)) 38)) (-2613 (((-1285 |#2|) $) 11) (($ (-1285 |#2|)) 13)) (-2765 ((|#3| $) 55)))
-(((-419 |#1| |#2| |#3|) (-10 -8 (-15 -3405 ((-700 |#2|) |#1|)) (-15 -2801 (|#2|)) (-15 -3831 ((-700 |#2|))) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -3898 (|#1| (-1285 |#2|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -3977 (|#3| |#1|)) (-15 -2765 (|#3| |#1|)) (-15 -3831 ((-700 |#2|) (-1285 |#1|))) (-15 -2801 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -3405 ((-700 |#2|) |#1| (-1285 |#1|)))) (-420 |#2| |#3|) (-174) (-1261 |#2|)) (T -419))
-((-3831 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)) (-5 *1 (-419 *3 *4 *5)) (-4 *3 (-420 *4 *5)))) (-2801 (*1 *2) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-174)) (-5 *1 (-419 *3 *2 *4)) (-4 *3 (-420 *2 *4)))))
-(-10 -8 (-15 -3405 ((-700 |#2|) |#1|)) (-15 -2801 (|#2|)) (-15 -3831 ((-700 |#2|))) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -3898 (|#1| (-1285 |#2|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -3977 (|#3| |#1|)) (-15 -2765 (|#3| |#1|)) (-15 -3831 ((-700 |#2|) (-1285 |#1|))) (-15 -2801 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -3405 ((-700 |#2|) |#1| (-1285 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3831 (((-700 |#1|) (-1285 $)) 53) (((-700 |#1|)) 68)) (-1448 ((|#1| $) 59)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-3898 (($ (-1285 |#1|) (-1285 $)) 55) (($ (-1285 |#1|)) 71)) (-3405 (((-700 |#1|) $ (-1285 $)) 60) (((-700 |#1|) $) 66)) (-4162 (((-3 $ "failed") $) 37)) (-4422 (((-936)) 61)) (-3900 (((-112) $) 35)) (-3390 ((|#1| $) 58)) (-3977 ((|#2| $) 51 (|has| |#1| (-373)))) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2801 ((|#1| (-1285 $)) 54) ((|#1|) 67)) (-2209 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56) (((-1285 |#1|) $) 73) (((-700 |#1|) (-1285 $)) 72)) (-2613 (((-1285 |#1|) $) 70) (($ (-1285 |#1|)) 69)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44)) (-1724 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2765 ((|#2| $) 52)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-2098 (((-1285 $)) 74)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-420 |#1| |#2|) (-141) (-174) (-1261 |t#1|)) (T -420))
-((-2098 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *1)) (-4 *1 (-420 *3 *4)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *3)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-420 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4)) (-4 *4 (-1261 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *3)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4)) (-4 *4 (-1261 *3)))) (-3831 (*1 *2) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-700 *3)))) (-2801 (*1 *2) (-12 (-4 *1 (-420 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-700 *3)))))
-(-13 (-380 |t#1| |t#2|) (-10 -8 (-15 -2098 ((-1285 $))) (-15 -2209 ((-1285 |t#1|) $)) (-15 -2209 ((-700 |t#1|) (-1285 $))) (-15 -3898 ($ (-1285 |t#1|))) (-15 -2613 ((-1285 |t#1|) $)) (-15 -2613 ($ (-1285 |t#1|))) (-15 -3831 ((-700 |t#1|))) (-15 -2801 (|t#1|)) (-15 -3405 ((-700 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-380 |#1| |#2|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) 27) (((-3 (-575) "failed") $) 19)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) 24) (((-575) $) 14)) (-2882 (($ |#2|) NIL) (($ (-418 (-575))) 22) (($ (-575)) 11)))
-(((-421 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| (-575))) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|))) (-422 |#2|) (-1235)) (T -421))
-NIL
-(-10 -8 (-15 -2882 (|#1| (-575))) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)))
-((-2443 (((-3 |#1| "failed") $) 9) (((-3 (-418 (-575)) "failed") $) 16 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 13 (|has| |#1| (-1055 (-575))))) (-4400 ((|#1| $) 8) (((-418 (-575)) $) 17 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 14 (|has| |#1| (-1055 (-575))))) (-2882 (($ |#1|) 6) (($ (-418 (-575))) 15 (|has| |#1| (-1055 (-418 (-575))))) (($ (-575)) 12 (|has| |#1| (-1055 (-575))))))
-(((-422 |#1|) (-141) (-1235)) (T -422))
-NIL
-(-13 (-1055 |t#1|) (-10 -7 (IF (|has| |t#1| (-1055 (-575))) (-6 (-1055 (-575))) |%noBranch|) (IF (|has| |t#1| (-1055 (-418 (-575)))) (-6 (-1055 (-418 (-575)))) |%noBranch|)))
-(((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 #1=(-575)) |has| |#1| (-1055 (-575))) ((-627 |#1|) . T) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 #1#) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T))
-((-2544 (((-424 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-424 |#1| |#2| |#3| |#4|)) 35)))
-(((-423 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2544 ((-424 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-424 |#1| |#2| |#3| |#4|)))) (-316) (-1009 |#1|) (-1261 |#2|) (-13 (-420 |#2| |#3|) (-1055 |#2|)) (-316) (-1009 |#5|) (-1261 |#6|) (-13 (-420 |#6| |#7|) (-1055 |#6|))) (T -423))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-424 *5 *6 *7 *8)) (-4 *5 (-316)) (-4 *6 (-1009 *5)) (-4 *7 (-1261 *6)) (-4 *8 (-13 (-420 *6 *7) (-1055 *6))) (-4 *9 (-316)) (-4 *10 (-1009 *9)) (-4 *11 (-1261 *10)) (-5 *2 (-424 *9 *10 *11 *12)) (-5 *1 (-423 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-420 *10 *11) (-1055 *10))))))
-(-10 -7 (-15 -2544 ((-424 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-424 |#1| |#2| |#3| |#4|))))
-((-2859 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-2134 ((|#4| (-782) (-1285 |#4|)) 55)) (-3900 (((-112) $) NIL)) (-1595 (((-1285 |#4|) $) 15)) (-3390 ((|#2| $) 53)) (-2839 (($ $) 157)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 103)) (-4391 (($ (-1285 |#4|)) 102)) (-3912 (((-1137) $) NIL)) (-1608 ((|#1| $) 16)) (-3516 (($ $ $) NIL)) (-4152 (($ $ $) NIL)) (-2882 (((-873) $) 148)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 |#4|) $) 141)) (-2005 (($) 11 T CONST)) (-3913 (((-112) $ $) 39)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 134)) (* (($ $ $) 130)))
-(((-424 |#1| |#2| |#3| |#4|) (-13 (-484) (-10 -8 (-15 -4391 ($ (-1285 |#4|))) (-15 -2098 ((-1285 |#4|) $)) (-15 -3390 (|#2| $)) (-15 -1595 ((-1285 |#4|) $)) (-15 -1608 (|#1| $)) (-15 -2839 ($ $)) (-15 -2134 (|#4| (-782) (-1285 |#4|))))) (-316) (-1009 |#1|) (-1261 |#2|) (-13 (-420 |#2| |#3|) (-1055 |#2|))) (T -424))
-((-4391 (*1 *1 *2) (-12 (-5 *2 (-1285 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *3 (-316)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2098 (*1 *2 *1) (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))))) (-3390 (*1 *2 *1) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) (-5 *1 (-424 *3 *2 *4 *5)) (-4 *3 (-316)) (-4 *5 (-13 (-420 *2 *4) (-1055 *2))))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4))))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) (-4 *2 (-316)) (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3))))) (-2839 (*1 *1 *1) (-12 (-4 *2 (-316)) (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3))))) (-2134 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1285 *2)) (-4 *5 (-316)) (-4 *6 (-1009 *5)) (-4 *2 (-13 (-420 *6 *7) (-1055 *6))) (-5 *1 (-424 *5 *6 *7 *2)) (-4 *7 (-1261 *6)))))
-(-13 (-484) (-10 -8 (-15 -4391 ($ (-1285 |#4|))) (-15 -2098 ((-1285 |#4|) $)) (-15 -3390 (|#2| $)) (-15 -1595 ((-1285 |#4|) $)) (-15 -1608 (|#1| $)) (-15 -2839 ($ $)) (-15 -2134 (|#4| (-782) (-1285 |#4|)))))
-((-2859 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-3390 ((|#2| $) 71)) (-2842 (($ (-1285 |#4|)) 27) (($ (-424 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1055 |#2|)))) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 37)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 |#4|) $) 28)) (-2005 (($) 25 T CONST)) (-3913 (((-112) $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ $ $) 82)))
-(((-425 |#1| |#2| |#3| |#4| |#5|) (-13 (-737) (-10 -8 (-15 -2098 ((-1285 |#4|) $)) (-15 -3390 (|#2| $)) (-15 -2842 ($ (-1285 |#4|))) (IF (|has| |#4| (-1055 |#2|)) (-15 -2842 ($ (-424 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-316) (-1009 |#1|) (-1261 |#2|) (-420 |#2| |#3|) (-1285 |#4|)) (T -425))
-((-2098 (*1 *2 *1) (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7)) (-4 *6 (-420 *4 *5)) (-14 *7 *2))) (-3390 (*1 *2 *1) (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) (-5 *1 (-425 *3 *2 *4 *5 *6)) (-4 *3 (-316)) (-4 *5 (-420 *2 *4)) (-14 *6 (-1285 *5)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-1285 *6)) (-4 *6 (-420 *4 *5)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *3 (-316)) (-5 *1 (-425 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-424 *3 *4 *5 *6)) (-4 *6 (-1055 *4)) (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *6 (-420 *4 *5)) (-14 *7 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7)))))
-(-13 (-737) (-10 -8 (-15 -2098 ((-1285 |#4|) $)) (-15 -3390 (|#2| $)) (-15 -2842 ($ (-1285 |#4|))) (IF (|has| |#4| (-1055 |#2|)) (-15 -2842 ($ (-424 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2544 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#3| (-1 |#4| |#2|) |#1|))) (-428 |#2|) (-174) (-428 |#4|) (-174)) (T -426))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-428 *6)) (-5 *1 (-426 *4 *5 *2 *6)) (-4 *4 (-428 *5)))))
-(-10 -7 (-15 -2544 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2942 (((-3 $ "failed")) 98)) (-2199 (((-1285 (-700 |#2|)) (-1285 $)) NIL) (((-1285 (-700 |#2|))) 103)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) 96)) (-2146 (((-3 $ "failed")) 95)) (-3636 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|)) 114)) (-1454 (((-700 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) $) 122)) (-2368 (((-1190 (-967 |#2|))) 63)) (-2530 ((|#2| (-1285 $)) NIL) ((|#2|) 118)) (-3898 (($ (-1285 |#2|) (-1285 $)) NIL) (($ (-1285 |#2|)) 124)) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) 94)) (-1987 (((-3 $ "failed")) 86)) (-3400 (((-700 |#2|) (-1285 $)) NIL) (((-700 |#2|)) 112)) (-3475 (((-700 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) $) 120)) (-3726 (((-1190 (-967 |#2|))) 62)) (-4175 ((|#2| (-1285 $)) NIL) ((|#2|) 116)) (-2209 (((-1285 |#2|) $ (-1285 $)) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $) 123) (((-700 |#2|) (-1285 $)) 132)) (-2613 (((-1285 |#2|) $) 108) (($ (-1285 |#2|)) 110)) (-3600 (((-655 (-967 |#2|)) (-1285 $)) NIL) (((-655 (-967 |#2|))) 106)) (-1943 (($ (-700 |#2|) $) 102)))
-(((-427 |#1| |#2|) (-10 -8 (-15 -1943 (|#1| (-700 |#2|) |#1|)) (-15 -2368 ((-1190 (-967 |#2|)))) (-15 -3726 ((-1190 (-967 |#2|)))) (-15 -1454 ((-700 |#2|) |#1|)) (-15 -3475 ((-700 |#2|) |#1|)) (-15 -3636 ((-700 |#2|))) (-15 -3400 ((-700 |#2|))) (-15 -2530 (|#2|)) (-15 -4175 (|#2|)) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -3898 (|#1| (-1285 |#2|))) (-15 -3600 ((-655 (-967 |#2|)))) (-15 -2199 ((-1285 (-700 |#2|)))) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -2942 ((-3 |#1| "failed"))) (-15 -2146 ((-3 |#1| "failed"))) (-15 -1987 ((-3 |#1| "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed"))) (-15 -3303 ((-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed"))) (-15 -3636 ((-700 |#2|) (-1285 |#1|))) (-15 -3400 ((-700 |#2|) (-1285 |#1|))) (-15 -2530 (|#2| (-1285 |#1|))) (-15 -4175 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -1454 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -3475 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -2199 ((-1285 (-700 |#2|)) (-1285 |#1|))) (-15 -3600 ((-655 (-967 |#2|)) (-1285 |#1|)))) (-428 |#2|) (-174)) (T -427))
-((-2199 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-3600 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-655 (-967 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-4175 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2)))) (-2530 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2)))) (-3400 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-3636 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-3726 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))) (-2368 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))))
-(-10 -8 (-15 -1943 (|#1| (-700 |#2|) |#1|)) (-15 -2368 ((-1190 (-967 |#2|)))) (-15 -3726 ((-1190 (-967 |#2|)))) (-15 -1454 ((-700 |#2|) |#1|)) (-15 -3475 ((-700 |#2|) |#1|)) (-15 -3636 ((-700 |#2|))) (-15 -3400 ((-700 |#2|))) (-15 -2530 (|#2|)) (-15 -4175 (|#2|)) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -3898 (|#1| (-1285 |#2|))) (-15 -3600 ((-655 (-967 |#2|)))) (-15 -2199 ((-1285 (-700 |#2|)))) (-15 -2209 ((-700 |#2|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1|)) (-15 -2942 ((-3 |#1| "failed"))) (-15 -2146 ((-3 |#1| "failed"))) (-15 -1987 ((-3 |#1| "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed"))) (-15 -3303 ((-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed"))) (-15 -3636 ((-700 |#2|) (-1285 |#1|))) (-15 -3400 ((-700 |#2|) (-1285 |#1|))) (-15 -2530 (|#2| (-1285 |#1|))) (-15 -4175 (|#2| (-1285 |#1|))) (-15 -3898 (|#1| (-1285 |#2|) (-1285 |#1|))) (-15 -2209 ((-700 |#2|) (-1285 |#1|) (-1285 |#1|))) (-15 -2209 ((-1285 |#2|) |#1| (-1285 |#1|))) (-15 -1454 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -3475 ((-700 |#2|) |#1| (-1285 |#1|))) (-15 -2199 ((-1285 (-700 |#2|)) (-1285 |#1|))) (-15 -3600 ((-655 (-967 |#2|)) (-1285 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-2942 (((-3 $ "failed")) 42 (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) 20)) (-2199 (((-1285 (-700 |#1|)) (-1285 $)) 83) (((-1285 (-700 |#1|))) 106)) (-2133 (((-1285 $)) 86)) (-3261 (($) 18 T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) 45 (|has| |#1| (-567)))) (-2146 (((-3 $ "failed")) 43 (|has| |#1| (-567)))) (-3636 (((-700 |#1|) (-1285 $)) 70) (((-700 |#1|)) 98)) (-3309 ((|#1| $) 79)) (-1454 (((-700 |#1|) $ (-1285 $)) 81) (((-700 |#1|) $) 96)) (-3952 (((-3 $ "failed") $) 50 (|has| |#1| (-567)))) (-2368 (((-1190 (-967 |#1|))) 94 (|has| |#1| (-373)))) (-1810 (($ $ (-936)) 31)) (-1731 ((|#1| $) 77)) (-2864 (((-1190 |#1|) $) 47 (|has| |#1| (-567)))) (-2530 ((|#1| (-1285 $)) 72) ((|#1|) 100)) (-3100 (((-1190 |#1|) $) 68)) (-3884 (((-112)) 62)) (-3898 (($ (-1285 |#1|) (-1285 $)) 74) (($ (-1285 |#1|)) 104)) (-4162 (((-3 $ "failed") $) 52 (|has| |#1| (-567)))) (-4422 (((-936)) 85)) (-3748 (((-112)) 59)) (-3905 (($ $ (-936)) 38)) (-2948 (((-112)) 55)) (-3534 (((-112)) 53)) (-2043 (((-112)) 57)) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) 46 (|has| |#1| (-567)))) (-1987 (((-3 $ "failed")) 44 (|has| |#1| (-567)))) (-3400 (((-700 |#1|) (-1285 $)) 71) (((-700 |#1|)) 99)) (-1455 ((|#1| $) 80)) (-3475 (((-700 |#1|) $ (-1285 $)) 82) (((-700 |#1|) $) 97)) (-3284 (((-3 $ "failed") $) 51 (|has| |#1| (-567)))) (-3726 (((-1190 (-967 |#1|))) 95 (|has| |#1| (-373)))) (-3643 (($ $ (-936)) 32)) (-4339 ((|#1| $) 78)) (-1360 (((-1190 |#1|) $) 48 (|has| |#1| (-567)))) (-4175 ((|#1| (-1285 $)) 73) ((|#1|) 101)) (-3557 (((-1190 |#1|) $) 69)) (-1509 (((-112)) 63)) (-4264 (((-1176) $) 10)) (-3155 (((-112)) 54)) (-3872 (((-112)) 56)) (-4350 (((-112)) 58)) (-3912 (((-1137) $) 11)) (-2279 (((-112)) 61)) (-2065 ((|#1| $ (-575)) 110)) (-2209 (((-1285 |#1|) $ (-1285 $)) 76) (((-700 |#1|) (-1285 $) (-1285 $)) 75) (((-1285 |#1|) $) 108) (((-700 |#1|) (-1285 $)) 107)) (-2613 (((-1285 |#1|) $) 103) (($ (-1285 |#1|)) 102)) (-3600 (((-655 (-967 |#1|)) (-1285 $)) 84) (((-655 (-967 |#1|))) 105)) (-4152 (($ $ $) 28)) (-2122 (((-112)) 67)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2098 (((-1285 $)) 109)) (-2876 (((-655 (-1285 |#1|))) 49 (|has| |#1| (-567)))) (-3458 (($ $ $ $) 29)) (-3220 (((-112)) 65)) (-1943 (($ (-700 |#1|) $) 93)) (-2337 (($ $ $) 27)) (-3676 (((-112)) 66)) (-3198 (((-112)) 64)) (-3594 (((-112)) 60)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-428 |#1|) (-141) (-174)) (T -428))
-((-2098 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-428 *3)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-428 *4)) (-4 *4 (-174)) (-5 *2 (-700 *4)))) (-2199 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 (-700 *3))))) (-3600 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-655 (-967 *3))))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3)))) (-4175 (*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174)))) (-2530 (*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174)))) (-3400 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-3636 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))) (-3726 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373)) (-5 *2 (-1190 (-967 *3))))) (-2368 (*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373)) (-5 *2 (-1190 (-967 *3))))) (-1943 (*1 *1 *2 *1) (-12 (-5 *2 (-700 *3)) (-4 *1 (-428 *3)) (-4 *3 (-174)))))
-(-13 (-377 |t#1|) (-295 (-575) |t#1|) (-10 -8 (-15 -2098 ((-1285 $))) (-15 -2209 ((-1285 |t#1|) $)) (-15 -2209 ((-700 |t#1|) (-1285 $))) (-15 -2199 ((-1285 (-700 |t#1|)))) (-15 -3600 ((-655 (-967 |t#1|)))) (-15 -3898 ($ (-1285 |t#1|))) (-15 -2613 ((-1285 |t#1|) $)) (-15 -2613 ($ (-1285 |t#1|))) (-15 -4175 (|t#1|)) (-15 -2530 (|t#1|)) (-15 -3400 ((-700 |t#1|))) (-15 -3636 ((-700 |t#1|))) (-15 -3475 ((-700 |t#1|) $)) (-15 -1454 ((-700 |t#1|) $)) (IF (|has| |t#1| (-373)) (PROGN (-15 -3726 ((-1190 (-967 |t#1|)))) (-15 -2368 ((-1190 (-967 |t#1|))))) |%noBranch|) (-15 -1943 ($ (-700 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-295 (-575) |#1|) . T) ((-377 |#1|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-731) . T) ((-755 |#1|) . T) ((-772) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 60)) (-3450 (($ $) 78)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 192)) (-2456 (($ $) NIL)) (-3978 (((-112) $) 48)) (-2942 ((|#1| $) 16)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-1239)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-1239)))) (-2773 (($ |#1| (-575)) 42)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 149)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 74)) (-4162 (((-3 $ "failed") $) 165)) (-2157 (((-3 (-418 (-575)) "failed") $) 85 (|has| |#1| (-556)))) (-2188 (((-112) $) 81 (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) 92 (|has| |#1| (-556)))) (-3511 (($ |#1| (-575)) 44)) (-3559 (((-112) $) 212 (|has| |#1| (-1239)))) (-3900 (((-112) $) 62)) (-3601 (((-782) $) 51)) (-2949 (((-3 "nil" "sqfr" "irred" "prime") $ (-575)) 176)) (-2834 ((|#1| $ (-575)) 175)) (-2591 (((-575) $ (-575)) 174)) (-1928 (($ |#1| (-575)) 41)) (-2544 (($ (-1 |#1| |#1|) $) 184)) (-4315 (($ |#1| (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575))))) 79)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-3739 (($ |#1| (-575)) 43)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) 193 (|has| |#1| (-463)))) (-4404 (($ |#1| (-575) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1366 (((-655 (-2 (|:| -2347 |#1|) (|:| -1658 (-575)))) $) 73)) (-4188 (((-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))) $) 12)) (-2347 (((-429 $) $) NIL (|has| |#1| (-1239)))) (-2849 (((-3 $ "failed") $ $) 177)) (-1658 (((-575) $) 168)) (-3943 ((|#1| $) 75)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 101 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 107 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) $) NIL (|has| |#1| (-525 (-1194) $))) (($ $ (-655 (-1194)) (-655 $)) 108 (|has| |#1| (-525 (-1194) $))) (($ $ (-655 (-303 $))) 104 (|has| |#1| (-318 $))) (($ $ (-303 $)) NIL (|has| |#1| (-318 $))) (($ $ $ $) NIL (|has| |#1| (-318 $))) (($ $ (-655 $) (-655 $)) NIL (|has| |#1| (-318 $)))) (-2065 (($ $ |#1|) 93 (|has| |#1| (-295 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-295 $ $)))) (-2382 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2613 (((-547) $) 39 (|has| |#1| (-625 (-547)))) (((-389) $) 114 (|has| |#1| (-1039))) (((-227) $) 120 (|has| |#1| (-1039)))) (-2882 (((-873) $) 147) (($ (-575)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575)))))) (-4421 (((-782)) 67 T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 53 T CONST)) (-2005 (($) 52 T CONST)) (-3428 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3913 (((-112) $ $) 160)) (-4027 (($ $) 162) (($ $ $) NIL)) (-4015 (($ $ $) 181)) (** (($ $ (-936)) NIL) (($ $ (-782)) 126)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-429 |#1|) (-13 (-567) (-232 |#1|) (-38 |#1|) (-348 |#1|) (-422 |#1|) (-10 -8 (-15 -3943 (|#1| $)) (-15 -1658 ((-575) $)) (-15 -4315 ($ |#1| (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))))) (-15 -4188 ((-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))) $)) (-15 -1928 ($ |#1| (-575))) (-15 -1366 ((-655 (-2 (|:| -2347 |#1|) (|:| -1658 (-575)))) $)) (-15 -3739 ($ |#1| (-575))) (-15 -2591 ((-575) $ (-575))) (-15 -2834 (|#1| $ (-575))) (-15 -2949 ((-3 "nil" "sqfr" "irred" "prime") $ (-575))) (-15 -3601 ((-782) $)) (-15 -3511 ($ |#1| (-575))) (-15 -2773 ($ |#1| (-575))) (-15 -4404 ($ |#1| (-575) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2942 (|#1| $)) (-15 -3450 ($ $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-463)) (-6 (-463)) |%noBranch|) (IF (|has| |#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |#1| (-1239)) (-6 (-1239)) |%noBranch|) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-295 $ $)) (-6 (-295 $ $)) |%noBranch|) (IF (|has| |#1| (-318 $)) (-6 (-318 $)) |%noBranch|) (IF (|has| |#1| (-525 (-1194) $)) (-6 (-525 (-1194) $)) |%noBranch|))) (-567)) (T -429))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-567)) (-5 *1 (-429 *3)))) (-3943 (*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-1658 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-4315 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-575))))) (-4 *2 (-567)) (-5 *1 (-429 *2)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-575))))) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-1928 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -2347 *3) (|:| -1658 (-575))))) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-3739 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2591 (*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-429 *4)) (-4 *4 (-567)))) (-3601 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-429 *3)) (-4 *3 (-567)))) (-3511 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2773 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-4404 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-575)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2942 (*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-3450 (*1 *1 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567)))) (-2157 (*1 *2 *1) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567)))))
-(-13 (-567) (-232 |#1|) (-38 |#1|) (-348 |#1|) (-422 |#1|) (-10 -8 (-15 -3943 (|#1| $)) (-15 -1658 ((-575) $)) (-15 -4315 ($ |#1| (-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))))) (-15 -4188 ((-655 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-575)))) $)) (-15 -1928 ($ |#1| (-575))) (-15 -1366 ((-655 (-2 (|:| -2347 |#1|) (|:| -1658 (-575)))) $)) (-15 -3739 ($ |#1| (-575))) (-15 -2591 ((-575) $ (-575))) (-15 -2834 (|#1| $ (-575))) (-15 -2949 ((-3 "nil" "sqfr" "irred" "prime") $ (-575))) (-15 -3601 ((-782) $)) (-15 -3511 ($ |#1| (-575))) (-15 -2773 ($ |#1| (-575))) (-15 -4404 ($ |#1| (-575) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2942 (|#1| $)) (-15 -3450 ($ $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-463)) (-6 (-463)) |%noBranch|) (IF (|has| |#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |#1| (-1239)) (-6 (-1239)) |%noBranch|) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-295 $ $)) (-6 (-295 $ $)) |%noBranch|) (IF (|has| |#1| (-318 $)) (-6 (-318 $)) |%noBranch|) (IF (|has| |#1| (-525 (-1194) $)) (-6 (-525 (-1194) $)) |%noBranch|)))
-((-2946 (((-429 |#1|) (-429 |#1|) (-1 (-429 |#1|) |#1|)) 28)) (-1937 (((-429 |#1|) (-429 |#1|) (-429 |#1|)) 17)))
-(((-430 |#1|) (-10 -7 (-15 -2946 ((-429 |#1|) (-429 |#1|) (-1 (-429 |#1|) |#1|))) (-15 -1937 ((-429 |#1|) (-429 |#1|) (-429 |#1|)))) (-567)) (T -430))
-((-1937 (*1 *2 *2 *2) (-12 (-5 *2 (-429 *3)) (-4 *3 (-567)) (-5 *1 (-430 *3)))) (-2946 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-429 *4) *4)) (-4 *4 (-567)) (-5 *2 (-429 *4)) (-5 *1 (-430 *4)))))
-(-10 -7 (-15 -2946 ((-429 |#1|) (-429 |#1|) (-1 (-429 |#1|) |#1|))) (-15 -1937 ((-429 |#1|) (-429 |#1|) (-429 |#1|))))
-((-1717 ((|#2| |#2|) 183)) (-4191 (((-3 (|:| |%expansion| (-322 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112)) 60)))
-(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4191 ((-3 (|:| |%expansion| (-322 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112))) (-15 -1717 (|#2| |#2|))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|)) (-1194) |#2|) (T -431))
-((-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-431 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1220) (-441 *3))) (-14 *4 (-1194)) (-14 *5 *2))) (-4191 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (|:| |%expansion| (-322 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) (-5 *1 (-431 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-14 *6 (-1194)) (-14 *7 *3))))
-(-10 -7 (-15 -4191 ((-3 (|:| |%expansion| (-322 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112))) (-15 -1717 (|#2| |#2|)))
-((-2544 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|))) (-1066) (-441 |#1|) (-1066) (-441 |#3|)) (T -432))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-441 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-441 *5)))))
-(-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1717 ((|#2| |#2|) 106)) (-4438 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176)) 52)) (-4348 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176)) 170)))
-(((-433 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4438 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -4348 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -1717 (|#2| |#2|))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|) (-10 -8 (-15 -2882 ($ |#3|)))) (-859) (-13 (-1263 |#2| |#3|) (-373) (-1220) (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $)))) (-1000 |#4|) (-1194)) (T -433))
-((-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *2 (-13 (-27) (-1220) (-441 *3) (-10 -8 (-15 -2882 ($ *4))))) (-4 *4 (-859)) (-4 *5 (-13 (-1263 *2 *4) (-373) (-1220) (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $))))) (-5 *1 (-433 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1000 *5)) (-14 *7 (-1194)))) (-4348 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2882 ($ *7))))) (-4 *7 (-859)) (-4 *8 (-13 (-1263 *3 *7) (-373) (-1220) (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8)) (-14 *10 (-1194)))) (-4438 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2882 ($ *7))))) (-4 *7 (-859)) (-4 *8 (-13 (-1263 *3 *7) (-373) (-1220) (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176)))))) (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8)) (-14 *10 (-1194)))))
-(-10 -7 (-15 -4438 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -4348 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))) |#2| (-112) (-1176))) (-15 -1717 (|#2| |#2|)))
-((-3436 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2302 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2544 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2302 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3436 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1117) (-436 |#1|) (-1117) (-436 |#3|)) (T -434))
-((-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-4 *2 (-436 *5)) (-5 *1 (-434 *6 *4 *5 *2)) (-4 *4 (-436 *6)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-434 *5 *4 *2 *6)) (-4 *4 (-436 *5)) (-4 *6 (-436 *2)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-436 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-436 *5)))))
-(-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2302 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3436 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4258 (($) 51)) (-1644 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2081 (($ $ $) 46)) (-2210 (((-112) $ $) 35)) (-2409 (((-782)) 55)) (-1330 (($ (-655 |#2|)) 23) (($) NIL)) (-2073 (($) 66)) (-3688 (((-112) $ $) 15)) (-1914 ((|#2| $) 77)) (-3503 ((|#2| $) 75)) (-1894 (((-936) $) 70)) (-1872 (($ $ $) 42)) (-4317 (($ (-936)) 60)) (-4050 (($ $ |#2|) NIL) (($ $ $) 45)) (-3922 (((-782) (-1 (-112) |#2|) $) NIL) (((-782) |#2| $) 31)) (-2893 (($ (-655 |#2|)) 27)) (-2127 (($ $) 53)) (-2882 (((-873) $) 40)) (-1833 (((-782) $) 24)) (-2550 (($ (-655 |#2|)) 22) (($) NIL)) (-3913 (((-112) $ $) 19)))
-(((-435 |#1| |#2|) (-10 -8 (-15 -2409 ((-782))) (-15 -4317 (|#1| (-936))) (-15 -1894 ((-936) |#1|)) (-15 -2073 (|#1|)) (-15 -1914 (|#2| |#1|)) (-15 -3503 (|#2| |#1|)) (-15 -4258 (|#1|)) (-15 -2127 (|#1| |#1|)) (-15 -1833 ((-782) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3688 ((-112) |#1| |#1|)) (-15 -2550 (|#1|)) (-15 -2550 (|#1| (-655 |#2|))) (-15 -1330 (|#1|)) (-15 -1330 (|#1| (-655 |#2|))) (-15 -1872 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#2|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -2210 ((-112) |#1| |#1|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#2| |#1|)) (-15 -2893 (|#1| (-655 |#2|))) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|))) (-436 |#2|) (-1117)) (T -435))
-((-2409 (*1 *2) (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-435 *3 *4)) (-4 *3 (-436 *4)))))
-(-10 -8 (-15 -2409 ((-782))) (-15 -4317 (|#1| (-936))) (-15 -1894 ((-936) |#1|)) (-15 -2073 (|#1|)) (-15 -1914 (|#2| |#1|)) (-15 -3503 (|#2| |#1|)) (-15 -4258 (|#1|)) (-15 -2127 (|#1| |#1|)) (-15 -1833 ((-782) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3688 ((-112) |#1| |#1|)) (-15 -2550 (|#1|)) (-15 -2550 (|#1| (-655 |#2|))) (-15 -1330 (|#1|)) (-15 -1330 (|#1| (-655 |#2|))) (-15 -1872 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#2|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -2210 ((-112) |#1| |#1|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#2| |#1|)) (-15 -2893 (|#1| (-655 |#2|))) (-15 -3922 ((-782) |#2| |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)))
-((-2859 (((-112) $ $) 19)) (-4258 (($) 68 (|has| |#1| (-378)))) (-1644 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2081 (($ $ $) 79)) (-2210 (((-112) $ $) 80)) (-3133 (((-112) $ (-782)) 8)) (-2409 (((-782)) 62 (|has| |#1| (-378)))) (-1330 (($ (-655 |#1|)) 75) (($) 74)) (-1932 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-4070 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-2073 (($) 65 (|has| |#1| (-378)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) 71)) (-3541 (((-112) $ (-782)) 9)) (-1914 ((|#1| $) 66 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3503 ((|#1| $) 67 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-1894 (((-936) $) 64 (|has| |#1| (-378)))) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22)) (-1872 (($ $ $) 76)) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-4317 (($ (-936)) 63 (|has| |#1| (-378)))) (-3912 (((-1137) $) 21)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-4050 (($ $ |#1|) 78) (($ $ $) 77)) (-3323 (($) 50) (($ (-655 |#1|)) 49)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 51)) (-2127 (($ $) 69 (|has| |#1| (-378)))) (-2882 (((-873) $) 18)) (-1833 (((-782) $) 70)) (-2550 (($ (-655 |#1|)) 73) (($) 72)) (-3685 (((-112) $ $) 23)) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20)) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-436 |#1|) (-141) (-1117)) (T -436))
-((-1833 (*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1117)) (-5 *2 (-782)))) (-2127 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-378)))) (-4258 (*1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-378)) (-4 *2 (-1117)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861)))))
-(-13 (-231 |t#1|) (-1115 |t#1|) (-10 -8 (-6 -4460) (-15 -1833 ((-782) $)) (IF (|has| |t#1| (-378)) (PROGN (-6 (-378)) (-15 -2127 ($ $)) (-15 -4258 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -3503 (|t#1| $)) (-15 -1914 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-378) |has| |#1| (-378)) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1115 |#1|) . T) ((-1117) . T) ((-1235) . T))
-((-4061 (((-597 |#2|) |#2| (-1194)) 36)) (-1889 (((-597 |#2|) |#2| (-1194)) 21)) (-2462 ((|#2| |#2| (-1194)) 26)))
-(((-437 |#1| |#2|) (-10 -7 (-15 -1889 ((-597 |#2|) |#2| (-1194))) (-15 -4061 ((-597 |#2|) |#2| (-1194))) (-15 -2462 (|#2| |#2| (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-29 |#1|))) (T -437))
-((-2462 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-437 *4 *2)) (-4 *2 (-13 (-1220) (-29 *4))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3)) (-4 *3 (-13 (-1220) (-29 *5))))) (-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3)) (-4 *3 (-13 (-1220) (-29 *5))))))
-(-10 -7 (-15 -1889 ((-597 |#2|) |#2| (-1194))) (-15 -4061 ((-597 |#2|) |#2| (-1194))) (-15 -2462 (|#2| |#2| (-1194))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-3734 (($ |#2| |#1|) 37)) (-3393 (($ |#2| |#1|) 35)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-340 |#2|)) 25)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 10 T CONST)) (-2005 (($) 16 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 36)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-438 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4447)) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) |%noBranch|) (-15 -2882 ($ |#1|)) (-15 -2882 ($ (-340 |#2|))) (-15 -3734 ($ |#2| |#1|)) (-15 -3393 ($ |#2| |#1|)))) (-13 (-174) (-38 (-418 (-575)))) (-13 (-861) (-21))) (T -438))
-((-2882 (*1 *1 *2) (-12 (-5 *1 (-438 *2 *3)) (-4 *2 (-13 (-174) (-38 (-418 (-575))))) (-4 *3 (-13 (-861) (-21))))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-340 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-438 *3 *4)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))))) (-3734 (*1 *1 *2 *3) (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))) (-4 *2 (-13 (-861) (-21))))) (-3393 (*1 *1 *2 *3) (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575))))) (-4 *2 (-13 (-861) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4447)) (IF (|has| |#1| (-6 -4447)) (-6 -4447) |%noBranch|) |%noBranch|) (-15 -2882 ($ |#1|)) (-15 -2882 ($ (-340 |#2|))) (-15 -3734 ($ |#2| |#1|)) (-15 -3393 ($ |#2| |#1|))))
-((-4388 (((-3 |#2| (-655 |#2|)) |#2| (-1194)) 115)))
-(((-439 |#1| |#2|) (-10 -7 (-15 -4388 ((-3 |#2| (-655 |#2|)) |#2| (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-29 |#1|))) (T -439))
-((-4388 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 *3 (-655 *3))) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1220) (-974) (-29 *5))))))
-(-10 -7 (-15 -4388 ((-3 |#2| (-655 |#2|)) |#2| (-1194))))
-((-1606 (((-655 (-1194)) $) 81)) (-3462 (((-418 (-1190 $)) $ (-623 $)) 313)) (-1475 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) 277)) (-2443 (((-3 (-623 $) "failed") $) NIL) (((-3 (-1194) "failed") $) 84) (((-3 (-575) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-418 (-967 |#2|)) "failed") $) 363) (((-3 (-967 |#2|) "failed") $) 275) (((-3 (-418 (-575)) "failed") $) NIL)) (-4400 (((-623 $) $) NIL) (((-1194) $) 28) (((-575) $) NIL) ((|#2| $) 271) (((-418 (-967 |#2|)) $) 345) (((-967 |#2|) $) 272) (((-418 (-575)) $) NIL)) (-2567 (((-115) (-115)) 47)) (-4300 (($ $) 99)) (-1934 (((-3 (-623 $) "failed") $) 268)) (-2551 (((-655 (-623 $)) $) 269)) (-1445 (((-3 (-655 $) "failed") $) 287)) (-1963 (((-3 (-2 (|:| |val| $) (|:| -1658 (-575))) "failed") $) 294)) (-1512 (((-3 (-655 $) "failed") $) 285)) (-3383 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 304)) (-2329 (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $) 291) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-1194)) 257)) (-4346 (((-112) $) 17)) (-4353 ((|#2| $) 19)) (-3046 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) 276) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 109) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1194)) 62) (($ $ (-655 (-1194))) 280) (($ $) 281) (($ $ (-115) $ (-1194)) 65) (($ $ (-655 (-115)) (-655 $) (-1194)) 72) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) 120) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) 282) (($ $ (-1194) (-782) (-1 $ (-655 $))) 105) (($ $ (-1194) (-782) (-1 $ $)) 104)) (-2065 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) 119)) (-2382 (($ $ (-1194)) 278) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-2325 (($ $) 324)) (-2613 (((-904 (-575)) $) 297) (((-904 (-389)) $) 301) (($ (-429 $)) 359) (((-547) $) NIL)) (-2882 (((-873) $) 279) (($ (-623 $)) 93) (($ (-1194)) 24) (($ |#2|) NIL) (($ (-1142 |#2| (-623 $))) NIL) (($ (-418 |#2|)) 329) (($ (-967 (-418 |#2|))) 368) (($ (-418 (-967 (-418 |#2|)))) 341) (($ (-418 (-967 |#2|))) 335) (($ $) NIL) (($ (-967 |#2|)) 216) (($ (-575)) NIL) (($ (-418 (-575))) 373)) (-4421 (((-782)) 88)) (-1825 (((-112) (-115)) 42)) (-1627 (($ (-1194) $) 31) (($ (-1194) $ $) 32) (($ (-1194) $ $ $) 33) (($ (-1194) $ $ $ $) 34) (($ (-1194) (-655 $)) 39)) (* (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL)))
-(((-440 |#1| |#2|) (-10 -8 (-15 * (|#1| (-936) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2882 (|#1| (-575))) (-15 -4421 ((-782))) (-15 * (|#1| |#2| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2882 (|#1| (-967 |#2|))) (-15 -2443 ((-3 (-967 |#2|) "failed") |#1|)) (-15 -4400 ((-967 |#2|) |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 * (|#1| |#1| |#2|)) (-15 -2882 (|#1| |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2882 (|#1| (-418 (-967 |#2|)))) (-15 -2443 ((-3 (-418 (-967 |#2|)) "failed") |#1|)) (-15 -4400 ((-418 (-967 |#2|)) |#1|)) (-15 -3462 ((-418 (-1190 |#1|)) |#1| (-623 |#1|))) (-15 -2882 (|#1| (-418 (-967 (-418 |#2|))))) (-15 -2882 (|#1| (-967 (-418 |#2|)))) (-15 -2882 (|#1| (-418 |#2|))) (-15 -2325 (|#1| |#1|)) (-15 -2613 (|#1| (-429 |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-782) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-782) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| |#1|)))) (-15 -1963 ((-3 (-2 (|:| |val| |#1|) (|:| -1658 (-575))) "failed") |#1|)) (-15 -2329 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -1658 (-575))) "failed") |#1| (-1194))) (-15 -2329 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -1658 (-575))) "failed") |#1| (-115))) (-15 -4300 (|#1| |#1|)) (-15 -2882 (|#1| (-1142 |#2| (-623 |#1|)))) (-15 -3383 ((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 |#1|))) "failed") |#1|)) (-15 -1512 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2329 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -1658 (-575))) "failed") |#1|)) (-15 -1445 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 |#1|) (-1194))) (-15 -3046 (|#1| |#1| (-115) |#1| (-1194))) (-15 -3046 (|#1| |#1|)) (-15 -3046 (|#1| |#1| (-655 (-1194)))) (-15 -3046 (|#1| |#1| (-1194))) (-15 -1627 (|#1| (-1194) (-655 |#1|))) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1|)) (-15 -1606 ((-655 (-1194)) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2882 (|#1| (-1194))) (-15 -2443 ((-3 (-1194) "failed") |#1|)) (-15 -4400 ((-1194) |#1|)) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -2551 ((-655 (-623 |#1|)) |#1|)) (-15 -1934 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1475 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1475 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1475 (|#1| |#1| (-303 |#1|))) (-15 -2065 (|#1| (-115) (-655 |#1|))) (-15 -2065 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3046 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2882 (|#1| (-623 |#1|))) (-15 -2443 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4400 ((-623 |#1|) |#1|)) (-15 -2882 ((-873) |#1|))) (-441 |#2|) (-1117)) (T -440))
-((-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1117)) (-5 *1 (-440 *3 *4)) (-4 *3 (-441 *4)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-440 *4 *5)) (-4 *4 (-441 *5)))) (-4421 (*1 *2) (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-440 *3 *4)) (-4 *3 (-441 *4)))))
-(-10 -8 (-15 * (|#1| (-936) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2882 (|#1| (-575))) (-15 -4421 ((-782))) (-15 * (|#1| |#2| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2882 (|#1| (-967 |#2|))) (-15 -2443 ((-3 (-967 |#2|) "failed") |#1|)) (-15 -4400 ((-967 |#2|) |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 * (|#1| |#1| |#2|)) (-15 -2882 (|#1| |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -2882 (|#1| (-418 (-967 |#2|)))) (-15 -2443 ((-3 (-418 (-967 |#2|)) "failed") |#1|)) (-15 -4400 ((-418 (-967 |#2|)) |#1|)) (-15 -3462 ((-418 (-1190 |#1|)) |#1| (-623 |#1|))) (-15 -2882 (|#1| (-418 (-967 (-418 |#2|))))) (-15 -2882 (|#1| (-967 (-418 |#2|)))) (-15 -2882 (|#1| (-418 |#2|))) (-15 -2325 (|#1| |#1|)) (-15 -2613 (|#1| (-429 |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-782) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-782) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-782)) (-655 (-1 |#1| |#1|)))) (-15 -1963 ((-3 (-2 (|:| |val| |#1|) (|:| -1658 (-575))) "failed") |#1|)) (-15 -2329 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -1658 (-575))) "failed") |#1| (-1194))) (-15 -2329 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -1658 (-575))) "failed") |#1| (-115))) (-15 -4300 (|#1| |#1|)) (-15 -2882 (|#1| (-1142 |#2| (-623 |#1|)))) (-15 -3383 ((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 |#1|))) "failed") |#1|)) (-15 -1512 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2329 ((-3 (-2 (|:| |var| (-623 |#1|)) (|:| -1658 (-575))) "failed") |#1|)) (-15 -1445 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 |#1|) (-1194))) (-15 -3046 (|#1| |#1| (-115) |#1| (-1194))) (-15 -3046 (|#1| |#1|)) (-15 -3046 (|#1| |#1| (-655 (-1194)))) (-15 -3046 (|#1| |#1| (-1194))) (-15 -1627 (|#1| (-1194) (-655 |#1|))) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1| |#1|)) (-15 -1627 (|#1| (-1194) |#1|)) (-15 -1606 ((-655 (-1194)) |#1|)) (-15 -4353 (|#2| |#1|)) (-15 -4346 ((-112) |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2882 (|#1| (-1194))) (-15 -2443 ((-3 (-1194) "failed") |#1|)) (-15 -4400 ((-1194) |#1|)) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-115) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-115)) (-655 (-1 |#1| |#1|)))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| |#1|))) (-15 -3046 (|#1| |#1| (-1194) (-1 |#1| (-655 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| (-655 |#1|))))) (-15 -3046 (|#1| |#1| (-655 (-1194)) (-655 (-1 |#1| |#1|)))) (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -2551 ((-655 (-623 |#1|)) |#1|)) (-15 -1934 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -1475 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -1475 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1475 (|#1| |#1| (-303 |#1|))) (-15 -2065 (|#1| (-115) (-655 |#1|))) (-15 -2065 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1| |#1|)) (-15 -2065 (|#1| (-115) |#1|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -3046 (|#1| |#1| (-655 (-623 |#1|)) (-655 |#1|))) (-15 -3046 (|#1| |#1| (-623 |#1|) |#1|)) (-15 -2882 (|#1| (-623 |#1|))) (-15 -2443 ((-3 (-623 |#1|) "failed") |#1|)) (-15 -4400 ((-623 |#1|) |#1|)) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 117 (|has| |#1| (-25)))) (-1606 (((-655 (-1194)) $) 206)) (-3462 (((-418 (-1190 $)) $ (-623 $)) 174 (|has| |#1| (-567)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 146 (|has| |#1| (-567)))) (-2456 (($ $) 147 (|has| |#1| (-567)))) (-3978 (((-112) $) 149 (|has| |#1| (-567)))) (-4270 (((-655 (-623 $)) $) 39)) (-1708 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1475 (($ $ (-303 $)) 51) (($ $ (-655 (-303 $))) 50) (($ $ (-655 (-623 $)) (-655 $)) 49)) (-3312 (($ $) 166 (|has| |#1| (-567)))) (-4281 (((-429 $) $) 167 (|has| |#1| (-567)))) (-3599 (((-112) $ $) 157 (|has| |#1| (-567)))) (-3261 (($) 105 (-3763 (|has| |#1| (-1129)) (|has| |#1| (-25))) CONST)) (-2443 (((-3 (-623 $) "failed") $) 64) (((-3 (-1194) "failed") $) 219) (((-3 (-575) "failed") $) 213 (|has| |#1| (-1055 (-575)))) (((-3 |#1| "failed") $) 210) (((-3 (-418 (-967 |#1|)) "failed") $) 172 (|has| |#1| (-567))) (((-3 (-967 |#1|) "failed") $) 124 (|has| |#1| (-1066))) (((-3 (-418 (-575)) "failed") $) 99 (-3763 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-4400 (((-623 $) $) 65) (((-1194) $) 220) (((-575) $) 212 (|has| |#1| (-1055 (-575)))) ((|#1| $) 211) (((-418 (-967 |#1|)) $) 173 (|has| |#1| (-567))) (((-967 |#1|) $) 125 (|has| |#1| (-1066))) (((-418 (-575)) $) 100 (-3763 (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575))))))) (-2800 (($ $ $) 161 (|has| |#1| (-567)))) (-2862 (((-700 (-575)) (-1285 $)) 141 (-3224 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-700 (-575)) (-700 $)) 140 (-3224 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 139 (-3224 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 138 (|has| |#1| (-1066))) (((-700 |#1|) (-700 $)) 137 (|has| |#1| (-1066))) (((-700 |#1|) (-1285 $)) 136 (|has| |#1| (-1066)))) (-4162 (((-3 $ "failed") $) 107 (|has| |#1| (-1129)))) (-2811 (($ $ $) 160 (|has| |#1| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 155 (|has| |#1| (-567)))) (-3559 (((-112) $) 168 (|has| |#1| (-567)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 215 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 214 (|has| |#1| (-898 (-389))))) (-1412 (($ $) 46) (($ (-655 $)) 45)) (-4075 (((-655 (-115)) $) 38)) (-2567 (((-115) (-115)) 37)) (-3900 (((-112) $) 106 (|has| |#1| (-1129)))) (-4254 (((-112) $) 17 (|has| $ (-1055 (-575))))) (-4300 (($ $) 189 (|has| |#1| (-1066)))) (-1595 (((-1142 |#1| (-623 $)) $) 190 (|has| |#1| (-1066)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 164 (|has| |#1| (-567)))) (-4088 (((-1190 $) (-623 $)) 20 (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) 31)) (-1934 (((-3 (-623 $) "failed") $) 41)) (-3886 (($ (-655 $)) 153 (|has| |#1| (-567))) (($ $ $) 152 (|has| |#1| (-567)))) (-4264 (((-1176) $) 10)) (-2551 (((-655 (-623 $)) $) 40)) (-1672 (($ (-115) $) 33) (($ (-115) (-655 $)) 32)) (-1445 (((-3 (-655 $) "failed") $) 195 (|has| |#1| (-1129)))) (-1963 (((-3 (-2 (|:| |val| $) (|:| -1658 (-575))) "failed") $) 186 (|has| |#1| (-1066)))) (-1512 (((-3 (-655 $) "failed") $) 193 (|has| |#1| (-25)))) (-3383 (((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $) 192 (|has| |#1| (-25)))) (-2329 (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $) 194 (|has| |#1| (-1129))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-115)) 188 (|has| |#1| (-1066))) (((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-1194)) 187 (|has| |#1| (-1066)))) (-3371 (((-112) $ (-115)) 35) (((-112) $ (-1194)) 34)) (-4332 (($ $) 109 (-3763 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-3340 (((-782) $) 42)) (-3912 (((-1137) $) 11)) (-4346 (((-112) $) 208)) (-4353 ((|#1| $) 207)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 154 (|has| |#1| (-567)))) (-3923 (($ (-655 $)) 151 (|has| |#1| (-567))) (($ $ $) 150 (|has| |#1| (-567)))) (-4284 (((-112) $ $) 30) (((-112) $ (-1194)) 29)) (-2347 (((-429 $) $) 165 (|has| |#1| (-567)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-567))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 162 (|has| |#1| (-567)))) (-2849 (((-3 $ "failed") $ $) 145 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 156 (|has| |#1| (-567)))) (-3095 (((-112) $) 18 (|has| $ (-1055 (-575))))) (-3046 (($ $ (-623 $) $) 62) (($ $ (-655 (-623 $)) (-655 $)) 61) (($ $ (-655 (-303 $))) 60) (($ $ (-303 $)) 59) (($ $ $ $) 58) (($ $ (-655 $) (-655 $)) 57) (($ $ (-655 (-1194)) (-655 (-1 $ $))) 28) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) 27) (($ $ (-1194) (-1 $ (-655 $))) 26) (($ $ (-1194) (-1 $ $)) 25) (($ $ (-655 (-115)) (-655 (-1 $ $))) 24) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) 23) (($ $ (-115) (-1 $ (-655 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1194)) 200 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194))) 199 (|has| |#1| (-625 (-547)))) (($ $) 198 (|has| |#1| (-625 (-547)))) (($ $ (-115) $ (-1194)) 197 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-115)) (-655 $) (-1194)) 196 (|has| |#1| (-625 (-547)))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $))) 185 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $)))) 184 (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ (-655 $))) 183 (|has| |#1| (-1066))) (($ $ (-1194) (-782) (-1 $ $)) 182 (|has| |#1| (-1066)))) (-1720 (((-782) $) 158 (|has| |#1| (-567)))) (-2065 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-655 $)) 52)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 159 (|has| |#1| (-567)))) (-3197 (($ $) 44) (($ $ $) 43)) (-2382 (($ $ (-1194)) 134 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 132 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 131 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) 130 (|has| |#1| (-1066)))) (-2325 (($ $) 179 (|has| |#1| (-567)))) (-1608 (((-1142 |#1| (-623 $)) $) 180 (|has| |#1| (-567)))) (-4436 (($ $) 19 (|has| $ (-1066)))) (-2613 (((-904 (-575)) $) 217 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 216 (|has| |#1| (-625 (-904 (-389))))) (($ (-429 $)) 181 (|has| |#1| (-567))) (((-547) $) 101 (|has| |#1| (-625 (-547))))) (-3516 (($ $ $) 112 (|has| |#1| (-484)))) (-4152 (($ $ $) 113 (|has| |#1| (-484)))) (-2882 (((-873) $) 12) (($ (-623 $)) 63) (($ (-1194)) 218) (($ |#1|) 209) (($ (-1142 |#1| (-623 $))) 191 (|has| |#1| (-1066))) (($ (-418 |#1|)) 177 (|has| |#1| (-567))) (($ (-967 (-418 |#1|))) 176 (|has| |#1| (-567))) (($ (-418 (-967 (-418 |#1|)))) 175 (|has| |#1| (-567))) (($ (-418 (-967 |#1|))) 171 (|has| |#1| (-567))) (($ $) 144 (|has| |#1| (-567))) (($ (-967 |#1|)) 123 (|has| |#1| (-1066))) (($ (-418 (-575))) 98 (-3763 (|has| |#1| (-567)) (-12 (|has| |#1| (-1055 (-575))) (|has| |#1| (-567))) (|has| |#1| (-1055 (-418 (-575)))))) (($ (-575)) 97 (-3763 (|has| |#1| (-1066)) (|has| |#1| (-1055 (-575)))))) (-1724 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-4421 (((-782)) 126 (|has| |#1| (-1066)) CONST)) (-2394 (($ $) 48) (($ (-655 $)) 47)) (-1825 (((-112) (-115)) 36)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 148 (|has| |#1| (-567)))) (-1627 (($ (-1194) $) 205) (($ (-1194) $ $) 204) (($ (-1194) $ $ $) 203) (($ (-1194) $ $ $ $) 202) (($ (-1194) (-655 $)) 201)) (-1989 (($) 116 (|has| |#1| (-25)) CONST)) (-2005 (($) 104 (|has| |#1| (-1129)) CONST)) (-3428 (($ $ (-1194)) 133 (|has| |#1| (-1066))) (($ $ (-655 (-1194))) 129 (|has| |#1| (-1066))) (($ $ (-1194) (-782)) 128 (|has| |#1| (-1066))) (($ $ (-655 (-1194)) (-655 (-782))) 127 (|has| |#1| (-1066)))) (-3913 (((-112) $ $) 6)) (-4038 (($ (-1142 |#1| (-623 $)) (-1142 |#1| (-623 $))) 178 (|has| |#1| (-567))) (($ $ $) 110 (-3763 (|has| |#1| (-484)) (|has| |#1| (-567))))) (-4027 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-4015 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-575)) 111 (-3763 (|has| |#1| (-484)) (|has| |#1| (-567)))) (($ $ (-782)) 108 (|has| |#1| (-1129))) (($ $ (-936)) 103 (|has| |#1| (-1129)))) (* (($ (-418 (-575)) $) 170 (|has| |#1| (-567))) (($ $ (-418 (-575))) 169 (|has| |#1| (-567))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1066))) (($ (-575) $) 120 (|has| |#1| (-21))) (($ (-782) $) 118 (|has| |#1| (-25))) (($ (-936) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1129)))))
-(((-441 |#1|) (-141) (-1117)) (T -441))
-((-4346 (*1 *2 *1) (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-1194))))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))) (-1627 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-655 *1)) (-4 *1 (-441 *4)) (-4 *4 (-1117)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-4 *3 (-625 (-547))))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1194))) (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-4 *3 (-625 (-547))))) (-3046 (*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-625 (-547))))) (-3046 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1194)) (-4 *1 (-441 *4)) (-4 *4 (-1117)) (-4 *4 (-625 (-547))))) (-3046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 *1)) (-5 *4 (-1194)) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-625 (-547))))) (-1445 (*1 *2 *1) (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-441 *3)))) (-2329 (*1 *2 *1) (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -1658 (-575)))) (-4 *1 (-441 *3)))) (-1512 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-441 *3)))) (-3383 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| -1754 (-575)) (|:| |var| (-623 *1)))) (-4 *1 (-441 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-1066)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1))) (-4 *1 (-441 *3)))) (-4300 (*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-1066)))) (-2329 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1066)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -1658 (-575)))) (-4 *1 (-441 *4)))) (-2329 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-1066)) (-4 *4 (-1117)) (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -1658 (-575)))) (-4 *1 (-441 *4)))) (-1963 (*1 *2 *1) (|partial| -12 (-4 *3 (-1066)) (-4 *3 (-1117)) (-5 *2 (-2 (|:| |val| *1) (|:| -1658 (-575)))) (-4 *1 (-441 *3)))) (-3046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782))) (-5 *4 (-655 (-1 *1 *1))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-3046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782))) (-5 *4 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-3046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 (-655 *1))) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-3046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 *1)) (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-429 *1)) (-4 *1 (-441 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1))) (-4 *1 (-441 *3)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-567)))) (-4038 (*1 *1 *2 *2) (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-967 (-418 *3))) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-418 *3)))) (-4 *3 (-567)) (-4 *3 (-1117)) (-4 *1 (-441 *3)))) (-3462 (*1 *2 *1 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-441 *4)) (-4 *4 (-1117)) (-4 *4 (-567)) (-5 *2 (-418 (-1190 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-4 *3 (-1129)))))
-(-13 (-311) (-1055 (-1194)) (-896 |t#1|) (-411 |t#1|) (-422 |t#1|) (-10 -8 (-15 -4346 ((-112) $)) (-15 -4353 (|t#1| $)) (-15 -1606 ((-655 (-1194)) $)) (-15 -1627 ($ (-1194) $)) (-15 -1627 ($ (-1194) $ $)) (-15 -1627 ($ (-1194) $ $ $)) (-15 -1627 ($ (-1194) $ $ $ $)) (-15 -1627 ($ (-1194) (-655 $))) (IF (|has| |t#1| (-625 (-547))) (PROGN (-6 (-625 (-547))) (-15 -3046 ($ $ (-1194))) (-15 -3046 ($ $ (-655 (-1194)))) (-15 -3046 ($ $)) (-15 -3046 ($ $ (-115) $ (-1194))) (-15 -3046 ($ $ (-655 (-115)) (-655 $) (-1194)))) |%noBranch|) (IF (|has| |t#1| (-1129)) (PROGN (-6 (-737)) (-15 ** ($ $ (-782))) (-15 -1445 ((-3 (-655 $) "failed") $)) (-15 -2329 ((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-484)) (-6 (-484)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1512 ((-3 (-655 $) "failed") $)) (-15 -3383 ((-3 (-2 (|:| -1754 (-575)) (|:| |var| (-623 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1066)) (PROGN (-6 (-1066)) (-6 (-1055 (-967 |t#1|))) (-6 (-913 (-1194))) (-6 (-387 |t#1|)) (-15 -2882 ($ (-1142 |t#1| (-623 $)))) (-15 -1595 ((-1142 |t#1| (-623 $)) $)) (-15 -4300 ($ $)) (-15 -2329 ((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-115))) (-15 -2329 ((-3 (-2 (|:| |var| (-623 $)) (|:| -1658 (-575))) "failed") $ (-1194))) (-15 -1963 ((-3 (-2 (|:| |val| $) (|:| -1658 (-575))) "failed") $)) (-15 -3046 ($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ $)))) (-15 -3046 ($ $ (-655 (-1194)) (-655 (-782)) (-655 (-1 $ (-655 $))))) (-15 -3046 ($ $ (-1194) (-782) (-1 $ (-655 $)))) (-15 -3046 ($ $ (-1194) (-782) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-6 (-373)) (-6 (-1055 (-418 (-967 |t#1|)))) (-15 -2613 ($ (-429 $))) (-15 -1608 ((-1142 |t#1| (-623 $)) $)) (-15 -2325 ($ $)) (-15 -4038 ($ (-1142 |t#1| (-623 $)) (-1142 |t#1| (-623 $)))) (-15 -2882 ($ (-418 |t#1|))) (-15 -2882 ($ (-967 (-418 |t#1|)))) (-15 -2882 ($ (-418 (-967 (-418 |t#1|))))) (-15 -3462 ((-418 (-1190 $)) $ (-623 $))) (IF (|has| |t#1| (-1055 (-575))) (-6 (-1055 (-418 (-575)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-418 (-575))) |has| |#1| (-567)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-567)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-567)) ((-132) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-567))) ((-627 #1=(-418 (-967 |#1|))) |has| |#1| (-567)) ((-627 (-575)) -3763 (|has| |#1| (-1066)) (|has| |#1| (-1055 (-575))) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-627 #2=(-623 $)) . T) ((-627 #3=(-967 |#1|)) |has| |#1| (-1066)) ((-627 #4=(-1194)) . T) ((-627 |#1|) . T) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) |has| |#1| (-567)) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-248) |has| |#1| (-567)) ((-299) |has| |#1| (-567)) ((-316) |has| |#1| (-567)) ((-318 $) . T) ((-311) . T) ((-373) |has| |#1| (-567)) ((-387 |#1|) |has| |#1| (-1066)) ((-411 |#1|) . T) ((-422 |#1|) . T) ((-463) |has| |#1| (-567)) ((-484) |has| |#1| (-484)) ((-525 (-623 $) $) . T) ((-525 $ $) . T) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-567)) ((-657 (-575)) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-657 |#1|) -3763 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-657 $) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-659 #0#) |has| |#1| (-567)) ((-659 #5=(-575)) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-659 |#1|) -3763 (|has| |#1| (-1066)) (|has| |#1| (-174))) ((-659 $) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-651 #0#) |has| |#1| (-567)) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-650 #5#) -12 (|has| |#1| (-650 (-575))) (|has| |#1| (-1066))) ((-650 |#1|) |has| |#1| (-1066)) ((-728 #0#) |has| |#1| (-567)) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) -3763 (|has| |#1| (-1129)) (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-484)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-908 $ #6=(-1194)) |has| |#1| (-1066)) ((-913 #6#) |has| |#1| (-1066)) ((-915 #6#) |has| |#1| (-1066)) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-935) |has| |#1| (-567)) ((-1055 (-418 (-575))) -3763 (|has| |#1| (-1055 (-418 (-575)))) (-12 (|has| |#1| (-567)) (|has| |#1| (-1055 (-575))))) ((-1055 #1#) |has| |#1| (-567)) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #2#) . T) ((-1055 #3#) |has| |#1| (-1066)) ((-1055 #4#) . T) ((-1055 |#1|) . T) ((-1068 #0#) |has| |#1| (-567)) ((-1068 |#1|) |has| |#1| (-174)) ((-1068 $) |has| |#1| (-567)) ((-1073 #0#) |has| |#1| (-567)) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) |has| |#1| (-567)) ((-1066) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1075) -3763 (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1129) -3763 (|has| |#1| (-1129)) (|has| |#1| (-1066)) (|has| |#1| (-567)) (|has| |#1| (-484)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-567)))
-((-3306 ((|#2| |#2| |#2|) 31)) (-2567 (((-115) (-115)) 43)) (-2138 ((|#2| |#2|) 63)) (-4356 ((|#2| |#2|) 66)) (-2605 ((|#2| |#2|) 30)) (-1610 ((|#2| |#2| |#2|) 33)) (-2416 ((|#2| |#2| |#2|) 35)) (-3477 ((|#2| |#2| |#2|) 32)) (-2986 ((|#2| |#2| |#2|) 34)) (-1825 (((-112) (-115)) 41)) (-4118 ((|#2| |#2|) 37)) (-3579 ((|#2| |#2|) 36)) (-3863 ((|#2| |#2|) 25)) (-2023 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3550 ((|#2| |#2| |#2|) 29)))
-(((-442 |#1| |#2|) (-10 -7 (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -3863 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2023 (|#2| |#2| |#2|)) (-15 -3550 (|#2| |#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3306 (|#2| |#2| |#2|)) (-15 -3477 (|#2| |#2| |#2|)) (-15 -1610 (|#2| |#2| |#2|)) (-15 -2986 (|#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -3579 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4356 (|#2| |#2|)) (-15 -2138 (|#2| |#2|))) (-567) (-441 |#1|)) (T -442))
-((-2138 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-4356 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3579 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2416 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2986 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-1610 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3477 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3306 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3550 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2023 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-442 *3 *4)) (-4 *4 (-441 *3)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5)) (-4 *5 (-441 *4)))))
-(-10 -7 (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -3863 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -2023 (|#2| |#2| |#2|)) (-15 -3550 (|#2| |#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3306 (|#2| |#2| |#2|)) (-15 -3477 (|#2| |#2| |#2|)) (-15 -1610 (|#2| |#2| |#2|)) (-15 -2986 (|#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -3579 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4356 (|#2| |#2|)) (-15 -2138 (|#2| |#2|)))
-((-1758 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-655 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-655 |#2|)) 65)))
-(((-443 |#1| |#2|) (-10 -7 (-15 -1758 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-655 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-655 |#2|))) (IF (|has| |#2| (-27)) (-15 -1758 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-567) (-148)) (-441 |#1|)) (T -443))
-((-1758 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1190 *3)) (|:| |pol2| (-1190 *3)) (|:| |prim| (-1190 *3)))) (-5 *1 (-443 *4 *3)) (-4 *3 (-27)) (-4 *3 (-441 *4)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-13 (-567) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-655 (-1190 *5))) (|:| |prim| (-1190 *5)))) (-5 *1 (-443 *4 *5)))))
-(-10 -7 (-15 -1758 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-655 (-1190 |#2|))) (|:| |prim| (-1190 |#2|))) (-655 |#2|))) (IF (|has| |#2| (-27)) (-15 -1758 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1190 |#2|)) (|:| |pol2| (-1190 |#2|)) (|:| |prim| (-1190 |#2|))) |#2| |#2|)) |%noBranch|))
-((-2751 (((-1290)) 18)) (-3330 (((-1190 (-418 (-575))) |#2| (-623 |#2|)) 40) (((-418 (-575)) |#2|) 24)))
-(((-444 |#1| |#2|) (-10 -7 (-15 -3330 ((-418 (-575)) |#2|)) (-15 -3330 ((-1190 (-418 (-575))) |#2| (-623 |#2|))) (-15 -2751 ((-1290)))) (-13 (-567) (-1055 (-575))) (-441 |#1|)) (T -444))
-((-2751 (*1 *2) (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1290)) (-5 *1 (-444 *3 *4)) (-4 *4 (-441 *3)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-441 *5)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-444 *5 *3)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 (-575))) (-5 *1 (-444 *4 *3)) (-4 *3 (-441 *4)))))
-(-10 -7 (-15 -3330 ((-418 (-575)) |#2|)) (-15 -3330 ((-1190 (-418 (-575))) |#2| (-623 |#2|))) (-15 -2751 ((-1290))))
-((-3465 (((-112) $) 32)) (-2420 (((-112) $) 34)) (-3255 (((-112) $) 35)) (-2168 (((-112) $) 38)) (-3112 (((-112) $) 33)) (-4007 (((-112) $) 37)) (-2882 (((-873) $) 20) (($ (-1176)) 31) (($ (-1194)) 26) (((-1194) $) 24) (((-1121) $) 23)) (-1367 (((-112) $) 36)) (-3913 (((-112) $ $) 17)))
-(((-445) (-13 (-624 (-873)) (-10 -8 (-15 -2882 ($ (-1176))) (-15 -2882 ($ (-1194))) (-15 -2882 ((-1194) $)) (-15 -2882 ((-1121) $)) (-15 -3465 ((-112) $)) (-15 -3112 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -4007 ((-112) $)) (-15 -2168 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -2420 ((-112) $)) (-15 -3913 ((-112) $ $))))) (T -445))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-445)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-445)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-445)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-445)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))) (-3913 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2882 ($ (-1176))) (-15 -2882 ($ (-1194))) (-15 -2882 ((-1194) $)) (-15 -2882 ((-1121) $)) (-15 -3465 ((-112) $)) (-15 -3112 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -4007 ((-112) $)) (-15 -2168 ((-112) $)) (-15 -1367 ((-112) $)) (-15 -2420 ((-112) $)) (-15 -3913 ((-112) $ $))))
-((-2393 (((-3 (-429 (-1190 (-418 (-575)))) "failed") |#3|) 72)) (-3034 (((-429 |#3|) |#3|) 34)) (-3859 (((-3 (-429 (-1190 (-48))) "failed") |#3|) 46 (|has| |#2| (-1055 (-48))))) (-1396 (((-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3419 (-112))) |#3|) 37)))
-(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -3034 ((-429 |#3|) |#3|)) (-15 -2393 ((-3 (-429 (-1190 (-418 (-575)))) "failed") |#3|)) (-15 -1396 ((-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3419 (-112))) |#3|)) (IF (|has| |#2| (-1055 (-48))) (-15 -3859 ((-3 (-429 (-1190 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-567) (-1055 (-575))) (-441 |#1|) (-1261 |#2|)) (T -446))
-((-3859 (*1 *2 *3) (|partial| -12 (-4 *5 (-1055 (-48))) (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-429 (-1190 (-48)))) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-1396 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3419 (-112)))) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-2393 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-429 (-1190 (-418 (-575))))) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4)) (-5 *2 (-429 *3)) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))))
-(-10 -7 (-15 -3034 ((-429 |#3|) |#3|)) (-15 -2393 ((-3 (-429 (-1190 (-418 (-575)))) "failed") |#3|)) (-15 -1396 ((-3 (|:| |overq| (-1190 (-418 (-575)))) (|:| |overan| (-1190 (-48))) (|:| -3419 (-112))) |#3|)) (IF (|has| |#2| (-1055 (-48))) (-15 -3859 ((-3 (-429 (-1190 (-48))) "failed") |#3|)) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-1730 (((-1176) $ (-1176)) NIL)) (-1899 (($ $ (-1176)) NIL)) (-2419 (((-1176) $) NIL)) (-3507 (((-399) (-399) (-399)) 17) (((-399) (-399)) 15)) (-2976 (($ (-399)) NIL) (($ (-399) (-1176)) NIL)) (-1777 (((-399) $) NIL)) (-4264 (((-1176) $) NIL)) (-2050 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2267 (((-1290) (-1176)) 9)) (-2638 (((-1290) (-1176)) 10)) (-3889 (((-1290)) 11)) (-2882 (((-873) $) NIL)) (-3265 (($ $) 39)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-447) (-13 (-374 (-399) (-1176)) (-10 -7 (-15 -3507 ((-399) (-399) (-399))) (-15 -3507 ((-399) (-399))) (-15 -2267 ((-1290) (-1176))) (-15 -2638 ((-1290) (-1176))) (-15 -3889 ((-1290)))))) (T -447))
-((-3507 (*1 *2 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447)))) (-3507 (*1 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447)))) (-2638 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447)))) (-3889 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-447)))))
-(-13 (-374 (-399) (-1176)) (-10 -7 (-15 -3507 ((-399) (-399) (-399))) (-15 -3507 ((-399) (-399))) (-15 -2267 ((-1290) (-1176))) (-15 -2638 ((-1290) (-1176))) (-15 -3889 ((-1290)))))
-((-2859 (((-112) $ $) NIL)) (-3003 (((-3 (|:| |fst| (-445)) (|:| -2001 "void")) $) 11)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1563 (($) 35)) (-2255 (($) 41)) (-2327 (($) 37)) (-1638 (($) 39)) (-4231 (($) 36)) (-2028 (($) 38)) (-3605 (($) 40)) (-2710 (((-112) $) 8)) (-3178 (((-655 (-967 (-575))) $) 19)) (-2893 (($ (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-1194)) (-112)) 29) (($ (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-967 (-575))) (-112)) 30)) (-2882 (((-873) $) 24) (($ (-445)) 32)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-448) (-13 (-1117) (-10 -8 (-15 -2882 ($ (-445))) (-15 -3003 ((-3 (|:| |fst| (-445)) (|:| -2001 "void")) $)) (-15 -3178 ((-655 (-967 (-575))) $)) (-15 -2710 ((-112) $)) (-15 -2893 ($ (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-1194)) (-112))) (-15 -2893 ($ (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-967 (-575))) (-112))) (-15 -1563 ($)) (-15 -4231 ($)) (-15 -2327 ($)) (-15 -2255 ($)) (-15 -2028 ($)) (-15 -1638 ($)) (-15 -3605 ($))))) (T -448))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-448)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *1 (-448)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-655 (-967 (-575)))) (-5 *1 (-448)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *3 (-655 (-1194))) (-5 *4 (-112)) (-5 *1 (-448)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-112)) (-5 *1 (-448)))) (-1563 (*1 *1) (-5 *1 (-448))) (-4231 (*1 *1) (-5 *1 (-448))) (-2327 (*1 *1) (-5 *1 (-448))) (-2255 (*1 *1) (-5 *1 (-448))) (-2028 (*1 *1) (-5 *1 (-448))) (-1638 (*1 *1) (-5 *1 (-448))) (-3605 (*1 *1) (-5 *1 (-448))))
-(-13 (-1117) (-10 -8 (-15 -2882 ($ (-445))) (-15 -3003 ((-3 (|:| |fst| (-445)) (|:| -2001 "void")) $)) (-15 -3178 ((-655 (-967 (-575))) $)) (-15 -2710 ((-112) $)) (-15 -2893 ($ (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-1194)) (-112))) (-15 -2893 ($ (-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-655 (-967 (-575))) (-112))) (-15 -1563 ($)) (-15 -4231 ($)) (-15 -2327 ($)) (-15 -2255 ($)) (-15 -2028 ($)) (-15 -1638 ($)) (-15 -3605 ($))))
-((-2859 (((-112) $ $) NIL)) (-1777 (((-1194) $) 8)) (-4264 (((-1176) $) 17)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 11)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 14)))
-(((-449 |#1|) (-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $)))) (-1194)) (T -449))
-((-1777 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-449 *3)) (-14 *3 *2))))
-(-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $))))
-((-2859 (((-112) $ $) NIL)) (-1380 (((-1135) $) 7)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 13)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 9)))
-(((-450) (-13 (-1117) (-10 -8 (-15 -1380 ((-1135) $))))) (T -450))
-((-1380 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-450)))))
-(-13 (-1117) (-10 -8 (-15 -1380 ((-1135) $))))
-((-2244 (((-1290) $) 7)) (-2882 (((-873) $) 8) (($ (-1285 (-710))) 14) (($ (-655 (-339))) 13) (($ (-339)) 12) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 11)))
-(((-451) (-141)) (T -451))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-710))) (-4 *1 (-451)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-451)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-451)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) (-4 *1 (-451)))))
-(-13 (-406) (-10 -8 (-15 -2882 ($ (-1285 (-710)))) (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-339))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))))))
-(((-624 (-873)) . T) ((-406) . T) ((-1235) . T))
-((-2443 (((-3 $ "failed") (-1285 (-325 (-389)))) 21) (((-3 $ "failed") (-1285 (-325 (-575)))) 19) (((-3 $ "failed") (-1285 (-967 (-389)))) 17) (((-3 $ "failed") (-1285 (-967 (-575)))) 15) (((-3 $ "failed") (-1285 (-418 (-967 (-389))))) 13) (((-3 $ "failed") (-1285 (-418 (-967 (-575))))) 11)) (-4400 (($ (-1285 (-325 (-389)))) 22) (($ (-1285 (-325 (-575)))) 20) (($ (-1285 (-967 (-389)))) 18) (($ (-1285 (-967 (-575)))) 16) (($ (-1285 (-418 (-967 (-389))))) 14) (($ (-1285 (-418 (-967 (-575))))) 12)) (-2244 (((-1290) $) 7)) (-2882 (((-873) $) 8) (($ (-655 (-339))) 25) (($ (-339)) 24) (($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) 23)))
+((-2275 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1292)))))
+(-13 (-1237) (-625 (-874)) (-10 -8 (-15 -2275 ((-1292) $))))
+(((-625 (-874)) . T) ((-1237) . T))
+((-2454 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-969 (-390))) 17) (((-3 $ "failed") (-969 (-576))) 15) (((-3 $ "failed") (-419 (-969 (-390)))) 13) (((-3 $ "failed") (-419 (-969 (-576)))) 11)) (-4397 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-969 (-390))) 18) (($ (-969 (-576))) 16) (($ (-419 (-969 (-390)))) 14) (($ (-419 (-969 (-576)))) 12)) (-2275 (((-1292) $) 7)) (-2858 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 23)))
+(((-408) (-141)) (T -408))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) (-4 *1 (-408)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))))
+(-13 (-407) (-10 -8 (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-340))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))) (-15 -4397 ($ (-326 (-390)))) (-15 -2454 ((-3 $ "failed") (-326 (-390)))) (-15 -4397 ($ (-326 (-576)))) (-15 -2454 ((-3 $ "failed") (-326 (-576)))) (-15 -4397 ($ (-969 (-390)))) (-15 -2454 ((-3 $ "failed") (-969 (-390)))) (-15 -4397 ($ (-969 (-576)))) (-15 -2454 ((-3 $ "failed") (-969 (-576)))) (-15 -4397 ($ (-419 (-969 (-390))))) (-15 -2454 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -4397 ($ (-419 (-969 (-576))))) (-15 -2454 ((-3 $ "failed") (-419 (-969 (-576)))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1237) . T))
+((-3795 (((-656 (-1178)) (-656 (-1178))) 9)) (-2275 (((-1292) (-400)) 26)) (-4346 (((-1123) (-1196) (-656 (-1196)) (-1199) (-656 (-1196))) 59) (((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196)) 34) (((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196))) 33)))
+(((-409) (-10 -7 (-15 -4346 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)))) (-15 -4346 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196))) (-15 -4346 ((-1123) (-1196) (-656 (-1196)) (-1199) (-656 (-1196)))) (-15 -2275 ((-1292) (-400))) (-15 -3795 ((-656 (-1178)) (-656 (-1178)))))) (T -409))
+((-3795 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-409)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-409)))) (-4346 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) (-5 *2 (-1123)) (-5 *1 (-409)))) (-4346 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123)) (-5 *1 (-409)))) (-4346 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123)) (-5 *1 (-409)))))
+(-10 -7 (-15 -4346 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)))) (-15 -4346 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196))) (-15 -4346 ((-1123) (-1196) (-656 (-1196)) (-1199) (-656 (-1196)))) (-15 -2275 ((-1292) (-400))) (-15 -3795 ((-656 (-1178)) (-656 (-1178)))))
+((-2275 (((-1292) $) 35)) (-2858 (((-874) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138)))
+(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -2858 ($ (-340))) (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))) (-15 -2858 ($ (-326 (-713)))) (-15 -2858 ($ (-326 (-711)))) (-15 -2858 ($ (-326 (-706)))) (-15 -2858 ($ (-304 (-326 (-713))))) (-15 -2858 ($ (-304 (-326 (-711))))) (-15 -2858 ($ (-304 (-326 (-706))))) (-15 -2858 ($ (-326 (-576)))) (-15 -2858 ($ (-326 (-390)))) (-15 -2858 ($ (-326 (-171 (-390))))) (-15 -2858 ($ (-304 (-326 (-576))))) (-15 -2858 ($ (-304 (-326 (-390))))) (-15 -2858 ($ (-304 (-326 (-171 (-390)))))))) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-1196)) (-1200)) (T -410))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))))
+(-13 (-407) (-10 -8 (-15 -2858 ($ (-340))) (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))) (-15 -2858 ($ (-326 (-713)))) (-15 -2858 ($ (-326 (-711)))) (-15 -2858 ($ (-326 (-706)))) (-15 -2858 ($ (-304 (-326 (-713))))) (-15 -2858 ($ (-304 (-326 (-711))))) (-15 -2858 ($ (-304 (-326 (-706))))) (-15 -2858 ($ (-326 (-576)))) (-15 -2858 ($ (-326 (-390)))) (-15 -2858 ($ (-326 (-171 (-390))))) (-15 -2858 ($ (-304 (-326 (-576))))) (-15 -2858 ($ (-304 (-326 (-390))))) (-15 -2858 ($ (-304 (-326 (-171 (-390))))))))
+((-2835 (((-112) $ $) NIL)) (-2810 ((|#2| $) 38)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2047 (($ (-419 |#2|)) 93)) (-3225 (((-656 (-2 (|:| -2273 (-783)) (|:| -1785 |#2|) (|:| |num| |#2|))) $) 39)) (-2399 (($ $ (-783)) 36) (($ $) 34)) (-2610 (((-419 |#2|) $) 49)) (-2869 (($ (-656 (-2 (|:| -2273 (-783)) (|:| -1785 |#2|) (|:| |num| |#2|)))) 33)) (-2858 (((-874) $) 131)) (-2690 (((-112) $ $) NIL)) (-3404 (($ $ (-783)) 37) (($ $) 35)) (-3889 (((-112) $ $) NIL)) (-3990 (($ |#2| $) 41)))
+(((-411 |#1| |#2|) (-13 (-1119) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3990 ($ |#2| $)) (-15 -2047 ($ (-419 |#2|))) (-15 -2810 (|#2| $)) (-15 -3225 ((-656 (-2 (|:| -2273 (-783)) (|:| -1785 |#2|) (|:| |num| |#2|))) $)) (-15 -2869 ($ (-656 (-2 (|:| -2273 (-783)) (|:| -1785 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1263 |#1|)) (T -411))
+((-3990 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1263 *3)))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-2810 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-3225 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -2273 (-783)) (|:| -1785 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2273 (-783)) (|:| -1785 *4) (|:| |num| *4)))) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))))
+(-13 (-1119) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3990 ($ |#2| $)) (-15 -2047 ($ (-419 |#2|))) (-15 -2810 (|#2| $)) (-15 -3225 ((-656 (-2 (|:| -2273 (-783)) (|:| -1785 |#2|) (|:| |num| |#2|))) $)) (-15 -2869 ($ (-656 (-2 (|:| -2273 (-783)) (|:| -1785 |#2|) (|:| |num| |#2|)))))))
+((-2835 (((-112) $ $) 9 (-3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 16 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 15 (|has| |#1| (-899 (-576))))) (-2143 (((-1178) $) 13 (-3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3887 (((-1139) $) 12 (-3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2858 (((-874) $) 11 (-3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2690 (((-112) $ $) 14 (-3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3889 (((-112) $ $) 10 (-3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))))
+(((-412 |#1|) (-141) (-1237)) (T -412))
+NIL
+(-13 (-1237) (-10 -7 (IF (|has| |t#1| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|)))
+(((-102) -3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-625 (-874)) -3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-1119) -3739 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-1237) . T))
+((-2244 (($ $) 10) (($ $ (-783)) 12)))
+(((-413 |#1|) (-10 -8 (-15 -2244 (|#1| |#1| (-783))) (-15 -2244 (|#1| |#1|))) (-414)) (T -413))
+NIL
+(-10 -8 (-15 -2244 (|#1| |#1| (-783))) (-15 -2244 (|#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-2244 (($ $) 87) (($ $ (-783)) 86)) (-3011 (((-112) $) 79)) (-2620 (((-845 (-938)) $) 89)) (-1838 (((-112) $) 35)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-3447 (((-3 (-783) "failed") $ $) 88)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3689 (((-3 $ "failed") $) 90)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-414) (-141)) (T -414))
+((-2620 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) (-3447 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-2244 (*1 *1 *1) (-4 *1 (-414))) (-2244 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))))
+(-13 (-374) (-146) (-10 -8 (-15 -2620 ((-845 (-938)) $)) (-15 -3447 ((-3 (-783) "failed") $ $)) (-15 -2244 ($ $)) (-15 -2244 ($ $ (-783)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-1562 (($ (-576) (-576)) 11) (($ (-576) (-576) (-938)) NIL)) (-4107 (((-938)) 19) (((-938) (-938)) NIL)))
+(((-415 |#1|) (-10 -8 (-15 -4107 ((-938) (-938))) (-15 -4107 ((-938))) (-15 -1562 (|#1| (-576) (-576) (-938))) (-15 -1562 (|#1| (-576) (-576)))) (-416)) (T -415))
+((-4107 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))))
+(-10 -8 (-15 -4107 ((-938) (-938))) (-15 -4107 ((-938))) (-15 -1562 (|#1| (-576) (-576) (-938))) (-15 -1562 (|#1| (-576) (-576))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1463 (((-576) $) 97)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3019 (($ $) 95)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-2477 (($ $) 105)) (-3417 (((-112) $ $) 65)) (-1727 (((-576) $) 122)) (-2574 (($) 18 T CONST)) (-3251 (($ $) 94)) (-2454 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-4397 (((-576) $) 111) (((-419 (-576)) $) 108)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3011 (((-112) $) 79)) (-1518 (((-938)) 138) (((-938) (-938)) 135 (|has| $ (-6 -4453)))) (-2127 (((-112) $) 120)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-2620 (((-576) $) 144)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 104)) (-3075 (($ $) 100)) (-3196 (((-112) $) 121)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1950 (($ $ $) 119) (($) 132 (-12 (-3189 (|has| $ (-6 -4453))) (-3189 (|has| $ (-6 -4445)))))) (-1492 (($ $ $) 118) (($) 131 (-12 (-3189 (|has| $ (-6 -4453))) (-3189 (|has| $ (-6 -4445)))))) (-3637 (((-576) $) 141)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-1468 (((-938) (-576)) 134 (|has| $ (-6 -4453)))) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-3328 (($ $) 96)) (-3807 (($ $) 98)) (-1562 (($ (-576) (-576)) 146) (($ (-576) (-576) (-938)) 145)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2273 (((-576) $) 142)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-4107 (((-938)) 139) (((-938) (-938)) 136 (|has| $ (-6 -4453)))) (-2535 (((-938) (-576)) 133 (|has| $ (-6 -4453)))) (-2610 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-2981 (((-783)) 32 T CONST)) (-3156 (($ $) 99)) (-1568 (((-938)) 140) (((-938) (-938)) 137 (|has| $ (-6 -4453)))) (-2690 (((-112) $ $) 9)) (-1572 (((-938)) 143)) (-3199 (((-112) $ $) 45)) (-3680 (($ $) 123)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 116)) (-3930 (((-112) $ $) 115)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 117)) (-3916 (((-112) $ $) 114)) (-4013 (($ $ $) 73)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-416) (-141)) (T -416))
+((-1562 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-1562 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-4 *1 (-416)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1572 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-2273 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1568 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-4107 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-1518 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416)) (-5 *2 (-938)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416)) (-5 *2 (-938)))) (-1950 (*1 *1) (-12 (-4 *1 (-416)) (-3189 (|has| *1 (-6 -4453))) (-3189 (|has| *1 (-6 -4445))))) (-1492 (*1 *1) (-12 (-4 *1 (-416)) (-3189 (|has| *1 (-6 -4453))) (-3189 (|has| *1 (-6 -4445))))))
+(-13 (-1079) (-10 -8 (-6 -3468) (-15 -1562 ($ (-576) (-576))) (-15 -1562 ($ (-576) (-576) (-938))) (-15 -2620 ((-576) $)) (-15 -1572 ((-938))) (-15 -2273 ((-576) $)) (-15 -3637 ((-576) $)) (-15 -1568 ((-938))) (-15 -4107 ((-938))) (-15 -1518 ((-938))) (IF (|has| $ (-6 -4453)) (PROGN (-15 -1568 ((-938) (-938))) (-15 -4107 ((-938) (-938))) (-15 -1518 ((-938) (-938))) (-15 -1468 ((-938) (-576))) (-15 -2535 ((-938) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4445)) |%noBranch| (IF (|has| $ (-6 -4453)) |%noBranch| (PROGN (-15 -1950 ($)) (-15 -1492 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-937) . T) ((-1021) . T) ((-1041) . T) ((-1079) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-2548 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20)))
+(((-417 |#1| |#2|) (-10 -7 (-15 -2548 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))))
+(-10 -7 (-15 -2548 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|))))
+((-2548 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13)))
+(((-418 |#1| |#2|) (-10 -7 (-15 -2548 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))))
+(-10 -7 (-15 -2548 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 13)) (-1463 ((|#1| $) 21 (|has| |#1| (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| |#1| (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 17) (((-3 (-1196) "failed") $) NIL (|has| |#1| (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576))))) (-4397 ((|#1| $) 15) (((-1196) $) NIL (|has| |#1| (-1057 (-1196)))) (((-419 (-576)) $) 69 (|has| |#1| (-1057 (-576)))) (((-576) $) NIL (|has| |#1| (-1057 (-576))))) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) 51)) (-2107 (($) NIL (|has| |#1| (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| |#1| (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-1838 (((-112) $) 57)) (-3763 (($ $) NIL)) (-1621 ((|#1| $) 73)) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-3196 (((-112) $) NIL (|has| |#1| (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| |#1| (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 100)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| |#1| (-317)))) (-3807 ((|#1| $) 28 (|has| |#1| (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 145 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 138 (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-3076 (((-783) $) NIL)) (-2099 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3560 (($ $) NIL)) (-1635 ((|#1| $) 75)) (-2610 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1041))) (((-227) $) NIL (|has| |#1| (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1196)) NIL (|has| |#1| (-1057 (-1196))))) (-3689 (((-3 $ "failed") $) 102 (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) 103 T CONST)) (-3156 ((|#1| $) 26 (|has| |#1| (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| |#1| (-832)))) (-2022 (($) 22 T CONST)) (-2038 (($) 8 T CONST)) (-1445 (((-1178) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1178) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1292) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1292) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-3404 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) 66)) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) 24 (|has| |#1| (-862)))) (-4013 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4002 (($ $) 25) (($ $ $) 56)) (-3990 (($ $ $) 54)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-419 |#1|) (-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4460)) (-6 -4449) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419))
+NIL
+(-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4460)) (-6 -4449) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3940 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 18)) (-2876 (($ (-1287 |#2|) (-1287 $)) NIL) (($ (-1287 |#2|)) 24)) (-3313 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 40)) (-2510 ((|#3| $) 69)) (-3880 ((|#2| (-1287 $)) NIL) ((|#2|) 20)) (-3392 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 22) (((-701 |#2|) (-1287 $)) 38)) (-2610 (((-1287 |#2|) $) 11) (($ (-1287 |#2|)) 13)) (-2528 ((|#3| $) 55)))
+(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -3313 ((-701 |#2|) |#1|)) (-15 -3880 (|#2|)) (-15 -3940 ((-701 |#2|))) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -2876 (|#1| (-1287 |#2|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -2510 (|#3| |#1|)) (-15 -2528 (|#3| |#1|)) (-15 -3940 ((-701 |#2|) (-1287 |#1|))) (-15 -3880 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3313 ((-701 |#2|) |#1| (-1287 |#1|)))) (-421 |#2| |#3|) (-174) (-1263 |#2|)) (T -420))
+((-3940 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-3880 (*1 *2) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4)))))
+(-10 -8 (-15 -3313 ((-701 |#2|) |#1|)) (-15 -3880 (|#2|)) (-15 -3940 ((-701 |#2|))) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -2876 (|#1| (-1287 |#2|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -2510 (|#3| |#1|)) (-15 -2528 (|#3| |#1|)) (-15 -3940 ((-701 |#2|) (-1287 |#1|))) (-15 -3880 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3313 ((-701 |#2|) |#1| (-1287 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3940 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-1462 ((|#1| $) 59)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2876 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-3313 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-4011 (((-3 $ "failed") $) 37)) (-4422 (((-938)) 61)) (-1838 (((-112) $) 35)) (-3075 ((|#1| $) 58)) (-2510 ((|#2| $) 51 (|has| |#1| (-374)))) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-3880 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3392 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-2610 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3689 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2528 ((|#2| $) 52)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-4261 (((-1287 $)) 74)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-421 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -421))
+((-4261 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) (-4 *1 (-421 *3 *4)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1263 *3)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1263 *3)))) (-3940 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-701 *3)))) (-3880 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-701 *3)))))
+(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -4261 ((-1287 $))) (-15 -3392 ((-1287 |t#1|) $)) (-15 -3392 ((-701 |t#1|) (-1287 $))) (-15 -2876 ($ (-1287 |t#1|))) (-15 -2610 ((-1287 |t#1|) $)) (-15 -2610 ($ (-1287 |t#1|))) (-15 -3940 ((-701 |t#1|))) (-15 -3880 (|t#1|)) (-15 -3313 ((-701 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-2858 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11)))
+(((-422 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| (-576))) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|))) (-423 |#2|) (-1237)) (T -422))
+NIL
+(-10 -8 (-15 -2858 (|#1| (-576))) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)))
+((-2454 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1057 (-576))))) (-4397 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1057 (-576))))) (-2858 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1057 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1057 (-576))))))
+(((-423 |#1|) (-141) (-1237)) (T -423))
+NIL
+(-13 (-1057 |t#1|) (-10 -7 (IF (|has| |t#1| (-1057 (-576))) (-6 (-1057 (-576))) |%noBranch|) (IF (|has| |t#1| (-1057 (-419 (-576)))) (-6 (-1057 (-419 (-576)))) |%noBranch|)))
+(((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1057 (-576))) ((-628 |#1|) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 #1#) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T))
+((-2548 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35)))
+(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2548 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1011 |#1|) (-1263 |#2|) (-13 (-421 |#2| |#3|) (-1057 |#2|)) (-317) (-1011 |#5|) (-1263 |#6|) (-13 (-421 |#6| |#7|) (-1057 |#6|))) (T -424))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1011 *5)) (-4 *7 (-1263 *6)) (-4 *8 (-13 (-421 *6 *7) (-1057 *6))) (-4 *9 (-317)) (-4 *10 (-1011 *9)) (-4 *11 (-1263 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1057 *10))))))
+(-10 -7 (-15 -2548 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|))))
+((-2835 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-3265 ((|#4| (-783) (-1287 |#4|)) 55)) (-1838 (((-112) $) NIL)) (-1621 (((-1287 |#4|) $) 15)) (-3075 ((|#2| $) 53)) (-3899 (($ $) 157)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 103)) (-4052 (($ (-1287 |#4|)) 102)) (-3887 (((-1139) $) NIL)) (-1635 ((|#1| $) 16)) (-2480 (($ $ $) NIL)) (-2220 (($ $ $) NIL)) (-2858 (((-874) $) 148)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 |#4|) $) 141)) (-2038 (($) 11 T CONST)) (-3889 (((-112) $ $) 39)) (-4013 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130)))
+(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -4052 ($ (-1287 |#4|))) (-15 -4261 ((-1287 |#4|) $)) (-15 -3075 (|#2| $)) (-15 -1621 ((-1287 |#4|) $)) (-15 -1635 (|#1| $)) (-15 -3899 ($ $)) (-15 -3265 (|#4| (-783) (-1287 |#4|))))) (-317) (-1011 |#1|) (-1263 |#2|) (-13 (-421 |#2| |#3|) (-1057 |#2|))) (T -425))
+((-4052 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-4261 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) (-3075 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1057 *2))))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) (-3899 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1287 *2)) (-4 *5 (-317)) (-4 *6 (-1011 *5)) (-4 *2 (-13 (-421 *6 *7) (-1057 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6)))))
+(-13 (-485) (-10 -8 (-15 -4052 ($ (-1287 |#4|))) (-15 -4261 ((-1287 |#4|) $)) (-15 -3075 (|#2| $)) (-15 -1621 ((-1287 |#4|) $)) (-15 -1635 (|#1| $)) (-15 -3899 ($ $)) (-15 -3265 (|#4| (-783) (-1287 |#4|)))))
+((-2835 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-3075 ((|#2| $) 71)) (-2992 (($ (-1287 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1057 |#2|)))) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 37)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 |#4|) $) 28)) (-2038 (($) 25 T CONST)) (-3889 (((-112) $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82)))
+(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -4261 ((-1287 |#4|) $)) (-15 -3075 (|#2| $)) (-15 -2992 ($ (-1287 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -2992 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1011 |#1|) (-1263 |#2|) (-421 |#2| |#3|) (-1287 |#4|)) (T -426))
+((-4261 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-3075 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1287 *5)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))))
+(-13 (-738) (-10 -8 (-15 -4261 ((-1287 |#4|) $)) (-15 -3075 (|#2| $)) (-15 -2992 ($ (-1287 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -2992 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-2548 ((|#3| (-1 |#4| |#2|) |#1|) 29)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))))
+(-10 -7 (-15 -2548 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2857 (((-3 $ "failed")) 98)) (-3685 (((-1287 (-701 |#2|)) (-1287 $)) NIL) (((-1287 (-701 |#2|))) 103)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) 96)) (-1985 (((-3 $ "failed")) 95)) (-1877 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 114)) (-2343 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 122)) (-3619 (((-1192 (-969 |#2|))) 63)) (-3335 ((|#2| (-1287 $)) NIL) ((|#2|) 118)) (-2876 (($ (-1287 |#2|) (-1287 $)) NIL) (($ (-1287 |#2|)) 124)) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) 94)) (-3426 (((-3 $ "failed")) 86)) (-2213 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 112)) (-4409 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 120)) (-2359 (((-1192 (-969 |#2|))) 62)) (-1659 ((|#2| (-1287 $)) NIL) ((|#2|) 116)) (-3392 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 123) (((-701 |#2|) (-1287 $)) 132)) (-2610 (((-1287 |#2|) $) 108) (($ (-1287 |#2|)) 110)) (-3501 (((-656 (-969 |#2|)) (-1287 $)) NIL) (((-656 (-969 |#2|))) 106)) (-1977 (($ (-701 |#2|) $) 102)))
+(((-428 |#1| |#2|) (-10 -8 (-15 -1977 (|#1| (-701 |#2|) |#1|)) (-15 -3619 ((-1192 (-969 |#2|)))) (-15 -2359 ((-1192 (-969 |#2|)))) (-15 -2343 ((-701 |#2|) |#1|)) (-15 -4409 ((-701 |#2|) |#1|)) (-15 -1877 ((-701 |#2|))) (-15 -2213 ((-701 |#2|))) (-15 -3335 (|#2|)) (-15 -1659 (|#2|)) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -2876 (|#1| (-1287 |#2|))) (-15 -3501 ((-656 (-969 |#2|)))) (-15 -3685 ((-1287 (-701 |#2|)))) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -2857 ((-3 |#1| "failed"))) (-15 -1985 ((-3 |#1| "failed"))) (-15 -3426 ((-3 |#1| "failed"))) (-15 -3510 ((-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed"))) (-15 -1434 ((-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed"))) (-15 -1877 ((-701 |#2|) (-1287 |#1|))) (-15 -2213 ((-701 |#2|) (-1287 |#1|))) (-15 -3335 (|#2| (-1287 |#1|))) (-15 -1659 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -2343 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -4409 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3685 ((-1287 (-701 |#2|)) (-1287 |#1|))) (-15 -3501 ((-656 (-969 |#2|)) (-1287 |#1|)))) (-429 |#2|) (-174)) (T -428))
+((-3685 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3501 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1659 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-3335 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2213 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1877 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2359 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3619 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))))
+(-10 -8 (-15 -1977 (|#1| (-701 |#2|) |#1|)) (-15 -3619 ((-1192 (-969 |#2|)))) (-15 -2359 ((-1192 (-969 |#2|)))) (-15 -2343 ((-701 |#2|) |#1|)) (-15 -4409 ((-701 |#2|) |#1|)) (-15 -1877 ((-701 |#2|))) (-15 -2213 ((-701 |#2|))) (-15 -3335 (|#2|)) (-15 -1659 (|#2|)) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -2876 (|#1| (-1287 |#2|))) (-15 -3501 ((-656 (-969 |#2|)))) (-15 -3685 ((-1287 (-701 |#2|)))) (-15 -3392 ((-701 |#2|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1|)) (-15 -2857 ((-3 |#1| "failed"))) (-15 -1985 ((-3 |#1| "failed"))) (-15 -3426 ((-3 |#1| "failed"))) (-15 -3510 ((-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed"))) (-15 -1434 ((-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed"))) (-15 -1877 ((-701 |#2|) (-1287 |#1|))) (-15 -2213 ((-701 |#2|) (-1287 |#1|))) (-15 -3335 (|#2| (-1287 |#1|))) (-15 -1659 (|#2| (-1287 |#1|))) (-15 -2876 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3392 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3392 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -2343 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -4409 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3685 ((-1287 (-701 |#2|)) (-1287 |#1|))) (-15 -3501 ((-656 (-969 |#2|)) (-1287 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2857 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) 20)) (-3685 (((-1287 (-701 |#1|)) (-1287 $)) 83) (((-1287 (-701 |#1|))) 106)) (-3142 (((-1287 $)) 86)) (-2574 (($) 18 T CONST)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-1985 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-1877 (((-701 |#1|) (-1287 $)) 70) (((-701 |#1|)) 98)) (-4036 ((|#1| $) 79)) (-2343 (((-701 |#1|) $ (-1287 $)) 81) (((-701 |#1|) $) 96)) (-2100 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-3619 (((-1192 (-969 |#1|))) 94 (|has| |#1| (-374)))) (-4139 (($ $ (-938)) 31)) (-3136 ((|#1| $) 77)) (-2276 (((-1192 |#1|) $) 47 (|has| |#1| (-568)))) (-3335 ((|#1| (-1287 $)) 72) ((|#1|) 100)) (-2950 (((-1192 |#1|) $) 68)) (-2965 (((-112)) 62)) (-2876 (($ (-1287 |#1|) (-1287 $)) 74) (($ (-1287 |#1|)) 104)) (-4011 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4422 (((-938)) 85)) (-1834 (((-112)) 59)) (-4141 (($ $ (-938)) 38)) (-2298 (((-112)) 55)) (-4393 (((-112)) 53)) (-3037 (((-112)) 57)) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3426 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2213 (((-701 |#1|) (-1287 $)) 71) (((-701 |#1|)) 99)) (-2436 ((|#1| $) 80)) (-4409 (((-701 |#1|) $ (-1287 $)) 82) (((-701 |#1|) $) 97)) (-3080 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-2359 (((-1192 (-969 |#1|))) 95 (|has| |#1| (-374)))) (-1406 (($ $ (-938)) 32)) (-2815 ((|#1| $) 78)) (-4205 (((-1192 |#1|) $) 48 (|has| |#1| (-568)))) (-1659 ((|#1| (-1287 $)) 73) ((|#1|) 101)) (-4015 (((-1192 |#1|) $) 69)) (-1783 (((-112)) 63)) (-2143 (((-1178) $) 10)) (-3167 (((-112)) 54)) (-3215 (((-112)) 56)) (-1480 (((-112)) 58)) (-3887 (((-1139) $) 11)) (-3801 (((-112)) 61)) (-2099 ((|#1| $ (-576)) 110)) (-3392 (((-1287 |#1|) $ (-1287 $)) 76) (((-701 |#1|) (-1287 $) (-1287 $)) 75) (((-1287 |#1|) $) 108) (((-701 |#1|) (-1287 $)) 107)) (-2610 (((-1287 |#1|) $) 103) (($ (-1287 |#1|)) 102)) (-3501 (((-656 (-969 |#1|)) (-1287 $)) 84) (((-656 (-969 |#1|))) 105)) (-2220 (($ $ $) 28)) (-1332 (((-112)) 67)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-4261 (((-1287 $)) 109)) (-3308 (((-656 (-1287 |#1|))) 49 (|has| |#1| (-568)))) (-2591 (($ $ $ $) 29)) (-1883 (((-112)) 65)) (-1977 (($ (-701 |#1|) $) 93)) (-2407 (($ $ $) 27)) (-3072 (((-112)) 66)) (-1430 (((-112)) 64)) (-3044 (((-112)) 60)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-429 |#1|) (-141) (-174)) (T -429))
+((-4261 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-429 *3)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3685 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 (-701 *3))))) (-3501 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-969 *3))))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1659 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-3335 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2213 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-1877 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4409 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2359 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1192 (-969 *3))))) (-3619 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1192 (-969 *3))))) (-1977 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))))
+(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -4261 ((-1287 $))) (-15 -3392 ((-1287 |t#1|) $)) (-15 -3392 ((-701 |t#1|) (-1287 $))) (-15 -3685 ((-1287 (-701 |t#1|)))) (-15 -3501 ((-656 (-969 |t#1|)))) (-15 -2876 ($ (-1287 |t#1|))) (-15 -2610 ((-1287 |t#1|) $)) (-15 -2610 ($ (-1287 |t#1|))) (-15 -1659 (|t#1|)) (-15 -3335 (|t#1|)) (-15 -2213 ((-701 |t#1|))) (-15 -1877 ((-701 |t#1|))) (-15 -4409 ((-701 |t#1|) $)) (-15 -2343 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2359 ((-1192 (-969 |t#1|)))) (-15 -3619 ((-1192 (-969 |t#1|))))) |%noBranch|) (-15 -1977 ($ (-701 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 60)) (-3134 (($ $) 78)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 192)) (-2150 (($ $) NIL)) (-2637 (((-112) $) 48)) (-2857 ((|#1| $) 16)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-1241)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-1241)))) (-2121 (($ |#1| (-576)) 42)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 74)) (-4011 (((-3 $ "failed") $) 165)) (-3660 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-1946 (((-112) $) 81 (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-3098 (($ |#1| (-576)) 44)) (-3011 (((-112) $) 212 (|has| |#1| (-1241)))) (-1838 (((-112) $) 62)) (-2400 (((-783) $) 51)) (-4267 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-3601 ((|#1| $ (-576)) 175)) (-3998 (((-576) $ (-576)) 174)) (-2983 (($ |#1| (-576)) 41)) (-2548 (($ (-1 |#1| |#1|) $) 184)) (-2818 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-2423 (($ |#1| (-576)) 43)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-1968 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1603 (((-656 (-2 (|:| -2367 |#1|) (|:| -2273 (-576)))) $) 73)) (-1470 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-2367 (((-430 $) $) NIL (|has| |#1| (-1241)))) (-2825 (((-3 $ "failed") $ $) 177)) (-2273 (((-576) $) 168)) (-3918 ((|#1| $) 75)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) $) NIL (|has| |#1| (-526 (-1196) $))) (($ $ (-656 (-1196)) (-656 $)) 108 (|has| |#1| (-526 (-1196) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2099 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2399 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-2610 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1041))) (((-227) $) 120 (|has| |#1| (-1041)))) (-2858 (((-874) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576)))))) (-2981 (((-783)) 67 T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 53 T CONST)) (-2038 (($) 52 T CONST)) (-3404 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3889 (((-112) $ $) 160)) (-4002 (($ $) 162) (($ $ $) NIL)) (-3990 (($ $ $) 181)) (** (($ $ (-938)) NIL) (($ $ (-783)) 126)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3918 (|#1| $)) (-15 -2273 ((-576) $)) (-15 -2818 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1470 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2983 ($ |#1| (-576))) (-15 -1603 ((-656 (-2 (|:| -2367 |#1|) (|:| -2273 (-576)))) $)) (-15 -2423 ($ |#1| (-576))) (-15 -3998 ((-576) $ (-576))) (-15 -3601 (|#1| $ (-576))) (-15 -4267 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -2400 ((-783) $)) (-15 -3098 ($ |#1| (-576))) (-15 -2121 ($ |#1| (-576))) (-15 -1968 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2857 (|#1| $)) (-15 -3134 ($ $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|))) (-568)) (T -430))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-3918 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2818 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2983 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2367 *3) (|:| -2273 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3998 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4267 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3098 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2121 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1968 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2857 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3660 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))))
+(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -3918 (|#1| $)) (-15 -2273 ((-576) $)) (-15 -2818 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1470 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -2983 ($ |#1| (-576))) (-15 -1603 ((-656 (-2 (|:| -2367 |#1|) (|:| -2273 (-576)))) $)) (-15 -2423 ($ |#1| (-576))) (-15 -3998 ((-576) $ (-576))) (-15 -3601 (|#1| $ (-576))) (-15 -4267 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -2400 ((-783) $)) (-15 -3098 ($ |#1| (-576))) (-15 -2121 ($ |#1| (-576))) (-15 -1968 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2857 (|#1| $)) (-15 -3134 ($ $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|)))
+((-2094 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2745 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17)))
+(((-431 |#1|) (-10 -7 (-15 -2094 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2745 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431))
+((-2745 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-2094 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4)))))
+(-10 -7 (-15 -2094 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2745 ((-430 |#1|) (-430 |#1|) (-430 |#1|))))
+((-2202 ((|#2| |#2|) 183)) (-3615 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112)) 60)))
+(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3615 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112))) (-15 -2202 (|#2| |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -432))
+((-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-442 *3))) (-14 *4 (-1196)) (-14 *5 *2))) (-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-14 *6 (-1196)) (-14 *7 *3))))
+(-10 -7 (-15 -3615 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112))) (-15 -2202 (|#2| |#2|)))
+((-2548 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-442 |#1|) (-1068) (-442 |#3|)) (T -433))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))))
+(-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2202 ((|#2| |#2|) 106)) (-2185 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178)) 52)) (-4300 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178)) 170)))
+(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2185 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -4300 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -2202 (|#2| |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|) (-10 -8 (-15 -2858 ($ |#3|)))) (-860) (-13 (-1265 |#2| |#3|) (-374) (-1222) (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $)))) (-1002 |#4|) (-1196)) (T -434))
+((-2202 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1222) (-442 *3) (-10 -8 (-15 -2858 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1265 *2 *4) (-374) (-1222) (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) (-14 *7 (-1196)))) (-4300 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -2858 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1265 *3 *7) (-374) (-1222) (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) (-14 *10 (-1196)))) (-2185 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -2858 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1265 *3 *7) (-374) (-1222) (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) (-14 *10 (-1196)))))
+(-10 -7 (-15 -2185 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -4300 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -2202 (|#2| |#2|)))
+((-4244 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2326 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2548 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2326 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4244 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1119) (-437 |#1|) (-1119) (-437 |#3|)) (T -435))
+((-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))))
+(-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2326 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4244 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2808 (($) 51)) (-1675 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-3178 (($ $ $) 46)) (-3483 (((-112) $ $) 35)) (-2422 (((-783)) 55)) (-1333 (($ (-656 |#2|)) 23) (($) NIL)) (-2107 (($) 66)) (-2907 (((-112) $ $) 15)) (-1950 ((|#2| $) 77)) (-1492 ((|#2| $) 75)) (-1654 (((-938) $) 70)) (-3310 (($ $ $) 42)) (-4308 (($ (-938)) 60)) (-3797 (($ $ |#2|) NIL) (($ $ $) 45)) (-3902 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-2869 (($ (-656 |#2|)) 27)) (-3805 (($ $) 53)) (-2858 (((-874) $) 40)) (-1830 (((-783) $) 24)) (-2554 (($ (-656 |#2|)) 22) (($) NIL)) (-3889 (((-112) $ $) 19)))
+(((-436 |#1| |#2|) (-10 -8 (-15 -2422 ((-783))) (-15 -4308 (|#1| (-938))) (-15 -1654 ((-938) |#1|)) (-15 -2107 (|#1|)) (-15 -1950 (|#2| |#1|)) (-15 -1492 (|#2| |#1|)) (-15 -2808 (|#1|)) (-15 -3805 (|#1| |#1|)) (-15 -1830 ((-783) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -2907 ((-112) |#1| |#1|)) (-15 -2554 (|#1|)) (-15 -2554 (|#1| (-656 |#2|))) (-15 -1333 (|#1|)) (-15 -1333 (|#1| (-656 |#2|))) (-15 -3310 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#2|)) (-15 -3178 (|#1| |#1| |#1|)) (-15 -3483 ((-112) |#1| |#1|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -1675 (|#1| |#1| |#2|)) (-15 -1675 (|#1| |#2| |#1|)) (-15 -2869 (|#1| (-656 |#2|))) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1119)) (T -436))
+((-2422 (*1 *2) (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4)))))
+(-10 -8 (-15 -2422 ((-783))) (-15 -4308 (|#1| (-938))) (-15 -1654 ((-938) |#1|)) (-15 -2107 (|#1|)) (-15 -1950 (|#2| |#1|)) (-15 -1492 (|#2| |#1|)) (-15 -2808 (|#1|)) (-15 -3805 (|#1| |#1|)) (-15 -1830 ((-783) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -2907 ((-112) |#1| |#1|)) (-15 -2554 (|#1|)) (-15 -2554 (|#1| (-656 |#2|))) (-15 -1333 (|#1|)) (-15 -1333 (|#1| (-656 |#2|))) (-15 -3310 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#2|)) (-15 -3178 (|#1| |#1| |#1|)) (-15 -3483 ((-112) |#1| |#1|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -1675 (|#1| |#1| |#2|)) (-15 -1675 (|#1| |#2| |#1|)) (-15 -2869 (|#1| (-656 |#2|))) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)))
+((-2835 (((-112) $ $) 19)) (-2808 (($) 68 (|has| |#1| (-379)))) (-1675 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3178 (($ $ $) 79)) (-3483 (((-112) $ $) 80)) (-2746 (((-112) $ (-783)) 8)) (-2422 (((-783)) 62 (|has| |#1| (-379)))) (-1333 (($ (-656 |#1|)) 75) (($) 74)) (-3423 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3229 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-2107 (($) 65 (|has| |#1| (-379)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) 71)) (-3639 (((-112) $ (-783)) 9)) (-1950 ((|#1| $) 66 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-1492 ((|#1| $) 67 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1654 (((-938) $) 64 (|has| |#1| (-379)))) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22)) (-3310 (($ $ $) 76)) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-4308 (($ (-938)) 63 (|has| |#1| (-379)))) (-3887 (((-1139) $) 21)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3797 (($ $ |#1|) 78) (($ $ $) 77)) (-1801 (($) 50) (($ (-656 |#1|)) 49)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 51)) (-3805 (($ $) 69 (|has| |#1| (-379)))) (-2858 (((-874) $) 18)) (-1830 (((-783) $) 70)) (-2554 (($ (-656 |#1|)) 73) (($) 72)) (-2690 (((-112) $ $) 23)) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20)) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-437 |#1|) (-141) (-1119)) (T -437))
+((-1830 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-3805 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-379)))) (-2808 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1119)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862)))))
+(-13 (-231 |t#1|) (-1117 |t#1|) (-10 -8 (-6 -4462) (-15 -1830 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -3805 ($ $)) (-15 -2808 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -1492 (|t#1| $)) (-15 -1950 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1117 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-3636 (((-598 |#2|) |#2| (-1196)) 36)) (-4243 (((-598 |#2|) |#2| (-1196)) 21)) (-1446 ((|#2| |#2| (-1196)) 26)))
+(((-438 |#1| |#2|) (-10 -7 (-15 -4243 ((-598 |#2|) |#2| (-1196))) (-15 -3636 ((-598 |#2|) |#2| (-1196))) (-15 -1446 (|#2| |#2| (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-29 |#1|))) (T -438))
+((-1446 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) (-3636 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5))))) (-4243 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5))))))
+(-10 -7 (-15 -4243 ((-598 |#2|) |#2| (-1196))) (-15 -3636 ((-598 |#2|) |#2| (-1196))) (-15 -1446 (|#2| |#2| (-1196))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-2061 (($ |#2| |#1|) 37)) (-1627 (($ |#2| |#1|) 35)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 10 T CONST)) (-2038 (($) 16 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 36)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4449)) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) |%noBranch|) (-15 -2858 ($ |#1|)) (-15 -2858 ($ (-341 |#2|))) (-15 -2061 ($ |#2| |#1|)) (-15 -1627 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439))
+((-2858 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-2061 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-1627 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4449)) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) |%noBranch|) (-15 -2858 ($ |#1|)) (-15 -2858 ($ (-341 |#2|))) (-15 -2061 ($ |#2| |#1|)) (-15 -1627 ($ |#2| |#1|))))
+((-1850 (((-3 |#2| (-656 |#2|)) |#2| (-1196)) 115)))
+(((-440 |#1| |#2|) (-10 -7 (-15 -1850 ((-3 |#2| (-656 |#2|)) |#2| (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-29 |#1|))) (T -440))
+((-1850 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-976) (-29 *5))))))
+(-10 -7 (-15 -1850 ((-3 |#2| (-656 |#2|)) |#2| (-1196))))
+((-1634 (((-656 (-1196)) $) 81)) (-3440 (((-419 (-1192 $)) $ (-624 $)) 313)) (-1490 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-2454 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1196) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-969 |#2|)) "failed") $) 363) (((-3 (-969 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-4397 (((-624 $) $) NIL) (((-1196) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-969 |#2|)) $) 345) (((-969 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-2569 (((-115) (-115)) 47)) (-3763 (($ $) 99)) (-2412 (((-3 (-624 $) "failed") $) 268)) (-2555 (((-656 (-624 $)) $) 269)) (-2829 (((-3 (-656 $) "failed") $) 287)) (-2321 (((-3 (-2 (|:| |val| $) (|:| -2273 (-576))) "failed") $) 294)) (-1972 (((-3 (-656 $) "failed") $) 285)) (-1507 (((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-2994 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-1196)) 257)) (-4336 (((-112) $) 17)) (-4347 ((|#2| $) 19)) (-3022 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1196)) 62) (($ $ (-656 (-1196))) 280) (($ $) 281) (($ $ (-115) $ (-1196)) 65) (($ $ (-656 (-115)) (-656 $) (-1196)) 72) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1196) (-783) (-1 $ (-656 $))) 105) (($ $ (-1196) (-783) (-1 $ $)) 104)) (-2099 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-2399 (($ $ (-1196)) 278) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3560 (($ $) 324)) (-2610 (((-905 (-576)) $) 297) (((-905 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-2858 (((-874) $) 279) (($ (-624 $)) 93) (($ (-1196)) 24) (($ |#2|) NIL) (($ (-1144 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-969 (-419 |#2|))) 368) (($ (-419 (-969 (-419 |#2|)))) 341) (($ (-419 (-969 |#2|))) 335) (($ $) NIL) (($ (-969 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-2981 (((-783)) 88)) (-3410 (((-112) (-115)) 42)) (-1657 (($ (-1196) $) 31) (($ (-1196) $ $) 32) (($ (-1196) $ $ $) 33) (($ (-1196) $ $ $ $) 34) (($ (-1196) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL)))
+(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2858 (|#1| (-576))) (-15 -2981 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2858 (|#1| (-969 |#2|))) (-15 -2454 ((-3 (-969 |#2|) "failed") |#1|)) (-15 -4397 ((-969 |#2|) |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -2858 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2858 (|#1| (-419 (-969 |#2|)))) (-15 -2454 ((-3 (-419 (-969 |#2|)) "failed") |#1|)) (-15 -4397 ((-419 (-969 |#2|)) |#1|)) (-15 -3440 ((-419 (-1192 |#1|)) |#1| (-624 |#1|))) (-15 -2858 (|#1| (-419 (-969 (-419 |#2|))))) (-15 -2858 (|#1| (-969 (-419 |#2|)))) (-15 -2858 (|#1| (-419 |#2|))) (-15 -3560 (|#1| |#1|)) (-15 -2610 (|#1| (-430 |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-783) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -2321 ((-3 (-2 (|:| |val| |#1|) (|:| -2273 (-576))) "failed") |#1|)) (-15 -2994 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2273 (-576))) "failed") |#1| (-1196))) (-15 -2994 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2273 (-576))) "failed") |#1| (-115))) (-15 -3763 (|#1| |#1|)) (-15 -2858 (|#1| (-1144 |#2| (-624 |#1|)))) (-15 -1507 ((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -1972 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2994 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2273 (-576))) "failed") |#1|)) (-15 -2829 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1196))) (-15 -3022 (|#1| |#1| (-115) |#1| (-1196))) (-15 -3022 (|#1| |#1|)) (-15 -3022 (|#1| |#1| (-656 (-1196)))) (-15 -3022 (|#1| |#1| (-1196))) (-15 -1657 (|#1| (-1196) (-656 |#1|))) (-15 -1657 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -1657 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -1657 (|#1| (-1196) |#1| |#1|)) (-15 -1657 (|#1| (-1196) |#1|)) (-15 -1634 ((-656 (-1196)) |#1|)) (-15 -4347 (|#2| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2858 (|#1| (-1196))) (-15 -2454 ((-3 (-1196) "failed") |#1|)) (-15 -4397 ((-1196) |#1|)) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -2555 ((-656 (-624 |#1|)) |#1|)) (-15 -2412 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1490 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1490 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1490 (|#1| |#1| (-304 |#1|))) (-15 -2099 (|#1| (-115) (-656 |#1|))) (-15 -2099 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3022 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2858 (|#1| (-624 |#1|))) (-15 -2454 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4397 ((-624 |#1|) |#1|)) (-15 -2858 ((-874) |#1|))) (-442 |#2|) (-1119)) (T -441))
+((-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1119)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-2981 (*1 *2) (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))))
+(-10 -8 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2858 (|#1| (-576))) (-15 -2981 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2858 (|#1| (-969 |#2|))) (-15 -2454 ((-3 (-969 |#2|) "failed") |#1|)) (-15 -4397 ((-969 |#2|) |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -2858 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2858 (|#1| (-419 (-969 |#2|)))) (-15 -2454 ((-3 (-419 (-969 |#2|)) "failed") |#1|)) (-15 -4397 ((-419 (-969 |#2|)) |#1|)) (-15 -3440 ((-419 (-1192 |#1|)) |#1| (-624 |#1|))) (-15 -2858 (|#1| (-419 (-969 (-419 |#2|))))) (-15 -2858 (|#1| (-969 (-419 |#2|)))) (-15 -2858 (|#1| (-419 |#2|))) (-15 -3560 (|#1| |#1|)) (-15 -2610 (|#1| (-430 |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-783) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -2321 ((-3 (-2 (|:| |val| |#1|) (|:| -2273 (-576))) "failed") |#1|)) (-15 -2994 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2273 (-576))) "failed") |#1| (-1196))) (-15 -2994 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2273 (-576))) "failed") |#1| (-115))) (-15 -3763 (|#1| |#1|)) (-15 -2858 (|#1| (-1144 |#2| (-624 |#1|)))) (-15 -1507 ((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -1972 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2994 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -2273 (-576))) "failed") |#1|)) (-15 -2829 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1196))) (-15 -3022 (|#1| |#1| (-115) |#1| (-1196))) (-15 -3022 (|#1| |#1|)) (-15 -3022 (|#1| |#1| (-656 (-1196)))) (-15 -3022 (|#1| |#1| (-1196))) (-15 -1657 (|#1| (-1196) (-656 |#1|))) (-15 -1657 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -1657 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -1657 (|#1| (-1196) |#1| |#1|)) (-15 -1657 (|#1| (-1196) |#1|)) (-15 -1634 ((-656 (-1196)) |#1|)) (-15 -4347 (|#2| |#1|)) (-15 -4336 ((-112) |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2858 (|#1| (-1196))) (-15 -2454 ((-3 (-1196) "failed") |#1|)) (-15 -4397 ((-1196) |#1|)) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -3022 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3022 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -2555 ((-656 (-624 |#1|)) |#1|)) (-15 -2412 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1490 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1490 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1490 (|#1| |#1| (-304 |#1|))) (-15 -2099 (|#1| (-115) (-656 |#1|))) (-15 -2099 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1| |#1|)) (-15 -2099 (|#1| (-115) |#1|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3022 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3022 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2858 (|#1| (-624 |#1|))) (-15 -2454 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4397 ((-624 |#1|) |#1|)) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 117 (|has| |#1| (-25)))) (-1634 (((-656 (-1196)) $) 206)) (-3440 (((-419 (-1192 $)) $ (-624 $)) 174 (|has| |#1| (-568)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 146 (|has| |#1| (-568)))) (-2150 (($ $) 147 (|has| |#1| (-568)))) (-2637 (((-112) $) 149 (|has| |#1| (-568)))) (-4256 (((-656 (-624 $)) $) 39)) (-3161 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1490 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-3179 (($ $) 166 (|has| |#1| (-568)))) (-2464 (((-430 $) $) 167 (|has| |#1| (-568)))) (-3417 (((-112) $ $) 157 (|has| |#1| (-568)))) (-2574 (($) 105 (-3739 (|has| |#1| (-1131)) (|has| |#1| (-25))) CONST)) (-2454 (((-3 (-624 $) "failed") $) 64) (((-3 (-1196) "failed") $) 219) (((-3 (-576) "failed") $) 213 (|has| |#1| (-1057 (-576)))) (((-3 |#1| "failed") $) 210) (((-3 (-419 (-969 |#1|)) "failed") $) 172 (|has| |#1| (-568))) (((-3 (-969 |#1|) "failed") $) 124 (|has| |#1| (-1068))) (((-3 (-419 (-576)) "failed") $) 99 (-3739 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-4397 (((-624 $) $) 65) (((-1196) $) 220) (((-576) $) 212 (|has| |#1| (-1057 (-576)))) ((|#1| $) 211) (((-419 (-969 |#1|)) $) 173 (|has| |#1| (-568))) (((-969 |#1|) $) 125 (|has| |#1| (-1068))) (((-419 (-576)) $) 100 (-3739 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-2780 (($ $ $) 161 (|has| |#1| (-568)))) (-2085 (((-701 (-576)) (-1287 $)) 141 (-3200 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-701 $)) 140 (-3200 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 139 (-3200 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 138 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 137 (|has| |#1| (-1068))) (((-701 |#1|) (-1287 $)) 136 (|has| |#1| (-1068)))) (-4011 (((-3 $ "failed") $) 107 (|has| |#1| (-1131)))) (-2790 (($ $ $) 160 (|has| |#1| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 155 (|has| |#1| (-568)))) (-3011 (((-112) $) 168 (|has| |#1| (-568)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 215 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 214 (|has| |#1| (-899 (-390))))) (-1739 (($ $) 46) (($ (-656 $)) 45)) (-2538 (((-656 (-115)) $) 38)) (-2569 (((-115) (-115)) 37)) (-1838 (((-112) $) 106 (|has| |#1| (-1131)))) (-2531 (((-112) $) 17 (|has| $ (-1057 (-576))))) (-3763 (($ $) 189 (|has| |#1| (-1068)))) (-1621 (((-1144 |#1| (-624 $)) $) 190 (|has| |#1| (-1068)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 164 (|has| |#1| (-568)))) (-2658 (((-1192 $) (-624 $)) 20 (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) 31)) (-2412 (((-3 (-624 $) "failed") $) 41)) (-3862 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-2143 (((-1178) $) 10)) (-2555 (((-656 (-624 $)) $) 40)) (-1706 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-2829 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-1131)))) (-2321 (((-3 (-2 (|:| |val| $) (|:| -2273 (-576))) "failed") $) 186 (|has| |#1| (-1068)))) (-1972 (((-3 (-656 $) "failed") $) 193 (|has| |#1| (-25)))) (-1507 (((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 $))) "failed") $) 192 (|has| |#1| (-25)))) (-2994 (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $) 194 (|has| |#1| (-1131))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-115)) 188 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-1196)) 187 (|has| |#1| (-1068)))) (-2729 (((-112) $ (-115)) 35) (((-112) $ (-1196)) 34)) (-4324 (($ $) 109 (-3739 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3317 (((-783) $) 42)) (-3887 (((-1139) $) 11)) (-4336 (((-112) $) 208)) (-4347 ((|#1| $) 207)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 154 (|has| |#1| (-568)))) (-3901 (($ (-656 $)) 151 (|has| |#1| (-568))) (($ $ $) 150 (|has| |#1| (-568)))) (-2788 (((-112) $ $) 30) (((-112) $ (-1196)) 29)) (-2367 (((-430 $) $) 165 (|has| |#1| (-568)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 163 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 162 (|has| |#1| (-568)))) (-2825 (((-3 $ "failed") $ $) 145 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 156 (|has| |#1| (-568)))) (-3945 (((-112) $) 18 (|has| $ (-1057 (-576))))) (-3022 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1196) (-1 $ (-656 $))) 26) (($ $ (-1196) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1196)) 200 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) 199 (|has| |#1| (-626 (-548)))) (($ $) 198 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 197 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1196)) 196 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 185 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 184 (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ (-656 $))) 183 (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ $)) 182 (|has| |#1| (-1068)))) (-3076 (((-783) $) 158 (|has| |#1| (-568)))) (-2099 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 159 (|has| |#1| (-568)))) (-1321 (($ $) 44) (($ $ $) 43)) (-2399 (($ $ (-1196)) 134 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 132 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 131 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) 130 (|has| |#1| (-1068)))) (-3560 (($ $) 179 (|has| |#1| (-568)))) (-1635 (((-1144 |#1| (-624 $)) $) 180 (|has| |#1| (-568)))) (-1953 (($ $) 19 (|has| $ (-1068)))) (-2610 (((-905 (-576)) $) 217 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 216 (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) 181 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-2480 (($ $ $) 112 (|has| |#1| (-485)))) (-2220 (($ $ $) 113 (|has| |#1| (-485)))) (-2858 (((-874) $) 12) (($ (-624 $)) 63) (($ (-1196)) 218) (($ |#1|) 209) (($ (-1144 |#1| (-624 $))) 191 (|has| |#1| (-1068))) (($ (-419 |#1|)) 177 (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) 176 (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) 175 (|has| |#1| (-568))) (($ (-419 (-969 |#1|))) 171 (|has| |#1| (-568))) (($ $) 144 (|has| |#1| (-568))) (($ (-969 |#1|)) 123 (|has| |#1| (-1068))) (($ (-419 (-576))) 98 (-3739 (|has| |#1| (-568)) (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576)))))) (($ (-576)) 97 (-3739 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-576)))))) (-3689 (((-3 $ "failed") $) 142 (|has| |#1| (-146)))) (-2981 (((-783)) 126 (|has| |#1| (-1068)) CONST)) (-2435 (($ $) 48) (($ (-656 $)) 47)) (-3410 (((-112) (-115)) 36)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 148 (|has| |#1| (-568)))) (-1657 (($ (-1196) $) 205) (($ (-1196) $ $) 204) (($ (-1196) $ $ $) 203) (($ (-1196) $ $ $ $) 202) (($ (-1196) (-656 $)) 201)) (-2022 (($) 116 (|has| |#1| (-25)) CONST)) (-2038 (($) 104 (|has| |#1| (-1131)) CONST)) (-3404 (($ $ (-1196)) 133 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 129 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 128 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) 127 (|has| |#1| (-1068)))) (-3889 (((-112) $ $) 6)) (-4013 (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 178 (|has| |#1| (-568))) (($ $ $) 110 (-3739 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4002 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3990 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-3739 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1131))) (($ $ (-938)) 103 (|has| |#1| (-1131)))) (* (($ (-419 (-576)) $) 170 (|has| |#1| (-568))) (($ $ (-419 (-576))) 169 (|has| |#1| (-568))) (($ $ |#1|) 143 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1068))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-938) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1131)))))
+(((-442 |#1|) (-141) (-1119)) (T -442))
+((-4336 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-1196))))) (-1657 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-1657 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-1657 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-1657 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-1657 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-626 (-548))))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-626 (-548))))) (-3022 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-626 (-548))))) (-3022 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) (-4 *4 (-626 (-548))))) (-3022 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1196)) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-626 (-548))))) (-2829 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-2994 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2273 (-576)))) (-4 *1 (-442 *3)))) (-1972 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-1507 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| -1788 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-1068)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3763 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-1068)))) (-2994 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2273 (-576)))) (-4 *1 (-442 *4)))) (-2994 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2273 (-576)))) (-4 *1 (-442 *4)))) (-2321 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |val| *1) (|:| -2273 (-576)))) (-4 *1 (-442 *3)))) (-3022 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-3022 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-3022 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-3022 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-568)))) (-4013 (*1 *1 *2 *2) (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) (-4 *4 (-568)) (-5 *2 (-419 (-1192 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-1131)))))
+(-13 (-312) (-1057 (-1196)) (-897 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -4336 ((-112) $)) (-15 -4347 (|t#1| $)) (-15 -1634 ((-656 (-1196)) $)) (-15 -1657 ($ (-1196) $)) (-15 -1657 ($ (-1196) $ $)) (-15 -1657 ($ (-1196) $ $ $)) (-15 -1657 ($ (-1196) $ $ $ $)) (-15 -1657 ($ (-1196) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3022 ($ $ (-1196))) (-15 -3022 ($ $ (-656 (-1196)))) (-15 -3022 ($ $)) (-15 -3022 ($ $ (-115) $ (-1196))) (-15 -3022 ($ $ (-656 (-115)) (-656 $) (-1196)))) |%noBranch|) (IF (|has| |t#1| (-1131)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -2829 ((-3 (-656 $) "failed") $)) (-15 -2994 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1972 ((-3 (-656 $) "failed") $)) (-15 -1507 ((-3 (-2 (|:| -1788 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-1057 (-969 |t#1|))) (-6 (-915 (-1196))) (-6 (-388 |t#1|)) (-15 -2858 ($ (-1144 |t#1| (-624 $)))) (-15 -1621 ((-1144 |t#1| (-624 $)) $)) (-15 -3763 ($ $)) (-15 -2994 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-115))) (-15 -2994 ((-3 (-2 (|:| |var| (-624 $)) (|:| -2273 (-576))) "failed") $ (-1196))) (-15 -2321 ((-3 (-2 (|:| |val| $) (|:| -2273 (-576))) "failed") $)) (-15 -3022 ($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -3022 ($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -3022 ($ $ (-1196) (-783) (-1 $ (-656 $)))) (-15 -3022 ($ $ (-1196) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1057 (-419 (-969 |t#1|)))) (-15 -2610 ($ (-430 $))) (-15 -1635 ((-1144 |t#1| (-624 $)) $)) (-15 -3560 ($ $)) (-15 -4013 ($ (-1144 |t#1| (-624 $)) (-1144 |t#1| (-624 $)))) (-15 -2858 ($ (-419 |t#1|))) (-15 -2858 ($ (-969 (-419 |t#1|)))) (-15 -2858 ($ (-419 (-969 (-419 |t#1|))))) (-15 -3440 ((-419 (-1192 $)) $ (-624 $))) (IF (|has| |t#1| (-1057 (-576))) (-6 (-1057 (-419 (-576)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-969 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -3739 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-969 |#1|)) |has| |#1| (-1068)) ((-628 #4=(-1196)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -3739 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-658 $) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-660 |#1|) -3739 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-660 $) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-651 |#1|) |has| |#1| (-1068)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -3739 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 $ #6=(-1196)) |has| |#1| (-1068)) ((-915 #6#) |has| |#1| (-1068)) ((-917 #6#) |has| |#1| (-1068)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-937) |has| |#1| (-568)) ((-1057 (-419 (-576))) -3739 (|has| |#1| (-1057 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) ((-1057 #1#) |has| |#1| (-568)) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 #3#) |has| |#1| (-1068)) ((-1057 #4#) . T) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-568)) ((-1070 |#1|) |has| |#1| (-174)) ((-1070 $) |has| |#1| (-568)) ((-1075 #0#) |has| |#1| (-568)) ((-1075 |#1|) |has| |#1| (-174)) ((-1075 $) |has| |#1| (-568)) ((-1068) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1077) -3739 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1131) -3739 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-568)))
+((-3678 ((|#2| |#2| |#2|) 31)) (-2569 (((-115) (-115)) 43)) (-2506 ((|#2| |#2|) 63)) (-3853 ((|#2| |#2|) 66)) (-1784 ((|#2| |#2|) 30)) (-3466 ((|#2| |#2| |#2|) 33)) (-1601 ((|#2| |#2| |#2|) 35)) (-1487 ((|#2| |#2| |#2|) 32)) (-2011 ((|#2| |#2| |#2|) 34)) (-3410 (((-112) (-115)) 41)) (-2411 ((|#2| |#2|) 37)) (-4266 ((|#2| |#2|) 36)) (-3680 ((|#2| |#2|) 25)) (-2079 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1458 ((|#2| |#2| |#2|) 29)))
+(((-443 |#1| |#2|) (-10 -7 (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -3680 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2079 (|#2| |#2| |#2|)) (-15 -1458 (|#2| |#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -3678 (|#2| |#2| |#2|)) (-15 -1487 (|#2| |#2| |#2|)) (-15 -3466 (|#2| |#2| |#2|)) (-15 -2011 (|#2| |#2| |#2|)) (-15 -1601 (|#2| |#2| |#2|)) (-15 -4266 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -2506 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443))
+((-2506 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2411 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4266 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1601 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2011 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3466 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1487 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3678 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1458 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2079 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))))
+(-10 -7 (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -3680 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2079 (|#2| |#2| |#2|)) (-15 -1458 (|#2| |#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -3678 (|#2| |#2| |#2|)) (-15 -1487 (|#2| |#2| |#2|)) (-15 -3466 (|#2| |#2| |#2|)) (-15 -2011 (|#2| |#2| |#2|)) (-15 -1601 (|#2| |#2| |#2|)) (-15 -4266 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -2506 (|#2| |#2|)))
+((-3602 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|)) 65)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -3602 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3602 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444))
+((-3602 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-444 *4 *5)))))
+(-10 -7 (-15 -3602 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -3602 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1450 (((-1292)) 18)) (-1342 (((-1192 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24)))
+(((-445 |#1| |#2|) (-10 -7 (-15 -1342 ((-419 (-576)) |#2|)) (-15 -1342 ((-1192 (-419 (-576))) |#2| (-624 |#2|))) (-15 -1450 ((-1292)))) (-13 (-568) (-1057 (-576))) (-442 |#1|)) (T -445))
+((-1450 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1292)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-1342 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))))
+(-10 -7 (-15 -1342 ((-419 (-576)) |#2|)) (-15 -1342 ((-1192 (-419 (-576))) |#2| (-624 |#2|))) (-15 -1450 ((-1292))))
+((-2894 (((-112) $) 32)) (-1845 (((-112) $) 34)) (-3148 (((-112) $) 35)) (-3570 (((-112) $) 38)) (-3264 (((-112) $) 33)) (-2396 (((-112) $) 37)) (-2858 (((-874) $) 20) (($ (-1178)) 31) (($ (-1196)) 26) (((-1196) $) 24) (((-1123) $) 23)) (-1960 (((-112) $) 36)) (-3889 (((-112) $ $) 17)))
+(((-446) (-13 (-625 (-874)) (-10 -8 (-15 -2858 ($ (-1178))) (-15 -2858 ($ (-1196))) (-15 -2858 ((-1196) $)) (-15 -2858 ((-1123) $)) (-15 -2894 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -3148 ((-112) $)) (-15 -2396 ((-112) $)) (-15 -3570 ((-112) $)) (-15 -1960 ((-112) $)) (-15 -1845 ((-112) $)) (-15 -3889 ((-112) $ $))))) (T -446))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3889 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2858 ($ (-1178))) (-15 -2858 ($ (-1196))) (-15 -2858 ((-1196) $)) (-15 -2858 ((-1123) $)) (-15 -2894 ((-112) $)) (-15 -3264 ((-112) $)) (-15 -3148 ((-112) $)) (-15 -2396 ((-112) $)) (-15 -3570 ((-112) $)) (-15 -1960 ((-112) $)) (-15 -1845 ((-112) $)) (-15 -3889 ((-112) $ $))))
+((-2207 (((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|) 72)) (-1383 (((-430 |#3|) |#3|) 34)) (-1509 (((-3 (-430 (-1192 (-48))) "failed") |#3|) 46 (|has| |#2| (-1057 (-48))))) (-2789 (((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -3395 (-112))) |#3|) 37)))
+(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -1383 ((-430 |#3|) |#3|)) (-15 -2207 ((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|)) (-15 -2789 ((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -3395 (-112))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -1509 ((-3 (-430 (-1192 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1057 (-576))) (-442 |#1|) (-1263 |#2|)) (T -447))
+((-1509 (*1 *2 *3) (|partial| -12 (-4 *5 (-1057 (-48))) (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2789 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -3395 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2207 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1192 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-1383 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))))
+(-10 -7 (-15 -1383 ((-430 |#3|) |#3|)) (-15 -2207 ((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|)) (-15 -2789 ((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -3395 (-112))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -1509 ((-3 (-430 (-1192 (-48))) "failed") |#3|)) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-3070 (((-1178) $ (-1178)) NIL)) (-4031 (($ $ (-1178)) NIL)) (-1720 (((-1178) $) NIL)) (-3848 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-2952 (($ (-400)) NIL) (($ (-400) (-1178)) NIL)) (-1811 (((-400) $) NIL)) (-2143 (((-1178) $) NIL)) (-2403 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3274 (((-1292) (-1178)) 9)) (-1587 (((-1292) (-1178)) 10)) (-3385 (((-1292)) 11)) (-2858 (((-874) $) NIL)) (-1723 (($ $) 39)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-448) (-13 (-375 (-400) (-1178)) (-10 -7 (-15 -3848 ((-400) (-400) (-400))) (-15 -3848 ((-400) (-400))) (-15 -3274 ((-1292) (-1178))) (-15 -1587 ((-1292) (-1178))) (-15 -3385 ((-1292)))))) (T -448))
+((-3848 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3274 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))) (-3385 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-448)))))
+(-13 (-375 (-400) (-1178)) (-10 -7 (-15 -3848 ((-400) (-400) (-400))) (-15 -3848 ((-400) (-400))) (-15 -3274 ((-1292) (-1178))) (-15 -1587 ((-1292) (-1178))) (-15 -3385 ((-1292)))))
+((-2835 (((-112) $ $) NIL)) (-1367 (((-3 (|:| |fst| (-446)) (|:| -2035 "void")) $) 11)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1815 (($) 35)) (-4348 (($) 41)) (-3074 (($) 37)) (-4108 (($) 39)) (-2249 (($) 36)) (-4410 (($) 38)) (-2785 (($) 40)) (-2344 (((-112) $) 8)) (-1975 (((-656 (-969 (-576))) $) 19)) (-2869 (($ (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-1196)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-969 (-576))) (-112)) 30)) (-2858 (((-874) $) 24) (($ (-446)) 32)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-449) (-13 (-1119) (-10 -8 (-15 -2858 ($ (-446))) (-15 -1367 ((-3 (|:| |fst| (-446)) (|:| -2035 "void")) $)) (-15 -1975 ((-656 (-969 (-576))) $)) (-15 -2344 ((-112) $)) (-15 -2869 ($ (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-1196)) (-112))) (-15 -2869 ($ (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-969 (-576))) (-112))) (-15 -1815 ($)) (-15 -2249 ($)) (-15 -3074 ($)) (-15 -4348 ($)) (-15 -4410 ($)) (-15 -4108 ($)) (-15 -2785 ($))))) (T -449))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *1 (-449)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-656 (-969 (-576)))) (-5 *1 (-449)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-2869 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *3 (-656 (-1196))) (-5 *4 (-112)) (-5 *1 (-449)))) (-2869 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-1815 (*1 *1) (-5 *1 (-449))) (-2249 (*1 *1) (-5 *1 (-449))) (-3074 (*1 *1) (-5 *1 (-449))) (-4348 (*1 *1) (-5 *1 (-449))) (-4410 (*1 *1) (-5 *1 (-449))) (-4108 (*1 *1) (-5 *1 (-449))) (-2785 (*1 *1) (-5 *1 (-449))))
+(-13 (-1119) (-10 -8 (-15 -2858 ($ (-446))) (-15 -1367 ((-3 (|:| |fst| (-446)) (|:| -2035 "void")) $)) (-15 -1975 ((-656 (-969 (-576))) $)) (-15 -2344 ((-112) $)) (-15 -2869 ($ (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-1196)) (-112))) (-15 -2869 ($ (-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-656 (-969 (-576))) (-112))) (-15 -1815 ($)) (-15 -2249 ($)) (-15 -3074 ($)) (-15 -4348 ($)) (-15 -4410 ($)) (-15 -4108 ($)) (-15 -2785 ($))))
+((-2835 (((-112) $ $) NIL)) (-1811 (((-1196) $) 8)) (-2143 (((-1178) $) 17)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 11)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 14)))
+(((-450 |#1|) (-13 (-1119) (-10 -8 (-15 -1811 ((-1196) $)))) (-1196)) (T -450))
+((-1811 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2))))
+(-13 (-1119) (-10 -8 (-15 -1811 ((-1196) $))))
+((-2835 (((-112) $ $) NIL)) (-1389 (((-1137) $) 7)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 13)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 9)))
+(((-451) (-13 (-1119) (-10 -8 (-15 -1389 ((-1137) $))))) (T -451))
+((-1389 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-451)))))
+(-13 (-1119) (-10 -8 (-15 -1389 ((-1137) $))))
+((-2275 (((-1292) $) 7)) (-2858 (((-874) $) 8) (($ (-1287 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 11)))
(((-452) (-141)) (T -452))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-452)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-452)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339))))) (-4 *1 (-452)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452)))))
-(-13 (-406) (-10 -8 (-15 -2882 ($ (-655 (-339)))) (-15 -2882 ($ (-339))) (-15 -2882 ($ (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))) (-15 -4400 ($ (-1285 (-325 (-389))))) (-15 -2443 ((-3 $ "failed") (-1285 (-325 (-389))))) (-15 -4400 ($ (-1285 (-325 (-575))))) (-15 -2443 ((-3 $ "failed") (-1285 (-325 (-575))))) (-15 -4400 ($ (-1285 (-967 (-389))))) (-15 -2443 ((-3 $ "failed") (-1285 (-967 (-389))))) (-15 -4400 ($ (-1285 (-967 (-575))))) (-15 -2443 ((-3 $ "failed") (-1285 (-967 (-575))))) (-15 -4400 ($ (-1285 (-418 (-967 (-389)))))) (-15 -2443 ((-3 $ "failed") (-1285 (-418 (-967 (-389)))))) (-15 -4400 ($ (-1285 (-418 (-967 (-575)))))) (-15 -2443 ((-3 $ "failed") (-1285 (-418 (-967 (-575))))))))
-(((-624 (-873)) . T) ((-406) . T) ((-1235) . T))
-((-2757 (((-112)) 18)) (-2410 (((-112) (-112)) 19)) (-1549 (((-112)) 14)) (-3671 (((-112) (-112)) 15)) (-2000 (((-112)) 16)) (-1407 (((-112) (-112)) 17)) (-4132 (((-936) (-936)) 22) (((-936)) 21)) (-3601 (((-782) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575))))) 52)) (-1823 (((-936) (-936)) 24) (((-936)) 23)) (-2867 (((-2 (|:| -4210 (-575)) (|:| -1366 (-655 |#1|))) |#1|) 94)) (-4315 (((-429 |#1|) (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575))))))) 174)) (-3394 (((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112)) 207)) (-1326 (((-429 |#1|) |#1| (-782) (-782)) 222) (((-429 |#1|) |#1| (-655 (-782)) (-782)) 219) (((-429 |#1|) |#1| (-655 (-782))) 221) (((-429 |#1|) |#1| (-782)) 220) (((-429 |#1|) |#1|) 218)) (-3780 (((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782) (-112)) 224) (((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782)) 225) (((-3 |#1| "failed") (-936) |#1| (-655 (-782))) 227) (((-3 |#1| "failed") (-936) |#1| (-782)) 226) (((-3 |#1| "failed") (-936) |#1|) 228)) (-2347 (((-429 |#1|) |#1| (-782) (-782)) 217) (((-429 |#1|) |#1| (-655 (-782)) (-782)) 213) (((-429 |#1|) |#1| (-655 (-782))) 215) (((-429 |#1|) |#1| (-782)) 214) (((-429 |#1|) |#1|) 212)) (-1481 (((-112) |#1|) 44)) (-2357 (((-748 (-782)) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575))))) 99)) (-2411 (((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112) (-1119 (-782)) (-782)) 211)))
-(((-453 |#1|) (-10 -7 (-15 -4315 ((-429 |#1|) (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))))) (-15 -2357 ((-748 (-782)) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))))) (-15 -1823 ((-936))) (-15 -1823 ((-936) (-936))) (-15 -4132 ((-936))) (-15 -4132 ((-936) (-936))) (-15 -3601 ((-782) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))))) (-15 -2867 ((-2 (|:| -4210 (-575)) (|:| -1366 (-655 |#1|))) |#1|)) (-15 -2757 ((-112))) (-15 -2410 ((-112) (-112))) (-15 -1549 ((-112))) (-15 -3671 ((-112) (-112))) (-15 -1481 ((-112) |#1|)) (-15 -2000 ((-112))) (-15 -1407 ((-112) (-112))) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -2347 ((-429 |#1|) |#1| (-782))) (-15 -2347 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -2347 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -2347 ((-429 |#1|) |#1| (-782) (-782))) (-15 -1326 ((-429 |#1|) |#1|)) (-15 -1326 ((-429 |#1|) |#1| (-782))) (-15 -1326 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -1326 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -1326 ((-429 |#1|) |#1| (-782) (-782))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1|)) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-782))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782) (-112))) (-15 -3394 ((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112))) (-15 -2411 ((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112) (-1119 (-782)) (-782)))) (-1261 (-575))) (T -453))
-((-2411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1119 (-782))) (-5 *6 (-782)) (-5 *2 (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575))))))) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575))))))) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3780 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *6 (-112)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-3780 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-3780 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-3780 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-936)) (-5 *4 (-782)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-3780 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-936)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575))))) (-1326 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1326 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1326 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1326 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1326 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2347 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2347 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2000 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1481 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1549 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2757 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2867 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4210 (-575)) (|:| -1366 (-655 *3)))) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2347 *4) (|:| -1753 (-575))))) (-4 *4 (-1261 (-575))) (-5 *2 (-782)) (-5 *1 (-453 *4)))) (-4132 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-4132 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-1823 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2347 *4) (|:| -1753 (-575))))) (-4 *4 (-1261 (-575))) (-5 *2 (-748 (-782))) (-5 *1 (-453 *4)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| *4) (|:| -2205 (-575))))))) (-4 *4 (-1261 (-575))) (-5 *2 (-429 *4)) (-5 *1 (-453 *4)))))
-(-10 -7 (-15 -4315 ((-429 |#1|) (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))))) (-15 -2357 ((-748 (-782)) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))))) (-15 -1823 ((-936))) (-15 -1823 ((-936) (-936))) (-15 -4132 ((-936))) (-15 -4132 ((-936) (-936))) (-15 -3601 ((-782) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))))) (-15 -2867 ((-2 (|:| -4210 (-575)) (|:| -1366 (-655 |#1|))) |#1|)) (-15 -2757 ((-112))) (-15 -2410 ((-112) (-112))) (-15 -1549 ((-112))) (-15 -3671 ((-112) (-112))) (-15 -1481 ((-112) |#1|)) (-15 -2000 ((-112))) (-15 -1407 ((-112) (-112))) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -2347 ((-429 |#1|) |#1| (-782))) (-15 -2347 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -2347 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -2347 ((-429 |#1|) |#1| (-782) (-782))) (-15 -1326 ((-429 |#1|) |#1|)) (-15 -1326 ((-429 |#1|) |#1| (-782))) (-15 -1326 ((-429 |#1|) |#1| (-655 (-782)))) (-15 -1326 ((-429 |#1|) |#1| (-655 (-782)) (-782))) (-15 -1326 ((-429 |#1|) |#1| (-782) (-782))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1|)) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-782))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782))) (-15 -3780 ((-3 |#1| "failed") (-936) |#1| (-655 (-782)) (-782) (-112))) (-15 -3394 ((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112))) (-15 -2411 ((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112) (-1119 (-782)) (-782))))
-((-2435 (((-575) |#2|) 52) (((-575) |#2| (-782)) 51)) (-3266 (((-575) |#2|) 64)) (-3402 ((|#3| |#2|) 26)) (-3390 ((|#3| |#2| (-936)) 15)) (-1840 ((|#3| |#2|) 16)) (-2265 ((|#3| |#2|) 9)) (-3340 ((|#3| |#2|) 10)) (-1680 ((|#3| |#2| (-936)) 71) ((|#3| |#2|) 34)) (-1491 (((-575) |#2|) 66)))
-(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -1491 ((-575) |#2|)) (-15 -1680 (|#3| |#2|)) (-15 -1680 (|#3| |#2| (-936))) (-15 -3266 ((-575) |#2|)) (-15 -2435 ((-575) |#2| (-782))) (-15 -2435 ((-575) |#2|)) (-15 -3390 (|#3| |#2| (-936))) (-15 -3402 (|#3| |#2|)) (-15 -2265 (|#3| |#2|)) (-15 -3340 (|#3| |#2|)) (-15 -1840 (|#3| |#2|))) (-1066) (-1261 |#1|) (-13 (-415) (-1055 |#1|) (-373) (-1220) (-293))) (T -454))
-((-1840 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-2265 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-3390 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))) (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5)))) (-2435 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) (-4 *3 (-1261 *4)) (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))) (-2435 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *5 *3 *6)) (-4 *3 (-1261 *5)) (-4 *6 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) (-4 *3 (-1261 *4)) (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293))) (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5)))) (-1680 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))) (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))) (-1491 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5)) (-4 *3 (-1261 *4)) (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))))
-(-10 -7 (-15 -1491 ((-575) |#2|)) (-15 -1680 (|#3| |#2|)) (-15 -1680 (|#3| |#2| (-936))) (-15 -3266 ((-575) |#2|)) (-15 -2435 ((-575) |#2| (-782))) (-15 -2435 ((-575) |#2|)) (-15 -3390 (|#3| |#2| (-936))) (-15 -3402 (|#3| |#2|)) (-15 -2265 (|#3| |#2|)) (-15 -3340 (|#3| |#2|)) (-15 -1840 (|#3| |#2|)))
-((-2398 ((|#2| (-1285 |#1|)) 42)) (-2003 ((|#2| |#2| |#1|) 58)) (-3542 ((|#2| |#2| |#1|) 49)) (-4380 ((|#2| |#2|) 44)) (-3311 (((-112) |#2|) 32)) (-2874 (((-655 |#2|) (-936) (-429 |#2|)) 21)) (-3780 ((|#2| (-936) (-429 |#2|)) 25)) (-2357 (((-748 (-782)) (-429 |#2|)) 29)))
-(((-455 |#1| |#2|) (-10 -7 (-15 -3311 ((-112) |#2|)) (-15 -2398 (|#2| (-1285 |#1|))) (-15 -4380 (|#2| |#2|)) (-15 -3542 (|#2| |#2| |#1|)) (-15 -2003 (|#2| |#2| |#1|)) (-15 -2357 ((-748 (-782)) (-429 |#2|))) (-15 -3780 (|#2| (-936) (-429 |#2|))) (-15 -2874 ((-655 |#2|) (-936) (-429 |#2|)))) (-1066) (-1261 |#1|)) (T -455))
-((-2874 (*1 *2 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-429 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-1066)) (-5 *2 (-655 *6)) (-5 *1 (-455 *5 *6)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-429 *2)) (-4 *2 (-1261 *5)) (-5 *1 (-455 *5 *2)) (-4 *5 (-1066)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-429 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1066)) (-5 *2 (-748 (-782))) (-5 *1 (-455 *4 *5)))) (-2003 (*1 *2 *2 *3) (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) (-3542 (*1 *2 *2 *3) (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) (-4380 (*1 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-1066)) (-4 *2 (-1261 *4)) (-5 *1 (-455 *4 *2)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -3311 ((-112) |#2|)) (-15 -2398 (|#2| (-1285 |#1|))) (-15 -4380 (|#2| |#2|)) (-15 -3542 (|#2| |#2| |#1|)) (-15 -2003 (|#2| |#2| |#1|)) (-15 -2357 ((-748 (-782)) (-429 |#2|))) (-15 -3780 (|#2| (-936) (-429 |#2|))) (-15 -2874 ((-655 |#2|) (-936) (-429 |#2|))))
-((-3499 (((-782)) 59)) (-3018 (((-782)) 29 (|has| |#1| (-415))) (((-782) (-782)) 28 (|has| |#1| (-415)))) (-2805 (((-575) |#1|) 25 (|has| |#1| (-415)))) (-2407 (((-575) |#1|) 27 (|has| |#1| (-415)))) (-3480 (((-782)) 58) (((-782) (-782)) 57)) (-2505 ((|#1| (-782) (-575)) 37)) (-2004 (((-1290)) 61)))
-(((-456 |#1|) (-10 -7 (-15 -2505 (|#1| (-782) (-575))) (-15 -3480 ((-782) (-782))) (-15 -3480 ((-782))) (-15 -3499 ((-782))) (-15 -2004 ((-1290))) (IF (|has| |#1| (-415)) (PROGN (-15 -2407 ((-575) |#1|)) (-15 -2805 ((-575) |#1|)) (-15 -3018 ((-782) (-782))) (-15 -3018 ((-782)))) |%noBranch|)) (-1066)) (T -456))
-((-3018 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-2407 (*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))) (-2004 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-3499 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-3480 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-575)) (-5 *1 (-456 *2)) (-4 *2 (-1066)))))
-(-10 -7 (-15 -2505 (|#1| (-782) (-575))) (-15 -3480 ((-782) (-782))) (-15 -3480 ((-782))) (-15 -3499 ((-782))) (-15 -2004 ((-1290))) (IF (|has| |#1| (-415)) (PROGN (-15 -2407 ((-575) |#1|)) (-15 -2805 ((-575) |#1|)) (-15 -3018 ((-782) (-782))) (-15 -3018 ((-782)))) |%noBranch|))
-((-3484 (((-655 (-575)) (-575)) 76)) (-3559 (((-112) (-171 (-575))) 82)) (-2347 (((-429 (-171 (-575))) (-171 (-575))) 75)))
-(((-457) (-10 -7 (-15 -2347 ((-429 (-171 (-575))) (-171 (-575)))) (-15 -3484 ((-655 (-575)) (-575))) (-15 -3559 ((-112) (-171 (-575)))))) (T -457))
-((-3559 (*1 *2 *3) (-12 (-5 *3 (-171 (-575))) (-5 *2 (-112)) (-5 *1 (-457)))) (-3484 (*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-457)) (-5 *3 (-575)))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-429 (-171 (-575)))) (-5 *1 (-457)) (-5 *3 (-171 (-575))))))
-(-10 -7 (-15 -2347 ((-429 (-171 (-575))) (-171 (-575)))) (-15 -3484 ((-655 (-575)) (-575))) (-15 -3559 ((-112) (-171 (-575)))))
-((-2556 ((|#4| |#4| (-655 |#4|)) 82)) (-3408 (((-655 |#4|) (-655 |#4|) (-1176) (-1176)) 22) (((-655 |#4|) (-655 |#4|) (-1176)) 21) (((-655 |#4|) (-655 |#4|)) 13)))
-(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2556 (|#4| |#4| (-655 |#4|))) (-15 -3408 ((-655 |#4|) (-655 |#4|))) (-15 -3408 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -3408 ((-655 |#4|) (-655 |#4|) (-1176) (-1176)))) (-316) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -458))
-((-3408 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *7)))) (-3408 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *7)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-458 *3 *4 *5 *6)))) (-2556 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2556 (|#4| |#4| (-655 |#4|))) (-15 -3408 ((-655 |#4|) (-655 |#4|))) (-15 -3408 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -3408 ((-655 |#4|) (-655 |#4|) (-1176) (-1176))))
-((-3551 (((-655 (-655 |#4|)) (-655 |#4|) (-112)) 89) (((-655 (-655 |#4|)) (-655 |#4|)) 88) (((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|) (-112)) 82) (((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|)) 83)) (-3668 (((-655 (-655 |#4|)) (-655 |#4|) (-112)) 55) (((-655 (-655 |#4|)) (-655 |#4|)) 77)))
-(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3668 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -3668 ((-655 (-655 |#4|)) (-655 |#4|) (-112))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|) (-112))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|) (-112)))) (-13 (-316) (-148)) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -459))
-((-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) (-3551 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-3551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) (-3551 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-3668 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8))) (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))) (-3668 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
-(-10 -7 (-15 -3668 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -3668 ((-655 (-655 |#4|)) (-655 |#4|) (-112))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|) (-655 |#4|) (-112))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|))) (-15 -3551 ((-655 (-655 |#4|)) (-655 |#4|) (-112))))
-((-1807 (((-782) |#4|) 12)) (-3566 (((-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|))) |#4| (-782) (-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|)))) 39)) (-2905 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4261 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1897 ((|#4| |#4| (-655 |#4|)) 54)) (-2641 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-655 |#4|)) 96)) (-2399 (((-1290) |#4|) 59)) (-4354 (((-1290) (-655 |#4|)) 69)) (-4043 (((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575)) 66)) (-1740 (((-1290) (-575)) 110)) (-2331 (((-655 |#4|) (-655 |#4|)) 104)) (-3716 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|)) |#4| (-782)) 31)) (-2273 (((-575) |#4|) 109)) (-3248 ((|#4| |#4|) 37)) (-2965 (((-655 |#4|) (-655 |#4|) (-575) (-575)) 74)) (-3545 (((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575) (-575)) 123)) (-2151 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2620 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3492 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4335 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2171 (((-112) |#2| |#2|) 75)) (-2925 (((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3141 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2288 ((|#4| |#4| (-655 |#4|)) 97)))
-(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2288 (|#4| |#4| (-655 |#4|))) (-15 -1897 (|#4| |#4| (-655 |#4|))) (-15 -2965 ((-655 |#4|) (-655 |#4|) (-575) (-575))) (-15 -2620 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2171 ((-112) |#2| |#2|)) (-15 -3141 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2925 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4335 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3492 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2641 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-655 |#4|))) (-15 -3248 (|#4| |#4|)) (-15 -3566 ((-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|))) |#4| (-782) (-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|))))) (-15 -4261 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2905 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2331 ((-655 |#4|) (-655 |#4|))) (-15 -2273 ((-575) |#4|)) (-15 -2399 ((-1290) |#4|)) (-15 -4043 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575))) (-15 -3545 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575) (-575))) (-15 -4354 ((-1290) (-655 |#4|))) (-15 -1740 ((-1290) (-575))) (-15 -2151 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3716 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|)) |#4| (-782))) (-15 -1807 ((-782) |#4|))) (-463) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -460))
-((-1807 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-3716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-782)) (|:| -4408 *4))) (-5 *5 (-782)) (-4 *4 (-964 *6 *7 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-460 *6 *7 *8 *4)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *7)))) (-3545 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *4)))) (-4043 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *4)))) (-2399 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-2273 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-575)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2905 (*1 *2 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-804)) (-4 *2 (-964 *4 *5 *6)) (-5 *1 (-460 *4 *5 *6 *2)) (-4 *4 (-463)) (-4 *6 (-861)))) (-3566 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 *3)))) (-5 *4 (-782)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *3)))) (-3248 (*1 *2 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-460 *5 *6 *7 *3)))) (-3492 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-782)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-804)) (-4 *6 (-964 *4 *3 *5)) (-4 *4 (-463)) (-4 *5 (-861)) (-5 *1 (-460 *4 *3 *5 *6)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2925 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-804)) (-4 *3 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *3)))) (-3141 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5)))) (-2171 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2965 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1897 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2288 (|#4| |#4| (-655 |#4|))) (-15 -1897 (|#4| |#4| (-655 |#4|))) (-15 -2965 ((-655 |#4|) (-655 |#4|) (-575) (-575))) (-15 -2620 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2171 ((-112) |#2| |#2|)) (-15 -3141 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2925 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4335 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3492 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2641 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-655 |#4|))) (-15 -3248 (|#4| |#4|)) (-15 -3566 ((-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|))) |#4| (-782) (-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|))))) (-15 -4261 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2905 ((-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-655 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2331 ((-655 |#4|) (-655 |#4|))) (-15 -2273 ((-575) |#4|)) (-15 -2399 ((-1290) |#4|)) (-15 -4043 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575))) (-15 -3545 ((-575) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-575) (-575) (-575) (-575))) (-15 -4354 ((-1290) (-655 |#4|))) (-15 -1740 ((-1290) (-575))) (-15 -2151 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3716 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-782)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-782)) (|:| -4408 |#4|)) |#4| (-782))) (-15 -1807 ((-782) |#4|)))
-((-3375 ((|#4| |#4| (-655 |#4|)) 20 (|has| |#1| (-373)))) (-1956 (((-655 |#4|) (-655 |#4|) (-1176) (-1176)) 46) (((-655 |#4|) (-655 |#4|) (-1176)) 45) (((-655 |#4|) (-655 |#4|)) 34)))
-(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1956 ((-655 |#4|) (-655 |#4|))) (-15 -1956 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -1956 ((-655 |#4|) (-655 |#4|) (-1176) (-1176))) (IF (|has| |#1| (-373)) (-15 -3375 (|#4| |#4| (-655 |#4|))) |%noBranch|)) (-463) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -461))
-((-3375 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-373)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *2)))) (-1956 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1956 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1956 ((-655 |#4|) (-655 |#4|))) (-15 -1956 ((-655 |#4|) (-655 |#4|) (-1176))) (-15 -1956 ((-655 |#4|) (-655 |#4|) (-1176) (-1176))) (IF (|has| |#1| (-373)) (-15 -3375 (|#4| |#4| (-655 |#4|))) |%noBranch|))
-((-3886 (($ $ $) 14) (($ (-655 $)) 21)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 46)) (-3923 (($ $ $) NIL) (($ (-655 $)) 22)))
-(((-462 |#1|) (-10 -8 (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -3886 (|#1| (-655 |#1|))) (-15 -3886 (|#1| |#1| |#1|)) (-15 -3923 (|#1| (-655 |#1|))) (-15 -3923 (|#1| |#1| |#1|))) (-463)) (T -462))
-NIL
-(-10 -8 (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -3886 (|#1| (-655 |#1|))) (-15 -3886 (|#1| |#1| |#1|)) (-15 -3923 (|#1| (-655 |#1|))) (-15 -3923 (|#1| |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2849 (((-3 $ "failed") $ $) 48)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-463) (-141)) (T -463))
-((-3923 (*1 *1 *1 *1) (-4 *1 (-463))) (-3923 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463)))) (-3886 (*1 *1 *1 *1) (-4 *1 (-463))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463)))) (-3354 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-463)))))
-(-13 (-567) (-10 -8 (-15 -3923 ($ $ $)) (-15 -3923 ($ (-655 $))) (-15 -3886 ($ $ $)) (-15 -3886 ($ (-655 $))) (-15 -3354 ((-1190 $) (-1190 $) (-1190 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2942 (((-3 $ "failed")) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2199 (((-1285 (-700 (-418 (-967 |#1|)))) (-1285 $)) NIL) (((-1285 (-700 (-418 (-967 |#1|))))) NIL)) (-2133 (((-1285 $)) NIL)) (-3261 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL)) (-2146 (((-3 $ "failed")) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-3636 (((-700 (-418 (-967 |#1|))) (-1285 $)) NIL) (((-700 (-418 (-967 |#1|)))) NIL)) (-3309 (((-418 (-967 |#1|)) $) NIL)) (-1454 (((-700 (-418 (-967 |#1|))) $ (-1285 $)) NIL) (((-700 (-418 (-967 |#1|))) $) NIL)) (-3952 (((-3 $ "failed") $) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-2368 (((-1190 (-967 (-418 (-967 |#1|))))) NIL (|has| (-418 (-967 |#1|)) (-373))) (((-1190 (-418 (-967 |#1|)))) 90 (|has| |#1| (-567)))) (-1810 (($ $ (-936)) NIL)) (-1731 (((-418 (-967 |#1|)) $) NIL)) (-2864 (((-1190 (-418 (-967 |#1|))) $) 88 (|has| (-418 (-967 |#1|)) (-567)))) (-2530 (((-418 (-967 |#1|)) (-1285 $)) NIL) (((-418 (-967 |#1|))) NIL)) (-3100 (((-1190 (-418 (-967 |#1|))) $) NIL)) (-3884 (((-112)) NIL)) (-3898 (($ (-1285 (-418 (-967 |#1|))) (-1285 $)) 114) (($ (-1285 (-418 (-967 |#1|)))) NIL)) (-4162 (((-3 $ "failed") $) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-4422 (((-936)) NIL)) (-3748 (((-112)) NIL)) (-3905 (($ $ (-936)) NIL)) (-2948 (((-112)) NIL)) (-3534 (((-112)) NIL)) (-2043 (((-112)) NIL)) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL)) (-1987 (((-3 $ "failed")) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-3400 (((-700 (-418 (-967 |#1|))) (-1285 $)) NIL) (((-700 (-418 (-967 |#1|)))) NIL)) (-1455 (((-418 (-967 |#1|)) $) NIL)) (-3475 (((-700 (-418 (-967 |#1|))) $ (-1285 $)) NIL) (((-700 (-418 (-967 |#1|))) $) NIL)) (-3284 (((-3 $ "failed") $) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-3726 (((-1190 (-967 (-418 (-967 |#1|))))) NIL (|has| (-418 (-967 |#1|)) (-373))) (((-1190 (-418 (-967 |#1|)))) 89 (|has| |#1| (-567)))) (-3643 (($ $ (-936)) NIL)) (-4339 (((-418 (-967 |#1|)) $) NIL)) (-1360 (((-1190 (-418 (-967 |#1|))) $) 85 (|has| (-418 (-967 |#1|)) (-567)))) (-4175 (((-418 (-967 |#1|)) (-1285 $)) NIL) (((-418 (-967 |#1|))) NIL)) (-3557 (((-1190 (-418 (-967 |#1|))) $) NIL)) (-1509 (((-112)) NIL)) (-4264 (((-1176) $) NIL)) (-3155 (((-112)) NIL)) (-3872 (((-112)) NIL)) (-4350 (((-112)) NIL)) (-3912 (((-1137) $) NIL)) (-1495 (((-418 (-967 |#1|)) $ $) 76 (|has| |#1| (-567)))) (-3666 (((-418 (-967 |#1|)) $) 100 (|has| |#1| (-567)))) (-2047 (((-418 (-967 |#1|)) $) 104 (|has| |#1| (-567)))) (-3622 (((-1190 (-418 (-967 |#1|))) $) 94 (|has| |#1| (-567)))) (-2634 (((-418 (-967 |#1|))) 77 (|has| |#1| (-567)))) (-2372 (((-418 (-967 |#1|)) $ $) 69 (|has| |#1| (-567)))) (-2114 (((-418 (-967 |#1|)) $) 99 (|has| |#1| (-567)))) (-1372 (((-418 (-967 |#1|)) $) 103 (|has| |#1| (-567)))) (-3395 (((-1190 (-418 (-967 |#1|))) $) 93 (|has| |#1| (-567)))) (-1619 (((-418 (-967 |#1|))) 73 (|has| |#1| (-567)))) (-3488 (($) 110) (($ (-1194)) 118) (($ (-1285 (-1194))) 117) (($ (-1285 $)) 105) (($ (-1194) (-1285 $)) 116) (($ (-1285 (-1194)) (-1285 $)) 115)) (-2279 (((-112)) NIL)) (-2065 (((-418 (-967 |#1|)) $ (-575)) NIL)) (-2209 (((-1285 (-418 (-967 |#1|))) $ (-1285 $)) 107) (((-700 (-418 (-967 |#1|))) (-1285 $) (-1285 $)) NIL) (((-1285 (-418 (-967 |#1|))) $) 43) (((-700 (-418 (-967 |#1|))) (-1285 $)) NIL)) (-2613 (((-1285 (-418 (-967 |#1|))) $) NIL) (($ (-1285 (-418 (-967 |#1|)))) 40)) (-3600 (((-655 (-967 (-418 (-967 |#1|)))) (-1285 $)) NIL) (((-655 (-967 (-418 (-967 |#1|))))) NIL) (((-655 (-967 |#1|)) (-1285 $)) 108 (|has| |#1| (-567))) (((-655 (-967 |#1|))) 109 (|has| |#1| (-567)))) (-4152 (($ $ $) NIL)) (-2122 (((-112)) NIL)) (-2882 (((-873) $) NIL) (($ (-1285 (-418 (-967 |#1|)))) NIL)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) 65)) (-2876 (((-655 (-1285 (-418 (-967 |#1|))))) NIL (|has| (-418 (-967 |#1|)) (-567)))) (-3458 (($ $ $ $) NIL)) (-3220 (((-112)) NIL)) (-1943 (($ (-700 (-418 (-967 |#1|))) $) NIL)) (-2337 (($ $ $) NIL)) (-3676 (((-112)) NIL)) (-3198 (((-112)) NIL)) (-3594 (((-112)) NIL)) (-1989 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) 106)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 61) (($ $ (-418 (-967 |#1|))) NIL) (($ (-418 (-967 |#1|)) $) NIL) (($ (-1159 |#2| (-418 (-967 |#1|))) $) NIL)))
-(((-464 |#1| |#2| |#3| |#4|) (-13 (-428 (-418 (-967 |#1|))) (-659 (-1159 |#2| (-418 (-967 |#1|)))) (-10 -8 (-15 -2882 ($ (-1285 (-418 (-967 |#1|))))) (-15 -3303 ((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed"))) (-15 -3488 ($)) (-15 -3488 ($ (-1194))) (-15 -3488 ($ (-1285 (-1194)))) (-15 -3488 ($ (-1285 $))) (-15 -3488 ($ (-1194) (-1285 $))) (-15 -3488 ($ (-1285 (-1194)) (-1285 $))) (IF (|has| |#1| (-567)) (PROGN (-15 -3726 ((-1190 (-418 (-967 |#1|))))) (-15 -3395 ((-1190 (-418 (-967 |#1|))) $)) (-15 -2114 ((-418 (-967 |#1|)) $)) (-15 -1372 ((-418 (-967 |#1|)) $)) (-15 -2368 ((-1190 (-418 (-967 |#1|))))) (-15 -3622 ((-1190 (-418 (-967 |#1|))) $)) (-15 -3666 ((-418 (-967 |#1|)) $)) (-15 -2047 ((-418 (-967 |#1|)) $)) (-15 -2372 ((-418 (-967 |#1|)) $ $)) (-15 -1619 ((-418 (-967 |#1|)))) (-15 -1495 ((-418 (-967 |#1|)) $ $)) (-15 -2634 ((-418 (-967 |#1|)))) (-15 -3600 ((-655 (-967 |#1|)) (-1285 $))) (-15 -3600 ((-655 (-967 |#1|))))) |%noBranch|))) (-174) (-936) (-655 (-1194)) (-1285 (-700 |#1|))) (T -464))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 *3)))) (-4 *3 (-174)) (-14 *6 (-1285 (-700 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))))) (-3303 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-464 *3 *4 *5 *6)) (|:| -2098 (-655 (-464 *3 *4 *5 *6))))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-464 *3 *4 *5 *6)) (|:| -2098 (-655 (-464 *3 *4 *5 *6))))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3488 (*1 *1) (-12 (-5 *1 (-464 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-936)) (-14 *4 (-655 (-1194))) (-14 *5 (-1285 (-700 *2))))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 *2)) (-14 *6 (-1285 (-700 *3))))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1285 (-1194))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1285 (-464 *3 *4 *5 *6))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936)) (-14 *6 (-655 *2)) (-14 *7 (-1285 (-700 *4))))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1285 (-1194))) (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936)) (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4))))) (-3726 (*1 *2) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2368 (*1 *2) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2372 (*1 *2 *1 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1619 (*1 *2) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-1495 (*1 *2 *1 *1) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-2634 (*1 *2) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *2 (-655 (-967 *4))) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-567)) (-4 *4 (-174)) (-14 *5 (-936)) (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4))))) (-3600 (*1 *2) (-12 (-5 *2 (-655 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(-13 (-428 (-418 (-967 |#1|))) (-659 (-1159 |#2| (-418 (-967 |#1|)))) (-10 -8 (-15 -2882 ($ (-1285 (-418 (-967 |#1|))))) (-15 -3303 ((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed"))) (-15 -3488 ($)) (-15 -3488 ($ (-1194))) (-15 -3488 ($ (-1285 (-1194)))) (-15 -3488 ($ (-1285 $))) (-15 -3488 ($ (-1194) (-1285 $))) (-15 -3488 ($ (-1285 (-1194)) (-1285 $))) (IF (|has| |#1| (-567)) (PROGN (-15 -3726 ((-1190 (-418 (-967 |#1|))))) (-15 -3395 ((-1190 (-418 (-967 |#1|))) $)) (-15 -2114 ((-418 (-967 |#1|)) $)) (-15 -1372 ((-418 (-967 |#1|)) $)) (-15 -2368 ((-1190 (-418 (-967 |#1|))))) (-15 -3622 ((-1190 (-418 (-967 |#1|))) $)) (-15 -3666 ((-418 (-967 |#1|)) $)) (-15 -2047 ((-418 (-967 |#1|)) $)) (-15 -2372 ((-418 (-967 |#1|)) $ $)) (-15 -1619 ((-418 (-967 |#1|)))) (-15 -1495 ((-418 (-967 |#1|)) $ $)) (-15 -2634 ((-418 (-967 |#1|)))) (-15 -3600 ((-655 (-967 |#1|)) (-1285 $))) (-15 -3600 ((-655 (-967 |#1|))))) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 18)) (-1606 (((-655 (-875 |#1|)) $) 87)) (-3462 (((-1190 $) $ (-875 |#1|)) 52) (((-1190 |#2|) $) 138)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-2456 (($ $) NIL (|has| |#2| (-567)))) (-3978 (((-112) $) NIL (|has| |#2| (-567)))) (-3508 (((-782) $) 27) (((-782) $ (-655 (-875 |#1|))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3312 (($ $) NIL (|has| |#2| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#2| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) 50) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4400 ((|#2| $) 48) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4171 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-3043 (($ $ (-655 (-575))) 93)) (-4406 (($ $) 80)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#2| (-924)))) (-4384 (($ $ |#2| |#3| $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) 65)) (-2430 (($ (-1190 |#2|) (-875 |#1|)) 143) (($ (-1190 $) (-875 |#1|)) 58)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) 68)) (-2414 (($ |#2| |#3|) 35) (($ $ (-875 |#1|) (-782)) 37) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-875 |#1|)) NIL)) (-3143 ((|#3| $) NIL) (((-782) $ (-875 |#1|)) 56) (((-655 (-782)) $ (-655 (-875 |#1|))) 63)) (-1946 (($ (-1 |#3| |#3|) $) NIL)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2187 (((-3 (-875 |#1|) "failed") $) 45)) (-4370 (($ $) NIL)) (-4383 ((|#2| $) 47)) (-3886 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -1658 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) 46)) (-4353 ((|#2| $) 136)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) 149 (|has| |#2| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) 100) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) 106) (($ $ (-875 |#1|) $) 98) (($ $ (-655 (-875 |#1|)) (-655 $)) 124)) (-2801 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2382 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) 59)) (-1753 ((|#3| $) 79) (((-782) $ (-875 |#1|)) 42) (((-655 (-782)) $ (-655 (-875 |#1|))) 62)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-3696 ((|#2| $) 145 (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2882 (((-873) $) 173) (($ (-575)) NIL) (($ |#2|) 99) (($ (-875 |#1|)) 39) (($ (-418 (-575))) NIL (-3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ |#3|) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1989 (($) 22 T CONST)) (-2005 (($) 31 T CONST)) (-3428 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) 76 (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 131)) (** (($ $ (-936)) NIL) (($ $ (-782)) 129)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 36) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
-(((-465 |#1| |#2| |#3|) (-13 (-964 |#2| |#3| (-875 |#1|)) (-10 -8 (-15 -3043 ($ $ (-655 (-575)))))) (-655 (-1194)) (-1066) (-243 (-2869 |#1|) (-782))) (T -465))
-((-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-14 *3 (-655 (-1194))) (-5 *1 (-465 *3 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-243 (-2869 *3) (-782))))))
-(-13 (-964 |#2| |#3| (-875 |#1|)) (-10 -8 (-15 -3043 ($ $ (-655 (-575))))))
-((-2351 (((-112) |#1| (-655 |#2|)) 91)) (-3753 (((-3 (-1285 (-655 |#2|)) "failed") (-782) |#1| (-655 |#2|)) 100)) (-2038 (((-3 (-655 |#2|) "failed") |#2| |#1| (-1285 (-655 |#2|))) 102)) (-1745 ((|#2| |#2| |#1|) 35)) (-2156 (((-782) |#2| (-655 |#2|)) 26)))
-(((-466 |#1| |#2|) (-10 -7 (-15 -1745 (|#2| |#2| |#1|)) (-15 -2156 ((-782) |#2| (-655 |#2|))) (-15 -3753 ((-3 (-1285 (-655 |#2|)) "failed") (-782) |#1| (-655 |#2|))) (-15 -2038 ((-3 (-655 |#2|) "failed") |#2| |#1| (-1285 (-655 |#2|)))) (-15 -2351 ((-112) |#1| (-655 |#2|)))) (-316) (-1261 |#1|)) (T -466))
-((-2351 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *5)) (-4 *5 (-1261 *3)) (-4 *3 (-316)) (-5 *2 (-112)) (-5 *1 (-466 *3 *5)))) (-2038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1285 (-655 *3))) (-4 *4 (-316)) (-5 *2 (-655 *3)) (-5 *1 (-466 *4 *3)) (-4 *3 (-1261 *4)))) (-3753 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-782)) (-4 *4 (-316)) (-4 *6 (-1261 *4)) (-5 *2 (-1285 (-655 *6))) (-5 *1 (-466 *4 *6)) (-5 *5 (-655 *6)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-316)) (-5 *2 (-782)) (-5 *1 (-466 *5 *3)))) (-1745 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1261 *3)))))
-(-10 -7 (-15 -1745 (|#2| |#2| |#1|)) (-15 -2156 ((-782) |#2| (-655 |#2|))) (-15 -3753 ((-3 (-1285 (-655 |#2|)) "failed") (-782) |#1| (-655 |#2|))) (-15 -2038 ((-3 (-655 |#2|) "failed") |#2| |#1| (-1285 (-655 |#2|)))) (-15 -2351 ((-112) |#1| (-655 |#2|))))
-((-2347 (((-429 |#5|) |#5|) 24)))
-(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2347 ((-429 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194))))) (-804) (-567) (-567) (-964 |#4| |#2| |#1|)) (T -467))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *5 (-804)) (-4 *7 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-467 *4 *5 *6 *7 *3)) (-4 *6 (-567)) (-4 *3 (-964 *7 *5 *4)))))
-(-10 -7 (-15 -2347 ((-429 |#5|) |#5|)))
-((-1980 ((|#3|) 38)) (-3354 (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 34)))
-(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3354 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -1980 (|#3|))) (-804) (-861) (-924) (-964 |#3| |#1| |#2|)) (T -468))
-((-1980 (*1 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924)) (-5 *1 (-468 *3 *4 *2 *5)) (-4 *5 (-964 *2 *3 *4)))) (-3354 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-924)) (-5 *1 (-468 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3354 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -1980 (|#3|)))
-((-2347 (((-429 (-1190 |#1|)) (-1190 |#1|)) 43)))
-(((-469 |#1|) (-10 -7 (-15 -2347 ((-429 (-1190 |#1|)) (-1190 |#1|)))) (-316)) (T -469))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-316)) (-5 *2 (-429 (-1190 *4))) (-5 *1 (-469 *4)) (-5 *3 (-1190 *4)))))
-(-10 -7 (-15 -2347 ((-429 (-1190 |#1|)) (-1190 |#1|))))
-((-4290 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-782))) 44) (((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-782))) 43) (((-52) |#2| (-1194) (-303 |#2|)) 36) (((-52) (-1 |#2| (-575)) (-303 |#2|)) 29)) (-1873 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 88) (((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 87) (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575))) 86) (((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575))) 85) (((-52) |#2| (-1194) (-303 |#2|)) 80) (((-52) (-1 |#2| (-575)) (-303 |#2|)) 79)) (-4311 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 74) (((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))) 72)) (-4301 (((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575))) 51) (((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575))) 50)))
-(((-470 |#1| |#2|) (-10 -7 (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-782)))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-782)))) (-15 -4301 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -4301 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -4311 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -4311 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575))))) (-13 (-567) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -470))
-((-1873 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575)))) (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8))) (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *8 *3)))) (-1873 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8)) (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575))) (-4 *8 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *8)))) (-1873 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *3)))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575))) (-4 *7 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *7)))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *3)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6)) (-4 *6 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *5 *6)))) (-4311 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575)))) (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8))) (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *8 *3)))) (-4311 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8)) (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575))) (-4 *8 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *8)))) (-4301 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *3)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575))) (-4 *7 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *7)))) (-4290 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-782))) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *7 *3)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-782))) (-4 *7 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *7)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *6 *3)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6)) (-4 *6 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52)) (-5 *1 (-470 *5 *6)))))
-(-10 -7 (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -4290 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-782)))) (-15 -4290 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-782)))) (-15 -4301 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -4301 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -4311 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -4311 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|))) (-15 -1873 ((-52) (-1 |#2| (-575)) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-575)))) (-15 -1873 ((-52) (-1 |#2| (-418 (-575))) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))) (-15 -1873 ((-52) |#2| (-1194) (-303 |#2|) (-1252 (-418 (-575))) (-418 (-575)))))
-((-1745 ((|#2| |#2| |#1|) 15)) (-1839 (((-655 |#2|) |#2| (-655 |#2|) |#1| (-936)) 82)) (-4192 (((-2 (|:| |plist| (-655 |#2|)) (|:| |modulo| |#1|)) |#2| (-655 |#2|) |#1| (-936)) 72)))
-(((-471 |#1| |#2|) (-10 -7 (-15 -4192 ((-2 (|:| |plist| (-655 |#2|)) (|:| |modulo| |#1|)) |#2| (-655 |#2|) |#1| (-936))) (-15 -1839 ((-655 |#2|) |#2| (-655 |#2|) |#1| (-936))) (-15 -1745 (|#2| |#2| |#1|))) (-316) (-1261 |#1|)) (T -471))
-((-1745 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-5 *1 (-471 *3 *2)) (-4 *2 (-1261 *3)))) (-1839 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-655 *3)) (-5 *5 (-936)) (-4 *3 (-1261 *4)) (-4 *4 (-316)) (-5 *1 (-471 *4 *3)))) (-4192 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-936)) (-4 *5 (-316)) (-4 *3 (-1261 *5)) (-5 *2 (-2 (|:| |plist| (-655 *3)) (|:| |modulo| *5))) (-5 *1 (-471 *5 *3)) (-5 *4 (-655 *3)))))
-(-10 -7 (-15 -4192 ((-2 (|:| |plist| (-655 |#2|)) (|:| |modulo| |#1|)) |#2| (-655 |#2|) |#1| (-936))) (-15 -1839 ((-655 |#2|) |#2| (-655 |#2|) |#1| (-936))) (-15 -1745 (|#2| |#2| |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 28)) (-4126 (($ |#3|) 25)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4406 (($ $) 32)) (-1686 (($ |#2| |#4| $) 33)) (-2414 (($ |#2| (-724 |#3| |#4| |#5|)) 24)) (-4370 (((-724 |#3| |#4| |#5|) $) 15)) (-2442 ((|#3| $) 19)) (-1994 ((|#4| $) 17)) (-4383 ((|#2| $) 29)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-2447 (($ |#2| |#3| |#4|) 26)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 36 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 34)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-472 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-728 |#6|) (-728 |#2|) (-10 -8 (-15 -4383 (|#2| $)) (-15 -4370 ((-724 |#3| |#4| |#5|) $)) (-15 -1994 (|#4| $)) (-15 -2442 (|#3| $)) (-15 -4406 ($ $)) (-15 -2414 ($ |#2| (-724 |#3| |#4| |#5|))) (-15 -4126 ($ |#3|)) (-15 -2447 ($ |#2| |#3| |#4|)) (-15 -1686 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-655 (-1194)) (-174) (-861) (-243 (-2869 |#1|) (-782)) (-1 (-112) (-2 (|:| -4317 |#3|) (|:| -1658 |#4|)) (-2 (|:| -4317 |#3|) (|:| -1658 |#4|))) (-964 |#2| |#4| (-875 |#1|))) (T -472))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *6 (-243 (-2869 *3) (-782))) (-14 *7 (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *6)) (-2 (|:| -4317 *5) (|:| -1658 *6)))) (-5 *1 (-472 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-964 *4 *6 (-875 *3))))) (-4383 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *5 (-243 (-2869 *3) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *4) (|:| -1658 *5)) (-2 (|:| -4317 *4) (|:| -1658 *5)))) (-4 *2 (-174)) (-5 *1 (-472 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-964 *2 *5 (-875 *3))))) (-4370 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *6 (-243 (-2869 *3) (-782))) (-14 *7 (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *6)) (-2 (|:| -4317 *5) (|:| -1658 *6)))) (-5 *2 (-724 *5 *6 *7)) (-5 *1 (-472 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-964 *4 *6 (-875 *3))))) (-1994 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *2)) (-2 (|:| -4317 *5) (|:| -1658 *2)))) (-4 *2 (-243 (-2869 *3) (-782))) (-5 *1 (-472 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-964 *4 *2 (-875 *3))))) (-2442 (*1 *2 *1) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *5 (-243 (-2869 *3) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *5)) (-2 (|:| -4317 *2) (|:| -1658 *5)))) (-4 *2 (-861)) (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) (-4 *7 (-964 *4 *5 (-875 *3))))) (-4406 (*1 *1 *1) (-12 (-14 *2 (-655 (-1194))) (-4 *3 (-174)) (-4 *5 (-243 (-2869 *2) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *4) (|:| -1658 *5)) (-2 (|:| -4317 *4) (|:| -1658 *5)))) (-5 *1 (-472 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-964 *3 *5 (-875 *2))))) (-2414 (*1 *1 *2 *3) (-12 (-5 *3 (-724 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-243 (-2869 *4) (-782))) (-14 *7 (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *6)) (-2 (|:| -4317 *5) (|:| -1658 *6)))) (-14 *4 (-655 (-1194))) (-4 *2 (-174)) (-5 *1 (-472 *4 *2 *5 *6 *7 *8)) (-4 *8 (-964 *2 *6 (-875 *4))))) (-4126 (*1 *1 *2) (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174)) (-4 *5 (-243 (-2869 *3) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *5)) (-2 (|:| -4317 *2) (|:| -1658 *5)))) (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-964 *4 *5 (-875 *3))))) (-2447 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-655 (-1194))) (-4 *2 (-174)) (-4 *4 (-243 (-2869 *5) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *3) (|:| -1658 *4)) (-2 (|:| -4317 *3) (|:| -1658 *4)))) (-5 *1 (-472 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-964 *2 *4 (-875 *5))))) (-1686 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-655 (-1194))) (-4 *2 (-174)) (-4 *3 (-243 (-2869 *4) (-782))) (-14 *6 (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *3)) (-2 (|:| -4317 *5) (|:| -1658 *3)))) (-5 *1 (-472 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-964 *2 *3 (-875 *4))))))
-(-13 (-728 |#6|) (-728 |#2|) (-10 -8 (-15 -4383 (|#2| $)) (-15 -4370 ((-724 |#3| |#4| |#5|) $)) (-15 -1994 (|#4| $)) (-15 -2442 (|#3| $)) (-15 -4406 ($ $)) (-15 -2414 ($ |#2| (-724 |#3| |#4| |#5|))) (-15 -4126 ($ |#3|)) (-15 -2447 ($ |#2| |#3| |#4|)) (-15 -1686 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2498 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-473 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2498 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-804) (-861) (-567) (-964 |#3| |#1| |#2|) (-13 (-1055 (-418 (-575))) (-373) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -473))
-((-2498 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-804)) (-4 *6 (-567)) (-4 *7 (-964 *6 *5 *3)) (-5 *1 (-473 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1055 (-418 (-575))) (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))))
-(-10 -7 (-15 -2498 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2859 (((-112) $ $) NIL)) (-1606 (((-655 |#3|) $) 41)) (-4419 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-567)))) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3983 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-1756 (((-112) $) NIL (|has| |#1| (-567)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4415 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1759 (((-112) $) NIL (|has| |#1| (-567)))) (-2762 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 49)) (-4400 (($ (-655 |#4|)) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3631 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460)))) (-3999 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-3757 ((|#3| $) 47)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#4|) $) 14 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2844 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 21)) (-3717 (((-655 |#3|) $) NIL)) (-1789 (((-112) |#3| $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3912 (((-1137) $) NIL)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2718 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 39)) (-1393 (($) 17)) (-3922 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) 16)) (-2613 (((-547) $) NIL (|has| |#4| (-625 (-547)))) (($ (-655 |#4|)) 51)) (-2893 (($ (-655 |#4|)) 13)) (-3273 (($ $ |#3|) NIL)) (-2078 (($ $ |#3|) NIL)) (-4049 (($ $ |#3|) NIL)) (-2882 (((-873) $) 38) (((-655 |#4|) $) 50)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 30)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-474 |#1| |#2| |#3| |#4|) (-13 (-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2613 ($ (-655 |#4|))) (-6 -4460) (-6 -4461))) (-1066) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -474))
-((-2613 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-474 *3 *4 *5 *6)))))
-(-13 (-993 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2613 ($ (-655 |#4|))) (-6 -4460) (-6 -4461)))
-((-1989 (($) 11)) (-2005 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-475 |#1| |#2| |#3|) (-10 -8 (-15 -2005 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1989 (|#1|))) (-476 |#2| |#3|) (-174) (-23)) (T -475))
-NIL
-(-10 -8 (-15 -2005 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1989 (|#1|)))
-((-2859 (((-112) $ $) 7)) (-2443 (((-3 |#1| "failed") $) 27)) (-4400 ((|#1| $) 28)) (-3431 (($ $ $) 24)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-1753 ((|#2| $) 20)) (-2882 (((-873) $) 12) (($ |#1|) 26)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 25 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 16) (($ $ $) 14)) (-4015 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-476 |#1| |#2|) (-141) (-174) (-23)) (T -476))
-((-2005 (*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3431 (*1 *1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-481 |t#1| |t#2|) (-1055 |t#1|) (-10 -8 (-15 (-2005) ($) -3736) (-15 -3431 ($ $ $))))
-(((-102) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-481 |#1| |#2|) . T) ((-1055 |#1|) . T) ((-1117) . T))
-((-3125 (((-1285 (-1285 (-575))) (-1285 (-1285 (-575))) (-936)) 26)) (-2668 (((-1285 (-1285 (-575))) (-936)) 21)))
-(((-477) (-10 -7 (-15 -3125 ((-1285 (-1285 (-575))) (-1285 (-1285 (-575))) (-936))) (-15 -2668 ((-1285 (-1285 (-575))) (-936))))) (T -477))
-((-2668 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 (-575)))) (-5 *1 (-477)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 (-1285 (-575)))) (-5 *3 (-936)) (-5 *1 (-477)))))
-(-10 -7 (-15 -3125 ((-1285 (-1285 (-575))) (-1285 (-1285 (-575))) (-936))) (-15 -2668 ((-1285 (-1285 (-575))) (-936))))
-((-2809 (((-575) (-575)) 32) (((-575)) 24)) (-1418 (((-575) (-575)) 28) (((-575)) 20)) (-2978 (((-575) (-575)) 30) (((-575)) 22)) (-4184 (((-112) (-112)) 14) (((-112)) 12)) (-2761 (((-112) (-112)) 13) (((-112)) 11)) (-3181 (((-112) (-112)) 26) (((-112)) 17)))
-(((-478) (-10 -7 (-15 -2761 ((-112))) (-15 -4184 ((-112))) (-15 -2761 ((-112) (-112))) (-15 -4184 ((-112) (-112))) (-15 -3181 ((-112))) (-15 -2978 ((-575))) (-15 -1418 ((-575))) (-15 -2809 ((-575))) (-15 -3181 ((-112) (-112))) (-15 -2978 ((-575) (-575))) (-15 -1418 ((-575) (-575))) (-15 -2809 ((-575) (-575))))) (T -478))
-((-2809 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-2978 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-2809 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-1418 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-2978 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478)))) (-3181 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-4184 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))) (-2761 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))))
-(-10 -7 (-15 -2761 ((-112))) (-15 -4184 ((-112))) (-15 -2761 ((-112) (-112))) (-15 -4184 ((-112) (-112))) (-15 -3181 ((-112))) (-15 -2978 ((-575))) (-15 -1418 ((-575))) (-15 -2809 ((-575))) (-15 -3181 ((-112) (-112))) (-15 -2978 ((-575) (-575))) (-15 -1418 ((-575) (-575))) (-15 -2809 ((-575) (-575))))
-((-2859 (((-112) $ $) NIL)) (-2490 (((-655 (-389)) $) 34) (((-655 (-389)) $ (-655 (-389))) 146)) (-3072 (((-655 (-1111 (-389))) $) 16) (((-655 (-1111 (-389))) $ (-655 (-1111 (-389)))) 142)) (-4425 (((-655 (-655 (-958 (-227)))) (-655 (-655 (-958 (-227)))) (-655 (-885))) 58)) (-3724 (((-655 (-655 (-958 (-227)))) $) 137)) (-1838 (((-1290) $ (-958 (-227)) (-885)) 163)) (-3164 (($ $) 136) (($ (-655 (-655 (-958 (-227))))) 149) (($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936))) 148) (($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)) (-655 (-269))) 150)) (-4264 (((-1176) $) NIL)) (-4169 (((-575) $) 110)) (-3912 (((-1137) $) NIL)) (-2742 (($) 147)) (-4010 (((-655 (-227)) (-655 (-655 (-958 (-227))))) 89)) (-4217 (((-1290) $ (-655 (-958 (-227))) (-885) (-885) (-936)) 155) (((-1290) $ (-958 (-227))) 157) (((-1290) $ (-958 (-227)) (-885) (-885) (-936)) 156)) (-2882 (((-873) $) 169) (($ (-655 (-655 (-958 (-227))))) 164)) (-3685 (((-112) $ $) NIL)) (-2246 (((-1290) $ (-958 (-227))) 162)) (-3913 (((-112) $ $) NIL)))
-(((-479) (-13 (-1117) (-10 -8 (-15 -2742 ($)) (-15 -3164 ($ $)) (-15 -3164 ($ (-655 (-655 (-958 (-227)))))) (-15 -3164 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)))) (-15 -3164 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)) (-655 (-269)))) (-15 -3724 ((-655 (-655 (-958 (-227)))) $)) (-15 -4169 ((-575) $)) (-15 -3072 ((-655 (-1111 (-389))) $)) (-15 -3072 ((-655 (-1111 (-389))) $ (-655 (-1111 (-389))))) (-15 -2490 ((-655 (-389)) $)) (-15 -2490 ((-655 (-389)) $ (-655 (-389)))) (-15 -4217 ((-1290) $ (-655 (-958 (-227))) (-885) (-885) (-936))) (-15 -4217 ((-1290) $ (-958 (-227)))) (-15 -4217 ((-1290) $ (-958 (-227)) (-885) (-885) (-936))) (-15 -2246 ((-1290) $ (-958 (-227)))) (-15 -1838 ((-1290) $ (-958 (-227)) (-885))) (-15 -2882 ($ (-655 (-655 (-958 (-227)))))) (-15 -2882 ((-873) $)) (-15 -4425 ((-655 (-655 (-958 (-227)))) (-655 (-655 (-958 (-227)))) (-655 (-885)))) (-15 -4010 ((-655 (-227)) (-655 (-655 (-958 (-227))))))))) (T -479))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-479)))) (-2742 (*1 *1) (-5 *1 (-479))) (-3164 (*1 *1 *1) (-5 *1 (-479))) (-3164 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) (-3164 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) (-5 *4 (-655 (-936))) (-5 *1 (-479)))) (-3164 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) (-5 *4 (-655 (-936))) (-5 *5 (-655 (-269))) (-5 *1 (-479)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-479)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479)))) (-3072 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479)))) (-2490 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479)))) (-4217 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *2 (-1290)) (-5 *1 (-479)))) (-4217 (*1 *2 *1 *3) (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479)))) (-4217 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *2 (-1290)) (-5 *1 (-479)))) (-2246 (*1 *2 *1 *3) (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479)))) (-1838 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-479)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))) (-4425 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885))) (-5 *1 (-479)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-655 (-227))) (-5 *1 (-479)))))
-(-13 (-1117) (-10 -8 (-15 -2742 ($)) (-15 -3164 ($ $)) (-15 -3164 ($ (-655 (-655 (-958 (-227)))))) (-15 -3164 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)))) (-15 -3164 ($ (-655 (-655 (-958 (-227)))) (-655 (-885)) (-655 (-885)) (-655 (-936)) (-655 (-269)))) (-15 -3724 ((-655 (-655 (-958 (-227)))) $)) (-15 -4169 ((-575) $)) (-15 -3072 ((-655 (-1111 (-389))) $)) (-15 -3072 ((-655 (-1111 (-389))) $ (-655 (-1111 (-389))))) (-15 -2490 ((-655 (-389)) $)) (-15 -2490 ((-655 (-389)) $ (-655 (-389)))) (-15 -4217 ((-1290) $ (-655 (-958 (-227))) (-885) (-885) (-936))) (-15 -4217 ((-1290) $ (-958 (-227)))) (-15 -4217 ((-1290) $ (-958 (-227)) (-885) (-885) (-936))) (-15 -2246 ((-1290) $ (-958 (-227)))) (-15 -1838 ((-1290) $ (-958 (-227)) (-885))) (-15 -2882 ($ (-655 (-655 (-958 (-227)))))) (-15 -2882 ((-873) $)) (-15 -4425 ((-655 (-655 (-958 (-227)))) (-655 (-655 (-958 (-227)))) (-655 (-885)))) (-15 -4010 ((-655 (-227)) (-655 (-655 (-958 (-227))))))))
-((-4027 (($ $) NIL) (($ $ $) 11)))
-(((-480 |#1| |#2| |#3|) (-10 -8 (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|))) (-481 |#2| |#3|) (-174) (-23)) (T -480))
-NIL
-(-10 -8 (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-1753 ((|#2| $) 20)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 16) (($ $ $) 14)) (-4015 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-481 |#1| |#2|) (-141) (-174) (-23)) (T -481))
-((-1753 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-1989 (*1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4027 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4015 (*1 *1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4027 (*1 *1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
-(-13 (-1117) (-10 -8 (-15 -1753 (|t#2| $)) (-15 (-1989) ($) -3736) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4027 ($ $)) (-15 -4015 ($ $ $)) (-15 -4027 ($ $ $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-3177 (((-3 (-655 (-492 |#1| |#2|)) "failed") (-655 (-492 |#1| |#2|)) (-655 (-875 |#1|))) 134)) (-3931 (((-655 (-655 (-252 |#1| |#2|))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))) 131)) (-4134 (((-2 (|:| |dpolys| (-655 (-252 |#1| |#2|))) (|:| |coords| (-655 (-575)))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))) 86)))
-(((-482 |#1| |#2| |#3|) (-10 -7 (-15 -3931 ((-655 (-655 (-252 |#1| |#2|))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -3177 ((-3 (-655 (-492 |#1| |#2|)) "failed") (-655 (-492 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -4134 ((-2 (|:| |dpolys| (-655 (-252 |#1| |#2|))) (|:| |coords| (-655 (-575)))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|))))) (-655 (-1194)) (-463) (-463)) (T -482))
-((-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-2 (|:| |dpolys| (-655 (-252 *5 *6))) (|:| |coords| (-655 (-575))))) (-5 *1 (-482 *5 *6 *7)) (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463)))) (-3177 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-655 (-875 *4))) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-482 *4 *5 *6)) (-4 *6 (-463)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-655 (-655 (-252 *5 *6)))) (-5 *1 (-482 *5 *6 *7)) (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463)))))
-(-10 -7 (-15 -3931 ((-655 (-655 (-252 |#1| |#2|))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -3177 ((-3 (-655 (-492 |#1| |#2|)) "failed") (-655 (-492 |#1| |#2|)) (-655 (-875 |#1|)))) (-15 -4134 ((-2 (|:| |dpolys| (-655 (-252 |#1| |#2|))) (|:| |coords| (-655 (-575)))) (-655 (-252 |#1| |#2|)) (-655 (-875 |#1|)))))
-((-4162 (((-3 $ "failed") $) 11)) (-3516 (($ $ $) 23)) (-4152 (($ $ $) 24)) (-4038 (($ $ $) 9)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 22)))
-(((-483 |#1|) (-10 -8 (-15 -4152 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936)))) (-484)) (T -483))
-NIL
-(-10 -8 (-15 -4152 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-3261 (($) 19 T CONST)) (-4162 (((-3 $ "failed") $) 16)) (-3900 (((-112) $) 18)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 25)) (-3912 (((-1137) $) 11)) (-3516 (($ $ $) 22)) (-4152 (($ $ $) 21)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2005 (($) 20 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 24)) (** (($ $ (-936)) 14) (($ $ (-782)) 17) (($ $ (-575)) 23)) (* (($ $ $) 15)))
-(((-484) (-141)) (T -484))
-((-4332 (*1 *1 *1) (-4 *1 (-484))) (-4038 (*1 *1 *1 *1) (-4 *1 (-484))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-484)) (-5 *2 (-575)))) (-3516 (*1 *1 *1 *1) (-4 *1 (-484))) (-4152 (*1 *1 *1 *1) (-4 *1 (-484))))
-(-13 (-737) (-10 -8 (-15 -4332 ($ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ (-575))) (-6 -4457) (-15 -3516 ($ $ $)) (-15 -4152 ($ $ $))))
-(((-102) . T) ((-624 (-873)) . T) ((-737) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 18)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) NIL)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-418 (-575))) NIL) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) 25)) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4388 (($ $) 29 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 35 (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 30 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) NIL)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) 28 (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) 16)) (-1753 (((-418 (-575)) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1281 |#2|)) NIL) (($ (-1270 |#1| |#2| |#3|)) 9) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 21)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) 27)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-485 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1281 |#2|))) (-15 -2882 ($ (-1270 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -485))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-485 *3 *4 *5)))) (-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1266 |#1|) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1281 |#2|))) (-15 -2882 ($ (-1270 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#2| $ |#1| |#2|) 18)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) 19)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 16)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1995 (((-655 |#1|) $) NIL)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1653 (((-655 |#1|) $) NIL)) (-1801 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-486 |#1| |#2| |#3| |#4|) (-1211 |#1| |#2|) (-1117) (-1117) (-1211 |#1| |#2|) |#2|) (T -486))
-NIL
-(-1211 |#1| |#2|)
-((-2859 (((-112) $ $) NIL)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) NIL)) (-4014 (((-655 $) (-655 |#4|)) NIL)) (-1606 (((-655 |#3|) $) NIL)) (-4419 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1479 ((|#4| |#4| $) NIL)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3983 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3261 (($) NIL T CONST)) (-1756 (((-112) $) 29 (|has| |#1| (-567)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4415 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1759 (((-112) $) NIL (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2762 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4400 (($ (-655 |#4|)) NIL)) (-1969 (((-3 $ "failed") $) 45)) (-3355 ((|#4| |#4| $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3631 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3305 ((|#4| |#4| $) NIL)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) NIL)) (-3999 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3757 ((|#3| $) 38)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#4|) $) 19 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2844 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 23)) (-3717 (((-655 |#3|) $) NIL)) (-1789 (((-112) |#3| $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3651 (((-3 |#4| "failed") $) 42)) (-4212 (((-655 |#4|) $) NIL)) (-1992 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4068 ((|#4| |#4| $) NIL)) (-2057 (((-112) $ $) NIL)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1986 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-3 |#4| "failed") $) 40)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3629 (((-3 $ "failed") $ |#4|) 58)) (-1985 (($ $ |#4|) NIL)) (-2718 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 17)) (-1393 (($) 14)) (-1753 (((-782) $) NIL)) (-3922 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) 13)) (-2613 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 22)) (-3273 (($ $ |#3|) 52)) (-2078 (($ $ |#3|) 54)) (-3663 (($ $) NIL)) (-4049 (($ $ |#3|) NIL)) (-2882 (((-873) $) 35) (((-655 |#4|) $) 46)) (-2936 (((-782) $) NIL (|has| |#3| (-378)))) (-3685 (((-112) $ $) NIL)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-4121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) NIL)) (-4060 (((-112) |#3| $) NIL)) (-3913 (((-112) $ $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-487 |#1| |#2| |#3| |#4|) (-1228 |#1| |#2| |#3| |#4|) (-567) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -487))
-NIL
-(-1228 |#1| |#2| |#3| |#4|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL)) (-4400 (((-575) $) NIL) (((-418 (-575)) $) NIL)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-1632 (($) 17)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2613 (((-389) $) 21) (((-227) $) 24) (((-418 (-1190 (-575))) $) 18) (((-547) $) 53)) (-2882 (((-873) $) 51) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (((-227) $) 23) (((-389) $) 20)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 37 T CONST)) (-2005 (($) 8 T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-488) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))) (-1039) (-624 (-227)) (-624 (-389)) (-625 (-418 (-1190 (-575)))) (-625 (-547)) (-10 -8 (-15 -1632 ($))))) (T -488))
-((-1632 (*1 *1) (-5 *1 (-488))))
-(-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))) (-1039) (-624 (-227)) (-624 (-389)) (-625 (-418 (-1190 (-575)))) (-625 (-547)) (-10 -8 (-15 -1632 ($))))
-((-2859 (((-112) $ $) NIL)) (-3890 (((-1152) $) 11)) (-3878 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-489) (-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))) (T -489))
-((-3878 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489)))))
-(-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#2| $ |#1| |#2|) 16)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) 20)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 18)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1995 (((-655 |#1|) $) 13)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1653 (((-655 |#1|) $) NIL)) (-1801 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 19)) (-2065 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 11 (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2869 (((-782) $) 15 (|has| $ (-6 -4460)))))
-(((-490 |#1| |#2| |#3|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117) (-1176)) (T -490))
-NIL
-(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460)))
-((-2651 (((-575) (-575) (-575)) 19)) (-2547 (((-112) (-575) (-575) (-575) (-575)) 28)) (-3901 (((-1285 (-655 (-575))) (-782) (-782)) 41)))
-(((-491) (-10 -7 (-15 -2651 ((-575) (-575) (-575))) (-15 -2547 ((-112) (-575) (-575) (-575) (-575))) (-15 -3901 ((-1285 (-655 (-575))) (-782) (-782))))) (T -491))
-((-3901 (*1 *2 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1285 (-655 (-575)))) (-5 *1 (-491)))) (-2547 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-491)))) (-2651 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-491)))))
-(-10 -7 (-15 -2651 ((-575) (-575) (-575))) (-15 -2547 ((-112) (-575) (-575) (-575) (-575))) (-15 -3901 ((-1285 (-655 (-575))) (-782) (-782))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-875 |#1|)) $) NIL)) (-3462 (((-1190 $) $ (-875 |#1|)) NIL) (((-1190 |#2|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-2456 (($ $) NIL (|has| |#2| (-567)))) (-3978 (((-112) $) NIL (|has| |#2| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-875 |#1|))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3312 (($ $) NIL (|has| |#2| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#2| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4171 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-3043 (($ $ (-655 (-575))) NIL)) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#2| (-924)))) (-4384 (($ $ |#2| (-493 (-2869 |#1|) (-782)) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#2|) (-875 |#1|)) NIL) (($ (-1190 $) (-875 |#1|)) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#2| (-493 (-2869 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-875 |#1|)) NIL)) (-3143 (((-493 (-2869 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-1946 (($ (-1 (-493 (-2869 |#1|) (-782)) (-493 (-2869 |#1|) (-782))) $) NIL)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2187 (((-3 (-875 |#1|) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -1658 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) NIL) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) NIL) (($ $ (-875 |#1|) $) NIL) (($ $ (-655 (-875 |#1|)) (-655 $)) NIL)) (-2801 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2382 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-1753 (((-493 (-2869 |#1|) (-782)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-3696 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-875 |#1|)) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-493 (-2869 |#1|) (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-492 |#1| |#2|) (-13 (-964 |#2| (-493 (-2869 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -3043 ($ $ (-655 (-575)))))) (-655 (-1194)) (-1066)) (T -492))
-((-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-492 *3 *4)) (-14 *3 (-655 (-1194))) (-4 *4 (-1066)))))
-(-13 (-964 |#2| (-493 (-2869 |#1|) (-782)) (-875 |#1|)) (-10 -8 (-15 -3043 ($ $ (-655 (-575))))))
-((-2859 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-2045 (((-112) $) NIL (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4126 (($ (-936)) NIL (|has| |#2| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3081 (($ $ $) NIL (|has| |#2| (-804)))) (-1708 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#2| (-378)))) (-3052 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1117)))) (-4400 (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) NIL (|has| |#2| (-1117)))) (-2862 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) NIL (|has| |#2| (-1066)))) (-4162 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-2073 (($) NIL (|has| |#2| (-378)))) (-2857 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ (-575)) 11)) (-3999 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL (|has| |#2| (-1066)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#2| (-861)))) (-4252 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#2| (-861)))) (-2844 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#2| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#2| (-1117)))) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#2| (-378)))) (-3912 (((-1137) $) NIL (|has| |#2| (-1117)))) (-1955 ((|#2| $) NIL (|has| (-575) (-861)))) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) NIL)) (-2988 ((|#2| $ $) NIL (|has| |#2| (-1066)))) (-1975 (($ (-1285 |#2|)) NIL)) (-1605 (((-135)) NIL (|has| |#2| (-373)))) (-2382 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3922 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1285 |#2|) $) NIL) (($ (-575)) NIL (-3763 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) NIL (|has| |#2| (-1117))) (((-873) $) NIL (|has| |#2| (-624 (-873))))) (-4421 (((-782)) NIL (|has| |#2| (-1066)) CONST)) (-3685 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-4121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-1989 (($) NIL (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2005 (($) NIL (|has| |#2| (-1066)) CONST)) (-3428 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3980 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3940 (((-112) $ $) 17 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4015 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-782)) NIL (|has| |#2| (-1066))) (($ $ (-936)) NIL (|has| |#2| (-1066)))) (* (($ $ $) NIL (|has| |#2| (-1066))) (($ $ |#2|) NIL (|has| |#2| (-737))) (($ |#2| $) NIL (|has| |#2| (-737))) (($ (-575) $) NIL (|has| |#2| (-21))) (($ (-782) $) NIL (|has| |#2| (-23))) (($ (-936) $) NIL (|has| |#2| (-25)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-493 |#1| |#2|) (-243 |#1| |#2|) (-782) (-804)) (T -493))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-711))) (-4 *1 (-452)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) (-4 *1 (-452)))))
+(-13 (-407) (-10 -8 (-15 -2858 ($ (-1287 (-711)))) (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-340))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1237) . T))
+((-2454 (((-3 $ "failed") (-1287 (-326 (-390)))) 21) (((-3 $ "failed") (-1287 (-326 (-576)))) 19) (((-3 $ "failed") (-1287 (-969 (-390)))) 17) (((-3 $ "failed") (-1287 (-969 (-576)))) 15) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 13) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 11)) (-4397 (($ (-1287 (-326 (-390)))) 22) (($ (-1287 (-326 (-576)))) 20) (($ (-1287 (-969 (-390)))) 18) (($ (-1287 (-969 (-576)))) 16) (($ (-1287 (-419 (-969 (-390))))) 14) (($ (-1287 (-419 (-969 (-576))))) 12)) (-2275 (((-1292) $) 7)) (-2858 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) 23)))
+(((-453) (-141)) (T -453))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340))))) (-4 *1 (-453)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453)))))
+(-13 (-407) (-10 -8 (-15 -2858 ($ (-656 (-340)))) (-15 -2858 ($ (-340))) (-15 -2858 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))) (-15 -4397 ($ (-1287 (-326 (-390))))) (-15 -2454 ((-3 $ "failed") (-1287 (-326 (-390))))) (-15 -4397 ($ (-1287 (-326 (-576))))) (-15 -2454 ((-3 $ "failed") (-1287 (-326 (-576))))) (-15 -4397 ($ (-1287 (-969 (-390))))) (-15 -2454 ((-3 $ "failed") (-1287 (-969 (-390))))) (-15 -4397 ($ (-1287 (-969 (-576))))) (-15 -2454 ((-3 $ "failed") (-1287 (-969 (-576))))) (-15 -4397 ($ (-1287 (-419 (-969 (-390)))))) (-15 -2454 ((-3 $ "failed") (-1287 (-419 (-969 (-390)))))) (-15 -4397 ($ (-1287 (-419 (-969 (-576)))))) (-15 -2454 ((-3 $ "failed") (-1287 (-419 (-969 (-576))))))))
+(((-625 (-874)) . T) ((-407) . T) ((-1237) . T))
+((-4032 (((-112)) 18)) (-1350 (((-112) (-112)) 19)) (-3038 (((-112)) 14)) (-2159 (((-112) (-112)) 15)) (-1982 (((-112)) 16)) (-2539 (((-112) (-112)) 17)) (-4330 (((-938) (-938)) 22) (((-938)) 21)) (-2400 (((-783) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576))))) 52)) (-3198 (((-938) (-938)) 24) (((-938)) 23)) (-3594 (((-2 (|:| -4038 (-576)) (|:| -1603 (-656 |#1|))) |#1|) 94)) (-2818 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576))))))) 174)) (-4115 (((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112)) 207)) (-4384 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-2354 (((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-938) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-938) |#1| (-783)) 226) (((-3 |#1| "failed") (-938) |#1|) 228)) (-2367 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-2017 (((-112) |#1|) 44)) (-1868 (((-749 (-783)) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576))))) 99)) (-1459 (((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)) 211)))
+(((-454 |#1|) (-10 -7 (-15 -2818 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))))) (-15 -1868 ((-749 (-783)) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))))) (-15 -3198 ((-938))) (-15 -3198 ((-938) (-938))) (-15 -4330 ((-938))) (-15 -4330 ((-938) (-938))) (-15 -2400 ((-783) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))))) (-15 -3594 ((-2 (|:| -4038 (-576)) (|:| -1603 (-656 |#1|))) |#1|)) (-15 -4032 ((-112))) (-15 -1350 ((-112) (-112))) (-15 -3038 ((-112))) (-15 -2159 ((-112) (-112))) (-15 -2017 ((-112) |#1|)) (-15 -1982 ((-112))) (-15 -2539 ((-112) (-112))) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -2367 ((-430 |#1|) |#1| (-783))) (-15 -2367 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2367 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2367 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4384 ((-430 |#1|) |#1|)) (-15 -4384 ((-430 |#1|) |#1| (-783))) (-15 -4384 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4384 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4384 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1|)) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-783))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112))) (-15 -4115 ((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112))) (-15 -1459 ((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)))) (-1263 (-576))) (T -454))
+((-1459 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1121 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4115 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2354 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2354 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2354 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2354 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2354 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-4384 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4384 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4384 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4384 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4384 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2367 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1982 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2017 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1350 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4032 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3594 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4038 (-576)) (|:| -1603 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2367 *4) (|:| -4436 (-576))))) (-4 *4 (-1263 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4330 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3198 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2367 *4) (|:| -4436 (-576))))) (-4 *4 (-1263 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| *4) (|:| -2972 (-576))))))) (-4 *4 (-1263 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4)))))
+(-10 -7 (-15 -2818 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))))) (-15 -1868 ((-749 (-783)) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))))) (-15 -3198 ((-938))) (-15 -3198 ((-938) (-938))) (-15 -4330 ((-938))) (-15 -4330 ((-938) (-938))) (-15 -2400 ((-783) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))))) (-15 -3594 ((-2 (|:| -4038 (-576)) (|:| -1603 (-656 |#1|))) |#1|)) (-15 -4032 ((-112))) (-15 -1350 ((-112) (-112))) (-15 -3038 ((-112))) (-15 -2159 ((-112) (-112))) (-15 -2017 ((-112) |#1|)) (-15 -1982 ((-112))) (-15 -2539 ((-112) (-112))) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -2367 ((-430 |#1|) |#1| (-783))) (-15 -2367 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -2367 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -2367 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4384 ((-430 |#1|) |#1|)) (-15 -4384 ((-430 |#1|) |#1| (-783))) (-15 -4384 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -4384 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -4384 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1|)) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-783))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783))) (-15 -2354 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112))) (-15 -4115 ((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112))) (-15 -1459 ((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112) (-1121 (-783)) (-783))))
+((-3861 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-1825 (((-576) |#2|) 64)) (-2945 ((|#3| |#2|) 26)) (-3075 ((|#3| |#2| (-938)) 15)) (-1873 ((|#3| |#2|) 16)) (-3054 ((|#3| |#2|) 9)) (-3317 ((|#3| |#2|) 10)) (-3378 ((|#3| |#2| (-938)) 71) ((|#3| |#2|) 34)) (-3652 (((-576) |#2|) 66)))
+(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3652 ((-576) |#2|)) (-15 -3378 (|#3| |#2|)) (-15 -3378 (|#3| |#2| (-938))) (-15 -1825 ((-576) |#2|)) (-15 -3861 ((-576) |#2| (-783))) (-15 -3861 ((-576) |#2|)) (-15 -3075 (|#3| |#2| (-938))) (-15 -2945 (|#3| |#2|)) (-15 -3054 (|#3| |#2|)) (-15 -3317 (|#3| |#2|)) (-15 -1873 (|#3| |#2|))) (-1068) (-1263 |#1|) (-13 (-416) (-1057 |#1|) (-374) (-1222) (-294))) (T -455))
+((-1873 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3317 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3054 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2945 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-3861 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5)) (-4 *6 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))))) (-1825 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-3378 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))))
+(-10 -7 (-15 -3652 ((-576) |#2|)) (-15 -3378 (|#3| |#2|)) (-15 -3378 (|#3| |#2| (-938))) (-15 -1825 ((-576) |#2|)) (-15 -3861 ((-576) |#2| (-783))) (-15 -3861 ((-576) |#2|)) (-15 -3075 (|#3| |#2| (-938))) (-15 -2945 (|#3| |#2|)) (-15 -3054 (|#3| |#2|)) (-15 -3317 (|#3| |#2|)) (-15 -1873 (|#3| |#2|)))
+((-4420 ((|#2| (-1287 |#1|)) 42)) (-2224 ((|#2| |#2| |#1|) 58)) (-3700 ((|#2| |#2| |#1|) 49)) (-4374 ((|#2| |#2|) 44)) (-3071 (((-112) |#2|) 32)) (-3082 (((-656 |#2|) (-938) (-430 |#2|)) 21)) (-2354 ((|#2| (-938) (-430 |#2|)) 25)) (-1868 (((-749 (-783)) (-430 |#2|)) 29)))
+(((-456 |#1| |#2|) (-10 -7 (-15 -3071 ((-112) |#2|)) (-15 -4420 (|#2| (-1287 |#1|))) (-15 -4374 (|#2| |#2|)) (-15 -3700 (|#2| |#2| |#1|)) (-15 -2224 (|#2| |#2| |#1|)) (-15 -1868 ((-749 (-783)) (-430 |#2|))) (-15 -2354 (|#2| (-938) (-430 |#2|))) (-15 -3082 ((-656 |#2|) (-938) (-430 |#2|)))) (-1068) (-1263 |#1|)) (T -456))
+((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-430 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-1068)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-2354 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-430 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1068)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1068)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-2224 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-3700 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1068)) (-4 *2 (-1263 *4)) (-5 *1 (-456 *4 *2)))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -3071 ((-112) |#2|)) (-15 -4420 (|#2| (-1287 |#1|))) (-15 -4374 (|#2| |#2|)) (-15 -3700 (|#2| |#2| |#1|)) (-15 -2224 (|#2| |#2| |#1|)) (-15 -1868 ((-749 (-783)) (-430 |#2|))) (-15 -2354 (|#2| (-938) (-430 |#2|))) (-15 -3082 ((-656 |#2|) (-938) (-430 |#2|))))
+((-4263 (((-783)) 59)) (-2424 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-3083 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-4226 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-1686 (((-783)) 58) (((-783) (-783)) 57)) (-1767 ((|#1| (-783) (-576)) 37)) (-2330 (((-1292)) 61)))
+(((-457 |#1|) (-10 -7 (-15 -1767 (|#1| (-783) (-576))) (-15 -1686 ((-783) (-783))) (-15 -1686 ((-783))) (-15 -4263 ((-783))) (-15 -2330 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -4226 ((-576) |#1|)) (-15 -3083 ((-576) |#1|)) (-15 -2424 ((-783) (-783))) (-15 -2424 ((-783)))) |%noBranch|)) (-1068)) (T -457))
+((-2424 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-3083 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-4226 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2330 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-4263 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-1686 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-1767 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1068)))))
+(-10 -7 (-15 -1767 (|#1| (-783) (-576))) (-15 -1686 ((-783) (-783))) (-15 -1686 ((-783))) (-15 -4263 ((-783))) (-15 -2330 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -4226 ((-576) |#1|)) (-15 -3083 ((-576) |#1|)) (-15 -2424 ((-783) (-783))) (-15 -2424 ((-783)))) |%noBranch|))
+((-2312 (((-656 (-576)) (-576)) 76)) (-3011 (((-112) (-171 (-576))) 82)) (-2367 (((-430 (-171 (-576))) (-171 (-576))) 75)))
+(((-458) (-10 -7 (-15 -2367 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -2312 ((-656 (-576)) (-576))) (-15 -3011 ((-112) (-171 (-576)))))) (T -458))
+((-3011 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-2312 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576))))))
+(-10 -7 (-15 -2367 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -2312 ((-656 (-576)) (-576))) (-15 -3011 ((-112) (-171 (-576)))))
+((-3971 ((|#4| |#4| (-656 |#4|)) 82)) (-2397 (((-656 |#4|) (-656 |#4|) (-1178) (-1178)) 22) (((-656 |#4|) (-656 |#4|) (-1178)) 21) (((-656 |#4|) (-656 |#4|)) 13)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3971 (|#4| |#4| (-656 |#4|))) (-15 -2397 ((-656 |#4|) (-656 |#4|))) (-15 -2397 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -2397 ((-656 |#4|) (-656 |#4|) (-1178) (-1178)))) (-317) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -459))
+((-2397 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2397 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2397 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3971 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3971 (|#4| |#4| (-656 |#4|))) (-15 -2397 ((-656 |#4|) (-656 |#4|))) (-15 -2397 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -2397 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))))
+((-1532 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-1870 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77)))
+(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1870 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -460))
+((-1532 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1532 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1532 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1532 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(-10 -7 (-15 -1870 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1870 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -1532 ((-656 (-656 |#4|)) (-656 |#4|) (-112))))
+((-1955 (((-783) |#4|) 12)) (-2483 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|)))) 39)) (-4066 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-1853 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3818 ((|#4| |#4| (-656 |#4|)) 54)) (-3831 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-1381 (((-1292) |#4|) 59)) (-3612 (((-1292) (-656 |#4|)) 69)) (-4277 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-2708 (((-1292) (-576)) 110)) (-2958 (((-656 |#4|) (-656 |#4|)) 104)) (-1753 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|)) |#4| (-783)) 31)) (-2731 (((-576) |#4|) 109)) (-3659 ((|#4| |#4|) 37)) (-3649 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-4017 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-4315 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3535 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1733 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3551 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3844 (((-112) |#2| |#2|) 75)) (-2050 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-4167 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3301 ((|#4| |#4| (-656 |#4|)) 97)))
+(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3301 (|#4| |#4| (-656 |#4|))) (-15 -3818 (|#4| |#4| (-656 |#4|))) (-15 -3649 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3535 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3844 ((-112) |#2| |#2|)) (-15 -4167 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2050 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3551 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1733 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3831 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3659 (|#4| |#4|)) (-15 -2483 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|))))) (-15 -1853 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4066 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2958 ((-656 |#4|) (-656 |#4|))) (-15 -2731 ((-576) |#4|)) (-15 -1381 ((-1292) |#4|)) (-15 -4277 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4017 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3612 ((-1292) (-656 |#4|))) (-15 -2708 ((-1292) (-576))) (-15 -4315 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1753 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|)) |#4| (-783))) (-15 -1955 ((-783) |#4|))) (-464) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -461))
+((-1955 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-1753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2279 *4))) (-5 *5 (-783)) (-4 *4 (-966 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-4315 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)))) (-4017 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-4277 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-2731 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4066 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-966 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-2483 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 *3)))) (-5 *4 (-783)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-3831 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-1733 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-966 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2050 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-4167 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))) (-3844 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3649 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3818 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-3301 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3301 (|#4| |#4| (-656 |#4|))) (-15 -3818 (|#4| |#4| (-656 |#4|))) (-15 -3649 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3535 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3844 ((-112) |#2| |#2|)) (-15 -4167 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2050 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3551 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1733 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3831 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3659 (|#4| |#4|)) (-15 -2483 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|))))) (-15 -1853 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4066 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2958 ((-656 |#4|) (-656 |#4|))) (-15 -2731 ((-576) |#4|)) (-15 -1381 ((-1292) |#4|)) (-15 -4277 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -4017 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -3612 ((-1292) (-656 |#4|))) (-15 -2708 ((-1292) (-576))) (-15 -4315 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1753 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2279 |#4|)) |#4| (-783))) (-15 -1955 ((-783) |#4|)))
+((-1947 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-3966 (((-656 |#4|) (-656 |#4|) (-1178) (-1178)) 46) (((-656 |#4|) (-656 |#4|) (-1178)) 45) (((-656 |#4|) (-656 |#4|)) 34)))
+(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3966 ((-656 |#4|) (-656 |#4|))) (-15 -3966 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -3966 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-374)) (-15 -1947 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -462))
+((-1947 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-3966 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3966 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3966 ((-656 |#4|) (-656 |#4|))) (-15 -3966 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -3966 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-374)) (-15 -1947 (|#4| |#4| (-656 |#4|))) |%noBranch|))
+((-3862 (($ $ $) 14) (($ (-656 $)) 21)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 46)) (-3901 (($ $ $) NIL) (($ (-656 $)) 22)))
+(((-463 |#1|) (-10 -8 (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3862 (|#1| (-656 |#1|))) (-15 -3862 (|#1| |#1| |#1|)) (-15 -3901 (|#1| (-656 |#1|))) (-15 -3901 (|#1| |#1| |#1|))) (-464)) (T -463))
+NIL
+(-10 -8 (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3862 (|#1| (-656 |#1|))) (-15 -3862 (|#1| |#1| |#1|)) (-15 -3901 (|#1| (-656 |#1|))) (-15 -3901 (|#1| |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2825 (((-3 $ "failed") $ $) 48)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-464) (-141)) (T -464))
+((-3901 (*1 *1 *1 *1) (-4 *1 (-464))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3862 (*1 *1 *1 *1) (-4 *1 (-464))) (-3862 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464)))))
+(-13 (-568) (-10 -8 (-15 -3901 ($ $ $)) (-15 -3901 ($ (-656 $))) (-15 -3862 ($ $ $)) (-15 -3862 ($ (-656 $))) (-15 -1919 ((-1192 $) (-1192 $) (-1192 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2857 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3685 (((-1287 (-701 (-419 (-969 |#1|)))) (-1287 $)) NIL) (((-1287 (-701 (-419 (-969 |#1|))))) NIL)) (-3142 (((-1287 $)) NIL)) (-2574 (($) NIL T CONST)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL)) (-1985 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-1877 (((-701 (-419 (-969 |#1|))) (-1287 $)) NIL) (((-701 (-419 (-969 |#1|)))) NIL)) (-4036 (((-419 (-969 |#1|)) $) NIL)) (-2343 (((-701 (-419 (-969 |#1|))) $ (-1287 $)) NIL) (((-701 (-419 (-969 |#1|))) $) NIL)) (-2100 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3619 (((-1192 (-969 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-374))) (((-1192 (-419 (-969 |#1|)))) 90 (|has| |#1| (-568)))) (-4139 (($ $ (-938)) NIL)) (-3136 (((-419 (-969 |#1|)) $) NIL)) (-2276 (((-1192 (-419 (-969 |#1|))) $) 88 (|has| (-419 (-969 |#1|)) (-568)))) (-3335 (((-419 (-969 |#1|)) (-1287 $)) NIL) (((-419 (-969 |#1|))) NIL)) (-2950 (((-1192 (-419 (-969 |#1|))) $) NIL)) (-2965 (((-112)) NIL)) (-2876 (($ (-1287 (-419 (-969 |#1|))) (-1287 $)) 114) (($ (-1287 (-419 (-969 |#1|)))) NIL)) (-4011 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-4422 (((-938)) NIL)) (-1834 (((-112)) NIL)) (-4141 (($ $ (-938)) NIL)) (-2298 (((-112)) NIL)) (-4393 (((-112)) NIL)) (-3037 (((-112)) NIL)) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL)) (-3426 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-2213 (((-701 (-419 (-969 |#1|))) (-1287 $)) NIL) (((-701 (-419 (-969 |#1|)))) NIL)) (-2436 (((-419 (-969 |#1|)) $) NIL)) (-4409 (((-701 (-419 (-969 |#1|))) $ (-1287 $)) NIL) (((-701 (-419 (-969 |#1|))) $) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-2359 (((-1192 (-969 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-374))) (((-1192 (-419 (-969 |#1|)))) 89 (|has| |#1| (-568)))) (-1406 (($ $ (-938)) NIL)) (-2815 (((-419 (-969 |#1|)) $) NIL)) (-4205 (((-1192 (-419 (-969 |#1|))) $) 85 (|has| (-419 (-969 |#1|)) (-568)))) (-1659 (((-419 (-969 |#1|)) (-1287 $)) NIL) (((-419 (-969 |#1|))) NIL)) (-4015 (((-1192 (-419 (-969 |#1|))) $) NIL)) (-1783 (((-112)) NIL)) (-2143 (((-1178) $) NIL)) (-3167 (((-112)) NIL)) (-3215 (((-112)) NIL)) (-1480 (((-112)) NIL)) (-3887 (((-1139) $) NIL)) (-2919 (((-419 (-969 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-1683 (((-419 (-969 |#1|)) $) 100 (|has| |#1| (-568)))) (-3376 (((-419 (-969 |#1|)) $) 104 (|has| |#1| (-568)))) (-3023 (((-1192 (-419 (-969 |#1|))) $) 94 (|has| |#1| (-568)))) (-2349 (((-419 (-969 |#1|))) 77 (|has| |#1| (-568)))) (-3926 (((-419 (-969 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-1653 (((-419 (-969 |#1|)) $) 99 (|has| |#1| (-568)))) (-3143 (((-419 (-969 |#1|)) $) 103 (|has| |#1| (-568)))) (-3125 (((-1192 (-419 (-969 |#1|))) $) 93 (|has| |#1| (-568)))) (-2940 (((-419 (-969 |#1|))) 73 (|has| |#1| (-568)))) (-1360 (($) 110) (($ (-1196)) 118) (($ (-1287 (-1196))) 117) (($ (-1287 $)) 105) (($ (-1196) (-1287 $)) 116) (($ (-1287 (-1196)) (-1287 $)) 115)) (-3801 (((-112)) NIL)) (-2099 (((-419 (-969 |#1|)) $ (-576)) NIL)) (-3392 (((-1287 (-419 (-969 |#1|))) $ (-1287 $)) 107) (((-701 (-419 (-969 |#1|))) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 (-969 |#1|))) $) 43) (((-701 (-419 (-969 |#1|))) (-1287 $)) NIL)) (-2610 (((-1287 (-419 (-969 |#1|))) $) NIL) (($ (-1287 (-419 (-969 |#1|)))) 40)) (-3501 (((-656 (-969 (-419 (-969 |#1|)))) (-1287 $)) NIL) (((-656 (-969 (-419 (-969 |#1|))))) NIL) (((-656 (-969 |#1|)) (-1287 $)) 108 (|has| |#1| (-568))) (((-656 (-969 |#1|))) 109 (|has| |#1| (-568)))) (-2220 (($ $ $) NIL)) (-1332 (((-112)) NIL)) (-2858 (((-874) $) NIL) (($ (-1287 (-419 (-969 |#1|)))) NIL)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) 65)) (-3308 (((-656 (-1287 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-2591 (($ $ $ $) NIL)) (-1883 (((-112)) NIL)) (-1977 (($ (-701 (-419 (-969 |#1|))) $) NIL)) (-2407 (($ $ $) NIL)) (-3072 (((-112)) NIL)) (-1430 (((-112)) NIL)) (-3044 (((-112)) NIL)) (-2022 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) 106)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-969 |#1|))) NIL) (($ (-419 (-969 |#1|)) $) NIL) (($ (-1161 |#2| (-419 (-969 |#1|))) $) NIL)))
+(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-969 |#1|))) (-660 (-1161 |#2| (-419 (-969 |#1|)))) (-10 -8 (-15 -2858 ($ (-1287 (-419 (-969 |#1|))))) (-15 -1434 ((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed"))) (-15 -3510 ((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed"))) (-15 -1360 ($)) (-15 -1360 ($ (-1196))) (-15 -1360 ($ (-1287 (-1196)))) (-15 -1360 ($ (-1287 $))) (-15 -1360 ($ (-1196) (-1287 $))) (-15 -1360 ($ (-1287 (-1196)) (-1287 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2359 ((-1192 (-419 (-969 |#1|))))) (-15 -3125 ((-1192 (-419 (-969 |#1|))) $)) (-15 -1653 ((-419 (-969 |#1|)) $)) (-15 -3143 ((-419 (-969 |#1|)) $)) (-15 -3619 ((-1192 (-419 (-969 |#1|))))) (-15 -3023 ((-1192 (-419 (-969 |#1|))) $)) (-15 -1683 ((-419 (-969 |#1|)) $)) (-15 -3376 ((-419 (-969 |#1|)) $)) (-15 -3926 ((-419 (-969 |#1|)) $ $)) (-15 -2940 ((-419 (-969 |#1|)))) (-15 -2919 ((-419 (-969 |#1|)) $ $)) (-15 -2349 ((-419 (-969 |#1|)))) (-15 -3501 ((-656 (-969 |#1|)) (-1287 $))) (-15 -3501 ((-656 (-969 |#1|))))) |%noBranch|))) (-174) (-938) (-656 (-1196)) (-1287 (-701 |#1|))) (T -465))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 *3)))) (-4 *3 (-174)) (-14 *6 (-1287 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))))) (-1434 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -4261 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3510 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -4261 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1360 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-938)) (-14 *4 (-656 (-1196))) (-14 *5 (-1287 (-701 *2))))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 *2)) (-14 *6 (-1287 (-701 *3))))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-1287 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1360 (*1 *1 *2) (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1360 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 *2)) (-14 *7 (-1287 (-701 *4))))) (-1360 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 (-1196))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) (-2359 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3619 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3926 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2940 (*1 *2) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2919 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2349 (*1 *2) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-969 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) (-3501 (*1 *2) (-12 (-5 *2 (-656 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(-13 (-429 (-419 (-969 |#1|))) (-660 (-1161 |#2| (-419 (-969 |#1|)))) (-10 -8 (-15 -2858 ($ (-1287 (-419 (-969 |#1|))))) (-15 -1434 ((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed"))) (-15 -3510 ((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed"))) (-15 -1360 ($)) (-15 -1360 ($ (-1196))) (-15 -1360 ($ (-1287 (-1196)))) (-15 -1360 ($ (-1287 $))) (-15 -1360 ($ (-1196) (-1287 $))) (-15 -1360 ($ (-1287 (-1196)) (-1287 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2359 ((-1192 (-419 (-969 |#1|))))) (-15 -3125 ((-1192 (-419 (-969 |#1|))) $)) (-15 -1653 ((-419 (-969 |#1|)) $)) (-15 -3143 ((-419 (-969 |#1|)) $)) (-15 -3619 ((-1192 (-419 (-969 |#1|))))) (-15 -3023 ((-1192 (-419 (-969 |#1|))) $)) (-15 -1683 ((-419 (-969 |#1|)) $)) (-15 -3376 ((-419 (-969 |#1|)) $)) (-15 -3926 ((-419 (-969 |#1|)) $ $)) (-15 -2940 ((-419 (-969 |#1|)))) (-15 -2919 ((-419 (-969 |#1|)) $ $)) (-15 -2349 ((-419 (-969 |#1|)))) (-15 -3501 ((-656 (-969 |#1|)) (-1287 $))) (-15 -3501 ((-656 (-969 |#1|))))) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 18)) (-1634 (((-656 (-876 |#1|)) $) 87)) (-3440 (((-1192 $) $ (-876 |#1|)) 52) (((-1192 |#2|) $) 138)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2150 (($ $) NIL (|has| |#2| (-568)))) (-2637 (((-112) $) NIL (|has| |#2| (-568)))) (-3988 (((-783) $) 27) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3179 (($ $) NIL (|has| |#2| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4397 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2495 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2980 (($ $ (-656 (-576))) 93)) (-4404 (($ $) 80)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#2| (-926)))) (-2611 (($ $ |#2| |#3| $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) 65)) (-2441 (($ (-1192 |#2|) (-876 |#1|)) 143) (($ (-1192 $) (-876 |#1|)) 58)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) 68)) (-2428 (($ |#2| |#3|) 35) (($ $ (-876 |#1|) (-783)) 37) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-876 |#1|)) NIL)) (-4389 ((|#3| $) NIL) (((-783) $ (-876 |#1|)) 56) (((-656 (-783)) $ (-656 (-876 |#1|))) 63)) (-4149 (($ (-1 |#3| |#3|) $) NIL)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1848 (((-3 (-876 |#1|) "failed") $) 45)) (-4366 (($ $) NIL)) (-4379 ((|#2| $) 47)) (-3862 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2273 (-783))) "failed") $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) 46)) (-4347 ((|#2| $) 136)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) 100) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) 106) (($ $ (-876 |#1|) $) 98) (($ $ (-656 (-876 |#1|)) (-656 $)) 124)) (-3880 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2399 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) 59)) (-4436 ((|#3| $) 79) (((-783) $ (-876 |#1|)) 42) (((-656 (-783)) $ (-656 (-876 |#1|))) 62)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4325 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-2858 (((-874) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-876 |#1|)) 39) (($ (-419 (-576))) NIL (-3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ |#3|) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2022 (($) 22 T CONST)) (-2038 (($) 31 T CONST)) (-3404 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 131)) (** (($ $ (-938)) NIL) (($ $ (-783)) 129)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL)))
+(((-466 |#1| |#2| |#3|) (-13 (-966 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -2980 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1068) (-243 (-2845 |#1|) (-783))) (T -466))
+((-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1196))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-243 (-2845 *3) (-783))))))
+(-13 (-966 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -2980 ($ $ (-656 (-576))))))
+((-2557 (((-112) |#1| (-656 |#2|)) 91)) (-2259 (((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-2339 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|))) 102)) (-1880 ((|#2| |#2| |#1|) 35)) (-3571 (((-783) |#2| (-656 |#2|)) 26)))
+(((-467 |#1| |#2|) (-10 -7 (-15 -1880 (|#2| |#2| |#1|)) (-15 -3571 ((-783) |#2| (-656 |#2|))) (-15 -2259 ((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -2339 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|)))) (-15 -2557 ((-112) |#1| (-656 |#2|)))) (-317) (-1263 |#1|)) (T -467))
+((-2557 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-2339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1287 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4)))) (-2259 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1263 *4)) (-5 *2 (-1287 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-1880 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3)))))
+(-10 -7 (-15 -1880 (|#2| |#2| |#1|)) (-15 -3571 ((-783) |#2| (-656 |#2|))) (-15 -2259 ((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -2339 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|)))) (-15 -2557 ((-112) |#1| (-656 |#2|))))
+((-2367 (((-430 |#5|) |#5|) 24)))
+(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2367 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196))))) (-805) (-568) (-568) (-966 |#4| |#2| |#1|)) (T -468))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-966 *7 *5 *4)))))
+(-10 -7 (-15 -2367 ((-430 |#5|) |#5|)))
+((-4039 ((|#3|) 38)) (-1919 (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 34)))
+(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1919 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -4039 (|#3|))) (-805) (-862) (-926) (-966 |#3| |#1| |#2|)) (T -469))
+((-4039 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-966 *2 *3 *4)))) (-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-926)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1919 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -4039 (|#3|)))
+((-2367 (((-430 (-1192 |#1|)) (-1192 |#1|)) 43)))
+(((-470 |#1|) (-10 -7 (-15 -2367 ((-430 (-1192 |#1|)) (-1192 |#1|)))) (-317)) (T -470))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1192 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1192 *4)))))
+(-10 -7 (-15 -2367 ((-430 (-1192 |#1|)) (-1192 |#1|))))
+((-4278 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783))) 43) (((-52) |#2| (-1196) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-1907 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576))) 85) (((-52) |#2| (-1196) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-4301 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 72)) (-4290 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576))) 50)))
+(((-471 |#1| |#2|) (-10 -7 (-15 -4278 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -4278 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -4278 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783)))) (-15 -4278 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783)))) (-15 -4290 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -4290 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -4301 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -4301 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1907 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1907 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -1907 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -1907 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -1907 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1907 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -471))
+((-1907 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-1907 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-1907 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-4301 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-4301 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-4290 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-4290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-4278 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-783))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-4278 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-783))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-4278 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))))
+(-10 -7 (-15 -4278 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -4278 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -4278 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783)))) (-15 -4278 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783)))) (-15 -4290 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -4290 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -4301 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -4301 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1907 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1907 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -1907 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -1907 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -1907 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1907 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))))
+((-1880 ((|#2| |#2| |#1|) 15)) (-4162 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-938)) 82)) (-3720 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938)) 72)))
+(((-472 |#1| |#2|) (-10 -7 (-15 -3720 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938))) (-15 -4162 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-938))) (-15 -1880 (|#2| |#2| |#1|))) (-317) (-1263 |#1|)) (T -472))
+((-1880 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) (-4162 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-938)) (-4 *3 (-1263 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3720 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-938)) (-4 *5 (-317)) (-4 *3 (-1263 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3)))))
+(-10 -7 (-15 -3720 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938))) (-15 -4162 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-938))) (-15 -1880 (|#2| |#2| |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 28)) (-2002 (($ |#3|) 25)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4404 (($ $) 32)) (-2609 (($ |#2| |#4| $) 33)) (-2428 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-4366 (((-725 |#3| |#4| |#5|) $) 15)) (-3418 ((|#3| $) 19)) (-2877 ((|#4| $) 17)) (-4379 ((|#2| $) 29)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2684 (($ |#2| |#3| |#4|) 26)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 36 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 34)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -4379 (|#2| $)) (-15 -4366 ((-725 |#3| |#4| |#5|) $)) (-15 -2877 (|#4| $)) (-15 -3418 (|#3| $)) (-15 -4404 ($ $)) (-15 -2428 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2002 ($ |#3|)) (-15 -2684 ($ |#2| |#3| |#4|)) (-15 -2609 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1196)) (-174) (-862) (-243 (-2845 |#1|) (-783)) (-1 (-112) (-2 (|:| -4308 |#3|) (|:| -2273 |#4|)) (-2 (|:| -4308 |#3|) (|:| -2273 |#4|))) (-966 |#2| |#4| (-876 |#1|))) (T -473))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *6 (-243 (-2845 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *6)) (-2 (|:| -4308 *5) (|:| -2273 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-966 *4 *6 (-876 *3))))) (-4379 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *5 (-243 (-2845 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4308 *4) (|:| -2273 *5)) (-2 (|:| -4308 *4) (|:| -2273 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-966 *2 *5 (-876 *3))))) (-4366 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *6 (-243 (-2845 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *6)) (-2 (|:| -4308 *5) (|:| -2273 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-966 *4 *6 (-876 *3))))) (-2877 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *2)) (-2 (|:| -4308 *5) (|:| -2273 *2)))) (-4 *2 (-243 (-2845 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-966 *4 *2 (-876 *3))))) (-3418 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *5 (-243 (-2845 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *5)) (-2 (|:| -4308 *2) (|:| -2273 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-966 *4 *5 (-876 *3))))) (-4404 (*1 *1 *1) (-12 (-14 *2 (-656 (-1196))) (-4 *3 (-174)) (-4 *5 (-243 (-2845 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4308 *4) (|:| -2273 *5)) (-2 (|:| -4308 *4) (|:| -2273 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-966 *3 *5 (-876 *2))))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-243 (-2845 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *6)) (-2 (|:| -4308 *5) (|:| -2273 *6)))) (-14 *4 (-656 (-1196))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-966 *2 *6 (-876 *4))))) (-2002 (*1 *1 *2) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *5 (-243 (-2845 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *5)) (-2 (|:| -4308 *2) (|:| -2273 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-966 *4 *5 (-876 *3))))) (-2684 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1196))) (-4 *2 (-174)) (-4 *4 (-243 (-2845 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4308 *3) (|:| -2273 *4)) (-2 (|:| -4308 *3) (|:| -2273 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-966 *2 *4 (-876 *5))))) (-2609 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1196))) (-4 *2 (-174)) (-4 *3 (-243 (-2845 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *3)) (-2 (|:| -4308 *5) (|:| -2273 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-966 *2 *3 (-876 *4))))))
+(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -4379 (|#2| $)) (-15 -4366 ((-725 |#3| |#4| |#5|) $)) (-15 -2877 (|#4| $)) (-15 -3418 (|#3| $)) (-15 -4404 ($ $)) (-15 -2428 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2002 ($ |#3|)) (-15 -2684 ($ |#2| |#3| |#4|)) (-15 -2609 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2393 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2393 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|) (-13 (-1057 (-419 (-576))) (-374) (-10 -8 (-15 -2858 ($ |#4|)) (-15 -1621 (|#4| $)) (-15 -1635 (|#4| $))))) (T -474))
+((-2393 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-966 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1057 (-419 (-576))) (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))))
+(-10 -7 (-15 -2393 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2835 (((-112) $ $) NIL)) (-1634 (((-656 |#3|) $) 41)) (-4001 (((-112) $) NIL)) (-3169 (((-112) $) NIL (|has| |#1| (-568)))) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3959 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-1516 (((-112) $) NIL (|has| |#1| (-568)))) (-2097 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3593 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3695 (((-112) $) NIL (|has| |#1| (-568)))) (-3390 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 49)) (-4397 (($ (-656 |#4|)) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3607 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-3975 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-4402 ((|#3| $) 47)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#4|) $) 14 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2822 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 21)) (-2804 (((-656 |#3|) $) NIL)) (-2872 (((-112) |#3| $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3887 (((-1139) $) NIL)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1910 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 39)) (-3849 (($) 17)) (-3902 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) 16)) (-2610 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-2869 (($ (-656 |#4|)) 13)) (-4426 (($ $ |#3|) NIL)) (-4127 (($ $ |#3|) NIL)) (-3668 (($ $ |#3|) NIL)) (-2858 (((-874) $) 38) (((-656 |#4|) $) 50)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 30)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-475 |#1| |#2| |#3| |#4|) (-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2610 ($ (-656 |#4|))) (-6 -4462) (-6 -4463))) (-1068) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -475))
+((-2610 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))))
+(-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2610 ($ (-656 |#4|))) (-6 -4462) (-6 -4463)))
+((-2022 (($) 11)) (-2038 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2038 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2022 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476))
+NIL
+(-10 -8 (-15 -2038 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2022 (|#1|)))
+((-2835 (((-112) $ $) 7)) (-2454 (((-3 |#1| "failed") $) 27)) (-4397 ((|#1| $) 28)) (-1904 (($ $ $) 24)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4436 ((|#2| $) 20)) (-2858 (((-874) $) 12) (($ |#1|) 26)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 25 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 16) (($ $ $) 14)) (-3990 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477))
+((-2038 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-1904 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-482 |t#1| |t#2|) (-1057 |t#1|) (-10 -8 (-15 (-2038) ($) -3712) (-15 -1904 ($ $ $))))
+(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-482 |#1| |#2|) . T) ((-1057 |#1|) . T) ((-1119) . T))
+((-3424 (((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-938)) 26)) (-1566 (((-1287 (-1287 (-576))) (-938)) 21)))
+(((-478) (-10 -7 (-15 -3424 ((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-938))) (-15 -1566 ((-1287 (-1287 (-576))) (-938))))) (T -478))
+((-1566 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 (-576)))) (-5 *1 (-478)))) (-3424 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 (-1287 (-576)))) (-5 *3 (-938)) (-5 *1 (-478)))))
+(-10 -7 (-15 -3424 ((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-938))) (-15 -1566 ((-1287 (-1287 (-576))) (-938))))
+((-3487 (((-576) (-576)) 32) (((-576)) 24)) (-3461 (((-576) (-576)) 28) (((-576)) 20)) (-2320 (((-576) (-576)) 30) (((-576)) 22)) (-4292 (((-112) (-112)) 14) (((-112)) 12)) (-3284 (((-112) (-112)) 13) (((-112)) 11)) (-2161 (((-112) (-112)) 26) (((-112)) 17)))
+(((-479) (-10 -7 (-15 -3284 ((-112))) (-15 -4292 ((-112))) (-15 -3284 ((-112) (-112))) (-15 -4292 ((-112) (-112))) (-15 -2161 ((-112))) (-15 -2320 ((-576))) (-15 -3461 ((-576))) (-15 -3487 ((-576))) (-15 -2161 ((-112) (-112))) (-15 -2320 ((-576) (-576))) (-15 -3461 ((-576) (-576))) (-15 -3487 ((-576) (-576))))) (T -479))
+((-3487 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3487 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3461 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2320 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2161 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4292 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3284 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(-10 -7 (-15 -3284 ((-112))) (-15 -4292 ((-112))) (-15 -3284 ((-112) (-112))) (-15 -4292 ((-112) (-112))) (-15 -2161 ((-112))) (-15 -2320 ((-576))) (-15 -3461 ((-576))) (-15 -3487 ((-576))) (-15 -2161 ((-112) (-112))) (-15 -2320 ((-576) (-576))) (-15 -3461 ((-576) (-576))) (-15 -3487 ((-576) (-576))))
+((-2835 (((-112) $ $) NIL)) (-2498 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-3433 (((-656 (-1113 (-390))) $) 16) (((-656 (-1113 (-390))) $ (-656 (-1113 (-390)))) 142)) (-3305 (((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886))) 58)) (-3370 (((-656 (-656 (-960 (-227)))) $) 137)) (-1872 (((-1292) $ (-960 (-227)) (-886)) 163)) (-2831 (($ $) 136) (($ (-656 (-656 (-960 (-227))))) 149) (($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938))) 148) (($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270))) 150)) (-2143 (((-1178) $) NIL)) (-4147 (((-576) $) 110)) (-3887 (((-1139) $) NIL)) (-1802 (($) 147)) (-2750 (((-656 (-227)) (-656 (-656 (-960 (-227))))) 89)) (-3432 (((-1292) $ (-656 (-960 (-227))) (-886) (-886) (-938)) 155) (((-1292) $ (-960 (-227))) 157) (((-1292) $ (-960 (-227)) (-886) (-886) (-938)) 156)) (-2858 (((-874) $) 169) (($ (-656 (-656 (-960 (-227))))) 164)) (-2690 (((-112) $ $) NIL)) (-2821 (((-1292) $ (-960 (-227))) 162)) (-3889 (((-112) $ $) NIL)))
+(((-480) (-13 (-1119) (-10 -8 (-15 -1802 ($)) (-15 -2831 ($ $)) (-15 -2831 ($ (-656 (-656 (-960 (-227)))))) (-15 -2831 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)))) (-15 -2831 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270)))) (-15 -3370 ((-656 (-656 (-960 (-227)))) $)) (-15 -4147 ((-576) $)) (-15 -3433 ((-656 (-1113 (-390))) $)) (-15 -3433 ((-656 (-1113 (-390))) $ (-656 (-1113 (-390))))) (-15 -2498 ((-656 (-390)) $)) (-15 -2498 ((-656 (-390)) $ (-656 (-390)))) (-15 -3432 ((-1292) $ (-656 (-960 (-227))) (-886) (-886) (-938))) (-15 -3432 ((-1292) $ (-960 (-227)))) (-15 -3432 ((-1292) $ (-960 (-227)) (-886) (-886) (-938))) (-15 -2821 ((-1292) $ (-960 (-227)))) (-15 -1872 ((-1292) $ (-960 (-227)) (-886))) (-15 -2858 ($ (-656 (-656 (-960 (-227)))))) (-15 -2858 ((-874) $)) (-15 -3305 ((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886)))) (-15 -2750 ((-656 (-227)) (-656 (-656 (-960 (-227))))))))) (T -480))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) (-1802 (*1 *1) (-5 *1 (-480))) (-2831 (*1 *1 *1) (-5 *1 (-480))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-2831 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-938))) (-5 *1 (-480)))) (-2831 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-938))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) (-3433 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2498 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-3432 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-3432 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-3432 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-1872 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-3305 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *1 (-480)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480)))))
+(-13 (-1119) (-10 -8 (-15 -1802 ($)) (-15 -2831 ($ $)) (-15 -2831 ($ (-656 (-656 (-960 (-227)))))) (-15 -2831 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)))) (-15 -2831 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270)))) (-15 -3370 ((-656 (-656 (-960 (-227)))) $)) (-15 -4147 ((-576) $)) (-15 -3433 ((-656 (-1113 (-390))) $)) (-15 -3433 ((-656 (-1113 (-390))) $ (-656 (-1113 (-390))))) (-15 -2498 ((-656 (-390)) $)) (-15 -2498 ((-656 (-390)) $ (-656 (-390)))) (-15 -3432 ((-1292) $ (-656 (-960 (-227))) (-886) (-886) (-938))) (-15 -3432 ((-1292) $ (-960 (-227)))) (-15 -3432 ((-1292) $ (-960 (-227)) (-886) (-886) (-938))) (-15 -2821 ((-1292) $ (-960 (-227)))) (-15 -1872 ((-1292) $ (-960 (-227)) (-886))) (-15 -2858 ($ (-656 (-656 (-960 (-227)))))) (-15 -2858 ((-874) $)) (-15 -3305 ((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886)))) (-15 -2750 ((-656 (-227)) (-656 (-656 (-960 (-227))))))))
+((-4002 (($ $) NIL) (($ $ $) 11)))
+(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481))
+NIL
+(-10 -8 (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4436 ((|#2| $) 20)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 16) (($ $ $) 14)) (-3990 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482))
+((-4436 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2022 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4002 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3990 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4002 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))))
+(-13 (-1119) (-10 -8 (-15 -4436 (|t#2| $)) (-15 (-2022) ($) -3712) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4002 ($ $)) (-15 -3990 ($ $ $)) (-15 -4002 ($ $ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-1887 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|))) 134)) (-3306 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 131)) (-1403 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 86)))
+(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -3306 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1887 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1403 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) (-656 (-1196)) (-464) (-464)) (T -483))
+((-1403 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-1887 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))))
+(-10 -7 (-15 -3306 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1887 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1403 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))))
+((-4011 (((-3 $ "failed") $) 11)) (-2480 (($ $ $) 23)) (-2220 (($ $ $) 24)) (-4013 (($ $ $) 9)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22)))
+(((-484 |#1|) (-10 -8 (-15 -2220 (|#1| |#1| |#1|)) (-15 -2480 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4013 (|#1| |#1| |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) (-485)) (T -484))
+NIL
+(-10 -8 (-15 -2220 (|#1| |#1| |#1|)) (-15 -2480 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4013 (|#1| |#1| |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-2574 (($) 19 T CONST)) (-4011 (((-3 $ "failed") $) 16)) (-1838 (((-112) $) 18)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 25)) (-3887 (((-1139) $) 11)) (-2480 (($ $ $) 22)) (-2220 (($ $ $) 21)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2038 (($) 20 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 24)) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15)))
+(((-485) (-141)) (T -485))
+((-4324 (*1 *1 *1) (-4 *1 (-485))) (-4013 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-2480 (*1 *1 *1 *1) (-4 *1 (-485))) (-2220 (*1 *1 *1 *1) (-4 *1 (-485))))
+(-13 (-738) (-10 -8 (-15 -4324 ($ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4459) (-15 -2480 ($ $ $)) (-15 -2220 ($ $ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 18)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-419 (-576))) NIL) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) 25)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-1850 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 35 (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) NIL)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 16)) (-4436 (((-419 (-576)) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1283 |#2|)) NIL) (($ (-1272 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 21)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) 27)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-486 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1283 |#2|))) (-15 -2858 ($ (-1272 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -486))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1268 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1283 |#2|))) (-15 -2858 ($ (-1272 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#2| $ |#1| |#2|) 18)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) 19)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 16)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2029 (((-656 |#1|) $) NIL)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2928 (((-656 |#1|) $) NIL)) (-1449 (((-112) |#1| $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-487 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2|) (-1119) (-1119) (-1213 |#1| |#2|) |#2|) (T -487))
+NIL
+(-1213 |#1| |#2|)
+((-2835 (((-112) $ $) NIL)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1952 (((-656 $) (-656 |#4|)) NIL)) (-1634 (((-656 |#3|) $) NIL)) (-4001 (((-112) $) NIL)) (-3169 (((-112) $) NIL (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1778 ((|#4| |#4| $) NIL)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3959 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2574 (($) NIL T CONST)) (-1516 (((-112) $) 29 (|has| |#1| (-568)))) (-2097 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3593 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3695 (((-112) $) NIL (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3390 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4397 (($ (-656 |#4|)) NIL)) (-2003 (((-3 $ "failed") $) 45)) (-2040 ((|#4| |#4| $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3607 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3586 ((|#4| |#4| $) NIL)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) NIL)) (-3975 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4402 ((|#3| $) 38)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#4|) $) 19 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2822 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 23)) (-2804 (((-656 |#3|) $) NIL)) (-2872 (((-112) |#3| $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3627 (((-3 |#4| "failed") $) 42)) (-3025 (((-656 |#4|) $) NIL)) (-2671 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2978 ((|#4| |#4| $) NIL)) (-1700 (((-112) $ $) NIL)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3350 ((|#4| |#4| $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-3 |#4| "failed") $) 40)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2451 (((-3 $ "failed") $ |#4|) 58)) (-3262 (($ $ |#4|) NIL)) (-1910 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 17)) (-3849 (($) 14)) (-4436 (((-783) $) NIL)) (-3902 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) 13)) (-2610 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 22)) (-4426 (($ $ |#3|) 52)) (-4127 (($ $ |#3|) 54)) (-2693 (($ $) NIL)) (-3668 (($ $ |#3|) NIL)) (-2858 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3506 (((-783) $) NIL (|has| |#3| (-379)))) (-2690 (((-112) $ $) NIL)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2714 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) NIL)) (-2576 (((-112) |#3| $) NIL)) (-3889 (((-112) $ $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-488 |#1| |#2| |#3| |#4|) (-1230 |#1| |#2| |#3| |#4|) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -488))
+NIL
+(-1230 |#1| |#2| |#3| |#4|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4397 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1663 (($) 17)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2610 (((-390) $) 21) (((-227) $) 24) (((-419 (-1192 (-576))) $) 18) (((-548) $) 53)) (-2858 (((-874) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 37 T CONST)) (-2038 (($) 8 T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-489) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))) (-1041) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1192 (-576)))) (-626 (-548)) (-10 -8 (-15 -1663 ($))))) (T -489))
+((-1663 (*1 *1) (-5 *1 (-489))))
+(-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))) (-1041) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1192 (-576)))) (-626 (-548)) (-10 -8 (-15 -1663 ($))))
+((-2835 (((-112) $ $) NIL)) (-3866 (((-1154) $) 11)) (-3854 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-490) (-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))) (T -490))
+((-3854 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))))
+(-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#2| $ |#1| |#2|) 16)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) 20)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 18)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2029 (((-656 |#1|) $) 13)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2928 (((-656 |#1|) $) NIL)) (-1449 (((-112) |#1| $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 19)) (-2099 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 11 (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2845 (((-783) $) 15 (|has| $ (-6 -4462)))))
+(((-491 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119) (-1178)) (T -491))
+NIL
+(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462)))
+((-1949 (((-576) (-576) (-576)) 19)) (-1388 (((-112) (-576) (-576) (-576) (-576)) 28)) (-3877 (((-1287 (-656 (-576))) (-783) (-783)) 41)))
+(((-492) (-10 -7 (-15 -1949 ((-576) (-576) (-576))) (-15 -1388 ((-112) (-576) (-576) (-576) (-576))) (-15 -3877 ((-1287 (-656 (-576))) (-783) (-783))))) (T -492))
+((-3877 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1287 (-656 (-576)))) (-5 *1 (-492)))) (-1388 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-1949 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492)))))
+(-10 -7 (-15 -1949 ((-576) (-576) (-576))) (-15 -1388 ((-112) (-576) (-576) (-576) (-576))) (-15 -3877 ((-1287 (-656 (-576))) (-783) (-783))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-876 |#1|)) $) NIL)) (-3440 (((-1192 $) $ (-876 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2150 (($ $) NIL (|has| |#2| (-568)))) (-2637 (((-112) $) NIL (|has| |#2| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3179 (($ $) NIL (|has| |#2| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2495 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2980 (($ $ (-656 (-576))) NIL)) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#2| (-926)))) (-2611 (($ $ |#2| (-494 (-2845 |#1|) (-783)) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#2|) (-876 |#1|)) NIL) (($ (-1192 $) (-876 |#1|)) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#2| (-494 (-2845 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-876 |#1|)) NIL)) (-4389 (((-494 (-2845 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-4149 (($ (-1 (-494 (-2845 |#1|) (-783)) (-494 (-2845 |#1|) (-783))) $) NIL)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1848 (((-3 (-876 |#1|) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#2| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2273 (-783))) "failed") $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#2| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-3880 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2399 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-4436 (((-494 (-2845 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-494 (-2845 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-493 |#1| |#2|) (-13 (-966 |#2| (-494 (-2845 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2980 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1068)) (T -493))
+((-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1196))) (-4 *4 (-1068)))))
+(-13 (-966 |#2| (-494 (-2845 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -2980 ($ $ (-656 (-576))))))
+((-2835 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3203 (((-112) $) NIL (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2002 (($ (-938)) NIL (|has| |#2| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-1869 (($ $ $) NIL (|has| |#2| (-805)))) (-3161 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#2| (-379)))) (-3028 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1119)))) (-4397 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) NIL (|has| |#2| (-1119)))) (-2085 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1068)))) (-4011 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-2107 (($) NIL (|has| |#2| (-379)))) (-2832 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ (-576)) 11)) (-3975 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL (|has| |#2| (-1068)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#2| (-862)))) (-3531 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#2| (-862)))) (-2822 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#2| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#2| (-1119)))) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-4308 (($ (-938)) NIL (|has| |#2| (-379)))) (-3887 (((-1139) $) NIL (|has| |#2| (-1119)))) (-1989 ((|#2| $) NIL (|has| (-576) (-862)))) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2139 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-2009 (($ (-1287 |#2|)) NIL)) (-4340 (((-135)) NIL (|has| |#2| (-374)))) (-2399 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3902 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1287 |#2|) $) NIL) (($ (-576)) NIL (-3739 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) NIL (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-2981 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-2690 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2714 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2022 (($) NIL (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2038 (($) NIL (|has| |#2| (-1068)) CONST)) (-3404 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3916 (((-112) $ $) 17 (|has| |#2| (-862)))) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3990 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) NIL (|has| |#2| (-1068))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-494 |#1| |#2|) (-243 |#1| |#2|) (-783) (-805)) (T -494))
NIL
(-243 |#1| |#2|)
-((-2859 (((-112) $ $) NIL)) (-2506 (((-655 (-887)) $) 15)) (-1777 (((-517) $) 13)) (-4264 (((-1176) $) NIL)) (-1732 (($ (-517) (-655 (-887))) 11)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 22) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-494) (-13 (-1100) (-10 -8 (-15 -1732 ($ (-517) (-655 (-887)))) (-15 -1777 ((-517) $)) (-15 -2506 ((-655 (-887)) $))))) (T -494))
-((-1732 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-887))) (-5 *1 (-494)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-494)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-655 (-887))) (-5 *1 (-494)))))
-(-13 (-1100) (-10 -8 (-15 -1732 ($ (-517) (-655 (-887)))) (-15 -1777 ((-517) $)) (-15 -2506 ((-655 (-887)) $))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) NIL)) (-3261 (($) NIL T CONST)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-3167 (($ $ $) 48)) (-4167 (($ $ $) 47)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3503 ((|#1| $) 40)) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4030 ((|#1| $) 41)) (-4218 (($ |#1| $) 18)) (-1668 (($ (-655 |#1|)) 19)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3773 ((|#1| $) 34)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 11)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 45)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) 29 (|has| $ (-6 -4460)))))
-(((-495 |#1|) (-13 (-985 |#1|) (-10 -8 (-15 -1668 ($ (-655 |#1|))))) (-861)) (T -495))
-((-1668 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-495 *3)))))
-(-13 (-985 |#1|) (-10 -8 (-15 -1668 ($ (-655 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2302 (($ $) 71)) (-3906 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-4391 (((-424 |#2| (-418 |#2|) |#3| |#4|) $) 45)) (-3912 (((-1137) $) NIL)) (-3657 (((-3 |#4| "failed") $) 117)) (-2389 (($ (-424 |#2| (-418 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-575)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3345 (((-2 (|:| -2051 (-424 |#2| (-418 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2882 (((-873) $) 110)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 32 T CONST)) (-3913 (((-112) $ $) 121)) (-4027 (($ $) 77) (($ $ $) NIL)) (-4015 (($ $ $) 72)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 78)))
-(((-496 |#1| |#2| |#3| |#4|) (-345 |#1| |#2| |#3| |#4|) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -496))
-NIL
-(-345 |#1| |#2| |#3| |#4|)
-((-2703 (((-575) (-655 (-575))) 53)) (-3363 ((|#1| (-655 |#1|)) 94)) (-1545 (((-655 |#1|) (-655 |#1|)) 95)) (-2201 (((-655 |#1|) (-655 |#1|)) 97)) (-3923 ((|#1| (-655 |#1|)) 96)) (-3696 (((-655 (-575)) (-655 |#1|)) 56)))
-(((-497 |#1|) (-10 -7 (-15 -3923 (|#1| (-655 |#1|))) (-15 -3363 (|#1| (-655 |#1|))) (-15 -2201 ((-655 |#1|) (-655 |#1|))) (-15 -1545 ((-655 |#1|) (-655 |#1|))) (-15 -3696 ((-655 (-575)) (-655 |#1|))) (-15 -2703 ((-575) (-655 (-575))))) (-1261 (-575))) (T -497))
-((-2703 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-575)) (-5 *1 (-497 *4)) (-4 *4 (-1261 *2)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1261 (-575))) (-5 *2 (-655 (-575))) (-5 *1 (-497 *4)))) (-1545 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3)))) (-2201 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575))))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575))))))
-(-10 -7 (-15 -3923 (|#1| (-655 |#1|))) (-15 -3363 (|#1| (-655 |#1|))) (-15 -2201 ((-655 |#1|) (-655 |#1|))) (-15 -1545 ((-655 |#1|) (-655 |#1|))) (-15 -3696 ((-655 (-575)) (-655 |#1|))) (-15 -2703 ((-575) (-655 (-575)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-575) $) NIL (|has| (-575) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-575) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-575) (-1055 (-575))))) (-4400 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-575) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| (-575) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-575) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-1721 (((-112) $) NIL (|has| (-575) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-575) (-861)))) (-2544 (($ (-1 (-575) (-575)) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-575) (-1169)) CONST)) (-3277 (($ (-418 (-575))) 9)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) NIL)) (-3920 (((-575) $) NIL (|has| (-575) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-575) $) NIL)) (-2613 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 8) (($ (-575)) NIL) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL) (((-1021 16) $) 10)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 (((-575) $) NIL (|has| (-575) (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| (-575) (-831)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-575) (-861)))) (-4038 (($ $ $) NIL) (($ (-575) (-575)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) NIL) (($ $ (-575)) NIL)))
-(((-498) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 16)) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -3277 ($ (-418 (-575))))))) (T -498))
-((-1931 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498)))) (-3277 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498)))))
-(-13 (-1009 (-575)) (-624 (-418 (-575))) (-624 (-1021 16)) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -3277 ($ (-418 (-575))))))
-((-4252 (((-655 |#2|) $) 31)) (-1322 (((-112) |#2| $) 36)) (-2718 (((-112) (-1 (-112) |#2|) $) 26)) (-3046 (($ $ (-655 (-303 |#2|))) 13) (($ $ (-303 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-655 |#2|) (-655 |#2|)) NIL)) (-3922 (((-782) (-1 (-112) |#2|) $) 30) (((-782) |#2| $) 34)) (-2882 (((-873) $) 45)) (-4121 (((-112) (-1 (-112) |#2|) $) 23)) (-3913 (((-112) $ $) 39)) (-2869 (((-782) $) 18)))
-(((-499 |#1| |#2|) (-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#2| |#2|)) (-15 -3046 (|#1| |#1| (-303 |#2|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -1322 ((-112) |#2| |#1|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -4252 ((-655 |#2|) |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2869 ((-782) |#1|))) (-500 |#2|) (-1235)) (T -499))
-NIL
-(-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#2| |#2|)) (-15 -3046 (|#1| |#1| (-303 |#2|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#2|)))) (-15 -1322 ((-112) |#2| |#1|)) (-15 -3922 ((-782) |#2| |#1|)) (-15 -4252 ((-655 |#2|) |#1|)) (-15 -3922 ((-782) (-1 (-112) |#2|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2869 ((-782) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-500 |#1|) (-141) (-1235)) (T -500))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3)) (-4 *3 (-1235)))) (-2844 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4461)) (-4 *1 (-500 *3)) (-4 *3 (-1235)))) (-4121 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-2718 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-3922 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4)) (-4 *4 (-1235)) (-5 *2 (-782)))) (-3999 (*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))) (-4252 (*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))) (-3922 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-782)))) (-1322 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) (IF (|has| |t#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |t#1| (-1117)) (IF (|has| |t#1| (-318 |t#1|)) (-6 (-318 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2544 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4461)) (-15 -2844 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4460)) (PROGN (-15 -4121 ((-112) (-1 (-112) |t#1|) $)) (-15 -2718 ((-112) (-1 (-112) |t#1|) $)) (-15 -3922 ((-782) (-1 (-112) |t#1|) $)) (-15 -3999 ((-655 |t#1|) $)) (-15 -4252 ((-655 |t#1|) $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -3922 ((-782) |t#1| $)) (-15 -1322 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2882 ((|#1| $) 6) (($ |#1|) 9)))
-(((-501 |#1|) (-141) (-1235)) (T -501))
-NIL
-(-13 (-624 |t#1|) (-627 |t#1|))
-(((-627 |#1|) . T) ((-624 |#1|) . T))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-2059 (($ (-1176)) 8)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 15) (((-1176) $) 12)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 11)))
-(((-502) (-13 (-1117) (-624 (-1176)) (-10 -8 (-15 -2059 ($ (-1176)))))) (T -502))
-((-2059 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-502)))))
-(-13 (-1117) (-624 (-1176)) (-10 -8 (-15 -2059 ($ (-1176)))))
-((-3921 (($ $) 15)) (-3895 (($ $) 24)) (-1521 (($ $) 12)) (-1531 (($ $) 10)) (-3935 (($ $) 17)) (-3907 (($ $) 22)))
-(((-503 |#1|) (-10 -8 (-15 -3907 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3921 (|#1| |#1|))) (-504)) (T -503))
-NIL
-(-10 -8 (-15 -3907 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)))
-((-3921 (($ $) 11)) (-3895 (($ $) 10)) (-1521 (($ $) 9)) (-1531 (($ $) 8)) (-3935 (($ $) 7)) (-3907 (($ $) 6)))
-(((-504) (-141)) (T -504))
-((-3921 (*1 *1 *1) (-4 *1 (-504))) (-3895 (*1 *1 *1) (-4 *1 (-504))) (-1521 (*1 *1 *1) (-4 *1 (-504))) (-1531 (*1 *1 *1) (-4 *1 (-504))) (-3935 (*1 *1 *1) (-4 *1 (-504))) (-3907 (*1 *1 *1) (-4 *1 (-504))))
-(-13 (-10 -8 (-15 -3907 ($ $)) (-15 -3935 ($ $)) (-15 -1531 ($ $)) (-15 -1521 ($ $)) (-15 -3895 ($ $)) (-15 -3921 ($ $))))
-((-2347 (((-429 |#4|) |#4| (-1 (-429 |#2|) |#2|)) 54)))
-(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 |#4|) |#4| (-1 (-429 |#2|) |#2|)))) (-373) (-1261 |#1|) (-13 (-373) (-148) (-735 |#1| |#2|)) (-1261 |#3|)) (T -505))
-((-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-4 *7 (-13 (-373) (-148) (-735 *5 *6))) (-5 *2 (-429 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-1261 *7)))))
-(-10 -7 (-15 -2347 ((-429 |#4|) |#4| (-1 (-429 |#2|) |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2767 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-3088 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-2045 (((-112) $) 39)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1375 (((-112) $ $) 73)) (-4270 (((-655 (-623 $)) $) 50)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1475 (($ $ (-303 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-2467 (($ $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-4285 (((-655 $) (-1190 $) (-1194)) NIL) (((-655 $) (-1190 $)) NIL) (((-655 $) (-967 $)) NIL)) (-3151 (($ (-1190 $) (-1194)) NIL) (($ (-1190 $)) NIL) (($ (-967 $)) NIL)) (-2443 (((-3 (-623 $) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL)) (-4400 (((-623 $) $) NIL) (((-575) $) NIL) (((-418 (-575)) $) 55)) (-2800 (($ $ $) NIL)) (-2862 (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 (-418 (-575)))) (|:| |vec| (-1285 (-418 (-575))))) (-700 $) (-1285 $)) NIL) (((-700 (-418 (-575))) (-700 $)) NIL) (((-700 (-418 (-575))) (-1285 $)) NIL)) (-2302 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-1412 (($ $) NIL) (($ (-655 $)) NIL)) (-4075 (((-655 (-115)) $) NIL)) (-2567 (((-115) (-115)) NIL)) (-3900 (((-112) $) 42)) (-4254 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-1595 (((-1142 (-575) (-623 $)) $) 37)) (-2111 (($ $ (-575)) NIL)) (-3390 (((-1190 $) (-1190 $) (-623 $)) 87) (((-1190 $) (-1190 $) (-655 (-623 $))) 62) (($ $ (-623 $)) 76) (($ $ (-655 (-623 $))) 77)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-4088 (((-1190 $) (-623 $)) 74 (|has| $ (-1066)))) (-2544 (($ (-1 $ $) (-623 $)) NIL)) (-1934 (((-3 (-623 $) "failed") $) NIL)) (-3886 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-2551 (((-655 (-623 $)) $) NIL)) (-1672 (($ (-115) $) NIL) (($ (-115) (-655 $)) NIL)) (-3371 (((-112) $ (-115)) NIL) (((-112) $ (-1194)) NIL)) (-4332 (($ $) NIL)) (-3340 (((-782) $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4284 (((-112) $ $) NIL) (((-112) $ (-1194)) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3095 (((-112) $) NIL (|has| $ (-1055 (-575))))) (-3046 (($ $ (-623 $) $) NIL) (($ $ (-655 (-623 $)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-1194)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-1194) (-1 $ (-655 $))) NIL) (($ $ (-1194) (-1 $ $)) NIL) (($ $ (-655 (-115)) (-655 (-1 $ $))) NIL) (($ $ (-655 (-115)) (-655 (-1 $ (-655 $)))) NIL) (($ $ (-115) (-1 $ (-655 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1720 (((-782) $) NIL)) (-2065 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-655 $)) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-3197 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $) 36) (($ $ (-782)) NIL)) (-1608 (((-1142 (-575) (-623 $)) $) 20)) (-4436 (($ $) NIL (|has| $ (-1066)))) (-2613 (((-389) $) 101) (((-227) $) 109) (((-171 (-389)) $) 117)) (-2882 (((-873) $) NIL) (($ (-623 $)) NIL) (($ (-418 (-575))) NIL) (($ $) NIL) (($ (-575)) NIL) (($ (-1142 (-575) (-623 $))) 21)) (-4421 (((-782)) NIL T CONST)) (-2394 (($ $) NIL) (($ (-655 $)) NIL)) (-1825 (((-112) (-115)) 93)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 10 T CONST)) (-2005 (($) 22 T CONST)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3913 (((-112) $ $) 24)) (-4038 (($ $ $) 44)) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-418 (-575))) NIL) (($ $ (-575)) 48) (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ $ $) 27) (($ (-575) $) NIL) (($ (-782) $) NIL) (($ (-936) $) NIL)))
-(((-506) (-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2882 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2302 ($ $)) (-15 -1375 ((-112) $ $)) (-15 -3390 ((-1190 $) (-1190 $) (-623 $))) (-15 -3390 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -3390 ($ $ (-623 $))) (-15 -3390 ($ $ (-655 (-623 $))))))) (T -506))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506)))) (-2302 (*1 *1 *1) (-5 *1 (-506))) (-1375 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-506)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-623 (-506))) (-5 *1 (-506)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-655 (-623 (-506)))) (-5 *1 (-506)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-623 (-506))) (-5 *1 (-506)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-506)))) (-5 *1 (-506)))))
-(-13 (-311) (-27) (-1055 (-575)) (-1055 (-418 (-575))) (-650 (-575)) (-1039) (-650 (-418 (-575))) (-148) (-625 (-171 (-389))) (-238) (-10 -8 (-15 -2882 ($ (-1142 (-575) (-623 $)))) (-15 -1595 ((-1142 (-575) (-623 $)) $)) (-15 -1608 ((-1142 (-575) (-623 $)) $)) (-15 -2302 ($ $)) (-15 -1375 ((-112) $ $)) (-15 -3390 ((-1190 $) (-1190 $) (-623 $))) (-15 -3390 ((-1190 $) (-1190 $) (-655 (-623 $)))) (-15 -3390 ($ $ (-623 $))) (-15 -3390 ($ $ (-655 (-623 $))))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) |#1|) 44 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 39 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 38)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 21)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 17 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) 41 (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) 15 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 19)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 43) (($ $ (-1252 (-575))) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 24)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) 11 (|has| $ (-6 -4460)))))
-(((-507 |#1| |#2|) (-19 |#1|) (-1235) (-575)) (T -507))
+((-2835 (((-112) $ $) NIL)) (-2513 (((-656 (-888)) $) 15)) (-1811 (((-518) $) 13)) (-2143 (((-1178) $) NIL)) (-3236 (($ (-518) (-656 (-888))) 11)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 22) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-495) (-13 (-1102) (-10 -8 (-15 -3236 ($ (-518) (-656 (-888)))) (-15 -1811 ((-518) $)) (-15 -2513 ((-656 (-888)) $))))) (T -495))
+((-3236 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495)))))
+(-13 (-1102) (-10 -8 (-15 -3236 ($ (-518) (-656 (-888)))) (-15 -1811 ((-518) $)) (-15 -2513 ((-656 (-888)) $))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) NIL)) (-2574 (($) NIL T CONST)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-1932 (($ $ $) 48)) (-3343 (($ $ $) 47)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1492 ((|#1| $) 40)) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2395 ((|#1| $) 41)) (-2329 (($ |#1| $) 18)) (-3711 (($ (-656 |#1|)) 19)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3079 ((|#1| $) 34)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 11)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 45)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) 29 (|has| $ (-6 -4462)))))
+(((-496 |#1|) (-13 (-987 |#1|) (-10 -8 (-15 -3711 ($ (-656 |#1|))))) (-862)) (T -496))
+((-3711 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3)))))
+(-13 (-987 |#1|) (-10 -8 (-15 -3711 ($ (-656 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2326 (($ $) 71)) (-4209 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-4052 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-3887 (((-1139) $) NIL)) (-3633 (((-3 |#4| "failed") $) 117)) (-1875 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2294 (((-2 (|:| -2087 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2858 (((-874) $) 110)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 32 T CONST)) (-3889 (((-112) $ $) 121)) (-4002 (($ $) 77) (($ $ $) NIL)) (-3990 (($ $ $) 72)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78)))
+(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497))
+NIL
+(-346 |#1| |#2| |#3| |#4|)
+((-2961 (((-576) (-656 (-576))) 53)) (-3193 ((|#1| (-656 |#1|)) 94)) (-3949 (((-656 |#1|) (-656 |#1|)) 95)) (-3774 (((-656 |#1|) (-656 |#1|)) 97)) (-3901 ((|#1| (-656 |#1|)) 96)) (-4325 (((-656 (-576)) (-656 |#1|)) 56)))
+(((-498 |#1|) (-10 -7 (-15 -3901 (|#1| (-656 |#1|))) (-15 -3193 (|#1| (-656 |#1|))) (-15 -3774 ((-656 |#1|) (-656 |#1|))) (-15 -3949 ((-656 |#1|) (-656 |#1|))) (-15 -4325 ((-656 (-576)) (-656 |#1|))) (-15 -2961 ((-576) (-656 (-576))))) (-1263 (-576))) (T -498))
+((-2961 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1263 *2)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1263 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))))
+(-10 -7 (-15 -3901 (|#1| (-656 |#1|))) (-15 -3193 (|#1| (-656 |#1|))) (-15 -3774 ((-656 |#1|) (-656 |#1|))) (-15 -3949 ((-656 |#1|) (-656 |#1|))) (-15 -4325 ((-656 (-576)) (-656 |#1|))) (-15 -2961 ((-576) (-656 (-576)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-576) $) NIL (|has| (-576) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-576) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-4397 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-576) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| (-576) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-576) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3196 (((-112) $) NIL (|has| (-576) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-576) (-862)))) (-2548 (($ (-1 (-576) (-576)) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-576) (-1171)) CONST)) (-3583 (($ (-419 (-576))) 9)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3807 (((-576) $) NIL (|has| (-576) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-576) $) NIL)) (-2610 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL) (((-1023 16) $) 10)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 (((-576) $) NIL (|has| (-576) (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| (-576) (-832)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4013 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL)))
+(((-499) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 16)) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -3583 ($ (-419 (-576))))))) (T -499))
+((-3328 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))))
+(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 16)) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -3583 ($ (-419 (-576))))))
+((-3531 (((-656 |#2|) $) 31)) (-3606 (((-112) |#2| $) 36)) (-1910 (((-112) (-1 (-112) |#2|) $) 26)) (-3022 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-3902 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 34)) (-2858 (((-874) $) 45)) (-2714 (((-112) (-1 (-112) |#2|) $) 23)) (-3889 (((-112) $ $) 39)) (-2845 (((-783) $) 18)))
+(((-500 |#1| |#2|) (-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#2| |#2|)) (-15 -3022 (|#1| |#1| (-304 |#2|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3606 ((-112) |#2| |#1|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3531 ((-656 |#2|) |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-783) |#1|))) (-501 |#2|) (-1237)) (T -500))
+NIL
+(-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#2| |#2|)) (-15 -3022 (|#1| |#1| (-304 |#2|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3606 ((-112) |#2| |#1|)) (-15 -3902 ((-783) |#2| |#1|)) (-15 -3531 ((-656 |#2|) |#1|)) (-15 -3902 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-783) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-501 |#1|) (-141) (-1237)) (T -501))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-2822 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-2714 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-1910 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3902 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-783)))) (-3975 (*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3531 (*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3902 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-3606 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |t#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |t#1| (-1119)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2548 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4463)) (-15 -2822 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2714 ((-112) (-1 (-112) |t#1|) $)) (-15 -1910 ((-112) (-1 (-112) |t#1|) $)) (-15 -3902 ((-783) (-1 (-112) |t#1|) $)) (-15 -3975 ((-656 |t#1|) $)) (-15 -3531 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3902 ((-783) |t#1| $)) (-15 -3606 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2858 ((|#1| $) 6) (($ |#1|) 9)))
+(((-502 |#1|) (-141) (-1237)) (T -502))
+NIL
+(-13 (-625 |t#1|) (-628 |t#1|))
+(((-628 |#1|) . T) ((-625 |#1|) . T))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1925 (($ (-1178)) 8)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 15) (((-1178) $) 12)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 11)))
+(((-503) (-13 (-1119) (-625 (-1178)) (-10 -8 (-15 -1925 ($ (-1178)))))) (T -503))
+((-1925 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503)))))
+(-13 (-1119) (-625 (-1178)) (-10 -8 (-15 -1925 ($ (-1178)))))
+((-3897 (($ $) 15)) (-3871 (($ $) 24)) (-1542 (($ $) 12)) (-1553 (($ $) 10)) (-3911 (($ $) 17)) (-3883 (($ $) 22)))
+(((-504 |#1|) (-10 -8 (-15 -3883 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1542 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3897 (|#1| |#1|))) (-505)) (T -504))
+NIL
+(-10 -8 (-15 -3883 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1542 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)))
+((-3897 (($ $) 11)) (-3871 (($ $) 10)) (-1542 (($ $) 9)) (-1553 (($ $) 8)) (-3911 (($ $) 7)) (-3883 (($ $) 6)))
+(((-505) (-141)) (T -505))
+((-3897 (*1 *1 *1) (-4 *1 (-505))) (-3871 (*1 *1 *1) (-4 *1 (-505))) (-1542 (*1 *1 *1) (-4 *1 (-505))) (-1553 (*1 *1 *1) (-4 *1 (-505))) (-3911 (*1 *1 *1) (-4 *1 (-505))) (-3883 (*1 *1 *1) (-4 *1 (-505))))
+(-13 (-10 -8 (-15 -3883 ($ $)) (-15 -3911 ($ $)) (-15 -1553 ($ $)) (-15 -1542 ($ $)) (-15 -3871 ($ $)) (-15 -3897 ($ $))))
+((-2367 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1263 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1263 |#3|)) (T -506))
+((-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7)))))
+(-10 -7 (-15 -2367 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|))))
+((-2835 (((-112) $ $) NIL)) (-2741 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-4437 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-3203 (((-112) $) 39)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-4431 (((-112) $ $) 73)) (-4256 (((-656 (-624 $)) $) 50)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1490 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-2477 (($ $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-1665 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-3968 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-2454 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4397 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-2780 (($ $ $) NIL)) (-2085 (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-701 $) (-1287 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-701 (-419 (-576))) (-1287 $)) NIL)) (-2326 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1739 (($ $) NIL) (($ (-656 $)) NIL)) (-2538 (((-656 (-115)) $) NIL)) (-2569 (((-115) (-115)) NIL)) (-1838 (((-112) $) 42)) (-2531 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-1621 (((-1144 (-576) (-624 $)) $) 37)) (-1404 (($ $ (-576)) NIL)) (-3075 (((-1192 $) (-1192 $) (-624 $)) 87) (((-1192 $) (-1192 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2658 (((-1192 $) (-624 $)) 74 (|has| $ (-1068)))) (-2548 (($ (-1 $ $) (-624 $)) NIL)) (-2412 (((-3 (-624 $) "failed") $) NIL)) (-3862 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-2555 (((-656 (-624 $)) $) NIL)) (-1706 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-2729 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-4324 (($ $) NIL)) (-3317 (((-783) $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2788 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3945 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3022 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3076 (((-783) $) NIL)) (-2099 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-1321 (($ $) NIL) (($ $ $) NIL)) (-2399 (($ $) 36) (($ $ (-783)) NIL)) (-1635 (((-1144 (-576) (-624 $)) $) 20)) (-1953 (($ $) NIL (|has| $ (-1068)))) (-2610 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-2858 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1144 (-576) (-624 $))) 21)) (-2981 (((-783)) NIL T CONST)) (-2435 (($ $) NIL) (($ (-656 $)) NIL)) (-3410 (((-112) (-115)) 93)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 10 T CONST)) (-2038 (($) 22 T CONST)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3889 (((-112) $ $) 24)) (-4013 (($ $ $) 44)) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL)))
+(((-507) (-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -2858 ($ (-1144 (-576) (-624 $)))) (-15 -1621 ((-1144 (-576) (-624 $)) $)) (-15 -1635 ((-1144 (-576) (-624 $)) $)) (-15 -2326 ($ $)) (-15 -4431 ((-112) $ $)) (-15 -3075 ((-1192 $) (-1192 $) (-624 $))) (-15 -3075 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -3075 ($ $ (-624 $))) (-15 -3075 ($ $ (-656 (-624 $))))))) (T -507))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2326 (*1 *1 *1) (-5 *1 (-507))) (-4431 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-3075 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-3075 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))))
+(-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -2858 ($ (-1144 (-576) (-624 $)))) (-15 -1621 ((-1144 (-576) (-624 $)) $)) (-15 -1635 ((-1144 (-576) (-624 $)) $)) (-15 -2326 ($ $)) (-15 -4431 ((-112) $ $)) (-15 -3075 ((-1192 $) (-1192 $) (-624 $))) (-15 -3075 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -3075 ($ $ (-624 $))) (-15 -3075 ($ $ (-656 (-624 $))))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 38)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 21)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 17 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) 41 (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) 15 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 19)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1254 (-576))) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 24)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) 11 (|has| $ (-6 -4462)))))
+(((-508 |#1| |#2|) (-19 |#1|) (-1237) (-576)) (T -508))
NIL
(-19 |#1|)
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2657 (($ $ (-575) (-507 |#1| |#3|)) NIL)) (-1471 (($ $ (-575) (-507 |#1| |#2|)) NIL)) (-3261 (($) NIL T CONST)) (-2320 (((-507 |#1| |#3|) $ (-575)) NIL)) (-2857 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2786 ((|#1| $ (-575) (-575)) NIL)) (-3999 (((-655 |#1|) $) NIL)) (-4243 (((-782) $) NIL)) (-2303 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-4274 (((-575) $) NIL)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3093 (((-575) $) NIL)) (-4180 (((-575) $) NIL)) (-2844 (($ (-1 |#1| |#1|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2324 (((-507 |#1| |#2|) $ (-575)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-508 |#1| |#2| |#3|) (-57 |#1| (-507 |#1| |#3|) (-507 |#1| |#2|)) (-1235) (-575) (-575)) (T -508))
-NIL
-(-57 |#1| (-507 |#1| |#3|) (-507 |#1| |#2|))
-((-3204 (((-655 (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-782) (-782)) 32)) (-4188 (((-655 (-1190 |#1|)) |#1| (-782) (-782) (-782)) 43)) (-4238 (((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-655 |#3|) (-655 (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-782)) 107)))
-(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -4188 ((-655 (-1190 |#1|)) |#1| (-782) (-782) (-782))) (-15 -3204 ((-655 (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-782) (-782))) (-15 -4238 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-655 |#3|) (-655 (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-782)))) (-359) (-1261 |#1|) (-1261 |#2|)) (T -509))
-((-4238 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-2 (|:| -2098 (-700 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-700 *7))))) (-5 *5 (-782)) (-4 *8 (-1261 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-359)) (-5 *2 (-2 (|:| -2098 (-700 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-700 *7)))) (-5 *1 (-509 *6 *7 *8)))) (-3204 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-782)) (-4 *5 (-359)) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -2098 (-700 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-700 *6))))) (-5 *1 (-509 *5 *6 *7)) (-5 *3 (-2 (|:| -2098 (-700 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-700 *6)))) (-4 *7 (-1261 *6)))) (-4188 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-782)) (-4 *3 (-359)) (-4 *5 (-1261 *3)) (-5 *2 (-655 (-1190 *3))) (-5 *1 (-509 *3 *5 *6)) (-4 *6 (-1261 *5)))))
-(-10 -7 (-15 -4188 ((-655 (-1190 |#1|)) |#1| (-782) (-782) (-782))) (-15 -3204 ((-655 (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-782) (-782))) (-15 -4238 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) (-655 |#3|) (-655 (-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) (-782))))
-((-2826 (((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))) 70)) (-1466 ((|#1| (-700 |#1|) |#1| (-782)) 24)) (-2100 (((-782) (-782) (-782)) 34)) (-3909 (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 50)) (-2344 (((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|) 58) (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 55)) (-1948 ((|#1| (-700 |#1|) (-700 |#1|) |#1| (-575)) 28)) (-4128 ((|#1| (-700 |#1|)) 18)))
-(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -4128 (|#1| (-700 |#1|))) (-15 -1466 (|#1| (-700 |#1|) |#1| (-782))) (-15 -1948 (|#1| (-700 |#1|) (-700 |#1|) |#1| (-575))) (-15 -2100 ((-782) (-782) (-782))) (-15 -2344 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2344 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -3909 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2826 ((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|)))))) (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))) (-1261 |#1|) (-420 |#1| |#2|)) (T -510))
-((-2826 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-3909 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2344 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2344 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-2100 (*1 *2 *2 *2) (-12 (-5 *2 (-782)) (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))) (-1948 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-700 *2)) (-5 *4 (-575)) (-4 *2 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5)))) (-1466 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-700 *2)) (-5 *4 (-782)) (-4 *2 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-700 *2)) (-4 *4 (-1261 *2)) (-4 *2 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $))))) (-5 *1 (-510 *2 *4 *5)) (-4 *5 (-420 *2 *4)))))
-(-10 -7 (-15 -4128 (|#1| (-700 |#1|))) (-15 -1466 (|#1| (-700 |#1|) |#1| (-782))) (-15 -1948 (|#1| (-700 |#1|) (-700 |#1|) |#1| (-575))) (-15 -2100 ((-782) (-782) (-782))) (-15 -2344 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2344 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -3909 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2826 ((-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))) (-2 (|:| -2098 (-700 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-700 |#1|))))))
-((-2859 (((-112) $ $) NIL)) (-2877 (($ $) NIL)) (-1964 (($ $ $) 40)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) $) NIL (|has| (-112) (-861))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3175 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-861)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2025 (($ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3052 (((-112) $ (-1252 (-575)) (-112)) NIL (|has| $ (-6 -4461))) (((-112) $ (-575) (-112)) 42 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-3631 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2302 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2857 (((-112) $ (-575) (-112)) NIL (|has| $ (-6 -4461)))) (-2786 (((-112) $ (-575)) NIL)) (-2630 (((-575) (-112) $ (-575)) NIL (|has| (-112) (-1117))) (((-575) (-112) $) NIL (|has| (-112) (-1117))) (((-575) (-1 (-112) (-112)) $) NIL)) (-3999 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-3236 (($ $ $) 38)) (-3213 (($ $) NIL)) (-3768 (($ $ $) NIL)) (-2303 (($ (-782) (-112)) 27)) (-3891 (($ $ $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 8 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL)) (-4167 (($ $ $) NIL (|has| (-112) (-861))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4252 (((-655 (-112)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL)) (-2844 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-2129 (($ $ $ (-575)) NIL) (($ (-112) $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-112) $) NIL (|has| (-575) (-861)))) (-1540 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1652 (($ $ (-112)) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-112)) (-655 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-303 (-112))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117)))) (($ $ (-655 (-303 (-112)))) NIL (-12 (|has| (-112) (-318 (-112))) (|has| (-112) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117))))) (-2697 (((-655 (-112)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 28)) (-2065 (($ $ (-1252 (-575))) NIL) (((-112) $ (-575)) 22) (((-112) $ (-575) (-112)) NIL)) (-3237 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3922 (((-782) (-112) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-112) (-1117)))) (((-782) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) 29)) (-2613 (((-547) $) NIL (|has| (-112) (-625 (-547))))) (-2893 (($ (-655 (-112))) NIL)) (-1513 (($ (-655 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2882 (((-873) $) 26)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4460)))) (-3224 (($ $ $) 36)) (-2920 (($ $ $) NIL)) (-2910 (($ $ $) 45)) (-2921 (($ $) 43)) (-2898 (($ $ $) 44)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 30)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 31)) (-2909 (($ $ $) NIL)) (-2869 (((-782) $) 13 (|has| $ (-6 -4460)))))
-(((-511 |#1|) (-13 (-124) (-10 -8 (-15 -2921 ($ $)) (-15 -2910 ($ $ $)) (-15 -2898 ($ $ $)))) (-575)) (T -511))
-((-2921 (*1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) (-2910 (*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))) (-2898 (*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575)))))
-(-13 (-124) (-10 -8 (-15 -2921 ($ $)) (-15 -2910 ($ $ $)) (-15 -2898 ($ $ $))))
-((-1415 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1190 |#4|)) 35)) (-3147 (((-1190 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1190 |#4|)) 22)) (-1960 (((-3 (-700 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-700 (-1190 |#4|))) 46)) (-3136 (((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3147 (|#2| (-1 |#1| |#4|) (-1190 |#4|))) (-15 -3147 ((-1190 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1415 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1190 |#4|))) (-15 -1960 ((-3 (-700 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-700 (-1190 |#4|)))) (-15 -3136 ((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|))) (-1066) (-1261 |#1|) (-1261 |#2|) (-1066)) (T -512))
-((-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *6 (-1261 *5)) (-5 *2 (-1190 (-1190 *7))) (-5 *1 (-512 *5 *6 *4 *7)) (-4 *4 (-1261 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-700 (-1190 *8))) (-4 *5 (-1066)) (-4 *8 (-1066)) (-4 *6 (-1261 *5)) (-5 *2 (-700 *6)) (-5 *1 (-512 *5 *6 *7 *8)) (-4 *7 (-1261 *6)))) (-1415 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-512 *5 *2 *6 *7)) (-4 *6 (-1261 *2)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *4 (-1261 *5)) (-5 *2 (-1190 *7)) (-5 *1 (-512 *5 *4 *6 *7)) (-4 *6 (-1261 *4)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-512 *5 *2 *6 *7)) (-4 *6 (-1261 *2)))))
-(-10 -7 (-15 -3147 (|#2| (-1 |#1| |#4|) (-1190 |#4|))) (-15 -3147 ((-1190 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1415 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1190 |#4|))) (-15 -1960 ((-3 (-700 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-700 (-1190 |#4|)))) (-15 -3136 ((-1190 (-1190 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2859 (((-112) $ $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3411 (((-1290) $) 25)) (-2065 (((-1176) $ (-1194)) 30)) (-2478 (((-1290) $) 17)) (-2882 (((-873) $) 27) (($ (-1176)) 26)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 11)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 9)))
-(((-513) (-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $)) (-15 -2882 ($ (-1176)))))) (T -513))
-((-2065 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1176)) (-5 *1 (-513)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-513)))))
-(-13 (-861) (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $)) (-15 -3411 ((-1290) $)) (-15 -2882 ($ (-1176)))))
-((-1657 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2693 ((|#1| |#4|) 10)) (-3439 ((|#3| |#4|) 17)))
-(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 (|#1| |#4|)) (-15 -3439 (|#3| |#4|)) (-15 -1657 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-567) (-1009 |#1|) (-383 |#1|) (-383 |#2|)) (T -514))
-((-1657 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *6 (-383 *4)) (-4 *3 (-383 *5)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-4 *2 (-383 *4)) (-5 *1 (-514 *4 *5 *2 *3)) (-4 *3 (-383 *5)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *5 (-383 *2)) (-4 *3 (-383 *4)))))
-(-10 -7 (-15 -2693 (|#1| |#4|)) (-15 -3439 (|#3| |#4|)) (-15 -1657 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2859 (((-112) $ $) NIL)) (-4120 (((-112) $ (-655 |#3|)) 126) (((-112) $) 127)) (-2045 (((-112) $) 178)) (-2573 (($ $ |#4|) 117) (($ $ |#4| (-655 |#3|)) 121)) (-2215 (((-1183 (-655 (-967 |#1|)) (-655 (-303 (-967 |#1|)))) (-655 |#4|)) 171 (|has| |#3| (-625 (-1194))))) (-3262 (($ $ $) 107) (($ $ |#4|) 105)) (-3900 (((-112) $) 177)) (-1675 (($ $) 131)) (-4264 (((-1176) $) NIL)) (-1872 (($ $ $) 99) (($ (-655 $)) 101)) (-4420 (((-112) |#4| $) 129)) (-1329 (((-112) $ $) 82)) (-4391 (($ (-655 |#4|)) 106)) (-3912 (((-1137) $) NIL)) (-4256 (($ (-655 |#4|)) 175)) (-3756 (((-112) $) 176)) (-1956 (($ $) 85)) (-3969 (((-655 |#4|) $) 73)) (-1485 (((-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)) $ (-655 |#3|)) NIL)) (-1536 (((-112) |#4| $) 89)) (-1605 (((-575) $ (-655 |#3|)) 133) (((-575) $) 134)) (-2882 (((-873) $) 174) (($ (-655 |#4|)) 102)) (-3685 (((-112) $ $) NIL)) (-4119 (($ (-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $))) NIL)) (-3913 (((-112) $ $) 84)) (-4015 (($ $ $) 109)) (** (($ $ (-782)) 115)) (* (($ $ $) 113)))
-(((-515 |#1| |#2| |#3| |#4|) (-13 (-1117) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 -4015 ($ $ $)) (-15 -3900 ((-112) $)) (-15 -2045 ((-112) $)) (-15 -1536 ((-112) |#4| $)) (-15 -1329 ((-112) $ $)) (-15 -4420 ((-112) |#4| $)) (-15 -4120 ((-112) $ (-655 |#3|))) (-15 -4120 ((-112) $)) (-15 -1872 ($ $ $)) (-15 -1872 ($ (-655 $))) (-15 -3262 ($ $ $)) (-15 -3262 ($ $ |#4|)) (-15 -1956 ($ $)) (-15 -1485 ((-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)) $ (-655 |#3|))) (-15 -4119 ($ (-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)))) (-15 -1605 ((-575) $ (-655 |#3|))) (-15 -1605 ((-575) $)) (-15 -1675 ($ $)) (-15 -4391 ($ (-655 |#4|))) (-15 -4256 ($ (-655 |#4|))) (-15 -3756 ((-112) $)) (-15 -3969 ((-655 |#4|) $)) (-15 -2882 ($ (-655 |#4|))) (-15 -2573 ($ $ |#4|)) (-15 -2573 ($ $ |#4| (-655 |#3|))) (IF (|has| |#3| (-625 (-1194))) (-15 -2215 ((-1183 (-655 (-967 |#1|)) (-655 (-303 (-967 |#1|)))) (-655 |#4|))) |%noBranch|))) (-373) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -515))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-4015 (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-3900 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-2045 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-1536 (*1 *2 *3 *1) (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-1329 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-4420 (*1 *2 *3 *1) (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))) (-4120 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-4120 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-1872 (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-1872 (*1 *1 *2) (-12 (-5 *2 (-655 (-515 *3 *4 *5 *6))) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-3262 (*1 *1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-3262 (*1 *1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) (-1956 (*1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-1485 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 (-2 (|:| |mval| (-700 *4)) (|:| |invmval| (-700 *4)) (|:| |genIdeal| (-515 *4 *5 *6 *7)))) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-700 *3)) (|:| |invmval| (-700 *3)) (|:| |genIdeal| (-515 *3 *4 *5 *6)))) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-1605 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *2 (-575)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))) (-1605 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-1675 (*1 *1 *1) (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861)) (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-4391 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) (-4256 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) (-3756 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-3969 (*1 *2 *1) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *6)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))) (-2573 (*1 *1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))) (-2573 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804)) (-5 *1 (-515 *4 *5 *6 *2)) (-4 *2 (-964 *4 *5 *6)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *6 (-625 (-1194))) (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1183 (-655 (-967 *4)) (-655 (-303 (-967 *4))))) (-5 *1 (-515 *4 *5 *6 *7)))))
-(-13 (-1117) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 -4015 ($ $ $)) (-15 -3900 ((-112) $)) (-15 -2045 ((-112) $)) (-15 -1536 ((-112) |#4| $)) (-15 -1329 ((-112) $ $)) (-15 -4420 ((-112) |#4| $)) (-15 -4120 ((-112) $ (-655 |#3|))) (-15 -4120 ((-112) $)) (-15 -1872 ($ $ $)) (-15 -1872 ($ (-655 $))) (-15 -3262 ($ $ $)) (-15 -3262 ($ $ |#4|)) (-15 -1956 ($ $)) (-15 -1485 ((-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)) $ (-655 |#3|))) (-15 -4119 ($ (-2 (|:| |mval| (-700 |#1|)) (|:| |invmval| (-700 |#1|)) (|:| |genIdeal| $)))) (-15 -1605 ((-575) $ (-655 |#3|))) (-15 -1605 ((-575) $)) (-15 -1675 ($ $)) (-15 -4391 ($ (-655 |#4|))) (-15 -4256 ($ (-655 |#4|))) (-15 -3756 ((-112) $)) (-15 -3969 ((-655 |#4|) $)) (-15 -2882 ($ (-655 |#4|))) (-15 -2573 ($ $ |#4|)) (-15 -2573 ($ $ |#4| (-655 |#3|))) (IF (|has| |#3| (-625 (-1194))) (-15 -2215 ((-1183 (-655 (-967 |#1|)) (-655 (-303 (-967 |#1|)))) (-655 |#4|))) |%noBranch|)))
-((-4141 (((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 176)) (-4076 (((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 177)) (-2687 (((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 129)) (-3559 (((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) NIL)) (-4357 (((-655 (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) 179)) (-1505 (((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-655 (-875 |#1|))) 195)))
-(((-516 |#1| |#2|) (-10 -7 (-15 -4141 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -4076 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -3559 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2687 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -4357 ((-655 (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -1505 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-655 (-875 |#1|))))) (-655 (-1194)) (-782)) (T -516))
-((-1505 (*1 *2 *2 *3) (-12 (-5 *2 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-5 *3 (-655 (-875 *4))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *1 (-516 *4 *5)))) (-4357 (*1 *2 *3) (-12 (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-655 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575)))))) (-5 *1 (-516 *4 *5)) (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))))) (-2687 (*1 *2 *2) (-12 (-5 *2 (-515 (-418 (-575)) (-245 *4 (-782)) (-875 *3) (-252 *3 (-418 (-575))))) (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-516 *3 *4)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4) (-252 *4 (-418 (-575))))) (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5)))))
-(-10 -7 (-15 -4141 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -4076 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -3559 ((-112) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -2687 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -4357 ((-655 (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575))))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))))) (-15 -1505 ((-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-515 (-418 (-575)) (-245 |#2| (-782)) (-875 |#1|) (-252 |#1| (-418 (-575)))) (-655 (-875 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2933 (($) 6)) (-2882 (((-873) $) 12) (((-1194) $) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 8)))
-(((-517) (-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -2933 ($))))) (T -517))
-((-2933 (*1 *1) (-5 *1 (-517))))
-(-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -2933 ($))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2414 (($ |#1| |#2|) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4166 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 12 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) 11) (($ $ $) 35)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 21)))
-(((-518 |#1| |#2|) (-13 (-21) (-520 |#1| |#2|)) (-21) (-861)) (T -518))
-NIL
-(-13 (-21) (-520 |#1| |#2|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 13)) (-3261 (($) NIL T CONST)) (-4406 (($ $) 41)) (-2414 (($ |#1| |#2|) 38)) (-2544 (($ (-1 |#1| |#1|) $) 40)) (-4166 ((|#2| $) NIL)) (-4383 ((|#1| $) 42)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 10 T CONST)) (-3913 (((-112) $ $) NIL)) (-4015 (($ $ $) 26)) (* (($ (-936) $) NIL) (($ (-782) $) 36)))
-(((-519 |#1| |#2|) (-13 (-23) (-520 |#1| |#2|)) (-23) (-861)) (T -519))
-NIL
-(-13 (-23) (-520 |#1| |#2|))
-((-2859 (((-112) $ $) 7)) (-4406 (($ $) 14)) (-2414 (($ |#1| |#2|) 17)) (-2544 (($ (-1 |#1| |#1|) $) 18)) (-4166 ((|#2| $) 15)) (-4383 ((|#1| $) 16)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-520 |#1| |#2|) (-141) (-1117) (-861)) (T -520))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-520 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-861)))) (-2414 (*1 *1 *2 *3) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1117)))) (-4166 (*1 *2 *1) (-12 (-4 *1 (-520 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-861)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861)))))
-(-13 (-1117) (-10 -8 (-15 -2544 ($ (-1 |t#1| |t#1|) $)) (-15 -2414 ($ |t#1| |t#2|)) (-15 -4383 (|t#1| $)) (-15 -4166 (|t#2| $)) (-15 -4406 ($ $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2414 (($ |#1| |#2|) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4166 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 22)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL)))
-(((-521 |#1| |#2|) (-13 (-803) (-520 |#1| |#2|)) (-803) (-861)) (T -521))
-NIL
-(-13 (-803) (-520 |#1| |#2|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3081 (($ $ $) 23)) (-1708 (((-3 $ "failed") $ $) 19)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2414 (($ |#1| |#2|) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4166 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL)))
-(((-522 |#1| |#2|) (-13 (-804) (-520 |#1| |#2|)) (-804) (-861)) (T -522))
-NIL
-(-13 (-804) (-520 |#1| |#2|))
-((-2859 (((-112) $ $) NIL)) (-4406 (($ $) 32)) (-2414 (($ |#1| |#2|) 28)) (-2544 (($ (-1 |#1| |#1|) $) 30)) (-4166 ((|#2| $) 34)) (-4383 ((|#1| $) 33)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 27)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 20)))
-(((-523 |#1| |#2|) (-520 |#1| |#2|) (-1117) (-861)) (T -523))
-NIL
-(-520 |#1| |#2|)
-((-3046 (($ $ (-655 |#2|) (-655 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-524 |#1| |#2| |#3|) (-10 -8 (-15 -3046 (|#1| |#1| |#2| |#3|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#3|)))) (-525 |#2| |#3|) (-1117) (-1235)) (T -524))
-NIL
-(-10 -8 (-15 -3046 (|#1| |#1| |#2| |#3|)) (-15 -3046 (|#1| |#1| (-655 |#2|) (-655 |#3|))))
-((-3046 (($ $ (-655 |#1|) (-655 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-525 |#1| |#2|) (-141) (-1117) (-1235)) (T -525))
-((-3046 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *5)) (-4 *1 (-525 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1235)))) (-3046 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-525 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1235)))))
-(-13 (-10 -8 (-15 -3046 ($ $ |t#1| |t#2|)) (-15 -3046 ($ $ (-655 |t#1|) (-655 |t#2|)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 17)) (-3149 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))) $) 19)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2409 (((-782) $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-2834 ((|#1| $ (-575)) 24)) (-3385 ((|#2| $ (-575)) 22)) (-1335 (($ (-1 |#1| |#1|) $) 48)) (-2560 (($ (-1 |#2| |#2|) $) 45)) (-4264 (((-1176) $) NIL)) (-4336 (($ $ $) 55 (|has| |#2| (-803)))) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 44) (($ |#1|) NIL)) (-3002 ((|#2| |#1| $) 51)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 11 T CONST)) (-3913 (((-112) $ $) 30)) (-4015 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-936) $) NIL) (($ (-782) $) 37) (($ |#2| |#1|) 32)))
-(((-526 |#1| |#2| |#3|) (-332 |#1| |#2|) (-1117) (-132) |#2|) (T -526))
-NIL
-(-332 |#1| |#2|)
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-4268 (((-112) (-112)) 32)) (-3052 ((|#1| $ (-575) |#1|) 42 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) |#1|) $) 77)) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-1413 (($ $) 81 (|has| |#1| (-1117)))) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) 64)) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-2474 (($ $ (-575)) 19)) (-2106 (((-782) $) 13)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 31)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 29 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) 28 (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4218 (($ $ $ (-575)) 73) (($ |#1| $ (-575)) 57)) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2872 (($ (-655 |#1|)) 43)) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) 24 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 60)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 21)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 53) (($ $ (-1252 (-575))) NIL)) (-3997 (($ $ (-1252 (-575))) 71) (($ $ (-575)) 65)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) 61 (|has| $ (-6 -4461)))) (-3076 (($ $) 51)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) NIL)) (-3357 (($ $ $) 62) (($ $ |#1|) 59)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) 22 (|has| $ (-6 -4460)))))
-(((-527 |#1| |#2|) (-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2872 ($ (-655 |#1|))) (-15 -2106 ((-782) $)) (-15 -2474 ($ $ (-575))) (-15 -4268 ((-112) (-112))))) (-1235) (-575)) (T -527))
-((-2872 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-527 *3 *4)) (-14 *4 (-575)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 (-575)))) (-2474 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 *2))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 (-575)))))
-(-13 (-19 |#1|) (-291 |#1|) (-10 -8 (-15 -2872 ($ (-655 |#1|))) (-15 -2106 ((-782) $)) (-15 -2474 ($ $ (-575))) (-15 -4268 ((-112) (-112)))))
-((-2859 (((-112) $ $) NIL)) (-4295 (((-1152) $) 11)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1696 (((-1152) $) 13)) (-3686 (((-1152) $) 9)) (-2882 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-528) (-13 (-1100) (-10 -8 (-15 -3686 ((-1152) $)) (-15 -4295 ((-1152) $)) (-15 -1696 ((-1152) $))))) (T -528))
-((-3686 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))))
-(-13 (-1100) (-10 -8 (-15 -3686 ((-1152) $)) (-15 -4295 ((-1152) $)) (-15 -1696 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 (((-592 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-592 |#1|) (-378)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL (|has| (-592 |#1|) (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-592 |#1|) "failed") $) NIL)) (-4400 (((-592 |#1|) $) NIL)) (-3898 (($ (-1285 (-592 |#1|))) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-592 |#1|) (-378)))) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-592 |#1|) (-378)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL (|has| (-592 |#1|) (-378)))) (-3228 (((-112) $) NIL (|has| (-592 |#1|) (-378)))) (-2457 (($ $ (-782)) NIL (-3763 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378)))) (($ $) NIL (-3763 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-3559 (((-112) $) NIL)) (-3369 (((-936) $) NIL (|has| (-592 |#1|) (-378))) (((-844 (-936)) $) NIL (-3763 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| (-592 |#1|) (-378)))) (-2313 (((-112) $) NIL (|has| (-592 |#1|) (-378)))) (-3390 (((-592 |#1|) $) NIL) (($ $ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-2808 (((-3 $ "failed") $) NIL (|has| (-592 |#1|) (-378)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 (-592 |#1|)) $) NIL) (((-1190 $) $ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-1894 (((-936) $) NIL (|has| (-592 |#1|) (-378)))) (-2815 (((-1190 (-592 |#1|)) $) NIL (|has| (-592 |#1|) (-378)))) (-3388 (((-1190 (-592 |#1|)) $) NIL (|has| (-592 |#1|) (-378))) (((-3 (-1190 (-592 |#1|)) "failed") $ $) NIL (|has| (-592 |#1|) (-378)))) (-2281 (($ $ (-1190 (-592 |#1|))) NIL (|has| (-592 |#1|) (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-592 |#1|) (-378)) CONST)) (-4317 (($ (-936)) NIL (|has| (-592 |#1|) (-378)))) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3657 (($) NIL (|has| (-592 |#1|) (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-592 |#1|) (-378)))) (-2347 (((-429 $) $) NIL)) (-2113 (((-844 (-936))) NIL) (((-936)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-782) $) NIL (|has| (-592 |#1|) (-378))) (((-3 (-782) "failed") $ $) NIL (-3763 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-1605 (((-135)) NIL)) (-2382 (($ $ (-782)) NIL (|has| (-592 |#1|) (-378))) (($ $) NIL (|has| (-592 |#1|) (-378)))) (-1753 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-4436 (((-1190 (-592 |#1|))) NIL)) (-1847 (($) NIL (|has| (-592 |#1|) (-378)))) (-1908 (($) NIL (|has| (-592 |#1|) (-378)))) (-2209 (((-1285 (-592 |#1|)) $) NIL) (((-700 (-592 |#1|)) (-1285 $)) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-592 |#1|) (-378)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-592 |#1|)) NIL)) (-1724 (($ $) NIL (|has| (-592 |#1|) (-378))) (((-3 $ "failed") $) NIL (-3763 (|has| (-592 |#1|) (-146)) (|has| (-592 |#1|) (-378))))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL) (((-1285 $) (-936)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $) NIL (|has| (-592 |#1|) (-378))) (($ $ (-782)) NIL (|has| (-592 |#1|) (-378)))) (-3428 (($ $ (-782)) NIL (|has| (-592 |#1|) (-378))) (($ $) NIL (|has| (-592 |#1|) (-378)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL) (($ $ (-592 |#1|)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-592 |#1|)) NIL) (($ (-592 |#1|) $) NIL)))
-(((-529 |#1| |#2|) (-338 (-592 |#1|)) (-936) (-936)) (T -529))
-NIL
-(-338 (-592 |#1|))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) (-575) |#1|) 51)) (-2657 (($ $ (-575) |#4|) NIL)) (-1471 (($ $ (-575) |#5|) NIL)) (-3261 (($) NIL T CONST)) (-2320 ((|#4| $ (-575)) NIL)) (-2857 ((|#1| $ (-575) (-575) |#1|) 50)) (-2786 ((|#1| $ (-575) (-575)) 45)) (-3999 (((-655 |#1|) $) NIL)) (-4243 (((-782) $) 33)) (-2303 (($ (-782) (-782) |#1|) 30)) (-4255 (((-782) $) 38)) (-3541 (((-112) $ (-782)) NIL)) (-4274 (((-575) $) 31)) (-1477 (((-575) $) 32)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3093 (((-575) $) 37)) (-4180 (((-575) $) 39)) (-2844 (($ (-1 |#1| |#1|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) 55 (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 14)) (-1393 (($) 16)) (-2065 ((|#1| $ (-575) (-575)) 48) ((|#1| $ (-575) (-575) |#1|) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2324 ((|#5| $ (-575)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-530 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1235) (-575) (-575) (-383 |#1|) (-383 |#1|)) (T -530))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3029 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-4405 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-2574 (($) NIL T CONST)) (-3475 (((-508 |#1| |#3|) $ (-576)) NIL)) (-2832 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2767 ((|#1| $ (-576) (-576)) NIL)) (-3975 (((-656 |#1|) $) NIL)) (-4227 (((-783) $) NIL)) (-2327 (($ (-783) (-783) |#1|) NIL)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2923 (((-576) $) NIL)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3698 (((-576) $) NIL)) (-2171 (((-576) $) NIL)) (-2822 (($ (-1 |#1| |#1|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-3146 (((-508 |#1| |#2|) $ (-576)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1237) (-576) (-576)) (T -509))
+NIL
+(-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|))
+((-3913 (((-656 (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-1470 (((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-3567 (((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107)))
+(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -1470 ((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783))) (-15 -3913 ((-656 (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3567 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1263 |#1|) (-1263 |#2|)) (T -510))
+((-3567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -4261 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -4261 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-3913 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -4261 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -4261 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1263 *6)))) (-1470 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1263 *3)) (-5 *2 (-656 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1263 *5)))))
+(-10 -7 (-15 -1470 ((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783))) (-15 -3913 ((-656 (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -3567 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783))))
+((-2289 (((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-2152 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-1329 (((-783) (-783) (-783)) 34)) (-4435 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-3270 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-4399 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-2123 ((|#1| (-701 |#1|)) 18)))
+(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2123 (|#1| (-701 |#1|))) (-15 -2152 (|#1| (-701 |#1|) |#1| (-783))) (-15 -4399 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -1329 ((-783) (-783) (-783))) (-15 -3270 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3270 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4435 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2289 ((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))) (-1263 |#1|) (-421 |#1| |#2|)) (T -511))
+((-2289 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4435 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3270 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3270 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1329 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4399 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2152 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1263 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))))
+(-10 -7 (-15 -2123 (|#1| (-701 |#1|))) (-15 -2152 (|#1| (-701 |#1|) |#1| (-783))) (-15 -4399 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -1329 ((-783) (-783) (-783))) (-15 -3270 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3270 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -4435 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2289 ((-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -4261 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))))
+((-2835 (((-112) $ $) NIL)) (-2856 (($ $) NIL)) (-1998 (($ $ $) 40)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1426 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2059 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3028 (((-112) $ (-1254 (-576)) (-112)) NIL (|has| $ (-6 -4463))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3607 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2326 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2832 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4463)))) (-2767 (((-112) $ (-576)) NIL)) (-2627 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1119))) (((-576) (-112) $) NIL (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3975 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-3212 (($ $ $) 38)) (-3189 (($ $) NIL)) (-3863 (($ $ $) NIL)) (-2327 (($ (-783) (-112)) 27)) (-3476 (($ $ $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 8 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL)) (-3343 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3531 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL)) (-2822 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-2163 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-112) $) NIL (|has| (-576) (-862)))) (-3557 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-4040 (($ $ (-112)) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3584 (((-656 (-112)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 28)) (-2099 (($ $ (-1254 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3213 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3902 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) 29)) (-2610 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-2869 (($ (-656 (-112))) NIL)) (-1534 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2858 (((-874) $) 26)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3200 (($ $ $) 36)) (-2899 (($ $ $) NIL)) (-2886 (($ $ $) 45)) (-2897 (($ $) 43)) (-2874 (($ $ $) 44)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 30)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 31)) (-2885 (($ $ $) NIL)) (-2845 (((-783) $) 13 (|has| $ (-6 -4462)))))
+(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -2897 ($ $)) (-15 -2886 ($ $ $)) (-15 -2874 ($ $ $)))) (-576)) (T -512))
+((-2897 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2886 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-2874 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))))
+(-13 (-124) (-10 -8 (-15 -2897 ($ $)) (-15 -2886 ($ $ $)) (-15 -2874 ($ $ $))))
+((-2469 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|)) 35)) (-3555 (((-1192 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1192 |#4|)) 22)) (-3221 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|))) 46)) (-1826 (((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3555 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -3555 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2469 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|))) (-15 -3221 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|)))) (-15 -1826 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|))) (-1068) (-1263 |#1|) (-1263 |#2|) (-1068)) (T -513))
+((-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6)))) (-3221 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1192 *8))) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-1263 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1263 *6)))) (-2469 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *4 (-1263 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1263 *4)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))))
+(-10 -7 (-15 -3555 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -3555 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2469 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|))) (-15 -3221 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|)))) (-15 -1826 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2835 (((-112) $ $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2720 (((-1292) $) 25)) (-2099 (((-1178) $ (-1196)) 30)) (-2486 (((-1292) $) 17)) (-2858 (((-874) $) 27) (($ (-1178)) 26)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 11)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 9)))
+(((-514) (-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $)) (-15 -2858 ($ (-1178)))))) (T -514))
+((-2099 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-514)))))
+(-13 (-862) (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $)) (-15 -2720 ((-1292) $)) (-15 -2858 ($ (-1178)))))
+((-3363 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4414 ((|#1| |#4|) 10)) (-1432 ((|#3| |#4|) 17)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4414 (|#1| |#4|)) (-15 -1432 (|#3| |#4|)) (-15 -3363 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1011 |#1|) (-384 |#1|) (-384 |#2|)) (T -515))
+((-3363 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-1432 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-4414 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))))
+(-10 -7 (-15 -4414 (|#1| |#4|)) (-15 -1432 (|#3| |#4|)) (-15 -3363 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2835 (((-112) $ $) NIL)) (-2626 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-3203 (((-112) $) 178)) (-2765 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-2733 (((-1185 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1196))))) (-2647 (($ $ $) 107) (($ $ |#4|) 105)) (-1838 (((-112) $) 177)) (-4124 (($ $) 131)) (-2143 (((-1178) $) NIL)) (-3310 (($ $ $) 99) (($ (-656 $)) 101)) (-4083 (((-112) |#4| $) 129)) (-1595 (((-112) $ $) 82)) (-4052 (($ (-656 |#4|)) 106)) (-3887 (((-1139) $) NIL)) (-2624 (($ (-656 |#4|)) 175)) (-4265 (((-112) $) 176)) (-3966 (($ $) 85)) (-3190 (((-656 |#4|) $) 73)) (-4186 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-1485 (((-112) |#4| $) 89)) (-4340 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-2858 (((-874) $) 174) (($ (-656 |#4|)) 102)) (-2690 (((-112) $ $) NIL)) (-2518 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-3889 (((-112) $ $) 84)) (-3990 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113)))
+(((-516 |#1| |#2| |#3| |#4|) (-13 (-1119) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3990 ($ $ $)) (-15 -1838 ((-112) $)) (-15 -3203 ((-112) $)) (-15 -1485 ((-112) |#4| $)) (-15 -1595 ((-112) $ $)) (-15 -4083 ((-112) |#4| $)) (-15 -2626 ((-112) $ (-656 |#3|))) (-15 -2626 ((-112) $)) (-15 -3310 ($ $ $)) (-15 -3310 ($ (-656 $))) (-15 -2647 ($ $ $)) (-15 -2647 ($ $ |#4|)) (-15 -3966 ($ $)) (-15 -4186 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2518 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -4340 ((-576) $ (-656 |#3|))) (-15 -4340 ((-576) $)) (-15 -4124 ($ $)) (-15 -4052 ($ (-656 |#4|))) (-15 -2624 ($ (-656 |#4|))) (-15 -4265 ((-112) $)) (-15 -3190 ((-656 |#4|) $)) (-15 -2858 ($ (-656 |#4|))) (-15 -2765 ($ $ |#4|)) (-15 -2765 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1196))) (-15 -2733 ((-1185 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -516))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3990 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-1838 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1485 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-4083 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-2626 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3310 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-2647 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-2647 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-3966 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-4186 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-2518 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-4340 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-4340 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-4124 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-4265 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2765 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-2765 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-966 *4 *5 *6)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *6 (-626 (-1196))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1185 (-656 (-969 *4)) (-656 (-304 (-969 *4))))) (-5 *1 (-516 *4 *5 *6 *7)))))
+(-13 (-1119) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3990 ($ $ $)) (-15 -1838 ((-112) $)) (-15 -3203 ((-112) $)) (-15 -1485 ((-112) |#4| $)) (-15 -1595 ((-112) $ $)) (-15 -4083 ((-112) |#4| $)) (-15 -2626 ((-112) $ (-656 |#3|))) (-15 -2626 ((-112) $)) (-15 -3310 ($ $ $)) (-15 -3310 ($ (-656 $))) (-15 -2647 ($ $ $)) (-15 -2647 ($ $ |#4|)) (-15 -3966 ($ $)) (-15 -4186 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2518 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -4340 ((-576) $ (-656 |#3|))) (-15 -4340 ((-576) $)) (-15 -4124 ($ $)) (-15 -4052 ($ (-656 |#4|))) (-15 -2624 ($ (-656 |#4|))) (-15 -4265 ((-112) $)) (-15 -3190 ((-656 |#4|) $)) (-15 -2858 ($ (-656 |#4|))) (-15 -2765 ($ $ |#4|)) (-15 -2765 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1196))) (-15 -2733 ((-1185 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|))) |%noBranch|)))
+((-3939 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2661 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-2677 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-3011 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-3981 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2612 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))) 195)))
+(((-517 |#1| |#2|) (-10 -7 (-15 -3939 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2661 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3011 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2677 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3981 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2612 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) (-656 (-1196)) (-783)) (T -517))
+((-2612 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-876 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))))
+(-10 -7 (-15 -3939 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2661 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3011 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2677 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3981 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2612 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3217 (($) 6)) (-2858 (((-874) $) 12) (((-1196) $) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 8)))
+(((-518) (-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -3217 ($))))) (T -518))
+((-3217 (*1 *1) (-5 *1 (-518))))
+(-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -3217 ($))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-2428 (($ |#1| |#2|) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3230 ((|#2| $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 12 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) 11) (($ $ $) 35)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21)))
+(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-862)) (T -519))
+NIL
+(-13 (-21) (-521 |#1| |#2|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 13)) (-2574 (($) NIL T CONST)) (-4404 (($ $) 41)) (-2428 (($ |#1| |#2|) 38)) (-2548 (($ (-1 |#1| |#1|) $) 40)) (-3230 ((|#2| $) NIL)) (-4379 ((|#1| $) 42)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 10 T CONST)) (-3889 (((-112) $ $) NIL)) (-3990 (($ $ $) 26)) (* (($ (-938) $) NIL) (($ (-783) $) 36)))
+(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-862)) (T -520))
+NIL
+(-13 (-23) (-521 |#1| |#2|))
+((-2835 (((-112) $ $) 7)) (-4404 (($ $) 14)) (-2428 (($ |#1| |#2|) 17)) (-2548 (($ (-1 |#1| |#1|) $) 18)) (-3230 ((|#2| $) 15)) (-4379 ((|#1| $) 16)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-521 |#1| |#2|) (-141) (-1119) (-862)) (T -521))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-862)))) (-2428 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1119)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-862)))) (-4404 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))))
+(-13 (-1119) (-10 -8 (-15 -2548 ($ (-1 |t#1| |t#1|) $)) (-15 -2428 ($ |t#1| |t#2|)) (-15 -4379 (|t#1| $)) (-15 -3230 (|t#2| $)) (-15 -4404 ($ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-2428 (($ |#1| |#2|) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3230 ((|#2| $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 22)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL)))
+(((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-862)) (T -522))
+NIL
+(-13 (-804) (-521 |#1| |#2|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1869 (($ $ $) 23)) (-3161 (((-3 $ "failed") $ $) 19)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-2428 (($ |#1| |#2|) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3230 ((|#2| $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL)))
+(((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-862)) (T -523))
+NIL
+(-13 (-805) (-521 |#1| |#2|))
+((-2835 (((-112) $ $) NIL)) (-4404 (($ $) 32)) (-2428 (($ |#1| |#2|) 28)) (-2548 (($ (-1 |#1| |#1|) $) 30)) (-3230 ((|#2| $) 34)) (-4379 ((|#1| $) 33)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 27)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 20)))
+(((-524 |#1| |#2|) (-521 |#1| |#2|) (-1119) (-862)) (T -524))
+NIL
+(-521 |#1| |#2|)
+((-3022 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3022 (|#1| |#1| |#2| |#3|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1119) (-1237)) (T -525))
+NIL
+(-10 -8 (-15 -3022 (|#1| |#1| |#2| |#3|)) (-15 -3022 (|#1| |#1| (-656 |#2|) (-656 |#3|))))
+((-3022 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-526 |#1| |#2|) (-141) (-1119) (-1237)) (T -526))
+((-3022 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1237)))) (-3022 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1237)))))
+(-13 (-10 -8 (-15 -3022 ($ $ |t#1| |t#2|)) (-15 -3022 ($ $ (-656 |t#1|) (-656 |t#2|)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 17)) (-3754 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $) 19)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2422 (((-783) $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-3601 ((|#1| $ (-576)) 24)) (-3646 ((|#2| $ (-576)) 22)) (-2124 (($ (-1 |#1| |#1|) $) 48)) (-3124 (($ (-1 |#2| |#2|) $) 45)) (-2143 (((-1178) $) NIL)) (-2467 (($ $ $) 55 (|has| |#2| (-804)))) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 44) (($ |#1|) NIL)) (-4417 ((|#2| |#1| $) 51)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 11 T CONST)) (-3889 (((-112) $ $) 30)) (-3990 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-938) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32)))
+(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1119) (-132) |#2|) (T -527))
+NIL
+(-333 |#1| |#2|)
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-4395 (((-112) (-112)) 32)) (-3028 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) |#1|) $) 77)) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3444 (($ $) 81 (|has| |#1| (-1119)))) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) 64)) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-1348 (($ $ (-576)) 19)) (-2173 (((-783) $) 13)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 31)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 29 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1932 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) 28 (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2329 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2865 (($ (-656 |#1|)) 43)) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) 24 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 60)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 21)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1254 (-576))) NIL)) (-3804 (($ $ (-1254 (-576))) 71) (($ $ (-576)) 65)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) 61 (|has| $ (-6 -4463)))) (-3052 (($ $) 51)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) NIL)) (-3925 (($ $ $) 62) (($ $ |#1|) 59)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) 22 (|has| $ (-6 -4462)))))
+(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2865 ($ (-656 |#1|))) (-15 -2173 ((-783) $)) (-15 -1348 ($ $ (-576))) (-15 -4395 ((-112) (-112))))) (-1237) (-576)) (T -528))
+((-2865 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-576)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2))) (-4395 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-576)))))
+(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -2865 ($ (-656 |#1|))) (-15 -2173 ((-783) $)) (-15 -1348 ($ $ (-576))) (-15 -4395 ((-112) (-112)))))
+((-2835 (((-112) $ $) NIL)) (-1322 (((-1154) $) 11)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4233 (((-1154) $) 13)) (-3662 (((-1154) $) 9)) (-2858 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-529) (-13 (-1102) (-10 -8 (-15 -3662 ((-1154) $)) (-15 -1322 ((-1154) $)) (-15 -4233 ((-1154) $))))) (T -529))
+((-3662 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-4233 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))))
+(-13 (-1102) (-10 -8 (-15 -3662 ((-1154) $)) (-15 -1322 ((-1154) $)) (-15 -4233 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 (((-593 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-593 |#1|) "failed") $) NIL)) (-4397 (((-593 |#1|) $) NIL)) (-2876 (($ (-1287 (-593 |#1|))) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-593 |#1|) (-379)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL (|has| (-593 |#1|) (-379)))) (-4429 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2244 (($ $ (-783)) NIL (-3739 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-3739 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3011 (((-112) $) NIL)) (-2620 (((-938) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-938)) $) NIL (-3739 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| (-593 |#1|) (-379)))) (-3776 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3075 (((-593 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-3397 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 (-593 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-1654 (((-938) $) NIL (|has| (-593 |#1|) (-379)))) (-2533 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-4003 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1192 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-4007 (($ $ (-1192 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-4308 (($ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-3633 (($) NIL (|has| (-593 |#1|) (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-2367 (((-430 $) $) NIL)) (-1651 (((-845 (-938))) NIL) (((-938)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3739 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4340 (((-135)) NIL)) (-2399 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-4436 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1953 (((-1192 (-593 |#1|))) NIL)) (-1861 (($) NIL (|has| (-593 |#1|) (-379)))) (-2496 (($) NIL (|has| (-593 |#1|) (-379)))) (-3392 (((-1287 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1287 $)) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3689 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3739 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-3404 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL)))
+(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-938) (-938)) (T -530))
+NIL
+(-339 (-593 |#1|))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) (-576) |#1|) 51)) (-3029 (($ $ (-576) |#4|) NIL)) (-4405 (($ $ (-576) |#5|) NIL)) (-2574 (($) NIL T CONST)) (-3475 ((|#4| $ (-576)) NIL)) (-2832 ((|#1| $ (-576) (-576) |#1|) 50)) (-2767 ((|#1| $ (-576) (-576)) 45)) (-3975 (((-656 |#1|) $) NIL)) (-4227 (((-783) $) 33)) (-2327 (($ (-783) (-783) |#1|) 30)) (-4240 (((-783) $) 38)) (-3639 (((-112) $ (-783)) NIL)) (-2923 (((-576) $) 31)) (-1637 (((-576) $) 32)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3698 (((-576) $) 37)) (-2171 (((-576) $) 39)) (-2822 (($ (-1 |#1| |#1|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) 55 (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 14)) (-3849 (($) 16)) (-2099 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-3146 ((|#5| $ (-576)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1237) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531))
NIL
(-57 |#1| |#4| |#5|)
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) NIL)) (-2987 ((|#1| $) NIL)) (-3460 (($ $) NIL)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) 70 (|has| $ (-6 -4461)))) (-1905 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3175 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4461)))) (-2025 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-2089 (($ $ $) 23 (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) 21 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4461))) (($ $ "rest" $) 24 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) |#1|) $) NIL)) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2975 ((|#1| $) NIL)) (-3261 (($) NIL T CONST)) (-3086 (($ $) 28 (|has| $ (-6 -4461)))) (-4380 (($ $) 29)) (-1969 (($ $) 18) (($ $ (-782)) 32)) (-1413 (($ $) 62 (|has| |#1| (-1117)))) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3631 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2335 (((-112) $) NIL)) (-2630 (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117))) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) NIL)) (-3999 (((-655 |#1|) $) 27 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 31 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-4167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (($ |#1|) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) NIL)) (-4264 (((-1176) $) 58 (|has| |#1| (-1117)))) (-3651 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-4218 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2129 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) 13) (($ $ (-782)) NIL)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-4213 (((-112) $) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 12)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) 17)) (-1393 (($) 16)) (-2065 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) NIL) ((|#1| $ (-575) |#1|) NIL)) (-1816 (((-575) $ $) NIL)) (-3997 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3237 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3482 (((-112) $) 35)) (-3247 (($ $) NIL)) (-1774 (($ $) NIL (|has| $ (-6 -4461)))) (-3984 (((-782) $) NIL)) (-1431 (($ $) 40)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) 36)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 26)) (-3357 (($ $ $) 61) (($ $ |#1|) NIL)) (-1513 (($ $ $) NIL) (($ |#1| $) 10) (($ (-655 $)) NIL) (($ $ |#1|) NIL)) (-2882 (((-873) $) 50 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) 54 (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) 9 (|has| $ (-6 -4460)))))
-(((-531 |#1| |#2|) (-677 |#1|) (-1235) (-575)) (T -531))
-NIL
-(-677 |#1|)
-((-3699 ((|#4| |#4|) 38)) (-4422 (((-782) |#4|) 44)) (-3202 (((-782) |#4|) 45)) (-3216 (((-655 |#3|) |#4|) 55 (|has| |#3| (-6 -4461)))) (-1729 (((-3 |#4| "failed") |#4|) 67)) (-3737 ((|#4| |#4|) 59)) (-4029 ((|#1| |#4|) 58)))
-(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3699 (|#4| |#4|)) (-15 -4422 ((-782) |#4|)) (-15 -3202 ((-782) |#4|)) (IF (|has| |#3| (-6 -4461)) (-15 -3216 ((-655 |#3|) |#4|)) |%noBranch|) (-15 -4029 (|#1| |#4|)) (-15 -3737 (|#4| |#4|)) (-15 -1729 ((-3 |#4| "failed") |#4|))) (-373) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -532))
-((-1729 (*1 *2 *2) (|partial| -12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-373)) (-5 *1 (-532 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) (-3216 (*1 *2 *3) (-12 (|has| *6 (-6 -4461)) (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3699 (*1 *2 *2) (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(-10 -7 (-15 -3699 (|#4| |#4|)) (-15 -4422 ((-782) |#4|)) (-15 -3202 ((-782) |#4|)) (IF (|has| |#3| (-6 -4461)) (-15 -3216 ((-655 |#3|) |#4|)) |%noBranch|) (-15 -4029 (|#1| |#4|)) (-15 -3737 (|#4| |#4|)) (-15 -1729 ((-3 |#4| "failed") |#4|)))
-((-3699 ((|#8| |#4|) 20)) (-3216 (((-655 |#3|) |#4|) 29 (|has| |#7| (-6 -4461)))) (-1729 (((-3 |#8| "failed") |#4|) 23)))
-(((-533 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3699 (|#8| |#4|)) (-15 -1729 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4461)) (-15 -3216 ((-655 |#3|) |#4|)) |%noBranch|)) (-567) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|) (-1009 |#1|) (-383 |#5|) (-383 |#5|) (-698 |#5| |#6| |#7|)) (T -533))
-((-3216 (*1 *2 *3) (-12 (|has| *9 (-6 -4461)) (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *8 (-383 *7)) (-4 *9 (-383 *7)) (-5 *2 (-655 *6)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-698 *4 *5 *6)) (-4 *10 (-698 *7 *8 *9)))) (-1729 (*1 *2 *3) (|partial| -12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6)) (-4 *8 (-383 *7)) (-4 *9 (-383 *7)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9)) (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6)) (-4 *8 (-383 *7)) (-4 *9 (-383 *7)))))
-(-10 -7 (-15 -3699 (|#8| |#4|)) (-15 -1729 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4461)) (-15 -3216 ((-655 |#3|) |#4|)) |%noBranch|))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2878 (($ (-782) (-782)) NIL)) (-2564 (($ $ $) NIL)) (-3153 (($ (-613 |#1| |#3|)) NIL) (($ $) NIL)) (-3684 (((-112) $) NIL)) (-3246 (($ $ (-575) (-575)) 21)) (-1926 (($ $ (-575) (-575)) NIL)) (-2766 (($ $ (-575) (-575) (-575) (-575)) NIL)) (-1370 (($ $) NIL)) (-1938 (((-112) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2198 (($ $ (-575) (-575) $) NIL)) (-3052 ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) NIL)) (-2657 (($ $ (-575) (-613 |#1| |#3|)) NIL)) (-1471 (($ $ (-575) (-613 |#1| |#2|)) NIL)) (-1890 (($ (-782) |#1|) NIL)) (-3261 (($) NIL T CONST)) (-3699 (($ $) 30 (|has| |#1| (-316)))) (-2320 (((-613 |#1| |#3|) $ (-575)) NIL)) (-4422 (((-782) $) 33 (|has| |#1| (-567)))) (-2857 ((|#1| $ (-575) (-575) |#1|) NIL)) (-2786 ((|#1| $ (-575) (-575)) NIL)) (-3999 (((-655 |#1|) $) NIL)) (-3202 (((-782) $) 35 (|has| |#1| (-567)))) (-3216 (((-655 (-613 |#1| |#2|)) $) 38 (|has| |#1| (-567)))) (-4243 (((-782) $) NIL)) (-2303 (($ (-782) (-782) |#1|) NIL)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2314 ((|#1| $) 28 (|has| |#1| (-6 (-4462 "*"))))) (-4274 (((-575) $) 10)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3093 (((-575) $) 13)) (-4180 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#1|))) NIL)) (-2844 (($ (-1 |#1| |#1|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3194 (((-655 (-655 |#1|)) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-1729 (((-3 $ "failed") $) 42 (|has| |#1| (-373)))) (-3231 (($ $ $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575))) NIL)) (-2377 (($ (-655 |#1|)) NIL) (($ (-655 $)) NIL)) (-1940 (((-112) $) NIL)) (-4029 ((|#1| $) 26 (|has| |#1| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2324 (((-613 |#1| |#2|) $ (-575)) NIL)) (-2882 (($ (-613 |#1| |#2|)) NIL) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3229 (((-112) $) NIL)) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-575) $) NIL) (((-613 |#1| |#2|) $ (-613 |#1| |#2|)) NIL) (((-613 |#1| |#3|) (-613 |#1| |#3|) $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-534 |#1| |#2| |#3|) (-698 |#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) (-1066) (-575) (-575)) (T -534))
-NIL
-(-698 |#1| (-613 |#1| |#3|) (-613 |#1| |#2|))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3032 (((-655 (-1234)) $) 13)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL) (($ (-655 (-1234))) 11)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-535) (-13 (-1100) (-10 -8 (-15 -2882 ($ (-655 (-1234)))) (-15 -3032 ((-655 (-1234)) $))))) (T -535))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535)))))
-(-13 (-1100) (-10 -8 (-15 -2882 ($ (-655 (-1234)))) (-15 -3032 ((-655 (-1234)) $))))
-((-2859 (((-112) $ $) NIL)) (-1878 (((-1152) $) 14)) (-4264 (((-1176) $) NIL)) (-1785 (((-517) $) 11)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 21) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-536) (-13 (-1100) (-10 -8 (-15 -1785 ((-517) $)) (-15 -1878 ((-1152) $))))) (T -536))
-((-1785 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-536)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
-(-13 (-1100) (-10 -8 (-15 -1785 ((-517) $)) (-15 -1878 ((-1152) $))))
-((-2139 (((-702 (-1243)) $) 15)) (-1843 (((-702 (-1241)) $) 38)) (-3017 (((-702 (-1240)) $) 29)) (-3597 (((-702 (-560)) $) 12)) (-2896 (((-702 (-558)) $) 42)) (-2689 (((-702 (-557)) $) 33)) (-2825 (((-782) $ (-129)) 54)))
-(((-537 |#1|) (-10 -8 (-15 -2825 ((-782) |#1| (-129))) (-15 -1843 ((-702 (-1241)) |#1|)) (-15 -2896 ((-702 (-558)) |#1|)) (-15 -3017 ((-702 (-1240)) |#1|)) (-15 -2689 ((-702 (-557)) |#1|)) (-15 -2139 ((-702 (-1243)) |#1|)) (-15 -3597 ((-702 (-560)) |#1|))) (-538)) (T -537))
-NIL
-(-10 -8 (-15 -2825 ((-782) |#1| (-129))) (-15 -1843 ((-702 (-1241)) |#1|)) (-15 -2896 ((-702 (-558)) |#1|)) (-15 -3017 ((-702 (-1240)) |#1|)) (-15 -2689 ((-702 (-557)) |#1|)) (-15 -2139 ((-702 (-1243)) |#1|)) (-15 -3597 ((-702 (-560)) |#1|)))
-((-2139 (((-702 (-1243)) $) 12)) (-1843 (((-702 (-1241)) $) 8)) (-3017 (((-702 (-1240)) $) 10)) (-3597 (((-702 (-560)) $) 13)) (-2896 (((-702 (-558)) $) 9)) (-2689 (((-702 (-557)) $) 11)) (-2825 (((-782) $ (-129)) 7)) (-2661 (((-702 (-130)) $) 14)) (-3265 (($ $) 6)))
-(((-538) (-141)) (T -538))
-((-2661 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-130))))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-560))))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1243))))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-557))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1240))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-558))))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1241))))) (-2825 (*1 *2 *1 *3) (-12 (-4 *1 (-538)) (-5 *3 (-129)) (-5 *2 (-782)))))
-(-13 (-175) (-10 -8 (-15 -2661 ((-702 (-130)) $)) (-15 -3597 ((-702 (-560)) $)) (-15 -2139 ((-702 (-1243)) $)) (-15 -2689 ((-702 (-557)) $)) (-15 -3017 ((-702 (-1240)) $)) (-15 -2896 ((-702 (-558)) $)) (-15 -1843 ((-702 (-1241)) $)) (-15 -2825 ((-782) $ (-129)))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) NIL)) (-2963 ((|#1| $) NIL)) (-3436 (($ $) NIL)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) 70 (|has| $ (-6 -4463)))) (-3429 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1426 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4463)))) (-2059 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2744 (($ $ $) 23 (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) 21 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4463))) (($ $ "rest" $) 24 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) |#1|) $) NIL)) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2951 ((|#1| $) NIL)) (-2574 (($) NIL T CONST)) (-2338 (($ $) 28 (|has| $ (-6 -4463)))) (-4374 (($ $) 29)) (-2003 (($ $) 18) (($ $ (-783)) 32)) (-3444 (($ $) 62 (|has| |#1| (-1119)))) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3607 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2225 (((-112) $) NIL)) (-2627 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3975 (((-656 |#1|) $) 27 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 31 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1932 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3343 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1718 (($ |#1|) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) NIL)) (-2143 (((-1178) $) 58 (|has| |#1| (-1119)))) (-3627 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2329 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2163 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) 13) (($ $ (-783)) NIL)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3137 (((-112) $) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 12)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) 17)) (-3849 (($) 16)) (-2099 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3599 (((-576) $ $) NIL)) (-3804 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3213 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2133 (((-112) $) 35)) (-3579 (($ $) NIL)) (-2604 (($ $) NIL (|has| $ (-6 -4463)))) (-1836 (((-783) $) NIL)) (-1668 (($ $) 40)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) 36)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 26)) (-3925 (($ $ $) 61) (($ $ |#1|) NIL)) (-1534 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2858 (((-874) $) 50 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) 54 (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) 9 (|has| $ (-6 -4462)))))
+(((-532 |#1| |#2|) (-678 |#1|) (-1237) (-576)) (T -532))
+NIL
+(-678 |#1|)
+((-1607 ((|#4| |#4|) 38)) (-4422 (((-783) |#4|) 44)) (-3664 (((-783) |#4|) 45)) (-2732 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4463)))) (-2975 (((-3 |#4| "failed") |#4|) 67)) (-3446 ((|#4| |#4|) 59)) (-3497 ((|#1| |#4|) 58)))
+(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1607 (|#4| |#4|)) (-15 -4422 ((-783) |#4|)) (-15 -3664 ((-783) |#4|)) (IF (|has| |#3| (-6 -4463)) (-15 -2732 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -3497 (|#1| |#4|)) (-15 -3446 (|#4| |#4|)) (-15 -2975 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533))
+((-2975 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3497 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2732 (*1 *2 *3) (-12 (|has| *6 (-6 -4463)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3664 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(-10 -7 (-15 -1607 (|#4| |#4|)) (-15 -4422 ((-783) |#4|)) (-15 -3664 ((-783) |#4|)) (IF (|has| |#3| (-6 -4463)) (-15 -2732 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -3497 (|#1| |#4|)) (-15 -3446 (|#4| |#4|)) (-15 -2975 ((-3 |#4| "failed") |#4|)))
+((-1607 ((|#8| |#4|) 20)) (-2732 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4463)))) (-2975 (((-3 |#8| "failed") |#4|) 23)))
+(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1607 (|#8| |#4|)) (-15 -2975 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4463)) (-15 -2732 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1011 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534))
+((-2732 (*1 *2 *3) (-12 (|has| *9 (-6 -4463)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-2975 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))))
+(-10 -7 (-15 -1607 (|#8| |#4|)) (-15 -2975 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4463)) (-15 -2732 ((-656 |#3|) |#4|)) |%noBranch|))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2854 (($ (-783) (-783)) NIL)) (-2346 (($ $ $) NIL)) (-2948 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-2561 (((-112) $) NIL)) (-1581 (($ $ (-576) (-576)) 21)) (-3982 (($ $ (-576) (-576)) NIL)) (-2652 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3879 (($ $) NIL)) (-1625 (((-112) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3592 (($ $ (-576) (-576) $) NIL)) (-3028 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3029 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-4405 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-4351 (($ (-783) |#1|) NIL)) (-2574 (($) NIL T CONST)) (-1607 (($ $) 30 (|has| |#1| (-317)))) (-3475 (((-614 |#1| |#3|) $ (-576)) NIL)) (-4422 (((-783) $) 33 (|has| |#1| (-568)))) (-2832 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2767 ((|#1| $ (-576) (-576)) NIL)) (-3975 (((-656 |#1|) $) NIL)) (-3664 (((-783) $) 35 (|has| |#1| (-568)))) (-2732 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-4227 (((-783) $) NIL)) (-2327 (($ (-783) (-783) |#1|) NIL)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-3891 ((|#1| $) 28 (|has| |#1| (-6 (-4464 "*"))))) (-2923 (((-576) $) 10)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3698 (((-576) $) 13)) (-2171 (((-576) $) NIL)) (-4307 (($ (-656 (-656 |#1|))) NIL)) (-2822 (($ (-1 |#1| |#1|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4101 (((-656 (-656 |#1|)) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2975 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-1498 (($ $ $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-3245 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-1856 (((-112) $) NIL)) (-3497 ((|#1| $) 26 (|has| |#1| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-3146 (((-614 |#1| |#2|) $ (-576)) NIL)) (-2858 (($ (-614 |#1| |#2|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1402 (((-112) $) NIL)) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1068) (-576) (-576)) (T -535))
+NIL
+(-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-4264 (((-656 (-1236)) $) 13)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL) (($ (-656 (-1236))) 11)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-536) (-13 (-1102) (-10 -8 (-15 -2858 ($ (-656 (-1236)))) (-15 -4264 ((-656 (-1236)) $))))) (T -536))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))))
+(-13 (-1102) (-10 -8 (-15 -2858 ($ (-656 (-1236)))) (-15 -4264 ((-656 (-1236)) $))))
+((-2835 (((-112) $ $) NIL)) (-2596 (((-1154) $) 14)) (-2143 (((-1178) $) NIL)) (-4216 (((-518) $) 11)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 21) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-537) (-13 (-1102) (-10 -8 (-15 -4216 ((-518) $)) (-15 -2596 ((-1154) $))))) (T -537))
+((-4216 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-537)))))
+(-13 (-1102) (-10 -8 (-15 -4216 ((-518) $)) (-15 -2596 ((-1154) $))))
+((-2633 (((-703 (-1245)) $) 15)) (-1349 (((-703 (-1243)) $) 38)) (-2314 (((-703 (-1242)) $) 29)) (-3354 (((-703 (-561)) $) 12)) (-4373 (((-703 (-559)) $) 42)) (-2167 (((-703 (-558)) $) 33)) (-2156 (((-783) $ (-129)) 54)))
+(((-538 |#1|) (-10 -8 (-15 -2156 ((-783) |#1| (-129))) (-15 -1349 ((-703 (-1243)) |#1|)) (-15 -4373 ((-703 (-559)) |#1|)) (-15 -2314 ((-703 (-1242)) |#1|)) (-15 -2167 ((-703 (-558)) |#1|)) (-15 -2633 ((-703 (-1245)) |#1|)) (-15 -3354 ((-703 (-561)) |#1|))) (-539)) (T -538))
+NIL
+(-10 -8 (-15 -2156 ((-783) |#1| (-129))) (-15 -1349 ((-703 (-1243)) |#1|)) (-15 -4373 ((-703 (-559)) |#1|)) (-15 -2314 ((-703 (-1242)) |#1|)) (-15 -2167 ((-703 (-558)) |#1|)) (-15 -2633 ((-703 (-1245)) |#1|)) (-15 -3354 ((-703 (-561)) |#1|)))
+((-2633 (((-703 (-1245)) $) 12)) (-1349 (((-703 (-1243)) $) 8)) (-2314 (((-703 (-1242)) $) 10)) (-3354 (((-703 (-561)) $) 13)) (-4373 (((-703 (-559)) $) 9)) (-2167 (((-703 (-558)) $) 11)) (-2156 (((-783) $ (-129)) 7)) (-3379 (((-703 (-130)) $) 14)) (-1723 (($ $) 6)))
+(((-539) (-141)) (T -539))
+((-3379 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1245))))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))) (-4373 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-1349 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-2156 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(-13 (-175) (-10 -8 (-15 -3379 ((-703 (-130)) $)) (-15 -3354 ((-703 (-561)) $)) (-15 -2633 ((-703 (-1245)) $)) (-15 -2167 ((-703 (-558)) $)) (-15 -2314 ((-703 (-1242)) $)) (-15 -4373 ((-703 (-559)) $)) (-15 -1349 ((-703 (-1243)) $)) (-15 -2156 ((-783) $ (-129)))))
(((-175) . T))
-((-1346 (((-1190 |#1|) (-782)) 115)) (-1448 (((-1285 |#1|) (-1285 |#1|) (-936)) 108)) (-3333 (((-1290) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) |#1|) 123)) (-3317 (((-1285 |#1|) (-1285 |#1|) (-782)) 53)) (-2073 (((-1285 |#1|) (-936)) 110)) (-3366 (((-1285 |#1|) (-1285 |#1|) (-575)) 30)) (-4408 (((-1190 |#1|) (-1285 |#1|)) 116)) (-2772 (((-1285 |#1|) (-936)) 137)) (-2313 (((-112) (-1285 |#1|)) 120)) (-3390 (((-1285 |#1|) (-1285 |#1|) (-936)) 100)) (-3977 (((-1190 |#1|) (-1285 |#1|)) 131)) (-1894 (((-936) (-1285 |#1|)) 96)) (-4332 (((-1285 |#1|) (-1285 |#1|)) 38)) (-4317 (((-1285 |#1|) (-936) (-936)) 140)) (-3368 (((-1285 |#1|) (-1285 |#1|) (-1137) (-1137)) 29)) (-2289 (((-1285 |#1|) (-1285 |#1|) (-782) (-1137)) 54)) (-2098 (((-1285 (-1285 |#1|)) (-936)) 136)) (-4038 (((-1285 |#1|) (-1285 |#1|) (-1285 |#1|)) 121)) (** (((-1285 |#1|) (-1285 |#1|) (-575)) 67)) (* (((-1285 |#1|) (-1285 |#1|) (-1285 |#1|)) 31)))
-(((-539 |#1|) (-10 -7 (-15 -3333 ((-1290) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) |#1|)) (-15 -2073 ((-1285 |#1|) (-936))) (-15 -4317 ((-1285 |#1|) (-936) (-936))) (-15 -4408 ((-1190 |#1|) (-1285 |#1|))) (-15 -1346 ((-1190 |#1|) (-782))) (-15 -2289 ((-1285 |#1|) (-1285 |#1|) (-782) (-1137))) (-15 -3317 ((-1285 |#1|) (-1285 |#1|) (-782))) (-15 -3368 ((-1285 |#1|) (-1285 |#1|) (-1137) (-1137))) (-15 -3366 ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 ** ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 * ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -4038 ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -3390 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -1448 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -4332 ((-1285 |#1|) (-1285 |#1|))) (-15 -1894 ((-936) (-1285 |#1|))) (-15 -2313 ((-112) (-1285 |#1|))) (-15 -2098 ((-1285 (-1285 |#1|)) (-936))) (-15 -2772 ((-1285 |#1|) (-936))) (-15 -3977 ((-1190 |#1|) (-1285 |#1|)))) (-359)) (T -539))
-((-3977 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 *4))) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-539 *4)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-936)) (-5 *1 (-539 *4)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) (-1448 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-4038 (*1 *2 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-3366 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-3368 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1137)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-3317 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-539 *4)))) (-2289 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1285 *5)) (-5 *3 (-782)) (-5 *4 (-1137)) (-4 *5 (-359)) (-5 *1 (-539 *5)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-4408 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4)))) (-4317 (*1 *2 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4)) (-4 *4 (-359)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137)))))) (-4 *4 (-359)) (-5 *2 (-1290)) (-5 *1 (-539 *4)))))
-(-10 -7 (-15 -3333 ((-1290) (-1285 (-655 (-2 (|:| -4181 |#1|) (|:| -4317 (-1137))))) |#1|)) (-15 -2073 ((-1285 |#1|) (-936))) (-15 -4317 ((-1285 |#1|) (-936) (-936))) (-15 -4408 ((-1190 |#1|) (-1285 |#1|))) (-15 -1346 ((-1190 |#1|) (-782))) (-15 -2289 ((-1285 |#1|) (-1285 |#1|) (-782) (-1137))) (-15 -3317 ((-1285 |#1|) (-1285 |#1|) (-782))) (-15 -3368 ((-1285 |#1|) (-1285 |#1|) (-1137) (-1137))) (-15 -3366 ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 ** ((-1285 |#1|) (-1285 |#1|) (-575))) (-15 * ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -4038 ((-1285 |#1|) (-1285 |#1|) (-1285 |#1|))) (-15 -3390 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -1448 ((-1285 |#1|) (-1285 |#1|) (-936))) (-15 -4332 ((-1285 |#1|) (-1285 |#1|))) (-15 -1894 ((-936) (-1285 |#1|))) (-15 -2313 ((-112) (-1285 |#1|))) (-15 -2098 ((-1285 (-1285 |#1|)) (-936))) (-15 -2772 ((-1285 |#1|) (-936))) (-15 -3977 ((-1190 |#1|) (-1285 |#1|))))
-((-2139 (((-702 (-1243)) $) NIL)) (-1843 (((-702 (-1241)) $) NIL)) (-3017 (((-702 (-1240)) $) NIL)) (-3597 (((-702 (-560)) $) NIL)) (-2896 (((-702 (-558)) $) NIL)) (-2689 (((-702 (-557)) $) NIL)) (-2825 (((-782) $ (-129)) NIL)) (-2661 (((-702 (-130)) $) 26)) (-1737 (((-1137) $ (-1137)) 31)) (-2630 (((-1137) $) 30)) (-2223 (((-112) $) 20)) (-2495 (($ (-399)) 14) (($ (-1176)) 16)) (-3677 (((-112) $) 27)) (-2882 (((-873) $) 34)) (-3265 (($ $) 28)))
-(((-540) (-13 (-538) (-624 (-873)) (-10 -8 (-15 -2495 ($ (-399))) (-15 -2495 ($ (-1176))) (-15 -3677 ((-112) $)) (-15 -2223 ((-112) $)) (-15 -2630 ((-1137) $)) (-15 -1737 ((-1137) $ (-1137)))))) (T -540))
-((-2495 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-540)))) (-2495 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-540)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-540)))) (-1737 (*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-540)))))
-(-13 (-538) (-624 (-873)) (-10 -8 (-15 -2495 ($ (-399))) (-15 -2495 ($ (-1176))) (-15 -3677 ((-112) $)) (-15 -2223 ((-112) $)) (-15 -2630 ((-1137) $)) (-15 -1737 ((-1137) $ (-1137)))))
-((-3928 (((-1 |#1| |#1|) |#1|) 11)) (-4409 (((-1 |#1| |#1|)) 10)))
-(((-541 |#1|) (-10 -7 (-15 -4409 ((-1 |#1| |#1|))) (-15 -3928 ((-1 |#1| |#1|) |#1|))) (-13 (-737) (-25))) (T -541))
-((-3928 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25))))) (-4409 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25))))))
-(-10 -7 (-15 -4409 ((-1 |#1| |#1|))) (-15 -3928 ((-1 |#1| |#1|) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3081 (($ $ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-2414 (($ (-782) |#1|) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-2544 (($ (-1 (-782) (-782)) $) NIL)) (-4166 ((|#1| $) NIL)) (-4383 (((-782) $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 27)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL)))
-(((-542 |#1|) (-13 (-804) (-520 (-782) |#1|)) (-861)) (T -542))
-NIL
-(-13 (-804) (-520 (-782) |#1|))
-((-3950 (((-655 |#2|) (-1190 |#1|) |#3|) 98)) (-3208 (((-655 (-2 (|:| |outval| |#2|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#2|))))) (-700 |#1|) |#3| (-1 (-429 (-1190 |#1|)) (-1190 |#1|))) 114)) (-2117 (((-1190 |#1|) (-700 |#1|)) 110)))
-(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2117 ((-1190 |#1|) (-700 |#1|))) (-15 -3950 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -3208 ((-655 (-2 (|:| |outval| |#2|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#2|))))) (-700 |#1|) |#3| (-1 (-429 (-1190 |#1|)) (-1190 |#1|))))) (-373) (-373) (-13 (-373) (-859))) (T -543))
-((-3208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *6)) (-5 *5 (-1 (-429 (-1190 *6)) (-1190 *6))) (-4 *6 (-373)) (-5 *2 (-655 (-2 (|:| |outval| *7) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 *7)))))) (-5 *1 (-543 *6 *7 *4)) (-4 *7 (-373)) (-4 *4 (-13 (-373) (-859))))) (-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *5)) (-4 *5 (-373)) (-5 *2 (-655 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-700 *4)) (-4 *4 (-373)) (-5 *2 (-1190 *4)) (-5 *1 (-543 *4 *5 *6)) (-4 *5 (-373)) (-4 *6 (-13 (-373) (-859))))))
-(-10 -7 (-15 -2117 ((-1190 |#1|) (-700 |#1|))) (-15 -3950 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -3208 ((-655 (-2 (|:| |outval| |#2|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#2|))))) (-700 |#1|) |#3| (-1 (-429 (-1190 |#1|)) (-1190 |#1|)))))
-((-4155 (((-702 (-1243)) $ (-1243)) NIL)) (-1591 (((-702 (-560)) $ (-560)) NIL)) (-1596 (((-782) $ (-129)) 39)) (-3614 (((-702 (-130)) $ (-130)) 40)) (-2139 (((-702 (-1243)) $) NIL)) (-1843 (((-702 (-1241)) $) NIL)) (-3017 (((-702 (-1240)) $) NIL)) (-3597 (((-702 (-560)) $) NIL)) (-2896 (((-702 (-558)) $) NIL)) (-2689 (((-702 (-557)) $) NIL)) (-2825 (((-782) $ (-129)) 35)) (-2661 (((-702 (-130)) $) 37)) (-2846 (((-112) $) 27)) (-1399 (((-702 $) (-590) (-969)) 18) (((-702 $) (-502) (-969)) 24)) (-2882 (((-873) $) 48)) (-3265 (($ $) 42)))
-(((-544) (-13 (-778 (-590)) (-624 (-873)) (-10 -8 (-15 -1399 ((-702 $) (-502) (-969)))))) (T -544))
-((-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-502)) (-5 *4 (-969)) (-5 *2 (-702 (-544))) (-5 *1 (-544)))))
-(-13 (-778 (-590)) (-624 (-873)) (-10 -8 (-15 -1399 ((-702 $) (-502) (-969)))))
-((-2026 (((-854 (-575))) 12)) (-2037 (((-854 (-575))) 14)) (-1641 (((-844 (-575))) 9)))
-(((-545) (-10 -7 (-15 -1641 ((-844 (-575)))) (-15 -2026 ((-854 (-575)))) (-15 -2037 ((-854 (-575)))))) (T -545))
-((-2037 (*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545)))) (-2026 (*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545)))) (-1641 (*1 *2) (-12 (-5 *2 (-844 (-575))) (-5 *1 (-545)))))
-(-10 -7 (-15 -1641 ((-844 (-575)))) (-15 -2026 ((-854 (-575)))) (-15 -2037 ((-854 (-575)))))
-((-3993 (((-547) (-1194)) 15)) (-1803 ((|#1| (-547)) 20)))
-(((-546 |#1|) (-10 -7 (-15 -3993 ((-547) (-1194))) (-15 -1803 (|#1| (-547)))) (-1235)) (T -546))
-((-1803 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-546 *2)) (-4 *2 (-1235)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-547)) (-5 *1 (-546 *4)) (-4 *4 (-1235)))))
-(-10 -7 (-15 -3993 ((-547) (-1194))) (-15 -1803 (|#1| (-547))))
-((-2859 (((-112) $ $) NIL)) (-2353 (((-1176) $) 55)) (-3704 (((-112) $) 51)) (-3816 (((-1194) $) 52)) (-2437 (((-112) $) 49)) (-1650 (((-1176) $) 50)) (-3654 (($ (-1176)) 56)) (-3049 (((-112) $) NIL)) (-1618 (((-112) $) NIL)) (-1503 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-4334 (($ $ (-655 (-1194))) 21)) (-1803 (((-52) $) 23)) (-3255 (((-112) $) NIL)) (-3839 (((-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-3760 (($ $ (-655 (-1194)) (-1194)) 73)) (-4344 (((-112) $) NIL)) (-1539 (((-227) $) NIL)) (-3951 (($ $) 44)) (-1401 (((-873) $) NIL)) (-2566 (((-112) $ $) NIL)) (-2065 (($ $ (-575)) NIL) (($ $ (-655 (-575))) NIL)) (-3841 (((-655 $) $) 30)) (-3537 (((-1194) (-655 $)) 57)) (-2613 (($ (-1176)) NIL) (($ (-1194)) 19) (($ (-575)) 8) (($ (-227)) 28) (($ (-873)) NIL) (($ (-655 $)) 65) (((-1121) $) 12) (($ (-1121)) 13)) (-2658 (((-1194) (-1194) (-655 $)) 60)) (-2882 (((-873) $) 54)) (-1450 (($ $) 59)) (-4207 (($ $) 58)) (-2016 (($ $ (-655 $)) 66)) (-3685 (((-112) $ $) NIL)) (-4154 (((-112) $) 29)) (-1989 (($) 9 T CONST)) (-2005 (($) 11 T CONST)) (-3913 (((-112) $ $) 74)) (-4038 (($ $ $) 82)) (-4015 (($ $ $) 75)) (** (($ $ (-782)) 81) (($ $ (-575)) 80)) (* (($ $ $) 76)) (-2869 (((-575) $) NIL)))
-(((-547) (-13 (-1120 (-1176) (-1194) (-575) (-227) (-873)) (-625 (-1121)) (-10 -8 (-15 -1803 ((-52) $)) (-15 -2613 ($ (-1121))) (-15 -2016 ($ $ (-655 $))) (-15 -3760 ($ $ (-655 (-1194)) (-1194))) (-15 -4334 ($ $ (-655 (-1194)))) (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ (-575))) (-15 0 ($) -3736) (-15 1 ($) -3736) (-15 -3951 ($ $)) (-15 -2353 ((-1176) $)) (-15 -3654 ($ (-1176))) (-15 -3537 ((-1194) (-655 $))) (-15 -2658 ((-1194) (-1194) (-655 $)))))) (T -547))
-((-1803 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-547)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-547)))) (-2016 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-547))) (-5 *1 (-547)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1194)) (-5 *1 (-547)))) (-4334 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-547)))) (-4015 (*1 *1 *1 *1) (-5 *1 (-547))) (* (*1 *1 *1 *1) (-5 *1 (-547))) (-4038 (*1 *1 *1 *1) (-5 *1 (-547))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-547)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-547)))) (-1989 (*1 *1) (-5 *1 (-547))) (-2005 (*1 *1) (-5 *1 (-547))) (-3951 (*1 *1 *1) (-5 *1 (-547))) (-2353 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-547)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-547)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-655 (-547))) (-5 *2 (-1194)) (-5 *1 (-547)))) (-2658 (*1 *2 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-547))) (-5 *1 (-547)))))
-(-13 (-1120 (-1176) (-1194) (-575) (-227) (-873)) (-625 (-1121)) (-10 -8 (-15 -1803 ((-52) $)) (-15 -2613 ($ (-1121))) (-15 -2016 ($ $ (-655 $))) (-15 -3760 ($ $ (-655 (-1194)) (-1194))) (-15 -4334 ($ $ (-655 (-1194)))) (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ (-575))) (-15 (-1989) ($) -3736) (-15 (-2005) ($) -3736) (-15 -3951 ($ $)) (-15 -2353 ((-1176) $)) (-15 -3654 ($ (-1176))) (-15 -3537 ((-1194) (-655 $))) (-15 -2658 ((-1194) (-1194) (-655 $)))))
-((-1787 ((|#2| |#2|) 17)) (-2415 ((|#2| |#2|) 13)) (-2270 ((|#2| |#2| (-575) (-575)) 20)) (-3814 ((|#2| |#2|) 15)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -2415 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -2270 (|#2| |#2| (-575) (-575)))) (-13 (-567) (-148)) (-1276 |#1|)) (T -548))
-((-2270 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-548 *4 *2)) (-4 *2 (-1276 *4)))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1276 *3)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1276 *3)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1276 *3)))))
-(-10 -7 (-15 -2415 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -2270 (|#2| |#2| (-575) (-575))))
-((-4396 (((-655 (-303 (-967 |#2|))) (-655 |#2|) (-655 (-1194))) 32)) (-2427 (((-655 |#2|) (-967 |#1|) |#3|) 54) (((-655 |#2|) (-1190 |#1|) |#3|) 53)) (-1757 (((-655 (-655 |#2|)) (-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)) |#3|) 106)))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -2427 ((-655 |#2|) (-967 |#1|) |#3|)) (-15 -1757 ((-655 (-655 |#2|)) (-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)) |#3|)) (-15 -4396 ((-655 (-303 (-967 |#2|))) (-655 |#2|) (-655 (-1194))))) (-463) (-373) (-13 (-373) (-859))) (T -549))
-((-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1194))) (-4 *6 (-373)) (-5 *2 (-655 (-303 (-967 *6)))) (-5 *1 (-549 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-13 (-373) (-859))))) (-1757 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-655 (-655 *7))) (-5 *1 (-549 *6 *7 *5)) (-4 *7 (-373)) (-4 *5 (-13 (-373) (-859))))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-967 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6)) (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6)) (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))))
-(-10 -7 (-15 -2427 ((-655 |#2|) (-1190 |#1|) |#3|)) (-15 -2427 ((-655 |#2|) (-967 |#1|) |#3|)) (-15 -1757 ((-655 (-655 |#2|)) (-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)) |#3|)) (-15 -4396 ((-655 (-303 (-967 |#2|))) (-655 |#2|) (-655 (-1194)))))
-((-1745 ((|#2| |#2| |#1|) 17)) (-1869 ((|#2| (-655 |#2|)) 31)) (-1352 ((|#2| (-655 |#2|)) 52)))
-(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1869 (|#2| (-655 |#2|))) (-15 -1352 (|#2| (-655 |#2|))) (-15 -1745 (|#2| |#2| |#1|))) (-316) (-1261 |#1|) |#1| (-1 |#1| |#1| (-782))) (T -550))
-((-1745 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-782))) (-5 *1 (-550 *3 *2 *4 *5)) (-4 *2 (-1261 *3)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6)) (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782))))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6)) (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782))))))
-(-10 -7 (-15 -1869 (|#2| (-655 |#2|))) (-15 -1352 (|#2| (-655 |#2|))) (-15 -1745 (|#2| |#2| |#1|)))
-((-2347 (((-429 (-1190 |#4|)) (-1190 |#4|) (-1 (-429 (-1190 |#3|)) (-1190 |#3|))) 89) (((-429 |#4|) |#4| (-1 (-429 (-1190 |#3|)) (-1190 |#3|))) 210)))
-(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 |#4|) |#4| (-1 (-429 (-1190 |#3|)) (-1190 |#3|)))) (-15 -2347 ((-429 (-1190 |#4|)) (-1190 |#4|) (-1 (-429 (-1190 |#3|)) (-1190 |#3|))))) (-861) (-804) (-13 (-316) (-148)) (-964 |#3| |#2| |#1|)) (T -551))
-((-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *8 (-964 *7 *6 *5)) (-5 *2 (-429 (-1190 *8))) (-5 *1 (-551 *5 *6 *7 *8)) (-5 *3 (-1190 *8)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7))) (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804)) (-5 *2 (-429 *3)) (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-964 *7 *6 *5)))))
-(-10 -7 (-15 -2347 ((-429 |#4|) |#4| (-1 (-429 (-1190 |#3|)) (-1190 |#3|)))) (-15 -2347 ((-429 (-1190 |#4|)) (-1190 |#4|) (-1 (-429 (-1190 |#3|)) (-1190 |#3|)))))
-((-1787 ((|#4| |#4|) 74)) (-2415 ((|#4| |#4|) 70)) (-2270 ((|#4| |#4| (-575) (-575)) 76)) (-3814 ((|#4| |#4|) 72)))
-(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 (|#4| |#4|)) (-15 -3814 (|#4| |#4|)) (-15 -1787 (|#4| |#4|)) (-15 -2270 (|#4| |#4| (-575) (-575)))) (-13 (-373) (-378) (-625 (-575))) (-1261 |#1|) (-735 |#1| |#2|) (-1276 |#3|)) (T -552))
-((-2270 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3))) (-4 *5 (-1261 *4)) (-4 *6 (-735 *4 *5)) (-5 *1 (-552 *4 *5 *6 *2)) (-4 *2 (-1276 *6)))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3)) (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5)))))
-(-10 -7 (-15 -2415 (|#4| |#4|)) (-15 -3814 (|#4| |#4|)) (-15 -1787 (|#4| |#4|)) (-15 -2270 (|#4| |#4| (-575) (-575))))
-((-1787 ((|#2| |#2|) 27)) (-2415 ((|#2| |#2|) 23)) (-2270 ((|#2| |#2| (-575) (-575)) 29)) (-3814 ((|#2| |#2|) 25)))
-(((-553 |#1| |#2|) (-10 -7 (-15 -2415 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -2270 (|#2| |#2| (-575) (-575)))) (-13 (-373) (-378) (-625 (-575))) (-1276 |#1|)) (T -553))
-((-2270 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3))) (-5 *1 (-553 *4 *2)) (-4 *2 (-1276 *4)))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1276 *3)))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1276 *3)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2)) (-4 *2 (-1276 *3)))))
-(-10 -7 (-15 -2415 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -2270 (|#2| |#2| (-575) (-575))))
-((-4137 (((-3 (-575) "failed") |#2| |#1| (-1 (-3 (-575) "failed") |#1|)) 18) (((-3 (-575) "failed") |#2| |#1| (-575) (-1 (-3 (-575) "failed") |#1|)) 14) (((-3 (-575) "failed") |#2| (-575) (-1 (-3 (-575) "failed") |#1|)) 32)))
-(((-554 |#1| |#2|) (-10 -7 (-15 -4137 ((-3 (-575) "failed") |#2| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -4137 ((-3 (-575) "failed") |#2| |#1| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -4137 ((-3 (-575) "failed") |#2| |#1| (-1 (-3 (-575) "failed") |#1|)))) (-1066) (-1261 |#1|)) (T -554))
-((-4137 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4)))) (-4137 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4)))) (-4137 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-575) "failed") *5)) (-4 *5 (-1066)) (-5 *2 (-575)) (-5 *1 (-554 *5 *3)) (-4 *3 (-1261 *5)))))
-(-10 -7 (-15 -4137 ((-3 (-575) "failed") |#2| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -4137 ((-3 (-575) "failed") |#2| |#1| (-575) (-1 (-3 (-575) "failed") |#1|))) (-15 -4137 ((-3 (-575) "failed") |#2| |#1| (-1 (-3 (-575) "failed") |#1|))))
-((-2803 (($ $ $) 84)) (-4281 (((-429 $) $) 52)) (-2443 (((-3 (-575) "failed") $) 64)) (-4400 (((-575) $) 42)) (-2157 (((-3 (-418 (-575)) "failed") $) 79)) (-2188 (((-112) $) 26)) (-1622 (((-418 (-575)) $) 77)) (-3559 (((-112) $) 55)) (-3623 (($ $ $ $) 92)) (-2359 (((-112) $) 17)) (-3732 (($ $ $) 62)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 74)) (-2808 (((-3 $ "failed") $) 69)) (-3535 (($ $) 24)) (-3121 (($ $ $) 90)) (-3472 (($) 65)) (-2031 (($ $) 58)) (-2347 (((-429 $) $) 50)) (-3095 (((-112) $) 15)) (-1720 (((-782) $) 32)) (-2382 (($ $) 11) (($ $ (-782)) NIL)) (-3076 (($ $) 18)) (-2613 (((-575) $) NIL) (((-547) $) 41) (((-904 (-575)) $) 45) (((-389) $) 35) (((-227) $) 38)) (-4421 (((-782)) 9)) (-2646 (((-112) $ $) 21)) (-2266 (($ $ $) 60)))
-(((-555 |#1|) (-10 -8 (-15 -3121 (|#1| |#1| |#1|)) (-15 -3623 (|#1| |#1| |#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -2646 ((-112) |#1| |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2613 ((-227) |#1|)) (-15 -2613 ((-389) |#1|)) (-15 -3732 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -2266 (|#1| |#1| |#1|)) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2613 ((-575) |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -1720 ((-782) |#1|)) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -3559 ((-112) |#1|)) (-15 -4421 ((-782)))) (-556)) (T -555))
-((-4421 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-555 *3)) (-4 *3 (-556)))))
-(-10 -8 (-15 -3121 (|#1| |#1| |#1|)) (-15 -3623 (|#1| |#1| |#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -2646 ((-112) |#1| |#1|)) (-15 -3095 ((-112) |#1|)) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2613 ((-227) |#1|)) (-15 -2613 ((-389) |#1|)) (-15 -3732 (|#1| |#1| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -2266 (|#1| |#1| |#1|)) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2613 ((-575) |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -1720 ((-782) |#1|)) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -3559 ((-112) |#1|)) (-15 -4421 ((-782))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-2803 (($ $ $) 92)) (-1708 (((-3 $ "failed") $ $) 20)) (-1635 (($ $ $ $) 81)) (-3312 (($ $) 57)) (-4281 (((-429 $) $) 58)) (-3599 (((-112) $ $) 134)) (-2326 (((-575) $) 123)) (-3624 (($ $ $) 95)) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 115)) (-4400 (((-575) $) 116)) (-2800 (($ $ $) 138)) (-2862 (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 113) (((-700 (-575)) (-700 $)) 112) (((-700 (-575)) (-1285 $)) 111)) (-4162 (((-3 $ "failed") $) 37)) (-2157 (((-3 (-418 (-575)) "failed") $) 89)) (-2188 (((-112) $) 91)) (-1622 (((-418 (-575)) $) 90)) (-2073 (($) 88) (($ $) 87)) (-2811 (($ $ $) 137)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 132)) (-3559 (((-112) $) 59)) (-3623 (($ $ $ $) 79)) (-3509 (($ $ $) 93)) (-2359 (((-112) $) 125)) (-3732 (($ $ $) 104)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 107)) (-3900 (((-112) $) 35)) (-4254 (((-112) $) 99)) (-2808 (((-3 $ "failed") $) 101)) (-1721 (((-112) $) 124)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 141)) (-3899 (($ $ $ $) 80)) (-1914 (($ $ $) 126)) (-3503 (($ $ $) 127)) (-3535 (($ $) 83)) (-1840 (($ $) 96)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3121 (($ $ $) 78)) (-3472 (($) 100 T CONST)) (-3044 (($ $) 85)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2031 (($ $) 105)) (-2347 (((-429 $) $) 56)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 139)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 133)) (-3095 (((-112) $) 98)) (-1720 (((-782) $) 135)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 136)) (-2382 (($ $) 121) (($ $ (-782)) 119)) (-3351 (($ $) 84)) (-3076 (($ $) 86)) (-2613 (((-575) $) 117) (((-547) $) 109) (((-904 (-575)) $) 108) (((-389) $) 103) (((-227) $) 102)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-575)) 114)) (-4421 (((-782)) 32 T CONST)) (-2646 (((-112) $ $) 94)) (-2266 (($ $ $) 106)) (-3685 (((-112) $ $) 9)) (-1548 (($) 97)) (-3930 (((-112) $ $) 45)) (-1598 (($ $ $ $) 82)) (-3863 (($ $) 122)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $) 120) (($ $ (-782)) 118)) (-3980 (((-112) $ $) 129)) (-3955 (((-112) $ $) 130)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 128)) (-3940 (((-112) $ $) 131)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ (-575) $) 110)))
-(((-556) (-141)) (T -556))
-((-4254 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-1548 (*1 *1) (-4 *1 (-556))) (-1840 (*1 *1 *1) (-4 *1 (-556))) (-3624 (*1 *1 *1 *1) (-4 *1 (-556))) (-2646 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-3509 (*1 *1 *1 *1) (-4 *1 (-556))) (-2803 (*1 *1 *1 *1) (-4 *1 (-556))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-418 (-575))))) (-2157 (*1 *2 *1) (|partial| -12 (-4 *1 (-556)) (-5 *2 (-418 (-575))))) (-2073 (*1 *1) (-4 *1 (-556))) (-2073 (*1 *1 *1) (-4 *1 (-556))) (-3076 (*1 *1 *1) (-4 *1 (-556))) (-3044 (*1 *1 *1) (-4 *1 (-556))) (-3351 (*1 *1 *1) (-4 *1 (-556))) (-3535 (*1 *1 *1) (-4 *1 (-556))) (-1598 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-1635 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-3899 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-3623 (*1 *1 *1 *1 *1) (-4 *1 (-556))) (-3121 (*1 *1 *1 *1) (-4 *1 (-556))))
-(-13 (-1239) (-316) (-831) (-238) (-625 (-575)) (-1055 (-575)) (-650 (-575)) (-625 (-547)) (-625 (-904 (-575))) (-898 (-575)) (-144) (-1039) (-148) (-1169) (-10 -8 (-15 -4254 ((-112) $)) (-15 -3095 ((-112) $)) (-6 -4459) (-15 -1548 ($)) (-15 -1840 ($ $)) (-15 -3624 ($ $ $)) (-15 -2646 ((-112) $ $)) (-15 -3509 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $)) (-15 -2073 ($)) (-15 -2073 ($ $)) (-15 -3076 ($ $)) (-15 -3044 ($ $)) (-15 -3351 ($ $)) (-15 -3535 ($ $)) (-15 -1598 ($ $ $ $)) (-15 -1635 ($ $ $ $)) (-15 -3899 ($ $ $ $)) (-15 -3623 ($ $ $ $)) (-15 -3121 ($ $ $)) (-6 -4458)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-144) . T) ((-174) . T) ((-625 (-227)) . T) ((-625 (-389)) . T) ((-625 (-547)) . T) ((-625 (-575)) . T) ((-625 (-904 (-575))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-299) . T) ((-316) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0=(-575)) . T) ((-659 $) . T) ((-651 $) . T) ((-650 #0#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-831) . T) ((-859) . T) ((-861) . T) ((-898 (-575)) . T) ((-935) . T) ((-1039) . T) ((-1055 (-575)) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) . T) ((-1235) . T) ((-1239) . T))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-557) (-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))) (T -557))
-((-3261 (*1 *1) (-5 *1 (-557))))
-(-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))
+((-3999 (((-1192 |#1|) (-783)) 115)) (-1462 (((-1287 |#1|) (-1287 |#1|) (-938)) 108)) (-3481 (((-1292) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) |#1|) 123)) (-2499 (((-1287 |#1|) (-1287 |#1|) (-783)) 53)) (-2107 (((-1287 |#1|) (-938)) 110)) (-3488 (((-1287 |#1|) (-1287 |#1|) (-576)) 30)) (-2279 (((-1192 |#1|) (-1287 |#1|)) 116)) (-2010 (((-1287 |#1|) (-938)) 137)) (-3776 (((-112) (-1287 |#1|)) 120)) (-3075 (((-1287 |#1|) (-1287 |#1|) (-938)) 100)) (-2510 (((-1192 |#1|) (-1287 |#1|)) 131)) (-1654 (((-938) (-1287 |#1|)) 96)) (-4324 (((-1287 |#1|) (-1287 |#1|)) 38)) (-4308 (((-1287 |#1|) (-938) (-938)) 140)) (-2489 (((-1287 |#1|) (-1287 |#1|) (-1139) (-1139)) 29)) (-3387 (((-1287 |#1|) (-1287 |#1|) (-783) (-1139)) 54)) (-4261 (((-1287 (-1287 |#1|)) (-938)) 136)) (-4013 (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 121)) (** (((-1287 |#1|) (-1287 |#1|) (-576)) 67)) (* (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 31)))
+(((-540 |#1|) (-10 -7 (-15 -3481 ((-1292) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) |#1|)) (-15 -2107 ((-1287 |#1|) (-938))) (-15 -4308 ((-1287 |#1|) (-938) (-938))) (-15 -2279 ((-1192 |#1|) (-1287 |#1|))) (-15 -3999 ((-1192 |#1|) (-783))) (-15 -3387 ((-1287 |#1|) (-1287 |#1|) (-783) (-1139))) (-15 -2499 ((-1287 |#1|) (-1287 |#1|) (-783))) (-15 -2489 ((-1287 |#1|) (-1287 |#1|) (-1139) (-1139))) (-15 -3488 ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4013 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -3075 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -1462 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -4324 ((-1287 |#1|) (-1287 |#1|))) (-15 -1654 ((-938) (-1287 |#1|))) (-15 -3776 ((-112) (-1287 |#1|))) (-15 -4261 ((-1287 (-1287 |#1|)) (-938))) (-15 -2010 ((-1287 |#1|) (-938))) (-15 -2510 ((-1192 |#1|) (-1287 |#1|)))) (-360)) (T -540))
+((-2510 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-938)) (-5 *1 (-540 *4)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-1462 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3075 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4013 (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2489 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1139)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3387 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1287 *5)) (-5 *3 (-783)) (-5 *4 (-1139)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-4308 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-1292)) (-5 *1 (-540 *4)))))
+(-10 -7 (-15 -3481 ((-1292) (-1287 (-656 (-2 (|:| -4160 |#1|) (|:| -4308 (-1139))))) |#1|)) (-15 -2107 ((-1287 |#1|) (-938))) (-15 -4308 ((-1287 |#1|) (-938) (-938))) (-15 -2279 ((-1192 |#1|) (-1287 |#1|))) (-15 -3999 ((-1192 |#1|) (-783))) (-15 -3387 ((-1287 |#1|) (-1287 |#1|) (-783) (-1139))) (-15 -2499 ((-1287 |#1|) (-1287 |#1|) (-783))) (-15 -2489 ((-1287 |#1|) (-1287 |#1|) (-1139) (-1139))) (-15 -3488 ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4013 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -3075 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -1462 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -4324 ((-1287 |#1|) (-1287 |#1|))) (-15 -1654 ((-938) (-1287 |#1|))) (-15 -3776 ((-112) (-1287 |#1|))) (-15 -4261 ((-1287 (-1287 |#1|)) (-938))) (-15 -2010 ((-1287 |#1|) (-938))) (-15 -2510 ((-1192 |#1|) (-1287 |#1|))))
+((-2633 (((-703 (-1245)) $) NIL)) (-1349 (((-703 (-1243)) $) NIL)) (-2314 (((-703 (-1242)) $) NIL)) (-3354 (((-703 (-561)) $) NIL)) (-4373 (((-703 (-559)) $) NIL)) (-2167 (((-703 (-558)) $) NIL)) (-2156 (((-783) $ (-129)) NIL)) (-3379 (((-703 (-130)) $) 26)) (-2453 (((-1139) $ (-1139)) 31)) (-2627 (((-1139) $) 30)) (-4354 (((-112) $) 20)) (-3319 (($ (-400)) 14) (($ (-1178)) 16)) (-3172 (((-112) $) 27)) (-2858 (((-874) $) 34)) (-1723 (($ $) 28)))
+(((-541) (-13 (-539) (-625 (-874)) (-10 -8 (-15 -3319 ($ (-400))) (-15 -3319 ($ (-1178))) (-15 -3172 ((-112) $)) (-15 -4354 ((-112) $)) (-15 -2627 ((-1139) $)) (-15 -2453 ((-1139) $ (-1139)))))) (T -541))
+((-3319 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-541)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))) (-2453 (*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))))
+(-13 (-539) (-625 (-874)) (-10 -8 (-15 -3319 ($ (-400))) (-15 -3319 ($ (-1178))) (-15 -3172 ((-112) $)) (-15 -4354 ((-112) $)) (-15 -2627 ((-1139) $)) (-15 -2453 ((-1139) $ (-1139)))))
+((-3905 (((-1 |#1| |#1|) |#1|) 11)) (-4210 (((-1 |#1| |#1|)) 10)))
+(((-542 |#1|) (-10 -7 (-15 -4210 ((-1 |#1| |#1|))) (-15 -3905 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542))
+((-3905 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-4210 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))))
+(-10 -7 (-15 -4210 ((-1 |#1| |#1|))) (-15 -3905 ((-1 |#1| |#1|) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1869 (($ $ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-2428 (($ (-783) |#1|) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2548 (($ (-1 (-783) (-783)) $) NIL)) (-3230 ((|#1| $) NIL)) (-4379 (((-783) $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 27)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL)))
+(((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-862)) (T -543))
+NIL
+(-13 (-805) (-521 (-783) |#1|))
+((-2001 (((-656 |#2|) (-1192 |#1|) |#3|) 98)) (-3164 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))) 114)) (-2027 (((-1192 |#1|) (-701 |#1|)) 110)))
+(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2027 ((-1192 |#1|) (-701 |#1|))) (-15 -2001 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -3164 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544))
+((-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1192 *6)) (-1192 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1192 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860))))))
+(-10 -7 (-15 -2027 ((-1192 |#1|) (-701 |#1|))) (-15 -2001 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -3164 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|)))))
+((-4424 (((-703 (-1245)) $ (-1245)) NIL)) (-2505 (((-703 (-561)) $ (-561)) NIL)) (-1608 (((-783) $ (-129)) 39)) (-1400 (((-703 (-130)) $ (-130)) 40)) (-2633 (((-703 (-1245)) $) NIL)) (-1349 (((-703 (-1243)) $) NIL)) (-2314 (((-703 (-1242)) $) NIL)) (-3354 (((-703 (-561)) $) NIL)) (-4373 (((-703 (-559)) $) NIL)) (-2167 (((-703 (-558)) $) NIL)) (-2156 (((-783) $ (-129)) 35)) (-3379 (((-703 (-130)) $) 37)) (-3316 (((-112) $) 27)) (-3345 (((-703 $) (-591) (-971)) 18) (((-703 $) (-503) (-971)) 24)) (-2858 (((-874) $) 48)) (-1723 (($ $) 42)))
+(((-545) (-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -3345 ((-703 $) (-503) (-971)))))) (T -545))
+((-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-703 (-545))) (-5 *1 (-545)))))
+(-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -3345 ((-703 $) (-503) (-971)))))
+((-2060 (((-855 (-576))) 12)) (-2071 (((-855 (-576))) 14)) (-1672 (((-845 (-576))) 9)))
+(((-546) (-10 -7 (-15 -1672 ((-845 (-576)))) (-15 -2060 ((-855 (-576)))) (-15 -2071 ((-855 (-576)))))) (T -546))
+((-2071 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-2060 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1672 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))))
+(-10 -7 (-15 -1672 ((-845 (-576)))) (-15 -2060 ((-855 (-576)))) (-15 -2071 ((-855 (-576)))))
+((-3508 (((-548) (-1196)) 15)) (-1837 ((|#1| (-548)) 20)))
+(((-547 |#1|) (-10 -7 (-15 -3508 ((-548) (-1196))) (-15 -1837 (|#1| (-548)))) (-1237)) (T -547))
+((-1837 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1237)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1237)))))
+(-10 -7 (-15 -3508 ((-548) (-1196))) (-15 -1837 (|#1| (-548))))
+((-2835 (((-112) $ $) NIL)) (-2717 (((-1178) $) 55)) (-4084 (((-112) $) 51)) (-3792 (((-1196) $) 52)) (-2892 (((-112) $) 49)) (-1682 (((-1178) $) 50)) (-3132 (($ (-1178)) 56)) (-3419 (((-112) $) NIL)) (-2842 (((-112) $) NIL)) (-2398 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-4326 (($ $ (-656 (-1196))) 21)) (-1837 (((-52) $) 23)) (-3148 (((-112) $) NIL)) (-3815 (((-576) $) NIL)) (-3887 (((-1139) $) NIL)) (-3736 (($ $ (-656 (-1196)) (-1196)) 73)) (-2148 (((-112) $) NIL)) (-1562 (((-227) $) NIL)) (-3927 (($ $) 44)) (-1411 (((-874) $) NIL)) (-2568 (((-112) $ $) NIL)) (-2099 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-3817 (((-656 $) $) 30)) (-3513 (((-1196) (-656 $)) 57)) (-2610 (($ (-1178)) NIL) (($ (-1196)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-874)) NIL) (($ (-656 $)) 65) (((-1123) $) 12) (($ (-1123)) 13)) (-2651 (((-1196) (-1196) (-656 $)) 60)) (-2858 (((-874) $) 54)) (-1944 (($ $) 59)) (-2394 (($ $) 58)) (-4000 (($ $ (-656 $)) 66)) (-2690 (((-112) $ $) NIL)) (-4286 (((-112) $) 29)) (-2022 (($) 9 T CONST)) (-2038 (($) 11 T CONST)) (-3889 (((-112) $ $) 74)) (-4013 (($ $ $) 82)) (-3990 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-2845 (((-576) $) NIL)))
+(((-548) (-13 (-1122 (-1178) (-1196) (-576) (-227) (-874)) (-626 (-1123)) (-10 -8 (-15 -1837 ((-52) $)) (-15 -2610 ($ (-1123))) (-15 -4000 ($ $ (-656 $))) (-15 -3736 ($ $ (-656 (-1196)) (-1196))) (-15 -4326 ($ $ (-656 (-1196)))) (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -3712) (-15 1 ($) -3712) (-15 -3927 ($ $)) (-15 -2717 ((-1178) $)) (-15 -3132 ($ (-1178))) (-15 -3513 ((-1196) (-656 $))) (-15 -2651 ((-1196) (-1196) (-656 $)))))) (T -548))
+((-1837 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-548)))) (-4000 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3736 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1196)) (-5 *1 (-548)))) (-4326 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-548)))) (-3990 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-4013 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2022 (*1 *1) (-5 *1 (-548))) (-2038 (*1 *1) (-5 *1 (-548))) (-3927 (*1 *1 *1) (-5 *1 (-548))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))) (-3132 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1196)) (-5 *1 (-548)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-548))) (-5 *1 (-548)))))
+(-13 (-1122 (-1178) (-1196) (-576) (-227) (-874)) (-626 (-1123)) (-10 -8 (-15 -1837 ((-52) $)) (-15 -2610 ($ (-1123))) (-15 -4000 ($ $ (-656 $))) (-15 -3736 ($ $ (-656 (-1196)) (-1196))) (-15 -4326 ($ $ (-656 (-1196)))) (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-2022) ($) -3712) (-15 (-2038) ($) -3712) (-15 -3927 ($ $)) (-15 -2717 ((-1178) $)) (-15 -3132 ($ (-1178))) (-15 -3513 ((-1196) (-656 $))) (-15 -2651 ((-1196) (-1196) (-656 $)))))
+((-2773 ((|#2| |#2|) 17)) (-1582 ((|#2| |#2|) 13)) (-2379 ((|#2| |#2| (-576) (-576)) 20)) (-1813 ((|#2| |#2|) 15)))
+(((-549 |#1| |#2|) (-10 -7 (-15 -1582 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2379 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1278 |#1|)) (T -549))
+((-2379 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1278 *4)))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))))
+(-10 -7 (-15 -1582 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2379 (|#2| |#2| (-576) (-576))))
+((-1326 (((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1196))) 32)) (-4400 (((-656 |#2|) (-969 |#1|) |#3|) 54) (((-656 |#2|) (-1192 |#1|) |#3|) 53)) (-1628 (((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)) |#3|) 106)))
+(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -4400 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -4400 ((-656 |#2|) (-969 |#1|) |#3|)) (-15 -1628 ((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)) |#3|)) (-15 -1326 ((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1196))))) (-464) (-374) (-13 (-374) (-860))) (T -550))
+((-1326 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1196))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-969 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-1628 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-4400 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-4400 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -4400 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -4400 ((-656 |#2|) (-969 |#1|) |#3|)) (-15 -1628 ((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)) |#3|)) (-15 -1326 ((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1196)))))
+((-1880 ((|#2| |#2| |#1|) 17)) (-2984 ((|#2| (-656 |#2|)) 31)) (-3449 ((|#2| (-656 |#2|)) 52)))
+(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2984 (|#2| (-656 |#2|))) (-15 -3449 (|#2| (-656 |#2|))) (-15 -1880 (|#2| |#2| |#1|))) (-317) (-1263 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551))
+((-1880 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))))
+(-10 -7 (-15 -2984 (|#2| (-656 |#2|))) (-15 -3449 (|#2| (-656 |#2|))) (-15 -1880 (|#2| |#2| |#1|)))
+((-2367 (((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|))) 210)))
+(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))) (-15 -2367 ((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))))) (-862) (-805) (-13 (-317) (-148)) (-966 |#3| |#2| |#1|)) (T -552))
+((-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-966 *7 *6 *5)) (-5 *2 (-430 (-1192 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-966 *7 *6 *5)))))
+(-10 -7 (-15 -2367 ((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))) (-15 -2367 ((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))))
+((-2773 ((|#4| |#4|) 74)) (-1582 ((|#4| |#4|) 70)) (-2379 ((|#4| |#4| (-576) (-576)) 76)) (-1813 ((|#4| |#4|) 72)))
+(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1582 (|#4| |#4|)) (-15 -1813 (|#4| |#4|)) (-15 -2773 (|#4| |#4|)) (-15 -2379 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1263 |#1|) (-736 |#1| |#2|) (-1278 |#3|)) (T -553))
+((-2379 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1263 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1278 *6)))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))))
+(-10 -7 (-15 -1582 (|#4| |#4|)) (-15 -1813 (|#4| |#4|)) (-15 -2773 (|#4| |#4|)) (-15 -2379 (|#4| |#4| (-576) (-576))))
+((-2773 ((|#2| |#2|) 27)) (-1582 ((|#2| |#2|) 23)) (-2379 ((|#2| |#2| (-576) (-576)) 29)) (-1813 ((|#2| |#2|) 25)))
+(((-554 |#1| |#2|) (-10 -7 (-15 -1582 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2379 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1278 |#1|)) (T -554))
+((-2379 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1278 *4)))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))))
+(-10 -7 (-15 -1582 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -2379 (|#2| |#2| (-576) (-576))))
+((-1696 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -1696 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1696 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1696 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1068) (-1263 |#1|)) (T -555))
+((-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-1696 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-1696 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5)))))
+(-10 -7 (-15 -1696 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1696 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1696 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|))))
+((-4078 (($ $ $) 84)) (-2464 (((-430 $) $) 52)) (-2454 (((-3 (-576) "failed") $) 64)) (-4397 (((-576) $) 42)) (-3660 (((-3 (-419 (-576)) "failed") $) 79)) (-1946 (((-112) $) 26)) (-3269 (((-419 (-576)) $) 77)) (-3011 (((-112) $) 55)) (-3135 (($ $ $ $) 92)) (-2127 (((-112) $) 17)) (-1840 (($ $ $) 62)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 74)) (-3397 (((-3 $ "failed") $) 69)) (-3511 (($ $) 24)) (-3094 (($ $ $) 90)) (-3448 (($) 65)) (-2878 (($ $) 58)) (-2367 (((-430 $) $) 50)) (-3945 (((-112) $) 15)) (-3076 (((-783) $) 32)) (-2399 (($ $) 11) (($ $ (-783)) NIL)) (-3052 (($ $) 18)) (-2610 (((-576) $) NIL) (((-548) $) 41) (((-905 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-2981 (((-783)) 9)) (-3238 (((-112) $ $) 21)) (-3176 (($ $ $) 60)))
+(((-556 |#1|) (-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3135 (|#1| |#1| |#1| |#1|)) (-15 -3511 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -4078 (|#1| |#1| |#1|)) (-15 -3238 ((-112) |#1| |#1|)) (-15 -3945 ((-112) |#1|)) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -2610 ((-227) |#1|)) (-15 -2610 ((-390) |#1|)) (-15 -1840 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2610 ((-576) |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2127 ((-112) |#1|)) (-15 -3076 ((-783) |#1|)) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -3011 ((-112) |#1|)) (-15 -2981 ((-783)))) (-557)) (T -556))
+((-2981 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))))
+(-10 -8 (-15 -3094 (|#1| |#1| |#1|)) (-15 -3135 (|#1| |#1| |#1| |#1|)) (-15 -3511 (|#1| |#1|)) (-15 -3052 (|#1| |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -4078 (|#1| |#1| |#1|)) (-15 -3238 ((-112) |#1| |#1|)) (-15 -3945 ((-112) |#1|)) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -2610 ((-227) |#1|)) (-15 -2610 ((-390) |#1|)) (-15 -1840 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2610 ((-576) |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2127 ((-112) |#1|)) (-15 -3076 ((-783) |#1|)) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -3011 ((-112) |#1|)) (-15 -2981 ((-783))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-4078 (($ $ $) 92)) (-3161 (((-3 $ "failed") $ $) 20)) (-1901 (($ $ $ $) 81)) (-3179 (($ $) 57)) (-2464 (((-430 $) $) 58)) (-3417 (((-112) $ $) 134)) (-1727 (((-576) $) 123)) (-3598 (($ $ $) 95)) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 115)) (-4397 (((-576) $) 116)) (-2780 (($ $ $) 138)) (-2085 (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 113) (((-701 (-576)) (-701 $)) 112) (((-701 (-576)) (-1287 $)) 111)) (-4011 (((-3 $ "failed") $) 37)) (-3660 (((-3 (-419 (-576)) "failed") $) 89)) (-1946 (((-112) $) 91)) (-3269 (((-419 (-576)) $) 90)) (-2107 (($) 88) (($ $) 87)) (-2790 (($ $ $) 137)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 132)) (-3011 (((-112) $) 59)) (-3135 (($ $ $ $) 79)) (-2880 (($ $ $) 93)) (-2127 (((-112) $) 125)) (-1840 (($ $ $) 104)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 107)) (-1838 (((-112) $) 35)) (-2531 (((-112) $) 99)) (-3397 (((-3 $ "failed") $) 101)) (-3196 (((-112) $) 124)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 141)) (-1735 (($ $ $ $) 80)) (-1950 (($ $ $) 126)) (-1492 (($ $ $) 127)) (-3511 (($ $) 83)) (-1873 (($ $) 96)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3094 (($ $ $) 78)) (-3448 (($) 100 T CONST)) (-3020 (($ $) 85)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2878 (($ $) 105)) (-2367 (((-430 $) $) 56)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 140) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 139)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 133)) (-3945 (((-112) $) 98)) (-3076 (((-783) $) 135)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 136)) (-2399 (($ $) 121) (($ $ (-783)) 119)) (-3327 (($ $) 84)) (-3052 (($ $) 86)) (-2610 (((-576) $) 117) (((-548) $) 109) (((-905 (-576)) $) 108) (((-390) $) 103) (((-227) $) 102)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 114)) (-2981 (((-783)) 32 T CONST)) (-3238 (((-112) $ $) 94)) (-3176 (($ $ $) 106)) (-2690 (((-112) $ $) 9)) (-1572 (($) 97)) (-3199 (((-112) $ $) 45)) (-1860 (($ $ $ $) 82)) (-3680 (($ $) 122)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $) 120) (($ $ (-783)) 118)) (-3956 (((-112) $ $) 129)) (-3930 (((-112) $ $) 130)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 128)) (-3916 (((-112) $ $) 131)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 110)))
+(((-557) (-141)) (T -557))
+((-2531 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1572 (*1 *1) (-4 *1 (-557))) (-1873 (*1 *1 *1) (-4 *1 (-557))) (-3598 (*1 *1 *1 *1) (-4 *1 (-557))) (-3238 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2880 (*1 *1 *1 *1) (-4 *1 (-557))) (-4078 (*1 *1 *1 *1) (-4 *1 (-557))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-3660 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2107 (*1 *1) (-4 *1 (-557))) (-2107 (*1 *1 *1) (-4 *1 (-557))) (-3052 (*1 *1 *1) (-4 *1 (-557))) (-3020 (*1 *1 *1) (-4 *1 (-557))) (-3327 (*1 *1 *1) (-4 *1 (-557))) (-3511 (*1 *1 *1) (-4 *1 (-557))) (-1860 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1901 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1735 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3135 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3094 (*1 *1 *1 *1) (-4 *1 (-557))))
+(-13 (-1241) (-317) (-832) (-238) (-626 (-576)) (-1057 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-905 (-576))) (-899 (-576)) (-144) (-1041) (-148) (-1171) (-10 -8 (-15 -2531 ((-112) $)) (-15 -3945 ((-112) $)) (-6 -4461) (-15 -1572 ($)) (-15 -1873 ($ $)) (-15 -3598 ($ $ $)) (-15 -3238 ((-112) $ $)) (-15 -2880 ($ $ $)) (-15 -4078 ($ $ $)) (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $)) (-15 -2107 ($)) (-15 -2107 ($ $)) (-15 -3052 ($ $)) (-15 -3020 ($ $)) (-15 -3327 ($ $)) (-15 -3511 ($ $)) (-15 -1860 ($ $ $ $)) (-15 -1901 ($ $ $ $)) (-15 -1735 ($ $ $ $)) (-15 -3135 ($ $ $ $)) (-15 -3094 ($ $ $)) (-6 -4460)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-905 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-862) . T) ((-899 (-576)) . T) ((-937) . T) ((-1041) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) . T) ((-1237) . T) ((-1241) . T))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-558) (-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))) (T -558))
+((-2574 (*1 *1) (-5 *1 (-558))))
+(-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-558) (-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))) (T -558))
-((-3261 (*1 *1) (-5 *1 (-558))))
-(-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-559) (-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))) (T -559))
+((-2574 (*1 *1) (-5 *1 (-559))))
+(-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-559) (-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))) (T -559))
-((-3261 (*1 *1) (-5 *1 (-559))))
-(-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-560) (-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))) (T -560))
+((-2574 (*1 *1) (-5 *1 (-560))))
+(-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-560) (-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))) (T -560))
-((-3261 (*1 *1) (-5 *1 (-560))))
-(-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-561) (-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))) (T -561))
+((-2574 (*1 *1) (-5 *1 (-561))))
+(-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#2| $ |#1| |#2|) NIL)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1995 (((-655 |#1|) $) NIL)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1653 (((-655 |#1|) $) NIL)) (-1801 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-561 |#1| |#2| |#3|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460)))) (T -561))
-NIL
-(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460)))
-((-2628 (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))) 50)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -2628 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-1 (-1190 |#2|) (-1190 |#2|))))) (-567) (-13 (-27) (-441 |#1|))) (T -562))
-((-2628 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-623 *3)) (-5 *5 (-1 (-1190 *3) (-1190 *3))) (-4 *3 (-13 (-27) (-441 *6))) (-4 *6 (-567)) (-5 *2 (-597 *3)) (-5 *1 (-562 *6 *3)))))
-(-10 -7 (-15 -2628 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-1 (-1190 |#2|) (-1190 |#2|)))))
-((-2039 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-4018 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-3256 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 220)))
-(((-563 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3256 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2039 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4018 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-567) (-1055 (-575))) (-13 (-27) (-441 |#1|)) (-1261 |#2|) (-1261 (-418 |#3|)) (-352 |#2| |#3| |#4|)) (T -563))
-((-4018 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-27) (-441 *4))) (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *7 (-1261 (-418 *6))) (-5 *1 (-563 *4 *5 *6 *7 *2)) (-4 *2 (-352 *5 *6 *7)))) (-2039 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3)) (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8)))))
-(-10 -7 (-15 -3256 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2039 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4018 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3562 (((-112) (-575) (-575)) 12)) (-1821 (((-575) (-575)) 7)) (-2257 (((-575) (-575) (-575)) 10)))
-(((-564) (-10 -7 (-15 -1821 ((-575) (-575))) (-15 -2257 ((-575) (-575) (-575))) (-15 -3562 ((-112) (-575) (-575))))) (T -564))
-((-3562 (*1 *2 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-564)))) (-2257 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564)))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564)))))
-(-10 -7 (-15 -1821 ((-575) (-575))) (-15 -2257 ((-575) (-575) (-575))) (-15 -3562 ((-112) (-575) (-575))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-2235 ((|#1| $) 67)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-3921 (($ $) 97)) (-3784 (($ $) 80)) (-3081 ((|#1| $) 68)) (-1708 (((-3 $ "failed") $ $) 20)) (-2467 (($ $) 79)) (-3895 (($ $) 96)) (-3759 (($ $) 81)) (-1521 (($ $) 95)) (-3805 (($ $) 82)) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 75)) (-4400 (((-575) $) 76)) (-4162 (((-3 $ "failed") $) 37)) (-1820 (($ |#1| |#1|) 72)) (-2359 (((-112) $) 66)) (-1632 (($) 107)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 78)) (-1721 (((-112) $) 65)) (-1914 (($ $ $) 113)) (-3503 (($ $ $) 112)) (-3461 (($ $) 104)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3764 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-418 (-575))) 70)) (-3196 ((|#1| $) 69)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2849 (((-3 $ "failed") $ $) 48)) (-2663 (($ $) 105)) (-1531 (($ $) 94)) (-3815 (($ $) 83)) (-3935 (($ $) 93)) (-3795 (($ $) 84)) (-3907 (($ $) 92)) (-3772 (($ $) 85)) (-2901 (((-112) $ |#1|) 64)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-575)) 74)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 103)) (-3850 (($ $) 91)) (-3930 (((-112) $ $) 45)) (-1544 (($ $) 102)) (-3826 (($ $) 90)) (-1593 (($ $) 101)) (-3871 (($ $) 89)) (-2912 (($ $) 100)) (-3883 (($ $) 88)) (-1583 (($ $) 99)) (-3861 (($ $) 87)) (-1554 (($ $) 98)) (-3837 (($ $) 86)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 110)) (-3955 (((-112) $ $) 109)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 111)) (-3940 (((-112) $ $) 108)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ $) 106) (($ $ (-418 (-575))) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-565 |#1|) (-141) (-13 (-415) (-1220))) (T -565))
-((-3764 (*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-1820 (*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-3764 (*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))) (-2901 (*1 *2 *1 *3) (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))))
-(-13 (-463) (-861) (-1220) (-1019) (-1055 (-575)) (-10 -8 (-6 -3493) (-15 -3764 ($ |t#1| |t#1|)) (-15 -1820 ($ |t#1| |t#1|)) (-15 -3764 ($ |t#1|)) (-15 -3764 ($ (-418 (-575)))) (-15 -3196 (|t#1| $)) (-15 -3081 (|t#1| $)) (-15 -2235 (|t#1| $)) (-15 -2359 ((-112) $)) (-15 -1721 ((-112) $)) (-15 -2901 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-293) . T) ((-299) . T) ((-463) . T) ((-504) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-861) . T) ((-1019) . T) ((-1055 (-575)) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) . T) ((-1223) . T))
-((-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 9)) (-2456 (($ $) 11)) (-3978 (((-112) $) 20)) (-4162 (((-3 $ "failed") $) 16)) (-3930 (((-112) $ $) 22)))
-(((-566 |#1|) (-10 -8 (-15 -3978 ((-112) |#1|)) (-15 -3930 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -1984 ((-2 (|:| -2942 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|))) (-567)) (T -566))
-NIL
-(-10 -8 (-15 -3978 ((-112) |#1|)) (-15 -3930 ((-112) |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -1984 ((-2 (|:| -2942 |#1|) (|:| -4447 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ $) 48)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-567) (-141)) (T -567))
-((-2849 (*1 *1 *1 *1) (|partial| -4 *1 (-567))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2942 *1) (|:| -4447 *1) (|:| |associate| *1))) (-4 *1 (-567)))) (-2456 (*1 *1 *1) (-4 *1 (-567))) (-3930 (*1 *2 *1 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112)))))
-(-13 (-174) (-38 $) (-299) (-10 -8 (-15 -2849 ((-3 $ "failed") $ $)) (-15 -1984 ((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $)) (-15 -2456 ($ $)) (-15 -3930 ((-112) $ $)) (-15 -3978 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-3392 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1194) (-655 |#2|)) 38)) (-1556 (((-597 |#2|) |#2| (-1194)) 63)) (-3673 (((-3 |#2| "failed") |#2| (-1194)) 156)) (-3267 (((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) (-623 |#2|) (-655 (-623 |#2|))) 159)) (-1369 (((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) |#2|) 41)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -1369 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) |#2|)) (-15 -3392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1194) (-655 |#2|))) (-15 -3673 ((-3 |#2| "failed") |#2| (-1194))) (-15 -1556 ((-597 |#2|) |#2| (-1194))) (-15 -3267 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) (-623 |#2|) (-655 (-623 |#2|))))) (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -568))
-((-3267 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1194)) (-5 *6 (-655 (-623 *3))) (-5 *5 (-623 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *7))) (-4 *7 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3))) (-5 *1 (-568 *7 *3)))) (-1556 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-568 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-3673 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-3392 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3)))) (-1369 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(-10 -7 (-15 -1369 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) |#2|)) (-15 -3392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1194) (-655 |#2|))) (-15 -3673 ((-3 |#2| "failed") |#2| (-1194))) (-15 -1556 ((-597 |#2|) |#2| (-1194))) (-15 -3267 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1194) (-623 |#2|) (-655 (-623 |#2|)))))
-((-4281 (((-429 |#1|) |#1|) 19)) (-2347 (((-429 |#1|) |#1|) 34)) (-1489 (((-3 |#1| "failed") |#1|) 49)) (-2061 (((-429 |#1|) |#1|) 60)))
-(((-569 |#1|) (-10 -7 (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -2061 ((-429 |#1|) |#1|)) (-15 -1489 ((-3 |#1| "failed") |#1|))) (-556)) (T -569))
-((-1489 (*1 *2 *2) (|partial| -12 (-5 *1 (-569 *2)) (-4 *2 (-556)))) (-2061 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))) (-4281 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))))
-(-10 -7 (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -2061 ((-429 |#1|) |#1|)) (-15 -1489 ((-3 |#1| "failed") |#1|)))
-((-3933 (($) 9)) (-2622 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-1995 (((-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-4218 (($ (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2662 (($ (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-3179 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2697 (((-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3915 (((-1290)) 11)))
-(((-570) (-10 -8 (-15 -3933 ($)) (-15 -3915 ((-1290))) (-15 -1995 ((-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2662 ($ (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4218 ($ (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2622 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2697 ((-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3179 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -570))
-((-3179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-570)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-570)))) (-2622 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-570)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-570)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-570)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-570)))) (-3915 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-570)))) (-3933 (*1 *1) (-5 *1 (-570))))
-(-10 -8 (-15 -3933 ($)) (-15 -3915 ((-1290))) (-15 -1995 ((-655 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2662 ($ (-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4218 ($ (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2622 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2697 ((-655 (-2 (|:| -4169 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3179 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1174 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1974 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-3462 (((-1190 (-418 (-1190 |#2|))) |#2| (-623 |#2|) (-623 |#2|) (-1190 |#2|)) 35)) (-3561 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) |#2| (-1190 |#2|)) 115)) (-1599 (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 85) (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|)) 55)) (-2802 (((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| (-623 |#2|) |#2| (-418 (-1190 |#2|))) 92) (((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| |#2| (-1190 |#2|)) 114)) (-2182 (((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) |#2| (-1190 |#2|)) 116)) (-2283 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))) 133 (|has| |#3| (-667 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|)) 132 (|has| |#3| (-667 |#2|)))) (-2430 ((|#2| (-1190 (-418 (-1190 |#2|))) (-623 |#2|) |#2|) 53)) (-2290 (((-1190 (-418 (-1190 |#2|))) (-1190 |#2|) (-623 |#2|)) 34)))
-(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -1599 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -1599 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -2802 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| |#2| (-1190 |#2|))) (-15 -2802 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3561 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) |#2| (-1190 |#2|))) (-15 -3561 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -2182 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) |#2| (-1190 |#2|))) (-15 -2182 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3462 ((-1190 (-418 (-1190 |#2|))) |#2| (-623 |#2|) (-623 |#2|) (-1190 |#2|))) (-15 -2430 (|#2| (-1190 (-418 (-1190 |#2|))) (-623 |#2|) |#2|)) (-15 -2290 ((-1190 (-418 (-1190 |#2|))) (-1190 |#2|) (-623 |#2|))) (IF (|has| |#3| (-667 |#2|)) (PROGN (-15 -2283 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -2283 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))))) |%noBranch|)) (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))) (-13 (-441 |#1|) (-27) (-1220)) (-1117)) (T -571))
-((-2283 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-623 *4)) (-5 *6 (-418 (-1190 *4))) (-4 *4 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) (-2283 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-623 *4)) (-5 *6 (-1190 *4)) (-4 *4 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *4 (-623 *6)) (-4 *6 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-1190 (-418 (-1190 *6)))) (-5 *1 (-571 *5 *6 *7)) (-5 *3 (-1190 *6)) (-4 *7 (-1117)))) (-2430 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1190 (-418 (-1190 *2)))) (-5 *4 (-623 *2)) (-4 *2 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1117)))) (-3462 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-1190 (-418 (-1190 *3)))) (-5 *1 (-571 *6 *3 *7)) (-5 *5 (-1190 *3)) (-4 *7 (-1117)))) (-2182 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-5 *5 (-418 (-1190 *2))) (-4 *2 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117)))) (-2182 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-5 *5 (-1190 *2)) (-4 *2 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117)))) (-3561 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-5 *6 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117)))) (-3561 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-5 *6 (-1190 *3)) (-4 *3 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117)))) (-2802 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) (-2802 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) (-1599 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))) (-1599 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))))
-(-10 -7 (-15 -1599 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -1599 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -2802 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| |#2| (-1190 |#2|))) (-15 -2802 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2| (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3561 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) |#2| (-1190 |#2|))) (-15 -3561 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -2182 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) |#2| (-1190 |#2|))) (-15 -2182 ((-3 |#2| "failed") |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)) (-623 |#2|) |#2| (-418 (-1190 |#2|)))) (-15 -3462 ((-1190 (-418 (-1190 |#2|))) |#2| (-623 |#2|) (-623 |#2|) (-1190 |#2|))) (-15 -2430 (|#2| (-1190 (-418 (-1190 |#2|))) (-623 |#2|) |#2|)) (-15 -2290 ((-1190 (-418 (-1190 |#2|))) (-1190 |#2|) (-623 |#2|))) (IF (|has| |#3| (-667 |#2|)) (PROGN (-15 -2283 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) |#2| (-1190 |#2|))) (-15 -2283 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-623 |#2|) |#2| (-418 (-1190 |#2|))))) |%noBranch|))
-((-1710 (((-575) (-575) (-782)) 85)) (-4133 (((-575) (-575)) 83)) (-3549 (((-575) (-575)) 81)) (-3828 (((-575) (-575)) 87)) (-2959 (((-575) (-575) (-575)) 65)) (-1578 (((-575) (-575) (-575)) 62)) (-2299 (((-418 (-575)) (-575)) 30)) (-4067 (((-575) (-575)) 34)) (-1862 (((-575) (-575)) 74)) (-1966 (((-575) (-575)) 46)) (-1884 (((-655 (-575)) (-575)) 80)) (-4238 (((-575) (-575) (-575) (-575) (-575)) 58)) (-1913 (((-418 (-575)) (-575)) 55)))
-(((-572) (-10 -7 (-15 -1913 ((-418 (-575)) (-575))) (-15 -4238 ((-575) (-575) (-575) (-575) (-575))) (-15 -1884 ((-655 (-575)) (-575))) (-15 -1966 ((-575) (-575))) (-15 -1862 ((-575) (-575))) (-15 -4067 ((-575) (-575))) (-15 -2299 ((-418 (-575)) (-575))) (-15 -1578 ((-575) (-575) (-575))) (-15 -2959 ((-575) (-575) (-575))) (-15 -3828 ((-575) (-575))) (-15 -3549 ((-575) (-575))) (-15 -4133 ((-575) (-575))) (-15 -1710 ((-575) (-575) (-782))))) (T -572))
-((-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-782)) (-5 *1 (-572)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-2959 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-1578 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-2299 (*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-1966 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-1884 (*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))) (-4238 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))) (-1913 (*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))))
-(-10 -7 (-15 -1913 ((-418 (-575)) (-575))) (-15 -4238 ((-575) (-575) (-575) (-575) (-575))) (-15 -1884 ((-655 (-575)) (-575))) (-15 -1966 ((-575) (-575))) (-15 -1862 ((-575) (-575))) (-15 -4067 ((-575) (-575))) (-15 -2299 ((-418 (-575)) (-575))) (-15 -1578 ((-575) (-575) (-575))) (-15 -2959 ((-575) (-575) (-575))) (-15 -3828 ((-575) (-575))) (-15 -3549 ((-575) (-575))) (-15 -4133 ((-575) (-575))) (-15 -1710 ((-575) (-575) (-782))))
-((-1588 (((-2 (|:| |answer| |#4|) (|:| -3660 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-573 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1588 ((-2 (|:| |answer| |#4|) (|:| -3660 |#4|)) |#4| (-1 |#2| |#2|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -573))
-((-1588 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-4 *7 (-1261 (-418 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3660 *3))) (-5 *1 (-573 *5 *6 *7 *3)) (-4 *3 (-352 *5 *6 *7)))))
-(-10 -7 (-15 -1588 ((-2 (|:| |answer| |#4|) (|:| -3660 |#4|)) |#4| (-1 |#2| |#2|))))
-((-1588 (((-2 (|:| |answer| (-418 |#2|)) (|:| -3660 (-418 |#2|)) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)) 18)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -1588 ((-2 (|:| |answer| (-418 |#2|)) (|:| -3660 (-418 |#2|)) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)))) (-373) (-1261 |#1|)) (T -574))
-((-1588 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |answer| (-418 *6)) (|:| -3660 (-418 *6)) (|:| |specpart| (-418 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-418 *6)))))
-(-10 -7 (-15 -1588 ((-2 (|:| |answer| (-418 |#2|)) (|:| -3660 (-418 |#2|)) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 30)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 96)) (-2456 (($ $) 97)) (-3978 (((-112) $) NIL)) (-2803 (($ $ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ $ $) 52)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL)) (-3624 (($ $ $) 91)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL)) (-4400 (((-575) $) NIL)) (-2800 (($ $ $) 54)) (-2862 (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 77) (((-700 (-575)) (-700 $)) 73) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) 93)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL)) (-2188 (((-112) $) NIL)) (-1622 (((-418 (-575)) $) NIL)) (-2073 (($) 79) (($ $) 80)) (-2811 (($ $ $) 90)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-3623 (($ $ $ $) NIL)) (-3509 (($ $ $) 70)) (-2359 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-3900 (((-112) $) 34)) (-4254 (((-112) $) 85)) (-2808 (((-3 $ "failed") $) NIL)) (-1721 (((-112) $) 43)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3899 (($ $ $ $) 55)) (-1914 (($ $ $) 87)) (-3503 (($ $ $) 86)) (-3535 (($ $) NIL)) (-1840 (($ $) 49)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) 69)) (-3121 (($ $ $) NIL)) (-3472 (($) NIL T CONST)) (-3044 (($ $) 38)) (-3912 (((-1137) $) 42)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 128)) (-3923 (($ $ $) 94) (($ (-655 $)) NIL)) (-2031 (($ $) NIL)) (-2347 (((-429 $) $) 114)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-2849 (((-3 $ "failed") $ $) 112)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 89)) (-2382 (($ $) NIL) (($ $ (-782)) NIL)) (-3351 (($ $) 40)) (-3076 (($ $) 36)) (-2613 (((-575) $) 48) (((-547) $) 64) (((-904 (-575)) $) NIL) (((-389) $) 58) (((-227) $) 61) (((-1176) $) 66)) (-2882 (((-873) $) 46) (($ (-575)) 47) (($ $) NIL) (($ (-575)) 47)) (-4421 (((-782)) NIL T CONST)) (-2646 (((-112) $ $) NIL)) (-2266 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-1548 (($) 35)) (-3930 (((-112) $ $) NIL)) (-1598 (($ $ $ $) 51)) (-3863 (($ $) 78)) (-1989 (($) 6 T CONST)) (-2005 (($) 31 T CONST)) (-2225 (((-1176) $) 26) (((-1176) $ (-112)) 27) (((-1290) (-833) $) 28) (((-1290) (-833) $ (-112)) 29)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3980 (((-112) $ $) 50)) (-3955 (((-112) $ $) 81)) (-3913 (((-112) $ $) 33)) (-3967 (((-112) $ $) 82)) (-3940 (((-112) $ $) 10)) (-4027 (($ $) 16) (($ $ $) 39)) (-4015 (($ $ $) 37)) (** (($ $ (-936)) NIL) (($ $ (-782)) 84)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 83) (($ $ $) 53) (($ (-575) $) 83)))
-(((-575) (-13 (-556) (-625 (-1176)) (-839) (-10 -7 (-6 -4447) (-6 -4452) (-6 -4448) (-6 -4442)))) (T -575))
-NIL
-(-13 (-556) (-625 (-1176)) (-839) (-10 -7 (-6 -4447) (-6 -4452) (-6 -4448) (-6 -4442)))
-((-2655 (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780) (-1080)) 116) (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780)) 118)) (-4388 (((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1194)) 195) (((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1176)) 194) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389) (-1080)) 199) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389)) 200) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389)) 201) (((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389))))) 202) (((-1052) (-325 (-389)) (-1111 (-854 (-389)))) 190) (((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389)) 189) (((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389)) 185) (((-1052) (-780)) 177) (((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389) (-1080)) 184)))
-(((-576) (-10 -7 (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389) (-1080))) (-15 -4388 ((-1052) (-780))) (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389) (-1080))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780) (-1080))) (-15 -4388 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1176))) (-15 -4388 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1194))))) (T -576))
-((-4388 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389)))) (-5 *5 (-1194)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389)))) (-5 *5 (-1176)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) (-5 *1 (-576)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052)))) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389))))) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1052)) (-5 *1 (-576)))) (-4388 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389)))) (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576)))))
-(-10 -7 (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389) (-1080))) (-15 -4388 ((-1052) (-780))) (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-1111 (-854 (-389))))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389))) (-15 -4388 ((-1052) (-325 (-389)) (-655 (-1111 (-854 (-389)))) (-389) (-389) (-1080))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))) (-780) (-1080))) (-15 -4388 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1176))) (-15 -4388 ((-3 (-1052) "failed") (-325 (-389)) (-1109 (-854 (-389))) (-1194))))
-((-2752 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|)) 195)) (-4135 (((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|)) 97)) (-1962 (((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2|) 191)) (-2845 (((-3 |#2| "failed") |#2| |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194))) 200)) (-4096 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-1194)) 209 (|has| |#3| (-667 |#2|)))))
-(((-577 |#1| |#2| |#3|) (-10 -7 (-15 -4135 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|))) (-15 -1962 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2|)) (-15 -2752 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|))) (-15 -2845 ((-3 |#2| "failed") |#2| |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)))) (IF (|has| |#3| (-667 |#2|)) (-15 -4096 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-1194))) |%noBranch|)) (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))) (-13 (-441 |#1|) (-27) (-1220)) (-1117)) (T -577))
-((-4096 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-623 *4)) (-5 *6 (-1194)) (-4 *4 (-13 (-441 *7) (-27) (-1220))) (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-577 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))) (-2845 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-623 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-4 *2 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *1 (-577 *5 *2 *6)) (-4 *6 (-1117)))) (-2752 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220))) (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *3 *7)) (-4 *7 (-1117)))) (-1962 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3))) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117)))) (-4135 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *5) (-27) (-1220))) (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575)))) (-5 *2 (-597 *3)) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117)))))
-(-10 -7 (-15 -4135 ((-597 |#2|) |#2| (-623 |#2|) (-623 |#2|))) (-15 -1962 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-623 |#2|) (-623 |#2|) |#2|)) (-15 -2752 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-623 |#2|) (-623 |#2|) (-655 |#2|))) (-15 -2845 ((-3 |#2| "failed") |#2| |#2| |#2| (-623 |#2|) (-623 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1194)))) (IF (|has| |#3| (-667 |#2|)) (-15 -4096 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2098 (-655 |#2|))) |#3| |#2| (-623 |#2|) (-623 |#2|) (-1194))) |%noBranch|))
-((-2062 (((-2 (|:| -4426 |#2|) (|:| |nconst| |#2|)) |#2| (-1194)) 64)) (-3947 (((-3 |#2| "failed") |#2| (-1194) (-854 |#2|) (-854 |#2|)) 175 (-12 (|has| |#2| (-1156)) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-898 (-575))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)) 154 (-12 (|has| |#2| (-640)) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-898 (-575)))))) (-3045 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)) 156 (-12 (|has| |#2| (-640)) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-898 (-575)))))))
-(((-578 |#1| |#2|) (-10 -7 (-15 -2062 ((-2 (|:| -4426 |#2|) (|:| |nconst| |#2|)) |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (PROGN (IF (|has| |#2| (-640)) (PROGN (-15 -3045 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194))) (-15 -3947 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) (IF (|has| |#2| (-1156)) (-15 -3947 ((-3 |#2| "failed") |#2| (-1194) (-854 |#2|) (-854 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1055 (-575)) (-463) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -578))
-((-3947 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1194)) (-5 *4 (-854 *2)) (-4 *2 (-1156)) (-4 *2 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *1 (-578 *5 *2)))) (-3947 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-640)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-3045 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575))) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-640)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575)))) (-5 *2 (-2 (|:| -4426 *3) (|:| |nconst| *3))) (-5 *1 (-578 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(-10 -7 (-15 -2062 ((-2 (|:| -4426 |#2|) (|:| |nconst| |#2|)) |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (PROGN (IF (|has| |#2| (-640)) (PROGN (-15 -3045 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194))) (-15 -3947 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) (IF (|has| |#2| (-1156)) (-15 -3947 ((-3 |#2| "failed") |#2| (-1194) (-854 |#2|) (-854 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4237 (((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-655 (-418 |#2|))) 41)) (-4388 (((-597 (-418 |#2|)) (-418 |#2|)) 28)) (-3517 (((-3 (-418 |#2|) "failed") (-418 |#2|)) 17)) (-3765 (((-3 (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-418 |#2|)) 48)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -4388 ((-597 (-418 |#2|)) (-418 |#2|))) (-15 -3517 ((-3 (-418 |#2|) "failed") (-418 |#2|))) (-15 -3765 ((-3 (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-418 |#2|))) (-15 -4237 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-655 (-418 |#2|))))) (-13 (-373) (-148) (-1055 (-575))) (-1261 |#1|)) (T -579))
-((-4237 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-655 (-418 *6))) (-5 *3 (-418 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *5 *6)))) (-3765 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -2063 (-418 *5)) (|:| |coeff| (-418 *5)))) (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5)))) (-3517 (*1 *2 *2) (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148) (-1055 (-575)))) (-5 *1 (-579 *3 *4)))) (-4388 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-597 (-418 *5))) (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5)))))
-(-10 -7 (-15 -4388 ((-597 (-418 |#2|)) (-418 |#2|))) (-15 -3517 ((-3 (-418 |#2|) "failed") (-418 |#2|))) (-15 -3765 ((-3 (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-418 |#2|))) (-15 -4237 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-655 (-418 |#2|)))))
-((-2832 (((-3 (-575) "failed") |#1|) 14)) (-3255 (((-112) |#1|) 13)) (-3839 (((-575) |#1|) 9)))
-(((-580 |#1|) (-10 -7 (-15 -3839 ((-575) |#1|)) (-15 -3255 ((-112) |#1|)) (-15 -2832 ((-3 (-575) "failed") |#1|))) (-1055 (-575))) (T -580))
-((-2832 (*1 *2 *3) (|partial| -12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2)))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1055 (-575))))) (-3839 (*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2)))))
-(-10 -7 (-15 -3839 ((-575) |#1|)) (-15 -3255 ((-112) |#1|)) (-15 -2832 ((-3 (-575) "failed") |#1|)))
-((-3157 (((-3 (-2 (|:| |mainpart| (-418 (-967 |#1|))) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 (-967 |#1|))) (|:| |logand| (-418 (-967 |#1|))))))) "failed") (-418 (-967 |#1|)) (-1194) (-655 (-418 (-967 |#1|)))) 48)) (-1889 (((-597 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-1194)) 28)) (-2779 (((-3 (-418 (-967 |#1|)) "failed") (-418 (-967 |#1|)) (-1194)) 23)) (-1844 (((-3 (-2 (|:| -2063 (-418 (-967 |#1|))) (|:| |coeff| (-418 (-967 |#1|)))) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))) 35)))
-(((-581 |#1|) (-10 -7 (-15 -1889 ((-597 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -2779 ((-3 (-418 (-967 |#1|)) "failed") (-418 (-967 |#1|)) (-1194))) (-15 -3157 ((-3 (-2 (|:| |mainpart| (-418 (-967 |#1|))) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 (-967 |#1|))) (|:| |logand| (-418 (-967 |#1|))))))) "failed") (-418 (-967 |#1|)) (-1194) (-655 (-418 (-967 |#1|))))) (-15 -1844 ((-3 (-2 (|:| -2063 (-418 (-967 |#1|))) (|:| |coeff| (-418 (-967 |#1|)))) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))))) (-13 (-567) (-1055 (-575)) (-148))) (T -581))
-((-1844 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-148))) (-5 *2 (-2 (|:| -2063 (-418 (-967 *5))) (|:| |coeff| (-418 (-967 *5))))) (-5 *1 (-581 *5)) (-5 *3 (-418 (-967 *5))))) (-3157 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 (-418 (-967 *6)))) (-5 *3 (-418 (-967 *6))) (-4 *6 (-13 (-567) (-1055 (-575)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *6)))) (-2779 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-148))) (-5 *1 (-581 *4)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-148))) (-5 *2 (-597 (-418 (-967 *5)))) (-5 *1 (-581 *5)) (-5 *3 (-418 (-967 *5))))))
-(-10 -7 (-15 -1889 ((-597 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -2779 ((-3 (-418 (-967 |#1|)) "failed") (-418 (-967 |#1|)) (-1194))) (-15 -3157 ((-3 (-2 (|:| |mainpart| (-418 (-967 |#1|))) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 (-967 |#1|))) (|:| |logand| (-418 (-967 |#1|))))))) "failed") (-418 (-967 |#1|)) (-1194) (-655 (-418 (-967 |#1|))))) (-15 -1844 ((-3 (-2 (|:| -2063 (-418 (-967 |#1|))) (|:| |coeff| (-418 (-967 |#1|)))) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)))))
-((-2859 (((-112) $ $) 75)) (-2045 (((-112) $) 48)) (-2235 ((|#1| $) 39)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) 79)) (-3921 (($ $) 139)) (-3784 (($ $) 118)) (-3081 ((|#1| $) 37)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $) NIL)) (-3895 (($ $) 141)) (-3759 (($ $) 114)) (-1521 (($ $) 143)) (-3805 (($ $) 122)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) 93)) (-4400 (((-575) $) 95)) (-4162 (((-3 $ "failed") $) 78)) (-1820 (($ |#1| |#1|) 35)) (-2359 (((-112) $) 44)) (-1632 (($) 104)) (-3900 (((-112) $) 55)) (-2111 (($ $ (-575)) NIL)) (-1721 (((-112) $) 45)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-3461 (($ $) 106)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-3764 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-418 (-575))) 92)) (-3196 ((|#1| $) 36)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) 81) (($ (-655 $)) NIL)) (-2849 (((-3 $ "failed") $ $) 80)) (-2663 (($ $) 108)) (-1531 (($ $) 147)) (-3815 (($ $) 120)) (-3935 (($ $) 149)) (-3795 (($ $) 124)) (-3907 (($ $) 145)) (-3772 (($ $) 116)) (-2901 (((-112) $ |#1|) 42)) (-2882 (((-873) $) 100) (($ (-575)) 83) (($ $) NIL) (($ (-575)) 83)) (-4421 (((-782)) 102 T CONST)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) 161)) (-3850 (($ $) 130)) (-3930 (((-112) $ $) NIL)) (-1544 (($ $) 159)) (-3826 (($ $) 126)) (-1593 (($ $) 157)) (-3871 (($ $) 137)) (-2912 (($ $) 155)) (-3883 (($ $) 135)) (-1583 (($ $) 153)) (-3861 (($ $) 132)) (-1554 (($ $) 151)) (-3837 (($ $) 128)) (-1989 (($) 30 T CONST)) (-2005 (($) 10 T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 49)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 47)) (-4027 (($ $) 53) (($ $ $) 54)) (-4015 (($ $ $) 52)) (** (($ $ (-936)) 71) (($ $ (-782)) NIL) (($ $ $) 110) (($ $ (-418 (-575))) 163)) (* (($ (-936) $) 66) (($ (-782) $) NIL) (($ (-575) $) 65) (($ $ $) 61)))
-(((-582 |#1|) (-565 |#1|) (-13 (-415) (-1220))) (T -582))
-NIL
-(-565 |#1|)
-((-4047 (((-3 (-655 (-1190 (-575))) "failed") (-655 (-1190 (-575))) (-1190 (-575))) 27)))
-(((-583) (-10 -7 (-15 -4047 ((-3 (-655 (-1190 (-575))) "failed") (-655 (-1190 (-575))) (-1190 (-575)))))) (T -583))
-((-4047 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 (-575)))) (-5 *3 (-1190 (-575))) (-5 *1 (-583)))))
-(-10 -7 (-15 -4047 ((-3 (-655 (-1190 (-575))) "failed") (-655 (-1190 (-575))) (-1190 (-575)))))
-((-4402 (((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-1194)) 19)) (-3569 (((-655 (-623 |#2|)) (-655 |#2|) (-1194)) 23)) (-1644 (((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-655 (-623 |#2|))) 11)) (-3515 ((|#2| |#2| (-1194)) 59 (|has| |#1| (-567)))) (-1769 ((|#2| |#2| (-1194)) 87 (-12 (|has| |#2| (-293)) (|has| |#1| (-463))))) (-2539 (((-623 |#2|) (-623 |#2|) (-655 (-623 |#2|)) (-1194)) 25)) (-2704 (((-623 |#2|) (-655 (-623 |#2|))) 24)) (-3959 (((-597 |#2|) |#2| (-1194) (-1 (-597 |#2|) |#2| (-1194)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194))) 115 (-12 (|has| |#2| (-293)) (|has| |#2| (-640)) (|has| |#2| (-1055 (-1194))) (|has| |#1| (-625 (-904 (-575)))) (|has| |#1| (-463)) (|has| |#1| (-898 (-575)))))))
-(((-584 |#1| |#2|) (-10 -7 (-15 -4402 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-1194))) (-15 -2704 ((-623 |#2|) (-655 (-623 |#2|)))) (-15 -2539 ((-623 |#2|) (-623 |#2|) (-655 (-623 |#2|)) (-1194))) (-15 -1644 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-655 (-623 |#2|)))) (-15 -3569 ((-655 (-623 |#2|)) (-655 |#2|) (-1194))) (IF (|has| |#1| (-567)) (-15 -3515 (|#2| |#2| (-1194))) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-293)) (PROGN (-15 -1769 (|#2| |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (IF (|has| |#2| (-640)) (IF (|has| |#2| (-1055 (-1194))) (-15 -3959 ((-597 |#2|) |#2| (-1194) (-1 (-597 |#2|) |#2| (-1194)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1117) (-441 |#1|)) (T -584))
-((-3959 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-597 *3) *3 (-1194))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1194))) (-4 *3 (-293)) (-4 *3 (-640)) (-4 *3 (-1055 *4)) (-4 *3 (-441 *7)) (-5 *4 (-1194)) (-4 *7 (-625 (-904 (-575)))) (-4 *7 (-463)) (-4 *7 (-898 (-575))) (-4 *7 (-1117)) (-5 *2 (-597 *3)) (-5 *1 (-584 *7 *3)))) (-1769 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-463)) (-4 *4 (-1117)) (-5 *1 (-584 *4 *2)) (-4 *2 (-293)) (-4 *2 (-441 *4)))) (-3515 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-4 *4 (-1117)) (-5 *1 (-584 *4 *2)) (-4 *2 (-441 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-1194)) (-4 *6 (-441 *5)) (-4 *5 (-1117)) (-5 *2 (-655 (-623 *6))) (-5 *1 (-584 *5 *6)))) (-1644 (*1 *2 *2 *2) (-12 (-5 *2 (-655 (-623 *4))) (-4 *4 (-441 *3)) (-4 *3 (-1117)) (-5 *1 (-584 *3 *4)))) (-2539 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-655 (-623 *6))) (-5 *4 (-1194)) (-5 *2 (-623 *6)) (-4 *6 (-441 *5)) (-4 *5 (-1117)) (-5 *1 (-584 *5 *6)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-655 (-623 *5))) (-4 *4 (-1117)) (-5 *2 (-623 *5)) (-5 *1 (-584 *4 *5)) (-4 *5 (-441 *4)))) (-4402 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-623 *5))) (-5 *3 (-1194)) (-4 *5 (-441 *4)) (-4 *4 (-1117)) (-5 *1 (-584 *4 *5)))))
-(-10 -7 (-15 -4402 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-1194))) (-15 -2704 ((-623 |#2|) (-655 (-623 |#2|)))) (-15 -2539 ((-623 |#2|) (-623 |#2|) (-655 (-623 |#2|)) (-1194))) (-15 -1644 ((-655 (-623 |#2|)) (-655 (-623 |#2|)) (-655 (-623 |#2|)))) (-15 -3569 ((-655 (-623 |#2|)) (-655 |#2|) (-1194))) (IF (|has| |#1| (-567)) (-15 -3515 (|#2| |#2| (-1194))) |%noBranch|) (IF (|has| |#1| (-463)) (IF (|has| |#2| (-293)) (PROGN (-15 -1769 (|#2| |#2| (-1194))) (IF (|has| |#1| (-625 (-904 (-575)))) (IF (|has| |#1| (-898 (-575))) (IF (|has| |#2| (-640)) (IF (|has| |#2| (-1055 (-1194))) (-15 -3959 ((-597 |#2|) |#2| (-1194) (-1 (-597 |#2|) |#2| (-1194)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1194)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4046 (((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-655 |#1|) "failed") (-575) |#1| |#1|)) 199)) (-4161 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-655 (-418 |#2|))) 174)) (-1763 (((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-655 (-418 |#2|))) 171)) (-1909 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2149 (((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-4337 (((-3 (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-418 |#2|)) 202)) (-1669 (((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-418 |#2|)) 205)) (-4432 (((-2 (|:| |ir| (-597 (-418 |#2|))) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|)) 88)) (-2639 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-1876 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-655 (-418 |#2|))) 178)) (-2675 (((-3 (-634 |#1| |#2|) "failed") (-634 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|)) 166)) (-2795 (((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|)) 189)) (-4143 (((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-418 |#2|)) 210)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -2149 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2795 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -4046 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-655 |#1|) "failed") (-575) |#1| |#1|))) (-15 -1669 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-418 |#2|))) (-15 -4143 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-418 |#2|))) (-15 -4161 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-655 (-418 |#2|)))) (-15 -1876 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-655 (-418 |#2|)))) (-15 -4337 ((-3 (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-418 |#2|))) (-15 -1763 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-655 (-418 |#2|)))) (-15 -1909 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2675 ((-3 (-634 |#1| |#2|) "failed") (-634 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -4432 ((-2 (|:| |ir| (-597 (-418 |#2|))) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2639 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-373) (-1261 |#1|)) (T -585))
-((-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-585 *5 *3)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |ir| (-597 (-418 *6))) (|:| |specpart| (-418 *6)) (|:| |polypart| *6))) (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6)))) (-2675 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-634 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2429 *4) (|:| |sol?| (-112))) (-575) *4)) (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *1 (-585 *4 *5)))) (-1909 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2063 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-373)) (-5 *1 (-585 *4 *2)) (-4 *2 (-1261 *4)))) (-1763 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-655 (-418 *7))) (-4 *7 (-1261 *6)) (-5 *3 (-418 *7)) (-4 *6 (-373)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-585 *6 *7)))) (-4337 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -2063 (-418 *6)) (|:| |coeff| (-418 *6)))) (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6)))) (-1876 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2429 *7) (|:| |sol?| (-112))) (-575) *7)) (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7)) (-5 *3 (-418 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-585 *7 *8)))) (-4161 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2063 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7)) (-5 *3 (-418 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-585 *7 *8)))) (-4143 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2429 *6) (|:| |sol?| (-112))) (-575) *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6)) (-2 (|:| -2063 (-418 *7)) (|:| |coeff| (-418 *7))) "failed")) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-1669 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2063 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6)) (-2 (|:| -2063 (-418 *7)) (|:| |coeff| (-418 *7))) "failed")) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-4046 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-655 *6) "failed") (-575) *6 *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2429 *6) (|:| |sol?| (-112))) (-575) *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))) (-2149 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2063 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6))) (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))))
-(-10 -7 (-15 -2149 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2795 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -4046 ((-2 (|:| |answer| (-597 (-418 |#2|))) (|:| |a0| |#1|)) (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-655 |#1|) "failed") (-575) |#1| |#1|))) (-15 -1669 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-418 |#2|))) (-15 -4143 ((-3 (-2 (|:| |answer| (-418 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-418 |#2|))) (-15 -4161 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-655 (-418 |#2|)))) (-15 -1876 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|))))))) (|:| |a0| |#1|)) "failed") (-418 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|) (-655 (-418 |#2|)))) (-15 -4337 ((-3 (-2 (|:| -2063 (-418 |#2|)) (|:| |coeff| (-418 |#2|))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-418 |#2|))) (-15 -1763 ((-3 (-2 (|:| |mainpart| (-418 |#2|)) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| (-418 |#2|)) (|:| |logand| (-418 |#2|)))))) "failed") (-418 |#2|) (-1 |#2| |#2|) (-655 (-418 |#2|)))) (-15 -1909 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2675 ((-3 (-634 |#1| |#2|) "failed") (-634 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2429 |#1|) (|:| |sol?| (-112))) (-575) |#1|))) (-15 -4432 ((-2 (|:| |ir| (-597 (-418 |#2|))) (|:| |specpart| (-418 |#2|)) (|:| |polypart| |#2|)) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2639 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1921 (((-3 |#2| "failed") |#2| (-1194) (-1194)) 10)))
-(((-586 |#1| |#2|) (-10 -7 (-15 -1921 ((-3 |#2| "failed") |#2| (-1194) (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-1156) (-29 |#1|))) (T -586))
-((-1921 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-586 *4 *2)) (-4 *2 (-13 (-1220) (-974) (-1156) (-29 *4))))))
-(-10 -7 (-15 -1921 ((-3 |#2| "failed") |#2| (-1194) (-1194))))
-((-4155 (((-702 (-1243)) $ (-1243)) 26)) (-1591 (((-702 (-560)) $ (-560)) 25)) (-1596 (((-782) $ (-129)) 27)) (-3614 (((-702 (-130)) $ (-130)) 24)) (-2139 (((-702 (-1243)) $) 12)) (-1843 (((-702 (-1241)) $) 8)) (-3017 (((-702 (-1240)) $) 10)) (-3597 (((-702 (-560)) $) 13)) (-2896 (((-702 (-558)) $) 9)) (-2689 (((-702 (-557)) $) 11)) (-2825 (((-782) $ (-129)) 7)) (-2661 (((-702 (-130)) $) 14)) (-3265 (($ $) 6)))
-(((-587) (-141)) (T -587))
-NIL
-(-13 (-538) (-871))
-(((-175) . T) ((-538) . T) ((-871) . T))
-((-4155 (((-702 (-1243)) $ (-1243)) NIL)) (-1591 (((-702 (-560)) $ (-560)) NIL)) (-1596 (((-782) $ (-129)) NIL)) (-3614 (((-702 (-130)) $ (-130)) NIL)) (-2139 (((-702 (-1243)) $) NIL)) (-1843 (((-702 (-1241)) $) NIL)) (-3017 (((-702 (-1240)) $) NIL)) (-3597 (((-702 (-560)) $) NIL)) (-2896 (((-702 (-558)) $) NIL)) (-2689 (((-702 (-557)) $) NIL)) (-2825 (((-782) $ (-129)) NIL)) (-2661 (((-702 (-130)) $) NIL)) (-2223 (((-112) $) NIL)) (-3740 (($ (-399)) 14) (($ (-1176)) 16)) (-2882 (((-873) $) NIL)) (-3265 (($ $) NIL)))
-(((-588) (-13 (-587) (-624 (-873)) (-10 -8 (-15 -3740 ($ (-399))) (-15 -3740 ($ (-1176))) (-15 -2223 ((-112) $))))) (T -588))
-((-3740 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-588)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-588)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588)))))
-(-13 (-587) (-624 (-873)) (-10 -8 (-15 -3740 ($ (-399))) (-15 -3740 ($ (-1176))) (-15 -2223 ((-112) $))))
-((-2859 (((-112) $ $) NIL)) (-3720 (($) 7 T CONST)) (-4264 (((-1176) $) NIL)) (-2541 (($) 6 T CONST)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 15)) (-1436 (($) 9 T CONST)) (-1537 (($) 8 T CONST)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 11)))
-(((-589) (-13 (-1117) (-10 -8 (-15 -2541 ($) -3736) (-15 -3720 ($) -3736) (-15 -1537 ($) -3736) (-15 -1436 ($) -3736)))) (T -589))
-((-2541 (*1 *1) (-5 *1 (-589))) (-3720 (*1 *1) (-5 *1 (-589))) (-1537 (*1 *1) (-5 *1 (-589))) (-1436 (*1 *1) (-5 *1 (-589))))
-(-13 (-1117) (-10 -8 (-15 -2541 ($) -3736) (-15 -3720 ($) -3736) (-15 -1537 ($) -3736) (-15 -1436 ($) -3736)))
-((-2859 (((-112) $ $) NIL)) (-3528 (((-702 $) (-502)) 21)) (-4264 (((-1176) $) NIL)) (-4146 (($ (-1176)) 14)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 33)) (-2781 (((-215 4 (-130)) $) 24)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 26)))
-(((-590) (-13 (-1117) (-10 -8 (-15 -4146 ($ (-1176))) (-15 -2781 ((-215 4 (-130)) $)) (-15 -3528 ((-702 $) (-502)))))) (T -590))
-((-4146 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-590)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-590)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-502)) (-5 *2 (-702 (-590))) (-5 *1 (-590)))))
-(-13 (-1117) (-10 -8 (-15 -4146 ($ (-1176))) (-15 -2781 ((-215 4 (-130)) $)) (-15 -3528 ((-702 $) (-502)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $ (-575)) 75)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-3956 (($ (-1190 (-575)) (-575)) 81)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) 66)) (-2066 (($ $) 43)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3369 (((-782) $) 16)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1444 (((-575)) 37)) (-3593 (((-575) $) 41)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1985 (($ $ (-575)) 24)) (-2849 (((-3 $ "failed") $ $) 71)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) 17)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 72)) (-2323 (((-1174 (-575)) $) 19)) (-3575 (($ $) 26)) (-2882 (((-873) $) 102) (($ (-575)) 61) (($ $) NIL)) (-4421 (((-782)) 15 T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-575) $ (-575)) 46)) (-1989 (($) 44 T CONST)) (-2005 (($) 21 T CONST)) (-3913 (((-112) $ $) 52)) (-4027 (($ $) 60) (($ $ $) 48)) (-4015 (($ $ $) 59)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 62) (($ $ $) 63)))
-(((-591 |#1| |#2|) (-880 |#1|) (-575) (-112)) (T -591))
-NIL
-(-880 |#1|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 30)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2309 (((-1207 (-936) (-782)) (-575)) 59)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 $ "failed") $) 95)) (-4400 (($ $) 94)) (-3898 (($ (-1285 $)) 93)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) 44)) (-2073 (($) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) 61)) (-3228 (((-112) $) NIL)) (-2457 (($ $) NIL) (($ $ (-782)) NIL)) (-3559 (((-112) $) NIL)) (-3369 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-3900 (((-112) $) NIL)) (-2772 (($) 49 (|has| $ (-378)))) (-2313 (((-112) $) NIL (|has| $ (-378)))) (-3390 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2808 (((-3 $ "failed") $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 $) $ (-936)) NIL (|has| $ (-378))) (((-1190 $) $) 104)) (-1894 (((-936) $) 67)) (-2815 (((-1190 $) $) NIL (|has| $ (-378)))) (-3388 (((-3 (-1190 $) "failed") $ $) NIL (|has| $ (-378))) (((-1190 $) $) NIL (|has| $ (-378)))) (-2281 (($ $ (-1190 $)) NIL (|has| $ (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL T CONST)) (-4317 (($ (-936)) 60)) (-3953 (((-112) $) 87)) (-3912 (((-1137) $) NIL)) (-3657 (($) 28 (|has| $ (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 54)) (-2347 (((-429 $) $) NIL)) (-2113 (((-936)) 86) (((-844 (-936))) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-3 (-782) "failed") $ $) NIL) (((-782) $) NIL)) (-1605 (((-135)) NIL)) (-2382 (($ $) NIL) (($ $ (-782)) NIL)) (-1753 (((-936) $) 85) (((-844 (-936)) $) NIL)) (-4436 (((-1190 $)) 102)) (-1847 (($) 66)) (-1908 (($) 50 (|has| $ (-378)))) (-2209 (((-700 $) (-1285 $)) NIL) (((-1285 $) $) 91)) (-2613 (((-575) $) 40)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) 42) (($ $) NIL) (($ (-418 (-575))) NIL)) (-1724 (((-3 $ "failed") $) NIL) (($ $) 105)) (-4421 (((-782)) 51 T CONST)) (-3685 (((-112) $ $) 107)) (-2098 (((-1285 $) (-936)) 97) (((-1285 $)) 96)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) 31 T CONST)) (-2005 (($) 27 T CONST)) (-1514 (($ $ (-782)) NIL (|has| $ (-378))) (($ $) NIL (|has| $ (-378)))) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 34)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 81) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-592 |#1|) (-13 (-359) (-338 $) (-625 (-575))) (-936)) (T -592))
-NIL
-(-13 (-359) (-338 $) (-625 (-575)))
-((-3304 (((-1290) (-1176)) 10)))
-(((-593) (-10 -7 (-15 -3304 ((-1290) (-1176))))) (T -593))
-((-3304 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-593)))))
-(-10 -7 (-15 -3304 ((-1290) (-1176))))
-((-2432 (((-597 |#2|) (-597 |#2|)) 42)) (-3943 (((-655 |#2|) (-597 |#2|)) 44)) (-2796 ((|#2| (-597 |#2|)) 50)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -2432 ((-597 |#2|) (-597 |#2|))) (-15 -3943 ((-655 |#2|) (-597 |#2|))) (-15 -2796 (|#2| (-597 |#2|)))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-29 |#1|) (-1220))) (T -594))
-((-2796 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1220))) (-5 *1 (-594 *4 *2)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1220))) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-655 *5)) (-5 *1 (-594 *4 *5)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1220))) (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-594 *3 *4)))))
-(-10 -7 (-15 -2432 ((-597 |#2|) (-597 |#2|))) (-15 -3943 ((-655 |#2|) (-597 |#2|))) (-15 -2796 (|#2| (-597 |#2|))))
-((-2544 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 30)))
-(((-595 |#1| |#2|) (-10 -7 (-15 -2544 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -2544 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2544 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2544 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-373) (-373)) (T -595))
-((-2544 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-595 *5 *6)))) (-2544 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-373)) (-4 *2 (-373)) (-5 *1 (-595 *5 *2)))) (-2544 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2063 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-2 (|:| -2063 *6) (|:| |coeff| *6))) (-5 *1 (-595 *5 *6)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-373)) (-4 *6 (-373)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6)))))
-(-10 -7 (-15 -2544 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -2544 ((-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2063 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2544 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2544 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-1860 (($ (-517) (-608)) 14)) (-2233 (($ (-517) (-608) $) 16)) (-1378 (($ (-517) (-608)) 15)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-1199)) 7) (((-1199) $) 6)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-596) (-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -1860 ($ (-517) (-608))) (-15 -1378 ($ (-517) (-608))) (-15 -2233 ($ (-517) (-608) $))))) (T -596))
-((-1860 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))) (-1378 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))) (-2233 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))))
-(-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -1860 ($ (-517) (-608))) (-15 -1378 ($ (-517) (-608))) (-15 -2233 ($ (-517) (-608) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 76)) (-4400 ((|#1| $) NIL)) (-2063 ((|#1| $) 30)) (-1855 (((-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2656 (($ |#1| (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3660 (((-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $) 31)) (-4264 (((-1176) $) NIL)) (-3738 (($ |#1| |#1|) 38) (($ |#1| (-1194)) 49 (|has| |#1| (-1055 (-1194))))) (-3912 (((-1137) $) NIL)) (-2032 (((-112) $) 35)) (-2382 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1194)) 89 (|has| |#1| (-913 (-1194))))) (-2882 (((-873) $) 110) (($ |#1|) 29)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 18 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) 17) (($ $ $) NIL)) (-4015 (($ $ $) 85)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 16) (($ (-418 (-575)) $) 41) (($ $ (-418 (-575))) NIL)))
-(((-597 |#1|) (-13 (-728 (-418 (-575))) (-1055 |#1|) (-10 -8 (-15 -2656 ($ |#1| (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2063 (|#1| $)) (-15 -3660 ((-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $)) (-15 -1855 ((-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2032 ((-112) $)) (-15 -3738 ($ |#1| |#1|)) (-15 -2382 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1194))) (-15 -2382 (|#1| $ (-1194))) |%noBranch|) (IF (|has| |#1| (-1055 (-1194))) (-15 -3738 ($ |#1| (-1194))) |%noBranch|))) (-373)) (T -597))
-((-2656 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *2)) (|:| |logand| (-1190 *2))))) (-5 *4 (-655 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-373)) (-5 *1 (-597 *2)))) (-2063 (*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373)))) (-3660 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *3)) (|:| |logand| (-1190 *3))))) (-5 *1 (-597 *3)) (-4 *3 (-373)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-373)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-373)))) (-3738 (*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373)))) (-2382 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-373)))) (-2382 (*1 *2 *1 *3) (-12 (-4 *2 (-373)) (-4 *2 (-913 *3)) (-5 *1 (-597 *2)) (-5 *3 (-1194)))) (-3738 (*1 *1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *1 (-597 *2)) (-4 *2 (-1055 *3)) (-4 *2 (-373)))))
-(-13 (-728 (-418 (-575))) (-1055 |#1|) (-10 -8 (-15 -2656 ($ |#1| (-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) (-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2063 (|#1| $)) (-15 -3660 ((-655 (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 |#1|)) (|:| |logand| (-1190 |#1|)))) $)) (-15 -1855 ((-655 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2032 ((-112) $)) (-15 -3738 ($ |#1| |#1|)) (-15 -2382 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-913 (-1194))) (-15 -2382 (|#1| $ (-1194))) |%noBranch|) (IF (|has| |#1| (-1055 (-1194))) (-15 -3738 ($ |#1| (-1194))) |%noBranch|)))
-((-1882 (((-112) |#1|) 16)) (-1891 (((-3 |#1| "failed") |#1|) 14)) (-2562 (((-2 (|:| -1548 |#1|) (|:| -1658 (-782))) |#1|) 38) (((-3 |#1| "failed") |#1| (-782)) 18)) (-3811 (((-112) |#1| (-782)) 19)) (-3892 ((|#1| |#1|) 42)) (-4198 ((|#1| |#1| (-782)) 45)))
-(((-598 |#1|) (-10 -7 (-15 -3811 ((-112) |#1| (-782))) (-15 -2562 ((-3 |#1| "failed") |#1| (-782))) (-15 -2562 ((-2 (|:| -1548 |#1|) (|:| -1658 (-782))) |#1|)) (-15 -4198 (|#1| |#1| (-782))) (-15 -1882 ((-112) |#1|)) (-15 -1891 ((-3 |#1| "failed") |#1|)) (-15 -3892 (|#1| |#1|))) (-556)) (T -598))
-((-3892 (*1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-1891 (*1 *2 *2) (|partial| -12 (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-1882 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556)))) (-4198 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-2562 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1548 *3) (|:| -1658 (-782)))) (-5 *1 (-598 *3)) (-4 *3 (-556)))) (-2562 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556)))))
-(-10 -7 (-15 -3811 ((-112) |#1| (-782))) (-15 -2562 ((-3 |#1| "failed") |#1| (-782))) (-15 -2562 ((-2 (|:| -1548 |#1|) (|:| -1658 (-782))) |#1|)) (-15 -4198 (|#1| |#1| (-782))) (-15 -1882 ((-112) |#1|)) (-15 -1891 ((-3 |#1| "failed") |#1|)) (-15 -3892 (|#1| |#1|)))
-((-1325 (((-1190 |#1|) (-936)) 44)))
-(((-599 |#1|) (-10 -7 (-15 -1325 ((-1190 |#1|) (-936)))) (-359)) (T -599))
-((-1325 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-599 *4)) (-4 *4 (-359)))))
-(-10 -7 (-15 -1325 ((-1190 |#1|) (-936))))
-((-2432 (((-597 (-418 (-967 |#1|))) (-597 (-418 (-967 |#1|)))) 27)) (-4388 (((-3 (-325 |#1|) (-655 (-325 |#1|))) (-418 (-967 |#1|)) (-1194)) 34 (|has| |#1| (-148)))) (-3943 (((-655 (-325 |#1|)) (-597 (-418 (-967 |#1|)))) 19)) (-2462 (((-325 |#1|) (-418 (-967 |#1|)) (-1194)) 32 (|has| |#1| (-148)))) (-2796 (((-325 |#1|) (-597 (-418 (-967 |#1|)))) 21)))
-(((-600 |#1|) (-10 -7 (-15 -2432 ((-597 (-418 (-967 |#1|))) (-597 (-418 (-967 |#1|))))) (-15 -3943 ((-655 (-325 |#1|)) (-597 (-418 (-967 |#1|))))) (-15 -2796 ((-325 |#1|) (-597 (-418 (-967 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4388 ((-3 (-325 |#1|) (-655 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -2462 ((-325 |#1|) (-418 (-967 |#1|)) (-1194)))) |%noBranch|)) (-13 (-463) (-1055 (-575)) (-650 (-575)))) (T -600))
-((-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *5)) (-5 *1 (-600 *5)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (-325 *5) (-655 (-325 *5)))) (-5 *1 (-600 *5)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-597 (-418 (-967 *4)))) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *4)) (-5 *1 (-600 *4)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-597 (-418 (-967 *4)))) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-655 (-325 *4))) (-5 *1 (-600 *4)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-597 (-418 (-967 *3)))) (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-600 *3)))))
-(-10 -7 (-15 -2432 ((-597 (-418 (-967 |#1|))) (-597 (-418 (-967 |#1|))))) (-15 -3943 ((-655 (-325 |#1|)) (-597 (-418 (-967 |#1|))))) (-15 -2796 ((-325 |#1|) (-597 (-418 (-967 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4388 ((-3 (-325 |#1|) (-655 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -2462 ((-325 |#1|) (-418 (-967 |#1|)) (-1194)))) |%noBranch|))
-((-1629 (((-655 (-700 (-575))) (-655 (-936)) (-655 (-920 (-575)))) 78) (((-655 (-700 (-575))) (-655 (-936))) 79) (((-700 (-575)) (-655 (-936)) (-920 (-575))) 72)) (-2841 (((-782) (-655 (-936))) 69)))
-(((-601) (-10 -7 (-15 -2841 ((-782) (-655 (-936)))) (-15 -1629 ((-700 (-575)) (-655 (-936)) (-920 (-575)))) (-15 -1629 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -1629 ((-655 (-700 (-575))) (-655 (-936)) (-655 (-920 (-575))))))) (T -601))
-((-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-920 (-575)))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-601)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-601)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-936))) (-5 *4 (-920 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-601)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-782)) (-5 *1 (-601)))))
-(-10 -7 (-15 -2841 ((-782) (-655 (-936)))) (-15 -1629 ((-700 (-575)) (-655 (-936)) (-920 (-575)))) (-15 -1629 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -1629 ((-655 (-700 (-575))) (-655 (-936)) (-655 (-920 (-575))))))
-((-1386 (((-655 |#5|) |#5| (-112)) 100)) (-2211 (((-112) |#5| (-655 |#5|)) 34)))
-(((-602 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1386 ((-655 |#5|) |#5| (-112))) (-15 -2211 ((-112) |#5| (-655 |#5|)))) (-13 (-316) (-148)) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1126 |#1| |#2| |#3| |#4|)) (T -602))
-((-2211 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1126 *5 *6 *7 *8)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-602 *5 *6 *7 *8 *3)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-655 *3)) (-5 *1 (-602 *5 *6 *7 *8 *3)) (-4 *3 (-1126 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1386 ((-655 |#5|) |#5| (-112))) (-15 -2211 ((-112) |#5| (-655 |#5|))))
-((-2859 (((-112) $ $) NIL)) (-3890 (((-1152) $) 11)) (-3878 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-603) (-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))) (T -603))
-((-3878 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603)))))
-(-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))
-((-2859 (((-112) $ $) NIL (|has| (-145) (-1117)))) (-3127 (($ $) 38)) (-2722 (($ $) NIL)) (-2107 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3445 (((-112) $ $) 67)) (-3427 (((-112) $ $ (-575)) 62)) (-2432 (((-655 $) $ (-145)) 75) (((-655 $) $ (-142)) 76)) (-1905 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-3175 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-861))))) (-2025 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 (((-145) $ (-575) (-145)) 59 (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3777 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-3171 (($ $ (-1252 (-575)) $) 57)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3631 (($ (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2857 (((-145) $ (-575) (-145)) NIL (|has| $ (-6 -4461)))) (-2786 (((-145) $ (-575)) NIL)) (-3463 (((-112) $ $) 88)) (-2630 (((-575) (-1 (-112) (-145)) $) NIL) (((-575) (-145) $) NIL (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) 64 (|has| (-145) (-1117))) (((-575) $ $ (-575)) 63) (((-575) (-142) $ (-575)) 66)) (-3999 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) (-145)) 9)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 32 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| (-145) (-861)))) (-4167 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-4252 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2263 (((-575) $) 47 (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-145) (-861)))) (-3126 (((-112) $ $ (-145)) 89)) (-1613 (((-782) $ $ (-145)) 86)) (-2844 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1990 (($ $) 41)) (-2167 (($ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-3789 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-4264 (((-1176) $) 43 (|has| (-145) (-1117)))) (-2129 (($ (-145) $ (-575)) NIL) (($ $ $ (-575)) 27)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) 85 (|has| (-145) (-1117)))) (-1955 (((-145) $) NIL (|has| (-575) (-861)))) (-1540 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1652 (($ $ (-145)) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-145)))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2697 (((-655 (-145)) $) NIL)) (-2017 (((-112) $) 15)) (-1393 (($) 10)) (-2065 (((-145) $ (-575) (-145)) NIL) (((-145) $ (-575)) 68) (($ $ (-1252 (-575))) 25) (($ $ $) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (((-782) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2617 (($ $ $ (-575)) 81 (|has| $ (-6 -4461)))) (-3076 (($ $) 20)) (-2613 (((-547) $) NIL (|has| (-145) (-625 (-547))))) (-2893 (($ (-655 (-145))) NIL)) (-1513 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-655 $)) 82)) (-2882 (($ (-145)) NIL) (((-873) $) 31 (|has| (-145) (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| (-145) (-1117)))) (-4121 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3913 (((-112) $ $) 17 (|has| (-145) (-1117)))) (-3967 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3940 (((-112) $ $) 18 (|has| (-145) (-861)))) (-2869 (((-782) $) 16 (|has| $ (-6 -4460)))))
-(((-604 |#1|) (-1161) (-575)) (T -604))
-NIL
-(-1161)
-((-4376 (((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2| (-1111 |#4|)) 32)))
-(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2| (-1111 |#4|))) (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2|))) (-804) (-861) (-567) (-964 |#3| |#1| |#2|)) (T -605))
-((-4376 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-567)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575)))) (-5 *1 (-605 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) (-4376 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1111 *3)) (-4 *3 (-964 *7 *6 *4)) (-4 *6 (-804)) (-4 *4 (-861)) (-4 *7 (-567)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575)))) (-5 *1 (-605 *6 *4 *7 *3)))))
-(-10 -7 (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2| (-1111 |#4|))) (-15 -4376 ((-2 (|:| |num| |#4|) (|:| |den| (-575))) |#4| |#2|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 71)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-575)) 58) (($ $ (-575) (-575)) 59)) (-3149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 65)) (-4193 (($ $) 109)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3279 (((-873) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) (-1043 (-854 (-575))) (-1194) |#1| (-418 (-575))) 241)) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 36)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2333 (((-112) $) NIL)) (-3369 (((-575) $) 63) (((-575) $ (-575)) 64)) (-3900 (((-112) $) NIL)) (-1752 (($ $ (-936)) 83)) (-2691 (($ (-1 |#1| (-575)) $) 80)) (-3135 (((-112) $) 26)) (-2414 (($ |#1| (-575)) 22) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-3276 (($ (-1043 (-854 (-575))) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 13)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-4388 (($ $) 161 (|has| |#1| (-38 (-418 (-575)))))) (-4160 (((-3 $ "failed") $ $ (-112)) 108)) (-1425 (($ $ $) 116)) (-3912 (((-1137) $) NIL)) (-2790 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 15)) (-2721 (((-1043 (-854 (-575))) $) 14)) (-1985 (($ $ (-575)) 47)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-575)))))) (-2065 ((|#1| $ (-575)) 62) (($ $ $) NIL (|has| (-575) (-1129)))) (-2382 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-1753 (((-575) $) NIL)) (-3575 (($ $) 48)) (-2882 (((-873) $) NIL) (($ (-575)) 29) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3002 ((|#1| $ (-575)) 61)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) 39 T CONST)) (-1751 ((|#1| $) NIL)) (-3083 (($ $) 198 (|has| |#1| (-38 (-418 (-575)))))) (-3300 (($ $) 169 (|has| |#1| (-38 (-418 (-575)))))) (-3894 (($ $) 202 (|has| |#1| (-38 (-418 (-575)))))) (-2985 (($ $) 174 (|has| |#1| (-38 (-418 (-575)))))) (-3011 (($ $) 201 (|has| |#1| (-38 (-418 (-575)))))) (-2678 (($ $) 173 (|has| |#1| (-38 (-418 (-575)))))) (-1607 (($ $ (-418 (-575))) 177 (|has| |#1| (-38 (-418 (-575)))))) (-2345 (($ $ |#1|) 157 (|has| |#1| (-38 (-418 (-575)))))) (-3191 (($ $) 204 (|has| |#1| (-38 (-418 (-575)))))) (-3176 (($ $) 160 (|has| |#1| (-38 (-418 (-575)))))) (-2294 (($ $) 203 (|has| |#1| (-38 (-418 (-575)))))) (-3781 (($ $) 175 (|has| |#1| (-38 (-418 (-575)))))) (-2521 (($ $) 199 (|has| |#1| (-38 (-418 (-575)))))) (-2820 (($ $) 171 (|has| |#1| (-38 (-418 (-575)))))) (-2664 (($ $) 200 (|has| |#1| (-38 (-418 (-575)))))) (-3401 (($ $) 172 (|has| |#1| (-38 (-418 (-575)))))) (-2163 (($ $) 209 (|has| |#1| (-38 (-418 (-575)))))) (-1949 (($ $) 185 (|has| |#1| (-38 (-418 (-575)))))) (-4113 (($ $) 206 (|has| |#1| (-38 (-418 (-575)))))) (-4170 (($ $) 181 (|has| |#1| (-38 (-418 (-575)))))) (-2737 (($ $) 213 (|has| |#1| (-38 (-418 (-575)))))) (-2517 (($ $) 189 (|has| |#1| (-38 (-418 (-575)))))) (-3353 (($ $) 215 (|has| |#1| (-38 (-418 (-575)))))) (-3735 (($ $) 191 (|has| |#1| (-38 (-418 (-575)))))) (-2865 (($ $) 211 (|has| |#1| (-38 (-418 (-575)))))) (-3926 (($ $) 187 (|has| |#1| (-38 (-418 (-575)))))) (-2228 (($ $) 208 (|has| |#1| (-38 (-418 (-575)))))) (-3866 (($ $) 183 (|has| |#1| (-38 (-418 (-575)))))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-3493 ((|#1| $ (-575)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-1989 (($) 30 T CONST)) (-2005 (($) 40 T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-3913 (((-112) $ $) 73)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) 91) (($ $ $) 72)) (-4015 (($ $ $) 88)) (** (($ $ (-936)) NIL) (($ $ (-782)) 111)) (* (($ (-936) $) 98) (($ (-782) $) 96) (($ (-575) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-606 |#1|) (-13 (-1263 |#1| (-575)) (-10 -8 (-15 -3276 ($ (-1043 (-854 (-575))) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -2721 ((-1043 (-854 (-575))) $)) (-15 -2790 ((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $)) (-15 -1873 ($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -3135 ((-112) $)) (-15 -2691 ($ (-1 |#1| (-575)) $)) (-15 -4160 ((-3 $ "failed") $ $ (-112))) (-15 -4193 ($ $)) (-15 -1425 ($ $ $)) (-15 -3279 ((-873) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) (-1043 (-854 (-575))) (-1194) |#1| (-418 (-575)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $)) (-15 -2345 ($ $ |#1|)) (-15 -1607 ($ $ (-418 (-575)))) (-15 -3176 ($ $)) (-15 -3191 ($ $)) (-15 -2985 ($ $)) (-15 -3401 ($ $)) (-15 -3300 ($ $)) (-15 -2820 ($ $)) (-15 -2678 ($ $)) (-15 -3781 ($ $)) (-15 -4170 ($ $)) (-15 -3866 ($ $)) (-15 -1949 ($ $)) (-15 -3926 ($ $)) (-15 -2517 ($ $)) (-15 -3735 ($ $)) (-15 -3894 ($ $)) (-15 -2664 ($ $)) (-15 -3083 ($ $)) (-15 -2521 ($ $)) (-15 -3011 ($ $)) (-15 -2294 ($ $)) (-15 -4113 ($ $)) (-15 -2228 ($ $)) (-15 -2163 ($ $)) (-15 -2865 ($ $)) (-15 -2737 ($ $)) (-15 -3353 ($ $))) |%noBranch|))) (-1066)) (T -606))
-((-3135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-3276 (*1 *1 *2 *3) (-12 (-5 *2 (-1043 (-854 (-575)))) (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *4)))) (-4 *4 (-1066)) (-5 *1 (-606 *4)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-1043 (-854 (-575)))) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) (-4 *3 (-1066)) (-5 *1 (-606 *3)))) (-2691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-606 *3)))) (-4160 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066)))) (-4193 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066)))) (-1425 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066)))) (-3279 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *6)))) (-5 *4 (-1043 (-854 (-575)))) (-5 *5 (-1194)) (-5 *7 (-418 (-575))) (-4 *6 (-1066)) (-5 *2 (-873)) (-5 *1 (-606 *6)))) (-4388 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2345 (*1 *1 *1 *2) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1607 (*1 *1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-606 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1066)))) (-3176 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3191 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2985 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3300 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2820 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2678 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-4170 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-1949 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2517 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3735 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3894 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2664 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3083 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2521 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3011 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2294 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-4113 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2228 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2865 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-2737 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))) (-3353 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(-13 (-1263 |#1| (-575)) (-10 -8 (-15 -3276 ($ (-1043 (-854 (-575))) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -2721 ((-1043 (-854 (-575))) $)) (-15 -2790 ((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $)) (-15 -1873 ($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))))) (-15 -3135 ((-112) $)) (-15 -2691 ($ (-1 |#1| (-575)) $)) (-15 -4160 ((-3 $ "failed") $ $ (-112))) (-15 -4193 ($ $)) (-15 -1425 ($ $ $)) (-15 -3279 ((-873) (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) (-1043 (-854 (-575))) (-1194) |#1| (-418 (-575)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $)) (-15 -2345 ($ $ |#1|)) (-15 -1607 ($ $ (-418 (-575)))) (-15 -3176 ($ $)) (-15 -3191 ($ $)) (-15 -2985 ($ $)) (-15 -3401 ($ $)) (-15 -3300 ($ $)) (-15 -2820 ($ $)) (-15 -2678 ($ $)) (-15 -3781 ($ $)) (-15 -4170 ($ $)) (-15 -3866 ($ $)) (-15 -1949 ($ $)) (-15 -3926 ($ $)) (-15 -2517 ($ $)) (-15 -3735 ($ $)) (-15 -3894 ($ $)) (-15 -2664 ($ $)) (-15 -3083 ($ $)) (-15 -2521 ($ $)) (-15 -3011 ($ $)) (-15 -2294 ($ $)) (-15 -4113 ($ $)) (-15 -2228 ($ $)) (-15 -2163 ($ $)) (-15 -2865 ($ $)) (-15 -2737 ($ $)) (-15 -3353 ($ $))) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 63)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-1873 (($ (-1174 |#1|)) 9)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) 44)) (-2333 (((-112) $) 56)) (-3369 (((-782) $) 61) (((-782) $ (-782)) 60)) (-3900 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ $) 46 (|has| |#1| (-567)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-1174 |#1|) $) 25)) (-4421 (((-782)) 55 T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) 10 T CONST)) (-2005 (($) 14 T CONST)) (-3913 (((-112) $ $) 24)) (-4027 (($ $) 32) (($ $ $) 16)) (-4015 (($ $ $) 27)) (** (($ $ (-936)) NIL) (($ $ (-782)) 53)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-575)) 38)))
-(((-607 |#1|) (-13 (-1066) (-111 |#1| |#1|) (-10 -8 (-15 -2212 ((-1174 |#1|) $)) (-15 -1873 ($ (-1174 |#1|))) (-15 -2333 ((-112) $)) (-15 -3369 ((-782) $)) (-15 -3369 ((-782) $ (-782))) (-15 * ($ $ (-575))) (IF (|has| |#1| (-567)) (-6 (-567)) |%noBranch|))) (-1066)) (T -607))
-((-2212 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-607 *3)))) (-2333 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (-3369 (*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-607 *3)) (-4 *3 (-1066)))))
-(-13 (-1066) (-111 |#1| |#1|) (-10 -8 (-15 -2212 ((-1174 |#1|) $)) (-15 -1873 ($ (-1174 |#1|))) (-15 -2333 ((-112) $)) (-15 -3369 ((-782) $)) (-15 -3369 ((-782) $ (-782))) (-15 * ($ $ (-575))) (IF (|has| |#1| (-567)) (-6 (-567)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-3199 (($) 8 T CONST)) (-1433 (($) 7 T CONST)) (-2637 (($ $ (-655 $)) 16)) (-4264 (((-1176) $) NIL)) (-4326 (($) 6 T CONST)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-1199)) 15) (((-1199) $) 10)) (-3332 (($) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-608) (-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -4326 ($) -3736) (-15 -1433 ($) -3736) (-15 -3199 ($) -3736) (-15 -3332 ($) -3736) (-15 -2637 ($ $ (-655 $)))))) (T -608))
-((-4326 (*1 *1) (-5 *1 (-608))) (-1433 (*1 *1) (-5 *1 (-608))) (-3199 (*1 *1) (-5 *1 (-608))) (-3332 (*1 *1) (-5 *1 (-608))) (-2637 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-608))) (-5 *1 (-608)))))
-(-13 (-1117) (-501 (-1199)) (-10 -8 (-15 -4326 ($) -3736) (-15 -1433 ($) -3736) (-15 -3199 ($) -3736) (-15 -3332 ($) -3736) (-15 -2637 ($ $ (-655 $)))))
-((-2544 (((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|)) 15)))
-(((-609 |#1| |#2|) (-10 -7 (-15 -2544 ((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|)))) (-1235) (-1235)) (T -609))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-612 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-612 *6)) (-5 *1 (-609 *5 *6)))))
-(-10 -7 (-15 -2544 ((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|))))
-((-2544 (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1174 |#2|)) 20) (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-612 |#2|)) 19) (((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|)) 18)))
-(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -2544 ((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|))) (-15 -2544 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-612 |#2|))) (-15 -2544 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1174 |#2|)))) (-1235) (-1235) (-1235)) (T -610))
-((-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-1174 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) (-5 *1 (-610 *6 *7 *8)))) (-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-612 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) (-5 *1 (-610 *6 *7 *8)))) (-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-612 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-612 *8)) (-5 *1 (-610 *6 *7 *8)))))
-(-10 -7 (-15 -2544 ((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|))) (-15 -2544 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-612 |#2|))) (-15 -2544 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1174 |#2|))))
-((-3192 ((|#3| |#3| (-655 (-623 |#3|)) (-655 (-1194))) 57)) (-2735 (((-171 |#2|) |#3|) 122)) (-1988 ((|#3| (-171 |#2|)) 46)) (-3004 ((|#2| |#3|) 21)) (-2712 ((|#3| |#2|) 35)))
-(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -1988 (|#3| (-171 |#2|))) (-15 -3004 (|#2| |#3|)) (-15 -2712 (|#3| |#2|)) (-15 -2735 ((-171 |#2|) |#3|)) (-15 -3192 (|#3| |#3| (-655 (-623 |#3|)) (-655 (-1194))))) (-567) (-13 (-441 |#1|) (-1019) (-1220)) (-13 (-441 (-171 |#1|)) (-1019) (-1220))) (T -611))
-((-3192 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-655 (-1194))) (-4 *2 (-13 (-441 (-171 *5)) (-1019) (-1220))) (-4 *5 (-567)) (-5 *1 (-611 *5 *6 *2)) (-4 *6 (-13 (-441 *5) (-1019) (-1220))))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-171 *5)) (-5 *1 (-611 *4 *5 *3)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))) (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220))) (-5 *1 (-611 *4 *3 *2)) (-4 *3 (-13 (-441 *4) (-1019) (-1220))))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))) (-5 *1 (-611 *4 *2 *3)) (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220))))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))) (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220))) (-5 *1 (-611 *4 *5 *2)))))
-(-10 -7 (-15 -1988 (|#3| (-171 |#2|))) (-15 -3004 (|#2| |#3|)) (-15 -2712 (|#3| |#2|)) (-15 -2735 ((-171 |#2|) |#3|)) (-15 -3192 (|#3| |#3| (-655 (-623 |#3|)) (-655 (-1194)))))
-((-3983 (($ (-1 (-112) |#1|) $) 17)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3901 (($ (-1 |#1| |#1|) |#1|) 9)) (-3957 (($ (-1 (-112) |#1|) $) 13)) (-3970 (($ (-1 (-112) |#1|) $) 15)) (-2893 (((-1174 |#1|) $) 18)) (-2882 (((-873) $) NIL)))
-(((-612 |#1|) (-13 (-624 (-873)) (-10 -8 (-15 -2544 ($ (-1 |#1| |#1|) $)) (-15 -3957 ($ (-1 (-112) |#1|) $)) (-15 -3970 ($ (-1 (-112) |#1|) $)) (-15 -3983 ($ (-1 (-112) |#1|) $)) (-15 -3901 ($ (-1 |#1| |#1|) |#1|)) (-15 -2893 ((-1174 |#1|) $)))) (-1235)) (T -612))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3970 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3983 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-3901 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1235)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2544 ($ (-1 |#1| |#1|) $)) (-15 -3957 ($ (-1 (-112) |#1|) $)) (-15 -3970 ($ (-1 (-112) |#1|) $)) (-15 -3983 ($ (-1 (-112) |#1|) $)) (-15 -3901 ($ (-1 |#1| |#1|) |#1|)) (-15 -2893 ((-1174 |#1|) $))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2878 (($ (-782)) NIL (|has| |#1| (-23)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) NIL (|has| |#1| (-1066)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2405 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-3218 (((-112) $ (-782)) NIL)) (-1840 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-2988 ((|#1| $ $) NIL (|has| |#1| (-1066)))) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-2969 (($ $ $) NIL (|has| |#1| (-1066)))) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) NIL)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4027 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4015 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-575) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-737))) (($ $ |#1|) NIL (|has| |#1| (-737)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-613 |#1| |#2|) (-1283 |#1|) (-1235) (-575)) (T -613))
-NIL
-(-1283 |#1|)
-((-4116 (((-1290) $ |#2| |#2|) 35)) (-2569 ((|#2| $) 23)) (-2263 ((|#2| $) 21)) (-2844 (($ (-1 |#3| |#3|) $) 32)) (-2544 (($ (-1 |#3| |#3|) $) 30)) (-1955 ((|#3| $) 26)) (-1652 (($ $ |#3|) 33)) (-3808 (((-112) |#3| $) 17)) (-2697 (((-655 |#3|) $) 15)) (-2065 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -4116 ((-1290) |#1| |#2| |#2|)) (-15 -1652 (|#1| |#1| |#3|)) (-15 -1955 (|#3| |#1|)) (-15 -2569 (|#2| |#1|)) (-15 -2263 (|#2| |#1|)) (-15 -3808 ((-112) |#3| |#1|)) (-15 -2697 ((-655 |#3|) |#1|)) (-15 -2065 (|#3| |#1| |#2|)) (-15 -2065 (|#3| |#1| |#2| |#3|)) (-15 -2844 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2544 (|#1| (-1 |#3| |#3|) |#1|))) (-615 |#2| |#3|) (-1117) (-1235)) (T -614))
-NIL
-(-10 -8 (-15 -4116 ((-1290) |#1| |#2| |#2|)) (-15 -1652 (|#1| |#1| |#3|)) (-15 -1955 (|#3| |#1|)) (-15 -2569 (|#2| |#1|)) (-15 -2263 (|#2| |#1|)) (-15 -3808 ((-112) |#3| |#1|)) (-15 -2697 ((-655 |#3|) |#1|)) (-15 -2065 (|#3| |#1| |#2|)) (-15 -2065 (|#3| |#1| |#2| |#3|)) (-15 -2844 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2544 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#2| (-1117)))) (-4116 (((-1290) $ |#1| |#1|) 41 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4461)))) (-3261 (($) 7 T CONST)) (-2857 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) 52)) (-3999 (((-655 |#2|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-2569 ((|#1| $) 44 (|has| |#1| (-861)))) (-4252 (((-655 |#2|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-2263 ((|#1| $) 45 (|has| |#1| (-861)))) (-2844 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#2| (-1117)))) (-1653 (((-655 |#1|) $) 47)) (-1801 (((-112) |#1| $) 48)) (-3912 (((-1137) $) 21 (|has| |#2| (-1117)))) (-1955 ((|#2| $) 43 (|has| |#1| (-861)))) (-1652 (($ $ |#2|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) 27 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 26 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 24 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3922 (((-782) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4460))) (((-782) |#2| $) 29 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#2| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#2| (-1117)))) (-4121 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#2| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-615 |#1| |#2|) (-141) (-1117) (-1235)) (T -615))
-((-2697 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-655 *4)))) (-1801 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-112)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-655 *3)))) (-3808 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-615 *4 *3)) (-4 *4 (-1117)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117)) (-4 *2 (-861)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117)) (-4 *2 (-861)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) (-4 *3 (-861)) (-4 *2 (-1235)))) (-1652 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235)))) (-4116 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235)) (-5 *2 (-1290)))))
-(-13 (-500 |t#2|) (-297 |t#1| |t#2|) (-10 -8 (-15 -2697 ((-655 |t#2|) $)) (-15 -1801 ((-112) |t#1| $)) (-15 -1653 ((-655 |t#1|) $)) (IF (|has| |t#2| (-1117)) (IF (|has| $ (-6 -4460)) (-15 -3808 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -2263 (|t#1| $)) (-15 -2569 (|t#1| $)) (-15 -1955 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -1652 ($ $ |t#2|)) (-15 -4116 ((-1290) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1117)) ((-624 (-873)) -3763 (|has| |#2| (-1117)) (|has| |#2| (-624 (-873)))) ((-295 |#1| |#2|) . T) ((-297 |#1| |#2|) . T) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-500 |#2|) . T) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-1117) |has| |#2| (-1117)) ((-1235) . T))
-((-2882 (((-873) $) 19) (($ (-130)) 13) (((-130) $) 14)))
-(((-616) (-13 (-624 (-873)) (-501 (-130)))) (T -616))
-NIL
-(-13 (-624 (-873)) (-501 (-130)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-1199)) NIL) (((-1199) $) NIL) (((-1234) $) 14) (($ (-655 (-1234))) 13)) (-3230 (((-655 (-1234)) $) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-617) (-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2882 ($ (-655 (-1234)))) (-15 -3230 ((-655 (-1234)) $))))) (T -617))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617)))))
-(-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2882 ($ (-655 (-1234)))) (-15 -3230 ((-655 (-1234)) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2942 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2199 (((-1285 (-700 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-1285 (-700 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-2133 (((-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3261 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2146 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3636 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3309 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-1454 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3952 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2368 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-1810 (($ $ (-936)) NIL)) (-1731 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-2864 (((-1190 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2530 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3100 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-3884 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3898 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (($ (-1285 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4162 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4422 (((-936)) NIL (|has| |#2| (-377 |#1|)))) (-3748 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3905 (($ $ (-936)) NIL)) (-2948 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3534 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2043 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1987 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3400 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1455 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-3475 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3284 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3726 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-3643 (($ $ (-936)) NIL)) (-4339 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-1360 (((-1190 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4175 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3557 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-1509 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-4264 (((-1176) $) NIL)) (-3155 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3872 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-4350 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3912 (((-1137) $) NIL)) (-2279 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2065 ((|#1| $ (-575)) NIL (|has| |#2| (-428 |#1|)))) (-2209 (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $) (-1285 $)) NIL (|has| |#2| (-377 |#1|))) (((-1285 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-2613 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-3600 (((-655 (-967 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-655 (-967 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4152 (($ $ $) NIL)) (-2122 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2882 (((-873) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL (|has| |#2| (-428 |#1|)))) (-2876 (((-655 (-1285 |#1|))) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3458 (($ $ $ $) NIL)) (-3220 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1943 (($ (-700 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-2337 (($ $ $) NIL)) (-3676 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3198 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3594 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1989 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) 24)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-618 |#1| |#2|) (-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2882 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|))) (-174) (-755 |#1|)) (T -618))
-((-2882 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-618 *3 *2)) (-4 *2 (-755 *3)))))
-(-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2882 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-1730 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) 39)) (-2291 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL) (($) NIL)) (-4116 (((-1290) $ (-1176) (-1176)) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-1176) |#1|) 49)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#1| "failed") (-1176) $) 52)) (-3261 (($) NIL T CONST)) (-1899 (($ $ (-1176)) 25)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2375 (((-3 |#1| "failed") (-1176) $) 53) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (|has| $ (-6 -4460)))) (-3631 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2302 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2419 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) 38)) (-2857 ((|#1| $ (-1176) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-1176)) NIL)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3540 (($ $) 54)) (-2976 (($ (-399)) 23) (($ (-399) (-1176)) 22)) (-1777 (((-399) $) 40)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-1176) $) NIL (|has| (-1176) (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460))) (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (((-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2263 (((-1176) $) NIL (|has| (-1176) (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1995 (((-655 (-1176)) $) 45)) (-3766 (((-112) (-1176) $) NIL)) (-2050 (((-1176) $) 41)) (-4030 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-1653 (((-655 (-1176)) $) NIL)) (-1801 (((-112) (-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 ((|#1| $) NIL (|has| (-1176) (-861)))) (-1540 (((-3 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) "failed") (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-655 (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 43)) (-2065 ((|#1| $ (-1176) |#1|) NIL) ((|#1| $ (-1176)) 48)) (-3323 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL) (($) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (((-782) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-782) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-2882 (((-873) $) 21)) (-3265 (($ $) 26)) (-3685 (((-112) $ $) NIL)) (-2908 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-619 |#1|) (-13 (-374 (-399) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-1211 (-1176) |#1|) (-10 -8 (-6 -4460) (-15 -3540 ($ $)))) (-1117)) (T -619))
-((-3540 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1117)))))
-(-13 (-374 (-399) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-1211 (-1176) |#1|) (-10 -8 (-6 -4460) (-15 -3540 ($ $))))
-((-1322 (((-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 16)) (-1995 (((-655 |#2|) $) 20)) (-3766 (((-112) |#2| $) 12)))
-(((-620 |#1| |#2| |#3|) (-10 -8 (-15 -1995 ((-655 |#2|) |#1|)) (-15 -3766 ((-112) |#2| |#1|)) (-15 -1322 ((-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|))) (-621 |#2| |#3|) (-1117) (-1117)) (T -620))
-NIL
-(-10 -8 (-15 -1995 ((-655 |#2|) |#1|)) (-15 -3766 ((-112) |#2| |#1|)) (-15 -1322 ((-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 56 (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) 62)) (-3261 (($) 7 T CONST)) (-4070 (($ $) 59 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 47 (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 63)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 55 (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 54 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 53 (|has| $ (-6 -4460)))) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-1995 (((-655 |#1|) $) 64)) (-3766 (((-112) |#1| $) 65)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 40)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 41)) (-3912 (((-1137) $) 21 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 52)) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 42)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3323 (($) 50) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 49)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 32 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 51)) (-2882 (((-873) $) 18 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 43)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-621 |#1| |#2|) (-141) (-1117) (-1117)) (T -621))
-((-3766 (*1 *2 *3 *1) (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-112)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-5 *2 (-655 *3)))) (-2375 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-1398 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))))
-(-13 (-231 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|))) (-10 -8 (-15 -3766 ((-112) |t#1| $)) (-15 -1995 ((-655 |t#1|) $)) (-15 -2375 ((-3 |t#2| "failed") |t#1| $)) (-15 -1398 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-102) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) ((-624 (-873)) -3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))) ((-152 #0#) . T) ((-625 (-547)) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) ((-231 #0#) . T) ((-240 #0#) . T) ((-318 #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-500 #0#) . T) ((-525 #0# #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-1117) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) ((-1235) . T))
-((-1849 (((-623 |#2|) |#1|) 17)) (-2558 (((-3 |#1| "failed") (-623 |#2|)) 21)))
-(((-622 |#1| |#2|) (-10 -7 (-15 -1849 ((-623 |#2|) |#1|)) (-15 -2558 ((-3 |#1| "failed") (-623 |#2|)))) (-1117) (-1117)) (T -622))
-((-2558 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *4)) (-4 *4 (-1117)) (-4 *2 (-1117)) (-5 *1 (-622 *2 *4)))) (-1849 (*1 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *1 (-622 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))))
-(-10 -7 (-15 -1849 ((-623 |#2|) |#1|)) (-15 -2558 ((-3 |#1| "failed") (-623 |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2383 (((-3 (-1194) "failed") $) 46)) (-3834 (((-1290) $ (-782)) 22)) (-2630 (((-782) $) 20)) (-2567 (((-115) $) 9)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-1672 (($ (-115) (-655 |#1|) (-782)) 32) (($ (-1194)) 33)) (-3371 (((-112) $ (-115)) 15) (((-112) $ (-1194)) 13)) (-3340 (((-782) $) 17)) (-3912 (((-1137) $) NIL)) (-2613 (((-904 (-575)) $) 95 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 102 (|has| |#1| (-625 (-904 (-389))))) (((-547) $) 88 (|has| |#1| (-625 (-547))))) (-2882 (((-873) $) 72)) (-3685 (((-112) $ $) NIL)) (-1387 (((-655 |#1|) $) 19)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 51)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 53)))
-(((-623 |#1|) (-13 (-133) (-861) (-896 |#1|) (-10 -8 (-15 -2567 ((-115) $)) (-15 -1387 ((-655 |#1|) $)) (-15 -3340 ((-782) $)) (-15 -1672 ($ (-115) (-655 |#1|) (-782))) (-15 -1672 ($ (-1194))) (-15 -2383 ((-3 (-1194) "failed") $)) (-15 -3371 ((-112) $ (-115))) (-15 -3371 ((-112) $ (-1194))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) (-1117)) (T -623))
-((-2567 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-1672 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-1117)) (-5 *1 (-623 *5)))) (-1672 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-2383 (*1 *2 *1) (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-623 *4)) (-4 *4 (-1117)))) (-3371 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-112)) (-5 *1 (-623 *4)) (-4 *4 (-1117)))))
-(-13 (-133) (-861) (-896 |#1|) (-10 -8 (-15 -2567 ((-115) $)) (-15 -1387 ((-655 |#1|) $)) (-15 -3340 ((-782) $)) (-15 -1672 ($ (-115) (-655 |#1|) (-782))) (-15 -1672 ($ (-1194))) (-15 -2383 ((-3 (-1194) "failed") $)) (-15 -3371 ((-112) $ (-115))) (-15 -3371 ((-112) $ (-1194))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|)))
-((-2882 ((|#1| $) 6)))
-(((-624 |#1|) (-141) (-1235)) (T -624))
-((-2882 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1235)))))
-(-13 (-10 -8 (-15 -2882 (|t#1| $))))
-((-2613 ((|#1| $) 6)))
-(((-625 |#1|) (-141) (-1235)) (T -625))
-((-2613 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1235)))))
-(-13 (-10 -8 (-15 -2613 (|t#1| $))))
-((-2653 (((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 (-429 |#2|) |#2|)) 15) (((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)) 16)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -2653 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|))) (-15 -2653 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 (-429 |#2|) |#2|)))) (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -626))
-((-2653 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-1190 (-418 *6))) (-5 *1 (-626 *5 *6)) (-5 *3 (-418 *6)))) (-2653 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-1190 (-418 *5))) (-5 *1 (-626 *4 *5)) (-5 *3 (-418 *5)))))
-(-10 -7 (-15 -2653 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|))) (-15 -2653 ((-3 (-1190 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 (-429 |#2|) |#2|))))
-((-2882 (($ |#1|) 6)))
-(((-627 |#1|) (-141) (-1235)) (T -627))
-((-2882 (*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1235)))))
-(-13 (-10 -8 (-15 -2882 ($ |t#1|))))
-((-2859 (((-112) $ $) NIL)) (-1942 (($) 14 T CONST)) (-1997 (($) 15 T CONST)) (-3236 (($ $ $) 29)) (-3213 (($ $) 27)) (-4264 (((-1176) $) NIL)) (-2939 (($ $ $) 30)) (-3912 (((-1137) $) NIL)) (-3937 (($) 11 T CONST)) (-3429 (($ $ $) 31)) (-2882 (((-873) $) 35)) (-1977 (((-112) $ (|[\|\|]| -3937)) 24) (((-112) $ (|[\|\|]| -1942)) 26) (((-112) $ (|[\|\|]| -1997)) 21)) (-3685 (((-112) $ $) NIL)) (-3224 (($ $ $) 28)) (-3913 (((-112) $ $) 18)))
-(((-628) (-13 (-984) (-10 -8 (-15 -1942 ($) -3736) (-15 -1977 ((-112) $ (|[\|\|]| -3937))) (-15 -1977 ((-112) $ (|[\|\|]| -1942))) (-15 -1977 ((-112) $ (|[\|\|]| -1997)))))) (T -628))
-((-1942 (*1 *1) (-5 *1 (-628))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3937)) (-5 *2 (-112)) (-5 *1 (-628)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1942)) (-5 *2 (-112)) (-5 *1 (-628)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1997)) (-5 *2 (-112)) (-5 *1 (-628)))))
-(-13 (-984) (-10 -8 (-15 -1942 ($) -3736) (-15 -1977 ((-112) $ (|[\|\|]| -3937))) (-15 -1977 ((-112) $ (|[\|\|]| -1942))) (-15 -1977 ((-112) $ (|[\|\|]| -1997)))))
-((-2613 (($ |#1|) 6)))
-(((-629 |#1|) (-141) (-1235)) (T -629))
-((-2613 (*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1235)))))
-(-13 (-10 -8 (-15 -2613 ($ |t#1|))))
-((-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) 10)))
-(((-630 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-631 |#2|) (-1066)) (T -630))
-NIL
-(-10 -8 (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 41)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-631 |#1|) (-141) (-1066)) (T -631))
-((-2882 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1066)))))
-(-13 (-1066) (-659 |t#1|) (-10 -8 (-15 -2882 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-737) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2326 (((-575) $) NIL (|has| |#1| (-859)))) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-2359 (((-112) $) NIL (|has| |#1| (-859)))) (-3900 (((-112) $) NIL)) (-1595 ((|#1| $) 13)) (-1721 (((-112) $) NIL (|has| |#1| (-859)))) (-1914 (($ $ $) NIL (|has| |#1| (-859)))) (-3503 (($ $ $) NIL (|has| |#1| (-859)))) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1608 ((|#3| $) 15)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL)) (-4421 (((-782)) 20 T CONST)) (-3685 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| |#1| (-859)))) (-1989 (($) NIL T CONST)) (-2005 (($) 12 T CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-859)))) (-4038 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-632 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-737) |#2|)) (T -632))
-((-4038 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-737) *4)))) (-4038 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-737) *4)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-632 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-737) *3)))) (-1608 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $))))
-((-2851 ((|#2| |#2| (-1194) (-1194)) 16)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -2851 (|#2| |#2| (-1194) (-1194)))) (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-974) (-29 |#1|))) (T -633))
-((-2851 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-633 *4 *2)) (-4 *2 (-13 (-1220) (-974) (-29 *4))))))
-(-10 -7 (-15 -2851 (|#2| |#2| (-1194) (-1194))))
-((-2859 (((-112) $ $) 64)) (-2045 (((-112) $) 58)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2799 ((|#1| $) 55)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-2486 (((-2 (|:| -3320 $) (|:| -2792 (-418 |#2|))) (-418 |#2|)) 111 (|has| |#1| (-373)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 27)) (-4162 (((-3 $ "failed") $) 88)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3369 (((-575) $) 22)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) 40)) (-2414 (($ |#1| (-575)) 24)) (-4383 ((|#1| $) 57)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) 101 (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ $) 93)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1720 (((-782) $) 115 (|has| |#1| (-373)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 114 (|has| |#1| (-373)))) (-2382 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-1753 (((-575) $) 38)) (-2613 (((-418 |#2|) $) 47)) (-2882 (((-873) $) 69) (($ (-575)) 35) (($ $) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 34) (($ |#2|) 25)) (-3002 ((|#1| $ (-575)) 72)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 9 T CONST)) (-2005 (($) 14 T CONST)) (-3428 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3913 (((-112) $ $) 21)) (-4027 (($ $) 51) (($ $ $) NIL)) (-4015 (($ $ $) 90)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 29) (($ $ $) 49)))
-(((-634 |#1| |#2|) (-13 (-232 |#2|) (-567) (-625 (-418 |#2|)) (-422 |#1|) (-1055 |#2|) (-10 -8 (-15 -3135 ((-112) $)) (-15 -1753 ((-575) $)) (-15 -3369 ((-575) $)) (-15 -4406 ($ $)) (-15 -4383 (|#1| $)) (-15 -2799 (|#1| $)) (-15 -3002 (|#1| $ (-575))) (-15 -2414 ($ |#1| (-575))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-316)) (-15 -2486 ((-2 (|:| -3320 $) (|:| -2792 (-418 |#2|))) (-418 |#2|)))) |%noBranch|))) (-567) (-1261 |#1|)) (T -634))
-((-3135 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-634 *3 *4)) (-4 *4 (-1261 *3)))) (-1753 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4)) (-4 *4 (-1261 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4)) (-4 *4 (-1261 *3)))) (-4406 (*1 *1 *1) (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) (-2799 (*1 *2 *1) (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4)) (-4 *4 (-1261 *2)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4)) (-4 *4 (-1261 *2)))) (-2486 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *4 (-567)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -3320 (-634 *4 *5)) (|:| -2792 (-418 *5)))) (-5 *1 (-634 *4 *5)) (-5 *3 (-418 *5)))))
-(-13 (-232 |#2|) (-567) (-625 (-418 |#2|)) (-422 |#1|) (-1055 |#2|) (-10 -8 (-15 -3135 ((-112) $)) (-15 -1753 ((-575) $)) (-15 -3369 ((-575) $)) (-15 -4406 ($ $)) (-15 -4383 (|#1| $)) (-15 -2799 (|#1| $)) (-15 -3002 (|#1| $ (-575))) (-15 -2414 ($ |#1| (-575))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-6 (-316)) (-15 -2486 ((-2 (|:| -3320 $) (|:| -2792 (-418 |#2|))) (-418 |#2|)))) |%noBranch|)))
-((-4014 (((-655 |#6|) (-655 |#4|) (-112)) 54)) (-3875 ((|#6| |#6|) 48)))
-(((-635 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3875 (|#6| |#6|)) (-15 -4014 ((-655 |#6|) (-655 |#4|) (-112)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|) (-1126 |#1| |#2| |#3| |#4|)) (T -635))
-((-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *10)) (-5 *1 (-635 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *10 (-1126 *5 *6 *7 *8)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-635 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *2 (-1126 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3875 (|#6| |#6|)) (-15 -4014 ((-655 |#6|) (-655 |#4|) (-112))))
-((-3988 (((-112) |#3| (-782) (-655 |#3|)) 29)) (-3796 (((-3 (-2 (|:| |polfac| (-655 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-655 (-1190 |#3|)))) "failed") |#3| (-655 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1366 (-655 (-2 (|:| |irr| |#4|) (|:| -2205 (-575)))))) (-655 |#3|) (-655 |#1|) (-655 |#3|)) 69)))
-(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3988 ((-112) |#3| (-782) (-655 |#3|))) (-15 -3796 ((-3 (-2 (|:| |polfac| (-655 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-655 (-1190 |#3|)))) "failed") |#3| (-655 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1366 (-655 (-2 (|:| |irr| |#4|) (|:| -2205 (-575)))))) (-655 |#3|) (-655 |#1|) (-655 |#3|)))) (-861) (-804) (-316) (-964 |#3| |#2| |#1|)) (T -636))
-((-3796 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1366 (-655 (-2 (|:| |irr| *10) (|:| -2205 (-575))))))) (-5 *6 (-655 *3)) (-5 *7 (-655 *8)) (-4 *8 (-861)) (-4 *3 (-316)) (-4 *10 (-964 *3 *9 *8)) (-4 *9 (-804)) (-5 *2 (-2 (|:| |polfac| (-655 *10)) (|:| |correct| *3) (|:| |corrfact| (-655 (-1190 *3))))) (-5 *1 (-636 *8 *9 *3 *10)) (-5 *4 (-655 (-1190 *3))))) (-3988 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-782)) (-5 *5 (-655 *3)) (-4 *3 (-316)) (-4 *6 (-861)) (-4 *7 (-804)) (-5 *2 (-112)) (-5 *1 (-636 *6 *7 *3 *8)) (-4 *8 (-964 *3 *7 *6)))))
-(-10 -7 (-15 -3988 ((-112) |#3| (-782) (-655 |#3|))) (-15 -3796 ((-3 (-2 (|:| |polfac| (-655 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-655 (-1190 |#3|)))) "failed") |#3| (-655 (-1190 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1366 (-655 (-2 (|:| |irr| |#4|) (|:| -2205 (-575)))))) (-655 |#3|) (-655 |#1|) (-655 |#3|))))
-((-2859 (((-112) $ $) NIL)) (-3890 (((-1152) $) 11)) (-3878 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-637) (-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))) (T -637))
-((-3878 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637)))))
-(-13 (-1100) (-10 -8 (-15 -3878 ((-1152) $)) (-15 -3890 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-3486 (((-655 |#1|) $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-1488 (($ $) 77)) (-3461 (((-675 |#1| |#2|) $) 60)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 81)) (-2838 (((-655 (-303 |#2|)) $ $) 42)) (-3912 (((-1137) $) NIL)) (-2663 (($ (-675 |#1| |#2|)) 56)) (-3516 (($ $ $) NIL)) (-4152 (($ $ $) NIL)) (-2882 (((-873) $) 66) (((-1300 |#1| |#2|) $) NIL) (((-1305 |#1| |#2|) $) 74)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 61 T CONST)) (-2624 (((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $) 41)) (-3338 (((-655 (-675 |#1| |#2|)) (-655 |#1|)) 73)) (-1332 (((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $) 46)) (-3913 (((-112) $ $) 62)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ $ $) 52)))
-(((-638 |#1| |#2| |#3|) (-13 (-484) (-10 -8 (-15 -2663 ($ (-675 |#1| |#2|))) (-15 -3461 ((-675 |#1| |#2|) $)) (-15 -1332 ((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $)) (-15 -2882 ((-1300 |#1| |#2|) $)) (-15 -2882 ((-1305 |#1| |#2|) $)) (-15 -1488 ($ $)) (-15 -3486 ((-655 |#1|) $)) (-15 -3338 ((-655 (-675 |#1| |#2|)) (-655 |#1|))) (-15 -2624 ((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $)) (-15 -2838 ((-655 (-303 |#2|)) $ $)))) (-861) (-13 (-174) (-728 (-418 (-575)))) (-936)) (T -638))
-((-2663 (*1 *1 *2) (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-5 *1 (-638 *3 *4 *5)) (-14 *5 (-936)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-675 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| (-905 *3)) (|:| |c| *4)))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-174) (-728 (-418 (-575))))) (-14 *4 (-936)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-675 *4 *5))) (-5 *1 (-638 *4 *5 *6)) (-4 *5 (-13 (-174) (-728 (-418 (-575))))) (-14 *6 (-936)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| (-683 *3)) (|:| |c| *4)))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))) (-2838 (*1 *2 *1 *1) (-12 (-5 *2 (-655 (-303 *4))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))))
-(-13 (-484) (-10 -8 (-15 -2663 ($ (-675 |#1| |#2|))) (-15 -3461 ((-675 |#1| |#2|) $)) (-15 -1332 ((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $)) (-15 -2882 ((-1300 |#1| |#2|) $)) (-15 -2882 ((-1305 |#1| |#2|) $)) (-15 -1488 ($ $)) (-15 -3486 ((-655 |#1|) $)) (-15 -3338 ((-655 (-675 |#1| |#2|)) (-655 |#1|))) (-15 -2624 ((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $)) (-15 -2838 ((-655 (-303 |#2|)) $ $))))
-((-4014 (((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)) 103) (((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112)) 77)) (-1439 (((-112) (-655 (-791 |#1| (-875 |#2|)))) 26)) (-3536 (((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)) 102)) (-2642 (((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112)) 76)) (-1956 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|)))) 30)) (-2286 (((-3 (-655 (-791 |#1| (-875 |#2|))) "failed") (-655 (-791 |#1| (-875 |#2|)))) 29)))
-(((-639 |#1| |#2|) (-10 -7 (-15 -1439 ((-112) (-655 (-791 |#1| (-875 |#2|))))) (-15 -2286 ((-3 (-655 (-791 |#1| (-875 |#2|))) "failed") (-655 (-791 |#1| (-875 |#2|))))) (-15 -1956 ((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))))) (-15 -2642 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -3536 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -4014 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -4014 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112)))) (-463) (-655 (-1194))) (T -639))
-((-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6))))) (-5 *1 (-639 *5 *6)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-639 *5 *6)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6))))) (-5 *1 (-639 *5 *6)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-639 *5 *6)))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463)) (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4)))) (-2286 (*1 *2 *2) (|partial| -12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463)) (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-655 (-791 *4 (-875 *5)))) (-4 *4 (-463)) (-14 *5 (-655 (-1194))) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
-(-10 -7 (-15 -1439 ((-112) (-655 (-791 |#1| (-875 |#2|))))) (-15 -2286 ((-3 (-655 (-791 |#1| (-875 |#2|))) "failed") (-655 (-791 |#1| (-875 |#2|))))) (-15 -1956 ((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))))) (-15 -2642 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -3536 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -4014 ((-655 (-1063 |#1| |#2|)) (-655 (-791 |#1| (-875 |#2|))) (-112))) (-15 -4014 ((-655 (-1163 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|)))) (-655 (-791 |#1| (-875 |#2|))) (-112))))
-((-3921 (($ $) 38)) (-3784 (($ $) 21)) (-3895 (($ $) 37)) (-3759 (($ $) 22)) (-1521 (($ $) 36)) (-3805 (($ $) 23)) (-1632 (($) 48)) (-3461 (($ $) 45)) (-2322 (($ $) 17)) (-3738 (($ $ (-1109 $)) 7) (($ $ (-1194)) 6)) (-2663 (($ $) 46)) (-3715 (($ $) 15)) (-3747 (($ $) 16)) (-1531 (($ $) 35)) (-3815 (($ $) 24)) (-3935 (($ $) 34)) (-3795 (($ $) 25)) (-3907 (($ $) 33)) (-3772 (($ $) 26)) (-1569 (($ $) 44)) (-3850 (($ $) 32)) (-1544 (($ $) 43)) (-3826 (($ $) 31)) (-1593 (($ $) 42)) (-3871 (($ $) 30)) (-2912 (($ $) 41)) (-3883 (($ $) 29)) (-1583 (($ $) 40)) (-3861 (($ $) 28)) (-1554 (($ $) 39)) (-3837 (($ $) 27)) (-3182 (($ $) 19)) (-2833 (($ $) 20)) (-2734 (($ $) 18)) (** (($ $ $) 47)))
-(((-640) (-141)) (T -640))
-((-2833 (*1 *1 *1) (-4 *1 (-640))) (-3182 (*1 *1 *1) (-4 *1 (-640))) (-2734 (*1 *1 *1) (-4 *1 (-640))) (-2322 (*1 *1 *1) (-4 *1 (-640))) (-3747 (*1 *1 *1) (-4 *1 (-640))) (-3715 (*1 *1 *1) (-4 *1 (-640))))
-(-13 (-974) (-1220) (-10 -8 (-15 -2833 ($ $)) (-15 -3182 ($ $)) (-15 -2734 ($ $)) (-15 -2322 ($ $)) (-15 -3747 ($ $)) (-15 -3715 ($ $))))
-(((-35) . T) ((-95) . T) ((-293) . T) ((-504) . T) ((-974) . T) ((-1220) . T) ((-1223) . T))
-((-2567 (((-115) (-115)) 88)) (-2322 ((|#2| |#2|) 28)) (-3738 ((|#2| |#2| (-1109 |#2|)) 84) ((|#2| |#2| (-1194)) 50)) (-3715 ((|#2| |#2|) 27)) (-3747 ((|#2| |#2|) 29)) (-1825 (((-112) (-115)) 33)) (-3182 ((|#2| |#2|) 24)) (-2833 ((|#2| |#2|) 26)) (-2734 ((|#2| |#2|) 25)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -2833 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2322 (|#2| |#2|)) (-15 -3715 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -3738 (|#2| |#2| (-1194))) (-15 -3738 (|#2| |#2| (-1109 |#2|)))) (-567) (-13 (-441 |#1|) (-1019) (-1220))) (T -641))
-((-3738 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))) (-4 *4 (-567)) (-5 *1 (-641 *4 *2)))) (-3738 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-441 *4) (-1019) (-1220))))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-3715 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2322 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2833 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2)) (-4 *2 (-13 (-441 *3) (-1019) (-1220))))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-641 *3 *4)) (-4 *4 (-13 (-441 *3) (-1019) (-1220))))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-641 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))))))
-(-10 -7 (-15 -1825 ((-112) (-115))) (-15 -2567 ((-115) (-115))) (-15 -2833 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2322 (|#2| |#2|)) (-15 -3715 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -3738 (|#2| |#2| (-1194))) (-15 -3738 (|#2| |#2| (-1109 |#2|))))
-((-3469 (((-492 |#1| |#2|) (-252 |#1| |#2|)) 63)) (-2097 (((-655 (-252 |#1| |#2|)) (-655 (-492 |#1| |#2|))) 89)) (-2356 (((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-875 |#1|)) 91) (((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)) (-875 |#1|)) 90)) (-4117 (((-2 (|:| |gblist| (-655 (-252 |#1| |#2|))) (|:| |gvlist| (-655 (-575)))) (-655 (-492 |#1| |#2|))) 134)) (-2733 (((-655 (-492 |#1| |#2|)) (-875 |#1|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|))) 104)) (-3806 (((-2 (|:| |glbase| (-655 (-252 |#1| |#2|))) (|:| |glval| (-655 (-575)))) (-655 (-252 |#1| |#2|))) 145)) (-2522 (((-1285 |#2|) (-492 |#1| |#2|) (-655 (-492 |#1| |#2|))) 68)) (-4080 (((-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|))) 47)) (-4308 (((-252 |#1| |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|))) 60)) (-3910 (((-252 |#1| |#2|) (-655 |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|))) 112)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -4117 ((-2 (|:| |gblist| (-655 (-252 |#1| |#2|))) (|:| |gvlist| (-655 (-575)))) (-655 (-492 |#1| |#2|)))) (-15 -3806 ((-2 (|:| |glbase| (-655 (-252 |#1| |#2|))) (|:| |glval| (-655 (-575)))) (-655 (-252 |#1| |#2|)))) (-15 -2097 ((-655 (-252 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -2356 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -2356 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -4080 ((-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -2522 ((-1285 |#2|) (-492 |#1| |#2|) (-655 (-492 |#1| |#2|)))) (-15 -3910 ((-252 |#1| |#2|) (-655 |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -2733 ((-655 (-492 |#1| |#2|)) (-875 |#1|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -4308 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -3469 ((-492 |#1| |#2|) (-252 |#1| |#2|)))) (-655 (-1194)) (-463)) (T -642))
-((-3469 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-492 *4 *5)) (-5 *1 (-642 *4 *5)))) (-4308 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-252 *4 *5))) (-5 *2 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5)))) (-2733 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-875 *4)) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5)))) (-3910 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-252 *5 *6))) (-4 *6 (-463)) (-5 *2 (-252 *5 *6)) (-14 *5 (-655 (-1194))) (-5 *1 (-642 *5 *6)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-492 *5 *6))) (-5 *3 (-492 *5 *6)) (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-1285 *6)) (-5 *1 (-642 *5 *6)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-655 (-492 *3 *4))) (-14 *3 (-655 (-1194))) (-4 *4 (-463)) (-5 *1 (-642 *3 *4)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5)) (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6)) (-4 *6 (-463)))) (-2356 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5)) (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6)) (-4 *6 (-463)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-655 (-252 *4 *5))) (-5 *1 (-642 *4 *5)))) (-3806 (*1 *2 *3) (-12 (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-2 (|:| |glbase| (-655 (-252 *4 *5))) (|:| |glval| (-655 (-575))))) (-5 *1 (-642 *4 *5)) (-5 *3 (-655 (-252 *4 *5))))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *2 (-2 (|:| |gblist| (-655 (-252 *4 *5))) (|:| |gvlist| (-655 (-575))))) (-5 *1 (-642 *4 *5)))))
-(-10 -7 (-15 -4117 ((-2 (|:| |gblist| (-655 (-252 |#1| |#2|))) (|:| |gvlist| (-655 (-575)))) (-655 (-492 |#1| |#2|)))) (-15 -3806 ((-2 (|:| |glbase| (-655 (-252 |#1| |#2|))) (|:| |glval| (-655 (-575)))) (-655 (-252 |#1| |#2|)))) (-15 -2097 ((-655 (-252 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -2356 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -2356 ((-492 |#1| |#2|) (-655 (-492 |#1| |#2|)) (-875 |#1|))) (-15 -4080 ((-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -2522 ((-1285 |#2|) (-492 |#1| |#2|) (-655 (-492 |#1| |#2|)))) (-15 -3910 ((-252 |#1| |#2|) (-655 |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -2733 ((-655 (-492 |#1| |#2|)) (-875 |#1|) (-655 (-492 |#1| |#2|)) (-655 (-492 |#1| |#2|)))) (-15 -4308 ((-252 |#1| |#2|) (-252 |#1| |#2|) (-655 (-252 |#1| |#2|)))) (-15 -3469 ((-492 |#1| |#2|) (-252 |#1| |#2|))))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-4116 (((-1290) $ (-1176) (-1176)) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 (((-52) $ (-1176) (-52)) 16) (((-52) $ (-1194) (-52)) 17)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 (-52) "failed") (-1176) $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2375 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-3 (-52) "failed") (-1176) $) NIL)) (-3631 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2857 (((-52) $ (-1176) (-52)) NIL (|has| $ (-6 -4461)))) (-2786 (((-52) $ (-1176)) NIL)) (-3999 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-3540 (($ $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-1176) $) NIL (|has| (-1176) (-861)))) (-4252 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-2263 (((-1176) $) NIL (|has| (-1176) (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2557 (($ (-399)) 9)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-1995 (((-655 (-1176)) $) NIL)) (-3766 (((-112) (-1176) $) NIL)) (-4030 (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL)) (-4218 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL)) (-1653 (((-655 (-1176)) $) NIL)) (-1801 (((-112) (-1176) $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-1955 (((-52) $) NIL (|has| (-1176) (-861)))) (-1540 (((-3 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL)) (-1652 (($ $ (-52)) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-52)) (-655 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-303 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-655 (-303 (-52)))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-2697 (((-655 (-52)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 (((-52) $ (-1176)) 14) (((-52) $ (-1176) (-52)) NIL) (((-52) $ (-1194)) 15)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117)))) (((-782) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117)))) (((-782) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-52) (-624 (-873))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 (-52))) (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-643) (-13 (-1211 (-1176) (-52)) (-295 (-1194) (-52)) (-10 -8 (-15 -2557 ($ (-399))) (-15 -3540 ($ $)) (-15 -3052 ((-52) $ (-1194) (-52)))))) (T -643))
-((-2557 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-643)))) (-3540 (*1 *1 *1) (-5 *1 (-643))) (-3052 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1194)) (-5 *1 (-643)))))
-(-13 (-1211 (-1176) (-52)) (-295 (-1194) (-52)) (-10 -8 (-15 -2557 ($ (-399))) (-15 -3540 ($ $)) (-15 -3052 ((-52) $ (-1194) (-52)))))
-((-4038 (($ $ |#2|) 10)))
-(((-644 |#1| |#2|) (-10 -8 (-15 -4038 (|#1| |#1| |#2|))) (-645 |#2|) (-174)) (T -644))
-NIL
-(-10 -8 (-15 -4038 (|#1| |#1| |#2|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2893 (($ $ $) 34)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 33 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-645 |#1|) (-141) (-174)) (T -645))
-((-2893 (*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)) (-4 *2 (-373)))))
-(-13 (-728 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2893 ($ $ $)) (IF (|has| |t#1| (-373)) (-15 -4038 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2942 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2199 (((-1285 (-700 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-1285 (-700 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-2133 (((-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3261 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2146 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3636 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3309 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-1454 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3952 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2368 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-1810 (($ $ (-936)) NIL)) (-1731 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-2864 (((-1190 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-2530 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3100 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-3884 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3898 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (($ (-1285 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4162 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4422 (((-936)) NIL (|has| |#2| (-377 |#1|)))) (-3748 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3905 (($ $ (-936)) NIL)) (-2948 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3534 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2043 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-1987 (((-3 $ "failed")) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3400 (((-700 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-1455 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-3475 (((-700 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3284 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3726 (((-1190 (-967 |#1|))) NIL (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-373))))) (-3643 (($ $ (-936)) NIL)) (-4339 ((|#1| $) NIL (|has| |#2| (-377 |#1|)))) (-1360 (((-1190 |#1|) $) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-4175 ((|#1|) NIL (|has| |#2| (-428 |#1|))) ((|#1| (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-3557 (((-1190 |#1|) $) NIL (|has| |#2| (-377 |#1|)))) (-1509 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-4264 (((-1176) $) NIL)) (-3155 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3872 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-4350 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3912 (((-1137) $) NIL)) (-2279 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2065 ((|#1| $ (-575)) NIL (|has| |#2| (-428 |#1|)))) (-2209 (((-700 |#1|) (-1285 $)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|))) (((-700 |#1|) (-1285 $) (-1285 $)) NIL (|has| |#2| (-377 |#1|))) (((-1285 |#1|) $ (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-2613 (($ (-1285 |#1|)) NIL (|has| |#2| (-428 |#1|))) (((-1285 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-3600 (((-655 (-967 |#1|))) NIL (|has| |#2| (-428 |#1|))) (((-655 (-967 |#1|)) (-1285 $)) NIL (|has| |#2| (-377 |#1|)))) (-4152 (($ $ $) NIL)) (-2122 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-2882 (((-873) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL (|has| |#2| (-428 |#1|)))) (-2876 (((-655 (-1285 |#1|))) NIL (-3763 (-12 (|has| |#2| (-377 |#1|)) (|has| |#1| (-567))) (-12 (|has| |#2| (-428 |#1|)) (|has| |#1| (-567)))))) (-3458 (($ $ $ $) NIL)) (-3220 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1943 (($ (-700 |#1|) $) NIL (|has| |#2| (-428 |#1|)))) (-2337 (($ $ $) NIL)) (-3676 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3198 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-3594 (((-112)) NIL (|has| |#2| (-377 |#1|)))) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) 20)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-646 |#1| |#2|) (-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2882 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|))) (-174) (-755 |#1|)) (T -646))
-((-2882 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-646 *3 *2)) (-4 *2 (-755 *3)))))
-(-13 (-755 |#1|) (-624 |#2|) (-10 -8 (-15 -2882 ($ |#2|)) (IF (|has| |#2| (-428 |#1|)) (-6 (-428 |#1|)) |%noBranch|) (IF (|has| |#2| (-377 |#1|)) (-6 (-377 |#1|)) |%noBranch|)))
-((-2708 (((-3 (-854 |#2|) "failed") |#2| (-303 |#2|) (-1176)) 106) (((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) "failed"))) "failed") |#2| (-303 (-854 |#2|))) 131)) (-3494 (((-3 (-844 |#2|) "failed") |#2| (-303 (-844 |#2|))) 136)))
-(((-647 |#1| |#2|) (-10 -7 (-15 -2708 ((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) "failed"))) "failed") |#2| (-303 (-854 |#2|)))) (-15 -3494 ((-3 (-844 |#2|) "failed") |#2| (-303 (-844 |#2|)))) (-15 -2708 ((-3 (-854 |#2|) "failed") |#2| (-303 |#2|) (-1176)))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -647))
-((-2708 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-303 *3)) (-5 *5 (-1176)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-854 *3)) (-5 *1 (-647 *6 *3)))) (-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-303 (-844 *3))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-844 *3)) (-5 *1 (-647 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-854 *3))) (-4 *3 (-13 (-27) (-1220) (-441 *5))) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-3 (-854 *3) (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed")) (|:| |rightHandLimit| (-3 (-854 *3) "failed"))) "failed")) (-5 *1 (-647 *5 *3)))))
-(-10 -7 (-15 -2708 ((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) "failed"))) "failed") |#2| (-303 (-854 |#2|)))) (-15 -3494 ((-3 (-844 |#2|) "failed") |#2| (-303 (-844 |#2|)))) (-15 -2708 ((-3 (-854 |#2|) "failed") |#2| (-303 |#2|) (-1176))))
-((-2708 (((-3 (-854 (-418 (-967 |#1|))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))) (-1176)) 86) (((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|)))) 20) (((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-854 (-967 |#1|)))) 35)) (-3494 (((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|)))) 23) (((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-844 (-967 |#1|)))) 43)))
-(((-648 |#1|) (-10 -7 (-15 -2708 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-854 (-967 |#1|))))) (-15 -2708 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3494 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-844 (-967 |#1|))))) (-15 -3494 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -2708 ((-3 (-854 (-418 (-967 |#1|))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))) (-1176)))) (-463)) (T -648))
-((-2708 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-303 (-418 (-967 *6)))) (-5 *5 (-1176)) (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-854 *3)) (-5 *1 (-648 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-463)) (-5 *2 (-844 *3)) (-5 *1 (-648 *5)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-844 (-967 *5)))) (-4 *5 (-463)) (-5 *2 (-844 (-418 (-967 *5)))) (-5 *1 (-648 *5)) (-5 *3 (-418 (-967 *5))))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-463)) (-5 *2 (-3 (-854 *3) (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed")) (|:| |rightHandLimit| (-3 (-854 *3) "failed"))) "failed")) (-5 *1 (-648 *5)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-303 (-854 (-967 *5)))) (-4 *5 (-463)) (-5 *2 (-3 (-854 (-418 (-967 *5))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 *5))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 *5))) "failed"))) "failed")) (-5 *1 (-648 *5)) (-5 *3 (-418 (-967 *5))))))
-(-10 -7 (-15 -2708 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-854 (-967 |#1|))))) (-15 -2708 ((-3 (-854 (-418 (-967 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-854 (-418 (-967 |#1|))) "failed"))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3494 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-844 (-967 |#1|))))) (-15 -3494 ((-844 (-418 (-967 |#1|))) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -2708 ((-3 (-854 (-418 (-967 |#1|))) "failed") (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))) (-1176))))
-((-1929 (((-3 (-1285 (-418 |#1|)) "failed") (-1285 |#2|) |#2|) 64 (-3213 (|has| |#1| (-373)))) (((-3 (-1285 |#1|) "failed") (-1285 |#2|) |#2|) 49 (|has| |#1| (-373)))) (-2974 (((-112) (-1285 |#2|)) 33)) (-3745 (((-3 (-1285 |#1|) "failed") (-1285 |#2|)) 40)))
-(((-649 |#1| |#2|) (-10 -7 (-15 -2974 ((-112) (-1285 |#2|))) (-15 -3745 ((-3 (-1285 |#1|) "failed") (-1285 |#2|))) (IF (|has| |#1| (-373)) (-15 -1929 ((-3 (-1285 |#1|) "failed") (-1285 |#2|) |#2|)) (-15 -1929 ((-3 (-1285 (-418 |#1|)) "failed") (-1285 |#2|) |#2|)))) (-567) (-13 (-1066) (-650 |#1|))) (T -649))
-((-1929 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5))) (-3213 (-4 *5 (-373))) (-4 *5 (-567)) (-5 *2 (-1285 (-418 *5))) (-5 *1 (-649 *5 *4)))) (-1929 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5))) (-4 *5 (-373)) (-4 *5 (-567)) (-5 *2 (-1285 *5)) (-5 *1 (-649 *5 *4)))) (-3745 (*1 *2 *3) (|partial| -12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4))) (-4 *4 (-567)) (-5 *2 (-1285 *4)) (-5 *1 (-649 *4 *5)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4))) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-649 *4 *5)))))
-(-10 -7 (-15 -2974 ((-112) (-1285 |#2|))) (-15 -3745 ((-3 (-1285 |#1|) "failed") (-1285 |#2|))) (IF (|has| |#1| (-373)) (-15 -1929 ((-3 (-1285 |#1|) "failed") (-1285 |#2|) |#2|)) (-15 -1929 ((-3 (-1285 (-418 |#1|)) "failed") (-1285 |#2|) |#2|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2862 (((-700 |#1|) (-1285 $)) 31) (((-700 |#1|) (-700 $)) 30) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 29)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27)))
-(((-650 |#1|) (-141) (-1066)) (T -650))
-((-2862 (*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066)) (-5 *2 (-700 *4)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-700 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066)) (-5 *2 (-700 *4)))) (-2862 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *1)) (-5 *4 (-1285 *1)) (-4 *1 (-650 *5)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -3415 (-700 *5)) (|:| |vec| (-1285 *5)))))))
-(-13 (-659 |t#1|) (-10 -8 (-15 -2862 ((-700 |t#1|) (-1285 $))) (-15 -2862 ((-700 |t#1|) (-700 $))) (-15 -2862 ((-2 (|:| -3415 (-700 |t#1|)) (|:| |vec| (-1285 |t#1|))) (-700 $) (-1285 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 16 T CONST)) (-3913 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-651 |#1|) (-141) (-1129)) (T -651))
-NIL
-(-13 (-657 |t#1|) (-1068 |t#1|))
-(((-102) . T) ((-624 (-873)) . T) ((-657 |#1|) . T) ((-1068 |#1|) . T) ((-1117) . T))
-((-1613 ((|#2| (-655 |#1|) (-655 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-655 |#1|) (-655 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) |#2|) 17) ((|#2| (-655 |#1|) (-655 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|)) 12)))
-(((-652 |#1| |#2|) (-10 -7 (-15 -1613 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|))) (-15 -1613 (|#2| (-655 |#1|) (-655 |#2|) |#1|)) (-15 -1613 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) |#2|)) (-15 -1613 (|#2| (-655 |#1|) (-655 |#2|) |#1| |#2|)) (-15 -1613 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) (-1 |#2| |#1|))) (-15 -1613 (|#2| (-655 |#1|) (-655 |#2|) |#1| (-1 |#2| |#1|)))) (-1117) (-1235)) (T -652))
-((-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) (-1613 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *1 (-652 *5 *6)))) (-1613 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 *5)) (-4 *6 (-1117)) (-4 *5 (-1235)) (-5 *2 (-1 *5 *6)) (-5 *1 (-652 *6 *5)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *2 (-1 *6 *5)) (-5 *1 (-652 *5 *6)))))
-(-10 -7 (-15 -1613 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|))) (-15 -1613 (|#2| (-655 |#1|) (-655 |#2|) |#1|)) (-15 -1613 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) |#2|)) (-15 -1613 (|#2| (-655 |#1|) (-655 |#2|) |#1| |#2|)) (-15 -1613 ((-1 |#2| |#1|) (-655 |#1|) (-655 |#2|) (-1 |#2| |#1|))) (-15 -1613 (|#2| (-655 |#1|) (-655 |#2|) |#1| (-1 |#2| |#1|))))
-((-3436 (((-655 |#2|) (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|) 16)) (-2302 ((|#2| (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|) 18)) (-2544 (((-655 |#2|) (-1 |#2| |#1|) (-655 |#1|)) 13)))
-(((-653 |#1| |#2|) (-10 -7 (-15 -3436 ((-655 |#2|) (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2544 ((-655 |#2|) (-1 |#2| |#1|) (-655 |#1|)))) (-1235) (-1235)) (T -653))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-655 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-655 *6)) (-5 *1 (-653 *5 *6)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-655 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-653 *5 *2)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-655 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-655 *5)) (-5 *1 (-653 *6 *5)))))
-(-10 -7 (-15 -3436 ((-655 |#2|) (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-655 |#1|) |#2|)) (-15 -2544 ((-655 |#2|) (-1 |#2| |#1|) (-655 |#1|))))
-((-2544 (((-655 |#3|) (-1 |#3| |#1| |#2|) (-655 |#1|) (-655 |#2|)) 21)))
-(((-654 |#1| |#2| |#3|) (-10 -7 (-15 -2544 ((-655 |#3|) (-1 |#3| |#1| |#2|) (-655 |#1|) (-655 |#2|)))) (-1235) (-1235) (-1235)) (T -654))
-((-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-655 *6)) (-5 *5 (-655 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-655 *8)) (-5 *1 (-654 *6 *7 *8)))))
-(-10 -7 (-15 -2544 ((-655 |#3|) (-1 |#3| |#1| |#2|) (-655 |#1|) (-655 |#2|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) NIL)) (-2987 ((|#1| $) NIL)) (-3460 (($ $) NIL)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) $) NIL (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3175 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2025 (($ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-2089 (($ $ $) NIL (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "rest" $) NIL (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-2224 (($ $ $) 37 (|has| |#1| (-1117)))) (-3607 (($ $ $) 41 (|has| |#1| (-1117)))) (-3825 (($ $ $) 44 (|has| |#1| (-1117)))) (-1932 (($ (-1 (-112) |#1|) $) NIL)) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2975 ((|#1| $) NIL)) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-1969 (($ $) 23) (($ $ (-782)) NIL)) (-1413 (($ $) NIL (|has| |#1| (-1117)))) (-4070 (($ $) 36 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) NIL (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) NIL)) (-3631 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2335 (((-112) $) NIL)) (-2630 (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117))) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) NIL)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3200 (((-112) $) 11)) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3457 (($) 9 T CONST)) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4167 (($ $ $) NIL (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (($ |#1|) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3651 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-4218 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-2129 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) 20) (($ $ (-782)) NIL)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-4213 (((-112) $) NIL)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) 39)) (-1393 (($) 38)) (-2065 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) 42) ((|#1| $ (-575) |#1|) NIL)) (-1816 (((-575) $ $) NIL)) (-3997 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3237 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-3482 (((-112) $) NIL)) (-3247 (($ $) NIL)) (-1774 (($ $) NIL (|has| $ (-6 -4461)))) (-3984 (((-782) $) NIL)) (-1431 (($ $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) 53 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) NIL)) (-2819 (($ |#1| $) 12)) (-3357 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1513 (($ $ $) 35) (($ |#1| $) 43) (($ (-655 $)) NIL) (($ $ |#1|) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3911 (($ $ $) 13)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2225 (((-1176) $) 31 (|has| |#1| (-839))) (((-1176) $ (-112)) 32 (|has| |#1| (-839))) (((-1290) (-833) $) 33 (|has| |#1| (-839))) (((-1290) (-833) $ (-112)) 34 (|has| |#1| (-839)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-655 |#1|) (-13 (-677 |#1|) (-10 -8 (-15 -3457 ($) -3736) (-15 -3200 ((-112) $)) (-15 -2819 ($ |#1| $)) (-15 -3911 ($ $ $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -2224 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -3825 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|))) (-1235)) (T -655))
-((-3457 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1235)))) (-2819 (*1 *1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) (-3911 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))) (-2224 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))) (-3607 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))) (-3825 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))))
-(-13 (-677 |#1|) (-10 -8 (-15 -3457 ($) -3736) (-15 -3200 ((-112) $)) (-15 -2819 ($ |#1| $)) (-15 -3911 ($ $ $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -2224 ($ $ $)) (-15 -3607 ($ $ $)) (-15 -3825 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-839)) (-6 (-839)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 11) (($ (-1199)) NIL) (((-1199) $) NIL) ((|#1| $) 8)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-656 |#1|) (-13 (-1100) (-624 |#1|)) (-1117)) (T -656))
-NIL
-(-13 (-1100) (-624 |#1|))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 16 T CONST)) (-3913 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-657 |#1|) (-141) (-1129)) (T -657))
-((-1989 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1129)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129)))))
-(-13 (-1117) (-10 -8 (-15 (-1989) ($) -3736) (-15 -2045 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4215 (($ |#1| |#1| $) 43)) (-3133 (((-112) $ (-782)) NIL)) (-1932 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-1413 (($ $) 45)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) 56 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 9 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 37)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4030 ((|#1| $) 47)) (-4218 (($ |#1| $) 29) (($ |#1| $ (-782)) 42)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3773 ((|#1| $) 50)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 23)) (-1393 (($) 28)) (-1736 (((-112) $) 54)) (-4203 (((-655 (-2 (|:| -3179 |#1|) (|:| -3922 (-782)))) $) 67)) (-3323 (($) 26) (($ (-655 |#1|)) 19)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) 63 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 20)) (-2613 (((-547) $) 34 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) NIL)) (-2882 (((-873) $) 14 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 24)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 69 (|has| |#1| (-1117)))) (-2869 (((-782) $) 17 (|has| $ (-6 -4460)))))
-(((-658 |#1|) (-13 (-706 |#1|) (-10 -8 (-6 -4460) (-15 -1736 ((-112) $)) (-15 -4215 ($ |#1| |#1| $)))) (-1117)) (T -658))
-((-1736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-1117)))) (-4215 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1117)))))
-(-13 (-706 |#1|) (-10 -8 (-6 -4460) (-15 -1736 ((-112) $)) (-15 -4215 ($ |#1| |#1| $))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27)))
-(((-659 |#1|) (-141) (-1075)) (T -659))
-NIL
-(-13 (-21) (-657 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782) $) 17)) (-3845 (($ $ |#1|) 69)) (-3086 (($ $) 39)) (-4380 (($ $) 37)) (-2443 (((-3 |#1| "failed") $) 61)) (-4400 ((|#1| $) NIL)) (-3609 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2830 (((-873) $ (-1 (-873) (-873) (-873)) (-1 (-873) (-873) (-873)) (-575)) 56)) (-2834 ((|#1| $ (-575)) 35)) (-1574 ((|#2| $ (-575)) 34)) (-1335 (($ (-1 |#1| |#1|) $) 41)) (-2860 (($ (-1 |#2| |#2|) $) 47)) (-4109 (($) 11)) (-3024 (($ |#1| |#2|) 24)) (-2644 (($ (-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|)))) 25)) (-2951 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))) $) 14)) (-1530 (($ |#1| $) 71)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3927 (((-112) $ $) 76)) (-2882 (((-873) $) 21) (($ |#1|) 18)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 27)))
-(((-660 |#1| |#2| |#3|) (-13 (-1117) (-1055 |#1|) (-10 -8 (-15 -2830 ((-873) $ (-1 (-873) (-873) (-873)) (-1 (-873) (-873) (-873)) (-575))) (-15 -2951 ((-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))) $)) (-15 -3024 ($ |#1| |#2|)) (-15 -2644 ($ (-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))))) (-15 -1574 (|#2| $ (-575))) (-15 -2834 (|#1| $ (-575))) (-15 -4380 ($ $)) (-15 -3086 ($ $)) (-15 -2409 ((-782) $)) (-15 -4109 ($)) (-15 -3845 ($ $ |#1|)) (-15 -1530 ($ |#1| $)) (-15 -3609 ($ |#1| |#2| $)) (-15 -3609 ($ $ $)) (-15 -3927 ((-112) $ $)) (-15 -2860 ($ (-1 |#2| |#2|) $)) (-15 -1335 ($ (-1 |#1| |#1|) $)))) (-1117) (-23) |#2|) (T -660))
-((-2830 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-873) (-873) (-873))) (-5 *4 (-575)) (-5 *2 (-873)) (-5 *1 (-660 *5 *6 *7)) (-4 *5 (-1117)) (-4 *6 (-23)) (-14 *7 *6))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 *4)))) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) (-3024 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-2644 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 *4)))) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-660 *3 *4 *5)))) (-1574 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *2 (-23)) (-5 *1 (-660 *4 *2 *5)) (-4 *4 (-1117)) (-14 *5 *2))) (-2834 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *2 (-1117)) (-5 *1 (-660 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) (-4109 (*1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3845 (*1 *1 *1 *2) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-1530 (*1 *1 *2 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3609 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3609 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23)) (-14 *4 *3))) (-3927 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))) (-2860 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)))) (-1335 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-660 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1117) (-1055 |#1|) (-10 -8 (-15 -2830 ((-873) $ (-1 (-873) (-873) (-873)) (-1 (-873) (-873) (-873)) (-575))) (-15 -2951 ((-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))) $)) (-15 -3024 ($ |#1| |#2|)) (-15 -2644 ($ (-655 (-2 (|:| |gen| |#1|) (|:| -2663 |#2|))))) (-15 -1574 (|#2| $ (-575))) (-15 -2834 (|#1| $ (-575))) (-15 -4380 ($ $)) (-15 -3086 ($ $)) (-15 -2409 ((-782) $)) (-15 -4109 ($)) (-15 -3845 ($ $ |#1|)) (-15 -1530 ($ |#1| $)) (-15 -3609 ($ |#1| |#2| $)) (-15 -3609 ($ $ $)) (-15 -3927 ((-112) $ $)) (-15 -2860 ($ (-1 |#2| |#2|) $)) (-15 -1335 ($ (-1 |#1| |#1|) $))))
-((-2263 (((-575) $) 31)) (-2129 (($ |#2| $ (-575)) 27) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) 12)) (-1801 (((-112) (-575) $) 18)) (-1513 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-655 $)) NIL)))
-(((-661 |#1| |#2|) (-10 -8 (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -1513 (|#1| (-655 |#1|))) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#2|)) (-15 -2263 ((-575) |#1|)) (-15 -1653 ((-655 (-575)) |#1|)) (-15 -1801 ((-112) (-575) |#1|))) (-662 |#2|) (-1235)) (T -661))
-NIL
-(-10 -8 (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -1513 (|#1| (-655 |#1|))) (-15 -1513 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#2|)) (-15 -2263 ((-575) |#1|)) (-15 -1653 ((-655 (-575)) |#1|)) (-15 -1801 ((-112) (-575) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-4070 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 52)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 43 (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1652 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 72)) (-1513 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-662 |#1|) (-141) (-1235)) (T -662))
-((-2303 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-1513 (*1 *1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-1513 (*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-1513 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-2544 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-2129 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-662 *2)) (-4 *2 (-1235)))) (-2129 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))) (-3052 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1252 (-575))) (|has| *1 (-6 -4461)) (-4 *1 (-662 *2)) (-4 *2 (-1235)))))
-(-13 (-615 (-575) |t#1|) (-152 |t#1|) (-295 (-1252 (-575)) $) (-10 -8 (-15 -2303 ($ (-782) |t#1|)) (-15 -1513 ($ $ |t#1|)) (-15 -1513 ($ |t#1| $)) (-15 -1513 ($ $ $)) (-15 -1513 ($ (-655 $))) (-15 -2544 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3237 ($ $ (-575))) (-15 -3237 ($ $ (-1252 (-575)))) (-15 -2129 ($ |t#1| $ (-575))) (-15 -2129 ($ $ $ (-575))) (IF (|has| $ (-6 -4461)) (-15 -3052 (|t#1| $ (-1252 (-575)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-3520 (((-3 |#2| "failed") |#3| |#2| (-1194) |#2| (-655 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) "failed") |#3| |#2| (-1194)) 44)))
-(((-663 |#1| |#2| |#3|) (-10 -7 (-15 -3520 ((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) "failed") |#3| |#2| (-1194))) (-15 -3520 ((-3 |#2| "failed") |#3| |#2| (-1194) |#2| (-655 |#2|)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974)) (-667 |#2|)) (T -663))
-((-3520 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *2)) (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-663 *6 *2 *3)) (-4 *3 (-667 *2)))) (-3520 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1194)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-4 *4 (-13 (-29 *6) (-1220) (-974))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2098 (-655 *4)))) (-5 *1 (-663 *6 *4 *3)) (-4 *3 (-667 *4)))))
-(-10 -7 (-15 -3520 ((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) "failed") |#3| |#2| (-1194))) (-15 -3520 ((-3 |#2| "failed") |#3| |#2| (-1194) |#2| (-655 |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2140 (($ $) NIL (|has| |#1| (-373)))) (-4260 (($ $ $) NIL (|has| |#1| (-373)))) (-4273 (($ $ (-782)) NIL (|has| |#1| (-373)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-3870 (($ $ $) NIL (|has| |#1| (-373)))) (-1347 (($ $ $) NIL (|has| |#1| (-373)))) (-4201 (($ $ $) NIL (|has| |#1| (-373)))) (-3022 (($ $ $) NIL (|has| |#1| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1497 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463)))) (-3900 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) NIL)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3143 (((-782) $) NIL)) (-3021 (($ $ $) NIL (|has| |#1| (-373)))) (-3028 (($ $ $) NIL (|has| |#1| (-373)))) (-2029 (($ $ $) NIL (|has| |#1| (-373)))) (-2247 (($ $ $) NIL (|has| |#1| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2065 ((|#1| $ |#1|) NIL)) (-3842 (($ $ $) NIL (|has| |#1| (-373)))) (-1753 (((-782) $) NIL)) (-3696 ((|#1| $) NIL (|has| |#1| (-463)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1943 ((|#1| $ |#1| |#1|) NIL)) (-1702 (($ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($) NIL)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-664 |#1|) (-667 |#1|) (-238)) (T -664))
-NIL
-(-667 |#1|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2140 (($ $) NIL (|has| |#1| (-373)))) (-4260 (($ $ $) NIL (|has| |#1| (-373)))) (-4273 (($ $ (-782)) NIL (|has| |#1| (-373)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-3870 (($ $ $) NIL (|has| |#1| (-373)))) (-1347 (($ $ $) NIL (|has| |#1| (-373)))) (-4201 (($ $ $) NIL (|has| |#1| (-373)))) (-3022 (($ $ $) NIL (|has| |#1| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1497 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463)))) (-3900 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) NIL)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3143 (((-782) $) NIL)) (-3021 (($ $ $) NIL (|has| |#1| (-373)))) (-3028 (($ $ $) NIL (|has| |#1| (-373)))) (-2029 (($ $ $) NIL (|has| |#1| (-373)))) (-2247 (($ $ $) NIL (|has| |#1| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2065 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3842 (($ $ $) NIL (|has| |#1| (-373)))) (-1753 (((-782) $) NIL)) (-3696 ((|#1| $) NIL (|has| |#1| (-463)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1943 ((|#1| $ |#1| |#1|) NIL)) (-1702 (($ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($) NIL)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-665 |#1| |#2|) (-13 (-667 |#1|) (-295 |#2| |#2|)) (-238) (-13 (-659 |#1|) (-10 -8 (-15 -2382 ($ $))))) (T -665))
-NIL
-(-13 (-667 |#1|) (-295 |#2| |#2|))
-((-2140 (($ $) 29)) (-1702 (($ $) 27)) (-3428 (($) 13)))
-(((-666 |#1| |#2|) (-10 -8 (-15 -2140 (|#1| |#1|)) (-15 -1702 (|#1| |#1|)) (-15 -3428 (|#1|))) (-667 |#2|) (-1066)) (T -666))
-NIL
-(-10 -8 (-15 -2140 (|#1| |#1|)) (-15 -1702 (|#1| |#1|)) (-15 -3428 (|#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-2140 (($ $) 87 (|has| |#1| (-373)))) (-4260 (($ $ $) 89 (|has| |#1| (-373)))) (-4273 (($ $ (-782)) 88 (|has| |#1| (-373)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-3870 (($ $ $) 50 (|has| |#1| (-373)))) (-1347 (($ $ $) 51 (|has| |#1| (-373)))) (-4201 (($ $ $) 53 (|has| |#1| (-373)))) (-3022 (($ $ $) 48 (|has| |#1| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 47 (|has| |#1| (-373)))) (-1497 (((-3 $ "failed") $ $) 49 (|has| |#1| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 52 (|has| |#1| (-373)))) (-2443 (((-3 (-575) "failed") $) 80 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 77 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 74)) (-4400 (((-575) $) 79 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 76 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 75)) (-4406 (($ $) 69)) (-4162 (((-3 $ "failed") $) 37)) (-2379 (($ $) 60 (|has| |#1| (-463)))) (-3900 (((-112) $) 35)) (-2414 (($ |#1| (-782)) 67)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 62 (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63 (|has| |#1| (-567)))) (-3143 (((-782) $) 71)) (-3021 (($ $ $) 57 (|has| |#1| (-373)))) (-3028 (($ $ $) 58 (|has| |#1| (-373)))) (-2029 (($ $ $) 46 (|has| |#1| (-373)))) (-2247 (($ $ $) 55 (|has| |#1| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 54 (|has| |#1| (-373)))) (-3746 (((-3 $ "failed") $ $) 56 (|has| |#1| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 59 (|has| |#1| (-373)))) (-4383 ((|#1| $) 70)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-567)))) (-2065 ((|#1| $ |#1|) 92)) (-3842 (($ $ $) 86 (|has| |#1| (-373)))) (-1753 (((-782) $) 72)) (-3696 ((|#1| $) 61 (|has| |#1| (-463)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 78 (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 73)) (-2212 (((-655 |#1|) $) 66)) (-3002 ((|#1| $ (-782)) 68)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1943 ((|#1| $ |#1| |#1|) 65)) (-1702 (($ $) 90)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($) 91)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-667 |#1|) (-141) (-1066)) (T -667))
-((-3428 (*1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)))) (-1702 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)))) (-4260 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4273 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-667 *3)) (-4 *3 (-1066)) (-4 *3 (-373)))) (-2140 (*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3842 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(-13 (-863 |t#1|) (-295 |t#1| |t#1|) (-10 -8 (-15 -3428 ($)) (-15 -1702 ($ $)) (IF (|has| |t#1| (-373)) (PROGN (-15 -4260 ($ $ $)) (-15 -4273 ($ $ (-782))) (-15 -2140 ($ $)) (-15 -3842 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-295 |#1| |#1|) . T) ((-422 |#1|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-863 |#1|) . T))
-((-3554 (((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))) 85 (|has| |#1| (-27)))) (-2347 (((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))) 84 (|has| |#1| (-27))) (((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 19)))
-(((-668 |#1| |#2|) (-10 -7 (-15 -2347 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2347 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)))) (-15 -3554 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))))) |%noBranch|)) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -668))
-((-3554 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5)))) (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5))))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5)))) (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5))))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-664 (-418 *6)))) (-5 *1 (-668 *5 *6)) (-5 *3 (-664 (-418 *6))))))
-(-10 -7 (-15 -2347 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2347 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|)))) (-15 -3554 ((-655 (-664 (-418 |#2|))) (-664 (-418 |#2|))))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2140 (($ $) NIL (|has| |#1| (-373)))) (-4260 (($ $ $) 28 (|has| |#1| (-373)))) (-4273 (($ $ (-782)) 31 (|has| |#1| (-373)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-3870 (($ $ $) NIL (|has| |#1| (-373)))) (-1347 (($ $ $) NIL (|has| |#1| (-373)))) (-4201 (($ $ $) NIL (|has| |#1| (-373)))) (-3022 (($ $ $) NIL (|has| |#1| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1497 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463)))) (-3900 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) NIL)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-3143 (((-782) $) NIL)) (-3021 (($ $ $) NIL (|has| |#1| (-373)))) (-3028 (($ $ $) NIL (|has| |#1| (-373)))) (-2029 (($ $ $) NIL (|has| |#1| (-373)))) (-2247 (($ $ $) NIL (|has| |#1| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2065 ((|#1| $ |#1|) 24)) (-3842 (($ $ $) 33 (|has| |#1| (-373)))) (-1753 (((-782) $) NIL)) (-3696 ((|#1| $) NIL (|has| |#1| (-463)))) (-2882 (((-873) $) 20) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1943 ((|#1| $ |#1| |#1|) 23)) (-1702 (($ $) NIL)) (-1989 (($) 21 T CONST)) (-2005 (($) 8 T CONST)) (-3428 (($) NIL)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-669 |#1| |#2|) (-667 |#1|) (-1066) (-1 |#1| |#1|)) (T -669))
-NIL
-(-667 |#1|)
-((-4260 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-4273 ((|#2| |#2| (-782) (-1 |#1| |#1|)) 45)) (-3842 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
-(((-670 |#1| |#2|) (-10 -7 (-15 -4260 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4273 (|#2| |#2| (-782) (-1 |#1| |#1|))) (-15 -3842 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-373) (-667 |#1|)) (T -670))
-((-3842 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2)) (-4 *2 (-667 *4)))) (-4273 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) (-5 *1 (-670 *5 *2)) (-4 *2 (-667 *5)))) (-4260 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2)) (-4 *2 (-667 *4)))))
-(-10 -7 (-15 -4260 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4273 (|#2| |#2| (-782) (-1 |#1| |#1|))) (-15 -3842 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2920 (($ $ $) 9)))
-(((-671 |#1|) (-10 -8 (-15 -2920 (|#1| |#1| |#1|))) (-672)) (T -671))
-NIL
-(-10 -8 (-15 -2920 (|#1| |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2877 (($ $) 10)) (-2920 (($ $ $) 8)) (-3913 (((-112) $ $) 6)) (-2909 (($ $ $) 9)))
-(((-672) (-141)) (T -672))
-((-2877 (*1 *1 *1) (-4 *1 (-672))) (-2909 (*1 *1 *1 *1) (-4 *1 (-672))) (-2920 (*1 *1 *1 *1) (-4 *1 (-672))))
-(-13 (-102) (-10 -8 (-15 -2877 ($ $)) (-15 -2909 ($ $ $)) (-15 -2920 ($ $ $))))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#2| $ |#1| |#2|) NIL)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2029 (((-656 |#1|) $) NIL)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2928 (((-656 |#1|) $) NIL)) (-1449 (((-112) |#1| $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-562 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462)))) (T -562))
+NIL
+(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462)))
+((-1781 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))) 50)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -1781 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563))
+((-1781 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3)))))
+(-10 -7 (-15 -1781 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|)))))
+((-2446 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2226 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-3271 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220)))
+(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3271 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2446 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2226 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1057 (-576))) (-13 (-27) (-442 |#1|)) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564))
+((-2226 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *7 (-1263 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))))
+(-10 -7 (-15 -3271 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2446 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2226 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3329 (((-112) (-576) (-576)) 12)) (-2970 (((-576) (-576)) 7)) (-1439 (((-576) (-576) (-576)) 10)))
+(((-565) (-10 -7 (-15 -2970 ((-576) (-576))) (-15 -1439 ((-576) (-576) (-576))) (-15 -3329 ((-112) (-576) (-576))))) (T -565))
+((-3329 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2970 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))))
+(-10 -7 (-15 -2970 ((-576) (-576))) (-15 -1439 ((-576) (-576) (-576))) (-15 -3329 ((-112) (-576) (-576))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2264 ((|#1| $) 67)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3897 (($ $) 97)) (-3760 (($ $) 80)) (-1869 ((|#1| $) 68)) (-3161 (((-3 $ "failed") $ $) 20)) (-2477 (($ $) 79)) (-3871 (($ $) 96)) (-3735 (($ $) 81)) (-1542 (($ $) 95)) (-3781 (($ $) 82)) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 75)) (-4397 (((-576) $) 76)) (-4011 (((-3 $ "failed") $) 37)) (-4067 (($ |#1| |#1|) 72)) (-2127 (((-112) $) 66)) (-1663 (($) 107)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 78)) (-3196 (((-112) $) 65)) (-1950 (($ $ $) 113)) (-1492 (($ $ $) 112)) (-3437 (($ $) 104)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3566 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-419 (-576))) 70)) (-4320 ((|#1| $) 69)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2825 (((-3 $ "failed") $ $) 48)) (-2656 (($ $) 105)) (-1553 (($ $) 94)) (-3791 (($ $) 83)) (-3911 (($ $) 93)) (-3771 (($ $) 84)) (-3883 (($ $) 92)) (-3748 (($ $) 85)) (-3590 (((-112) $ |#1|) 64)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 74)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 103)) (-3826 (($ $) 91)) (-3199 (((-112) $ $) 45)) (-1567 (($ $) 102)) (-3802 (($ $) 90)) (-1620 (($ $) 101)) (-3847 (($ $) 89)) (-2888 (($ $) 100)) (-3859 (($ $) 88)) (-1609 (($ $) 99)) (-3837 (($ $) 87)) (-1578 (($ $) 98)) (-3813 (($ $) 86)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 110)) (-3930 (((-112) $ $) 109)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 111)) (-3916 (((-112) $ $) 108)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ $) 106) (($ $ (-419 (-576))) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-566 |#1|) (-141) (-13 (-416) (-1222))) (T -566))
+((-3566 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-4067 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3566 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3566 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) (-3590 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))))
+(-13 (-464) (-862) (-1222) (-1021) (-1057 (-576)) (-10 -8 (-6 -3468) (-15 -3566 ($ |t#1| |t#1|)) (-15 -4067 ($ |t#1| |t#1|)) (-15 -3566 ($ |t#1|)) (-15 -3566 ($ (-419 (-576)))) (-15 -4320 (|t#1| $)) (-15 -1869 (|t#1| $)) (-15 -2264 (|t#1| $)) (-15 -2127 ((-112) $)) (-15 -3196 ((-112) $)) (-15 -3590 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1021) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) . T) ((-1225) . T))
+((-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 9)) (-2150 (($ $) 11)) (-2637 (((-112) $) 20)) (-4011 (((-3 $ "failed") $) 16)) (-3199 (((-112) $ $) 22)))
+(((-567 |#1|) (-10 -8 (-15 -2637 ((-112) |#1|)) (-15 -3199 ((-112) |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -3149 ((-2 (|:| -2857 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|))) (-568)) (T -567))
+NIL
+(-10 -8 (-15 -2637 ((-112) |#1|)) (-15 -3199 ((-112) |#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -3149 ((-2 (|:| -2857 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ $) 48)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-568) (-141)) (T -568))
+((-2825 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2857 *1) (|:| -4449 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2150 (*1 *1 *1) (-4 *1 (-568))) (-3199 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))))
+(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -2825 ((-3 $ "failed") $ $)) (-15 -3149 ((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $)) (-15 -2150 ($ $)) (-15 -3199 ((-112) $ $)) (-15 -2637 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-3465 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|)) 38)) (-2439 (((-598 |#2|) |#2| (-1196)) 63)) (-4181 (((-3 |#2| "failed") |#2| (-1196)) 156)) (-1935 (((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-3778 (((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|) 41)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -3778 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|)) (-15 -3465 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|))) (-15 -4181 ((-3 |#2| "failed") |#2| (-1196))) (-15 -2439 ((-598 |#2|) |#2| (-1196))) (-15 -1935 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -569))
+((-1935 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-4181 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3465 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-3778 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(-10 -7 (-15 -3778 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|)) (-15 -3465 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|))) (-15 -4181 ((-3 |#2| "failed") |#2| (-1196))) (-15 -2439 ((-598 |#2|) |#2| (-1196))) (-15 -1935 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|)))))
+((-2464 (((-430 |#1|) |#1|) 19)) (-2367 (((-430 |#1|) |#1|) 34)) (-1536 (((-3 |#1| "failed") |#1|) 49)) (-2157 (((-430 |#1|) |#1|) 60)))
+(((-570 |#1|) (-10 -7 (-15 -2367 ((-430 |#1|) |#1|)) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -2157 ((-430 |#1|) |#1|)) (-15 -1536 ((-3 |#1| "failed") |#1|))) (-557)) (T -570))
+((-1536 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-2157 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-2464 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))))
+(-10 -7 (-15 -2367 ((-430 |#1|) |#1|)) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -2157 ((-430 |#1|) |#1|)) (-15 -1536 ((-3 |#1| "failed") |#1|)))
+((-3472 (($) 9)) (-2616 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2029 (((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2329 (($ (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2272 (($ (-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-3153 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-3584 (((-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-1515 (((-1292)) 11)))
+(((-571) (-10 -8 (-15 -3472 ($)) (-15 -1515 ((-1292))) (-15 -2029 ((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2272 ($ (-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2329 ($ (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2616 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3584 ((-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3153 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571))
+((-3153 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2616 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-1515 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571)))) (-3472 (*1 *1) (-5 *1 (-571))))
+(-10 -8 (-15 -3472 ($)) (-15 -1515 ((-1292))) (-15 -2029 ((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2272 ($ (-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2329 ($ (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2616 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3584 ((-656 (-2 (|:| -4147 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3153 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3672 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-3440 (((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|)) 35)) (-3226 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|)) 115)) (-1971 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|)) 55)) (-3983 (((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|))) 92) (((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|)) 114)) (-2559 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|)) 116)) (-4132 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-2441 ((|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|) 53)) (-2315 (((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|)) 34)))
+(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -1971 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -1971 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3983 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -3983 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3226 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|))) (-15 -3226 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2559 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|))) (-15 -2559 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3440 ((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|))) (-15 -2441 (|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|)) (-15 -2315 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -4132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -4132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1222)) (-1119)) (T -572))
+((-4132 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1192 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-4132 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1192 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1192 *6)) (-4 *7 (-1119)))) (-2441 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1119)))) (-3440 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1192 *3)) (-4 *7 (-1119)))) (-2559 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) (-2559 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-1192 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) (-3226 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) (-3226 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1192 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) (-3983 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-3983 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-1971 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-1971 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))))
+(-10 -7 (-15 -1971 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -1971 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3983 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -3983 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3226 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|))) (-15 -3226 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2559 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|))) (-15 -2559 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3440 ((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|))) (-15 -2441 (|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|)) (-15 -2315 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -4132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -4132 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|))
+((-1412 (((-576) (-576) (-783)) 85)) (-4441 (((-576) (-576)) 83)) (-1358 (((-576) (-576)) 81)) (-3591 (((-576) (-576)) 87)) (-3095 (((-576) (-576) (-576)) 65)) (-3665 (((-576) (-576) (-576)) 62)) (-1839 (((-419 (-576)) (-576)) 30)) (-2870 (((-576) (-576)) 34)) (-3605 (((-576) (-576)) 74)) (-2418 (((-576) (-576)) 46)) (-1981 (((-656 (-576)) (-576)) 80)) (-3567 (((-576) (-576) (-576) (-576) (-576)) 58)) (-2021 (((-419 (-576)) (-576)) 55)))
+(((-573) (-10 -7 (-15 -2021 ((-419 (-576)) (-576))) (-15 -3567 ((-576) (-576) (-576) (-576) (-576))) (-15 -1981 ((-656 (-576)) (-576))) (-15 -2418 ((-576) (-576))) (-15 -3605 ((-576) (-576))) (-15 -2870 ((-576) (-576))) (-15 -1839 ((-419 (-576)) (-576))) (-15 -3665 ((-576) (-576) (-576))) (-15 -3095 ((-576) (-576) (-576))) (-15 -3591 ((-576) (-576))) (-15 -1358 ((-576) (-576))) (-15 -4441 ((-576) (-576))) (-15 -1412 ((-576) (-576) (-783))))) (T -573))
+((-1412 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-4441 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1358 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3665 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-2870 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1981 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-3567 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2021 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))))
+(-10 -7 (-15 -2021 ((-419 (-576)) (-576))) (-15 -3567 ((-576) (-576) (-576) (-576) (-576))) (-15 -1981 ((-656 (-576)) (-576))) (-15 -2418 ((-576) (-576))) (-15 -3605 ((-576) (-576))) (-15 -2870 ((-576) (-576))) (-15 -1839 ((-419 (-576)) (-576))) (-15 -3665 ((-576) (-576) (-576))) (-15 -3095 ((-576) (-576) (-576))) (-15 -3591 ((-576) (-576))) (-15 -1358 ((-576) (-576))) (-15 -4441 ((-576) (-576))) (-15 -1412 ((-576) (-576) (-783))))
+((-3276 (((-2 (|:| |answer| |#4|) (|:| -2432 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3276 ((-2 (|:| |answer| |#4|) (|:| -2432 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574))
+((-3276 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2432 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))))
+(-10 -7 (-15 -3276 ((-2 (|:| |answer| |#4|) (|:| -2432 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3276 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2432 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -3276 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2432 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -575))
+((-3276 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2432 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6)))))
+(-10 -7 (-15 -3276 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2432 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 30)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 96)) (-2150 (($ $) 97)) (-2637 (((-112) $) NIL)) (-4078 (($ $ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1901 (($ $ $ $) 52)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL)) (-3598 (($ $ $) 91)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL)) (-4397 (((-576) $) NIL)) (-2780 (($ $ $) 54)) (-2085 (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 77) (((-701 (-576)) (-701 $)) 73) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) 93)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL)) (-1946 (((-112) $) NIL)) (-3269 (((-419 (-576)) $) NIL)) (-2107 (($) 79) (($ $) 80)) (-2790 (($ $ $) 90)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-3135 (($ $ $ $) NIL)) (-2880 (($ $ $) 70)) (-2127 (((-112) $) NIL)) (-1840 (($ $ $) NIL)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1838 (((-112) $) 34)) (-2531 (((-112) $) 85)) (-3397 (((-3 $ "failed") $) NIL)) (-3196 (((-112) $) 43)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1735 (($ $ $ $) 55)) (-1950 (($ $ $) 87)) (-1492 (($ $ $) 86)) (-3511 (($ $) NIL)) (-1873 (($ $) 49)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) 69)) (-3094 (($ $ $) NIL)) (-3448 (($) NIL T CONST)) (-3020 (($ $) 38)) (-3887 (((-1139) $) 42)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 128)) (-3901 (($ $ $) 94) (($ (-656 $)) NIL)) (-2878 (($ $) NIL)) (-2367 (((-430 $) $) 114)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-2825 (((-3 $ "failed") $ $) 112)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3945 (((-112) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 89)) (-2399 (($ $) NIL) (($ $ (-783)) NIL)) (-3327 (($ $) 40)) (-3052 (($ $) 36)) (-2610 (((-576) $) 48) (((-548) $) 64) (((-905 (-576)) $) NIL) (((-390) $) 58) (((-227) $) 61) (((-1178) $) 66)) (-2858 (((-874) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-2981 (((-783)) NIL T CONST)) (-3238 (((-112) $ $) NIL)) (-3176 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-1572 (($) 35)) (-3199 (((-112) $ $) NIL)) (-1860 (($ $ $ $) 51)) (-3680 (($ $) 78)) (-2022 (($) 6 T CONST)) (-2038 (($) 31 T CONST)) (-1445 (((-1178) $) 26) (((-1178) $ (-112)) 27) (((-1292) (-834) $) 28) (((-1292) (-834) $ (-112)) 29)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3956 (((-112) $ $) 50)) (-3930 (((-112) $ $) 81)) (-3889 (((-112) $ $) 33)) (-3944 (((-112) $ $) 82)) (-3916 (((-112) $ $) 10)) (-4002 (($ $) 16) (($ $ $) 39)) (-3990 (($ $ $) 37)) (** (($ $ (-938)) NIL) (($ $ (-783)) 84)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 53) (($ (-576) $) 83)))
+(((-576) (-13 (-557) (-626 (-1178)) (-840) (-10 -7 (-6 -4449) (-6 -4454) (-6 -4450) (-6 -4444)))) (T -576))
+NIL
+(-13 (-557) (-626 (-1178)) (-840) (-10 -7 (-6 -4449) (-6 -4454) (-6 -4450) (-6 -4444)))
+((-2605 (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781) (-1082)) 116) (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781)) 118)) (-1850 (((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1196)) 195) (((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1178)) 194) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082)) 199) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390)) 200) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390)) 201) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390))))) 202) (((-1054) (-326 (-390)) (-1113 (-855 (-390)))) 190) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390)) 189) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390)) 185) (((-1054) (-781)) 177) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082)) 184)))
+(((-577) (-10 -7 (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082))) (-15 -1850 ((-1054) (-781))) (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781) (-1082))) (-15 -1850 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1178))) (-15 -1850 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1196))))) (T -577))
+((-1850 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) (-5 *5 (-1196)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) (-5 *5 (-1178)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) (-5 *1 (-577)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-1850 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))))
+(-10 -7 (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082))) (-15 -1850 ((-1054) (-781))) (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-1113 (-855 (-390))))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390))) (-15 -1850 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781) (-1082))) (-15 -1850 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1178))) (-15 -1850 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1196))))
+((-3482 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-1512 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-3409 (((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-3210 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196))) 200)) (-2136 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196)) 209 (|has| |#3| (-668 |#2|)))))
+(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -1512 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -3409 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3482 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -3210 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)))) (IF (|has| |#3| (-668 |#2|)) (-15 -2136 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1222)) (-1119)) (T -578))
+((-2136 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1196)) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-3210 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-4 *2 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1119)))) (-3482 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1119)))) (-3409 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119)))) (-1512 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119)))))
+(-10 -7 (-15 -1512 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -3409 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3482 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -3210 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)))) (IF (|has| |#3| (-668 |#2|)) (-15 -2136 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4261 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196))) |%noBranch|))
+((-2240 (((-2 (|:| -3391 |#2|) (|:| |nconst| |#2|)) |#2| (-1196)) 64)) (-1799 (((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1158)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))) (-3099 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))))
+(((-579 |#1| |#2|) (-10 -7 (-15 -2240 ((-2 (|:| -3391 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3099 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) (-15 -1799 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -1799 ((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1057 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -579))
+((-1799 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-855 *2)) (-4 *2 (-1158)) (-4 *2 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-1799 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-2240 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -3391 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(-10 -7 (-15 -2240 ((-2 (|:| -3391 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -3099 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) (-15 -1799 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -1799 ((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1573 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-1850 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-2590 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-3644 (((-3 (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -1850 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2590 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3644 ((-3 (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1573 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-576))) (-1263 |#1|)) (T -580))
+((-1573 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-3644 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -4177 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2590 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148) (-1057 (-576)))) (-5 *1 (-580 *3 *4)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))))
+(-10 -7 (-15 -1850 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2590 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3644 ((-3 (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1573 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|)))))
+((-1528 (((-3 (-576) "failed") |#1|) 14)) (-3148 (((-112) |#1|) 13)) (-3815 (((-576) |#1|) 9)))
+(((-581 |#1|) (-10 -7 (-15 -3815 ((-576) |#1|)) (-15 -3148 ((-112) |#1|)) (-15 -1528 ((-3 (-576) "failed") |#1|))) (-1057 (-576))) (T -581))
+((-1528 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))) (-3148 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1057 (-576))))) (-3815 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))))
+(-10 -7 (-15 -3815 ((-576) |#1|)) (-15 -3148 ((-112) |#1|)) (-15 -1528 ((-3 (-576) "failed") |#1|)))
+((-3355 (((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1196) (-656 (-419 (-969 |#1|)))) 48)) (-4243 (((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1196)) 28)) (-1390 (((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1196)) 23)) (-1435 (((-3 (-2 (|:| -4177 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))) 35)))
+(((-582 |#1|) (-10 -7 (-15 -4243 ((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -1390 ((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1196))) (-15 -3355 ((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1196) (-656 (-419 (-969 |#1|))))) (-15 -1435 ((-3 (-2 (|:| -4177 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))))) (-13 (-568) (-1057 (-576)) (-148))) (T -582))
+((-1435 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-2 (|:| -4177 (-419 (-969 *5))) (|:| |coeff| (-419 (-969 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5))))) (-3355 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-1390 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-148))) (-5 *1 (-582 *4)))) (-4243 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-598 (-419 (-969 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5))))))
+(-10 -7 (-15 -4243 ((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -1390 ((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1196))) (-15 -3355 ((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1196) (-656 (-419 (-969 |#1|))))) (-15 -1435 ((-3 (-2 (|:| -4177 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)))))
+((-2835 (((-112) $ $) 75)) (-3203 (((-112) $) 48)) (-2264 ((|#1| $) 39)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) 79)) (-3897 (($ $) 139)) (-3760 (($ $) 118)) (-1869 ((|#1| $) 37)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $) NIL)) (-3871 (($ $) 141)) (-3735 (($ $) 114)) (-1542 (($ $) 143)) (-3781 (($ $) 122)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) 93)) (-4397 (((-576) $) 95)) (-4011 (((-3 $ "failed") $) 78)) (-4067 (($ |#1| |#1|) 35)) (-2127 (((-112) $) 44)) (-1663 (($) 104)) (-1838 (((-112) $) 55)) (-1404 (($ $ (-576)) NIL)) (-3196 (((-112) $) 45)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-3437 (($ $) 106)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-3566 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-4320 ((|#1| $) 36)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) 81) (($ (-656 $)) NIL)) (-2825 (((-3 $ "failed") $ $) 80)) (-2656 (($ $) 108)) (-1553 (($ $) 147)) (-3791 (($ $) 120)) (-3911 (($ $) 149)) (-3771 (($ $) 124)) (-3883 (($ $) 145)) (-3748 (($ $) 116)) (-3590 (((-112) $ |#1|) 42)) (-2858 (((-874) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-2981 (((-783)) 102 T CONST)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) 161)) (-3826 (($ $) 130)) (-3199 (((-112) $ $) NIL)) (-1567 (($ $) 159)) (-3802 (($ $) 126)) (-1620 (($ $) 157)) (-3847 (($ $) 137)) (-2888 (($ $) 155)) (-3859 (($ $) 135)) (-1609 (($ $) 153)) (-3837 (($ $) 132)) (-1578 (($ $) 151)) (-3813 (($ $) 128)) (-2022 (($) 30 T CONST)) (-2038 (($) 10 T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 49)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 47)) (-4002 (($ $) 53) (($ $ $) 54)) (-3990 (($ $ $) 52)) (** (($ $ (-938)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-938) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61)))
+(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1222))) (T -583))
+NIL
+(-566 |#1|)
+((-1667 (((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576))) 27)))
+(((-584) (-10 -7 (-15 -1667 ((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576)))))) (T -584))
+((-1667 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 (-576)))) (-5 *3 (-1192 (-576))) (-5 *1 (-584)))))
+(-10 -7 (-15 -1667 ((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576)))))
+((-1746 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196)) 19)) (-2709 (((-656 (-624 |#2|)) (-656 |#2|) (-1196)) 23)) (-1675 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-2340 ((|#2| |#2| (-1196)) 59 (|has| |#1| (-568)))) (-3314 ((|#2| |#2| (-1196)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-1730 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196)) 25)) (-3090 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-3493 (((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1057 (-1196))) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-899 (-576)))))))
+(((-585 |#1| |#2|) (-10 -7 (-15 -1746 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196))) (-15 -3090 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -1730 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196))) (-15 -1675 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2709 ((-656 (-624 |#2|)) (-656 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -2340 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3314 (|#2| |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1057 (-1196))) (-15 -3493 ((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1119) (-442 |#1|)) (T -585))
+((-3493 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1196))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1196))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1057 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1196)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) (-4 *7 (-899 (-576))) (-4 *7 (-1119)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3314 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-2340 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1196)) (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1675 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1119)) (-5 *1 (-585 *3 *4)))) (-1730 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1196)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *1 (-585 *5 *6)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1119)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-1746 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1196)) (-4 *5 (-442 *4)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *5)))))
+(-10 -7 (-15 -1746 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196))) (-15 -3090 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -1730 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196))) (-15 -1675 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2709 ((-656 (-624 |#2|)) (-656 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -2340 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3314 (|#2| |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1057 (-1196))) (-15 -3493 ((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1529 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-3884 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-4009 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-2769 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-4131 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2587 (((-3 (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-3790 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-2761 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-1724 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2404 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-3457 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-3309 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-4080 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -4131 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3309 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1529 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3790 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -4080 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3884 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2404 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -2587 ((-3 (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4009 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2769 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3457 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2761 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1724 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -586))
+((-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-3457 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2442 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5)))) (-2769 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4177 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4)))) (-4009 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-2587 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4177 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2404 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2442 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3884 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4177 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-4080 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2442 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4177 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3790 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4177 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4177 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-1529 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3309 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2442 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-4131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4177 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(-10 -7 (-15 -4131 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3309 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -1529 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3790 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -4080 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3884 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2404 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -2587 ((-3 (-2 (|:| -4177 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4009 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -2769 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3457 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2442 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2761 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1724 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1482 (((-3 |#2| "failed") |#2| (-1196) (-1196)) 10)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -1482 ((-3 |#2| "failed") |#2| (-1196) (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-1158) (-29 |#1|))) (T -587))
+((-1482 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1222) (-976) (-1158) (-29 *4))))))
+(-10 -7 (-15 -1482 ((-3 |#2| "failed") |#2| (-1196) (-1196))))
+((-4424 (((-703 (-1245)) $ (-1245)) 26)) (-2505 (((-703 (-561)) $ (-561)) 25)) (-1608 (((-783) $ (-129)) 27)) (-1400 (((-703 (-130)) $ (-130)) 24)) (-2633 (((-703 (-1245)) $) 12)) (-1349 (((-703 (-1243)) $) 8)) (-2314 (((-703 (-1242)) $) 10)) (-3354 (((-703 (-561)) $) 13)) (-4373 (((-703 (-559)) $) 9)) (-2167 (((-703 (-558)) $) 11)) (-2156 (((-783) $ (-129)) 7)) (-3379 (((-703 (-130)) $) 14)) (-1723 (($ $) 6)))
+(((-588) (-141)) (T -588))
+NIL
+(-13 (-539) (-872))
+(((-175) . T) ((-539) . T) ((-872) . T))
+((-4424 (((-703 (-1245)) $ (-1245)) NIL)) (-2505 (((-703 (-561)) $ (-561)) NIL)) (-1608 (((-783) $ (-129)) NIL)) (-1400 (((-703 (-130)) $ (-130)) NIL)) (-2633 (((-703 (-1245)) $) NIL)) (-1349 (((-703 (-1243)) $) NIL)) (-2314 (((-703 (-1242)) $) NIL)) (-3354 (((-703 (-561)) $) NIL)) (-4373 (((-703 (-559)) $) NIL)) (-2167 (((-703 (-558)) $) NIL)) (-2156 (((-783) $ (-129)) NIL)) (-3379 (((-703 (-130)) $) NIL)) (-4354 (((-112) $) NIL)) (-2511 (($ (-400)) 14) (($ (-1178)) 16)) (-2858 (((-874) $) NIL)) (-1723 (($ $) NIL)))
+(((-589) (-13 (-588) (-625 (-874)) (-10 -8 (-15 -2511 ($ (-400))) (-15 -2511 ($ (-1178))) (-15 -4354 ((-112) $))))) (T -589))
+((-2511 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-2511 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-589)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))))
+(-13 (-588) (-625 (-874)) (-10 -8 (-15 -2511 ($ (-400))) (-15 -2511 ($ (-1178))) (-15 -4354 ((-112) $))))
+((-2835 (((-112) $ $) NIL)) (-3696 (($) 7 T CONST)) (-2143 (((-1178) $) NIL)) (-2545 (($) 6 T CONST)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 15)) (-2911 (($) 9 T CONST)) (-1569 (($) 8 T CONST)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 11)))
+(((-590) (-13 (-1119) (-10 -8 (-15 -2545 ($) -3712) (-15 -3696 ($) -3712) (-15 -1569 ($) -3712) (-15 -2911 ($) -3712)))) (T -590))
+((-2545 (*1 *1) (-5 *1 (-590))) (-3696 (*1 *1) (-5 *1 (-590))) (-1569 (*1 *1) (-5 *1 (-590))) (-2911 (*1 *1) (-5 *1 (-590))))
+(-13 (-1119) (-10 -8 (-15 -2545 ($) -3712) (-15 -3696 ($) -3712) (-15 -1569 ($) -3712) (-15 -2911 ($) -3712)))
+((-2835 (((-112) $ $) NIL)) (-3504 (((-703 $) (-503)) 21)) (-2143 (((-1178) $) NIL)) (-1612 (($ (-1178)) 14)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 33)) (-1596 (((-215 4 (-130)) $) 24)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 26)))
+(((-591) (-13 (-1119) (-10 -8 (-15 -1612 ($ (-1178))) (-15 -1596 ((-215 4 (-130)) $)) (-15 -3504 ((-703 $) (-503)))))) (T -591))
+((-1612 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-591)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591)))))
+(-13 (-1119) (-10 -8 (-15 -1612 ($ (-1178))) (-15 -1596 ((-215 4 (-130)) $)) (-15 -3504 ((-703 $) (-503)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $ (-576)) 75)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-1469 (($ (-1192 (-576)) (-576)) 81)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) 66)) (-4376 (($ $) 43)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-2620 (((-783) $) 16)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2703 (((-576)) 37)) (-4119 (((-576) $) 41)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3262 (($ $ (-576)) 24)) (-2825 (((-3 $ "failed") $ $) 71)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) 17)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 72)) (-4107 (((-1176 (-576)) $) 19)) (-2137 (($ $) 26)) (-2858 (((-874) $) 102) (($ (-576)) 61) (($ $) NIL)) (-2981 (((-783)) 15 T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-576) $ (-576)) 46)) (-2022 (($) 44 T CONST)) (-2038 (($) 21 T CONST)) (-3889 (((-112) $ $) 52)) (-4002 (($ $) 60) (($ $ $) 48)) (-3990 (($ $ $) 59)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63)))
+(((-592 |#1| |#2|) (-881 |#1|) (-576) (-112)) (T -592))
+NIL
+(-881 |#1|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 30)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-1398 (((-1209 (-938) (-783)) (-576)) 59)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 $ "failed") $) 95)) (-4397 (($ $) 94)) (-2876 (($ (-1287 $)) 93)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) 44)) (-2107 (($) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) 61)) (-4429 (((-112) $) NIL)) (-2244 (($ $) NIL) (($ $ (-783)) NIL)) (-3011 (((-112) $) NIL)) (-2620 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1838 (((-112) $) NIL)) (-2010 (($) 49 (|has| $ (-379)))) (-3776 (((-112) $) NIL (|has| $ (-379)))) (-3075 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-3397 (((-3 $ "failed") $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 $) $ (-938)) NIL (|has| $ (-379))) (((-1192 $) $) 104)) (-1654 (((-938) $) 67)) (-2533 (((-1192 $) $) NIL (|has| $ (-379)))) (-4003 (((-3 (-1192 $) "failed") $ $) NIL (|has| $ (-379))) (((-1192 $) $) NIL (|has| $ (-379)))) (-4007 (($ $ (-1192 $)) NIL (|has| $ (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL T CONST)) (-4308 (($ (-938)) 60)) (-2196 (((-112) $) 87)) (-3887 (((-1139) $) NIL)) (-3633 (($) 28 (|has| $ (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 54)) (-2367 (((-430 $) $) NIL)) (-1651 (((-938)) 86) (((-845 (-938))) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-4340 (((-135)) NIL)) (-2399 (($ $) NIL) (($ $ (-783)) NIL)) (-4436 (((-938) $) 85) (((-845 (-938)) $) NIL)) (-1953 (((-1192 $)) 102)) (-1861 (($) 66)) (-2496 (($) 50 (|has| $ (-379)))) (-3392 (((-701 $) (-1287 $)) NIL) (((-1287 $) $) 91)) (-2610 (((-576) $) 40)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3689 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2981 (((-783)) 51 T CONST)) (-2690 (((-112) $ $) 107)) (-4261 (((-1287 $) (-938)) 97) (((-1287 $)) 96)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) 31 T CONST)) (-2038 (($) 27 T CONST)) (-2086 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-938)) (T -593))
+NIL
+(-13 (-360) (-339 $) (-626 (-576)))
+((-3474 (((-1292) (-1178)) 10)))
+(((-594) (-10 -7 (-15 -3474 ((-1292) (-1178))))) (T -594))
+((-3474 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-594)))))
+(-10 -7 (-15 -3474 ((-1292) (-1178))))
+((-3529 (((-598 |#2|) (-598 |#2|)) 42)) (-3918 (((-656 |#2|) (-598 |#2|)) 44)) (-1610 ((|#2| (-598 |#2|)) 50)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -3529 ((-598 |#2|) (-598 |#2|))) (-15 -3918 ((-656 |#2|) (-598 |#2|))) (-15 -1610 (|#2| (-598 |#2|)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1222))) (T -595))
+((-1610 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1222))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1222))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1222))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4)))))
+(-10 -7 (-15 -3529 ((-598 |#2|) (-598 |#2|))) (-15 -3918 ((-656 |#2|) (-598 |#2|))) (-15 -1610 (|#2| (-598 |#2|))))
+((-2548 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -2548 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2548 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2548 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2548 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596))
+((-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4177 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -4177 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))))
+(-10 -7 (-15 -2548 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2548 ((-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4177 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2548 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2548 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1521 (($ (-518) (-609)) 14)) (-2953 (($ (-518) (-609) $) 16)) (-3824 (($ (-518) (-609)) 15)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-1201)) 7) (((-1201) $) 6)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-597) (-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -1521 ($ (-518) (-609))) (-15 -3824 ($ (-518) (-609))) (-15 -2953 ($ (-518) (-609) $))))) (T -597))
+((-1521 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3824 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-2953 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -1521 ($ (-518) (-609))) (-15 -3824 ($ (-518) (-609))) (-15 -2953 ($ (-518) (-609) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 76)) (-4397 ((|#1| $) NIL)) (-4177 ((|#1| $) 30)) (-4269 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2901 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2432 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $) 31)) (-2143 (((-1178) $) NIL)) (-2337 (($ |#1| |#1|) 38) (($ |#1| (-1196)) 49 (|has| |#1| (-1057 (-1196))))) (-3887 (((-1139) $) NIL)) (-3002 (((-112) $) 35)) (-2399 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1196)) 89 (|has| |#1| (-915 (-1196))))) (-2858 (((-874) $) 110) (($ |#1|) 29)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 18 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) 17) (($ $ $) NIL)) (-3990 (($ $ $) 85)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL)))
+(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1057 |#1|) (-10 -8 (-15 -2901 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4177 (|#1| $)) (-15 -2432 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -4269 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3002 ((-112) $)) (-15 -2337 ($ |#1| |#1|)) (-15 -2399 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1196))) (-15 -2399 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1057 (-1196))) (-15 -2337 ($ |#1| (-1196))) |%noBranch|))) (-374)) (T -598))
+((-2901 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *2)) (|:| |logand| (-1192 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-4177 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *3)) (|:| |logand| (-1192 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2337 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2399 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2399 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-915 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1196)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *1 (-598 *2)) (-4 *2 (-1057 *3)) (-4 *2 (-374)))))
+(-13 (-729 (-419 (-576))) (-1057 |#1|) (-10 -8 (-15 -2901 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4177 (|#1| $)) (-15 -2432 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -4269 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3002 ((-112) $)) (-15 -2337 ($ |#1| |#1|)) (-15 -2399 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1196))) (-15 -2399 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1057 (-1196))) (-15 -2337 ($ |#1| (-1196))) |%noBranch|)))
+((-1777 (((-112) |#1|) 16)) (-1334 (((-3 |#1| "failed") |#1|) 14)) (-3337 (((-2 (|:| -1572 |#1|) (|:| -2273 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-1533 (((-112) |#1| (-783)) 19)) (-2365 ((|#1| |#1|) 42)) (-3010 ((|#1| |#1| (-783)) 45)))
+(((-599 |#1|) (-10 -7 (-15 -1533 ((-112) |#1| (-783))) (-15 -3337 ((-3 |#1| "failed") |#1| (-783))) (-15 -3337 ((-2 (|:| -1572 |#1|) (|:| -2273 (-783))) |#1|)) (-15 -3010 (|#1| |#1| (-783))) (-15 -1777 ((-112) |#1|)) (-15 -1334 ((-3 |#1| "failed") |#1|)) (-15 -2365 (|#1| |#1|))) (-557)) (T -599))
+((-2365 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1334 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1777 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3010 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3337 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1572 *3) (|:| -2273 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3337 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1533 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))))
+(-10 -7 (-15 -1533 ((-112) |#1| (-783))) (-15 -3337 ((-3 |#1| "failed") |#1| (-783))) (-15 -3337 ((-2 (|:| -1572 |#1|) (|:| -2273 (-783))) |#1|)) (-15 -3010 (|#1| |#1| (-783))) (-15 -1777 ((-112) |#1|)) (-15 -1334 ((-3 |#1| "failed") |#1|)) (-15 -2365 (|#1| |#1|)))
+((-4250 (((-1192 |#1|) (-938)) 44)))
+(((-600 |#1|) (-10 -7 (-15 -4250 ((-1192 |#1|) (-938)))) (-360)) (T -600))
+((-4250 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360)))))
+(-10 -7 (-15 -4250 ((-1192 |#1|) (-938))))
+((-3529 (((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|)))) 27)) (-1850 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1196)) 34 (|has| |#1| (-148)))) (-3918 (((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|)))) 19)) (-1446 (((-326 |#1|) (-419 (-969 |#1|)) (-1196)) 32 (|has| |#1| (-148)))) (-1610 (((-326 |#1|) (-598 (-419 (-969 |#1|)))) 21)))
+(((-601 |#1|) (-10 -7 (-15 -3529 ((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|))))) (-15 -3918 ((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|))))) (-15 -1610 ((-326 |#1|) (-598 (-419 (-969 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1850 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -1446 ((-326 |#1|) (-419 (-969 |#1|)) (-1196)))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-651 (-576)))) (T -601))
+((-1446 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-969 *4)))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-969 *4)))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-969 *3)))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))))
+(-10 -7 (-15 -3529 ((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|))))) (-15 -3918 ((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|))))) (-15 -1610 ((-326 |#1|) (-598 (-419 (-969 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1850 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -1446 ((-326 |#1|) (-419 (-969 |#1|)) (-1196)))) |%noBranch|))
+((-2696 (((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-938))) 79) (((-701 (-576)) (-656 (-938)) (-922 (-576))) 72)) (-4093 (((-783) (-656 (-938))) 69)))
+(((-602) (-10 -7 (-15 -4093 ((-783) (-656 (-938)))) (-15 -2696 ((-701 (-576)) (-656 (-938)) (-922 (-576)))) (-15 -2696 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -2696 ((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576))))))) (T -602))
+((-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-922 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2696 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-922 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-783)) (-5 *1 (-602)))))
+(-10 -7 (-15 -4093 ((-783) (-656 (-938)))) (-15 -2696 ((-701 (-576)) (-656 (-938)) (-922 (-576)))) (-15 -2696 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -2696 ((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576))))))
+((-3147 (((-656 |#5|) |#5| (-112)) 100)) (-2371 (((-112) |#5| (-656 |#5|)) 34)))
+(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3147 ((-656 |#5|) |#5| (-112))) (-15 -2371 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -603))
+((-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3147 ((-656 |#5|) |#5| (-112))) (-15 -2371 ((-112) |#5| (-656 |#5|))))
+((-2835 (((-112) $ $) NIL)) (-3866 (((-1154) $) 11)) (-3854 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-604) (-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))) (T -604))
+((-3854 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))))
+(-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))
+((-2835 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2328 (($ $) 38)) (-2257 (($ $) NIL)) (-2265 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3421 (((-112) $ $) 67)) (-3403 (((-112) $ $ (-576)) 62)) (-3529 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-3429 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-1426 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-862))))) (-2059 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-3753 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-4183 (($ $ (-1254 (-576)) $) 57)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3607 (($ (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2832 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4463)))) (-2767 (((-145) $ (-576)) NIL)) (-3442 (((-112) $ $) 88)) (-2627 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3975 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) (-145)) 9)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 32 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| (-145) (-862)))) (-3343 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-3531 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-4048 (((-576) $) 47 (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-145) (-862)))) (-3102 (((-112) $ $ (-145)) 89)) (-1643 (((-783) $ $ (-145)) 86)) (-2822 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2415 (($ $) 41)) (-1597 (($ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-3765 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2143 (((-1178) $) 43 (|has| (-145) (-1119)))) (-2163 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) 85 (|has| (-145) (-1119)))) (-1989 (((-145) $) NIL (|has| (-576) (-862)))) (-3557 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4040 (($ $ (-145)) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3584 (((-656 (-145)) $) NIL)) (-3001 (((-112) $) 15)) (-3849 (($) 10)) (-2099 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1254 (-576))) 25) (($ $ $) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3272 (($ $ $ (-576)) 81 (|has| $ (-6 -4463)))) (-3052 (($ $) 20)) (-2610 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-2869 (($ (-656 (-145))) NIL)) (-1534 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-2858 (($ (-145)) NIL) (((-874) $) 31 (|has| (-145) (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2714 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3889 (((-112) $ $) 17 (|has| (-145) (-1119)))) (-3944 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3916 (((-112) $ $) 18 (|has| (-145) (-862)))) (-2845 (((-783) $) 16 (|has| $ (-6 -4462)))))
+(((-605 |#1|) (-1163) (-576)) (T -605))
+NIL
+(-1163)
+((-4372 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|)) 32)))
+(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4372 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|))) (-15 -4372 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|)) (T -606))
+((-4372 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) (-4372 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1113 *3)) (-4 *3 (-966 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3)))))
+(-10 -7 (-15 -4372 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|))) (-15 -4372 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 71)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-3754 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-3822 (($ $) 109)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3784 (((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1196) |#1| (-419 (-576))) 241)) (-1907 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3219 (((-112) $) NIL)) (-2620 (((-576) $) 63) (((-576) $ (-576)) 64)) (-1838 (((-112) $) NIL)) (-4323 (($ $ (-938)) 83)) (-4199 (($ (-1 |#1| (-576)) $) 80)) (-1711 (((-112) $) 26)) (-2428 (($ |#1| (-576)) 22) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-1604 (($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-1850 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3761 (((-3 $ "failed") $ $ (-112)) 108)) (-3950 (($ $ $) 116)) (-3887 (((-1139) $) NIL)) (-3049 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-2142 (((-1045 (-855 (-576))) $) 14)) (-3262 (($ $ (-576)) 47)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2099 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1131)))) (-2399 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-4436 (((-576) $) NIL)) (-2137 (($ $) 48)) (-2858 (((-874) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4417 ((|#1| $ (-576)) 61)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) 39 T CONST)) (-1785 ((|#1| $) NIL)) (-1994 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4247 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2585 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-1871 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2997 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-2523 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-1337 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3338 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1912 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-1786 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2503 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-2449 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3727 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-1756 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2837 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-4303 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-1394 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3155 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2360 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-1427 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-1818 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2170 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-1456 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-4102 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3669 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3972 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3468 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2022 (($) 30 T CONST)) (-2038 (($) 40 T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3889 (((-112) $ $) 73)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) 91) (($ $ $) 72)) (-3990 (($ $ $) 88)) (** (($ $ (-938)) NIL) (($ $ (-783)) 111)) (* (($ (-938) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-607 |#1|) (-13 (-1265 |#1| (-576)) (-10 -8 (-15 -1604 ($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2142 ((-1045 (-855 (-576))) $)) (-15 -3049 ((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -1907 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -1711 ((-112) $)) (-15 -4199 ($ (-1 |#1| (-576)) $)) (-15 -3761 ((-3 $ "failed") $ $ (-112))) (-15 -3822 ($ $)) (-15 -3950 ($ $ $)) (-15 -3784 ((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1196) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $)) (-15 -3338 ($ $ |#1|)) (-15 -1337 ($ $ (-419 (-576)))) (-15 -1786 ($ $)) (-15 -1912 ($ $)) (-15 -1871 ($ $)) (-15 -2837 ($ $)) (-15 -4247 ($ $)) (-15 -1756 ($ $)) (-15 -2523 ($ $)) (-15 -2449 ($ $)) (-15 -2360 ($ $)) (-15 -3972 ($ $)) (-15 -1394 ($ $)) (-15 -4102 ($ $)) (-15 -1538 ($ $)) (-15 -2170 ($ $)) (-15 -2585 ($ $)) (-15 -2368 ($ $)) (-15 -1994 ($ $)) (-15 -3727 ($ $)) (-15 -2997 ($ $)) (-15 -2503 ($ $)) (-15 -3155 ($ $)) (-15 -3669 ($ $)) (-15 -4303 ($ $)) (-15 -1456 ($ $)) (-15 -1427 ($ $)) (-15 -1818 ($ $))) |%noBranch|))) (-1068)) (T -607))
+((-1711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-1604 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1068)) (-5 *1 (-607 *4)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-1907 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) (-4199 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) (-3761 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))) (-3950 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))) (-3784 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1045 (-855 (-576)))) (-5 *5 (-1196)) (-5 *7 (-419 (-576))) (-4 *6 (-1068)) (-5 *2 (-874)) (-5 *1 (-607 *6)))) (-1850 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3338 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1068)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1912 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2837 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4247 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1756 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2523 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2449 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3972 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1394 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4102 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1538 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2585 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1994 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2997 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2503 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3155 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3669 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4303 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1427 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1818 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(-13 (-1265 |#1| (-576)) (-10 -8 (-15 -1604 ($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2142 ((-1045 (-855 (-576))) $)) (-15 -3049 ((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -1907 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -1711 ((-112) $)) (-15 -4199 ($ (-1 |#1| (-576)) $)) (-15 -3761 ((-3 $ "failed") $ $ (-112))) (-15 -3822 ($ $)) (-15 -3950 ($ $ $)) (-15 -3784 ((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1196) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $)) (-15 -3338 ($ $ |#1|)) (-15 -1337 ($ $ (-419 (-576)))) (-15 -1786 ($ $)) (-15 -1912 ($ $)) (-15 -1871 ($ $)) (-15 -2837 ($ $)) (-15 -4247 ($ $)) (-15 -1756 ($ $)) (-15 -2523 ($ $)) (-15 -2449 ($ $)) (-15 -2360 ($ $)) (-15 -3972 ($ $)) (-15 -1394 ($ $)) (-15 -4102 ($ $)) (-15 -1538 ($ $)) (-15 -2170 ($ $)) (-15 -2585 ($ $)) (-15 -2368 ($ $)) (-15 -1994 ($ $)) (-15 -3727 ($ $)) (-15 -2997 ($ $)) (-15 -2503 ($ $)) (-15 -3155 ($ $)) (-15 -3669 ($ $)) (-15 -4303 ($ $)) (-15 -1456 ($ $)) (-15 -1427 ($ $)) (-15 -1818 ($ $))) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 63)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-1907 (($ (-1176 |#1|)) 9)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) 44)) (-3219 (((-112) $) 56)) (-2620 (((-783) $) 61) (((-783) $ (-783)) 60)) (-1838 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-1176 |#1|) $) 25)) (-2981 (((-783)) 55 T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) 10 T CONST)) (-2038 (($) 14 T CONST)) (-3889 (((-112) $ $) 24)) (-4002 (($ $) 32) (($ $ $) 16)) (-3990 (($ $ $) 27)) (** (($ $ (-938)) NIL) (($ $ (-783)) 53)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38)))
+(((-608 |#1|) (-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -2461 ((-1176 |#1|) $)) (-15 -1907 ($ (-1176 |#1|))) (-15 -3219 ((-112) $)) (-15 -2620 ((-783) $)) (-15 -2620 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1068)) (T -608))
+((-2461 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-1907 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-608 *3)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-2620 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))))
+(-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -2461 ((-1176 |#1|) $)) (-15 -1907 ($ (-1176 |#1|))) (-15 -3219 ((-112) $)) (-15 -2620 ((-783) $)) (-15 -2620 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-1547 (($) 8 T CONST)) (-2702 (($) 7 T CONST)) (-1444 (($ $ (-656 $)) 16)) (-2143 (((-1178) $) NIL)) (-4281 (($) 6 T CONST)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-1201)) 15) (((-1201) $) 10)) (-1461 (($) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-609) (-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -4281 ($) -3712) (-15 -2702 ($) -3712) (-15 -1547 ($) -3712) (-15 -1461 ($) -3712) (-15 -1444 ($ $ (-656 $)))))) (T -609))
+((-4281 (*1 *1) (-5 *1 (-609))) (-2702 (*1 *1) (-5 *1 (-609))) (-1547 (*1 *1) (-5 *1 (-609))) (-1461 (*1 *1) (-5 *1 (-609))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609)))))
+(-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -4281 ($) -3712) (-15 -2702 ($) -3712) (-15 -1547 ($) -3712) (-15 -1461 ($) -3712) (-15 -1444 ($ $ (-656 $)))))
+((-2548 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -2548 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1237) (-1237)) (T -610))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))))
+(-10 -7 (-15 -2548 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|))))
+((-2548 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)) 20) (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18)))
+(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2548 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -2548 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)))) (-1237) (-1237) (-1237)) (T -611))
+((-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8)))))
+(-10 -7 (-15 -2548 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2548 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -2548 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|))))
+((-2044 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))) 57)) (-4304 (((-171 |#2|) |#3|) 122)) (-3518 ((|#3| (-171 |#2|)) 46)) (-1497 ((|#2| |#3|) 21)) (-2530 ((|#3| |#2|) 35)))
+(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -3518 (|#3| (-171 |#2|))) (-15 -1497 (|#2| |#3|)) (-15 -2530 (|#3| |#2|)) (-15 -4304 ((-171 |#2|) |#3|)) (-15 -2044 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))))) (-568) (-13 (-442 |#1|) (-1021) (-1222)) (-13 (-442 (-171 |#1|)) (-1021) (-1222))) (T -612))
+((-2044 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1196))) (-4 *2 (-13 (-442 (-171 *5)) (-1021) (-1222))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1021) (-1222))))) (-4304 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))) (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222))))) (-2530 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1021) (-1222))))) (-1497 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222))))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222))) (-5 *1 (-612 *4 *5 *2)))))
+(-10 -7 (-15 -3518 (|#3| (-171 |#2|))) (-15 -1497 (|#2| |#3|)) (-15 -2530 (|#3| |#2|)) (-15 -4304 ((-171 |#2|) |#3|)) (-15 -2044 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196)))))
+((-3959 (($ (-1 (-112) |#1|) $) 17)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3877 (($ (-1 |#1| |#1|) |#1|) 9)) (-3933 (($ (-1 (-112) |#1|) $) 13)) (-3946 (($ (-1 (-112) |#1|) $) 15)) (-2869 (((-1176 |#1|) $) 18)) (-2858 (((-874) $) NIL)))
+(((-613 |#1|) (-13 (-625 (-874)) (-10 -8 (-15 -2548 ($ (-1 |#1| |#1|) $)) (-15 -3933 ($ (-1 (-112) |#1|) $)) (-15 -3946 ($ (-1 (-112) |#1|) $)) (-15 -3959 ($ (-1 (-112) |#1|) $)) (-15 -3877 ($ (-1 |#1| |#1|) |#1|)) (-15 -2869 ((-1176 |#1|) $)))) (-1237)) (T -613))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3933 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3877 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1237)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2548 ($ (-1 |#1| |#1|) $)) (-15 -3933 ($ (-1 (-112) |#1|) $)) (-15 -3946 ($ (-1 (-112) |#1|) $)) (-15 -3959 ($ (-1 (-112) |#1|) $)) (-15 -3877 ($ (-1 |#1| |#1|) |#1|)) (-15 -2869 ((-1176 |#1|) $))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2854 (($ (-783)) NIL (|has| |#1| (-23)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4033 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2229 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-1684 (((-112) $ (-783)) NIL)) (-1873 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2139 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3021 (($ $ $) NIL (|has| |#1| (-1068)))) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) NIL)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4002 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3990 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-614 |#1| |#2|) (-1285 |#1|) (-1237) (-576)) (T -614))
+NIL
+(-1285 |#1|)
+((-3430 (((-1292) $ |#2| |#2|) 35)) (-2440 ((|#2| $) 23)) (-4048 ((|#2| $) 21)) (-2822 (($ (-1 |#3| |#3|) $) 32)) (-2548 (($ (-1 |#3| |#3|) $) 30)) (-1989 ((|#3| $) 26)) (-4040 (($ $ |#3|) 33)) (-4317 (((-112) |#3| $) 17)) (-3584 (((-656 |#3|) $) 15)) (-2099 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -3430 ((-1292) |#1| |#2| |#2|)) (-15 -4040 (|#1| |#1| |#3|)) (-15 -1989 (|#3| |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -4048 (|#2| |#1|)) (-15 -4317 ((-112) |#3| |#1|)) (-15 -3584 ((-656 |#3|) |#1|)) (-15 -2099 (|#3| |#1| |#2|)) (-15 -2099 (|#3| |#1| |#2| |#3|)) (-15 -2822 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2548 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1119) (-1237)) (T -615))
+NIL
+(-10 -8 (-15 -3430 ((-1292) |#1| |#2| |#2|)) (-15 -4040 (|#1| |#1| |#3|)) (-15 -1989 (|#3| |#1|)) (-15 -2440 (|#2| |#1|)) (-15 -4048 (|#2| |#1|)) (-15 -4317 ((-112) |#3| |#1|)) (-15 -3584 ((-656 |#3|) |#1|)) (-15 -2099 (|#3| |#1| |#2|)) (-15 -2099 (|#3| |#1| |#2| |#3|)) (-15 -2822 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2548 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#2| (-1119)))) (-3430 (((-1292) $ |#1| |#1|) 41 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4463)))) (-2574 (($) 7 T CONST)) (-2832 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) 52)) (-3975 (((-656 |#2|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-2440 ((|#1| $) 44 (|has| |#1| (-862)))) (-3531 (((-656 |#2|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4048 ((|#1| $) 45 (|has| |#1| (-862)))) (-2822 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#2| (-1119)))) (-2928 (((-656 |#1|) $) 47)) (-1449 (((-112) |#1| $) 48)) (-3887 (((-1139) $) 21 (|has| |#2| (-1119)))) (-1989 ((|#2| $) 43 (|has| |#1| (-862)))) (-4040 (($ $ |#2|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3902 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4462))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#2| (-1119)))) (-2714 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#2| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-616 |#1| |#2|) (-141) (-1119) (-1237)) (T -616))
+((-3584 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-656 *4)))) (-1449 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-656 *3)))) (-4317 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1119)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-4048 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *3 (-862)) (-4 *2 (-1237)))) (-4040 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-3430 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-1292)))))
+(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -3584 ((-656 |t#2|) $)) (-15 -1449 ((-112) |t#1| $)) (-15 -2928 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1119)) (IF (|has| $ (-6 -4462)) (-15 -4317 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -4048 (|t#1| $)) (-15 -2440 (|t#1| $)) (-15 -1989 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -4040 ($ $ |t#2|)) (-15 -3430 ((-1292) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1119)) ((-625 (-874)) -3739 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-1119) |has| |#2| (-1119)) ((-1237) . T))
+((-2858 (((-874) $) 19) (($ (-130)) 13) (((-130) $) 14)))
+(((-617) (-13 (-625 (-874)) (-502 (-130)))) (T -617))
+NIL
+(-13 (-625 (-874)) (-502 (-130)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-1201)) NIL) (((-1201) $) NIL) (((-1236) $) 14) (($ (-656 (-1236))) 13)) (-3206 (((-656 (-1236)) $) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-618) (-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -2858 ($ (-656 (-1236)))) (-15 -3206 ((-656 (-1236)) $))))) (T -618))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))))
+(-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -2858 ($ (-656 (-1236)))) (-15 -3206 ((-656 (-1236)) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2857 (((-3 $ "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3685 (((-1287 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1287 (-701 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3142 (((-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2574 (($) NIL T CONST)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1985 (((-3 $ "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1877 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4036 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2343 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2100 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3619 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4139 (($ $ (-938)) NIL)) (-3136 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2276 (((-1192 |#1|) $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3335 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2950 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2965 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2876 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4011 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4422 (((-938)) NIL (|has| |#2| (-378 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4141 (($ $ (-938)) NIL)) (-2298 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4393 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3037 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3426 (((-3 $ "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2213 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2436 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4409 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3080 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2359 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1406 (($ $ (-938)) NIL)) (-2815 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4205 (((-1192 |#1|) $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1659 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4015 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1783 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2143 (((-1178) $) NIL)) (-3167 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3215 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1480 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3887 (((-1139) $) NIL)) (-3801 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2099 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3392 (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-378 |#1|))) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2610 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3501 (((-656 (-969 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-969 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2220 (($ $ $) NIL)) (-1332 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2858 (((-874) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL (|has| |#2| (-429 |#1|)))) (-3308 (((-656 (-1287 |#1|))) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2591 (($ $ $ $) NIL)) (-1883 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1977 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2407 (($ $ $) NIL)) (-3072 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1430 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3044 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2022 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) 24)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2858 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619))
+((-2858 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))))
+(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2858 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-3070 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) 39)) (-2316 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL) (($) NIL)) (-3430 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-1178) |#1|) 49)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#1| "failed") (-1178) $) 52)) (-2574 (($) NIL T CONST)) (-4031 (($ $ (-1178)) 25)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119))))) (-3007 (((-3 |#1| "failed") (-1178) $) 53) (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (|has| $ (-6 -4462)))) (-3607 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119))))) (-2326 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119))))) (-1720 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) 38)) (-2832 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-1178)) NIL)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3547 (($ $) 54)) (-2952 (($ (-400)) 23) (($ (-400) (-1178)) 22)) (-1811 (((-400) $) 40)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-1178) $) NIL (|has| (-1178) (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (((-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119))))) (-4048 (((-1178) $) NIL (|has| (-1178) (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-2029 (((-656 (-1178)) $) 45)) (-3762 (((-112) (-1178) $) NIL)) (-2403 (((-1178) $) 41)) (-2395 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL)) (-2928 (((-656 (-1178)) $) NIL)) (-1449 (((-112) (-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 ((|#1| $) NIL (|has| (-1178) (-862)))) (-3557 (((-3 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) "failed") (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 43)) (-2099 ((|#1| $ (-1178) |#1|) NIL) ((|#1| $ (-1178)) 48)) (-1801 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL) (($) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (((-783) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (((-783) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL)) (-2858 (((-874) $) 21)) (-1723 (($ $) 26)) (-2690 (((-112) $ $) NIL)) (-3195 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4462) (-15 -3547 ($ $)))) (-1119)) (T -620))
+((-3547 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1119)))))
+(-13 (-375 (-400) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4462) (-15 -3547 ($ $))))
+((-3606 (((-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) $) 16)) (-2029 (((-656 |#2|) $) 20)) (-3762 (((-112) |#2| $) 12)))
+(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -2029 ((-656 |#2|) |#1|)) (-15 -3762 ((-112) |#2| |#1|)) (-15 -3606 ((-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|))) (-622 |#2| |#3|) (-1119) (-1119)) (T -621))
+NIL
+(-10 -8 (-15 -2029 ((-656 |#2|) |#1|)) (-15 -3762 ((-112) |#2| |#1|)) (-15 -3606 ((-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 56 (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($) 7 T CONST)) (-3229 (($ $) 59 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 47 (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 63)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 55 (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 57 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 54 (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 53 (|has| $ (-6 -4462)))) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2029 (((-656 |#1|) $) 64)) (-3762 (((-112) |#1| $) 65)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 40)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 41)) (-3887 (((-1139) $) 21 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 52)) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 42)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) 27 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 26 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 25 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 24 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-1801 (($) 50) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 49)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 32 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 51)) (-2858 (((-874) $) 18 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 43)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-622 |#1| |#2|) (-141) (-1119) (-1119)) (T -622))
+((-3762 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-112)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-656 *3)))) (-3007 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-1405 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))))
+(-13 (-231 (-2 (|:| -4147 |t#1|) (|:| -3153 |t#2|))) (-10 -8 (-15 -3762 ((-112) |t#1| $)) (-15 -2029 ((-656 |t#1|) $)) (-15 -3007 ((-3 |t#2| "failed") |t#1| $)) (-15 -1405 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((-102) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) ((-625 (-874)) -3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-1119) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) ((-1237) . T))
+((-1963 (((-624 |#2|) |#1|) 17)) (-2906 (((-3 |#1| "failed") (-624 |#2|)) 21)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -1963 ((-624 |#2|) |#1|)) (-15 -2906 ((-3 |#1| "failed") (-624 |#2|)))) (-1119) (-1119)) (T -623))
+((-2906 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) (-5 *1 (-623 *2 *4)))) (-1963 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
+(-10 -7 (-15 -1963 ((-624 |#2|) |#1|)) (-15 -2906 ((-3 |#1| "failed") (-624 |#2|))))
+((-2835 (((-112) $ $) NIL)) (-2508 (((-3 (-1196) "failed") $) 46)) (-3030 (((-1292) $ (-783)) 22)) (-2627 (((-783) $) 20)) (-2569 (((-115) $) 9)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1706 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1196)) 33)) (-2729 (((-112) $ (-115)) 15) (((-112) $ (-1196)) 13)) (-3317 (((-783) $) 17)) (-3887 (((-1139) $) NIL)) (-2610 (((-905 (-576)) $) 95 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 102 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-2858 (((-874) $) 72)) (-2690 (((-112) $ $) NIL)) (-3248 (((-656 |#1|) $) 19)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 51)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 53)))
+(((-624 |#1|) (-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -2569 ((-115) $)) (-15 -3248 ((-656 |#1|) $)) (-15 -3317 ((-783) $)) (-15 -1706 ($ (-115) (-656 |#1|) (-783))) (-15 -1706 ($ (-1196))) (-15 -2508 ((-3 (-1196) "failed") $)) (-15 -2729 ((-112) $ (-115))) (-15 -2729 ((-112) $ (-1196))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1119)) (T -624))
+((-2569 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-1706 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1119)) (-5 *1 (-624 *5)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-2508 (*1 *2 *1) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-2729 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119)))) (-2729 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119)))))
+(-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -2569 ((-115) $)) (-15 -3248 ((-656 |#1|) $)) (-15 -3317 ((-783) $)) (-15 -1706 ($ (-115) (-656 |#1|) (-783))) (-15 -1706 ($ (-1196))) (-15 -2508 ((-3 (-1196) "failed") $)) (-15 -2729 ((-112) $ (-115))) (-15 -2729 ((-112) $ (-1196))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|)))
+((-2858 ((|#1| $) 6)))
+(((-625 |#1|) (-141) (-1237)) (T -625))
+((-2858 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1237)))))
+(-13 (-10 -8 (-15 -2858 (|t#1| $))))
+((-2610 ((|#1| $) 6)))
+(((-626 |#1|) (-141) (-1237)) (T -626))
+((-2610 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1237)))))
+(-13 (-10 -8 (-15 -2610 (|t#1| $))))
+((-1580 (((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16)))
+(((-627 |#1| |#2|) (-10 -7 (-15 -1580 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -1580 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -627))
+((-1580 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-1192 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-1580 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5)))))
+(-10 -7 (-15 -1580 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -1580 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|))))
+((-2858 (($ |#1|) 6)))
+(((-628 |#1|) (-141) (-1237)) (T -628))
+((-2858 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1237)))))
+(-13 (-10 -8 (-15 -2858 ($ |t#1|))))
+((-2835 (((-112) $ $) NIL)) (-1976 (($) 14 T CONST)) (-2031 (($) 15 T CONST)) (-3212 (($ $ $) 29)) (-3189 (($ $) 27)) (-2143 (((-1178) $) NIL)) (-2514 (($ $ $) 30)) (-3887 (((-1139) $) NIL)) (-3914 (($) 11 T CONST)) (-1677 (($ $ $) 31)) (-2858 (((-874) $) 35)) (-2012 (((-112) $ (|[\|\|]| -3914)) 24) (((-112) $ (|[\|\|]| -1976)) 26) (((-112) $ (|[\|\|]| -2031)) 21)) (-2690 (((-112) $ $) NIL)) (-3200 (($ $ $) 28)) (-3889 (((-112) $ $) 18)))
+(((-629) (-13 (-986) (-10 -8 (-15 -1976 ($) -3712) (-15 -2012 ((-112) $ (|[\|\|]| -3914))) (-15 -2012 ((-112) $ (|[\|\|]| -1976))) (-15 -2012 ((-112) $ (|[\|\|]| -2031)))))) (T -629))
+((-1976 (*1 *1) (-5 *1 (-629))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3914)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1976)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2031)) (-5 *2 (-112)) (-5 *1 (-629)))))
+(-13 (-986) (-10 -8 (-15 -1976 ($) -3712) (-15 -2012 ((-112) $ (|[\|\|]| -3914))) (-15 -2012 ((-112) $ (|[\|\|]| -1976))) (-15 -2012 ((-112) $ (|[\|\|]| -2031)))))
+((-2610 (($ |#1|) 6)))
+(((-630 |#1|) (-141) (-1237)) (T -630))
+((-2610 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237)))))
+(-13 (-10 -8 (-15 -2610 ($ |t#1|))))
+((-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10)))
+(((-631 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-632 |#2|) (-1068)) (T -631))
+NIL
+(-10 -8 (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-632 |#1|) (-141) (-1068)) (T -632))
+((-2858 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1068)))))
+(-13 (-1068) (-660 |t#1|) (-10 -8 (-15 -2858 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1727 (((-576) $) NIL (|has| |#1| (-860)))) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-2127 (((-112) $) NIL (|has| |#1| (-860)))) (-1838 (((-112) $) NIL)) (-1621 ((|#1| $) 13)) (-3196 (((-112) $) NIL (|has| |#1| (-860)))) (-1950 (($ $ $) NIL (|has| |#1| (-860)))) (-1492 (($ $ $) NIL (|has| |#1| (-860)))) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1635 ((|#3| $) 15)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-2981 (((-783)) 20 T CONST)) (-2690 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| |#1| (-860)))) (-2022 (($) NIL T CONST)) (-2038 (($) 12 T CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-860)))) (-4013 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633))
+((-4013 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4013 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1635 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $))))
+((-2471 ((|#2| |#2| (-1196) (-1196)) 16)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -2471 (|#2| |#2| (-1196) (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-29 |#1|))) (T -634))
+((-2471 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1222) (-976) (-29 *4))))))
+(-10 -7 (-15 -2471 (|#2| |#2| (-1196) (-1196))))
+((-2835 (((-112) $ $) 64)) (-3203 (((-112) $) 58)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3779 ((|#1| $) 55)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3811 (((-2 (|:| -2810 $) (|:| -3225 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) 27)) (-4011 (((-3 $ "failed") $) 88)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2620 (((-576) $) 22)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) 40)) (-2428 (($ |#1| (-576)) 24)) (-4379 ((|#1| $) 57)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ $) 93)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3076 (((-783) $) 115 (|has| |#1| (-374)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 114 (|has| |#1| (-374)))) (-2399 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-4436 (((-576) $) 38)) (-2610 (((-419 |#2|) $) 47)) (-2858 (((-874) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-4417 ((|#1| $ (-576)) 72)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 9 T CONST)) (-2038 (($) 14 T CONST)) (-3404 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3889 (((-112) $ $) 21)) (-4002 (($ $) 51) (($ $ $) NIL)) (-3990 (($ $ $) 90)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49)))
+(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1057 |#2|) (-10 -8 (-15 -1711 ((-112) $)) (-15 -4436 ((-576) $)) (-15 -2620 ((-576) $)) (-15 -4404 ($ $)) (-15 -4379 (|#1| $)) (-15 -3779 (|#1| $)) (-15 -4417 (|#1| $ (-576))) (-15 -2428 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3811 ((-2 (|:| -2810 $) (|:| -3225 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1263 |#1|)) (T -635))
+((-1711 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-4436 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-2620 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-4404 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-4379 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-3779 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-4417 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1263 *2)))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1263 *2)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -2810 (-635 *4 *5)) (|:| -3225 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))))
+(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1057 |#2|) (-10 -8 (-15 -1711 ((-112) $)) (-15 -4436 ((-576) $)) (-15 -2620 ((-576) $)) (-15 -4404 ($ $)) (-15 -4379 (|#1| $)) (-15 -3779 (|#1| $)) (-15 -4417 (|#1| $ (-576))) (-15 -2428 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3811 ((-2 (|:| -2810 $) (|:| -3225 (-419 |#2|))) (-419 |#2|)))) |%noBranch|)))
+((-1952 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-3516 ((|#6| |#6|) 48)))
+(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 (|#6| |#6|)) (-15 -1952 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|) (-1128 |#1| |#2| |#3| |#4|)) (T -636))
+((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *10 (-1128 *5 *6 *7 *8)))) (-3516 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3516 (|#6| |#6|)) (-15 -1952 ((-656 |#6|) (-656 |#4|) (-112))))
+((-4134 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-4283 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1603 (-656 (-2 (|:| |irr| |#4|) (|:| -2972 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69)))
+(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4134 ((-112) |#3| (-783) (-656 |#3|))) (-15 -4283 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1603 (-656 (-2 (|:| |irr| |#4|) (|:| -2972 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-862) (-805) (-317) (-966 |#3| |#2| |#1|)) (T -637))
+((-4283 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1603 (-656 (-2 (|:| |irr| *10) (|:| -2972 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-966 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1192 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1192 *3))))) (-4134 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-966 *3 *7 *6)))))
+(-10 -7 (-15 -4134 ((-112) |#3| (-783) (-656 |#3|))) (-15 -4283 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1603 (-656 (-2 (|:| |irr| |#4|) (|:| -2972 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|))))
+((-2835 (((-112) $ $) NIL)) (-3866 (((-1154) $) 11)) (-3854 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-638) (-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))) (T -638))
+((-3854 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))))
+(-13 (-1102) (-10 -8 (-15 -3854 ((-1154) $)) (-15 -3866 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-3463 (((-656 |#1|) $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-1419 (($ $) 77)) (-3437 (((-676 |#1| |#2|) $) 60)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 81)) (-3796 (((-656 (-304 |#2|)) $ $) 42)) (-3887 (((-1139) $) NIL)) (-2656 (($ (-676 |#1| |#2|)) 56)) (-2480 (($ $ $) NIL)) (-2220 (($ $ $) NIL)) (-2858 (((-874) $) 66) (((-1302 |#1| |#2|) $) NIL) (((-1307 |#1| |#2|) $) 74)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 61 T CONST)) (-2681 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-4057 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-1754 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) 46)) (-3889 (((-112) $ $) 62)) (-4013 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52)))
+(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -2656 ($ (-676 |#1| |#2|))) (-15 -3437 ((-676 |#1| |#2|) $)) (-15 -1754 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -2858 ((-1302 |#1| |#2|) $)) (-15 -2858 ((-1307 |#1| |#2|) $)) (-15 -1419 ($ $)) (-15 -3463 ((-656 |#1|) $)) (-15 -4057 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2681 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3796 ((-656 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-729 (-419 (-576)))) (-938)) (T -639))
+((-2656 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-938)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-938)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-938)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-3796 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))))
+(-13 (-485) (-10 -8 (-15 -2656 ($ (-676 |#1| |#2|))) (-15 -3437 ((-676 |#1| |#2|) $)) (-15 -1754 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -2858 ((-1302 |#1| |#2|) $)) (-15 -2858 ((-1307 |#1| |#2|) $)) (-15 -1419 ($ $)) (-15 -3463 ((-656 |#1|) $)) (-15 -4057 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -2681 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3796 ((-656 (-304 |#2|)) $ $))))
+((-1952 (((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 103) (((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 77)) (-1691 (((-112) (-656 (-792 |#1| (-876 |#2|)))) 26)) (-1359 (((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 102)) (-3958 (((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 76)) (-3966 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) 30)) (-3138 (((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|)))) 29)))
+(((-640 |#1| |#2|) (-10 -7 (-15 -1691 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3138 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -3966 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3958 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1359 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1952 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1952 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) (-464) (-656 (-1196))) (T -640))
+((-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-640 *5 *6)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))) (-3138 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1196))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)))))
+(-10 -7 (-15 -1691 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3138 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -3966 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3958 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1359 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1952 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1952 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))))
+((-3897 (($ $) 38)) (-3760 (($ $) 21)) (-3871 (($ $) 37)) (-3735 (($ $) 22)) (-1542 (($ $) 36)) (-3781 (($ $) 23)) (-1663 (($) 48)) (-3437 (($ $) 45)) (-2345 (($ $) 17)) (-2337 (($ $ (-1111 $)) 7) (($ $ (-1196)) 6)) (-2656 (($ $) 46)) (-3691 (($ $) 15)) (-3723 (($ $) 16)) (-1553 (($ $) 35)) (-3791 (($ $) 24)) (-3911 (($ $) 34)) (-3771 (($ $) 25)) (-3883 (($ $) 33)) (-3748 (($ $) 26)) (-1593 (($ $) 44)) (-3826 (($ $) 32)) (-1567 (($ $) 43)) (-3802 (($ $) 31)) (-1620 (($ $) 42)) (-3847 (($ $) 30)) (-2888 (($ $) 41)) (-3859 (($ $) 29)) (-1609 (($ $) 40)) (-3837 (($ $) 28)) (-1578 (($ $) 39)) (-3813 (($ $) 27)) (-2256 (($ $) 19)) (-1642 (($ $) 20)) (-3974 (($ $) 18)) (** (($ $ $) 47)))
+(((-641) (-141)) (T -641))
+((-1642 (*1 *1 *1) (-4 *1 (-641))) (-2256 (*1 *1 *1) (-4 *1 (-641))) (-3974 (*1 *1 *1) (-4 *1 (-641))) (-2345 (*1 *1 *1) (-4 *1 (-641))) (-3723 (*1 *1 *1) (-4 *1 (-641))) (-3691 (*1 *1 *1) (-4 *1 (-641))))
+(-13 (-976) (-1222) (-10 -8 (-15 -1642 ($ $)) (-15 -2256 ($ $)) (-15 -3974 ($ $)) (-15 -2345 ($ $)) (-15 -3723 ($ $)) (-15 -3691 ($ $))))
+(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-976) . T) ((-1222) . T) ((-1225) . T))
+((-2569 (((-115) (-115)) 88)) (-2345 ((|#2| |#2|) 28)) (-2337 ((|#2| |#2| (-1111 |#2|)) 84) ((|#2| |#2| (-1196)) 50)) (-3691 ((|#2| |#2|) 27)) (-3723 ((|#2| |#2|) 29)) (-3410 (((-112) (-115)) 33)) (-2256 ((|#2| |#2|) 24)) (-1642 ((|#2| |#2|) 26)) (-3974 ((|#2| |#2|) 25)))
+(((-642 |#1| |#2|) (-10 -7 (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -1642 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -3723 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1196))) (-15 -2337 (|#2| |#2| (-1111 |#2|)))) (-568) (-13 (-442 |#1|) (-1021) (-1222))) (T -642))
+((-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))))) (-3723 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-2569 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1021) (-1222))))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))))))
+(-10 -7 (-15 -3410 ((-112) (-115))) (-15 -2569 ((-115) (-115))) (-15 -1642 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -3723 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1196))) (-15 -2337 (|#2| |#2| (-1111 |#2|))))
+((-2096 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-4171 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-1768 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 90)) (-3521 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-3881 (((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-3870 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-3829 (((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-1884 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-3353 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-1408 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -3521 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -3870 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4171 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -1768 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -1768 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -1884 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3829 ((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -1408 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3881 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3353 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2096 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1196)) (-464)) (T -643))
+((-2096 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-3353 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3881 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-1408 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1196))) (-5 *1 (-643 *5 *6)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-1287 *6)) (-5 *1 (-643 *5 *6)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-1768 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-3870 (*1 *2 *3) (-12 (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5)))))
+(-10 -7 (-15 -3521 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -3870 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -4171 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -1768 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -1768 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -1884 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3829 ((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -1408 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -3881 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3353 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2096 ((-493 |#1| |#2|) (-253 |#1| |#2|))))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) NIL)) (-3430 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 (((-52) $ (-1178) (-52)) 16) (((-52) $ (-1196) (-52)) 17)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 (-52) "failed") (-1178) $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119))))) (-3007 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-3 (-52) "failed") (-1178) $) NIL)) (-3607 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $ (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (((-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $ (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2832 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4463)))) (-2767 (((-52) $ (-1178)) NIL)) (-3975 (((-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3547 (($ $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-1178) $) NIL (|has| (-1178) (-862)))) (-3531 (((-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-4048 (((-1178) $) NIL (|has| (-1178) (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2560 (($ (-400)) 9)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119))))) (-2029 (((-656 (-1178)) $) NIL)) (-3762 (((-112) (-1178) $) NIL)) (-2395 (((-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL)) (-2329 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL)) (-2928 (((-656 (-1178)) $) NIL)) (-1449 (((-112) (-1178) $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119))))) (-1989 (((-52) $) NIL (|has| (-1178) (-862)))) (-3557 (((-3 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) "failed") (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL)) (-4040 (($ $ (-52)) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (($ $ (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-3584 (((-656 (-52)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 (((-52) $ (-1178)) 14) (((-52) $ (-1178) (-52)) NIL) (((-52) $ (-1196)) 15)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 (-52))) (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-644) (-13 (-1213 (-1178) (-52)) (-296 (-1196) (-52)) (-10 -8 (-15 -2560 ($ (-400))) (-15 -3547 ($ $)) (-15 -3028 ((-52) $ (-1196) (-52)))))) (T -644))
+((-2560 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-3547 (*1 *1 *1) (-5 *1 (-644))) (-3028 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1196)) (-5 *1 (-644)))))
+(-13 (-1213 (-1178) (-52)) (-296 (-1196) (-52)) (-10 -8 (-15 -2560 ($ (-400))) (-15 -3547 ($ $)) (-15 -3028 ((-52) $ (-1196) (-52)))))
+((-4013 (($ $ |#2|) 10)))
+(((-645 |#1| |#2|) (-10 -8 (-15 -4013 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645))
+NIL
+(-10 -8 (-15 -4013 (|#1| |#1| |#2|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2869 (($ $ $) 34)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-646 |#1|) (-141) (-174)) (T -646))
+((-2869 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))))
+(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2869 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -4013 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2857 (((-3 $ "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3685 (((-1287 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1287 (-701 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3142 (((-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2574 (($) NIL T CONST)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1985 (((-3 $ "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1877 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4036 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2343 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2100 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3619 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4139 (($ $ (-938)) NIL)) (-3136 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2276 (((-1192 |#1|) $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3335 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2950 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2965 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2876 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4011 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4422 (((-938)) NIL (|has| |#2| (-378 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4141 (($ $ (-938)) NIL)) (-2298 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4393 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3037 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3426 (((-3 $ "failed")) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2213 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2436 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4409 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3080 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2359 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1406 (($ $ (-938)) NIL)) (-2815 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4205 (((-1192 |#1|) $) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1659 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-4015 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1783 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2143 (((-1178) $) NIL)) (-3167 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3215 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1480 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3887 (((-1139) $) NIL)) (-3801 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2099 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3392 (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-378 |#1|))) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2610 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3501 (((-656 (-969 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-969 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2220 (($ $ $) NIL)) (-1332 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2858 (((-874) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL (|has| |#2| (-429 |#1|)))) (-3308 (((-656 (-1287 |#1|))) NIL (-3739 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2591 (($ $ $ $) NIL)) (-1883 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1977 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2407 (($ $ $) NIL)) (-3072 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1430 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3044 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) 20)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2858 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647))
+((-2858 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))))
+(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -2858 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|)))
+((-3473 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-1855 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136)))
+(((-648 |#1| |#2|) (-10 -7 (-15 -3473 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -1855 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3473 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -648))
+((-3473 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1178)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-1855 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3)))))
+(-10 -7 (-15 -3473 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -1855 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3473 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178))))
+((-3473 (((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1178)) 86) (((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 20) (((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|)))) 35)) (-1855 (((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 23) (((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|)))) 43)))
+(((-649 |#1|) (-10 -7 (-15 -3473 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|))))) (-15 -3473 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -1855 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|))))) (-15 -1855 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3473 ((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1178)))) (-464)) (T -649))
+((-3473 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-969 *6)))) (-5 *5 (-1178)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-969 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5))))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-969 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5))))))
+(-10 -7 (-15 -3473 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|))))) (-15 -3473 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -1855 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|))))) (-15 -1855 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3473 ((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1178))))
+((-3114 (((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|) 64 (-3189 (|has| |#1| (-374)))) (((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-3332 (((-112) (-1287 |#2|)) 33)) (-2855 (((-3 (-1287 |#1|) "failed") (-1287 |#2|)) 40)))
+(((-650 |#1| |#2|) (-10 -7 (-15 -3332 ((-112) (-1287 |#2|))) (-15 -2855 ((-3 (-1287 |#1|) "failed") (-1287 |#2|))) (IF (|has| |#1| (-374)) (-15 -3114 ((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|)) (-15 -3114 ((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|)))) (-568) (-13 (-1068) (-651 |#1|))) (T -650))
+((-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5))) (-3189 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1287 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-3114 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1287 *5)) (-5 *1 (-650 *5 *4)))) (-2855 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1287 *4)) (-5 *1 (-650 *4 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5)))))
+(-10 -7 (-15 -3332 ((-112) (-1287 |#2|))) (-15 -2855 ((-3 (-1287 |#1|) "failed") (-1287 |#2|))) (IF (|has| |#1| (-374)) (-15 -3114 ((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|)) (-15 -3114 ((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2085 (((-701 |#1|) (-1287 $)) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 29)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27)))
+(((-651 |#1|) (-141) (-1068)) (T -651))
+((-2085 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-701 *4)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-701 *4)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -3260 (-701 *5)) (|:| |vec| (-1287 *5)))))))
+(-13 (-660 |t#1|) (-10 -8 (-15 -2085 ((-701 |t#1|) (-1287 $))) (-15 -2085 ((-701 |t#1|) (-701 $))) (-15 -2085 ((-2 (|:| -3260 (-701 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-701 $) (-1287 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 16 T CONST)) (-3889 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-652 |#1|) (-141) (-1131)) (T -652))
+NIL
+(-13 (-658 |t#1|) (-1070 |t#1|))
+(((-102) . T) ((-625 (-874)) . T) ((-658 |#1|) . T) ((-1070 |#1|) . T) ((-1119) . T))
+((-1643 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12)))
+(((-653 |#1| |#2|) (-10 -7 (-15 -1643 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1643 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1643 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1643 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1643 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1643 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1119) (-1237)) (T -653))
+((-1643 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1643 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *1 (-653 *5 *6)))) (-1643 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1119)) (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))))
+(-10 -7 (-15 -1643 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1643 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1643 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1643 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1643 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1643 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|))))
+((-4244 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2326 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-2548 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13)))
+(((-654 |#1| |#2|) (-10 -7 (-15 -4244 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2548 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1237) (-1237)) (T -654))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-654 *5 *2)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))))
+(-10 -7 (-15 -4244 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2548 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|))))
+((-2548 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21)))
+(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1237) (-1237) (-1237)) (T -655))
+((-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8)))))
+(-10 -7 (-15 -2548 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) NIL)) (-2963 ((|#1| $) NIL)) (-3436 (($ $) NIL)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1426 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2059 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2744 (($ $ $) NIL (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "rest" $) NIL (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-1347 (($ $ $) 37 (|has| |#1| (-1119)))) (-1743 (($ $ $) 41 (|has| |#1| (-1119)))) (-3489 (($ $ $) 44 (|has| |#1| (-1119)))) (-3423 (($ (-1 (-112) |#1|) $) NIL)) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2951 ((|#1| $) NIL)) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-2003 (($ $) 23) (($ $ (-783)) NIL)) (-3444 (($ $) NIL (|has| |#1| (-1119)))) (-3229 (($ $) 36 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3607 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2225 (((-112) $) NIL)) (-2627 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3177 (((-112) $) 11)) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3434 (($) 9 T CONST)) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1932 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3343 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1718 (($ |#1|) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3627 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2329 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2163 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) 20) (($ $ (-783)) NIL)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3137 (((-112) $) NIL)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) 39)) (-3849 (($) 38)) (-2099 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3599 (((-576) $ $) NIL)) (-3804 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3213 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2133 (((-112) $) NIL)) (-3579 (($ $) NIL)) (-2604 (($ $) NIL (|has| $ (-6 -4463)))) (-1836 (((-783) $) NIL)) (-1668 (($ $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) NIL)) (-2798 (($ |#1| $) 12)) (-3925 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1534 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3885 (($ $ $) 13)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1445 (((-1178) $) 31 (|has| |#1| (-840))) (((-1178) $ (-112)) 32 (|has| |#1| (-840))) (((-1292) (-834) $) 33 (|has| |#1| (-840))) (((-1292) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -3434 ($) -3712) (-15 -3177 ((-112) $)) (-15 -2798 ($ |#1| $)) (-15 -3885 ($ $ $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -1347 ($ $ $)) (-15 -1743 ($ $ $)) (-15 -3489 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1237)) (T -656))
+((-3434 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1237)))) (-2798 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-3885 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-1347 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))) (-1743 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))) (-3489 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))))
+(-13 (-678 |#1|) (-10 -8 (-15 -3434 ($) -3712) (-15 -3177 ((-112) $)) (-15 -2798 ($ |#1| $)) (-15 -3885 ($ $ $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -1347 ($ $ $)) (-15 -1743 ($ $ $)) (-15 -3489 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 11) (($ (-1201)) NIL) (((-1201) $) NIL) ((|#1| $) 8)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-657 |#1|) (-13 (-1102) (-625 |#1|)) (-1119)) (T -657))
+NIL
+(-13 (-1102) (-625 |#1|))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 16 T CONST)) (-3889 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-658 |#1|) (-141) (-1131)) (T -658))
+((-2022 (*1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1131)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1131)))))
+(-13 (-1119) (-10 -8 (-15 (-2022) ($) -3712) (-15 -3203 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3249 (($ |#1| |#1| $) 43)) (-2746 (((-112) $ (-783)) NIL)) (-3423 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-3444 (($ $) 45)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) 56 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 9 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 37)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2395 ((|#1| $) 47)) (-2329 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3079 ((|#1| $) 50)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 23)) (-3849 (($) 28)) (-2366 (((-112) $) 54)) (-3414 (((-656 (-2 (|:| -3153 |#1|) (|:| -3902 (-783)))) $) 67)) (-1801 (($) 26) (($ (-656 |#1|)) 19)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 20)) (-2610 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) NIL)) (-2858 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 24)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 69 (|has| |#1| (-1119)))) (-2845 (((-783) $) 17 (|has| $ (-6 -4462)))))
+(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4462) (-15 -2366 ((-112) $)) (-15 -3249 ($ |#1| |#1| $)))) (-1119)) (T -659))
+((-2366 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1119)))) (-3249 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1119)))))
+(-13 (-707 |#1|) (-10 -8 (-6 -4462) (-15 -2366 ((-112) $)) (-15 -3249 ($ |#1| |#1| $))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27)))
+(((-660 |#1|) (-141) (-1077)) (T -660))
+NIL
+(-13 (-21) (-658 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783) $) 17)) (-2751 (($ $ |#1|) 69)) (-2338 (($ $) 39)) (-4374 (($ $) 37)) (-2454 (((-3 |#1| "failed") $) 61)) (-4397 ((|#1| $) NIL)) (-3585 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-1421 (((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576)) 56)) (-3601 ((|#1| $ (-576)) 35)) (-1478 ((|#2| $ (-576)) 34)) (-2124 (($ (-1 |#1| |#1|) $) 41)) (-1898 (($ (-1 |#2| |#2|) $) 47)) (-3941 (($) 11)) (-1615 (($ |#1| |#2|) 24)) (-3012 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|)))) 25)) (-1410 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $) 14)) (-4213 (($ |#1| $) 71)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3006 (((-112) $ $) 76)) (-2858 (((-874) $) 21) (($ |#1|) 18)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 27)))
+(((-661 |#1| |#2| |#3|) (-13 (-1119) (-1057 |#1|) (-10 -8 (-15 -1421 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -1410 ((-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $)) (-15 -1615 ($ |#1| |#2|)) (-15 -3012 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))))) (-15 -1478 (|#2| $ (-576))) (-15 -3601 (|#1| $ (-576))) (-15 -4374 ($ $)) (-15 -2338 ($ $)) (-15 -2422 ((-783) $)) (-15 -3941 ($)) (-15 -2751 ($ $ |#1|)) (-15 -4213 ($ |#1| $)) (-15 -3585 ($ |#1| |#2| $)) (-15 -3585 ($ $ $)) (-15 -3006 ((-112) $ $)) (-15 -1898 ($ (-1 |#2| |#2|) $)) (-15 -2124 ($ (-1 |#1| |#1|) $)))) (-1119) (-23) |#2|) (T -661))
+((-1421 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1119)) (-4 *6 (-23)) (-14 *7 *6))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-1615 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 *4)))) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-1478 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1119)) (-14 *5 *2))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1119)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-2338 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-3941 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-2751 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-4213 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3585 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3585 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3006 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)))) (-2124 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1119) (-1057 |#1|) (-10 -8 (-15 -1421 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -1410 ((-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))) $)) (-15 -1615 ($ |#1| |#2|)) (-15 -3012 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -2656 |#2|))))) (-15 -1478 (|#2| $ (-576))) (-15 -3601 (|#1| $ (-576))) (-15 -4374 ($ $)) (-15 -2338 ($ $)) (-15 -2422 ((-783) $)) (-15 -3941 ($)) (-15 -2751 ($ $ |#1|)) (-15 -4213 ($ |#1| $)) (-15 -3585 ($ |#1| |#2| $)) (-15 -3585 ($ $ $)) (-15 -3006 ((-112) $ $)) (-15 -1898 ($ (-1 |#2| |#2|) $)) (-15 -2124 ($ (-1 |#1| |#1|) $))))
+((-4048 (((-576) $) 31)) (-2163 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) 12)) (-1449 (((-112) (-576) $) 18)) (-1534 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL)))
+(((-662 |#1| |#2|) (-10 -8 (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -1534 (|#1| (-656 |#1|))) (-15 -1534 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#2|)) (-15 -4048 ((-576) |#1|)) (-15 -2928 ((-656 (-576)) |#1|)) (-15 -1449 ((-112) (-576) |#1|))) (-663 |#2|) (-1237)) (T -662))
+NIL
+(-10 -8 (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -1534 (|#1| (-656 |#1|))) (-15 -1534 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#2|)) (-15 -4048 ((-576) |#1|)) (-15 -2928 ((-656 (-576)) |#1|)) (-15 -1449 ((-112) (-576) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3229 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 52)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 43 (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4040 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 72)) (-1534 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-663 |#1|) (-141) (-1237)) (T -663))
+((-2327 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-1534 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-1534 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-1534 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2548 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2163 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2163 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-3028 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1254 (-576))) (|has| *1 (-6 -4463)) (-4 *1 (-663 *2)) (-4 *2 (-1237)))))
+(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1254 (-576)) $) (-10 -8 (-15 -2327 ($ (-783) |t#1|)) (-15 -1534 ($ $ |t#1|)) (-15 -1534 ($ |t#1| $)) (-15 -1534 ($ $ $)) (-15 -1534 ($ (-656 $))) (-15 -2548 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3213 ($ $ (-576))) (-15 -3213 ($ $ (-1254 (-576)))) (-15 -2163 ($ |t#1| $ (-576))) (-15 -2163 ($ $ $ (-576))) (IF (|has| $ (-6 -4463)) (-15 -3028 (|t#1| $ (-1254 (-576)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2783 (((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) "failed") |#3| |#2| (-1196)) 44)))
+(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2783 ((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) "failed") |#3| |#2| (-1196))) (-15 -2783 ((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976)) (-668 |#2|)) (T -664))
+((-2783 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-2783 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1222) (-976))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4261 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))))
+(-10 -7 (-15 -2783 ((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) "failed") |#3| |#2| (-1196))) (-15 -2783 ((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2722 (($ $) NIL (|has| |#1| (-374)))) (-1752 (($ $ $) NIL (|has| |#1| (-374)))) (-4026 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3126 (($ $ $) NIL (|has| |#1| (-374)))) (-2910 (($ $ $) NIL (|has| |#1| (-374)))) (-3279 (($ $ $) NIL (|has| |#1| (-374)))) (-2668 (($ $ $) NIL (|has| |#1| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1838 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) NIL)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-4389 (((-783) $) NIL)) (-2534 (($ $ $) NIL (|has| |#1| (-374)))) (-1956 (($ $ $) NIL (|has| |#1| (-374)))) (-4385 (($ $ $) NIL (|has| |#1| (-374)))) (-1687 (($ $ $) NIL (|has| |#1| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-1736 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2099 ((|#1| $ |#1|) NIL)) (-2434 (($ $ $) NIL (|has| |#1| (-374)))) (-4436 (((-783) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-464)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1977 ((|#1| $ |#1| |#1|) NIL)) (-3634 (($ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($) NIL)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-665 |#1|) (-668 |#1|) (-238)) (T -665))
+NIL
+(-668 |#1|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2722 (($ $) NIL (|has| |#1| (-374)))) (-1752 (($ $ $) NIL (|has| |#1| (-374)))) (-4026 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3126 (($ $ $) NIL (|has| |#1| (-374)))) (-2910 (($ $ $) NIL (|has| |#1| (-374)))) (-3279 (($ $ $) NIL (|has| |#1| (-374)))) (-2668 (($ $ $) NIL (|has| |#1| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1838 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) NIL)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-4389 (((-783) $) NIL)) (-2534 (($ $ $) NIL (|has| |#1| (-374)))) (-1956 (($ $ $) NIL (|has| |#1| (-374)))) (-4385 (($ $ $) NIL (|has| |#1| (-374)))) (-1687 (($ $ $) NIL (|has| |#1| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-1736 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2099 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2434 (($ $ $) NIL (|has| |#1| (-374)))) (-4436 (((-783) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-464)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1977 ((|#1| $ |#1| |#1|) NIL)) (-3634 (($ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($) NIL)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -2399 ($ $))))) (T -666))
+NIL
+(-13 (-668 |#1|) (-296 |#2| |#2|))
+((-2722 (($ $) 29)) (-3634 (($ $) 27)) (-3404 (($) 13)))
+(((-667 |#1| |#2|) (-10 -8 (-15 -2722 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3404 (|#1|))) (-668 |#2|) (-1068)) (T -667))
+NIL
+(-10 -8 (-15 -2722 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3404 (|#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2722 (($ $) 87 (|has| |#1| (-374)))) (-1752 (($ $ $) 89 (|has| |#1| (-374)))) (-4026 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-3126 (($ $ $) 50 (|has| |#1| (-374)))) (-2910 (($ $ $) 51 (|has| |#1| (-374)))) (-3279 (($ $ $) 53 (|has| |#1| (-374)))) (-2668 (($ $ $) 48 (|has| |#1| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 47 (|has| |#1| (-374)))) (-3154 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 52 (|has| |#1| (-374)))) (-2454 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-4397 (((-576) $) 79 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 75)) (-4404 (($ $) 69)) (-4011 (((-3 $ "failed") $) 37)) (-3420 (($ $) 60 (|has| |#1| (-464)))) (-1838 (((-112) $) 35)) (-2428 (($ |#1| (-783)) 67)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 62 (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63 (|has| |#1| (-568)))) (-4389 (((-783) $) 71)) (-2534 (($ $ $) 57 (|has| |#1| (-374)))) (-1956 (($ $ $) 58 (|has| |#1| (-374)))) (-4385 (($ $ $) 46 (|has| |#1| (-374)))) (-1687 (($ $ $) 55 (|has| |#1| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 54 (|has| |#1| (-374)))) (-1736 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 59 (|has| |#1| (-374)))) (-4379 ((|#1| $) 70)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2099 ((|#1| $ |#1|) 92)) (-2434 (($ $ $) 86 (|has| |#1| (-374)))) (-4436 (((-783) $) 72)) (-4325 ((|#1| $) 61 (|has| |#1| (-464)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 73)) (-2461 (((-656 |#1|) $) 66)) (-4417 ((|#1| $ (-783)) 68)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-1977 ((|#1| $ |#1| |#1|) 65)) (-3634 (($ $) 90)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($) 91)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-668 |#1|) (-141) (-1068)) (T -668))
+((-3404 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) (-3634 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) (-1752 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1068)) (-4 *3 (-374)))) (-2722 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2434 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(-13 (-864 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -3404 ($)) (-15 -3634 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -1752 ($ $ $)) (-15 -4026 ($ $ (-783))) (-15 -2722 ($ $)) (-15 -2434 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-864 |#1|) . T))
+((-3721 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-2367 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19)))
+(((-669 |#1| |#2|) (-10 -7 (-15 -2367 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2367 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -3721 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -669))
+((-3721 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))))
+(-10 -7 (-15 -2367 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2367 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -3721 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2722 (($ $) NIL (|has| |#1| (-374)))) (-1752 (($ $ $) 28 (|has| |#1| (-374)))) (-4026 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3126 (($ $ $) NIL (|has| |#1| (-374)))) (-2910 (($ $ $) NIL (|has| |#1| (-374)))) (-3279 (($ $ $) NIL (|has| |#1| (-374)))) (-2668 (($ $ $) NIL (|has| |#1| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1838 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) NIL)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-4389 (((-783) $) NIL)) (-2534 (($ $ $) NIL (|has| |#1| (-374)))) (-1956 (($ $ $) NIL (|has| |#1| (-374)))) (-4385 (($ $ $) NIL (|has| |#1| (-374)))) (-1687 (($ $ $) NIL (|has| |#1| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-1736 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2099 ((|#1| $ |#1|) 24)) (-2434 (($ $ $) 33 (|has| |#1| (-374)))) (-4436 (((-783) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-464)))) (-2858 (((-874) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1977 ((|#1| $ |#1| |#1|) 23)) (-3634 (($ $) NIL)) (-2022 (($) 21 T CONST)) (-2038 (($) 8 T CONST)) (-3404 (($) NIL)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-670 |#1| |#2|) (-668 |#1|) (-1068) (-1 |#1| |#1|)) (T -670))
+NIL
+(-668 |#1|)
+((-1752 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-4026 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-2434 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67)))
+(((-671 |#1| |#2|) (-10 -7 (-15 -1752 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4026 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2434 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671))
+((-2434 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-4026 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-1752 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))))
+(-10 -7 (-15 -1752 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4026 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2434 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2899 (($ $ $) 9)))
+(((-672 |#1|) (-10 -8 (-15 -2899 (|#1| |#1| |#1|))) (-673)) (T -672))
+NIL
+(-10 -8 (-15 -2899 (|#1| |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-2856 (($ $) 10)) (-2899 (($ $ $) 8)) (-3889 (((-112) $ $) 6)) (-2885 (($ $ $) 9)))
+(((-673) (-141)) (T -673))
+((-2856 (*1 *1 *1) (-4 *1 (-673))) (-2885 (*1 *1 *1 *1) (-4 *1 (-673))) (-2899 (*1 *1 *1 *1) (-4 *1 (-673))))
+(-13 (-102) (-10 -8 (-15 -2856 ($ $)) (-15 -2885 ($ $ $)) (-15 -2899 ($ $ $))))
(((-102) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 15)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-1595 ((|#1| $) 23)) (-1914 (($ $ $) NIL (|has| |#1| (-802)))) (-3503 (($ $ $) NIL (|has| |#1| (-802)))) (-4264 (((-1176) $) 48)) (-3912 (((-1137) $) NIL)) (-1608 ((|#3| $) 24)) (-2882 (((-873) $) 43)) (-3685 (((-112) $ $) 22)) (-1989 (($) 10 T CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-802)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-802)))) (-3913 (((-112) $ $) 20)) (-3967 (((-112) $ $) NIL (|has| |#1| (-802)))) (-3940 (((-112) $ $) 26 (|has| |#1| (-802)))) (-4038 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4027 (($ $) 17) (($ $ $) NIL)) (-4015 (($ $ $) 29)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-673 |#1| |#2| |#3|) (-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $)))) (-728 |#2|) (-174) (|SubsetCategory| (-737) |#2|)) (T -673))
-((-4038 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4)) (-4 *2 (|SubsetCategory| (-737) *4)))) (-4038 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-673 *2 *4 *3)) (-4 *2 (-728 *4)) (-4 *3 (|SubsetCategory| (-737) *4)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-728 *3)) (-5 *1 (-673 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-737) *3)))) (-1608 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4)) (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4)))))
-(-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-802)) (-6 (-802)) |%noBranch|) (-15 -4038 ($ $ |#3|)) (-15 -4038 ($ |#1| |#3|)) (-15 -1595 (|#1| $)) (-15 -1608 (|#3| $))))
-((-3156 (((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|)) 33)))
-(((-674 |#1|) (-10 -7 (-15 -3156 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|)))) (-924)) (T -674))
-((-3156 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *4))) (-5 *3 (-1190 *4)) (-4 *4 (-924)) (-5 *1 (-674 *4)))))
-(-10 -7 (-15 -3156 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3486 (((-655 |#1|) $) 84)) (-2744 (($ $ (-782)) 94)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-1735 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 50)) (-2443 (((-3 (-683 |#1|) "failed") $) NIL)) (-4400 (((-683 |#1|) $) NIL)) (-4406 (($ $) 93)) (-1403 (((-782) $) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-3692 (($ (-683 |#1|) |#2|) 70)) (-1488 (($ $) 89)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (((-1309 |#1| |#2|) (-1309 |#1| |#2|) $) 49)) (-2574 (((-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4370 (((-683 |#1|) $) NIL)) (-4383 ((|#2| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3046 (($ $ |#1| $) 32) (($ $ (-655 |#1|) (-655 $)) 34)) (-1753 (((-782) $) 91)) (-2893 (($ $ $) 20) (($ (-683 |#1|) (-683 |#1|)) 79) (($ (-683 |#1|) $) 77) (($ $ (-683 |#1|)) 78)) (-2882 (((-873) $) NIL) (($ |#1|) 76) (((-1300 |#1| |#2|) $) 60) (((-1309 |#1| |#2|) $) 43) (($ (-683 |#1|)) 27)) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-683 |#1|)) NIL)) (-1754 ((|#2| (-1309 |#1| |#2|) $) 45)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 23 T CONST)) (-1332 (((-655 (-2 (|:| |k| (-683 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1590 (((-3 $ "failed") (-1300 |#1| |#2|)) 62)) (-1507 (($ (-683 |#1|)) 14)) (-3913 (((-112) $ $) 46)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) 68) (($ $ $) NIL)) (-4015 (($ $ $) 31)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-683 |#1|)) NIL)))
-(((-675 |#1| |#2|) (-13 (-384 |#1| |#2|) (-392 |#2| (-683 |#1|)) (-10 -8 (-15 -1590 ((-3 $ "failed") (-1300 |#1| |#2|))) (-15 -2893 ($ (-683 |#1|) (-683 |#1|))) (-15 -2893 ($ (-683 |#1|) $)) (-15 -2893 ($ $ (-683 |#1|))))) (-861) (-174)) (T -675))
-((-1590 (*1 *1 *2) (|partial| -12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-675 *3 *4)))) (-2893 (*1 *1 *2 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) (-2893 (*1 *1 *2 *1) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))) (-2893 (*1 *1 *1 *2) (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4)) (-4 *4 (-174)))))
-(-13 (-384 |#1| |#2|) (-392 |#2| (-683 |#1|)) (-10 -8 (-15 -1590 ((-3 $ "failed") (-1300 |#1| |#2|))) (-15 -2893 ($ (-683 |#1|) (-683 |#1|))) (-15 -2893 ($ (-683 |#1|) $)) (-15 -2893 ($ $ (-683 |#1|)))))
-((-1905 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3175 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1932 (($ (-1 (-112) |#2|) $) 29)) (-3086 (($ $) 65)) (-1413 (($ $) 74)) (-2375 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2302 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-2630 (((-575) |#2| $ (-575)) 71) (((-575) |#2| $) NIL) (((-575) (-1 (-112) |#2|) $) 54)) (-2303 (($ (-782) |#2|) 63)) (-3167 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4167 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2544 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1684 (($ |#2|) 15)) (-4218 (($ $ $ (-575)) 42) (($ |#2| $ (-575)) 40)) (-1540 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3997 (($ $ (-1252 (-575))) 51) (($ $ (-575)) 44)) (-2617 (($ $ $ (-575)) 70)) (-3076 (($ $) 68)) (-3940 (((-112) $ $) 76)))
-(((-676 |#1| |#2|) (-10 -8 (-15 -1684 (|#1| |#2|)) (-15 -3997 (|#1| |#1| (-575))) (-15 -3997 (|#1| |#1| (-1252 (-575)))) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| |#2| |#1| (-575))) (-15 -4218 (|#1| |#1| |#1| (-575))) (-15 -3167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1932 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -4167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1905 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2630 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2630 ((-575) |#2| |#1|)) (-15 -2630 ((-575) |#2| |#1| (-575))) (-15 -4167 (|#1| |#1| |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -2617 (|#1| |#1| |#1| (-575))) (-15 -3086 (|#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3940 ((-112) |#1| |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1540 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2303 (|#1| (-782) |#2|)) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#1| |#1|))) (-677 |#2|) (-1235)) (T -676))
-NIL
-(-10 -8 (-15 -1684 (|#1| |#2|)) (-15 -3997 (|#1| |#1| (-575))) (-15 -3997 (|#1| |#1| (-1252 (-575)))) (-15 -2375 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4218 (|#1| |#2| |#1| (-575))) (-15 -4218 (|#1| |#1| |#1| (-575))) (-15 -3167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1932 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -4167 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1905 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2630 ((-575) (-1 (-112) |#2|) |#1|)) (-15 -2630 ((-575) |#2| |#1|)) (-15 -2630 ((-575) |#2| |#1| (-575))) (-15 -4167 (|#1| |#1| |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -2617 (|#1| |#1| |#1| (-575))) (-15 -3086 (|#1| |#1|)) (-15 -3175 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3940 ((-112) |#1| |#1|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2302 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1540 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2303 (|#1| (-782) |#2|)) (-15 -2544 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3076 (|#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-2987 ((|#1| $) 66)) (-3460 (($ $) 68)) (-4116 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-1905 (((-112) $) 144 (|has| |#1| (-861))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3175 (($ $) 148 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4461)))) (-2025 (($ $) 143 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-2089 (($ $ $) 57 (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 119 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 88 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-1932 (($ (-1 (-112) |#1|) $) 131)) (-3983 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4460)))) (-2975 ((|#1| $) 67)) (-3261 (($) 7 T CONST)) (-3086 (($ $) 146 (|has| $ (-6 -4461)))) (-4380 (($ $) 136)) (-1969 (($ $) 74) (($ $ (-782)) 72)) (-1413 (($ $) 133 (|has| |#1| (-1117)))) (-4070 (($ $) 101 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 132 (|has| |#1| (-1117))) (($ (-1 (-112) |#1|) $) 127)) (-3631 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4460))) (($ |#1| $) 102 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2857 ((|#1| $ (-575) |#1|) 87 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 89)) (-2335 (((-112) $) 85)) (-2630 (((-575) |#1| $ (-575)) 141 (|has| |#1| (-1117))) (((-575) |#1| $) 140 (|has| |#1| (-1117))) (((-575) (-1 (-112) |#1|) $) 139)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2303 (($ (-782) |#1|) 111)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 97 (|has| (-575) (-861)))) (-1914 (($ $ $) 149 (|has| |#1| (-861)))) (-3167 (($ $ $) 134 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-4167 (($ $ $) 142 (|has| |#1| (-861))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 96 (|has| (-575) (-861)))) (-3503 (($ $ $) 150 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1684 (($ |#1|) 124)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3651 ((|#1| $) 71) (($ $ (-782)) 69)) (-4218 (($ $ $ (-575)) 129) (($ |#1| $ (-575)) 128)) (-2129 (($ $ $ (-575)) 118) (($ |#1| $ (-575)) 117)) (-1653 (((-655 (-575)) $) 94)) (-1801 (((-112) (-575) $) 93)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 77) (($ $ (-782)) 75)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1652 (($ $ |#1|) 98 (|has| $ (-6 -4461)))) (-4213 (((-112) $) 86)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 92)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1252 (-575))) 110) ((|#1| $ (-575)) 91) ((|#1| $ (-575) |#1|) 90)) (-1816 (((-575) $ $) 45)) (-3997 (($ $ (-1252 (-575))) 126) (($ $ (-575)) 125)) (-3237 (($ $ (-1252 (-575))) 116) (($ $ (-575)) 115)) (-3482 (((-112) $) 47)) (-3247 (($ $) 63)) (-1774 (($ $) 60 (|has| $ (-6 -4461)))) (-3984 (((-782) $) 64)) (-1431 (($ $) 65)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 145 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 100 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 109)) (-3357 (($ $ $) 62) (($ $ |#1|) 61)) (-1513 (($ $ $) 79) (($ |#1| $) 78) (($ (-655 $)) 113) (($ $ |#1|) 112)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 152 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 153 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3967 (((-112) $ $) 151 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 154 (|has| |#1| (-861)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-677 |#1|) (-141) (-1235)) (T -677))
-((-1684 (*1 *1 *2) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1235)))))
-(-13 (-1166 |t#1|) (-383 |t#1|) (-291 |t#1|) (-10 -8 (-15 -1684 ($ |t#1|))))
-(((-34) . T) ((-102) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-291 |#1|) . T) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1027 |#1|) . T) ((-1117) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1166 |#1|) . T) ((-1235) . T) ((-1273 |#1|) . T))
-((-3520 (((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|))))) (-655 (-655 |#1|)) (-655 (-1285 |#1|))) 22) (((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|))))) (-700 |#1|) (-655 (-1285 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-655 (-655 |#1|)) (-1285 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)) 14)) (-4422 (((-782) (-700 |#1|) (-1285 |#1|)) 30)) (-2883 (((-3 (-1285 |#1|) "failed") (-700 |#1|) (-1285 |#1|)) 24)) (-1822 (((-112) (-700 |#1|) (-1285 |#1|)) 27)))
-(((-678 |#1|) (-10 -7 (-15 -3520 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|))) (-15 -3520 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-655 (-655 |#1|)) (-1285 |#1|))) (-15 -3520 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|))))) (-700 |#1|) (-655 (-1285 |#1|)))) (-15 -3520 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|))))) (-655 (-655 |#1|)) (-655 (-1285 |#1|)))) (-15 -2883 ((-3 (-1285 |#1|) "failed") (-700 |#1|) (-1285 |#1|))) (-15 -1822 ((-112) (-700 |#1|) (-1285 |#1|))) (-15 -4422 ((-782) (-700 |#1|) (-1285 |#1|)))) (-373)) (T -678))
-((-4422 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-5 *2 (-782)) (-5 *1 (-678 *5)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-5 *2 (-112)) (-5 *1 (-678 *5)))) (-2883 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1285 *4)) (-5 *3 (-700 *4)) (-4 *4 (-373)) (-5 *1 (-678 *4)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373)) (-5 *2 (-655 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -2098 (-655 (-1285 *5)))))) (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 (-655 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -2098 (-655 (-1285 *5)))))) (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -2098 (-655 (-1285 *5))))) (-5 *1 (-678 *5)) (-5 *4 (-1285 *5)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 *5) "failed")) (|:| -2098 (-655 (-1285 *5))))) (-5 *1 (-678 *5)) (-5 *4 (-1285 *5)))))
-(-10 -7 (-15 -3520 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|))) (-15 -3520 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-655 (-655 |#1|)) (-1285 |#1|))) (-15 -3520 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|))))) (-700 |#1|) (-655 (-1285 |#1|)))) (-15 -3520 ((-655 (-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|))))) (-655 (-655 |#1|)) (-655 (-1285 |#1|)))) (-15 -2883 ((-3 (-1285 |#1|) "failed") (-700 |#1|) (-1285 |#1|))) (-15 -1822 ((-112) (-700 |#1|) (-1285 |#1|))) (-15 -4422 ((-782) (-700 |#1|) (-1285 |#1|))))
-((-3520 (((-655 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|)))) |#4| (-655 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|))) |#4| |#3|) 60)) (-4422 (((-782) |#4| |#3|) 18)) (-2883 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1822 (((-112) |#4| |#3|) 14)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3520 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|))) |#4| |#3|)) (-15 -3520 ((-655 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|)))) |#4| (-655 |#3|))) (-15 -2883 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1822 ((-112) |#4| |#3|)) (-15 -4422 ((-782) |#4| |#3|))) (-373) (-13 (-383 |#1|) (-10 -7 (-6 -4461))) (-13 (-383 |#1|) (-10 -7 (-6 -4461))) (-698 |#1| |#2| |#3|)) (T -679))
-((-4422 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-782)) (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) (-1822 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-112)) (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) (-2883 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-373)) (-4 *5 (-13 (-383 *4) (-10 -7 (-6 -4461)))) (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))) (-5 *1 (-679 *4 *5 *2 *3)) (-4 *3 (-698 *4 *5 *2)))) (-3520 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *7 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-655 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2098 (-655 *7))))) (-5 *1 (-679 *5 *6 *7 *3)) (-5 *4 (-655 *7)) (-4 *3 (-698 *5 *6 *7)))) (-3520 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))))
-(-10 -7 (-15 -3520 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|))) |#4| |#3|)) (-15 -3520 ((-655 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|)))) |#4| (-655 |#3|))) (-15 -2883 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1822 ((-112) |#4| |#3|)) (-15 -4422 ((-782) |#4| |#3|)))
-((-3695 (((-2 (|:| |particular| (-3 (-1285 (-418 |#4|)) "failed")) (|:| -2098 (-655 (-1285 (-418 |#4|))))) (-655 |#4|) (-655 |#3|)) 51)))
-(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3695 ((-2 (|:| |particular| (-3 (-1285 (-418 |#4|)) "failed")) (|:| -2098 (-655 (-1285 (-418 |#4|))))) (-655 |#4|) (-655 |#3|)))) (-567) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -680))
-((-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *7)) (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 (-418 *8)) "failed")) (|:| -2098 (-655 (-1285 (-418 *8)))))) (-5 *1 (-680 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3695 ((-2 (|:| |particular| (-3 (-1285 (-418 |#4|)) "failed")) (|:| -2098 (-655 (-1285 (-418 |#4|))))) (-655 |#4|) (-655 |#3|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2942 (((-3 $ "failed")) NIL (|has| |#2| (-567)))) (-1448 ((|#2| $) NIL)) (-3684 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2199 (((-1285 (-700 |#2|))) NIL) (((-1285 (-700 |#2|)) (-1285 $)) NIL)) (-1938 (((-112) $) NIL)) (-2133 (((-1285 $)) 42)) (-3133 (((-112) $ (-782)) NIL)) (-1890 (($ |#2|) NIL)) (-3261 (($) NIL T CONST)) (-3699 (($ $) NIL (|has| |#2| (-316)))) (-2320 (((-245 |#1| |#2|) $ (-575)) NIL)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (|has| |#2| (-567)))) (-2146 (((-3 $ "failed")) NIL (|has| |#2| (-567)))) (-3636 (((-700 |#2|)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-3309 ((|#2| $) NIL)) (-1454 (((-700 |#2|) $) NIL) (((-700 |#2|) $ (-1285 $)) NIL)) (-3952 (((-3 $ "failed") $) NIL (|has| |#2| (-567)))) (-2368 (((-1190 (-967 |#2|))) NIL (|has| |#2| (-373)))) (-1810 (($ $ (-936)) NIL)) (-1731 ((|#2| $) NIL)) (-2864 (((-1190 |#2|) $) NIL (|has| |#2| (-567)))) (-2530 ((|#2|) NIL) ((|#2| (-1285 $)) NIL)) (-3100 (((-1190 |#2|) $) NIL)) (-3884 (((-112)) NIL)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) NIL)) (-3898 (($ (-1285 |#2|)) NIL) (($ (-1285 |#2|) (-1285 $)) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-4422 (((-782) $) NIL (|has| |#2| (-567))) (((-936)) 43)) (-2786 ((|#2| $ (-575) (-575)) NIL)) (-3748 (((-112)) NIL)) (-3905 (($ $ (-936)) NIL)) (-3999 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL)) (-3202 (((-782) $) NIL (|has| |#2| (-567)))) (-3216 (((-655 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-567)))) (-4243 (((-782) $) NIL)) (-2948 (((-112)) NIL)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2314 ((|#2| $) NIL (|has| |#2| (-6 (-4462 "*"))))) (-4274 (((-575) $) NIL)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3093 (((-575) $) NIL)) (-4180 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#2|))) NIL)) (-2844 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3194 (((-655 (-655 |#2|)) $) NIL)) (-3534 (((-112)) NIL)) (-2043 (((-112)) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-3303 (((-3 (-2 (|:| |particular| $) (|:| -2098 (-655 $))) "failed")) NIL (|has| |#2| (-567)))) (-1987 (((-3 $ "failed")) NIL (|has| |#2| (-567)))) (-3400 (((-700 |#2|)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-1455 ((|#2| $) NIL)) (-3475 (((-700 |#2|) $) NIL) (((-700 |#2|) $ (-1285 $)) NIL)) (-3284 (((-3 $ "failed") $) NIL (|has| |#2| (-567)))) (-3726 (((-1190 (-967 |#2|))) NIL (|has| |#2| (-373)))) (-3643 (($ $ (-936)) NIL)) (-4339 ((|#2| $) NIL)) (-1360 (((-1190 |#2|) $) NIL (|has| |#2| (-567)))) (-4175 ((|#2|) NIL) ((|#2| (-1285 $)) NIL)) (-3557 (((-1190 |#2|) $) NIL)) (-1509 (((-112)) NIL)) (-4264 (((-1176) $) NIL)) (-3155 (((-112)) NIL)) (-3872 (((-112)) NIL)) (-4350 (((-112)) NIL)) (-1729 (((-3 $ "failed") $) NIL (|has| |#2| (-373)))) (-3912 (((-1137) $) NIL)) (-2279 (((-112)) NIL)) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567)))) (-2718 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ (-575) (-575) |#2|) NIL) ((|#2| $ (-575) (-575)) 28) ((|#2| $ (-575)) NIL)) (-2382 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-4128 ((|#2| $) NIL)) (-2377 (($ (-655 |#2|)) NIL)) (-1940 (((-112) $) NIL)) (-3961 (((-245 |#1| |#2|) $) NIL)) (-4029 ((|#2| $) NIL (|has| |#2| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3076 (($ $) NIL)) (-2209 (((-700 |#2|) (-1285 $)) NIL) (((-1285 |#2|) $) NIL) (((-700 |#2|) (-1285 $) (-1285 $)) NIL) (((-1285 |#2|) $ (-1285 $)) 31)) (-2613 (($ (-1285 |#2|)) NIL) (((-1285 |#2|) $) NIL)) (-3600 (((-655 (-967 |#2|))) NIL) (((-655 (-967 |#2|)) (-1285 $)) NIL)) (-4152 (($ $ $) NIL)) (-2122 (((-112)) NIL)) (-2324 (((-245 |#1| |#2|) $ (-575)) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) NIL) (((-700 |#2|) $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) 41)) (-2876 (((-655 (-1285 |#2|))) NIL (|has| |#2| (-567)))) (-3458 (($ $ $ $) NIL)) (-3220 (((-112)) NIL)) (-1943 (($ (-700 |#2|) $) NIL)) (-4121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3229 (((-112) $) NIL)) (-2337 (($ $ $) NIL)) (-3676 (((-112)) NIL)) (-3198 (((-112)) NIL)) (-3594 (((-112)) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#2| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-681 |#1| |#2|) (-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-428 |#2|)) (-936) (-174)) (T -681))
-NIL
-(-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-428 |#2|))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4329 (((-655 (-1152)) $) 10)) (-2882 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-682) (-13 (-1100) (-10 -8 (-15 -4329 ((-655 (-1152)) $))))) (T -682))
-((-4329 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-682)))))
-(-13 (-1100) (-10 -8 (-15 -4329 ((-655 (-1152)) $))))
-((-2859 (((-112) $ $) NIL)) (-3486 (((-655 |#1|) $) NIL)) (-2429 (($ $) 62)) (-2332 (((-112) $) NIL)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-2868 (((-3 $ "failed") (-830 |#1|)) 27)) (-2648 (((-112) (-830 |#1|)) 17)) (-3782 (($ (-830 |#1|)) 28)) (-3085 (((-112) $ $) 36)) (-1840 (((-936) $) 43)) (-2412 (($ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2347 (((-655 $) (-830 |#1|)) 19)) (-2882 (((-873) $) 51) (($ |#1|) 40) (((-830 |#1|) $) 47) (((-688 |#1|) $) 52)) (-3685 (((-112) $ $) NIL)) (-3244 (((-59 (-655 $)) (-655 |#1|) (-936)) 67)) (-2602 (((-655 $) (-655 |#1|) (-936)) 70)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 63)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 46)))
-(((-683 |#1|) (-13 (-861) (-1055 |#1|) (-10 -8 (-15 -2332 ((-112) $)) (-15 -2412 ($ $)) (-15 -2429 ($ $)) (-15 -1840 ((-936) $)) (-15 -3085 ((-112) $ $)) (-15 -2882 ((-830 |#1|) $)) (-15 -2882 ((-688 |#1|) $)) (-15 -2347 ((-655 $) (-830 |#1|))) (-15 -2648 ((-112) (-830 |#1|))) (-15 -3782 ($ (-830 |#1|))) (-15 -2868 ((-3 $ "failed") (-830 |#1|))) (-15 -3486 ((-655 |#1|) $)) (-15 -3244 ((-59 (-655 $)) (-655 |#1|) (-936))) (-15 -2602 ((-655 $) (-655 |#1|) (-936))))) (-861)) (T -683))
-((-2332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-3085 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-683 *4))) (-5 *1 (-683 *4)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-112)) (-5 *1 (-683 *4)))) (-3782 (*1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3)))) (-2868 (*1 *1 *2) (|partial| -12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861)))) (-3244 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861)) (-5 *2 (-59 (-655 (-683 *5)))) (-5 *1 (-683 *5)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861)) (-5 *2 (-655 (-683 *5))) (-5 *1 (-683 *5)))))
-(-13 (-861) (-1055 |#1|) (-10 -8 (-15 -2332 ((-112) $)) (-15 -2412 ($ $)) (-15 -2429 ($ $)) (-15 -1840 ((-936) $)) (-15 -3085 ((-112) $ $)) (-15 -2882 ((-830 |#1|) $)) (-15 -2882 ((-688 |#1|) $)) (-15 -2347 ((-655 $) (-830 |#1|))) (-15 -2648 ((-112) (-830 |#1|))) (-15 -3782 ($ (-830 |#1|))) (-15 -2868 ((-3 $ "failed") (-830 |#1|))) (-15 -3486 ((-655 |#1|) $)) (-15 -3244 ((-59 (-655 $)) (-655 |#1|) (-936))) (-15 -2602 ((-655 $) (-655 |#1|) (-936)))))
-((-4181 ((|#2| $) 100)) (-3460 (($ $) 121)) (-3133 (((-112) $ (-782)) 35)) (-1969 (($ $) 109) (($ $ (-782)) 112)) (-2335 (((-112) $) 122)) (-1893 (((-655 $) $) 96)) (-2510 (((-112) $ $) 92)) (-3541 (((-112) $ (-782)) 33)) (-2569 (((-575) $) 66)) (-2263 (((-575) $) 65)) (-3218 (((-112) $ (-782)) 31)) (-1902 (((-112) $) 98)) (-3651 ((|#2| $) 113) (($ $ (-782)) 117)) (-2129 (($ $ $ (-575)) 83) (($ |#2| $ (-575)) 82)) (-1653 (((-655 (-575)) $) 64)) (-1801 (((-112) (-575) $) 59)) (-1955 ((|#2| $) NIL) (($ $ (-782)) 108)) (-1985 (($ $ (-575)) 125)) (-4213 (((-112) $) 124)) (-2718 (((-112) (-1 (-112) |#2|) $) 42)) (-2697 (((-655 |#2|) $) 46)) (-2065 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1252 (-575))) 79) ((|#2| $ (-575)) 57) ((|#2| $ (-575) |#2|) 58)) (-1816 (((-575) $ $) 91)) (-3237 (($ $ (-1252 (-575))) 78) (($ $ (-575)) 72)) (-3482 (((-112) $) 87)) (-3247 (($ $) 105)) (-3984 (((-782) $) 104)) (-1431 (($ $) 103)) (-2893 (($ (-655 |#2|)) 53)) (-3575 (($ $) 126)) (-3620 (((-655 $) $) 90)) (-2603 (((-112) $ $) 89)) (-4121 (((-112) (-1 (-112) |#2|) $) 41)) (-3913 (((-112) $ $) 20)) (-2869 (((-782) $) 39)))
-(((-684 |#1| |#2|) (-10 -8 (-15 -3575 (|#1| |#1|)) (-15 -1985 (|#1| |#1| (-575))) (-15 -2335 ((-112) |#1|)) (-15 -4213 ((-112) |#1|)) (-15 -2065 (|#2| |#1| (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575))) (-15 -2697 ((-655 |#2|) |#1|)) (-15 -1801 ((-112) (-575) |#1|)) (-15 -1653 ((-655 (-575)) |#1|)) (-15 -2263 ((-575) |#1|)) (-15 -2569 ((-575) |#1|)) (-15 -2893 (|#1| (-655 |#2|))) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -3237 (|#1| |#1| (-575))) (-15 -3237 (|#1| |#1| (-1252 (-575)))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -3247 (|#1| |#1|)) (-15 -3984 ((-782) |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3651 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "last")) (-15 -3651 (|#2| |#1|)) (-15 -1969 (|#1| |#1| (-782))) (-15 -2065 (|#1| |#1| "rest")) (-15 -1969 (|#1| |#1|)) (-15 -1955 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "first")) (-15 -1955 (|#2| |#1|)) (-15 -2510 ((-112) |#1| |#1|)) (-15 -2603 ((-112) |#1| |#1|)) (-15 -1816 ((-575) |#1| |#1|)) (-15 -3482 ((-112) |#1|)) (-15 -2065 (|#2| |#1| "value")) (-15 -4181 (|#2| |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -1893 ((-655 |#1|) |#1|)) (-15 -3620 ((-655 |#1|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782)))) (-685 |#2|) (-1235)) (T -684))
-NIL
-(-10 -8 (-15 -3575 (|#1| |#1|)) (-15 -1985 (|#1| |#1| (-575))) (-15 -2335 ((-112) |#1|)) (-15 -4213 ((-112) |#1|)) (-15 -2065 (|#2| |#1| (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575))) (-15 -2697 ((-655 |#2|) |#1|)) (-15 -1801 ((-112) (-575) |#1|)) (-15 -1653 ((-655 (-575)) |#1|)) (-15 -2263 ((-575) |#1|)) (-15 -2569 ((-575) |#1|)) (-15 -2893 (|#1| (-655 |#2|))) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -3237 (|#1| |#1| (-575))) (-15 -3237 (|#1| |#1| (-1252 (-575)))) (-15 -2129 (|#1| |#2| |#1| (-575))) (-15 -2129 (|#1| |#1| |#1| (-575))) (-15 -3247 (|#1| |#1|)) (-15 -3984 ((-782) |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3651 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "last")) (-15 -3651 (|#2| |#1|)) (-15 -1969 (|#1| |#1| (-782))) (-15 -2065 (|#1| |#1| "rest")) (-15 -1969 (|#1| |#1|)) (-15 -1955 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "first")) (-15 -1955 (|#2| |#1|)) (-15 -2510 ((-112) |#1| |#1|)) (-15 -2603 ((-112) |#1| |#1|)) (-15 -1816 ((-575) |#1| |#1|)) (-15 -3482 ((-112) |#1|)) (-15 -2065 (|#2| |#1| "value")) (-15 -4181 (|#2| |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -1893 ((-655 |#1|) |#1|)) (-15 -3620 ((-655 |#1|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -2718 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782))))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-2987 ((|#1| $) 66)) (-3460 (($ $) 68)) (-4116 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-2089 (($ $ $) 57 (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 119 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 88 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 104)) (-2975 ((|#1| $) 67)) (-3261 (($) 7 T CONST)) (-3165 (($ $) 126)) (-1969 (($ $) 74) (($ $ (-782)) 72)) (-4070 (($ $) 101 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 102 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 105)) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2857 ((|#1| $ (-575) |#1|) 87 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 89)) (-2335 (((-112) $) 85)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3078 (((-782) $) 125)) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2303 (($ (-782) |#1|) 111)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 97 (|has| (-575) (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 96 (|has| (-575) (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-1747 (($ $) 128)) (-2234 (((-112) $) 129)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3651 ((|#1| $) 71) (($ $ (-782)) 69)) (-2129 (($ $ $ (-575)) 118) (($ |#1| $ (-575)) 117)) (-1653 (((-655 (-575)) $) 94)) (-1801 (((-112) (-575) $) 93)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3036 ((|#1| $) 127)) (-1955 ((|#1| $) 77) (($ $ (-782)) 75)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1652 (($ $ |#1|) 98 (|has| $ (-6 -4461)))) (-1985 (($ $ (-575)) 124)) (-4213 (((-112) $) 86)) (-4271 (((-112) $) 130)) (-2950 (((-112) $) 131)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 92)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1252 (-575))) 110) ((|#1| $ (-575)) 91) ((|#1| $ (-575) |#1|) 90)) (-1816 (((-575) $ $) 45)) (-3237 (($ $ (-1252 (-575))) 116) (($ $ (-575)) 115)) (-3482 (((-112) $) 47)) (-3247 (($ $) 63)) (-1774 (($ $) 60 (|has| $ (-6 -4461)))) (-3984 (((-782) $) 64)) (-1431 (($ $) 65)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 100 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 109)) (-3357 (($ $ $) 62 (|has| $ (-6 -4461))) (($ $ |#1|) 61 (|has| $ (-6 -4461)))) (-1513 (($ $ $) 79) (($ |#1| $) 78) (($ (-655 $)) 113) (($ $ |#1|) 112)) (-3575 (($ $) 123)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-685 |#1|) (-141) (-1235)) (T -685))
-((-3631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) (-3983 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-4271 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-1747 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) (-3165 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-685 *3)) (-4 *3 (-1235)))) (-3575 (*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))))
-(-13 (-1166 |t#1|) (-10 -8 (-15 -3631 ($ (-1 (-112) |t#1|) $)) (-15 -3983 ($ (-1 (-112) |t#1|) $)) (-15 -2950 ((-112) $)) (-15 -4271 ((-112) $)) (-15 -2234 ((-112) $)) (-15 -1747 ($ $)) (-15 -3036 (|t#1| $)) (-15 -3165 ($ $)) (-15 -3078 ((-782) $)) (-15 -1985 ($ $ (-575))) (-15 -3575 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1166 |#1|) . T) ((-1235) . T) ((-1273 |#1|) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4297 (($ (-782) (-782) (-782)) 53 (|has| |#1| (-1066)))) (-3133 (((-112) $ (-782)) NIL)) (-2463 ((|#1| $ (-782) (-782) (-782) |#1|) 47)) (-3261 (($) NIL T CONST)) (-3609 (($ $ $) 57 (|has| |#1| (-1066)))) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3982 (((-1285 (-782)) $) 12)) (-1324 (($ (-1194) $ $) 34)) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-1621 (($ (-782)) 55 (|has| |#1| (-1066)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-782) (-782) (-782)) 44)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2893 (($ (-655 (-655 (-655 |#1|)))) 67)) (-2882 (($ (-973 (-973 (-973 |#1|)))) 23) (((-973 (-973 (-973 |#1|))) $) 19) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-686 |#1|) (-13 (-500 |#1|) (-10 -8 (IF (|has| |#1| (-1066)) (PROGN (-15 -4297 ($ (-782) (-782) (-782))) (-15 -1621 ($ (-782))) (-15 -3609 ($ $ $))) |%noBranch|) (-15 -2893 ($ (-655 (-655 (-655 |#1|))))) (-15 -2065 (|#1| $ (-782) (-782) (-782))) (-15 -2463 (|#1| $ (-782) (-782) (-782) |#1|)) (-15 -2882 ($ (-973 (-973 (-973 |#1|))))) (-15 -2882 ((-973 (-973 (-973 |#1|))) $)) (-15 -1324 ($ (-1194) $ $)) (-15 -3982 ((-1285 (-782)) $)))) (-1117)) (T -686))
-((-4297 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066)) (-4 *3 (-1117)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066)) (-4 *3 (-1117)))) (-3609 (*1 *1 *1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1066)) (-4 *2 (-1117)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-655 *3)))) (-4 *3 (-1117)) (-5 *1 (-686 *3)))) (-2065 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117)))) (-2463 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-4 *3 (-1117)) (-5 *1 (-686 *3)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-5 *1 (-686 *3)) (-4 *3 (-1117)))) (-1324 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-686 *3)) (-4 *3 (-1117)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-1285 (-782))) (-5 *1 (-686 *3)) (-4 *3 (-1117)))))
-(-13 (-500 |#1|) (-10 -8 (IF (|has| |#1| (-1066)) (PROGN (-15 -4297 ($ (-782) (-782) (-782))) (-15 -1621 ($ (-782))) (-15 -3609 ($ $ $))) |%noBranch|) (-15 -2893 ($ (-655 (-655 (-655 |#1|))))) (-15 -2065 (|#1| $ (-782) (-782) (-782))) (-15 -2463 (|#1| $ (-782) (-782) (-782) |#1|)) (-15 -2882 ($ (-973 (-973 (-973 |#1|))))) (-15 -2882 ((-973 (-973 (-973 |#1|))) $)) (-15 -1324 ($ (-1194) $ $)) (-15 -3982 ((-1285 (-782)) $))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-1327 (((-494) $) 10)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 19) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 12)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-687) (-13 (-1100) (-10 -8 (-15 -1327 ((-494) $)) (-15 -1788 ((-1152) $))))) (T -687))
-((-1327 (*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-687)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-687)))))
-(-13 (-1100) (-10 -8 (-15 -1327 ((-494) $)) (-15 -1788 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-3486 (((-655 |#1|) $) 15)) (-2429 (($ $) 19)) (-2332 (((-112) $) 20)) (-2443 (((-3 |#1| "failed") $) 23)) (-4400 ((|#1| $) 21)) (-1969 (($ $) 37)) (-1488 (($ $) 25)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-3085 (((-112) $ $) 47)) (-1840 (((-936) $) 40)) (-2412 (($ $) 18)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 ((|#1| $) 36)) (-2882 (((-873) $) 32) (($ |#1|) 24) (((-830 |#1|) $) 28)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 13)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-688 |#1|) (-13 (-861) (-1055 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2882 ((-830 |#1|) $)) (-15 -1955 (|#1| $)) (-15 -2412 ($ $)) (-15 -1840 ((-936) $)) (-15 -3085 ((-112) $ $)) (-15 -1488 ($ $)) (-15 -1969 ($ $)) (-15 -2332 ((-112) $)) (-15 -2429 ($ $)) (-15 -3486 ((-655 |#1|) $)))) (-861)) (T -688))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-1955 (*1 *2 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-3085 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-1969 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861)))))
-(-13 (-861) (-1055 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2882 ((-830 |#1|) $)) (-15 -1955 (|#1| $)) (-15 -2412 ($ $)) (-15 -1840 ((-936) $)) (-15 -3085 ((-112) $ $)) (-15 -1488 ($ $)) (-15 -1969 ($ $)) (-15 -2332 ((-112) $)) (-15 -2429 ($ $)) (-15 -3486 ((-655 |#1|) $))))
-((-1678 ((|#1| (-1 |#1| (-782) |#1|) (-782) |#1|) 11)) (-2582 ((|#1| (-1 |#1| |#1|) (-782) |#1|) 9)))
-(((-689 |#1|) (-10 -7 (-15 -2582 (|#1| (-1 |#1| |#1|) (-782) |#1|)) (-15 -1678 (|#1| (-1 |#1| (-782) |#1|) (-782) |#1|))) (-1117)) (T -689))
-((-1678 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-782) *2)) (-5 *4 (-782)) (-4 *2 (-1117)) (-5 *1 (-689 *2)))) (-2582 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-782)) (-4 *2 (-1117)) (-5 *1 (-689 *2)))))
-(-10 -7 (-15 -2582 (|#1| (-1 |#1| |#1|) (-782) |#1|)) (-15 -1678 (|#1| (-1 |#1| (-782) |#1|) (-782) |#1|)))
-((-1580 ((|#2| |#1| |#2|) 9)) (-1564 ((|#1| |#1| |#2|) 8)))
-(((-690 |#1| |#2|) (-10 -7 (-15 -1564 (|#1| |#1| |#2|)) (-15 -1580 (|#2| |#1| |#2|))) (-1117) (-1117)) (T -690))
-((-1580 (*1 *2 *3 *2) (-12 (-5 *1 (-690 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-1564 (*1 *2 *2 *3) (-12 (-5 *1 (-690 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
-(-10 -7 (-15 -1564 (|#1| |#1| |#2|)) (-15 -1580 (|#2| |#1| |#2|)))
-((-1996 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-691 |#1| |#2| |#3|) (-10 -7 (-15 -1996 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1117) (-1117) (-1117)) (T -691))
-((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)) (-5 *1 (-691 *5 *6 *2)))))
-(-10 -7 (-15 -1996 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2937 (((-1234) $) 21)) (-2888 (((-655 (-1234)) $) 19)) (-4019 (($ (-655 (-1234)) (-1234)) 14)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 29) (($ (-1199)) NIL) (((-1199) $) NIL) (((-1234) $) 22) (($ (-1135)) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-692) (-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2882 ($ (-1135))) (-15 -4019 ($ (-655 (-1234)) (-1234))) (-15 -2888 ((-655 (-1234)) $)) (-15 -2937 ((-1234) $))))) (T -692))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-692)))) (-4019 (*1 *1 *2 *3) (-12 (-5 *2 (-655 (-1234))) (-5 *3 (-1234)) (-5 *1 (-692)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-692)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-692)))))
-(-13 (-1100) (-624 (-1234)) (-10 -8 (-15 -2882 ($ (-1135))) (-15 -4019 ($ (-655 (-1234)) (-1234))) (-15 -2888 ((-655 (-1234)) $)) (-15 -2937 ((-1234) $))))
-((-1678 (((-1 |#1| (-782) |#1|) (-1 |#1| (-782) |#1|)) 26)) (-2192 (((-1 |#1|) |#1|) 8)) (-2051 ((|#1| |#1|) 19)) (-4358 (((-655 |#1|) (-1 (-655 |#1|) (-655 |#1|)) (-575)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2882 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-782)) 23)))
-(((-693 |#1|) (-10 -7 (-15 -2192 ((-1 |#1|) |#1|)) (-15 -2882 ((-1 |#1|) |#1|)) (-15 -4358 (|#1| (-1 |#1| |#1|))) (-15 -4358 ((-655 |#1|) (-1 (-655 |#1|) (-655 |#1|)) (-575))) (-15 -2051 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-782))) (-15 -1678 ((-1 |#1| (-782) |#1|) (-1 |#1| (-782) |#1|)))) (-1117)) (T -693))
-((-1678 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-782) *3)) (-4 *3 (-1117)) (-5 *1 (-693 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *4 (-1117)) (-5 *1 (-693 *4)))) (-2051 (*1 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-1117)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-655 *5) (-655 *5))) (-5 *4 (-575)) (-5 *2 (-655 *5)) (-5 *1 (-693 *5)) (-4 *5 (-1117)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-693 *2)) (-4 *2 (-1117)))) (-2882 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117)))) (-2192 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117)))))
-(-10 -7 (-15 -2192 ((-1 |#1|) |#1|)) (-15 -2882 ((-1 |#1|) |#1|)) (-15 -4358 (|#1| (-1 |#1| |#1|))) (-15 -4358 ((-655 |#1|) (-1 (-655 |#1|) (-655 |#1|)) (-575))) (-15 -2051 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-782))) (-15 -1678 ((-1 |#1| (-782) |#1|) (-1 |#1| (-782) |#1|))))
-((-2759 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3729 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3736 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4426 (((-1 |#2| |#1|) |#2|) 11)))
-(((-694 |#1| |#2|) (-10 -7 (-15 -4426 ((-1 |#2| |#1|) |#2|)) (-15 -3729 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3736 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2759 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1117) (-1117)) (T -694))
-((-2759 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *4)) (-5 *1 (-694 *4 *5)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *4)) (-5 *1 (-694 *4 *5)) (-4 *4 (-1117)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-5 *2 (-1 *5)) (-5 *1 (-694 *4 *5)))) (-4426 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-694 *4 *3)) (-4 *4 (-1117)) (-4 *3 (-1117)))))
-(-10 -7 (-15 -4426 ((-1 |#2| |#1|) |#2|)) (-15 -3729 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3736 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2759 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-4053 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2660 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3205 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2231 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2885 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-695 |#1| |#2| |#3|) (-10 -7 (-15 -2660 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3205 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2231 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2885 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4053 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1117) (-1117) (-1117)) (T -695))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-1 *7 *5)) (-5 *1 (-695 *5 *6 *7)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-695 *4 *5 *6)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *4 (-1117)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *5 (-1117)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *4 *5 *6)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1117)) (-4 *4 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *5 *4 *6)))))
-(-10 -7 (-15 -2660 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3205 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2231 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2885 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4053 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2302 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2544 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-696 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2544 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2544 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2302 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1066) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|) (-1066) (-383 |#5|) (-383 |#5|) (-698 |#5| |#6| |#7|)) (T -696))
-((-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1066)) (-4 *2 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *8 (-383 *2)) (-4 *9 (-383 *2)) (-5 *1 (-696 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-698 *5 *6 *7)) (-4 *10 (-698 *2 *8 *9)))) (-2544 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1066)) (-4 *8 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *2 (-698 *8 *9 *10)) (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-698 *5 *6 *7)) (-4 *9 (-383 *8)) (-4 *10 (-383 *8)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1066)) (-4 *8 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *2 (-698 *8 *9 *10)) (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-698 *5 *6 *7)) (-4 *9 (-383 *8)) (-4 *10 (-383 *8)))))
-(-10 -7 (-15 -2544 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2544 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2302 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2878 (($ (-782) (-782)) 42)) (-2564 (($ $ $) 71)) (-3153 (($ |#3|) 66) (($ $) 67)) (-3684 (((-112) $) 36)) (-3246 (($ $ (-575) (-575)) 82)) (-1926 (($ $ (-575) (-575)) 83)) (-2766 (($ $ (-575) (-575) (-575) (-575)) 88)) (-1370 (($ $) 69)) (-1938 (((-112) $) 15)) (-2198 (($ $ (-575) (-575) $) 89)) (-3052 ((|#2| $ (-575) (-575) |#2|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) 87)) (-1890 (($ (-782) |#2|) 53)) (-4316 (($ (-655 (-655 |#2|))) 51)) (-3194 (((-655 (-655 |#2|)) $) 78)) (-3231 (($ $ $) 70)) (-2849 (((-3 $ "failed") $ |#2|) 120)) (-2065 ((|#2| $ (-575) (-575)) NIL) ((|#2| $ (-575) (-575) |#2|) NIL) (($ $ (-655 (-575)) (-655 (-575))) 86)) (-2377 (($ (-655 |#2|)) 54) (($ (-655 $)) 56)) (-1940 (((-112) $) 28)) (-2882 (($ |#4|) 61) (((-873) $) NIL)) (-3229 (((-112) $) 38)) (-4038 (($ $ |#2|) 122)) (-4027 (($ $ $) 93) (($ $) 96)) (-4015 (($ $ $) 91)) (** (($ $ (-782)) 109) (($ $ (-575)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-575) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
-(((-697 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2882 ((-873) |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#2|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -2198 (|#1| |#1| (-575) (-575) |#1|)) (-15 -2766 (|#1| |#1| (-575) (-575) (-575) (-575))) (-15 -1926 (|#1| |#1| (-575) (-575))) (-15 -3246 (|#1| |#1| (-575) (-575))) (-15 -3052 (|#1| |#1| (-655 (-575)) (-655 (-575)) |#1|)) (-15 -2065 (|#1| |#1| (-655 (-575)) (-655 (-575)))) (-15 -3194 ((-655 (-655 |#2|)) |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -3153 (|#1| |#3|)) (-15 -2882 (|#1| |#4|)) (-15 -2377 (|#1| (-655 |#1|))) (-15 -2377 (|#1| (-655 |#2|))) (-15 -1890 (|#1| (-782) |#2|)) (-15 -4316 (|#1| (-655 (-655 |#2|)))) (-15 -2878 (|#1| (-782) (-782))) (-15 -3229 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -1938 ((-112) |#1|)) (-15 -3052 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) (-575)))) (-698 |#2| |#3| |#4|) (-1066) (-383 |#2|) (-383 |#2|)) (T -697))
-NIL
-(-10 -8 (-15 -2882 ((-873) |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4038 (|#1| |#1| |#2|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-782))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -2198 (|#1| |#1| (-575) (-575) |#1|)) (-15 -2766 (|#1| |#1| (-575) (-575) (-575) (-575))) (-15 -1926 (|#1| |#1| (-575) (-575))) (-15 -3246 (|#1| |#1| (-575) (-575))) (-15 -3052 (|#1| |#1| (-655 (-575)) (-655 (-575)) |#1|)) (-15 -2065 (|#1| |#1| (-655 (-575)) (-655 (-575)))) (-15 -3194 ((-655 (-655 |#2|)) |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -3153 (|#1| |#3|)) (-15 -2882 (|#1| |#4|)) (-15 -2377 (|#1| (-655 |#1|))) (-15 -2377 (|#1| (-655 |#2|))) (-15 -1890 (|#1| (-782) |#2|)) (-15 -4316 (|#1| (-655 (-655 |#2|)))) (-15 -2878 (|#1| (-782) (-782))) (-15 -3229 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -1938 ((-112) |#1|)) (-15 -3052 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) (-575))))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2878 (($ (-782) (-782)) 98)) (-2564 (($ $ $) 88)) (-3153 (($ |#2|) 92) (($ $) 91)) (-3684 (((-112) $) 100)) (-3246 (($ $ (-575) (-575)) 84)) (-1926 (($ $ (-575) (-575)) 83)) (-2766 (($ $ (-575) (-575) (-575) (-575)) 82)) (-1370 (($ $) 90)) (-1938 (((-112) $) 102)) (-3133 (((-112) $ (-782)) 8)) (-2198 (($ $ (-575) (-575) $) 81)) (-3052 ((|#1| $ (-575) (-575) |#1|) 45) (($ $ (-655 (-575)) (-655 (-575)) $) 85)) (-2657 (($ $ (-575) |#2|) 43)) (-1471 (($ $ (-575) |#3|) 42)) (-1890 (($ (-782) |#1|) 96)) (-3261 (($) 7 T CONST)) (-3699 (($ $) 68 (|has| |#1| (-316)))) (-2320 ((|#2| $ (-575)) 47)) (-4422 (((-782) $) 67 (|has| |#1| (-567)))) (-2857 ((|#1| $ (-575) (-575) |#1|) 44)) (-2786 ((|#1| $ (-575) (-575)) 49)) (-3999 (((-655 |#1|) $) 31)) (-3202 (((-782) $) 66 (|has| |#1| (-567)))) (-3216 (((-655 |#3|) $) 65 (|has| |#1| (-567)))) (-4243 (((-782) $) 52)) (-2303 (($ (-782) (-782) |#1|) 58)) (-4255 (((-782) $) 51)) (-3541 (((-112) $ (-782)) 9)) (-2314 ((|#1| $) 63 (|has| |#1| (-6 (-4462 "*"))))) (-4274 (((-575) $) 56)) (-1477 (((-575) $) 54)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3093 (((-575) $) 55)) (-4180 (((-575) $) 53)) (-4316 (($ (-655 (-655 |#1|))) 97)) (-2844 (($ (-1 |#1| |#1|) $) 35)) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3194 (((-655 (-655 |#1|)) $) 87)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-1729 (((-3 $ "failed") $) 62 (|has| |#1| (-373)))) (-3231 (($ $ $) 89)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) 57)) (-2849 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-567)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) (-575)) 50) ((|#1| $ (-575) (-575) |#1|) 48) (($ $ (-655 (-575)) (-655 (-575))) 86)) (-2377 (($ (-655 |#1|)) 95) (($ (-655 $)) 94)) (-1940 (((-112) $) 101)) (-4029 ((|#1| $) 64 (|has| |#1| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2324 ((|#3| $ (-575)) 46)) (-2882 (($ |#3|) 93) (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3229 (((-112) $) 99)) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) 69 (|has| |#1| (-373)))) (-4027 (($ $ $) 79) (($ $) 78)) (-4015 (($ $ $) 80)) (** (($ $ (-782)) 71) (($ $ (-575)) 61 (|has| |#1| (-373)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-575) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-698 |#1| |#2| |#3|) (-141) (-1066) (-383 |t#1|) (-383 |t#1|)) (T -698))
-((-1938 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-112)))) (-2878 (*1 *1 *2 *2) (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *2)) (-4 *4 (-383 *3)) (-4 *2 (-383 *3)))) (-3153 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *2 *4)) (-4 *2 (-383 *3)) (-4 *4 (-383 *3)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-1370 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-2564 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-655 (-655 *3))))) (-2065 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3052 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-3246 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-1926 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2766 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2198 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-4015 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-4027 (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (-4027 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-698 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *2 (-383 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-698 *3 *2 *4)) (-4 *3 (-1066)) (-4 *2 (-383 *3)) (-4 *4 (-383 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))) (-2849 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-567)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-373)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-316)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-655 *5)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-1729 (*1 *1 *1) (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-373)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-373)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4461) (-6 -4460) (-15 -1938 ((-112) $)) (-15 -1940 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3229 ((-112) $)) (-15 -2878 ($ (-782) (-782))) (-15 -4316 ($ (-655 (-655 |t#1|)))) (-15 -1890 ($ (-782) |t#1|)) (-15 -2377 ($ (-655 |t#1|))) (-15 -2377 ($ (-655 $))) (-15 -2882 ($ |t#3|)) (-15 -3153 ($ |t#2|)) (-15 -3153 ($ $)) (-15 -1370 ($ $)) (-15 -3231 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3194 ((-655 (-655 |t#1|)) $)) (-15 -2065 ($ $ (-655 (-575)) (-655 (-575)))) (-15 -3052 ($ $ (-655 (-575)) (-655 (-575)) $)) (-15 -3246 ($ $ (-575) (-575))) (-15 -1926 ($ $ (-575) (-575))) (-15 -2766 ($ $ (-575) (-575) (-575) (-575))) (-15 -2198 ($ $ (-575) (-575) $)) (-15 -4015 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -4027 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-575) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-782))) (IF (|has| |t#1| (-567)) (-15 -2849 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-373)) (-15 -4038 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-316)) (-15 -3699 ($ $)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-15 -4422 ((-782) $)) (-15 -3202 ((-782) $)) (-15 -3216 ((-655 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4462 "*"))) (PROGN (-15 -4029 (|t#1| $)) (-15 -2314 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-15 -1729 ((-3 $ "failed") $)) (-15 ** ($ $ (-575)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-57 |#1| |#2| |#3|) . T) ((-1235) . T))
-((-3699 ((|#4| |#4|) 92 (|has| |#1| (-316)))) (-4422 (((-782) |#4|) 120 (|has| |#1| (-567)))) (-3202 (((-782) |#4|) 96 (|has| |#1| (-567)))) (-3216 (((-655 |#3|) |#4|) 103 (|has| |#1| (-567)))) (-1775 (((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|) 135 (|has| |#1| (-316)))) (-2314 ((|#1| |#4|) 52)) (-2972 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-567)))) (-1729 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-373)))) (-2374 ((|#4| |#4|) 88 (|has| |#1| (-567)))) (-2511 ((|#4| |#4| |#1| (-575) (-575)) 60)) (-1667 ((|#4| |#4| (-575) (-575)) 55)) (-2932 ((|#4| |#4| |#1| (-575) (-575)) 65)) (-4029 ((|#1| |#4|) 98)) (-1702 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-567)))))
-(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4029 (|#1| |#4|)) (-15 -2314 (|#1| |#4|)) (-15 -1667 (|#4| |#4| (-575) (-575))) (-15 -2511 (|#4| |#4| |#1| (-575) (-575))) (-15 -2932 (|#4| |#4| |#1| (-575) (-575))) (IF (|has| |#1| (-567)) (PROGN (-15 -4422 ((-782) |#4|)) (-15 -3202 ((-782) |#4|)) (-15 -3216 ((-655 |#3|) |#4|)) (-15 -2374 (|#4| |#4|)) (-15 -2972 ((-3 |#4| "failed") |#4|)) (-15 -1702 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-316)) (PROGN (-15 -3699 (|#4| |#4|)) (-15 -1775 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -1729 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -699))
-((-1729 (*1 *2 *2) (|partial| -12 (-4 *3 (-373)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-699 *3 *4 *5 *6)) (-4 *6 (-698 *3 *4 *5)))) (-3699 (*1 *2 *2) (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-1702 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-2374 (*1 *2 *2) (-12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3216 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-2932 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3)) (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2)) (-4 *2 (-698 *3 *5 *6)))) (-2511 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3)) (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2)) (-4 *2 (-698 *3 *5 *6)))) (-1667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-575)) (-4 *4 (-174)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *1 (-699 *4 *5 *6 *2)) (-4 *2 (-698 *4 *5 *6)))) (-2314 (*1 *2 *3) (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174)) (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174)) (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5)))))
-(-10 -7 (-15 -4029 (|#1| |#4|)) (-15 -2314 (|#1| |#4|)) (-15 -1667 (|#4| |#4| (-575) (-575))) (-15 -2511 (|#4| |#4| |#1| (-575) (-575))) (-15 -2932 (|#4| |#4| |#1| (-575) (-575))) (IF (|has| |#1| (-567)) (PROGN (-15 -4422 ((-782) |#4|)) (-15 -3202 ((-782) |#4|)) (-15 -3216 ((-655 |#3|) |#4|)) (-15 -2374 (|#4| |#4|)) (-15 -2972 ((-3 |#4| "failed") |#4|)) (-15 -1702 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-316)) (PROGN (-15 -3699 (|#4| |#4|)) (-15 -1775 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -1729 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2878 (($ (-782) (-782)) 64)) (-2564 (($ $ $) NIL)) (-3153 (($ (-1285 |#1|)) NIL) (($ $) NIL)) (-3684 (((-112) $) NIL)) (-3246 (($ $ (-575) (-575)) 22)) (-1926 (($ $ (-575) (-575)) NIL)) (-2766 (($ $ (-575) (-575) (-575) (-575)) NIL)) (-1370 (($ $) NIL)) (-1938 (((-112) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-2198 (($ $ (-575) (-575) $) NIL)) (-3052 ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575)) $) NIL)) (-2657 (($ $ (-575) (-1285 |#1|)) NIL)) (-1471 (($ $ (-575) (-1285 |#1|)) NIL)) (-1890 (($ (-782) |#1|) 37)) (-3261 (($) NIL T CONST)) (-3699 (($ $) 46 (|has| |#1| (-316)))) (-2320 (((-1285 |#1|) $ (-575)) NIL)) (-4422 (((-782) $) 48 (|has| |#1| (-567)))) (-2857 ((|#1| $ (-575) (-575) |#1|) 69)) (-2786 ((|#1| $ (-575) (-575)) NIL)) (-3999 (((-655 |#1|) $) NIL)) (-3202 (((-782) $) 50 (|has| |#1| (-567)))) (-3216 (((-655 (-1285 |#1|)) $) 53 (|has| |#1| (-567)))) (-4243 (((-782) $) 32)) (-2303 (($ (-782) (-782) |#1|) 28)) (-4255 (((-782) $) 33)) (-3541 (((-112) $ (-782)) NIL)) (-2314 ((|#1| $) 44 (|has| |#1| (-6 (-4462 "*"))))) (-4274 (((-575) $) 10)) (-1477 (((-575) $) 11)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3093 (((-575) $) 14)) (-4180 (((-575) $) 65)) (-4316 (($ (-655 (-655 |#1|))) NIL)) (-2844 (($ (-1 |#1| |#1|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3194 (((-655 (-655 |#1|)) $) 76)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-1729 (((-3 $ "failed") $) 60 (|has| |#1| (-373)))) (-3231 (($ $ $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1652 (($ $ |#1|) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) (-575)) NIL) ((|#1| $ (-575) (-575) |#1|) NIL) (($ $ (-655 (-575)) (-655 (-575))) NIL)) (-2377 (($ (-655 |#1|)) NIL) (($ (-655 $)) NIL) (($ (-1285 |#1|)) 70)) (-1940 (((-112) $) NIL)) (-4029 ((|#1| $) 42 (|has| |#1| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2613 (((-547) $) 80 (|has| |#1| (-625 (-547))))) (-2324 (((-1285 |#1|) $ (-575)) NIL)) (-2882 (($ (-1285 |#1|)) NIL) (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3229 (((-112) $) NIL)) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $ $) NIL) (($ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) 38) (($ $ (-575)) 62 (|has| |#1| (-373)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-575) $) NIL) (((-1285 |#1|) $ (-1285 |#1|)) NIL) (((-1285 |#1|) (-1285 |#1|) $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-700 |#1|) (-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 -2377 ($ (-1285 |#1|))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -1729 ((-3 $ "failed") $)) |%noBranch|))) (-1066)) (T -700))
-((-1729 (*1 *1 *1) (|partial| -12 (-5 *1 (-700 *2)) (-4 *2 (-373)) (-4 *2 (-1066)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-700 *3)))))
-(-13 (-698 |#1| (-1285 |#1|) (-1285 |#1|)) (-10 -8 (-15 -2377 ($ (-1285 |#1|))) (IF (|has| |#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -1729 ((-3 $ "failed") $)) |%noBranch|)))
-((-4200 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|)) 37)) (-3691 (((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|) 32)) (-3364 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-782)) 43)) (-2369 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|)) 25)) (-3877 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|)) 29) (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 27)) (-2758 (((-700 |#1|) (-700 |#1|) |#1| (-700 |#1|)) 31)) (-2645 (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 23)) (** (((-700 |#1|) (-700 |#1|) (-782)) 46)))
-(((-701 |#1|) (-10 -7 (-15 -2645 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2369 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3877 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3877 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2758 ((-700 |#1|) (-700 |#1|) |#1| (-700 |#1|))) (-15 -3691 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -4200 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3364 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-782))) (-15 ** ((-700 |#1|) (-700 |#1|) (-782)))) (-1066)) (T -701))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-701 *4)))) (-3364 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-701 *4)))) (-4200 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-3691 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2758 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-3877 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-3877 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2369 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))) (-2645 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(-10 -7 (-15 -2645 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2369 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3877 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3877 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -2758 ((-700 |#1|) (-700 |#1|) |#1| (-700 |#1|))) (-15 -3691 ((-700 |#1|) (-700 |#1|) (-700 |#1|) |#1|)) (-15 -4200 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3364 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-700 |#1|) (-782))) (-15 ** ((-700 |#1|) (-700 |#1|) (-782))))
-((-2443 (((-3 |#1| "failed") $) 18)) (-4400 ((|#1| $) NIL)) (-2750 (($) 7 T CONST)) (-2317 (($ |#1|) 8)) (-2882 (($ |#1|) 16) (((-873) $) 23)) (-1977 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2750)) 11)) (-3132 ((|#1| $) 15)))
-(((-702 |#1|) (-13 (-1280) (-1055 |#1|) (-624 (-873)) (-10 -8 (-15 -2317 ($ |#1|)) (-15 -1977 ((-112) $ (|[\|\|]| |#1|))) (-15 -1977 ((-112) $ (|[\|\|]| -2750))) (-15 -3132 (|#1| $)) (-15 -2750 ($) -3736))) (-624 (-873))) (T -702))
-((-2317 (*1 *1 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-624 (-873))) (-5 *2 (-112)) (-5 *1 (-702 *4)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2750)) (-5 *2 (-112)) (-5 *1 (-702 *4)) (-4 *4 (-624 (-873))))) (-3132 (*1 *2 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))) (-2750 (*1 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))))
-(-13 (-1280) (-1055 |#1|) (-624 (-873)) (-10 -8 (-15 -2317 ($ |#1|)) (-15 -1977 ((-112) $ (|[\|\|]| |#1|))) (-15 -1977 ((-112) $ (|[\|\|]| -2750))) (-15 -3132 (|#1| $)) (-15 -2750 ($) -3736)))
-((-3903 ((|#2| |#2| |#4|) 29)) (-2305 (((-700 |#2|) |#3| |#4|) 35)) (-2042 (((-700 |#2|) |#2| |#4|) 34)) (-2615 (((-1285 |#2|) |#2| |#4|) 16)) (-2957 ((|#2| |#3| |#4|) 28)) (-2911 (((-700 |#2|) |#3| |#4| (-782) (-782)) 47)) (-2782 (((-700 |#2|) |#2| |#4| (-782)) 46)))
-(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2615 ((-1285 |#2|) |#2| |#4|)) (-15 -2957 (|#2| |#3| |#4|)) (-15 -3903 (|#2| |#2| |#4|)) (-15 -2042 ((-700 |#2|) |#2| |#4|)) (-15 -2782 ((-700 |#2|) |#2| |#4| (-782))) (-15 -2305 ((-700 |#2|) |#3| |#4|)) (-15 -2911 ((-700 |#2|) |#3| |#4| (-782) (-782)))) (-1117) (-913 |#1|) (-383 |#2|) (-13 (-383 |#1|) (-10 -7 (-6 -4460)))) (T -703))
-((-2911 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *7 (-913 *6)) (-5 *2 (-700 *7)) (-5 *1 (-703 *6 *7 *3 *4)) (-4 *3 (-383 *7)) (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460)))))) (-2305 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *6 (-913 *5)) (-5 *2 (-700 *6)) (-5 *1 (-703 *5 *6 *3 *4)) (-4 *3 (-383 *6)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))) (-2782 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *3 (-913 *6)) (-5 *2 (-700 *3)) (-5 *1 (-703 *6 *3 *7 *4)) (-4 *7 (-383 *3)) (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460)))))) (-2042 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-700 *3)) (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))) (-3903 (*1 *2 *2 *3) (-12 (-4 *4 (-1117)) (-4 *2 (-913 *4)) (-5 *1 (-703 *4 *2 *5 *3)) (-4 *5 (-383 *2)) (-4 *3 (-13 (-383 *4) (-10 -7 (-6 -4460)))))) (-2957 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *2 (-913 *5)) (-5 *1 (-703 *5 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))) (-2615 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-1285 *3)) (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))))
-(-10 -7 (-15 -2615 ((-1285 |#2|) |#2| |#4|)) (-15 -2957 (|#2| |#3| |#4|)) (-15 -3903 (|#2| |#2| |#4|)) (-15 -2042 ((-700 |#2|) |#2| |#4|)) (-15 -2782 ((-700 |#2|) |#2| |#4| (-782))) (-15 -2305 ((-700 |#2|) |#3| |#4|)) (-15 -2911 ((-700 |#2|) |#3| |#4| (-782) (-782))))
-((-1657 (((-2 (|:| |num| (-700 |#1|)) (|:| |den| |#1|)) (-700 |#2|)) 20)) (-2693 ((|#1| (-700 |#2|)) 9)) (-3439 (((-700 |#1|) (-700 |#2|)) 18)))
-(((-704 |#1| |#2|) (-10 -7 (-15 -2693 (|#1| (-700 |#2|))) (-15 -3439 ((-700 |#1|) (-700 |#2|))) (-15 -1657 ((-2 (|:| |num| (-700 |#1|)) (|:| |den| |#1|)) (-700 |#2|)))) (-567) (-1009 |#1|)) (T -704))
-((-1657 (*1 *2 *3) (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |num| (-700 *4)) (|:| |den| *4))) (-5 *1 (-704 *4 *5)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567)) (-5 *2 (-700 *4)) (-5 *1 (-704 *4 *5)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-700 *4)) (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-704 *2 *4)))))
-(-10 -7 (-15 -2693 (|#1| (-700 |#2|))) (-15 -3439 ((-700 |#1|) (-700 |#2|))) (-15 -1657 ((-2 (|:| |num| (-700 |#1|)) (|:| |den| |#1|)) (-700 |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-3831 (((-700 (-710))) NIL) (((-700 (-710)) (-1285 $)) NIL)) (-1448 (((-710) $) NIL)) (-3921 (($ $) NIL (|has| (-710) (-1220)))) (-3784 (($ $) NIL (|has| (-710) (-1220)))) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-710) (-359)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-3312 (($ $) NIL (-3763 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-4281 (((-429 $) $) NIL (-3763 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-2467 (($ $) NIL (-12 (|has| (-710) (-1019)) (|has| (-710) (-1220))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-3599 (((-112) $ $) NIL (|has| (-710) (-316)))) (-2409 (((-782)) NIL (|has| (-710) (-378)))) (-3895 (($ $) NIL (|has| (-710) (-1220)))) (-3759 (($ $) NIL (|has| (-710) (-1220)))) (-1521 (($ $) NIL (|has| (-710) (-1220)))) (-3805 (($ $) NIL (|has| (-710) (-1220)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-710) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-710) (-1055 (-418 (-575)))))) (-4400 (((-575) $) NIL) (((-710) $) NIL) (((-418 (-575)) $) NIL (|has| (-710) (-1055 (-418 (-575)))))) (-3898 (($ (-1285 (-710))) NIL) (($ (-1285 (-710)) (-1285 $)) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-710) (-359)))) (-2800 (($ $ $) NIL (|has| (-710) (-316)))) (-3405 (((-700 (-710)) $) NIL) (((-700 (-710)) $ (-1285 $)) NIL)) (-2862 (((-700 (-710)) (-1285 $)) NIL) (((-700 (-710)) (-700 $)) NIL) (((-2 (|:| -3415 (-700 (-710))) (|:| |vec| (-1285 (-710)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-710) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-710) (-650 (-575)))) (((-700 (-575)) (-1285 $)) NIL (|has| (-710) (-650 (-575))))) (-2302 (((-3 $ "failed") (-418 (-1190 (-710)))) NIL (|has| (-710) (-373))) (($ (-1190 (-710))) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2481 (((-710) $) 29)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL (|has| (-710) (-556)))) (-2188 (((-112) $) NIL (|has| (-710) (-556)))) (-1622 (((-418 (-575)) $) NIL (|has| (-710) (-556)))) (-4422 (((-936)) NIL)) (-2073 (($) NIL (|has| (-710) (-378)))) (-2811 (($ $ $) NIL (|has| (-710) (-316)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| (-710) (-316)))) (-1758 (($) NIL (|has| (-710) (-359)))) (-3228 (((-112) $) NIL (|has| (-710) (-359)))) (-2457 (($ $) NIL (|has| (-710) (-359))) (($ $ (-782)) NIL (|has| (-710) (-359)))) (-3559 (((-112) $) NIL (-3763 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-3998 (((-2 (|:| |r| (-710)) (|:| |phi| (-710))) $) NIL (-12 (|has| (-710) (-1077)) (|has| (-710) (-1220))))) (-1632 (($) NIL (|has| (-710) (-1220)))) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-710) (-898 (-389)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-710) (-898 (-575))))) (-3369 (((-844 (-936)) $) NIL (|has| (-710) (-359))) (((-936) $) NIL (|has| (-710) (-359)))) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (-12 (|has| (-710) (-1019)) (|has| (-710) (-1220))))) (-3390 (((-710) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-710) (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-710) (-316)))) (-3977 (((-1190 (-710)) $) NIL (|has| (-710) (-373)))) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-2544 (($ (-1 (-710) (-710)) $) NIL)) (-1894 (((-936) $) NIL (|has| (-710) (-378)))) (-3461 (($ $) NIL (|has| (-710) (-1220)))) (-2290 (((-1190 (-710)) $) NIL)) (-3886 (($ (-655 $)) NIL (|has| (-710) (-316))) (($ $ $) NIL (|has| (-710) (-316)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| (-710) (-373)))) (-3472 (($) NIL (|has| (-710) (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| (-710) (-378)))) (-2436 (($) NIL)) (-1965 (((-710) $) 31)) (-3912 (((-1137) $) NIL)) (-3657 (($) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-710) (-316)))) (-3923 (($ (-655 $)) NIL (|has| (-710) (-316))) (($ $ $) NIL (|has| (-710) (-316)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-710) (-359)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-710) (-316)) (|has| (-710) (-924))))) (-2347 (((-429 $) $) NIL (-3763 (-12 (|has| (-710) (-316)) (|has| (-710) (-924))) (|has| (-710) (-373))))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-710) (-316))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| (-710) (-316)))) (-2849 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-710)) NIL (|has| (-710) (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-710) (-316)))) (-2663 (($ $) NIL (|has| (-710) (-1220)))) (-3046 (($ $ (-1194) (-710)) NIL (|has| (-710) (-525 (-1194) (-710)))) (($ $ (-655 (-1194)) (-655 (-710))) NIL (|has| (-710) (-525 (-1194) (-710)))) (($ $ (-655 (-303 (-710)))) NIL (|has| (-710) (-318 (-710)))) (($ $ (-303 (-710))) NIL (|has| (-710) (-318 (-710)))) (($ $ (-710) (-710)) NIL (|has| (-710) (-318 (-710)))) (($ $ (-655 (-710)) (-655 (-710))) NIL (|has| (-710) (-318 (-710))))) (-1720 (((-782) $) NIL (|has| (-710) (-316)))) (-2065 (($ $ (-710)) NIL (|has| (-710) (-295 (-710) (-710))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| (-710) (-316)))) (-2801 (((-710)) NIL) (((-710) (-1285 $)) NIL)) (-2619 (((-3 (-782) "failed") $ $) NIL (|has| (-710) (-359))) (((-782) $) NIL (|has| (-710) (-359)))) (-2382 (($ $ (-1 (-710) (-710)) (-782)) NIL) (($ $ (-1 (-710) (-710))) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237)))) (($ $) NIL (-3763 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237))))) (-3797 (((-700 (-710)) (-1285 $) (-1 (-710) (-710))) NIL (|has| (-710) (-373)))) (-4436 (((-1190 (-710))) NIL)) (-1531 (($ $) NIL (|has| (-710) (-1220)))) (-3815 (($ $) NIL (|has| (-710) (-1220)))) (-1847 (($) NIL (|has| (-710) (-359)))) (-3935 (($ $) NIL (|has| (-710) (-1220)))) (-3795 (($ $) NIL (|has| (-710) (-1220)))) (-3907 (($ $) NIL (|has| (-710) (-1220)))) (-3772 (($ $) NIL (|has| (-710) (-1220)))) (-2209 (((-700 (-710)) (-1285 $)) NIL) (((-1285 (-710)) $) NIL) (((-700 (-710)) (-1285 $) (-1285 $)) NIL) (((-1285 (-710)) $ (-1285 $)) NIL)) (-2613 (((-547) $) NIL (|has| (-710) (-625 (-547)))) (((-171 (-227)) $) NIL (|has| (-710) (-1039))) (((-171 (-389)) $) NIL (|has| (-710) (-1039))) (((-904 (-389)) $) NIL (|has| (-710) (-625 (-904 (-389))))) (((-904 (-575)) $) NIL (|has| (-710) (-625 (-904 (-575))))) (($ (-1190 (-710))) NIL) (((-1190 (-710)) $) NIL) (($ (-1285 (-710))) NIL) (((-1285 (-710)) $) NIL)) (-3516 (($ $) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-3763 (-12 (|has| (-710) (-316)) (|has| $ (-146)) (|has| (-710) (-924))) (|has| (-710) (-359))))) (-3501 (($ (-710) (-710)) 12)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-575)) NIL) (($ (-710)) NIL) (($ (-171 (-389))) 13) (($ (-171 (-575))) 19) (($ (-171 (-710))) 28) (($ (-171 (-712))) 25) (((-171 (-389)) $) 33) (($ (-418 (-575))) NIL (-3763 (|has| (-710) (-1055 (-418 (-575)))) (|has| (-710) (-373))))) (-1724 (($ $) NIL (|has| (-710) (-359))) (((-3 $ "failed") $) NIL (-3763 (-12 (|has| (-710) (-316)) (|has| $ (-146)) (|has| (-710) (-924))) (|has| (-710) (-146))))) (-2765 (((-1190 (-710)) $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL)) (-1569 (($ $) NIL (|has| (-710) (-1220)))) (-3850 (($ $) NIL (|has| (-710) (-1220)))) (-3930 (((-112) $ $) NIL)) (-1544 (($ $) NIL (|has| (-710) (-1220)))) (-3826 (($ $) NIL (|has| (-710) (-1220)))) (-1593 (($ $) NIL (|has| (-710) (-1220)))) (-3871 (($ $) NIL (|has| (-710) (-1220)))) (-1387 (((-710) $) NIL (|has| (-710) (-1220)))) (-2912 (($ $) NIL (|has| (-710) (-1220)))) (-3883 (($ $) NIL (|has| (-710) (-1220)))) (-1583 (($ $) NIL (|has| (-710) (-1220)))) (-3861 (($ $) NIL (|has| (-710) (-1220)))) (-1554 (($ $) NIL (|has| (-710) (-1220)))) (-3837 (($ $) NIL (|has| (-710) (-1220)))) (-3863 (($ $) NIL (|has| (-710) (-1077)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-710) (-710)) (-782)) NIL) (($ $ (-1 (-710) (-710))) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-710) (-373)) (|has| (-710) (-913 (-1194)))) (|has| (-710) (-915 (-1194))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237)))) (($ $) NIL (-3763 (-12 (|has| (-710) (-238)) (|has| (-710) (-373))) (|has| (-710) (-237))))) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| (-710) (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ $) NIL (|has| (-710) (-1220))) (($ $ (-418 (-575))) NIL (-12 (|has| (-710) (-1019)) (|has| (-710) (-1220)))) (($ $ (-575)) NIL (|has| (-710) (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ (-710) $) NIL) (($ $ (-710)) NIL) (($ (-418 (-575)) $) NIL (|has| (-710) (-373))) (($ $ (-418 (-575))) NIL (|has| (-710) (-373)))))
-(((-705) (-13 (-398) (-167 (-710)) (-10 -8 (-15 -2882 ($ (-171 (-389)))) (-15 -2882 ($ (-171 (-575)))) (-15 -2882 ($ (-171 (-710)))) (-15 -2882 ($ (-171 (-712)))) (-15 -2882 ((-171 (-389)) $))))) (T -705))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-171 (-575))) (-5 *1 (-705)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-705)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-705)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705)))))
-(-13 (-398) (-167 (-710)) (-10 -8 (-15 -2882 ($ (-171 (-389)))) (-15 -2882 ($ (-171 (-575)))) (-15 -2882 ($ (-171 (-710)))) (-15 -2882 ($ (-171 (-712)))) (-15 -2882 ((-171 (-389)) $))))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-1932 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-1413 (($ $) 63)) (-4070 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41) (($ |#1| $ (-782)) 64)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-4203 (((-655 (-2 (|:| -3179 |#1|) (|:| -3922 (-782)))) $) 62)) (-3323 (($) 50) (($ (-655 |#1|)) 49)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 51)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-706 |#1|) (-141) (-1117)) (T -706))
-((-4218 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-706 *2)) (-4 *2 (-1117)))) (-1413 (*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1117)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-706 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-2 (|:| -3179 *3) (|:| -3922 (-782))))))))
-(-13 (-240 |t#1|) (-10 -8 (-15 -4218 ($ |t#1| $ (-782))) (-15 -1413 ($ $)) (-15 -4203 ((-655 (-2 (|:| -3179 |t#1|) (|:| -3922 (-782)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-1968 (((-655 |#1|) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))) (-575)) 65)) (-4185 ((|#1| |#1| (-575)) 62)) (-3923 ((|#1| |#1| |#1| (-575)) 46)) (-2347 (((-655 |#1|) |#1| (-575)) 49)) (-2071 ((|#1| |#1| (-575) |#1| (-575)) 40)) (-2070 (((-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))) |#1| (-575)) 61)))
-(((-707 |#1|) (-10 -7 (-15 -3923 (|#1| |#1| |#1| (-575))) (-15 -4185 (|#1| |#1| (-575))) (-15 -2347 ((-655 |#1|) |#1| (-575))) (-15 -2070 ((-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))) |#1| (-575))) (-15 -1968 ((-655 |#1|) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))) (-575))) (-15 -2071 (|#1| |#1| (-575) |#1| (-575)))) (-1261 (-575))) (T -707))
-((-2071 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| -2347 *5) (|:| -1753 (-575))))) (-5 *4 (-575)) (-4 *5 (-1261 *4)) (-5 *2 (-655 *5)) (-5 *1 (-707 *5)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-5 *2 (-655 (-2 (|:| -2347 *3) (|:| -1753 *4)))) (-5 *1 (-707 *3)) (-4 *3 (-1261 *4)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-5 *2 (-655 *3)) (-5 *1 (-707 *3)) (-4 *3 (-1261 *4)))) (-4185 (*1 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))) (-3923 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))))
-(-10 -7 (-15 -3923 (|#1| |#1| |#1| (-575))) (-15 -4185 (|#1| |#1| (-575))) (-15 -2347 ((-655 |#1|) |#1| (-575))) (-15 -2070 ((-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))) |#1| (-575))) (-15 -1968 ((-655 |#1|) (-655 (-2 (|:| -2347 |#1|) (|:| -1753 (-575)))) (-575))) (-15 -2071 (|#1| |#1| (-575) |#1| (-575))))
-((-1892 (((-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-1449 (((-1150 (-227)) (-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 53) (((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 55) (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 57)) (-1791 (((-1150 (-227)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-655 (-269))) NIL)) (-2258 (((-1150 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269))) 58)))
-(((-708) (-10 -7 (-15 -1449 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1449 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1449 ((-1150 (-227)) (-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -2258 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1791 ((-1150 (-227)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1892 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -708))
-((-1892 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-958 (-227)) (-227) (-227))) (-5 *1 (-708)))) (-1791 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) (-2258 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) (-1449 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-227))) (-5 *5 (-655 (-269))) (-5 *1 (-708)))) (-1449 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-227))) (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))) (-1449 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708)))))
-(-10 -7 (-15 -1449 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1449 ((-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1449 ((-1150 (-227)) (-1150 (-227)) (-1 (-958 (-227)) (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -2258 ((-1150 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1111 (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1791 ((-1150 (-227)) (-325 (-575)) (-325 (-575)) (-325 (-575)) (-1 (-227) (-227)) (-1111 (-227)) (-655 (-269)))) (-15 -1892 ((-1 (-958 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
-((-2347 (((-429 (-1190 |#4|)) (-1190 |#4|)) 86) (((-429 |#4|) |#4|) 266)))
-(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 |#4|) |#4|)) (-15 -2347 ((-429 (-1190 |#4|)) (-1190 |#4|)))) (-861) (-804) (-359) (-964 |#3| |#2| |#1|)) (T -709))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-709 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4)))))
-(-10 -7 (-15 -2347 ((-429 |#4|) |#4|)) (-15 -2347 ((-429 (-1190 |#4|)) (-1190 |#4|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 97)) (-3824 (((-575) $) 34)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-3449 (($ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-2467 (($ $) NIL)) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL)) (-3261 (($) NIL T CONST)) (-3069 (($ $) NIL)) (-2443 (((-3 (-575) "failed") $) 85) (((-3 (-418 (-575)) "failed") $) 28) (((-3 (-389) "failed") $) 82)) (-4400 (((-575) $) 87) (((-418 (-575)) $) 79) (((-389) $) 80)) (-2800 (($ $ $) 109)) (-4162 (((-3 $ "failed") $) 100)) (-2811 (($ $ $) 108)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-1500 (((-936)) 89) (((-936) (-936)) 88)) (-2359 (((-112) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL)) (-3369 (((-575) $) NIL)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL)) (-3390 (($ $) NIL)) (-1721 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3113 (((-575) (-575)) 94) (((-575)) 95)) (-1914 (($ $ $) NIL) (($) NIL (-12 (-3213 (|has| $ (-6 -4443))) (-3213 (|has| $ (-6 -4451)))))) (-4034 (((-575) (-575)) 92) (((-575)) 93)) (-3503 (($ $ $) NIL) (($) NIL (-12 (-3213 (|has| $ (-6 -4443))) (-3213 (|has| $ (-6 -4451)))))) (-3661 (((-575) $) 17)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 104)) (-4367 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL)) (-3920 (($ $) NIL)) (-1539 (($ (-575) (-575)) NIL) (($ (-575) (-575) (-936)) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) 105)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1658 (((-575) $) 24)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 107)) (-2323 (((-936)) NIL) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-4366 (((-936) (-575)) NIL (|has| $ (-6 -4451)))) (-2613 (((-389) $) NIL) (((-227) $) NIL) (((-904 (-389)) $) NIL)) (-2882 (((-873) $) 63) (($ (-575)) 75) (($ $) NIL) (($ (-418 (-575))) 78) (($ (-575)) 75) (($ (-418 (-575))) 78) (($ (-389)) 72) (((-389) $) 61) (($ (-712)) 66)) (-4421 (((-782)) 119 T CONST)) (-1723 (($ (-575) (-575) (-936)) 54)) (-4248 (($ $) NIL)) (-4189 (((-936)) NIL) (((-936) (-936)) NIL (|has| $ (-6 -4451)))) (-3685 (((-112) $ $) NIL)) (-1548 (((-936)) 91) (((-936) (-936)) 90)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL)) (-1989 (($) 37 T CONST)) (-2005 (($) 18 T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 96)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 118)) (-4038 (($ $ $) 77)) (-4027 (($ $) 115) (($ $ $) 116)) (-4015 (($ $ $) 114)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ $ (-418 (-575))) 103)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 110) (($ $ $) 101) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-710) (-13 (-415) (-398) (-373) (-1055 (-389)) (-1055 (-418 (-575))) (-148) (-10 -8 (-15 -1500 ((-936) (-936))) (-15 -1500 ((-936))) (-15 -1548 ((-936) (-936))) (-15 -4034 ((-575) (-575))) (-15 -4034 ((-575))) (-15 -3113 ((-575) (-575))) (-15 -3113 ((-575))) (-15 -2882 ((-389) $)) (-15 -2882 ($ (-712))) (-15 -3661 ((-575) $)) (-15 -1658 ((-575) $)) (-15 -1723 ($ (-575) (-575) (-936)))))) (T -710))
-((-1658 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-1500 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) (-1548 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))) (-4034 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-4034 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-3113 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-389)) (-5 *1 (-710)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-710)))) (-1723 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-5 *1 (-710)))))
-(-13 (-415) (-398) (-373) (-1055 (-389)) (-1055 (-418 (-575))) (-148) (-10 -8 (-15 -1500 ((-936) (-936))) (-15 -1500 ((-936))) (-15 -1548 ((-936) (-936))) (-15 -4034 ((-575) (-575))) (-15 -4034 ((-575))) (-15 -3113 ((-575) (-575))) (-15 -3113 ((-575))) (-15 -2882 ((-389) $)) (-15 -2882 ($ (-712))) (-15 -3661 ((-575) $)) (-15 -1658 ((-575) $)) (-15 -1723 ($ (-575) (-575) (-936)))))
-((-2587 (((-700 |#1|) (-700 |#1|) |#1| |#1|) 85)) (-3699 (((-700 |#1|) (-700 |#1|) |#1|) 66)) (-1958 (((-700 |#1|) (-700 |#1|) |#1|) 86)) (-2123 (((-700 |#1|) (-700 |#1|)) 67)) (-1775 (((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|) 84)))
-(((-711 |#1|) (-10 -7 (-15 -2123 ((-700 |#1|) (-700 |#1|))) (-15 -3699 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -1958 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -2587 ((-700 |#1|) (-700 |#1|) |#1| |#1|)) (-15 -1775 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|))) (-316)) (T -711))
-((-1775 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-711 *3)) (-4 *3 (-316)))) (-2587 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) (-3699 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))))
-(-10 -7 (-15 -2123 ((-700 |#1|) (-700 |#1|))) (-15 -3699 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -1958 ((-700 |#1|) (-700 |#1|) |#1|)) (-15 -2587 ((-700 |#1|) (-700 |#1|) |#1| |#1|)) (-15 -1775 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2803 (($ $ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL)) (-3624 (($ $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) 31)) (-4400 (((-575) $) 29)) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL)) (-2188 (((-112) $) NIL)) (-1622 (((-418 (-575)) $) NIL)) (-2073 (($ $) NIL) (($) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-3623 (($ $ $ $) NIL)) (-3509 (($ $ $) NIL)) (-2359 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-3900 (((-112) $) NIL)) (-4254 (((-112) $) NIL)) (-2808 (((-3 $ "failed") $) NIL)) (-1721 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3899 (($ $ $ $) NIL)) (-1914 (($ $ $) NIL)) (-1404 (((-936) (-936)) 10) (((-936)) 9)) (-3503 (($ $ $) NIL)) (-3535 (($ $) NIL)) (-1840 (($ $) NIL)) (-3886 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3121 (($ $ $) NIL)) (-3472 (($) NIL T CONST)) (-3044 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2031 (($ $) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-782)) NIL) (($ $) NIL)) (-3351 (($ $) NIL)) (-3076 (($ $) NIL)) (-2613 (((-227) $) NIL) (((-389) $) NIL) (((-904 (-575)) $) NIL) (((-547) $) NIL) (((-575) $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) 28) (($ $) NIL) (($ (-575)) 28) (((-325 $) (-325 (-575))) 18)) (-4421 (((-782)) NIL T CONST)) (-2646 (((-112) $ $) NIL)) (-2266 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-1548 (($) NIL)) (-3930 (((-112) $ $) NIL)) (-1598 (($ $ $ $) NIL)) (-3863 (($ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-782)) NIL) (($ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL)))
-(((-712) (-13 (-398) (-556) (-10 -8 (-15 -1404 ((-936) (-936))) (-15 -1404 ((-936))) (-15 -2882 ((-325 $) (-325 (-575))))))) (T -712))
-((-1404 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712)))) (-1404 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-325 (-575))) (-5 *2 (-325 (-712))) (-5 *1 (-712)))))
-(-13 (-398) (-556) (-10 -8 (-15 -1404 ((-936) (-936))) (-15 -1404 ((-936))) (-15 -2882 ((-325 $) (-325 (-575))))))
-((-2109 (((-1 |#4| |#2| |#3|) |#1| (-1194) (-1194)) 19)) (-3769 (((-1 |#4| |#2| |#3|) (-1194)) 12)))
-(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3769 ((-1 |#4| |#2| |#3|) (-1194))) (-15 -2109 ((-1 |#4| |#2| |#3|) |#1| (-1194) (-1194)))) (-625 (-547)) (-1235) (-1235) (-1235)) (T -713))
-((-2109 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *3 *5 *6 *7)) (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)) (-4 *7 (-1235)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *4 *5 *6 *7)) (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)) (-4 *7 (-1235)))))
-(-10 -7 (-15 -3769 ((-1 |#4| |#2| |#3|) (-1194))) (-15 -2109 ((-1 |#4| |#2| |#3|) |#1| (-1194) (-1194))))
-((-4411 (((-1 (-227) (-227) (-227)) |#1| (-1194) (-1194)) 43) (((-1 (-227) (-227)) |#1| (-1194)) 48)))
-(((-714 |#1|) (-10 -7 (-15 -4411 ((-1 (-227) (-227)) |#1| (-1194))) (-15 -4411 ((-1 (-227) (-227) (-227)) |#1| (-1194) (-1194)))) (-625 (-547))) (T -714))
-((-4411 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-714 *3)) (-4 *3 (-625 (-547))))) (-4411 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-714 *3)) (-4 *3 (-625 (-547))))))
-(-10 -7 (-15 -4411 ((-1 (-227) (-227)) |#1| (-1194))) (-15 -4411 ((-1 (-227) (-227) (-227)) |#1| (-1194) (-1194))))
-((-3760 (((-1194) |#1| (-1194) (-655 (-1194))) 10) (((-1194) |#1| (-1194) (-1194) (-1194)) 13) (((-1194) |#1| (-1194) (-1194)) 12) (((-1194) |#1| (-1194)) 11)))
-(((-715 |#1|) (-10 -7 (-15 -3760 ((-1194) |#1| (-1194))) (-15 -3760 ((-1194) |#1| (-1194) (-1194))) (-15 -3760 ((-1194) |#1| (-1194) (-1194) (-1194))) (-15 -3760 ((-1194) |#1| (-1194) (-655 (-1194))))) (-625 (-547))) (T -715))
-((-3760 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) (-3760 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) (-3760 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))) (-3760 (*1 *2 *3 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547))))))
-(-10 -7 (-15 -3760 ((-1194) |#1| (-1194))) (-15 -3760 ((-1194) |#1| (-1194) (-1194))) (-15 -3760 ((-1194) |#1| (-1194) (-1194) (-1194))) (-15 -3760 ((-1194) |#1| (-1194) (-655 (-1194)))))
-((-4048 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-716 |#1| |#2|) (-10 -7 (-15 -4048 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1235) (-1235)) (T -716))
-((-4048 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1235)) (-4 *4 (-1235)))))
-(-10 -7 (-15 -4048 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-4360 (((-1 |#3| |#2|) (-1194)) 11)) (-2109 (((-1 |#3| |#2|) |#1| (-1194)) 21)))
-(((-717 |#1| |#2| |#3|) (-10 -7 (-15 -4360 ((-1 |#3| |#2|) (-1194))) (-15 -2109 ((-1 |#3| |#2|) |#1| (-1194)))) (-625 (-547)) (-1235) (-1235)) (T -717))
-((-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *3 *5 *6)) (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)))) (-4360 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *4 *5 *6)) (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)))))
-(-10 -7 (-15 -4360 ((-1 |#3| |#2|) (-1194))) (-15 -2109 ((-1 |#3| |#2|) |#1| (-1194))))
-((-1487 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#4|)) (-655 |#3|) (-655 |#4|) (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| |#4|)))) (-655 (-782)) (-1285 (-655 (-1190 |#3|))) |#3|) 92)) (-2341 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#3|)) (-655 |#3|) (-655 |#4|) (-655 (-782)) |#3|) 110)) (-3193 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 |#3|) (-655 (-782)) (-655 (-1190 |#4|)) (-1285 (-655 (-1190 |#3|))) |#3|) 47)))
-(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3193 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 |#3|) (-655 (-782)) (-655 (-1190 |#4|)) (-1285 (-655 (-1190 |#3|))) |#3|)) (-15 -2341 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#3|)) (-655 |#3|) (-655 |#4|) (-655 (-782)) |#3|)) (-15 -1487 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#4|)) (-655 |#3|) (-655 |#4|) (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| |#4|)))) (-655 (-782)) (-1285 (-655 (-1190 |#3|))) |#3|))) (-804) (-861) (-316) (-964 |#3| |#1| |#2|)) (T -718))
-((-1487 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-655 (-1190 *13))) (-5 *3 (-1190 *13)) (-5 *4 (-655 *12)) (-5 *5 (-655 *10)) (-5 *6 (-655 *13)) (-5 *7 (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| *13))))) (-5 *8 (-655 (-782))) (-5 *9 (-1285 (-655 (-1190 *10)))) (-4 *12 (-861)) (-4 *10 (-316)) (-4 *13 (-964 *10 *11 *12)) (-4 *11 (-804)) (-5 *1 (-718 *11 *12 *10 *13)))) (-2341 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-655 *11)) (-5 *5 (-655 (-1190 *9))) (-5 *6 (-655 *9)) (-5 *7 (-655 *12)) (-5 *8 (-655 (-782))) (-4 *11 (-861)) (-4 *9 (-316)) (-4 *12 (-964 *9 *10 *11)) (-4 *10 (-804)) (-5 *2 (-655 (-1190 *12))) (-5 *1 (-718 *10 *11 *9 *12)) (-5 *3 (-1190 *12)))) (-3193 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-655 (-1190 *11))) (-5 *3 (-1190 *11)) (-5 *4 (-655 *10)) (-5 *5 (-655 *8)) (-5 *6 (-655 (-782))) (-5 *7 (-1285 (-655 (-1190 *8)))) (-4 *10 (-861)) (-4 *8 (-316)) (-4 *11 (-964 *8 *9 *10)) (-4 *9 (-804)) (-5 *1 (-718 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3193 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 |#3|) (-655 (-782)) (-655 (-1190 |#4|)) (-1285 (-655 (-1190 |#3|))) |#3|)) (-15 -2341 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#3|)) (-655 |#3|) (-655 |#4|) (-655 (-782)) |#3|)) (-15 -1487 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-655 |#2|) (-655 (-1190 |#4|)) (-655 |#3|) (-655 |#4|) (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| |#4|)))) (-655 (-782)) (-1285 (-655 (-1190 |#3|))) |#3|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4406 (($ $) 48)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-2414 (($ |#1| (-782)) 46)) (-3143 (((-782) $) 50)) (-4383 ((|#1| $) 49)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-1753 (((-782) $) 51)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3002 ((|#1| $ (-782)) 47)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
-(((-719 |#1|) (-141) (-1066)) (T -719))
-((-1753 (*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066)))))
-(-13 (-1066) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1753 ((-782) $)) (-15 -3143 ((-782) $)) (-15 -4383 (|t#1| $)) (-15 -4406 ($ $)) (-15 -3002 (|t#1| $ (-782))) (-15 -2414 ($ |t#1| (-782)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2544 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-720 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2544 (|#6| (-1 |#4| |#1|) |#3|))) (-567) (-1261 |#1|) (-1261 (-418 |#2|)) (-567) (-1261 |#4|) (-1261 (-418 |#5|))) (T -720))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-567)) (-4 *7 (-567)) (-4 *6 (-1261 *5)) (-4 *2 (-1261 (-418 *8))) (-5 *1 (-720 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1261 (-418 *6))) (-4 *8 (-1261 *7)))))
-(-10 -7 (-15 -2544 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2592 (((-1176) (-873)) 38)) (-2478 (((-1290) (-1176)) 31)) (-2938 (((-1176) (-873)) 28)) (-3130 (((-1176) (-873)) 29)) (-2882 (((-873) $) NIL) (((-1176) (-873)) 27)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-721) (-13 (-1117) (-10 -7 (-15 -2882 ((-1176) (-873))) (-15 -2938 ((-1176) (-873))) (-15 -3130 ((-1176) (-873))) (-15 -2592 ((-1176) (-873))) (-15 -2478 ((-1290) (-1176)))))) (T -721))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-721)))))
-(-13 (-1117) (-10 -7 (-15 -2882 ((-1176) (-873))) (-15 -2938 ((-1176) (-873))) (-15 -3130 ((-1176) (-873))) (-15 -2592 ((-1176) (-873))) (-15 -2478 ((-1290) (-1176)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-2302 (($ |#1| |#2|) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1444 ((|#2| $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-2998 (((-3 $ "failed") $ $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) ((|#1| $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-722 |#1| |#2| |#3| |#4| |#5|) (-13 (-373) (-10 -8 (-15 -1444 (|#2| $)) (-15 -2882 (|#1| $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2998 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -722))
-((-1444 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-722 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2302 (*1 *1 *2 *3) (-12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2998 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-373) (-10 -8 (-15 -1444 (|#2| $)) (-15 -2882 (|#1| $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2998 ((-3 $ "failed") $ $))))
-((-2859 (((-112) $ $) 87)) (-2045 (((-112) $) 36)) (-1770 (((-1285 |#1|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-2132 (($ (-1190 |#1|)) NIL)) (-3462 (((-1190 $) $ (-1099)) NIL) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ $) NIL (|has| |#1| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-2409 (((-782)) 54 (|has| |#1| (-378)))) (-4246 (($ $ (-782)) NIL)) (-2681 (($ $ (-782)) NIL)) (-1868 ((|#2| |#2|) 50)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-463)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1099) $) NIL)) (-4171 (($ $ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 40)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-2302 (($ |#2|) 48)) (-4162 (((-3 $ "failed") $) 97)) (-2073 (($) 58 (|has| |#1| (-378)))) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2804 (($ $ $) NIL)) (-2284 (($ $ $) NIL (|has| |#1| (-567)))) (-1568 (((-2 (|:| -1754 |#1|) (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-2205 (((-973 $)) 89)) (-4384 (($ $ |#1| (-782) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3369 (((-782) $ $) NIL (|has| |#1| (-567)))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-2430 (($ (-1190 |#1|) (-1099)) NIL) (($ (-1190 $) (-1099)) NIL)) (-1752 (($ $ (-782)) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) 85) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1099)) NIL) (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-1444 ((|#2|) 51)) (-3143 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-1946 (($ (-1 (-782) (-782)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2918 (((-1190 |#1|) $) NIL)) (-2187 (((-3 (-1099) "failed") $) NIL)) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-2290 ((|#2| $) 47)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) 34)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-3888 (((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782)) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-1099)) (|:| -1658 (-782))) "failed") $) NIL)) (-4388 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3472 (($) NIL (|has| |#1| (-1169)) CONST)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-3606 (($ $) 88 (|has| |#1| (-359)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-655 (-1099)) (-655 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) NIL (|has| |#1| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#1| (-567)))) (-2720 (((-3 $ "failed") $ (-782)) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 98 (|has| |#1| (-373)))) (-2801 (($ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-1753 (((-782) $) 38) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2943 (((-973 $)) 42)) (-4095 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#1| (-567)))) (-2882 (((-873) $) 68) (($ (-575)) NIL) (($ |#1|) 65) (($ (-1099)) NIL) (($ |#2|) 75) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) 70) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) 25 T CONST)) (-2396 (((-1285 |#1|) $) 83)) (-2732 (($ (-1285 |#1|)) 57)) (-2005 (($) 8 T CONST)) (-3428 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3418 (((-1285 |#1|) $) NIL)) (-3913 (((-112) $ $) 76)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) 79) (($ $ $) NIL)) (-4015 (($ $ $) 39)) (** (($ $ (-936)) NIL) (($ $ (-782)) 92)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 64) (($ $ $) 82) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
-(((-723 |#1| |#2|) (-13 (-1261 |#1|) (-627 |#2|) (-10 -8 (-15 -1868 (|#2| |#2|)) (-15 -1444 (|#2|)) (-15 -2302 ($ |#2|)) (-15 -2290 (|#2| $)) (-15 -2396 ((-1285 |#1|) $)) (-15 -2732 ($ (-1285 |#1|))) (-15 -3418 ((-1285 |#1|) $)) (-15 -2205 ((-973 $))) (-15 -2943 ((-973 $))) (IF (|has| |#1| (-359)) (-15 -3606 ($ $)) |%noBranch|) (IF (|has| |#1| (-378)) (-6 (-378)) |%noBranch|))) (-1066) (-1261 |#1|)) (T -723))
-((-1868 (*1 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3)))) (-1444 (*1 *2) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066)))) (-2302 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3)))) (-2290 (*1 *2 *1) (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-2732 (*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-3418 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-2205 (*1 *2) (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-2943 (*1 *2) (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4)) (-4 *4 (-1261 *3)))) (-3606 (*1 *1 *1) (-12 (-4 *2 (-359)) (-4 *2 (-1066)) (-5 *1 (-723 *2 *3)) (-4 *3 (-1261 *2)))))
-(-13 (-1261 |#1|) (-627 |#2|) (-10 -8 (-15 -1868 (|#2| |#2|)) (-15 -1444 (|#2|)) (-15 -2302 ($ |#2|)) (-15 -2290 (|#2| $)) (-15 -2396 ((-1285 |#1|) $)) (-15 -2732 ($ (-1285 |#1|))) (-15 -3418 ((-1285 |#1|) $)) (-15 -2205 ((-973 $))) (-15 -2943 ((-973 $))) (IF (|has| |#1| (-359)) (-15 -3606 ($ $)) |%noBranch|) (IF (|has| |#1| (-378)) (-6 (-378)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 ((|#1| $) 13)) (-3912 (((-1137) $) NIL)) (-1658 ((|#2| $) 12)) (-2893 (($ |#1| |#2|) 16)) (-2882 (((-873) $) NIL) (($ (-2 (|:| -4317 |#1|) (|:| -1658 |#2|))) 15) (((-2 (|:| -4317 |#1|) (|:| -1658 |#2|)) $) 14)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 11)))
-(((-724 |#1| |#2| |#3|) (-13 (-861) (-501 (-2 (|:| -4317 |#1|) (|:| -1658 |#2|))) (-10 -8 (-15 -1658 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -2893 ($ |#1| |#2|)))) (-861) (-1117) (-1 (-112) (-2 (|:| -4317 |#1|) (|:| -1658 |#2|)) (-2 (|:| -4317 |#1|) (|:| -1658 |#2|)))) (T -724))
-((-1658 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-724 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-112) (-2 (|:| -4317 *3) (|:| -1658 *2)) (-2 (|:| -4317 *3) (|:| -1658 *2)))))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-724 *2 *3 *4)) (-4 *3 (-1117)) (-14 *4 (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *3)) (-2 (|:| -4317 *2) (|:| -1658 *3)))))) (-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-724 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1117)) (-14 *4 (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *3)) (-2 (|:| -4317 *2) (|:| -1658 *3)))))))
-(-13 (-861) (-501 (-2 (|:| -4317 |#1|) (|:| -1658 |#2|))) (-10 -8 (-15 -1658 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -2893 ($ |#1| |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 66)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-4400 ((|#1| $) NIL) (((-115) $) 39)) (-4162 (((-3 $ "failed") $) 103)) (-1733 ((|#2| (-115) |#2|) 93)) (-3900 (((-112) $) NIL)) (-2441 (($ |#1| (-371 (-115))) 14)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1936 (($ $ (-1 |#2| |#2|)) 65)) (-3097 (($ $ (-1 |#2| |#2|)) 44)) (-2065 ((|#2| $ |#2|) 33)) (-1690 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2882 (((-873) $) 73) (($ (-575)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) 37 T CONST)) (-3685 (((-112) $ $) NIL)) (-1702 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-1989 (($) 21 T CONST)) (-2005 (($) 9 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) 48) (($ $ $) NIL)) (-4015 (($ $ $) 83)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ (-115) (-575)) NIL) (($ $ (-575)) 64)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
-(((-725 |#1| |#2|) (-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1702 ($ $)) (-15 -1702 ($ $ $)) (-15 -1690 (|#1| |#1|))) |%noBranch|) (-15 -3097 ($ $ (-1 |#2| |#2|))) (-15 -1936 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -1733 (|#2| (-115) |#2|)) (-15 -2441 ($ |#1| (-371 (-115)))))) (-1066) (-659 |#1|)) (T -725))
-((-1702 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) (-4 *3 (-659 *2)))) (-1702 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) (-4 *3 (-659 *2)))) (-1690 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3)) (-4 *3 (-659 *2)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-725 *4 *5)) (-4 *5 (-659 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4)) (-4 *4 (-659 *3)))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1066)) (-5 *1 (-725 *4 *2)) (-4 *2 (-659 *4)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *3 (-371 (-115))) (-4 *2 (-1066)) (-5 *1 (-725 *2 *4)) (-4 *4 (-659 *2)))))
-(-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1702 ($ $)) (-15 -1702 ($ $ $)) (-15 -1690 (|#1| |#1|))) |%noBranch|) (-15 -3097 ($ $ (-1 |#2| |#2|))) (-15 -1936 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -1733 (|#2| (-115) |#2|)) (-15 -2441 ($ |#1| (-371 (-115))))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 33)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2302 (($ |#1| |#2|) 25)) (-4162 (((-3 $ "failed") $) 51)) (-3900 (((-112) $) 35)) (-1444 ((|#2| $) 12)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 52)) (-3912 (((-1137) $) NIL)) (-2998 (((-3 $ "failed") $ $) 50)) (-2882 (((-873) $) 24) (($ (-575)) 19) ((|#1| $) 13)) (-4421 (((-782)) 28 T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 16 T CONST)) (-2005 (($) 30 T CONST)) (-3913 (((-112) $ $) 41)) (-4027 (($ $) 46) (($ $ $) 40)) (-4015 (($ $ $) 43)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 21) (($ $ $) 20)))
-(((-726 |#1| |#2| |#3| |#4| |#5|) (-13 (-1066) (-10 -8 (-15 -1444 (|#2| $)) (-15 -2882 (|#1| $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2998 ((-3 $ "failed") $ $)) (-15 -4162 ((-3 $ "failed") $)) (-15 -4332 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -726))
-((-4162 (*1 *1 *1) (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1444 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-726 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2302 (*1 *1 *2 *3) (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2998 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4332 (*1 *1 *1) (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1066) (-10 -8 (-15 -1444 (|#2| $)) (-15 -2882 (|#1| $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2998 ((-3 $ "failed") $ $)) (-15 -4162 ((-3 $ "failed") $)) (-15 -4332 ($ $))))
-((* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-727 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-728 |#2|) (-174)) (T -727))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-728 |#1|) (-141) (-174)) (T -728))
-NIL
-(-13 (-111 |t#1| |t#1|) (-651 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-3624 (($ |#1|) 17) (($ $ |#1|) 20)) (-4283 (($ |#1|) 18) (($ $ |#1|) 21)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3900 (((-112) $) NIL)) (-3346 (($ |#1| |#1| |#1| |#1|) 8)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 16)) (-3912 (((-1137) $) NIL)) (-3046 ((|#1| $ |#1|) 24) (((-844 |#1|) $ (-844 |#1|)) 32)) (-3516 (($ $ $) NIL)) (-4152 (($ $ $) NIL)) (-2882 (((-873) $) 39)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 9 T CONST)) (-3913 (((-112) $ $) 48)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ $ $) 14)))
-(((-729 |#1|) (-13 (-484) (-10 -8 (-15 -3346 ($ |#1| |#1| |#1| |#1|)) (-15 -3624 ($ |#1|)) (-15 -4283 ($ |#1|)) (-15 -4162 ($)) (-15 -3624 ($ $ |#1|)) (-15 -4283 ($ $ |#1|)) (-15 -4162 ($ $)) (-15 -3046 (|#1| $ |#1|)) (-15 -3046 ((-844 |#1|) $ (-844 |#1|))))) (-373)) (T -729))
-((-3346 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3624 (*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-4283 (*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-4162 (*1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3046 (*1 *2 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))) (-3046 (*1 *2 *1 *2) (-12 (-5 *2 (-844 *3)) (-4 *3 (-373)) (-5 *1 (-729 *3)))))
-(-13 (-484) (-10 -8 (-15 -3346 ($ |#1| |#1| |#1| |#1|)) (-15 -3624 ($ |#1|)) (-15 -4283 ($ |#1|)) (-15 -4162 ($)) (-15 -3624 ($ $ |#1|)) (-15 -4283 ($ $ |#1|)) (-15 -4162 ($ $)) (-15 -3046 (|#1| $ |#1|)) (-15 -3046 ((-844 |#1|) $ (-844 |#1|)))))
-((-1810 (($ $ (-936)) 19)) (-3643 (($ $ (-936)) 20)) (** (($ $ (-936)) 10)))
-(((-730 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-936))) (-15 -3643 (|#1| |#1| (-936))) (-15 -1810 (|#1| |#1| (-936)))) (-731)) (T -730))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-936))) (-15 -3643 (|#1| |#1| (-936))) (-15 -1810 (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-1810 (($ $ (-936)) 16)) (-3643 (($ $ (-936)) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)) (** (($ $ (-936)) 14)) (* (($ $ $) 17)))
-(((-731) (-141)) (T -731))
-((* (*1 *1 *1 *1) (-4 *1 (-731))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) (-3643 (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936)))))
-(-13 (-1117) (-10 -8 (-15 * ($ $ $)) (-15 -1810 ($ $ (-936))) (-15 -3643 ($ $ (-936))) (-15 ** ($ $ (-936)))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-1810 (($ $ (-936)) NIL) (($ $ (-782)) 18)) (-3900 (((-112) $) 10)) (-3643 (($ $ (-936)) NIL) (($ $ (-782)) 19)) (** (($ $ (-936)) NIL) (($ $ (-782)) 16)))
-(((-732 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-782))) (-15 -3643 (|#1| |#1| (-782))) (-15 -1810 (|#1| |#1| (-782))) (-15 -3900 ((-112) |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -3643 (|#1| |#1| (-936))) (-15 -1810 (|#1| |#1| (-936)))) (-733)) (T -732))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-782))) (-15 -3643 (|#1| |#1| (-782))) (-15 -1810 (|#1| |#1| (-782))) (-15 -3900 ((-112) |#1|)) (-15 ** (|#1| |#1| (-936))) (-15 -3643 (|#1| |#1| (-936))) (-15 -1810 (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-3952 (((-3 $ "failed") $) 18)) (-1810 (($ $ (-936)) 16) (($ $ (-782)) 23)) (-4162 (((-3 $ "failed") $) 20)) (-3900 (((-112) $) 24)) (-3284 (((-3 $ "failed") $) 19)) (-3643 (($ $ (-936)) 15) (($ $ (-782)) 22)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2005 (($) 25 T CONST)) (-3913 (((-112) $ $) 6)) (** (($ $ (-936)) 14) (($ $ (-782)) 21)) (* (($ $ $) 17)))
-(((-733) (-141)) (T -733))
-((-2005 (*1 *1) (-4 *1 (-733))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-733)) (-5 *2 (-112)))) (-1810 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) (-3643 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))) (-4162 (*1 *1 *1) (|partial| -4 *1 (-733))) (-3284 (*1 *1 *1) (|partial| -4 *1 (-733))) (-3952 (*1 *1 *1) (|partial| -4 *1 (-733))))
-(-13 (-731) (-10 -8 (-15 (-2005) ($) -3736) (-15 -3900 ((-112) $)) (-15 -1810 ($ $ (-782))) (-15 -3643 ($ $ (-782))) (-15 ** ($ $ (-782))) (-15 -4162 ((-3 $ "failed") $)) (-15 -3284 ((-3 $ "failed") $)) (-15 -3952 ((-3 $ "failed") $))))
-(((-102) . T) ((-624 (-873)) . T) ((-731) . T) ((-1117) . T))
-((-2409 (((-782)) 39)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4400 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 23)) (-2302 (($ |#3|) NIL) (((-3 $ "failed") (-418 |#3|)) 49)) (-4162 (((-3 $ "failed") $) 69)) (-2073 (($) 43)) (-3390 ((|#2| $) 21)) (-3657 (($) 18)) (-2382 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL) (($ $ (-782)) NIL) (($ $) NIL)) (-3797 (((-700 |#2|) (-1285 $) (-1 |#2| |#2|)) 64)) (-2613 (((-1285 |#2|) $) NIL) (($ (-1285 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2765 ((|#3| $) 36)) (-2098 (((-1285 $)) 33)))
-(((-734 |#1| |#2| |#3|) (-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2073 (|#1|)) (-15 -2409 ((-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3797 ((-700 |#2|) (-1285 |#1|) (-1 |#2| |#2|))) (-15 -2302 ((-3 |#1| "failed") (-418 |#3|))) (-15 -2613 (|#1| |#3|)) (-15 -2302 (|#1| |#3|)) (-15 -3657 (|#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2613 (|#3| |#1|)) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -2098 ((-1285 |#1|))) (-15 -2765 (|#3| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|))) (-735 |#2| |#3|) (-174) (-1261 |#2|)) (T -734))
-((-2409 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-782)) (-5 *1 (-734 *3 *4 *5)) (-4 *3 (-735 *4 *5)))))
-(-10 -8 (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2073 (|#1|)) (-15 -2409 ((-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3797 ((-700 |#2|) (-1285 |#1|) (-1 |#2| |#2|))) (-15 -2302 ((-3 |#1| "failed") (-418 |#3|))) (-15 -2613 (|#1| |#3|)) (-15 -2302 (|#1| |#3|)) (-15 -3657 (|#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2613 (|#3| |#1|)) (-15 -2613 (|#1| (-1285 |#2|))) (-15 -2613 ((-1285 |#2|) |#1|)) (-15 -2098 ((-1285 |#1|))) (-15 -2765 (|#3| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -4162 ((-3 |#1| "failed") |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 105 (|has| |#1| (-373)))) (-2456 (($ $) 106 (|has| |#1| (-373)))) (-3978 (((-112) $) 108 (|has| |#1| (-373)))) (-3831 (((-700 |#1|) (-1285 $)) 53) (((-700 |#1|)) 68)) (-1448 ((|#1| $) 59)) (-2309 (((-1207 (-936) (-782)) (-575)) 158 (|has| |#1| (-359)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 125 (|has| |#1| (-373)))) (-4281 (((-429 $) $) 126 (|has| |#1| (-373)))) (-3599 (((-112) $ $) 116 (|has| |#1| (-373)))) (-2409 (((-782)) 99 (|has| |#1| (-378)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 183 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 181 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 178)) (-4400 (((-575) $) 182 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 180 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 179)) (-3898 (($ (-1285 |#1|) (-1285 $)) 55) (($ (-1285 |#1|)) 71)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-359)))) (-2800 (($ $ $) 120 (|has| |#1| (-373)))) (-3405 (((-700 |#1|) $ (-1285 $)) 60) (((-700 |#1|) $) 66)) (-2862 (((-700 (-575)) (-1285 $)) 177 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 174) (((-700 |#1|) (-700 $)) 173) (((-700 |#1|) (-1285 $)) 172)) (-2302 (($ |#2|) 169) (((-3 $ "failed") (-418 |#2|)) 166 (|has| |#1| (-373)))) (-4162 (((-3 $ "failed") $) 37)) (-4422 (((-936)) 61)) (-2073 (($) 102 (|has| |#1| (-378)))) (-2811 (($ $ $) 119 (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 114 (|has| |#1| (-373)))) (-1758 (($) 160 (|has| |#1| (-359)))) (-3228 (((-112) $) 161 (|has| |#1| (-359)))) (-2457 (($ $ (-782)) 152 (|has| |#1| (-359))) (($ $) 151 (|has| |#1| (-359)))) (-3559 (((-112) $) 127 (|has| |#1| (-373)))) (-3369 (((-936) $) 163 (|has| |#1| (-359))) (((-844 (-936)) $) 149 (|has| |#1| (-359)))) (-3900 (((-112) $) 35)) (-3390 ((|#1| $) 58)) (-2808 (((-3 $ "failed") $) 153 (|has| |#1| (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 123 (|has| |#1| (-373)))) (-3977 ((|#2| $) 51 (|has| |#1| (-373)))) (-1894 (((-936) $) 101 (|has| |#1| (-378)))) (-2290 ((|#2| $) 167)) (-3886 (($ (-655 $)) 112 (|has| |#1| (-373))) (($ $ $) 111 (|has| |#1| (-373)))) (-4264 (((-1176) $) 10)) (-4332 (($ $) 128 (|has| |#1| (-373)))) (-3472 (($) 154 (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) 100 (|has| |#1| (-378)))) (-3912 (((-1137) $) 11)) (-3657 (($) 171)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 113 (|has| |#1| (-373)))) (-3923 (($ (-655 $)) 110 (|has| |#1| (-373))) (($ $ $) 109 (|has| |#1| (-373)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) 157 (|has| |#1| (-359)))) (-2347 (((-429 $) $) 124 (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 121 (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ $) 104 (|has| |#1| (-373)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 115 (|has| |#1| (-373)))) (-1720 (((-782) $) 117 (|has| |#1| (-373)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 118 (|has| |#1| (-373)))) (-2801 ((|#1| (-1285 $)) 54) ((|#1|) 67)) (-2619 (((-782) $) 162 (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) 150 (|has| |#1| (-359)))) (-2382 (($ $ (-782)) 147 (-3763 (-3224 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) 145 (-3763 (-3224 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) 141 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194) (-782)) 140 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-655 (-1194))) 139 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194)) 137 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) 135 (|has| |#1| (-373)))) (-3797 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-373)))) (-4436 ((|#2|) 170)) (-1847 (($) 159 (|has| |#1| (-359)))) (-2209 (((-1285 |#1|) $ (-1285 $)) 57) (((-700 |#1|) (-1285 $) (-1285 $)) 56) (((-1285 |#1|) $) 73) (((-700 |#1|) (-1285 $)) 72)) (-2613 (((-1285 |#1|) $) 70) (($ (-1285 |#1|)) 69) ((|#2| $) 184) (($ |#2|) 168)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 156 (|has| |#1| (-359)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-373))) (($ (-418 (-575))) 98 (-3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1724 (($ $) 155 (|has| |#1| (-359))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2765 ((|#2| $) 52)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-2098 (((-1285 $)) 74)) (-3930 (((-112) $ $) 107 (|has| |#1| (-373)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-782)) 148 (-3763 (-3224 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) 146 (-3763 (-3224 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) 144 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194) (-782)) 143 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-655 (-1194))) 142 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1194)) 138 (-3224 (|has| |#1| (-915 (-1194))) (|has| |#1| (-373)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) 133 (|has| |#1| (-373)))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 132 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 129 (|has| |#1| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-418 (-575)) $) 131 (|has| |#1| (-373))) (($ $ (-418 (-575))) 130 (|has| |#1| (-373)))))
-(((-735 |#1| |#2|) (-141) (-174) (-1261 |t#1|)) (T -735))
-((-3657 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-735 *2 *3)) (-4 *3 (-1261 *2)))) (-4436 (*1 *2) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) (-2302 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3)))) (-2613 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3)))) (-2302 (*1 *1 *2) (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-373)) (-4 *3 (-174)) (-4 *1 (-735 *3 *4)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-1285 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) (-4 *1 (-735 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1261 *5)) (-5 *2 (-700 *5)))))
-(-13 (-420 |t#1| |t#2|) (-174) (-625 |t#2|) (-422 |t#1|) (-387 |t#1|) (-10 -8 (-15 -3657 ($)) (-15 -4436 (|t#2|)) (-15 -2302 ($ |t#2|)) (-15 -2613 ($ |t#2|)) (-15 -2290 (|t#2| $)) (IF (|has| |t#1| (-378)) (-6 (-378)) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-6 (-373)) (-6 (-232 |t#1|)) (-15 -2302 ((-3 $ "failed") (-418 |t#2|))) (-15 -3797 ((-700 |t#1|) (-1285 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-359)) (-6 (-359)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-38 |#1|) . T) ((-38 $) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-102) . T) ((-111 #0# #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3763 (|has| |#1| (-359)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-359)) (|has| |#1| (-373))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) . T) ((-625 |#2|) . T) ((-234 $) -3763 (|has| |#1| (-359)) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (-12 (|has| |#1| (-238)) (|has| |#1| (-373)))) ((-232 |#1|) |has| |#1| (-373)) ((-238) -3763 (|has| |#1| (-359)) (-12 (|has| |#1| (-238)) (|has| |#1| (-373)))) ((-237) -3763 (|has| |#1| (-359)) (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (-12 (|has| |#1| (-238)) (|has| |#1| (-373)))) ((-271 |#1|) |has| |#1| (-373)) ((-248) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-299) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-316) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-373) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-413) |has| |#1| (-359)) ((-378) -3763 (|has| |#1| (-378)) (|has| |#1| (-359))) ((-359) |has| |#1| (-359)) ((-380 |#1| |#2|) . T) ((-420 |#1| |#2|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-567) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-657 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-651 |#1|) . T) ((-651 $) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-728 |#1|) . T) ((-728 $) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))))) ((-913 (-1194)) -12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -3763 (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#1| (-913 (-1194))))) ((-935) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-359)) ((-1235) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))) ((-1239) -3763 (|has| |#1| (-359)) (|has| |#1| (-373))))
-((-3261 (($) 11)) (-4162 (((-3 $ "failed") $) 14)) (-3900 (((-112) $) 10)) (** (($ $ (-936)) NIL) (($ $ (-782)) 20)))
-(((-736 |#1|) (-10 -8 (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 -3900 ((-112) |#1|)) (-15 -3261 (|#1|)) (-15 ** (|#1| |#1| (-936)))) (-737)) (T -736))
-NIL
-(-10 -8 (-15 -4162 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-782))) (-15 -3900 ((-112) |#1|)) (-15 -3261 (|#1|)) (-15 ** (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-3261 (($) 19 T CONST)) (-4162 (((-3 $ "failed") $) 16)) (-3900 (((-112) $) 18)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2005 (($) 20 T CONST)) (-3913 (((-112) $ $) 6)) (** (($ $ (-936)) 14) (($ $ (-782)) 17)) (* (($ $ $) 15)))
-(((-737) (-141)) (T -737))
-((-2005 (*1 *1) (-4 *1 (-737))) (-3261 (*1 *1) (-4 *1 (-737))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-737)) (-5 *2 (-782)))) (-4162 (*1 *1 *1) (|partial| -4 *1 (-737))))
-(-13 (-1129) (-10 -8 (-15 (-2005) ($) -3736) (-15 -3261 ($) -3736) (-15 -3900 ((-112) $)) (-15 ** ($ $ (-782))) (-15 -4162 ((-3 $ "failed") $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1129) . T) ((-1117) . T))
-((-3158 (((-2 (|:| -1501 (-429 |#2|)) (|:| |special| (-429 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2432 (((-2 (|:| -1501 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4163 ((|#2| (-418 |#2|) (-1 |#2| |#2|)) 13)) (-3345 (((-2 (|:| |poly| |#2|) (|:| -1501 (-418 |#2|)) (|:| |special| (-418 |#2|))) (-418 |#2|) (-1 |#2| |#2|)) 48)))
-(((-738 |#1| |#2|) (-10 -7 (-15 -2432 ((-2 (|:| -1501 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3158 ((-2 (|:| -1501 (-429 |#2|)) (|:| |special| (-429 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4163 (|#2| (-418 |#2|) (-1 |#2| |#2|))) (-15 -3345 ((-2 (|:| |poly| |#2|) (|:| -1501 (-418 |#2|)) (|:| |special| (-418 |#2|))) (-418 |#2|) (-1 |#2| |#2|)))) (-373) (-1261 |#1|)) (T -738))
-((-3345 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1501 (-418 *6)) (|:| |special| (-418 *6)))) (-5 *1 (-738 *5 *6)) (-5 *3 (-418 *6)))) (-4163 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1261 *5)) (-5 *1 (-738 *5 *2)) (-4 *5 (-373)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -1501 (-429 *3)) (|:| |special| (-429 *3)))) (-5 *1 (-738 *5 *3)))) (-2432 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -1501 *3) (|:| |special| *3))) (-5 *1 (-738 *5 *3)))))
-(-10 -7 (-15 -2432 ((-2 (|:| -1501 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3158 ((-2 (|:| -1501 (-429 |#2|)) (|:| |special| (-429 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4163 (|#2| (-418 |#2|) (-1 |#2| |#2|))) (-15 -3345 ((-2 (|:| |poly| |#2|) (|:| -1501 (-418 |#2|)) (|:| |special| (-418 |#2|))) (-418 |#2|) (-1 |#2| |#2|))))
-((-2500 ((|#7| (-655 |#5|) |#6|) NIL)) (-2544 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-739 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2544 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2500 (|#7| (-655 |#5|) |#6|))) (-861) (-804) (-804) (-1066) (-1066) (-964 |#4| |#2| |#1|) (-964 |#5| |#3| |#1|)) (T -739))
-((-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *9)) (-4 *9 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *8 (-1066)) (-4 *2 (-964 *9 *7 *5)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804)) (-4 *4 (-964 *8 *6 *5)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1066)) (-4 *9 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) (-4 *2 (-964 *9 *7 *5)) (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804)) (-4 *4 (-964 *8 *6 *5)))))
-(-10 -7 (-15 -2544 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2500 (|#7| (-655 |#5|) |#6|)))
-((-2544 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2544 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-804) (-804) (-1066) (-964 |#5| |#3| |#1|) (-964 |#5| |#4| |#2|)) (T -740))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-804)) (-4 *9 (-1066)) (-4 *2 (-964 *9 *8 *6)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-804)) (-4 *4 (-964 *9 *7 *5)))))
-(-10 -7 (-15 -2544 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2347 (((-429 |#4|) |#4|) 42)))
-(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 |#4|) |#4|))) (-804) (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194))))) (-316) (-964 (-967 |#3|) |#1| |#2|)) (T -741))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-964 (-967 *6) *4 *5)))))
-(-10 -7 (-15 -2347 ((-429 |#4|) |#4|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-875 |#1|)) $) NIL)) (-3462 (((-1190 $) $ (-875 |#1|)) NIL) (((-1190 |#2|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-2456 (($ $) NIL (|has| |#2| (-567)))) (-3978 (((-112) $) NIL (|has| |#2| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-875 |#1|))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3312 (($ $) NIL (|has| |#2| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#2| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-875 |#1|) "failed") $) NIL)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-875 |#1|) $) NIL)) (-4171 (($ $ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#2| (-924)))) (-4384 (($ $ |#2| (-542 (-875 |#1|)) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-875 |#1|) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#2|) (-875 |#1|)) NIL) (($ (-1190 $) (-875 |#1|)) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#2| (-542 (-875 |#1|))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-875 |#1|)) NIL)) (-3143 (((-542 (-875 |#1|)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-1946 (($ (-1 (-542 (-875 |#1|)) (-542 (-875 |#1|))) $) NIL)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2187 (((-3 (-875 |#1|) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-875 |#1|)) (|:| -1658 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#2| (-924)))) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-875 |#1|) |#2|) NIL) (($ $ (-655 (-875 |#1|)) (-655 |#2|)) NIL) (($ $ (-875 |#1|) $) NIL) (($ $ (-655 (-875 |#1|)) (-655 $)) NIL)) (-2801 (($ $ (-875 |#1|)) NIL (|has| |#2| (-174)))) (-2382 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-1753 (((-542 (-875 |#1|)) $) NIL) (((-782) $ (-875 |#1|)) NIL) (((-655 (-782)) $ (-655 (-875 |#1|))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-875 |#1|) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-875 |#1|) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-3696 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-875 |#1|)) NIL (|has| |#2| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-875 |#1|)) NIL) (($ $) NIL (|has| |#2| (-567))) (($ (-418 (-575))) NIL (-3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575))))))) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-542 (-875 |#1|))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-875 |#1|)) (-655 (-782))) NIL) (($ $ (-875 |#1|) (-782)) NIL) (($ $ (-655 (-875 |#1|))) NIL) (($ $ (-875 |#1|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-742 |#1| |#2|) (-964 |#2| (-542 (-875 |#1|)) (-875 |#1|)) (-655 (-1194)) (-1066)) (T -742))
-NIL
-(-964 |#2| (-542 (-875 |#1|)) (-875 |#1|))
-((-1338 (((-2 (|:| -3081 (-967 |#3|)) (|:| -3196 (-967 |#3|))) |#4|) 14)) (-3965 ((|#4| |#4| |#2|) 33)) (-4157 ((|#4| (-418 (-967 |#3|)) |#2|) 64)) (-3638 ((|#4| (-1190 (-967 |#3|)) |#2|) 77)) (-2532 ((|#4| (-1190 |#4|) |#2|) 51)) (-3245 ((|#4| |#4| |#2|) 54)) (-2347 (((-429 |#4|) |#4|) 40)))
-(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1338 ((-2 (|:| -3081 (-967 |#3|)) (|:| -3196 (-967 |#3|))) |#4|)) (-15 -3245 (|#4| |#4| |#2|)) (-15 -2532 (|#4| (-1190 |#4|) |#2|)) (-15 -3965 (|#4| |#4| |#2|)) (-15 -3638 (|#4| (-1190 (-967 |#3|)) |#2|)) (-15 -4157 (|#4| (-418 (-967 |#3|)) |#2|)) (-15 -2347 ((-429 |#4|) |#4|))) (-804) (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)))) (-567) (-964 (-418 (-967 |#3|)) |#1| |#2|)) (T -743))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *6 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-964 (-418 (-967 *6)) *4 *5)))) (-4157 (*1 *2 *3 *4) (-12 (-4 *6 (-567)) (-4 *2 (-964 *3 *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) (-5 *3 (-418 (-967 *6))) (-4 *5 (-804)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 (-967 *6))) (-4 *6 (-567)) (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) (-4 *5 (-804)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))))) (-3965 (*1 *2 *2 *3) (-12 (-4 *4 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *5 (-567)) (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-1190 *2)) (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) (-5 *1 (-743 *5 *4 *6 *2)) (-4 *5 (-804)) (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *6 (-567)))) (-3245 (*1 *2 *2 *3) (-12 (-4 *4 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *5 (-567)) (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3)))) (-1338 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *6 (-567)) (-5 *2 (-2 (|:| -3081 (-967 *6)) (|:| -3196 (-967 *6)))) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-964 (-418 (-967 *6)) *4 *5)))))
-(-10 -7 (-15 -1338 ((-2 (|:| -3081 (-967 |#3|)) (|:| -3196 (-967 |#3|))) |#4|)) (-15 -3245 (|#4| |#4| |#2|)) (-15 -2532 (|#4| (-1190 |#4|) |#2|)) (-15 -3965 (|#4| |#4| |#2|)) (-15 -3638 (|#4| (-1190 (-967 |#3|)) |#2|)) (-15 -4157 (|#4| (-418 (-967 |#3|)) |#2|)) (-15 -2347 ((-429 |#4|) |#4|)))
-((-2347 (((-429 |#4|) |#4|) 54)))
-(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 |#4|) |#4|))) (-804) (-861) (-13 (-316) (-148)) (-964 (-418 |#3|) |#1| |#2|)) (T -744))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-13 (-316) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-964 (-418 *6) *4 *5)))))
-(-10 -7 (-15 -2347 ((-429 |#4|) |#4|)))
-((-2544 (((-746 |#2| |#3|) (-1 |#2| |#1|) (-746 |#1| |#3|)) 18)))
-(((-745 |#1| |#2| |#3|) (-10 -7 (-15 -2544 ((-746 |#2| |#3|) (-1 |#2| |#1|) (-746 |#1| |#3|)))) (-1066) (-1066) (-737)) (T -745))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-746 *5 *7)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *7 (-737)) (-5 *2 (-746 *6 *7)) (-5 *1 (-745 *5 *6 *7)))))
-(-10 -7 (-15 -2544 ((-746 |#2| |#3|) (-1 |#2| |#1|) (-746 |#1| |#3|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 36)) (-3149 (((-655 (-2 (|:| -1754 |#1|) (|:| -3692 |#2|))) $) 37)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2409 (((-782)) 22 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-4400 ((|#2| $) NIL) ((|#1| $) NIL)) (-4406 (($ $) 102 (|has| |#2| (-861)))) (-4162 (((-3 $ "failed") $) 85)) (-2073 (($) 48 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) 70)) (-1719 (((-655 $) $) 52)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| |#2|) 17)) (-2544 (($ (-1 |#1| |#1|) $) 68)) (-1894 (((-936) $) 43 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-4370 ((|#2| $) 101 (|has| |#2| (-861)))) (-4383 ((|#1| $) 100 (|has| |#2| (-861)))) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) 35 (-12 (|has| |#2| (-378)) (|has| |#1| (-378))))) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 99) (($ (-575)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-655 (-2 (|:| -1754 |#1|) (|:| -3692 |#2|)))) 11)) (-2212 (((-655 |#1|) $) 54)) (-3002 ((|#1| $ |#2|) 115)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 12 T CONST)) (-2005 (($) 44 T CONST)) (-3913 (((-112) $ $) 105)) (-4027 (($ $) 61) (($ $ $) NIL)) (-4015 (($ $ $) 33)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-746 |#1| |#2|) (-13 (-1066) (-1055 |#2|) (-1055 |#1|) (-10 -8 (-15 -2414 ($ |#1| |#2|)) (-15 -3002 (|#1| $ |#2|)) (-15 -2882 ($ (-655 (-2 (|:| -1754 |#1|) (|:| -3692 |#2|))))) (-15 -3149 ((-655 (-2 (|:| -1754 |#1|) (|:| -3692 |#2|))) $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (-15 -3135 ((-112) $)) (-15 -2212 ((-655 |#1|) $)) (-15 -1719 ((-655 $) $)) (-15 -1403 ((-782) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -4370 (|#2| $)) (-15 -4383 (|#1| $)) (-15 -4406 ($ $))) |%noBranch|))) (-1066) (-737)) (T -746))
-((-2414 (*1 *1 *2 *3) (-12 (-5 *1 (-746 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-737)))) (-3002 (*1 *2 *1 *3) (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-737)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3692 *4)))) (-4 *3 (-1066)) (-4 *4 (-737)) (-5 *1 (-746 *3 *4)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3692 *4)))) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-746 *3 *4)) (-4 *4 (-737)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-2212 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-1719 (*1 *2 *1) (-12 (-5 *2 (-655 (-746 *3 *4))) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737)))) (-4370 (*1 *2 *1) (-12 (-4 *2 (-737)) (-4 *2 (-861)) (-5 *1 (-746 *3 *2)) (-4 *3 (-1066)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) (-4 *3 (-737)))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1066)) (-4 *3 (-737)))))
-(-13 (-1066) (-1055 |#2|) (-1055 |#1|) (-10 -8 (-15 -2414 ($ |#1| |#2|)) (-15 -3002 (|#1| $ |#2|)) (-15 -2882 ($ (-655 (-2 (|:| -1754 |#1|) (|:| -3692 |#2|))))) (-15 -3149 ((-655 (-2 (|:| -1754 |#1|) (|:| -3692 |#2|))) $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (-15 -3135 ((-112) $)) (-15 -2212 ((-655 |#1|) $)) (-15 -1719 ((-655 $) $)) (-15 -1403 ((-782) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -4370 (|#2| $)) (-15 -4383 (|#1| $)) (-15 -4406 ($ $))) |%noBranch|)))
-((-2859 (((-112) $ $) 19)) (-1644 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2081 (($ $ $) 73)) (-2210 (((-112) $ $) 74)) (-3133 (((-112) $ (-782)) 8)) (-1330 (($ (-655 |#1|)) 69) (($) 68)) (-1932 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-1413 (($ $) 63)) (-4070 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) 65)) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22)) (-1872 (($ $ $) 70)) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41) (($ |#1| $ (-782)) 64)) (-3912 (((-1137) $) 21)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-4203 (((-655 (-2 (|:| -3179 |#1|) (|:| -3922 (-782)))) $) 62)) (-4050 (($ $ |#1|) 72) (($ $ $) 71)) (-3323 (($) 50) (($ (-655 |#1|)) 49)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 51)) (-2882 (((-873) $) 18)) (-2550 (($ (-655 |#1|)) 67) (($) 66)) (-3685 (((-112) $ $) 23)) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20)) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-747 |#1|) (-141) (-1117)) (T -747))
-NIL
-(-13 (-706 |t#1|) (-1115 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-706 |#1|) . T) ((-1115 |#1|) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-1644 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2081 (($ $ $) 96)) (-2210 (((-112) $ $) 104)) (-3133 (((-112) $ (-782)) NIL)) (-1330 (($ (-655 |#1|)) 26) (($) 17)) (-1932 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-1413 (($ $) 85)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) 70 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460))) (($ |#1| $ (-575)) 75) (($ (-1 (-112) |#1|) $ (-575)) 78)) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (($ |#1| $ (-575)) 80) (($ (-1 (-112) |#1|) $ (-575)) 81)) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 32 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) 103)) (-2788 (($) 15) (($ |#1|) 28) (($ (-655 |#1|)) 23)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) 38)) (-1322 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 89)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1872 (($ $ $) 94)) (-4030 ((|#1| $) 62)) (-4218 (($ |#1| $) 63) (($ |#1| $ (-782)) 86)) (-3912 (((-1137) $) NIL)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3773 ((|#1| $) 61)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 56)) (-1393 (($) 14)) (-4203 (((-655 (-2 (|:| -3179 |#1|) (|:| -3922 (-782)))) $) 55)) (-4050 (($ $ |#1|) NIL) (($ $ $) 95)) (-3323 (($) 16) (($ (-655 |#1|)) 25)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) 68 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 79)) (-2613 (((-547) $) 36 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 22)) (-2882 (((-873) $) 49)) (-2550 (($ (-655 |#1|)) 27) (($) 18)) (-3685 (((-112) $ $) NIL)) (-2908 (($ (-655 |#1|)) 24)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 100)) (-2869 (((-782) $) 67 (|has| $ (-6 -4460)))))
-(((-748 |#1|) (-13 (-747 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -2788 ($)) (-15 -2788 ($ |#1|)) (-15 -2788 ($ (-655 |#1|))) (-15 -4252 ((-655 |#1|) $)) (-15 -3631 ($ |#1| $ (-575))) (-15 -3631 ($ (-1 (-112) |#1|) $ (-575))) (-15 -2375 ($ |#1| $ (-575))) (-15 -2375 ($ (-1 (-112) |#1|) $ (-575))))) (-1117)) (T -748))
-((-2788 (*1 *1) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-2788 (*1 *1 *2) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-2788 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-748 *3)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-748 *3)) (-4 *3 (-1117)))) (-3631 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-3631 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117)) (-5 *1 (-748 *4)))) (-2375 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117)))) (-2375 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117)) (-5 *1 (-748 *4)))))
-(-13 (-747 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -2788 ($)) (-15 -2788 ($ |#1|)) (-15 -2788 ($ (-655 |#1|))) (-15 -4252 ((-655 |#1|) $)) (-15 -3631 ($ |#1| $ (-575))) (-15 -3631 ($ (-1 (-112) |#1|) $ (-575))) (-15 -2375 ($ |#1| $ (-575))) (-15 -2375 ($ (-1 (-112) |#1|) $ (-575)))))
-((-1467 (((-1290) (-1176)) 8)))
-(((-749) (-10 -7 (-15 -1467 ((-1290) (-1176))))) (T -749))
-((-1467 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-749)))))
-(-10 -7 (-15 -1467 ((-1290) (-1176))))
-((-2917 (((-655 |#1|) (-655 |#1|) (-655 |#1|)) 15)))
-(((-750 |#1|) (-10 -7 (-15 -2917 ((-655 |#1|) (-655 |#1|) (-655 |#1|)))) (-861)) (T -750))
-((-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-750 *3)))))
-(-10 -7 (-15 -2917 ((-655 |#1|) (-655 |#1|) (-655 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 |#2|) $) 149)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 142 (|has| |#1| (-567)))) (-2456 (($ $) 141 (|has| |#1| (-567)))) (-3978 (((-112) $) 139 (|has| |#1| (-567)))) (-3921 (($ $) 98 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 81 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) 20)) (-2467 (($ $) 80 (|has| |#1| (-38 (-418 (-575)))))) (-3895 (($ $) 97 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 82 (|has| |#1| (-38 (-418 (-575)))))) (-1521 (($ $) 96 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 83 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) 18 T CONST)) (-4406 (($ $) 133)) (-4162 (((-3 $ "failed") $) 37)) (-2479 (((-967 |#1|) $ (-782)) 111) (((-967 |#1|) $ (-782) (-782)) 110)) (-2333 (((-112) $) 150)) (-1632 (($) 108 (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-782) $ |#2|) 113) (((-782) $ |#2| (-782)) 112)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 79 (|has| |#1| (-38 (-418 (-575)))))) (-3135 (((-112) $) 131)) (-2414 (($ $ (-655 |#2|) (-655 (-542 |#2|))) 148) (($ $ |#2| (-542 |#2|)) 147) (($ |#1| (-542 |#2|)) 132) (($ $ |#2| (-782)) 115) (($ $ (-655 |#2|) (-655 (-782))) 114)) (-2544 (($ (-1 |#1| |#1|) $) 130)) (-3461 (($ $) 105 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) 128)) (-4383 ((|#1| $) 127)) (-4264 (((-1176) $) 10)) (-4388 (($ $ |#2|) 109 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) 11)) (-1985 (($ $ (-782)) 116)) (-2849 (((-3 $ "failed") $ $) 143 (|has| |#1| (-567)))) (-2663 (($ $) 106 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (($ $ |#2| $) 124) (($ $ (-655 |#2|) (-655 $)) 123) (($ $ (-655 (-303 $))) 122) (($ $ (-303 $)) 121) (($ $ $ $) 120) (($ $ (-655 $) (-655 $)) 119)) (-2382 (($ $ (-655 |#2|) (-655 (-782))) 44) (($ $ |#2| (-782)) 43) (($ $ (-655 |#2|)) 42) (($ $ |#2|) 40)) (-1753 (((-542 |#2|) $) 129)) (-1531 (($ $) 95 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 84 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 94 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 85 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 93 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 86 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 151)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-567))) (($ (-418 (-575))) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3002 ((|#1| $ (-542 |#2|)) 134) (($ $ |#2| (-782)) 118) (($ $ (-655 |#2|) (-655 (-782))) 117)) (-1724 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 104 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 92 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) 140 (|has| |#1| (-567)))) (-1544 (($ $) 103 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 91 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 102 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 90 (|has| |#1| (-38 (-418 (-575)))))) (-2912 (($ $) 101 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 89 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 100 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 88 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 99 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 87 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-655 |#2|) (-655 (-782))) 47) (($ $ |#2| (-782)) 46) (($ $ (-655 |#2|)) 45) (($ $ |#2|) 41)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 135 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ $) 107 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 78 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 138 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 137 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 126) (($ $ |#1|) 125)))
-(((-751 |#1| |#2|) (-141) (-1066) (-861)) (T -751))
-((-3002 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066)) (-4 *2 (-861)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-751 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-861)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066)) (-4 *2 (-861)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)))) (-3369 (*1 *2 *1 *3) (-12 (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-861)) (-5 *2 (-782)))) (-3369 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-782)) (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-861)))) (-2479 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)) (-5 *2 (-967 *4)))) (-2479 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066)) (-4 *5 (-861)) (-5 *2 (-967 *4)))) (-4388 (*1 *1 *1 *2) (-12 (-4 *1 (-751 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861)) (-4 *3 (-38 (-418 (-575)))))))
-(-13 (-913 |t#2|) (-990 |t#1| (-542 |t#2|) |t#2|) (-525 |t#2| $) (-318 $) (-10 -8 (-15 -3002 ($ $ |t#2| (-782))) (-15 -3002 ($ $ (-655 |t#2|) (-655 (-782)))) (-15 -1985 ($ $ (-782))) (-15 -2414 ($ $ |t#2| (-782))) (-15 -2414 ($ $ (-655 |t#2|) (-655 (-782)))) (-15 -3369 ((-782) $ |t#2|)) (-15 -3369 ((-782) $ |t#2| (-782))) (-15 -2479 ((-967 |t#1|) $ (-782))) (-15 -2479 ((-967 |t#1|) $ (-782) (-782))) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $ |t#2|)) (-6 (-1019)) (-6 (-1220))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-542 |#2|)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-299) |has| |#1| (-567)) ((-318 $) . T) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-525 |#2| $) . T) ((-525 $ $) . T) ((-567) |has| |#1| (-567)) ((-657 #1#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #1#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-908 $ |#2|) . T) ((-913 |#2|) . T) ((-915 |#2|) . T) ((-990 |#1| #0# |#2|) . T) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T))
-((-2347 (((-429 (-1190 |#4|)) (-1190 |#4|)) 30) (((-429 |#4|) |#4|) 26)))
-(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 |#4|) |#4|)) (-15 -2347 ((-429 (-1190 |#4|)) (-1190 |#4|)))) (-861) (-804) (-13 (-316) (-148)) (-964 |#3| |#2| |#1|)) (T -752))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148))) (-5 *2 (-429 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4)))))
-(-10 -7 (-15 -2347 ((-429 |#4|) |#4|)) (-15 -2347 ((-429 (-1190 |#4|)) (-1190 |#4|))))
-((-1417 (((-429 |#4|) |#4| |#2|) 140)) (-4211 (((-429 |#4|) |#4|) NIL)) (-4281 (((-429 (-1190 |#4|)) (-1190 |#4|)) 127) (((-429 |#4|) |#4|) 52)) (-3062 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-655 (-2 (|:| -2347 (-1190 |#4|)) (|:| -1658 (-575)))))) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|))) 81)) (-2160 (((-1190 |#3|) (-1190 |#3|) (-575)) 166)) (-2680 (((-655 (-782)) (-1190 |#4|) (-655 |#2|) (-782)) 75)) (-2290 (((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-655 |#2|) (-655 (-782)) (-655 |#3|)) 79)) (-4235 (((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-655 |#3|)) (|:| |Lfact| (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|))) 27)) (-1515 (((-2 (|:| -4408 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-575)) 72)) (-1697 (((-575) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575))))) 162)) (-1957 ((|#4| (-575) (-429 |#4|)) 73)) (-2085 (((-112) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575))))) NIL)))
-(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4281 ((-429 |#4|) |#4|)) (-15 -4281 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -4211 ((-429 |#4|) |#4|)) (-15 -1697 ((-575) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))))) (-15 -1417 ((-429 |#4|) |#4| |#2|)) (-15 -1515 ((-2 (|:| -4408 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-575))) (-15 -3062 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-655 (-2 (|:| -2347 (-1190 |#4|)) (|:| -1658 (-575)))))) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -4235 ((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-655 |#3|)) (|:| |Lfact| (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -1957 (|#4| (-575) (-429 |#4|))) (-15 -2085 ((-112) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))))) (-15 -2290 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-655 |#2|) (-655 (-782)) (-655 |#3|))) (-15 -2680 ((-655 (-782)) (-1190 |#4|) (-655 |#2|) (-782))) (-15 -2160 ((-1190 |#3|) (-1190 |#3|) (-575)))) (-804) (-861) (-316) (-964 |#3| |#1| |#2|)) (T -753))
-((-2160 (*1 *2 *2 *3) (-12 (-5 *2 (-1190 *6)) (-5 *3 (-575)) (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-2680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-4 *7 (-861)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-4 *8 (-316)) (-5 *2 (-655 (-782))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *5 (-782)))) (-2290 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1190 *11)) (-5 *6 (-655 *10)) (-5 *7 (-655 (-782))) (-5 *8 (-655 *11)) (-4 *10 (-861)) (-4 *11 (-316)) (-4 *9 (-804)) (-4 *5 (-964 *11 *9 *10)) (-5 *2 (-655 (-1190 *5))) (-5 *1 (-753 *9 *10 *11 *5)) (-5 *3 (-1190 *5)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-2 (|:| -2347 (-1190 *6)) (|:| -1658 (-575))))) (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-575)) (-5 *4 (-429 *2)) (-4 *2 (-964 *7 *5 *6)) (-5 *1 (-753 *5 *6 *7 *2)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-316)))) (-4235 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) (-4 *7 (-861)) (-4 *8 (-316)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-5 *2 (-2 (|:| |upol| (-1190 *8)) (|:| |Lval| (-655 *8)) (|:| |Lfact| (-655 (-2 (|:| -2347 (-1190 *8)) (|:| -1658 (-575))))) (|:| |ctpol| *8))) (-5 *1 (-753 *6 *7 *8 *9)))) (-3062 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) (-4 *7 (-861)) (-4 *8 (-316)) (-4 *6 (-804)) (-4 *9 (-964 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-655 (-2 (|:| -2347 (-1190 *9)) (|:| -1658 (-575))))))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)))) (-1515 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-575)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-316)) (-4 *9 (-964 *8 *6 *7)) (-5 *2 (-2 (|:| -4408 (-1190 *9)) (|:| |polval| (-1190 *8)))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)) (-5 *4 (-1190 *8)))) (-1417 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-753 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2347 (-1190 *6)) (|:| -1658 (-575))))) (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5)))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5)))))
-(-10 -7 (-15 -4281 ((-429 |#4|) |#4|)) (-15 -4281 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -4211 ((-429 |#4|) |#4|)) (-15 -1697 ((-575) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))))) (-15 -1417 ((-429 |#4|) |#4| |#2|)) (-15 -1515 ((-2 (|:| -4408 (-1190 |#4|)) (|:| |polval| (-1190 |#3|))) (-1190 |#4|) (-1190 |#3|) (-575))) (-15 -3062 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-655 (-2 (|:| -2347 (-1190 |#4|)) (|:| -1658 (-575)))))) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -4235 ((-2 (|:| |upol| (-1190 |#3|)) (|:| |Lval| (-655 |#3|)) (|:| |Lfact| (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575))))) (|:| |ctpol| |#3|)) (-1190 |#4|) (-655 |#2|) (-655 (-655 |#3|)))) (-15 -1957 (|#4| (-575) (-429 |#4|))) (-15 -2085 ((-112) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))) (-655 (-2 (|:| -2347 (-1190 |#3|)) (|:| -1658 (-575)))))) (-15 -2290 ((-3 (-655 (-1190 |#4|)) "failed") (-1190 |#4|) (-1190 |#3|) (-1190 |#3|) |#4| (-655 |#2|) (-655 (-782)) (-655 |#3|))) (-15 -2680 ((-655 (-782)) (-1190 |#4|) (-655 |#2|) (-782))) (-15 -2160 ((-1190 |#3|) (-1190 |#3|) (-575))))
-((-3905 (($ $ (-936)) 17)))
-(((-754 |#1| |#2|) (-10 -8 (-15 -3905 (|#1| |#1| (-936)))) (-755 |#2|) (-174)) (T -754))
-NIL
-(-10 -8 (-15 -3905 (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-1810 (($ $ (-936)) 31)) (-3905 (($ $ (-936)) 38)) (-3643 (($ $ (-936)) 32)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4152 (($ $ $) 28)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3458 (($ $ $ $) 29)) (-2337 (($ $ $) 27)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-755 |#1|) (-141) (-174)) (T -755))
-((-3905 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-755 *3)) (-4 *3 (-174)))))
-(-13 (-772) (-728 |t#1|) (-10 -8 (-15 -3905 ($ $ (-936)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-731) . T) ((-772) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T))
-((-1835 (((-1052) (-700 (-227)) (-575) (-112) (-575)) 25)) (-4039 (((-1052) (-700 (-227)) (-575) (-112) (-575)) 24)))
-(((-756) (-10 -7 (-15 -4039 ((-1052) (-700 (-227)) (-575) (-112) (-575))) (-15 -1835 ((-1052) (-700 (-227)) (-575) (-112) (-575))))) (T -756))
-((-1835 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-756)))) (-4039 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-756)))))
-(-10 -7 (-15 -4039 ((-1052) (-700 (-227)) (-575) (-112) (-575))) (-15 -1835 ((-1052) (-700 (-227)) (-575) (-112) (-575))))
-((-4247 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))) 43)) (-3524 (((-1052) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN)))) 39)) (-4148 (((-1052) (-227) (-227) (-227) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) 32)))
-(((-757) (-10 -7 (-15 -4148 ((-1052) (-227) (-227) (-227) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -3524 ((-1052) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN))))) (-15 -4247 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN))))))) (T -757))
-((-4247 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1052)) (-5 *1 (-757)))) (-3524 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1052)) (-5 *1 (-757)))) (-4148 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) (-5 *2 (-1052)) (-5 *1 (-757)))))
-(-10 -7 (-15 -4148 ((-1052) (-227) (-227) (-227) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -3524 ((-1052) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN))))) (-15 -4247 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN))))))
-((-1340 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 34)) (-3719 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 33)) (-3166 (((-1052) (-575) (-700 (-227)) (-575)) 32)) (-3217 (((-1052) (-575) (-700 (-227)) (-575)) 31)) (-2533 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 30)) (-4280 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 29)) (-1640 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575)) 28)) (-4011 (((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575)) 27)) (-1811 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 24)) (-2150 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575)) 23)) (-3313 (((-1052) (-575) (-700 (-227)) (-575)) 22)) (-3038 (((-1052) (-575) (-700 (-227)) (-575)) 21)))
-(((-758) (-10 -7 (-15 -3038 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3313 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2150 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1811 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4011 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1640 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4280 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2533 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3217 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3166 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3719 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -1340 ((-1052) (-575) (-575) (-700 (-227)) (-575))))) (T -758))
-((-1340 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3719 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3166 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3217 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2533 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-4280 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-1640 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-4011 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-1811 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-2150 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3313 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))) (-3038 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-758)))))
-(-10 -7 (-15 -3038 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3313 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -2150 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1811 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4011 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1640 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4280 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2533 ((-1052) (-575) (-575) (-1176) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3217 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3166 ((-1052) (-575) (-700 (-227)) (-575))) (-15 -3719 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -1340 ((-1052) (-575) (-575) (-700 (-227)) (-575))))
-((-4242 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4395 (((-1052) (-700 (-227)) (-700 (-227)) (-575) (-575)) 51)) (-1334 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3775 (((-1052) (-227) (-227) (-575) (-575) (-575) (-575)) 46)) (-4206 (((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 45)) (-1611 (((-1052) (-227) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 44)) (-3785 (((-1052) (-227) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 43)) (-4250 (((-1052) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) 42)) (-3617 (((-1052) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) 38)) (-1780 (((-1052) (-227) (-227) (-575) (-700 (-227)) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) 37)) (-3342 (((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) 33)) (-1711 (((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) 32)))
-(((-759) (-10 -7 (-15 -1711 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -3342 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -1780 ((-1052) (-227) (-227) (-575) (-700 (-227)) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -3617 ((-1052) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -4250 ((-1052) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3785 ((-1052) (-227) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -1611 ((-1052) (-227) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -4206 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3775 ((-1052) (-227) (-227) (-575) (-575) (-575) (-575))) (-15 -1334 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))) (-15 -4395 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-575))) (-15 -4242 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))))) (T -759))
-((-4242 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-4395 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-759)))) (-1334 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3775 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-759)))) (-4206 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-1611 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3785 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-4250 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3617 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-1780 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-759)))) (-3342 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) (-5 *2 (-1052)) (-5 *1 (-759)))) (-1711 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) (-5 *2 (-1052)) (-5 *1 (-759)))))
-(-10 -7 (-15 -1711 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -3342 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -1780 ((-1052) (-227) (-227) (-575) (-700 (-227)) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -3617 ((-1052) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))) (-15 -4250 ((-1052) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3785 ((-1052) (-227) (-227) (-227) (-227) (-575) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -1611 ((-1052) (-227) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -4206 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G))))) (-15 -3775 ((-1052) (-227) (-227) (-575) (-575) (-575) (-575))) (-15 -1334 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))) (-15 -4395 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-575))) (-15 -4242 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-227) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))))
-((-3398 (((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2806 (((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))) (-399) (-399)) 69) (((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3174 (((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG)))) 57)) (-1911 (((-1052) (-700 (-227)) (-700 (-227)) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) 50)) (-3689 (((-1052) (-227) (-575) (-575) (-1176) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3365 (((-1052) (-227) (-575) (-575) (-227) (-1176) (-227) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2259 (((-1052) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) 42)) (-2554 (((-1052) (-227) (-575) (-575) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-760) (-10 -7 (-15 -2554 ((-1052) (-227) (-575) (-575) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -2259 ((-1052) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -3365 ((-1052) (-227) (-575) (-575) (-227) (-1176) (-227) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -3689 ((-1052) (-227) (-575) (-575) (-1176) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -1911 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -3174 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG))))) (-15 -2806 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))))) (-15 -2806 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))) (-399) (-399))) (-15 -3398 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -760))
-((-3398 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2806 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-399)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2806 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1052)) (-5 *1 (-760)))) (-3174 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-1911 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1052)) (-5 *1 (-760)))) (-3689 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-3365 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2259 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))) (-2554 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))))
-(-10 -7 (-15 -2554 ((-1052) (-227) (-575) (-575) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -2259 ((-1052) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -3365 ((-1052) (-227) (-575) (-575) (-227) (-1176) (-227) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -3689 ((-1052) (-227) (-575) (-575) (-1176) (-575) (-227) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))) (-15 -1911 ((-1052) (-700 (-227)) (-700 (-227)) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))) (-15 -3174 ((-1052) (-227) (-227) (-575) (-227) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG))))) (-15 -2806 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))))) (-15 -2806 ((-1052) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))) (-399) (-399))) (-15 -3398 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-1379 (((-1052) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-686 (-227)) (-575)) 45)) (-3327 (((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-1176) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY)))) 41)) (-3823 (((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 23)))
-(((-761) (-10 -7 (-15 -3823 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3327 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-1176) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY))))) (-15 -1379 ((-1052) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-686 (-227)) (-575))))) (T -761))
-((-1379 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-686 (-227))) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-761)))) (-3327 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1052)) (-5 *1 (-761)))) (-3823 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-761)))))
-(-10 -7 (-15 -3823 ((-1052) (-575) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3327 ((-1052) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-1176) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY))))) (-15 -1379 ((-1052) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-686 (-227)) (-575))))
-((-2475 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-700 (-227)) (-227) (-227) (-575)) 35)) (-4063 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-227) (-227) (-575)) 34)) (-1776 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-700 (-227)) (-227) (-227) (-575)) 33)) (-2202 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 29)) (-1459 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 28)) (-3791 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575)) 27)) (-2524 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575)) 24)) (-3604 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575)) 23)) (-2835 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575)) 22)) (-3128 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)) 21)))
-(((-762) (-10 -7 (-15 -3128 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -2835 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3604 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2524 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -3791 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575))) (-15 -1459 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2202 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1776 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-700 (-227)) (-227) (-227) (-575))) (-15 -4063 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-227) (-227) (-575))) (-15 -2475 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-700 (-227)) (-227) (-227) (-575))))) (T -762))
-((-2475 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-4063 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-1776 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2202 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-1459 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3791 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2524 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3604 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-2835 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))) (-3128 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-762)))))
-(-10 -7 (-15 -3128 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -2835 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3604 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2524 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -3791 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-227) (-575))) (-15 -1459 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2202 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1776 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-700 (-227)) (-227) (-227) (-575))) (-15 -4063 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-227) (-227) (-575))) (-15 -2475 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-700 (-227)) (-227) (-227) (-575))))
-((-3681 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)) 45)) (-2378 (((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-575)) 44)) (-4307 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575)) 43)) (-3090 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 42)) (-4099 (((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575)) 41)) (-3820 (((-1052) (-1176) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575)) 40)) (-2445 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575) (-575) (-575) (-227) (-700 (-227)) (-575)) 39)) (-2197 (((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575))) 38)) (-1991 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575)) 35)) (-1469 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575)) 34)) (-4399 (((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575)) 33)) (-3270 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 32)) (-3241 (((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575)) 31)) (-3936 (((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-575)) 30)) (-2523 (((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-575) (-575) (-575)) 29)) (-1903 (((-1052) (-575) (-575) (-575) (-227) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-575)) (-575) (-575) (-575)) 28)) (-1799 (((-1052) (-575) (-700 (-227)) (-227) (-575)) 24)) (-3291 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 21)))
-(((-763) (-10 -7 (-15 -3291 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1799 ((-1052) (-575) (-700 (-227)) (-227) (-575))) (-15 -1903 ((-1052) (-575) (-575) (-575) (-227) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-575)) (-575) (-575) (-575))) (-15 -2523 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -3936 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-575))) (-15 -3241 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575))) (-15 -3270 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4399 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575))) (-15 -1469 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575))) (-15 -1991 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2197 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)))) (-15 -2445 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575) (-575) (-575) (-227) (-700 (-227)) (-575))) (-15 -3820 ((-1052) (-1176) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -4099 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3090 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4307 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -2378 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3681 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))))) (T -763))
-((-3681 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2378 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4307 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3090 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4099 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3820 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2445 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2197 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227)) (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-1991 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-1469 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-4399 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3270 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3241 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3936 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-2523 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-1903 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-1799 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))) (-3291 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-763)))))
-(-10 -7 (-15 -3291 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1799 ((-1052) (-575) (-700 (-227)) (-227) (-575))) (-15 -1903 ((-1052) (-575) (-575) (-575) (-227) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-575)) (-575) (-575) (-575))) (-15 -2523 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -3936 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575) (-575) (-575))) (-15 -3241 ((-1052) (-575) (-227) (-227) (-700 (-227)) (-575) (-575) (-227) (-575))) (-15 -3270 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4399 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575))) (-15 -1469 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575))) (-15 -1991 ((-1052) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2197 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)))) (-15 -2445 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575) (-575) (-575) (-227) (-700 (-227)) (-575))) (-15 -3820 ((-1052) (-1176) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -4099 ((-1052) (-1176) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3090 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -4307 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))) (-15 -2378 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3681 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575) (-700 (-227)) (-700 (-227)) (-575) (-575) (-575))))
-((-3529 (((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-575) (-700 (-227)) (-575)) 63)) (-2512 (((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-112) (-227) (-575) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-575) (-575) (-575) (-575) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1594 (((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-112) (-112) (-575) (-575) (-700 (-227)) (-700 (-575)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS)))) 58)) (-4266 (((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-575) (-575) (-700 (-227)) (-575)) 51)) (-2583 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4276 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3731 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1626 (((-1052) (-575) (-227) (-227) (-575) (-227) (-112) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-764) (-10 -7 (-15 -1626 ((-1052) (-575) (-227) (-227) (-575) (-227) (-112) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -3731 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1))))) (-15 -4276 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2))))) (-15 -2583 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1))))) (-15 -4266 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-575) (-575) (-700 (-227)) (-575))) (-15 -1594 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-112) (-112) (-575) (-575) (-700 (-227)) (-700 (-575)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS))))) (-15 -2512 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-112) (-227) (-575) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-575) (-575) (-575) (-575) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -3529 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-575) (-700 (-227)) (-575))))) (T -764))
-((-3529 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-2512 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-700 (-575))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-1594 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-700 (-227))) (-5 *6 (-112)) (-5 *7 (-700 (-575))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-4266 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-764)))) (-2583 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1052)) (-5 *1 (-764)))) (-4276 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1052)) (-5 *1 (-764)))) (-3731 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1052)) (-5 *1 (-764)))) (-1626 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))))
-(-10 -7 (-15 -1626 ((-1052) (-575) (-227) (-227) (-575) (-227) (-112) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -3731 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1))))) (-15 -4276 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2))))) (-15 -2583 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1))))) (-15 -4266 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-575) (-575) (-700 (-227)) (-575))) (-15 -1594 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-227) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-112) (-112) (-112) (-575) (-575) (-700 (-227)) (-700 (-575)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS))))) (-15 -2512 ((-1052) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-575) (-112) (-227) (-575) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-575) (-575) (-575) (-575) (-575) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-575) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))) (-15 -3529 ((-1052) (-575) (-575) (-575) (-227) (-700 (-227)) (-575) (-700 (-227)) (-575))))
-((-1573 (((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575)) 47)) (-3836 (((-1052) (-1176) (-1176) (-575) (-575) (-700 (-171 (-227))) (-575) (-700 (-171 (-227))) (-575) (-575) (-700 (-171 (-227))) (-575)) 46)) (-1397 (((-1052) (-575) (-575) (-575) (-700 (-171 (-227))) (-575)) 45)) (-3846 (((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 40)) (-1383 (((-1052) (-1176) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)) (-575)) 39)) (-2855 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-575)) 36)) (-1566 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575)) 35)) (-1502 (((-1052) (-575) (-575) (-575) (-575) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-227) (-227) (-575)) 34)) (-4347 (((-1052) (-575) (-575) (-575) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-112) (-227) (-112) (-700 (-575)) (-700 (-227)) (-575)) 33)) (-1716 (((-1052) (-575) (-575) (-575) (-575) (-227) (-112) (-112) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-575)) 32)))
-(((-765) (-10 -7 (-15 -1716 ((-1052) (-575) (-575) (-575) (-575) (-227) (-112) (-112) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-575))) (-15 -4347 ((-1052) (-575) (-575) (-575) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-112) (-227) (-112) (-700 (-575)) (-700 (-227)) (-575))) (-15 -1502 ((-1052) (-575) (-575) (-575) (-575) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-227) (-227) (-575))) (-15 -1566 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575))) (-15 -2855 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -1383 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)) (-575))) (-15 -3846 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1397 ((-1052) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -3836 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-171 (-227))) (-575) (-700 (-171 (-227))) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -1573 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575))))) (T -765))
-((-1573 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-3836 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1397 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-3846 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1383 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-2855 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1566 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1502 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-655 (-112))) (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *7 (-227)) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-765)))) (-4347 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-700 (-575))) (-5 *5 (-112)) (-5 *7 (-700 (-227))) (-5 *3 (-575)) (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-765)))) (-1716 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-655 (-112))) (-5 *7 (-700 (-227))) (-5 *8 (-700 (-575))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1052)) (-5 *1 (-765)))))
-(-10 -7 (-15 -1716 ((-1052) (-575) (-575) (-575) (-575) (-227) (-112) (-112) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-575))) (-15 -4347 ((-1052) (-575) (-575) (-575) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-700 (-575)) (-112) (-227) (-112) (-700 (-575)) (-700 (-227)) (-575))) (-15 -1502 ((-1052) (-575) (-575) (-575) (-575) (-655 (-112)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-227) (-227) (-575))) (-15 -1566 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575))) (-15 -2855 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -1383 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)) (-575))) (-15 -3846 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1397 ((-1052) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -3836 ((-1052) (-1176) (-1176) (-575) (-575) (-700 (-171 (-227))) (-575) (-700 (-171 (-227))) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -1573 ((-1052) (-1176) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575))))
-((-2158 (((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575)) 79)) (-2667 (((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575)) 68)) (-3471 (((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))) (-399)) 56) (((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) 55)) (-3111 (((-1052) (-575) (-575) (-575) (-227) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575)) 37)) (-2783 (((-1052) (-575) (-575) (-227) (-227) (-575) (-575) (-700 (-227)) (-575)) 33)) (-3435 (((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575) (-575)) 30)) (-2044 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 29)) (-2945 (((-1052) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 28)) (-2075 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 27)) (-3893 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575)) 26)) (-3087 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 25)) (-1582 (((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 24)) (-1927 (((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575)) 23)) (-4037 (((-1052) (-700 (-227)) (-575) (-575) (-575) (-575)) 22)) (-1414 (((-1052) (-575) (-575) (-700 (-227)) (-575)) 21)))
-(((-766) (-10 -7 (-15 -1414 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -4037 ((-1052) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -1927 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1582 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3087 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3893 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -2075 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2945 ((-1052) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2044 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3435 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -2783 ((-1052) (-575) (-575) (-227) (-227) (-575) (-575) (-700 (-227)) (-575))) (-15 -3111 ((-1052) (-575) (-575) (-575) (-227) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3471 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))))) (-15 -3471 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))) (-399))) (-15 -2667 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2158 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575))))) (T -766))
-((-2158 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2667 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3471 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-399)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3471 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3111 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2783 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3435 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2044 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2945 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-2075 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3893 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-3087 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-1582 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-1927 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))) (-4037 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-766)))) (-1414 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-766)))))
-(-10 -7 (-15 -1414 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -4037 ((-1052) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -1927 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1582 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3087 ((-1052) (-575) (-575) (-700 (-227)) (-575))) (-15 -3893 ((-1052) (-575) (-575) (-575) (-575) (-700 (-227)) (-575))) (-15 -2075 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2945 ((-1052) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2044 ((-1052) (-575) (-575) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3435 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575) (-575))) (-15 -2783 ((-1052) (-575) (-575) (-227) (-227) (-575) (-575) (-700 (-227)) (-575))) (-15 -3111 ((-1052) (-575) (-575) (-575) (-227) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3471 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))))) (-15 -3471 ((-1052) (-575) (-575) (-227) (-575) (-575) (-575) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE))) (-399))) (-15 -2667 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -2158 ((-1052) (-575) (-575) (-575) (-575) (-575) (-112) (-575) (-112) (-575) (-700 (-171 (-227))) (-700 (-171 (-227))) (-575))))
-((-2632 (((-1052) (-575) (-575) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))) 64)) (-2208 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575)) 60)) (-2743 (((-1052) (-575) (-700 (-227)) (-112) (-227) (-575) (-575) (-575) (-575) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1805 (((-1052) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575)) 37)) (-3094 (((-1052) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-575)) 36)) (-4138 (((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575)) 33)) (-4433 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227))) 32)) (-2009 (((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575)) 28)) (-1959 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575)) 27)) (-3387 (((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575)) 26)) (-3610 (((-1052) (-575) (-700 (-171 (-227))) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-575)) 22)))
-(((-767) (-10 -7 (-15 -3610 ((-1052) (-575) (-700 (-171 (-227))) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -3387 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -1959 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2009 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575))) (-15 -4433 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)))) (-15 -4138 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3094 ((-1052) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1805 ((-1052) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -2743 ((-1052) (-575) (-700 (-227)) (-112) (-227) (-575) (-575) (-575) (-575) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE))))) (-15 -2208 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -2632 ((-1052) (-575) (-575) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD))))))) (T -767))
-((-2632 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-2208 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-2743 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-1805 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-3094 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-4138 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-4433 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-2009 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-767)))) (-1959 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-3387 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-767)))) (-3610 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052)) (-5 *1 (-767)))))
-(-10 -7 (-15 -3610 ((-1052) (-575) (-700 (-171 (-227))) (-575) (-575) (-575) (-575) (-700 (-171 (-227))) (-575))) (-15 -3387 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -1959 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-575))) (-15 -2009 ((-1052) (-700 (-227)) (-575) (-700 (-227)) (-575) (-575) (-575))) (-15 -4433 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-575)) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)))) (-15 -4138 ((-1052) (-575) (-575) (-700 (-227)) (-700 (-227)) (-700 (-227)) (-575))) (-15 -3094 ((-1052) (-575) (-575) (-575) (-227) (-575) (-700 (-227)) (-700 (-227)) (-575))) (-15 -1805 ((-1052) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-575)) (-700 (-227)) (-700 (-575)) (-700 (-575)) (-700 (-227)) (-700 (-227)) (-700 (-575)) (-575))) (-15 -2743 ((-1052) (-575) (-700 (-227)) (-112) (-227) (-575) (-575) (-575) (-575) (-227) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE))))) (-15 -2208 ((-1052) (-575) (-700 (-227)) (-575) (-700 (-227)) (-700 (-575)) (-575) (-700 (-227)) (-575) (-575) (-575) (-575))) (-15 -2632 ((-1052) (-575) (-575) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-700 (-227)) (-575) (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD))))))
-((-2994 (((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-575) (-700 (-227))) 29)) (-3221 (((-1052) (-1176) (-575) (-575) (-700 (-227))) 28)) (-2536 (((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-227))) 27)) (-1912 (((-1052) (-575) (-575) (-575) (-700 (-227))) 21)))
-(((-768) (-10 -7 (-15 -1912 ((-1052) (-575) (-575) (-575) (-700 (-227)))) (-15 -2536 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-227)))) (-15 -3221 ((-1052) (-1176) (-575) (-575) (-700 (-227)))) (-15 -2994 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)))))) (T -768))
-((-2994 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-768)))) (-3221 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-768)))) (-2536 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-768)))) (-1912 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052)) (-5 *1 (-768)))))
-(-10 -7 (-15 -1912 ((-1052) (-575) (-575) (-575) (-700 (-227)))) (-15 -2536 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-700 (-575)) (-575) (-700 (-227)))) (-15 -3221 ((-1052) (-1176) (-575) (-575) (-700 (-227)))) (-15 -2994 ((-1052) (-1176) (-575) (-575) (-700 (-227)) (-575) (-575) (-700 (-227)))))
-((-4087 (((-1052) (-227) (-227) (-227) (-227) (-575)) 62)) (-3412 (((-1052) (-227) (-227) (-227) (-575)) 61)) (-4022 (((-1052) (-227) (-227) (-227) (-575)) 60)) (-3585 (((-1052) (-227) (-227) (-575)) 59)) (-3403 (((-1052) (-227) (-575)) 58)) (-4342 (((-1052) (-227) (-575)) 57)) (-2654 (((-1052) (-227) (-575)) 56)) (-1679 (((-1052) (-227) (-575)) 55)) (-3690 (((-1052) (-227) (-575)) 54)) (-3862 (((-1052) (-227) (-575)) 53)) (-1924 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 52)) (-1504 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 51)) (-1447 (((-1052) (-227) (-575)) 50)) (-2219 (((-1052) (-227) (-575)) 49)) (-2714 (((-1052) (-227) (-575)) 48)) (-1663 (((-1052) (-227) (-575)) 47)) (-3613 (((-1052) (-575) (-227) (-171 (-227)) (-575) (-1176) (-575)) 46)) (-1637 (((-1052) (-1176) (-171 (-227)) (-1176) (-575)) 45)) (-4054 (((-1052) (-1176) (-171 (-227)) (-1176) (-575)) 44)) (-4414 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 43)) (-1755 (((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575)) 42)) (-2193 (((-1052) (-227) (-575)) 39)) (-3335 (((-1052) (-227) (-575)) 38)) (-3210 (((-1052) (-227) (-575)) 37)) (-2068 (((-1052) (-227) (-575)) 36)) (-1853 (((-1052) (-227) (-575)) 35)) (-1910 (((-1052) (-227) (-575)) 34)) (-3667 (((-1052) (-227) (-575)) 33)) (-3708 (((-1052) (-227) (-575)) 32)) (-2451 (((-1052) (-227) (-575)) 31)) (-2015 (((-1052) (-227) (-575)) 30)) (-2952 (((-1052) (-227) (-227) (-227) (-575)) 29)) (-4220 (((-1052) (-227) (-575)) 28)) (-2248 (((-1052) (-227) (-575)) 27)) (-3057 (((-1052) (-227) (-575)) 26)) (-4149 (((-1052) (-227) (-575)) 25)) (-2534 (((-1052) (-227) (-575)) 24)) (-2756 (((-1052) (-171 (-227)) (-575)) 21)))
-(((-769) (-10 -7 (-15 -2756 ((-1052) (-171 (-227)) (-575))) (-15 -2534 ((-1052) (-227) (-575))) (-15 -4149 ((-1052) (-227) (-575))) (-15 -3057 ((-1052) (-227) (-575))) (-15 -2248 ((-1052) (-227) (-575))) (-15 -4220 ((-1052) (-227) (-575))) (-15 -2952 ((-1052) (-227) (-227) (-227) (-575))) (-15 -2015 ((-1052) (-227) (-575))) (-15 -2451 ((-1052) (-227) (-575))) (-15 -3708 ((-1052) (-227) (-575))) (-15 -3667 ((-1052) (-227) (-575))) (-15 -1910 ((-1052) (-227) (-575))) (-15 -1853 ((-1052) (-227) (-575))) (-15 -2068 ((-1052) (-227) (-575))) (-15 -3210 ((-1052) (-227) (-575))) (-15 -3335 ((-1052) (-227) (-575))) (-15 -2193 ((-1052) (-227) (-575))) (-15 -1755 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -4414 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -4054 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -1637 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -3613 ((-1052) (-575) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1663 ((-1052) (-227) (-575))) (-15 -2714 ((-1052) (-227) (-575))) (-15 -2219 ((-1052) (-227) (-575))) (-15 -1447 ((-1052) (-227) (-575))) (-15 -1504 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1924 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -3862 ((-1052) (-227) (-575))) (-15 -3690 ((-1052) (-227) (-575))) (-15 -1679 ((-1052) (-227) (-575))) (-15 -2654 ((-1052) (-227) (-575))) (-15 -4342 ((-1052) (-227) (-575))) (-15 -3403 ((-1052) (-227) (-575))) (-15 -3585 ((-1052) (-227) (-227) (-575))) (-15 -4022 ((-1052) (-227) (-227) (-227) (-575))) (-15 -3412 ((-1052) (-227) (-227) (-227) (-575))) (-15 -4087 ((-1052) (-227) (-227) (-227) (-227) (-575))))) (T -769))
-((-4087 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3412 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4022 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3585 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4342 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1679 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3862 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1924 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1504 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1447 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2219 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3613 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-575)) (-5 *5 (-171 (-227))) (-5 *6 (-1176)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1637 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4054 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4414 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1755 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176)) (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-1910 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2952 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(-10 -7 (-15 -2756 ((-1052) (-171 (-227)) (-575))) (-15 -2534 ((-1052) (-227) (-575))) (-15 -4149 ((-1052) (-227) (-575))) (-15 -3057 ((-1052) (-227) (-575))) (-15 -2248 ((-1052) (-227) (-575))) (-15 -4220 ((-1052) (-227) (-575))) (-15 -2952 ((-1052) (-227) (-227) (-227) (-575))) (-15 -2015 ((-1052) (-227) (-575))) (-15 -2451 ((-1052) (-227) (-575))) (-15 -3708 ((-1052) (-227) (-575))) (-15 -3667 ((-1052) (-227) (-575))) (-15 -1910 ((-1052) (-227) (-575))) (-15 -1853 ((-1052) (-227) (-575))) (-15 -2068 ((-1052) (-227) (-575))) (-15 -3210 ((-1052) (-227) (-575))) (-15 -3335 ((-1052) (-227) (-575))) (-15 -2193 ((-1052) (-227) (-575))) (-15 -1755 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -4414 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -4054 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -1637 ((-1052) (-1176) (-171 (-227)) (-1176) (-575))) (-15 -3613 ((-1052) (-575) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1663 ((-1052) (-227) (-575))) (-15 -2714 ((-1052) (-227) (-575))) (-15 -2219 ((-1052) (-227) (-575))) (-15 -1447 ((-1052) (-227) (-575))) (-15 -1504 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -1924 ((-1052) (-227) (-171 (-227)) (-575) (-1176) (-575))) (-15 -3862 ((-1052) (-227) (-575))) (-15 -3690 ((-1052) (-227) (-575))) (-15 -1679 ((-1052) (-227) (-575))) (-15 -2654 ((-1052) (-227) (-575))) (-15 -4342 ((-1052) (-227) (-575))) (-15 -3403 ((-1052) (-227) (-575))) (-15 -3585 ((-1052) (-227) (-227) (-575))) (-15 -4022 ((-1052) (-227) (-227) (-227) (-575))) (-15 -3412 ((-1052) (-227) (-227) (-227) (-575))) (-15 -4087 ((-1052) (-227) (-227) (-227) (-227) (-575))))
-((-2966 (((-1290)) 20)) (-3035 (((-1176)) 31)) (-3693 (((-1176)) 30)) (-3178 (((-1121) (-1194) (-700 (-575))) 45) (((-1121) (-1194) (-700 (-227))) 41)) (-1474 (((-112)) 19)) (-3117 (((-1176) (-1176)) 34)))
-(((-770) (-10 -7 (-15 -3693 ((-1176))) (-15 -3035 ((-1176))) (-15 -3117 ((-1176) (-1176))) (-15 -3178 ((-1121) (-1194) (-700 (-227)))) (-15 -3178 ((-1121) (-1194) (-700 (-575)))) (-15 -1474 ((-112))) (-15 -2966 ((-1290))))) (T -770))
-((-2966 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-770)))) (-1474 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-770)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-575))) (-5 *2 (-1121)) (-5 *1 (-770)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-227))) (-5 *2 (-1121)) (-5 *1 (-770)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))) (-3035 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))) (-3693 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))))
-(-10 -7 (-15 -3693 ((-1176))) (-15 -3035 ((-1176))) (-15 -3117 ((-1176) (-1176))) (-15 -3178 ((-1121) (-1194) (-700 (-227)))) (-15 -3178 ((-1121) (-1194) (-700 (-575)))) (-15 -1474 ((-112))) (-15 -2966 ((-1290))))
-((-4152 (($ $ $) 10)) (-3458 (($ $ $ $) 9)) (-2337 (($ $ $) 12)))
-(((-771 |#1|) (-10 -8 (-15 -2337 (|#1| |#1| |#1|)) (-15 -4152 (|#1| |#1| |#1|)) (-15 -3458 (|#1| |#1| |#1| |#1|))) (-772)) (T -771))
-NIL
-(-10 -8 (-15 -2337 (|#1| |#1| |#1|)) (-15 -4152 (|#1| |#1| |#1|)) (-15 -3458 (|#1| |#1| |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-1810 (($ $ (-936)) 31)) (-3643 (($ $ (-936)) 32)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4152 (($ $ $) 28)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3458 (($ $ $ $) 29)) (-2337 (($ $ $) 27)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 33)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30)))
-(((-772) (-141)) (T -772))
-((-3458 (*1 *1 *1 *1 *1) (-4 *1 (-772))) (-4152 (*1 *1 *1 *1) (-4 *1 (-772))) (-2337 (*1 *1 *1 *1) (-4 *1 (-772))))
-(-13 (-21) (-731) (-10 -8 (-15 -3458 ($ $ $ $)) (-15 -4152 ($ $ $)) (-15 -2337 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-731) . T) ((-1117) . T))
-((-2882 (((-873) $) NIL) (($ (-575)) 10)))
-(((-773 |#1|) (-10 -8 (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-774)) (T -773))
-NIL
-(-10 -8 (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-3952 (((-3 $ "failed") $) 43)) (-1810 (($ $ (-936)) 31) (($ $ (-782)) 38)) (-4162 (((-3 $ "failed") $) 41)) (-3900 (((-112) $) 37)) (-3284 (((-3 $ "failed") $) 42)) (-3643 (($ $ (-936)) 32) (($ $ (-782)) 39)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4152 (($ $ $) 28)) (-2882 (((-873) $) 12) (($ (-575)) 34)) (-4421 (((-782)) 35 T CONST)) (-3685 (((-112) $ $) 9)) (-3458 (($ $ $ $) 29)) (-2337 (($ $ $) 27)) (-1989 (($) 19 T CONST)) (-2005 (($) 36 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 33) (($ $ (-782)) 40)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 30)))
-(((-774) (-141)) (T -774))
-((-4421 (*1 *2) (-12 (-4 *1 (-774)) (-5 *2 (-782)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-774)))))
-(-13 (-772) (-733) (-10 -8 (-15 -4421 ((-782)) -3736) (-15 -2882 ($ (-575)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-731) . T) ((-733) . T) ((-772) . T) ((-1117) . T))
-((-1830 (((-655 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 |#1|)))))) (-700 (-171 (-418 (-575)))) |#1|) 33)) (-3026 (((-655 (-171 |#1|)) (-700 (-171 (-418 (-575)))) |#1|) 23)) (-2765 (((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))) (-1194)) 20) (((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575))))) 19)))
-(((-775 |#1|) (-10 -7 (-15 -2765 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))))) (-15 -2765 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))) (-1194))) (-15 -3026 ((-655 (-171 |#1|)) (-700 (-171 (-418 (-575)))) |#1|)) (-15 -1830 ((-655 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 |#1|)))))) (-700 (-171 (-418 (-575)))) |#1|))) (-13 (-373) (-859))) (T -775))
-((-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-655 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 *4))))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-655 (-171 *4))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *4 (-1194)) (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-373) (-859))))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))))
-(-10 -7 (-15 -2765 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))))) (-15 -2765 ((-967 (-171 (-418 (-575)))) (-700 (-171 (-418 (-575)))) (-1194))) (-15 -3026 ((-655 (-171 |#1|)) (-700 (-171 (-418 (-575)))) |#1|)) (-15 -1830 ((-655 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 (-171 |#1|)))))) (-700 (-171 (-418 (-575)))) |#1|)))
-((-4313 (((-176 (-575)) |#1|) 27)))
-(((-776 |#1|) (-10 -7 (-15 -4313 ((-176 (-575)) |#1|))) (-415)) (T -776))
-((-4313 (*1 *2 *3) (-12 (-5 *2 (-176 (-575))) (-5 *1 (-776 *3)) (-4 *3 (-415)))))
-(-10 -7 (-15 -4313 ((-176 (-575)) |#1|)))
-((-3021 ((|#1| |#1| |#1|) 28)) (-3028 ((|#1| |#1| |#1|) 27)) (-2029 ((|#1| |#1| |#1|) 38)) (-2247 ((|#1| |#1| |#1|) 34)) (-3746 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1567 (((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|) 26)))
-(((-777 |#1| |#2|) (-10 -7 (-15 -1567 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2247 (|#1| |#1| |#1|)) (-15 -2029 (|#1| |#1| |#1|))) (-719 |#2|) (-373)) (T -777))
-((-2029 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-2247 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-3746 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-3021 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-3028 (*1 *2 *2 *2) (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3)))) (-1567 (*1 *2 *3 *3) (-12 (-4 *4 (-373)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-777 *3 *4)) (-4 *3 (-719 *4)))))
-(-10 -7 (-15 -1567 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2247 (|#1| |#1| |#1|)) (-15 -2029 (|#1| |#1| |#1|)))
-((-4155 (((-702 (-1243)) $ (-1243)) 26)) (-1591 (((-702 (-560)) $ (-560)) 25)) (-1596 (((-782) $ (-129)) 27)) (-3614 (((-702 (-130)) $ (-130)) 24)) (-2139 (((-702 (-1243)) $) 12)) (-1843 (((-702 (-1241)) $) 8)) (-3017 (((-702 (-1240)) $) 10)) (-3597 (((-702 (-560)) $) 13)) (-2896 (((-702 (-558)) $) 9)) (-2689 (((-702 (-557)) $) 11)) (-2825 (((-782) $ (-129)) 7)) (-2661 (((-702 (-130)) $) 14)) (-2846 (((-112) $) 31)) (-1399 (((-702 $) |#1| (-969)) 32)) (-3265 (($ $) 6)))
-(((-778 |#1|) (-141) (-1117)) (T -778))
-((-1399 (*1 *2 *3 *4) (-12 (-5 *4 (-969)) (-4 *3 (-1117)) (-5 *2 (-702 *1)) (-4 *1 (-778 *3)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(-13 (-587) (-10 -8 (-15 -1399 ((-702 $) |t#1| (-969))) (-15 -2846 ((-112) $))))
-(((-175) . T) ((-538) . T) ((-587) . T) ((-871) . T))
-((-3056 (((-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))) (-575)) 71)) (-3189 (((-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575))))) 69)) (-2801 (((-575)) 85)))
-(((-779 |#1| |#2|) (-10 -7 (-15 -2801 ((-575))) (-15 -3189 ((-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))))) (-15 -3056 ((-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))) (-575)))) (-1261 (-575)) (-420 (-575) |#1|)) (T -779))
-((-3056 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-1261 *3)) (-5 *2 (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-779 *4 *5)) (-4 *5 (-420 *3 *4)))) (-3189 (*1 *2) (-12 (-4 *3 (-1261 (-575))) (-5 *2 (-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575))))) (-5 *1 (-779 *3 *4)) (-4 *4 (-420 (-575) *3)))) (-2801 (*1 *2) (-12 (-4 *3 (-1261 *2)) (-5 *2 (-575)) (-5 *1 (-779 *3 *4)) (-4 *4 (-420 *2 *3)))))
-(-10 -7 (-15 -2801 ((-575))) (-15 -3189 ((-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))))) (-15 -3056 ((-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575)) (|:| |basisInv| (-700 (-575)))) (-575))))
-((-2859 (((-112) $ $) NIL)) (-4400 (((-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 20) (($ (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-780) (-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2882 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2882 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4400 ((-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -780))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-780)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-780)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-780)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-780)))))
-(-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2882 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2882 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4400 ((-3 (|:| |nia| (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
-((-2843 (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))) 18) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194))) 17)) (-3520 (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))) 20) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194))) 19)))
-(((-781 |#1|) (-10 -7 (-15 -2843 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -2843 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|))))) (-567)) (T -781))
-((-3520 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5)))))
-(-10 -7 (-15 -2843 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -2843 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-967 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3081 (($ $ $) 10)) (-1708 (((-3 $ "failed") $ $) 15)) (-3624 (($ $ (-575)) 11)) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-3900 (((-112) $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3923 (($ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 6 T CONST)) (-2005 (($) NIL T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ $ $) NIL)))
-(((-782) (-13 (-804) (-737) (-10 -8 (-15 -2811 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -4416 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -2849 ((-3 $ "failed") $ $)) (-15 -3624 ($ $ (-575))) (-15 -2073 ($ $)) (-6 (-4462 "*"))))) (T -782))
-((-2811 (*1 *1 *1 *1) (-5 *1 (-782))) (-2800 (*1 *1 *1 *1) (-5 *1 (-782))) (-3923 (*1 *1 *1 *1) (-5 *1 (-782))) (-4416 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3262 (-782)) (|:| -4041 (-782)))) (-5 *1 (-782)))) (-2849 (*1 *1 *1 *1) (|partial| -5 *1 (-782))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-782)))) (-2073 (*1 *1 *1) (-5 *1 (-782))))
-(-13 (-804) (-737) (-10 -8 (-15 -2811 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -3923 ($ $ $)) (-15 -4416 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -2849 ((-3 $ "failed") $ $)) (-15 -3624 ($ $ (-575))) (-15 -2073 ($ $)) (-6 (-4462 "*"))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 15)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-1621 ((|#1| $) 23)) (-1950 (($ $ $) NIL (|has| |#1| (-803)))) (-1492 (($ $ $) NIL (|has| |#1| (-803)))) (-2143 (((-1178) $) 48)) (-3887 (((-1139) $) NIL)) (-1635 ((|#3| $) 24)) (-2858 (((-874) $) 43)) (-2690 (((-112) $ $) 22)) (-2022 (($) 10 T CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3889 (((-112) $ $) 20)) (-3944 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3916 (((-112) $ $) 26 (|has| |#1| (-803)))) (-4013 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4002 (($ $) 17) (($ $ $) NIL)) (-3990 (($ $ $) 29)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674))
+((-4013 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4013 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1635 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))))
+(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4013 ($ $ |#3|)) (-15 -4013 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $))))
+((-3277 (((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)) 33)))
+(((-675 |#1|) (-10 -7 (-15 -3277 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)))) (-926)) (T -675))
+((-3277 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *4))) (-5 *3 (-1192 *4)) (-4 *4 (-926)) (-5 *1 (-675 *4)))))
+(-10 -7 (-15 -3277 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3463 (((-656 |#1|) $) 84)) (-2067 (($ $ (-783)) 94)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3478 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 50)) (-2454 (((-3 (-684 |#1|) "failed") $) NIL)) (-4397 (((-684 |#1|) $) NIL)) (-4404 (($ $) 93)) (-1890 (((-783) $) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-3667 (($ (-684 |#1|) |#2|) 70)) (-1419 (($ $) 89)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1504 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 49)) (-1652 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4366 (((-684 |#1|) $) NIL)) (-4379 ((|#2| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3022 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-4436 (((-783) $) 91)) (-2869 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-2858 (((-874) $) NIL) (($ |#1|) 76) (((-1302 |#1| |#2|) $) 60) (((-1311 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-684 |#1|)) NIL)) (-1788 ((|#2| (-1311 |#1| |#2|) $) 45)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 23 T CONST)) (-1754 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2387 (((-3 $ "failed") (-1302 |#1| |#2|)) 62)) (-2806 (($ (-684 |#1|)) 14)) (-3889 (((-112) $ $) 46)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) 68) (($ $ $) NIL)) (-3990 (($ $ $) 31)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL)))
+(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2387 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -2869 ($ (-684 |#1|) (-684 |#1|))) (-15 -2869 ($ (-684 |#1|) $)) (-15 -2869 ($ $ (-684 |#1|))))) (-862) (-174)) (T -676))
+((-2387 (*1 *1 *2) (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-2869 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))))
+(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -2387 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -2869 ($ (-684 |#1|) (-684 |#1|))) (-15 -2869 ($ (-684 |#1|) $)) (-15 -2869 ($ $ (-684 |#1|)))))
+((-3429 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-1426 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3423 (($ (-1 (-112) |#2|) $) 29)) (-2338 (($ $) 65)) (-3444 (($ $) 74)) (-3007 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2326 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-2627 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-2327 (($ (-783) |#2|) 63)) (-1932 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3343 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2548 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1718 (($ |#2|) 15)) (-2329 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-3557 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3804 (($ $ (-1254 (-576))) 51) (($ $ (-576)) 44)) (-3272 (($ $ $ (-576)) 70)) (-3052 (($ $) 68)) (-3916 (((-112) $ $) 76)))
+(((-677 |#1| |#2|) (-10 -8 (-15 -1718 (|#1| |#2|)) (-15 -3804 (|#1| |#1| (-576))) (-15 -3804 (|#1| |#1| (-1254 (-576)))) (-15 -3007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2329 (|#1| |#2| |#1| (-576))) (-15 -2329 (|#1| |#1| |#1| (-576))) (-15 -1932 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3423 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3007 (|#1| |#2| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3343 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3429 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2627 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2627 ((-576) |#2| |#1|)) (-15 -2627 ((-576) |#2| |#1| (-576))) (-15 -3343 (|#1| |#1| |#1|)) (-15 -3429 ((-112) |#1|)) (-15 -3272 (|#1| |#1| |#1| (-576))) (-15 -2338 (|#1| |#1|)) (-15 -1426 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -3916 ((-112) |#1| |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3557 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2327 (|#1| (-783) |#2|)) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3052 (|#1| |#1|))) (-678 |#2|) (-1237)) (T -677))
+NIL
+(-10 -8 (-15 -1718 (|#1| |#2|)) (-15 -3804 (|#1| |#1| (-576))) (-15 -3804 (|#1| |#1| (-1254 (-576)))) (-15 -3007 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2329 (|#1| |#2| |#1| (-576))) (-15 -2329 (|#1| |#1| |#1| (-576))) (-15 -1932 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3423 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3007 (|#1| |#2| |#1|)) (-15 -3444 (|#1| |#1|)) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3343 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3429 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2627 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2627 ((-576) |#2| |#1|)) (-15 -2627 ((-576) |#2| |#1| (-576))) (-15 -3343 (|#1| |#1| |#1|)) (-15 -3429 ((-112) |#1|)) (-15 -3272 (|#1| |#1| |#1| (-576))) (-15 -2338 (|#1| |#1|)) (-15 -1426 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1426 (|#1| |#1|)) (-15 -3916 ((-112) |#1| |#1|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2326 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3557 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2327 (|#1| (-783) |#2|)) (-15 -2548 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3052 (|#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2963 ((|#1| $) 66)) (-3436 (($ $) 68)) (-3430 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-3429 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-1426 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4463)))) (-2059 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3423 (($ (-1 (-112) |#1|) $) 131)) (-3959 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4462)))) (-2951 ((|#1| $) 67)) (-2574 (($) 7 T CONST)) (-2338 (($ $) 146 (|has| $ (-6 -4463)))) (-4374 (($ $) 136)) (-2003 (($ $) 74) (($ $ (-783)) 72)) (-3444 (($ $) 133 (|has| |#1| (-1119)))) (-3229 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 132 (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) 127)) (-3607 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4462))) (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2832 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 89)) (-2225 (((-112) $) 85)) (-2627 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1119))) (((-576) |#1| $) 140 (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) 139)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2327 (($ (-783) |#1|) 111)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 97 (|has| (-576) (-862)))) (-1950 (($ $ $) 149 (|has| |#1| (-862)))) (-1932 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3343 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 96 (|has| (-576) (-862)))) (-1492 (($ $ $) 150 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1718 (($ |#1|) 124)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3627 ((|#1| $) 71) (($ $ (-783)) 69)) (-2329 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2163 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2928 (((-656 (-576)) $) 94)) (-1449 (((-112) (-576) $) 93)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 77) (($ $ (-783)) 75)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4040 (($ $ |#1|) 98 (|has| $ (-6 -4463)))) (-3137 (((-112) $) 86)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 92)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3599 (((-576) $ $) 45)) (-3804 (($ $ (-1254 (-576))) 126) (($ $ (-576)) 125)) (-3213 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2133 (((-112) $) 47)) (-3579 (($ $) 63)) (-2604 (($ $) 60 (|has| $ (-6 -4463)))) (-1836 (((-783) $) 64)) (-1668 (($ $) 65)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 145 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 109)) (-3925 (($ $ $) 62) (($ $ |#1|) 61)) (-1534 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 152 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 153 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3944 (((-112) $ $) 151 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 154 (|has| |#1| (-862)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-678 |#1|) (-141) (-1237)) (T -678))
+((-1718 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1237)))))
+(-13 (-1168 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1718 ($ |t#1|))))
+(((-34) . T) ((-102) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1029 |#1|) . T) ((-1119) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1168 |#1|) . T) ((-1237) . T) ((-1275 |#1|) . T))
+((-2783 (((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)) 14)) (-4422 (((-783) (-701 |#1|) (-1287 |#1|)) 30)) (-2521 (((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|)) 24)) (-3089 (((-112) (-701 |#1|) (-1287 |#1|)) 27)))
+(((-679 |#1|) (-10 -7 (-15 -2783 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))) (-15 -2783 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|))) (-15 -2783 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|)))) (-15 -2783 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|)))) (-15 -2521 ((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|))) (-15 -3089 ((-112) (-701 |#1|) (-1287 |#1|))) (-15 -4422 ((-783) (-701 |#1|) (-1287 |#1|)))) (-374)) (T -679))
+((-4422 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-2521 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -4261 (-656 (-1287 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -4261 (-656 (-1287 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -4261 (-656 (-1287 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -4261 (-656 (-1287 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))))
+(-10 -7 (-15 -2783 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))) (-15 -2783 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|))) (-15 -2783 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|)))) (-15 -2783 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|)))) (-15 -2521 ((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|))) (-15 -3089 ((-112) (-701 |#1|) (-1287 |#1|))) (-15 -4422 ((-783) (-701 |#1|) (-1287 |#1|))))
+((-2783 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|))) |#4| |#3|) 60)) (-4422 (((-783) |#4| |#3|) 18)) (-2521 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3089 (((-112) |#4| |#3|) 14)))
+(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2783 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|))) |#4| |#3|)) (-15 -2783 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2521 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3089 ((-112) |#4| |#3|)) (-15 -4422 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4463))) (-13 (-384 |#1|) (-10 -7 (-6 -4463))) (-699 |#1| |#2| |#3|)) (T -680))
+((-4422 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2521 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4463)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4261 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))))
+(-10 -7 (-15 -2783 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|))) |#4| |#3|)) (-15 -2783 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2521 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3089 ((-112) |#4| |#3|)) (-15 -4422 ((-783) |#4| |#3|)))
+((-2358 (((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -4261 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2358 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -4261 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -681))
+((-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) (|:| -4261 (-656 (-1287 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2358 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -4261 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2857 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1462 ((|#2| $) NIL)) (-2561 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3685 (((-1287 (-701 |#2|))) NIL) (((-1287 (-701 |#2|)) (-1287 $)) NIL)) (-1625 (((-112) $) NIL)) (-3142 (((-1287 $)) 42)) (-2746 (((-112) $ (-783)) NIL)) (-4351 (($ |#2|) NIL)) (-2574 (($) NIL T CONST)) (-1607 (($ $) NIL (|has| |#2| (-317)))) (-3475 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3510 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-1985 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1877 (((-701 |#2|)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4036 ((|#2| $) NIL)) (-2343 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1287 $)) NIL)) (-2100 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3619 (((-1192 (-969 |#2|))) NIL (|has| |#2| (-374)))) (-4139 (($ $ (-938)) NIL)) (-3136 ((|#2| $) NIL)) (-2276 (((-1192 |#2|) $) NIL (|has| |#2| (-568)))) (-3335 ((|#2|) NIL) ((|#2| (-1287 $)) NIL)) (-2950 (((-1192 |#2|) $) NIL)) (-2965 (((-112)) NIL)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-2876 (($ (-1287 |#2|)) NIL) (($ (-1287 |#2|) (-1287 $)) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-4422 (((-783) $) NIL (|has| |#2| (-568))) (((-938)) 43)) (-2767 ((|#2| $ (-576) (-576)) NIL)) (-1834 (((-112)) NIL)) (-4141 (($ $ (-938)) NIL)) (-3975 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL)) (-3664 (((-783) $) NIL (|has| |#2| (-568)))) (-2732 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-4227 (((-783) $) NIL)) (-2298 (((-112)) NIL)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-3891 ((|#2| $) NIL (|has| |#2| (-6 (-4464 "*"))))) (-2923 (((-576) $) NIL)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3698 (((-576) $) NIL)) (-2171 (((-576) $) NIL)) (-4307 (($ (-656 (-656 |#2|))) NIL)) (-2822 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4101 (((-656 (-656 |#2|)) $) NIL)) (-4393 (((-112)) NIL)) (-3037 (((-112)) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-1434 (((-3 (-2 (|:| |particular| $) (|:| -4261 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3426 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2213 (((-701 |#2|)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-2436 ((|#2| $) NIL)) (-4409 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1287 $)) NIL)) (-3080 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2359 (((-1192 (-969 |#2|))) NIL (|has| |#2| (-374)))) (-1406 (($ $ (-938)) NIL)) (-2815 ((|#2| $) NIL)) (-4205 (((-1192 |#2|) $) NIL (|has| |#2| (-568)))) (-1659 ((|#2|) NIL) ((|#2| (-1287 $)) NIL)) (-4015 (((-1192 |#2|) $) NIL)) (-1783 (((-112)) NIL)) (-2143 (((-1178) $) NIL)) (-3167 (((-112)) NIL)) (-3215 (((-112)) NIL)) (-1480 (((-112)) NIL)) (-2975 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-3887 (((-1139) $) NIL)) (-3801 (((-112)) NIL)) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1910 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2399 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-2123 ((|#2| $) NIL)) (-3245 (($ (-656 |#2|)) NIL)) (-1856 (((-112) $) NIL)) (-3699 (((-245 |#1| |#2|) $) NIL)) (-3497 ((|#2| $) NIL (|has| |#2| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3052 (($ $) NIL)) (-3392 (((-701 |#2|) (-1287 $)) NIL) (((-1287 |#2|) $) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $ (-1287 $)) 31)) (-2610 (($ (-1287 |#2|)) NIL) (((-1287 |#2|) $) NIL)) (-3501 (((-656 (-969 |#2|))) NIL) (((-656 (-969 |#2|)) (-1287 $)) NIL)) (-2220 (($ $ $) NIL)) (-1332 (((-112)) NIL)) (-3146 (((-245 |#1| |#2|) $ (-576)) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) 41)) (-3308 (((-656 (-1287 |#2|))) NIL (|has| |#2| (-568)))) (-2591 (($ $ $ $) NIL)) (-1883 (((-112)) NIL)) (-1977 (($ (-701 |#2|) $) NIL)) (-2714 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-1402 (((-112) $) NIL)) (-2407 (($ $ $) NIL)) (-3072 (((-112)) NIL)) (-1430 (((-112)) NIL)) (-3044 (((-112)) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-682 |#1| |#2|) (-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-938) (-174)) (T -682))
+NIL
+(-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1471 (((-656 (-1154)) $) 10)) (-2858 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-683) (-13 (-1102) (-10 -8 (-15 -1471 ((-656 (-1154)) $))))) (T -683))
+((-1471 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-683)))))
+(-13 (-1102) (-10 -8 (-15 -1471 ((-656 (-1154)) $))))
+((-2835 (((-112) $ $) NIL)) (-3463 (((-656 |#1|) $) NIL)) (-2442 (($ $) 62)) (-3097 (((-112) $) NIL)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-3687 (((-3 $ "failed") (-831 |#1|)) 27)) (-2427 (((-112) (-831 |#1|)) 17)) (-2562 (($ (-831 |#1|)) 28)) (-2232 (((-112) $ $) 36)) (-1873 (((-938) $) 43)) (-2425 (($ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2367 (((-656 $) (-831 |#1|)) 19)) (-2858 (((-874) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-2690 (((-112) $ $) NIL)) (-1391 (((-59 (-656 $)) (-656 |#1|) (-938)) 67)) (-2794 (((-656 $) (-656 |#1|) (-938)) 70)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 63)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 46)))
+(((-684 |#1|) (-13 (-862) (-1057 |#1|) (-10 -8 (-15 -3097 ((-112) $)) (-15 -2425 ($ $)) (-15 -2442 ($ $)) (-15 -1873 ((-938) $)) (-15 -2232 ((-112) $ $)) (-15 -2858 ((-831 |#1|) $)) (-15 -2858 ((-689 |#1|) $)) (-15 -2367 ((-656 $) (-831 |#1|))) (-15 -2427 ((-112) (-831 |#1|))) (-15 -2562 ($ (-831 |#1|))) (-15 -3687 ((-3 $ "failed") (-831 |#1|))) (-15 -3463 ((-656 |#1|) $)) (-15 -1391 ((-59 (-656 $)) (-656 |#1|) (-938))) (-15 -2794 ((-656 $) (-656 |#1|) (-938))))) (-862)) (T -684))
+((-3097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-2442 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2232 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-3687 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5)))))
+(-13 (-862) (-1057 |#1|) (-10 -8 (-15 -3097 ((-112) $)) (-15 -2425 ($ $)) (-15 -2442 ($ $)) (-15 -1873 ((-938) $)) (-15 -2232 ((-112) $ $)) (-15 -2858 ((-831 |#1|) $)) (-15 -2858 ((-689 |#1|) $)) (-15 -2367 ((-656 $) (-831 |#1|))) (-15 -2427 ((-112) (-831 |#1|))) (-15 -2562 ($ (-831 |#1|))) (-15 -3687 ((-3 $ "failed") (-831 |#1|))) (-15 -3463 ((-656 |#1|) $)) (-15 -1391 ((-59 (-656 $)) (-656 |#1|) (-938))) (-15 -2794 ((-656 $) (-656 |#1|) (-938)))))
+((-4160 ((|#2| $) 100)) (-3436 (($ $) 121)) (-2746 (((-112) $ (-783)) 35)) (-2003 (($ $) 109) (($ $ (-783)) 112)) (-2225 (((-112) $) 122)) (-1550 (((-656 $) $) 96)) (-2231 (((-112) $ $) 92)) (-3639 (((-112) $ (-783)) 33)) (-2440 (((-576) $) 66)) (-4048 (((-576) $) 65)) (-1684 (((-112) $ (-783)) 31)) (-3123 (((-112) $) 98)) (-3627 ((|#2| $) 113) (($ $ (-783)) 117)) (-2163 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-2928 (((-656 (-576)) $) 64)) (-1449 (((-112) (-576) $) 59)) (-1989 ((|#2| $) NIL) (($ $ (-783)) 108)) (-3262 (($ $ (-576)) 125)) (-3137 (((-112) $) 124)) (-1910 (((-112) (-1 (-112) |#2|) $) 42)) (-3584 (((-656 |#2|) $) 46)) (-2099 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1254 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3599 (((-576) $ $) 91)) (-3213 (($ $ (-1254 (-576))) 78) (($ $ (-576)) 72)) (-2133 (((-112) $) 87)) (-3579 (($ $) 105)) (-1836 (((-783) $) 104)) (-1668 (($ $) 103)) (-2869 (($ (-656 |#2|)) 53)) (-2137 (($ $) 126)) (-4016 (((-656 $) $) 90)) (-1694 (((-112) $ $) 89)) (-2714 (((-112) (-1 (-112) |#2|) $) 41)) (-3889 (((-112) $ $) 20)) (-2845 (((-783) $) 39)))
+(((-685 |#1| |#2|) (-10 -8 (-15 -2137 (|#1| |#1|)) (-15 -3262 (|#1| |#1| (-576))) (-15 -2225 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -2099 (|#2| |#1| (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576))) (-15 -3584 ((-656 |#2|) |#1|)) (-15 -1449 ((-112) (-576) |#1|)) (-15 -2928 ((-656 (-576)) |#1|)) (-15 -4048 ((-576) |#1|)) (-15 -2440 ((-576) |#1|)) (-15 -2869 (|#1| (-656 |#2|))) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -3213 (|#1| |#1| (-576))) (-15 -3213 (|#1| |#1| (-1254 (-576)))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -3579 (|#1| |#1|)) (-15 -1836 ((-783) |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -3627 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "last")) (-15 -3627 (|#2| |#1|)) (-15 -2003 (|#1| |#1| (-783))) (-15 -2099 (|#1| |#1| "rest")) (-15 -2003 (|#1| |#1|)) (-15 -1989 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "first")) (-15 -1989 (|#2| |#1|)) (-15 -2231 ((-112) |#1| |#1|)) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3599 ((-576) |#1| |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -2099 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -3123 ((-112) |#1|)) (-15 -1550 ((-656 |#1|) |#1|)) (-15 -4016 ((-656 |#1|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783)))) (-686 |#2|) (-1237)) (T -685))
+NIL
+(-10 -8 (-15 -2137 (|#1| |#1|)) (-15 -3262 (|#1| |#1| (-576))) (-15 -2225 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -2099 (|#2| |#1| (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576))) (-15 -3584 ((-656 |#2|) |#1|)) (-15 -1449 ((-112) (-576) |#1|)) (-15 -2928 ((-656 (-576)) |#1|)) (-15 -4048 ((-576) |#1|)) (-15 -2440 ((-576) |#1|)) (-15 -2869 (|#1| (-656 |#2|))) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -3213 (|#1| |#1| (-576))) (-15 -3213 (|#1| |#1| (-1254 (-576)))) (-15 -2163 (|#1| |#2| |#1| (-576))) (-15 -2163 (|#1| |#1| |#1| (-576))) (-15 -3579 (|#1| |#1|)) (-15 -1836 ((-783) |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -3627 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "last")) (-15 -3627 (|#2| |#1|)) (-15 -2003 (|#1| |#1| (-783))) (-15 -2099 (|#1| |#1| "rest")) (-15 -2003 (|#1| |#1|)) (-15 -1989 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "first")) (-15 -1989 (|#2| |#1|)) (-15 -2231 ((-112) |#1| |#1|)) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3599 ((-576) |#1| |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -2099 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -3123 ((-112) |#1|)) (-15 -1550 ((-656 |#1|) |#1|)) (-15 -4016 ((-656 |#1|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -1910 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783))))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2963 ((|#1| $) 66)) (-3436 (($ $) 68)) (-3430 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 104)) (-2951 ((|#1| $) 67)) (-2574 (($) 7 T CONST)) (-2922 (($ $) 126)) (-2003 (($ $) 74) (($ $ (-783)) 72)) (-3229 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 105)) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2832 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 89)) (-2225 (((-112) $) 85)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2781 (((-783) $) 125)) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2327 (($ (-783) |#1|) 111)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 97 (|has| (-576) (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 96 (|has| (-576) (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2104 (($ $) 128)) (-3059 (((-112) $) 129)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3627 ((|#1| $) 71) (($ $ (-783)) 69)) (-2163 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2928 (((-656 (-576)) $) 94)) (-1449 (((-112) (-576) $) 93)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3528 ((|#1| $) 127)) (-1989 ((|#1| $) 77) (($ $ (-783)) 75)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4040 (($ $ |#1|) 98 (|has| $ (-6 -4463)))) (-3262 (($ $ (-576)) 124)) (-3137 (((-112) $) 86)) (-3767 (((-112) $) 130)) (-4427 (((-112) $) 131)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 92)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3599 (((-576) $ $) 45)) (-3213 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2133 (((-112) $) 47)) (-3579 (($ $) 63)) (-2604 (($ $) 60 (|has| $ (-6 -4463)))) (-1836 (((-783) $) 64)) (-1668 (($ $) 65)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 109)) (-3925 (($ $ $) 62 (|has| $ (-6 -4463))) (($ $ |#1|) 61 (|has| $ (-6 -4463)))) (-1534 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2137 (($ $) 123)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-686 |#1|) (-141) (-1237)) (T -686))
+((-3607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-4427 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-2104 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-2922 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-2781 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-2137 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))))
+(-13 (-1168 |t#1|) (-10 -8 (-15 -3607 ($ (-1 (-112) |t#1|) $)) (-15 -3959 ($ (-1 (-112) |t#1|) $)) (-15 -4427 ((-112) $)) (-15 -3767 ((-112) $)) (-15 -3059 ((-112) $)) (-15 -2104 ($ $)) (-15 -3528 (|t#1| $)) (-15 -2922 ($ $)) (-15 -2781 ((-783) $)) (-15 -3262 ($ $ (-576))) (-15 -2137 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1168 |#1|) . T) ((-1237) . T) ((-1275 |#1|) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1548 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1068)))) (-2746 (((-112) $ (-783)) NIL)) (-1543 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-2574 (($) NIL T CONST)) (-3585 (($ $ $) 57 (|has| |#1| (-1068)))) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1708 (((-1287 (-783)) $) 12)) (-1346 (($ (-1196) $ $) 34)) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3158 (($ (-783)) 55 (|has| |#1| (-1068)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-783) (-783) (-783)) 44)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2869 (($ (-656 (-656 (-656 |#1|)))) 67)) (-2858 (($ (-975 (-975 (-975 |#1|)))) 23) (((-975 (-975 (-975 |#1|))) $) 19) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -1548 ($ (-783) (-783) (-783))) (-15 -3158 ($ (-783))) (-15 -3585 ($ $ $))) |%noBranch|) (-15 -2869 ($ (-656 (-656 (-656 |#1|))))) (-15 -2099 (|#1| $ (-783) (-783) (-783))) (-15 -1543 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -2858 ($ (-975 (-975 (-975 |#1|))))) (-15 -2858 ((-975 (-975 (-975 |#1|))) $)) (-15 -1346 ($ (-1196) $ $)) (-15 -1708 ((-1287 (-783)) $)))) (-1119)) (T -687))
+((-1548 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) (-4 *3 (-1119)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) (-4 *3 (-1119)))) (-3585 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1068)) (-4 *2 (-1119)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1119)) (-5 *1 (-687 *3)))) (-2099 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) (-1543 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-4 *3 (-1119)) (-5 *1 (-687 *3)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1119)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-687 *3)) (-4 *3 (-1119)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-1287 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1119)))))
+(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -1548 ($ (-783) (-783) (-783))) (-15 -3158 ($ (-783))) (-15 -3585 ($ $ $))) |%noBranch|) (-15 -2869 ($ (-656 (-656 (-656 |#1|))))) (-15 -2099 (|#1| $ (-783) (-783) (-783))) (-15 -1543 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -2858 ($ (-975 (-975 (-975 |#1|))))) (-15 -2858 ((-975 (-975 (-975 |#1|))) $)) (-15 -1346 ($ (-1196) $ $)) (-15 -1708 ((-1287 (-783)) $))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1371 (((-495) $) 10)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-1154) $) 12)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-688) (-13 (-1102) (-10 -8 (-15 -1371 ((-495) $)) (-15 -1822 ((-1154) $))))) (T -688))
+((-1371 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-688)))))
+(-13 (-1102) (-10 -8 (-15 -1371 ((-495) $)) (-15 -1822 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-3463 (((-656 |#1|) $) 15)) (-2442 (($ $) 19)) (-3097 (((-112) $) 20)) (-2454 (((-3 |#1| "failed") $) 23)) (-4397 ((|#1| $) 21)) (-2003 (($ $) 37)) (-1419 (($ $) 25)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2232 (((-112) $ $) 47)) (-1873 (((-938) $) 40)) (-2425 (($ $) 18)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 ((|#1| $) 36)) (-2858 (((-874) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 13)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-689 |#1|) (-13 (-862) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2858 ((-831 |#1|) $)) (-15 -1989 (|#1| $)) (-15 -2425 ($ $)) (-15 -1873 ((-938) $)) (-15 -2232 ((-112) $ $)) (-15 -1419 ($ $)) (-15 -2003 ($ $)) (-15 -3097 ((-112) $)) (-15 -2442 ($ $)) (-15 -3463 ((-656 |#1|) $)))) (-862)) (T -689))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-1989 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2232 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2442 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))))
+(-13 (-862) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2858 ((-831 |#1|) $)) (-15 -1989 (|#1| $)) (-15 -2425 ($ $)) (-15 -1873 ((-938) $)) (-15 -2232 ((-112) $ $)) (-15 -1419 ($ $)) (-15 -2003 ($ $)) (-15 -3097 ((-112) $)) (-15 -2442 ($ $)) (-15 -3463 ((-656 |#1|) $))))
+((-3204 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-2582 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9)))
+(((-690 |#1|) (-10 -7 (-15 -2582 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -3204 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1119)) (T -690))
+((-3204 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1119)) (-5 *1 (-690 *2)))) (-2582 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1119)) (-5 *1 (-690 *2)))))
+(-10 -7 (-15 -2582 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -3204 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|)))
+((-1606 ((|#2| |#1| |#2|) 9)) (-1588 ((|#1| |#1| |#2|) 8)))
+(((-691 |#1| |#2|) (-10 -7 (-15 -1588 (|#1| |#1| |#2|)) (-15 -1606 (|#2| |#1| |#2|))) (-1119) (-1119)) (T -691))
+((-1606 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-1588 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -1588 (|#1| |#1| |#2|)) (-15 -1606 (|#2| |#1| |#2|)))
+((-2028 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -2028 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1119) (-1119) (-1119)) (T -692))
+((-2028 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-692 *5 *6 *2)))))
+(-10 -7 (-15 -2028 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-2913 (((-1236) $) 21)) (-2864 (((-656 (-1236)) $) 19)) (-4163 (($ (-656 (-1236)) (-1236)) 14)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 29) (($ (-1201)) NIL) (((-1201) $) NIL) (((-1236) $) 22) (($ (-1137)) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-693) (-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -2858 ($ (-1137))) (-15 -4163 ($ (-656 (-1236)) (-1236))) (-15 -2864 ((-656 (-1236)) $)) (-15 -2913 ((-1236) $))))) (T -693))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-693)))) (-4163 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1236))) (-5 *3 (-1236)) (-5 *1 (-693)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-693)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-693)))))
+(-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -2858 ($ (-1137))) (-15 -4163 ($ (-656 (-1236)) (-1236))) (-15 -2864 ((-656 (-1236)) $)) (-15 -2913 ((-1236) $))))
+((-3204 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-4219 (((-1 |#1|) |#1|) 8)) (-2087 ((|#1| |#1|) 19)) (-4349 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-2858 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23)))
+(((-694 |#1|) (-10 -7 (-15 -4219 ((-1 |#1|) |#1|)) (-15 -2858 ((-1 |#1|) |#1|)) (-15 -4349 (|#1| (-1 |#1| |#1|))) (-15 -4349 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2087 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -3204 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1119)) (T -694))
+((-3204 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1119)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1119)) (-5 *1 (-694 *4)))) (-2087 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1119)))) (-4349 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1119)))) (-4349 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1119)))) (-2858 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119)))) (-4219 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -4219 ((-1 |#1|) |#1|)) (-15 -2858 ((-1 |#1|) |#1|)) (-15 -4349 (|#1| (-1 |#1| |#1|))) (-15 -4349 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2087 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -3204 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|))))
+((-3078 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2672 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3712 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3391 (((-1 |#2| |#1|) |#2|) 11)))
+(((-695 |#1| |#2|) (-10 -7 (-15 -3391 ((-1 |#2| |#1|) |#2|)) (-15 -2672 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3712 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3078 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1119) (-1119)) (T -695))
+((-3078 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1119)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1119)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -3391 ((-1 |#2| |#1|) |#2|)) (-15 -2672 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3712 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3078 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2967 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3273 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4041 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2852 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2725 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -3273 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4041 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2852 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2725 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2967 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1119) (-1119) (-1119)) (T -696))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1119)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1119)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1119)) (-4 *4 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6)))))
+(-10 -7 (-15 -3273 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4041 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2852 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2725 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2967 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-2326 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2548 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2548 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2548 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2326 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1068) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1068) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697))
+((-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))))
+(-10 -7 (-15 -2548 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2548 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2326 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2854 (($ (-783) (-783)) 42)) (-2346 (($ $ $) 71)) (-2948 (($ |#3|) 66) (($ $) 67)) (-2561 (((-112) $) 36)) (-1581 (($ $ (-576) (-576)) 82)) (-3982 (($ $ (-576) (-576)) 83)) (-2652 (($ $ (-576) (-576) (-576) (-576)) 88)) (-3879 (($ $) 69)) (-1625 (((-112) $) 15)) (-3592 (($ $ (-576) (-576) $) 89)) (-3028 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 87)) (-4351 (($ (-783) |#2|) 53)) (-4307 (($ (-656 (-656 |#2|))) 51)) (-4101 (((-656 (-656 |#2|)) $) 78)) (-1498 (($ $ $) 70)) (-2825 (((-3 $ "failed") $ |#2|) 120)) (-2099 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-3245 (($ (-656 |#2|)) 54) (($ (-656 $)) 56)) (-1856 (((-112) $) 28)) (-2858 (($ |#4|) 61) (((-874) $) NIL)) (-1402 (((-112) $) 38)) (-4013 (($ $ |#2|) 122)) (-4002 (($ $ $) 93) (($ $) 96)) (-3990 (($ $ $) 91)) (** (($ $ (-783)) 109) (($ $ (-576)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-576) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117)))
+(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2858 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4013 (|#1| |#1| |#2|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2652 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3982 (|#1| |#1| (-576) (-576))) (-15 -1581 (|#1| |#1| (-576) (-576))) (-15 -3028 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2099 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -4101 ((-656 (-656 |#2|)) |#1|)) (-15 -2346 (|#1| |#1| |#1|)) (-15 -1498 (|#1| |#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2948 (|#1| |#3|)) (-15 -2858 (|#1| |#4|)) (-15 -3245 (|#1| (-656 |#1|))) (-15 -3245 (|#1| (-656 |#2|))) (-15 -4351 (|#1| (-783) |#2|)) (-15 -4307 (|#1| (-656 (-656 |#2|)))) (-15 -2854 (|#1| (-783) (-783))) (-15 -1402 ((-112) |#1|)) (-15 -2561 ((-112) |#1|)) (-15 -1856 ((-112) |#1|)) (-15 -1625 ((-112) |#1|)) (-15 -3028 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1068) (-384 |#2|) (-384 |#2|)) (T -698))
+NIL
+(-10 -8 (-15 -2858 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4013 (|#1| |#1| |#2|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2652 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3982 (|#1| |#1| (-576) (-576))) (-15 -1581 (|#1| |#1| (-576) (-576))) (-15 -3028 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2099 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -4101 ((-656 (-656 |#2|)) |#1|)) (-15 -2346 (|#1| |#1| |#1|)) (-15 -1498 (|#1| |#1| |#1|)) (-15 -3879 (|#1| |#1|)) (-15 -2948 (|#1| |#1|)) (-15 -2948 (|#1| |#3|)) (-15 -2858 (|#1| |#4|)) (-15 -3245 (|#1| (-656 |#1|))) (-15 -3245 (|#1| (-656 |#2|))) (-15 -4351 (|#1| (-783) |#2|)) (-15 -4307 (|#1| (-656 (-656 |#2|)))) (-15 -2854 (|#1| (-783) (-783))) (-15 -1402 ((-112) |#1|)) (-15 -2561 ((-112) |#1|)) (-15 -1856 ((-112) |#1|)) (-15 -1625 ((-112) |#1|)) (-15 -3028 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) (-576))))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2854 (($ (-783) (-783)) 98)) (-2346 (($ $ $) 88)) (-2948 (($ |#2|) 92) (($ $) 91)) (-2561 (((-112) $) 100)) (-1581 (($ $ (-576) (-576)) 84)) (-3982 (($ $ (-576) (-576)) 83)) (-2652 (($ $ (-576) (-576) (-576) (-576)) 82)) (-3879 (($ $) 90)) (-1625 (((-112) $) 102)) (-2746 (((-112) $ (-783)) 8)) (-3592 (($ $ (-576) (-576) $) 81)) (-3028 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-3029 (($ $ (-576) |#2|) 43)) (-4405 (($ $ (-576) |#3|) 42)) (-4351 (($ (-783) |#1|) 96)) (-2574 (($) 7 T CONST)) (-1607 (($ $) 68 (|has| |#1| (-317)))) (-3475 ((|#2| $ (-576)) 47)) (-4422 (((-783) $) 67 (|has| |#1| (-568)))) (-2832 ((|#1| $ (-576) (-576) |#1|) 44)) (-2767 ((|#1| $ (-576) (-576)) 49)) (-3975 (((-656 |#1|) $) 31)) (-3664 (((-783) $) 66 (|has| |#1| (-568)))) (-2732 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-4227 (((-783) $) 52)) (-2327 (($ (-783) (-783) |#1|) 58)) (-4240 (((-783) $) 51)) (-3639 (((-112) $ (-783)) 9)) (-3891 ((|#1| $) 63 (|has| |#1| (-6 (-4464 "*"))))) (-2923 (((-576) $) 56)) (-1637 (((-576) $) 54)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3698 (((-576) $) 55)) (-2171 (((-576) $) 53)) (-4307 (($ (-656 (-656 |#1|))) 97)) (-2822 (($ (-1 |#1| |#1|) $) 35)) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4101 (((-656 (-656 |#1|)) $) 87)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2975 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-1498 (($ $ $) 89)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) 57)) (-2825 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-3245 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-1856 (((-112) $) 101)) (-3497 ((|#1| $) 64 (|has| |#1| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-3146 ((|#3| $ (-576)) 46)) (-2858 (($ |#3|) 93) (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-1402 (((-112) $) 99)) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-4013 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-4002 (($ $ $) 79) (($ $) 78)) (-3990 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-699 |#1| |#2| |#3|) (-141) (-1068) (-384 |t#1|) (-384 |t#1|)) (T -699))
+((-1625 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2854 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4351 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2858 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-2948 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-2948 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3879 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1498 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2346 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2099 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3028 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1581 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3982 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2652 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3592 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3990 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4002 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4002 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1068)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2825 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-1607 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-2975 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -1625 ((-112) $)) (-15 -1856 ((-112) $)) (-15 -2561 ((-112) $)) (-15 -1402 ((-112) $)) (-15 -2854 ($ (-783) (-783))) (-15 -4307 ($ (-656 (-656 |t#1|)))) (-15 -4351 ($ (-783) |t#1|)) (-15 -3245 ($ (-656 |t#1|))) (-15 -3245 ($ (-656 $))) (-15 -2858 ($ |t#3|)) (-15 -2948 ($ |t#2|)) (-15 -2948 ($ $)) (-15 -3879 ($ $)) (-15 -1498 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -4101 ((-656 (-656 |t#1|)) $)) (-15 -2099 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3028 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -1581 ($ $ (-576) (-576))) (-15 -3982 ($ $ (-576) (-576))) (-15 -2652 ($ $ (-576) (-576) (-576) (-576))) (-15 -3592 ($ $ (-576) (-576) $)) (-15 -3990 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -4002 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -2825 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4013 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -1607 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4422 ((-783) $)) (-15 -3664 ((-783) $)) (-15 -2732 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4464 "*"))) (PROGN (-15 -3497 (|t#1| $)) (-15 -3891 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2975 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-57 |#1| |#2| |#3|) . T) ((-1237) . T))
+((-1607 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-4422 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-3664 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-2732 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-2685 (((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-3891 ((|#1| |#4|) 52)) (-3109 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-2975 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-4103 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-4157 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-3626 ((|#4| |#4| (-576) (-576)) 55)) (-1414 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-3497 ((|#1| |#4|) 98)) (-3634 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568)))))
+(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3497 (|#1| |#4|)) (-15 -3891 (|#1| |#4|)) (-15 -3626 (|#4| |#4| (-576) (-576))) (-15 -4157 (|#4| |#4| |#1| (-576) (-576))) (-15 -1414 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4422 ((-783) |#4|)) (-15 -3664 ((-783) |#4|)) (-15 -2732 ((-656 |#3|) |#4|)) (-15 -4103 (|#4| |#4|)) (-15 -3109 ((-3 |#4| "failed") |#4|)) (-15 -3634 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -1607 (|#4| |#4|)) (-15 -2685 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2975 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700))
+((-2975 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2685 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3109 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3664 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4422 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1414 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-4157 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-3626 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-3891 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3497 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))))
+(-10 -7 (-15 -3497 (|#1| |#4|)) (-15 -3891 (|#1| |#4|)) (-15 -3626 (|#4| |#4| (-576) (-576))) (-15 -4157 (|#4| |#4| |#1| (-576) (-576))) (-15 -1414 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4422 ((-783) |#4|)) (-15 -3664 ((-783) |#4|)) (-15 -2732 ((-656 |#3|) |#4|)) (-15 -4103 (|#4| |#4|)) (-15 -3109 ((-3 |#4| "failed") |#4|)) (-15 -3634 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -1607 (|#4| |#4|)) (-15 -2685 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2975 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2854 (($ (-783) (-783)) 64)) (-2346 (($ $ $) NIL)) (-2948 (($ (-1287 |#1|)) NIL) (($ $) NIL)) (-2561 (((-112) $) NIL)) (-1581 (($ $ (-576) (-576)) 22)) (-3982 (($ $ (-576) (-576)) NIL)) (-2652 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-3879 (($ $) NIL)) (-1625 (((-112) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3592 (($ $ (-576) (-576) $) NIL)) (-3028 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3029 (($ $ (-576) (-1287 |#1|)) NIL)) (-4405 (($ $ (-576) (-1287 |#1|)) NIL)) (-4351 (($ (-783) |#1|) 37)) (-2574 (($) NIL T CONST)) (-1607 (($ $) 46 (|has| |#1| (-317)))) (-3475 (((-1287 |#1|) $ (-576)) NIL)) (-4422 (((-783) $) 48 (|has| |#1| (-568)))) (-2832 ((|#1| $ (-576) (-576) |#1|) 69)) (-2767 ((|#1| $ (-576) (-576)) NIL)) (-3975 (((-656 |#1|) $) NIL)) (-3664 (((-783) $) 50 (|has| |#1| (-568)))) (-2732 (((-656 (-1287 |#1|)) $) 53 (|has| |#1| (-568)))) (-4227 (((-783) $) 32)) (-2327 (($ (-783) (-783) |#1|) 28)) (-4240 (((-783) $) 33)) (-3639 (((-112) $ (-783)) NIL)) (-3891 ((|#1| $) 44 (|has| |#1| (-6 (-4464 "*"))))) (-2923 (((-576) $) 10)) (-1637 (((-576) $) 11)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3698 (((-576) $) 14)) (-2171 (((-576) $) 65)) (-4307 (($ (-656 (-656 |#1|))) NIL)) (-2822 (($ (-1 |#1| |#1|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4101 (((-656 (-656 |#1|)) $) 76)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2975 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-1498 (($ $ $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4040 (($ $ |#1|) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-3245 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1287 |#1|)) 70)) (-1856 (((-112) $) NIL)) (-3497 ((|#1| $) 42 (|has| |#1| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2610 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-3146 (((-1287 |#1|) $ (-576)) NIL)) (-2858 (($ (-1287 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1402 (((-112) $) NIL)) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $ $) NIL) (($ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1287 |#1|) $ (-1287 |#1|)) NIL) (((-1287 |#1|) (-1287 |#1|) $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-701 |#1|) (-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -3245 ($ (-1287 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2975 ((-3 $ "failed") $)) |%noBranch|))) (-1068)) (T -701))
+((-2975 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1068)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-701 *3)))))
+(-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -3245 ($ (-1287 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2975 ((-3 $ "failed") $)) |%noBranch|)))
+((-3181 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-2008 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-3311 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-3705 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-3679 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-2929 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-3139 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46)))
+(((-702 |#1|) (-10 -7 (-15 -3139 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3705 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3679 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3679 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2929 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2008 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -3181 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3311 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1068)) (T -702))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-702 *4)))) (-3311 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-702 *4)))) (-3181 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-2008 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-2929 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3679 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3679 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3705 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3139 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
+(-10 -7 (-15 -3139 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3705 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3679 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3679 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2929 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -2008 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -3181 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3311 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783))))
+((-2454 (((-3 |#1| "failed") $) 18)) (-4397 ((|#1| $) NIL)) (-2735 (($) 7 T CONST)) (-3062 (($ |#1|) 8)) (-2858 (($ |#1|) 16) (((-874) $) 23)) (-2012 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2735)) 11)) (-3108 ((|#1| $) 15)))
+(((-703 |#1|) (-13 (-1282) (-1057 |#1|) (-625 (-874)) (-10 -8 (-15 -3062 ($ |#1|)) (-15 -2012 ((-112) $ (|[\|\|]| |#1|))) (-15 -2012 ((-112) $ (|[\|\|]| -2735))) (-15 -3108 (|#1| $)) (-15 -2735 ($) -3712))) (-625 (-874))) (T -703))
+((-3062 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2735)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-874))))) (-3108 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-2735 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))))
+(-13 (-1282) (-1057 |#1|) (-625 (-874)) (-10 -8 (-15 -3062 ($ |#1|)) (-15 -2012 ((-112) $ (|[\|\|]| |#1|))) (-15 -2012 ((-112) $ (|[\|\|]| -2735))) (-15 -3108 (|#1| $)) (-15 -2735 ($) -3712)))
+((-2093 ((|#2| |#2| |#4|) 29)) (-2291 (((-701 |#2|) |#3| |#4|) 35)) (-2942 (((-701 |#2|) |#2| |#4|) 34)) (-3107 (((-1287 |#2|) |#2| |#4|) 16)) (-4024 ((|#2| |#3| |#4|) 28)) (-3293 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-3587 (((-701 |#2|) |#2| |#4| (-783)) 46)))
+(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3107 ((-1287 |#2|) |#2| |#4|)) (-15 -4024 (|#2| |#3| |#4|)) (-15 -2093 (|#2| |#2| |#4|)) (-15 -2942 ((-701 |#2|) |#2| |#4|)) (-15 -3587 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2291 ((-701 |#2|) |#3| |#4|)) (-15 -3293 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1119) (-915 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4462)))) (T -704))
+((-3293 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *7 (-915 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462)))))) (-2291 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *6 (-915 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))) (-3587 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *3 (-915 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462)))))) (-2942 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))) (-2093 (*1 *2 *2 *3) (-12 (-4 *4 (-1119)) (-4 *2 (-915 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-4024 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *2 (-915 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))) (-3107 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-1287 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))))
+(-10 -7 (-15 -3107 ((-1287 |#2|) |#2| |#4|)) (-15 -4024 (|#2| |#3| |#4|)) (-15 -2093 (|#2| |#2| |#4|)) (-15 -2942 ((-701 |#2|) |#2| |#4|)) (-15 -3587 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2291 ((-701 |#2|) |#3| |#4|)) (-15 -3293 ((-701 |#2|) |#3| |#4| (-783) (-783))))
+((-3363 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-4414 ((|#1| (-701 |#2|)) 9)) (-1432 (((-701 |#1|) (-701 |#2|)) 18)))
+(((-705 |#1| |#2|) (-10 -7 (-15 -4414 (|#1| (-701 |#2|))) (-15 -1432 ((-701 |#1|) (-701 |#2|))) (-15 -3363 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1011 |#1|)) (T -705))
+((-3363 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4)))))
+(-10 -7 (-15 -4414 (|#1| (-701 |#2|))) (-15 -1432 ((-701 |#1|) (-701 |#2|))) (-15 -3363 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3940 (((-701 (-711))) NIL) (((-701 (-711)) (-1287 $)) NIL)) (-1462 (((-711) $) NIL)) (-3897 (($ $) NIL (|has| (-711) (-1222)))) (-3760 (($ $) NIL (|has| (-711) (-1222)))) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-3179 (($ $) NIL (-3739 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-2464 (((-430 $) $) NIL (-3739 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-2477 (($ $) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1222))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-3417 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2422 (((-783)) NIL (|has| (-711) (-379)))) (-3871 (($ $) NIL (|has| (-711) (-1222)))) (-3735 (($ $) NIL (|has| (-711) (-1222)))) (-1542 (($ $) NIL (|has| (-711) (-1222)))) (-3781 (($ $) NIL (|has| (-711) (-1222)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1057 (-419 (-576)))))) (-4397 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1057 (-419 (-576)))))) (-2876 (($ (-1287 (-711))) NIL) (($ (-1287 (-711)) (-1287 $)) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-2780 (($ $ $) NIL (|has| (-711) (-317)))) (-3313 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1287 $)) NIL)) (-2085 (((-701 (-711)) (-1287 $)) NIL) (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -3260 (-701 (-711))) (|:| |vec| (-1287 (-711)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1287 $)) NIL (|has| (-711) (-651 (-576))))) (-2326 (((-3 $ "failed") (-419 (-1192 (-711)))) NIL (|has| (-711) (-374))) (($ (-1192 (-711))) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2490 (((-711) $) 29)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-1946 (((-112) $) NIL (|has| (-711) (-557)))) (-3269 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-4422 (((-938)) NIL)) (-2107 (($) NIL (|has| (-711) (-379)))) (-2790 (($ $ $) NIL (|has| (-711) (-317)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-3602 (($) NIL (|has| (-711) (-360)))) (-4429 (((-112) $) NIL (|has| (-711) (-360)))) (-2244 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-3011 (((-112) $) NIL (-3739 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-3898 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1079)) (|has| (-711) (-1222))))) (-1663 (($) NIL (|has| (-711) (-1222)))) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-711) (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-711) (-899 (-576))))) (-2620 (((-845 (-938)) $) NIL (|has| (-711) (-360))) (((-938) $) NIL (|has| (-711) (-360)))) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1222))))) (-3075 (((-711) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2510 (((-1192 (-711)) $) NIL (|has| (-711) (-374)))) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2548 (($ (-1 (-711) (-711)) $) NIL)) (-1654 (((-938) $) NIL (|has| (-711) (-379)))) (-3437 (($ $) NIL (|has| (-711) (-1222)))) (-2315 (((-1192 (-711)) $) NIL)) (-3862 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| (-711) (-374)))) (-3448 (($) NIL (|has| (-711) (-360)) CONST)) (-4308 (($ (-938)) NIL (|has| (-711) (-379)))) (-3976 (($) NIL)) (-1999 (((-711) $) 31)) (-3887 (((-1139) $) NIL)) (-3633 (($) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-711) (-317)))) (-3901 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-711) (-360)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-2367 (((-430 $) $) NIL (-3739 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| (-711) (-317)))) (-2825 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2656 (($ $) NIL (|has| (-711) (-1222)))) (-3022 (($ $ (-1196) (-711)) NIL (|has| (-711) (-526 (-1196) (-711)))) (($ $ (-656 (-1196)) (-656 (-711))) NIL (|has| (-711) (-526 (-1196) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-3076 (((-783) $) NIL (|has| (-711) (-317)))) (-2099 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| (-711) (-317)))) (-3880 (((-711)) NIL) (((-711) (-1287 $)) NIL)) (-3447 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-2399 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3739 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-4370 (((-701 (-711)) (-1287 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-1953 (((-1192 (-711))) NIL)) (-1553 (($ $) NIL (|has| (-711) (-1222)))) (-3791 (($ $) NIL (|has| (-711) (-1222)))) (-1861 (($) NIL (|has| (-711) (-360)))) (-3911 (($ $) NIL (|has| (-711) (-1222)))) (-3771 (($ $) NIL (|has| (-711) (-1222)))) (-3883 (($ $) NIL (|has| (-711) (-1222)))) (-3748 (($ $) NIL (|has| (-711) (-1222)))) (-3392 (((-701 (-711)) (-1287 $)) NIL) (((-1287 (-711)) $) NIL) (((-701 (-711)) (-1287 $) (-1287 $)) NIL) (((-1287 (-711)) $ (-1287 $)) NIL)) (-2610 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1041))) (((-171 (-390)) $) NIL (|has| (-711) (-1041))) (((-905 (-390)) $) NIL (|has| (-711) (-626 (-905 (-390))))) (((-905 (-576)) $) NIL (|has| (-711) (-626 (-905 (-576))))) (($ (-1192 (-711))) NIL) (((-1192 (-711)) $) NIL) (($ (-1287 (-711))) NIL) (((-1287 (-711)) $) NIL)) (-2480 (($ $) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-3739 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-926))) (|has| (-711) (-360))))) (-3477 (($ (-711) (-711)) 12)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-3739 (|has| (-711) (-1057 (-419 (-576)))) (|has| (-711) (-374))))) (-3689 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-3739 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-926))) (|has| (-711) (-146))))) (-2528 (((-1192 (-711)) $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL)) (-1593 (($ $) NIL (|has| (-711) (-1222)))) (-3826 (($ $) NIL (|has| (-711) (-1222)))) (-3199 (((-112) $ $) NIL)) (-1567 (($ $) NIL (|has| (-711) (-1222)))) (-3802 (($ $) NIL (|has| (-711) (-1222)))) (-1620 (($ $) NIL (|has| (-711) (-1222)))) (-3847 (($ $) NIL (|has| (-711) (-1222)))) (-3248 (((-711) $) NIL (|has| (-711) (-1222)))) (-2888 (($ $) NIL (|has| (-711) (-1222)))) (-3859 (($ $) NIL (|has| (-711) (-1222)))) (-1609 (($ $) NIL (|has| (-711) (-1222)))) (-3837 (($ $) NIL (|has| (-711) (-1222)))) (-1578 (($ $) NIL (|has| (-711) (-1222)))) (-3813 (($ $) NIL (|has| (-711) (-1222)))) (-3680 (($ $) NIL (|has| (-711) (-1079)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3739 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| (-711) (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1222))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1222)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374)))))
+(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -2858 ($ (-171 (-390)))) (-15 -2858 ($ (-171 (-576)))) (-15 -2858 ($ (-171 (-711)))) (-15 -2858 ($ (-171 (-713)))) (-15 -2858 ((-171 (-390)) $))))) (T -706))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))))
+(-13 (-399) (-167 (-711)) (-10 -8 (-15 -2858 ($ (-171 (-390)))) (-15 -2858 ($ (-171 (-576)))) (-15 -2858 ($ (-171 (-711)))) (-15 -2858 ($ (-171 (-713)))) (-15 -2858 ((-171 (-390)) $))))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-3423 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3444 (($ $) 63)) (-3229 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3414 (((-656 (-2 (|:| -3153 |#1|) (|:| -3902 (-783)))) $) 62)) (-1801 (($) 50) (($ (-656 |#1|)) 49)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 51)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-707 |#1|) (-141) (-1119)) (T -707))
+((-2329 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1119)))) (-3444 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1119)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-2 (|:| -3153 *3) (|:| -3902 (-783))))))))
+(-13 (-240 |t#1|) (-10 -8 (-15 -2329 ($ |t#1| $ (-783))) (-15 -3444 ($ $)) (-15 -3414 ((-656 (-2 (|:| -3153 |t#1|) (|:| -3902 (-783)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2663 (((-656 |#1|) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))) (-576)) 65)) (-4407 ((|#1| |#1| (-576)) 62)) (-3901 ((|#1| |#1| |#1| (-576)) 46)) (-2367 (((-656 |#1|) |#1| (-576)) 49)) (-3576 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-1574 (((-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))) |#1| (-576)) 61)))
+(((-708 |#1|) (-10 -7 (-15 -3901 (|#1| |#1| |#1| (-576))) (-15 -4407 (|#1| |#1| (-576))) (-15 -2367 ((-656 |#1|) |#1| (-576))) (-15 -1574 ((-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))) |#1| (-576))) (-15 -2663 ((-656 |#1|) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))) (-576))) (-15 -3576 (|#1| |#1| (-576) |#1| (-576)))) (-1263 (-576))) (T -708))
+((-3576 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -2367 *5) (|:| -4436 (-576))))) (-5 *4 (-576)) (-4 *5 (-1263 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -2367 *3) (|:| -4436 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))) (-4407 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) (-3901 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))))
+(-10 -7 (-15 -3901 (|#1| |#1| |#1| (-576))) (-15 -4407 (|#1| |#1| (-576))) (-15 -2367 ((-656 |#1|) |#1| (-576))) (-15 -1574 ((-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))) |#1| (-576))) (-15 -2663 ((-656 |#1|) (-656 (-2 (|:| -2367 |#1|) (|:| -4436 (-576)))) (-576))) (-15 -3576 (|#1| |#1| (-576) |#1| (-576))))
+((-1431 (((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-1823 (((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 53) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 55) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 57)) (-1820 (((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270))) NIL)) (-3490 (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 58)))
+(((-709) (-10 -7 (-15 -1823 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1823 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1823 ((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -3490 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1820 ((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1431 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709))
+((-1431 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-1820 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-3490 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-1823 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-1823 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-1823 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))))
+(-10 -7 (-15 -1823 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1823 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1823 ((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -3490 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1820 ((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1431 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))
+((-2367 (((-430 (-1192 |#4|)) (-1192 |#4|)) 86) (((-430 |#4|) |#4|) 266)))
+(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 |#4|) |#4|)) (-15 -2367 ((-430 (-1192 |#4|)) (-1192 |#4|)))) (-862) (-805) (-360) (-966 |#3| |#2| |#1|)) (T -710))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))))
+(-10 -7 (-15 -2367 ((-430 |#4|) |#4|)) (-15 -2367 ((-430 (-1192 |#4|)) (-1192 |#4|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 97)) (-1463 (((-576) $) 34)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3019 (($ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-2477 (($ $) NIL)) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL)) (-2574 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-2454 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-4397 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-2780 (($ $ $) 109)) (-4011 (((-3 $ "failed") $) 100)) (-2790 (($ $ $) 108)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1518 (((-938)) 89) (((-938) (-938)) 88)) (-2127 (((-112) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-2620 (((-576) $) NIL)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL)) (-3075 (($ $) NIL)) (-3196 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3361 (((-576) (-576)) 94) (((-576)) 95)) (-1950 (($ $ $) NIL) (($) NIL (-12 (-3189 (|has| $ (-6 -4445))) (-3189 (|has| $ (-6 -4453)))))) (-2868 (((-576) (-576)) 92) (((-576)) 93)) (-1492 (($ $ $) NIL) (($) NIL (-12 (-3189 (|has| $ (-6 -4445))) (-3189 (|has| $ (-6 -4453)))))) (-3637 (((-576) $) 17)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 104)) (-1468 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL)) (-3807 (($ $) NIL)) (-1562 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-938)) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) 105)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2273 (((-576) $) 24)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 107)) (-4107 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-2535 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-2610 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) NIL)) (-2858 (((-874) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-2981 (((-783)) 119 T CONST)) (-2204 (($ (-576) (-576) (-938)) 54)) (-3156 (($ $) NIL)) (-1568 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-2690 (((-112) $ $) NIL)) (-1572 (((-938)) 91) (((-938) (-938)) 90)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL)) (-2022 (($) 37 T CONST)) (-2038 (($) 18 T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 96)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 118)) (-4013 (($ $ $) 77)) (-4002 (($ $) 115) (($ $ $) 116)) (-3990 (($ $ $) 114)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-711) (-13 (-416) (-399) (-374) (-1057 (-390)) (-1057 (-419 (-576))) (-148) (-10 -8 (-15 -1518 ((-938) (-938))) (-15 -1518 ((-938))) (-15 -1572 ((-938) (-938))) (-15 -2868 ((-576) (-576))) (-15 -2868 ((-576))) (-15 -3361 ((-576) (-576))) (-15 -3361 ((-576))) (-15 -2858 ((-390) $)) (-15 -2858 ($ (-713))) (-15 -3637 ((-576) $)) (-15 -2273 ((-576) $)) (-15 -2204 ($ (-576) (-576) (-938)))))) (T -711))
+((-2273 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1518 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-1518 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2868 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3361 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-2204 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-5 *1 (-711)))))
+(-13 (-416) (-399) (-374) (-1057 (-390)) (-1057 (-419 (-576))) (-148) (-10 -8 (-15 -1518 ((-938) (-938))) (-15 -1518 ((-938))) (-15 -1572 ((-938) (-938))) (-15 -2868 ((-576) (-576))) (-15 -2868 ((-576))) (-15 -3361 ((-576) (-576))) (-15 -3361 ((-576))) (-15 -2858 ((-390) $)) (-15 -2858 ($ (-713))) (-15 -3637 ((-576) $)) (-15 -2273 ((-576) $)) (-15 -2204 ($ (-576) (-576) (-938)))))
+((-3537 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-1607 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-2990 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-1440 (((-701 |#1|) (-701 |#1|)) 67)) (-2685 (((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|) 84)))
+(((-712 |#1|) (-10 -7 (-15 -1440 ((-701 |#1|) (-701 |#1|))) (-15 -1607 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -2990 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3537 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2685 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|))) (-317)) (T -712))
+((-2685 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-3537 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2990 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-1607 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(-10 -7 (-15 -1440 ((-701 |#1|) (-701 |#1|))) (-15 -1607 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -2990 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3537 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2685 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-4078 (($ $ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1901 (($ $ $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL)) (-3598 (($ $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) 31)) (-4397 (((-576) $) 29)) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL)) (-1946 (((-112) $) NIL)) (-3269 (((-419 (-576)) $) NIL)) (-2107 (($ $) NIL) (($) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-3135 (($ $ $ $) NIL)) (-2880 (($ $ $) NIL)) (-2127 (((-112) $) NIL)) (-1840 (($ $ $) NIL)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1838 (((-112) $) NIL)) (-2531 (((-112) $) NIL)) (-3397 (((-3 $ "failed") $) NIL)) (-3196 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1735 (($ $ $ $) NIL)) (-1950 (($ $ $) NIL)) (-2006 (((-938) (-938)) 10) (((-938)) 9)) (-1492 (($ $ $) NIL)) (-3511 (($ $) NIL)) (-1873 (($ $) NIL)) (-3862 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3094 (($ $ $) NIL)) (-3448 (($) NIL T CONST)) (-3020 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2878 (($ $) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3945 (((-112) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-783)) NIL) (($ $) NIL)) (-3327 (($ $) NIL)) (-3052 (($ $) NIL)) (-2610 (((-227) $) NIL) (((-390) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-2981 (((-783)) NIL T CONST)) (-3238 (((-112) $ $) NIL)) (-3176 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-1572 (($) NIL)) (-3199 (((-112) $ $) NIL)) (-1860 (($ $ $ $) NIL)) (-3680 (($ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-783)) NIL) (($ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL)))
+(((-713) (-13 (-399) (-557) (-10 -8 (-15 -2006 ((-938) (-938))) (-15 -2006 ((-938))) (-15 -2858 ((-326 $) (-326 (-576))))))) (T -713))
+((-2006 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) (-2006 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))))
+(-13 (-399) (-557) (-10 -8 (-15 -2006 ((-938) (-938))) (-15 -2006 ((-938))) (-15 -2858 ((-326 $) (-326 (-576))))))
+((-4284 (((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)) 19)) (-3989 (((-1 |#4| |#2| |#3|) (-1196)) 12)))
+(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3989 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -4284 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)))) (-626 (-548)) (-1237) (-1237) (-1237)) (T -714))
+((-4284 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237)))) (-3989 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237)))))
+(-10 -7 (-15 -3989 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -4284 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196))))
+((-4425 (((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)) 43) (((-1 (-227) (-227)) |#1| (-1196)) 48)))
+(((-715 |#1|) (-10 -7 (-15 -4425 ((-1 (-227) (-227)) |#1| (-1196))) (-15 -4425 ((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)))) (-626 (-548))) (T -715))
+((-4425 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-4425 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))))
+(-10 -7 (-15 -4425 ((-1 (-227) (-227)) |#1| (-1196))) (-15 -4425 ((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196))))
+((-3736 (((-1196) |#1| (-1196) (-656 (-1196))) 10) (((-1196) |#1| (-1196) (-1196) (-1196)) 13) (((-1196) |#1| (-1196) (-1196)) 12) (((-1196) |#1| (-1196)) 11)))
+(((-716 |#1|) (-10 -7 (-15 -3736 ((-1196) |#1| (-1196))) (-15 -3736 ((-1196) |#1| (-1196) (-1196))) (-15 -3736 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -3736 ((-1196) |#1| (-1196) (-656 (-1196))))) (-626 (-548))) (T -716))
+((-3736 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3736 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3736 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3736 (*1 *2 *3 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))))
+(-10 -7 (-15 -3736 ((-1196) |#1| (-1196))) (-15 -3736 ((-1196) |#1| (-1196) (-1196))) (-15 -3736 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -3736 ((-1196) |#1| (-1196) (-656 (-1196)))))
+((-4025 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-717 |#1| |#2|) (-10 -7 (-15 -4025 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1237) (-1237)) (T -717))
+((-4025 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237)))))
+(-10 -7 (-15 -4025 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3150 (((-1 |#3| |#2|) (-1196)) 11)) (-4284 (((-1 |#3| |#2|) |#1| (-1196)) 21)))
+(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -3150 ((-1 |#3| |#2|) (-1196))) (-15 -4284 ((-1 |#3| |#2|) |#1| (-1196)))) (-626 (-548)) (-1237) (-1237)) (T -718))
+((-4284 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)))))
+(-10 -7 (-15 -3150 ((-1 |#3| |#2|) (-1196))) (-15 -4284 ((-1 |#3| |#2|) |#1| (-1196))))
+((-4433 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|) 92)) (-1619 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-2154 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|) 47)))
+(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2154 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|)) (-15 -1619 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4433 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -719))
+((-4433 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1192 *13))) (-5 *3 (-1192 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1287 (-656 (-1192 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-966 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-1619 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1192 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-966 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1192 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1192 *12)))) (-2154 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1192 *11))) (-5 *3 (-1192 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1287 (-656 (-1192 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-966 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2154 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|)) (-15 -1619 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -4433 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4404 (($ $) 48)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2428 (($ |#1| (-783)) 46)) (-4389 (((-783) $) 50)) (-4379 ((|#1| $) 49)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4436 (((-783) $) 51)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4417 ((|#1| $ (-783)) 47)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-720 |#1|) (-141) (-1068)) (T -720))
+((-4436 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-4404 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-4417 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))))
+(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4436 ((-783) $)) (-15 -4389 ((-783) $)) (-15 -4379 (|t#1| $)) (-15 -4404 ($ $)) (-15 -4417 (|t#1| $ (-783))) (-15 -2428 ($ |t#1| (-783)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2548 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2548 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1263 |#1|) (-1263 (-419 |#2|)) (-568) (-1263 |#4|) (-1263 (-419 |#5|))) (T -721))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6))) (-4 *8 (-1263 *7)))))
+(-10 -7 (-15 -2548 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2909 (((-1178) (-874)) 38)) (-2486 (((-1292) (-1178)) 31)) (-2405 (((-1178) (-874)) 28)) (-2586 (((-1178) (-874)) 29)) (-2858 (((-874) $) NIL) (((-1178) (-874)) 27)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-722) (-13 (-1119) (-10 -7 (-15 -2858 ((-1178) (-874))) (-15 -2405 ((-1178) (-874))) (-15 -2586 ((-1178) (-874))) (-15 -2909 ((-1178) (-874))) (-15 -2486 ((-1292) (-1178)))))) (T -722))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-722)))))
+(-13 (-1119) (-10 -7 (-15 -2858 ((-1178) (-874))) (-15 -2405 ((-1178) (-874))) (-15 -2586 ((-1178) (-874))) (-15 -2909 ((-1178) (-874))) (-15 -2486 ((-1292) (-1178)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-2326 (($ |#1| |#2|) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2703 ((|#2| $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2149 (((-3 $ "failed") $ $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2858 (|#1| $)) (-15 -2326 ($ |#1| |#2|)) (-15 -2149 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723))
+((-2703 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2858 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2326 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2149 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-374) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2858 (|#1| $)) (-15 -2326 ($ |#1| |#2|)) (-15 -2149 ((-3 $ "failed") $ $))))
+((-2835 (((-112) $ $) 87)) (-3203 (((-112) $) 36)) (-3402 (((-1287 |#1|) $ (-783)) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-3067 (($ (-1192 |#1|)) NIL)) (-3440 (((-1192 $) $ (-1101)) NIL) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1546 (($ $ $) NIL (|has| |#1| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2422 (((-783)) 54 (|has| |#1| (-379)))) (-2949 (($ $ (-783)) NIL)) (-2689 (($ $ (-783)) NIL)) (-4088 ((|#2| |#2|) 50)) (-3811 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL)) (-2495 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) 40)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2326 (($ |#2|) 48)) (-4011 (((-3 $ "failed") $) 97)) (-2107 (($) 58 (|has| |#1| (-379)))) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2976 (($ $ $) NIL)) (-3051 (($ $ $) NIL (|has| |#1| (-568)))) (-2260 (((-2 (|:| -1788 |#1|) (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2972 (((-975 $)) 89)) (-2611 (($ $ |#1| (-783) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2620 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-2441 (($ (-1192 |#1|) (-1101)) NIL) (($ (-1192 $) (-1101)) NIL)) (-4323 (($ $ (-783)) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) 85) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1101)) NIL) (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2703 ((|#2|) 51)) (-4389 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4149 (($ (-1 (-783) (-783)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-2760 (((-1192 |#1|) $) NIL)) (-1848 (((-3 (-1101) "failed") $) NIL)) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-2315 ((|#2| $) 47)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) 34)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-3300 (((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783)) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-1101)) (|:| -2273 (-783))) "failed") $) NIL)) (-1850 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($) NIL (|has| |#1| (-1171)) CONST)) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2893 (($ $) 88 (|has| |#1| (-360)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2065 (((-3 $ "failed") $ (-783)) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 98 (|has| |#1| (-374)))) (-3880 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-4436 (((-783) $) 38) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2957 (((-975 $)) 42)) (-2033 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2858 (((-874) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1101)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) 70) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) 25 T CONST)) (-4238 (((-1287 |#1|) $) 83)) (-3770 (($ (-1287 |#1|)) 57)) (-2038 (($) 8 T CONST)) (-3404 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3396 (((-1287 |#1|) $) NIL)) (-3889 (((-112) $ $) 76)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) 79) (($ $ $) NIL)) (-3990 (($ $ $) 39)) (** (($ $ (-938)) NIL) (($ $ (-783)) 92)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL)))
+(((-724 |#1| |#2|) (-13 (-1263 |#1|) (-628 |#2|) (-10 -8 (-15 -4088 (|#2| |#2|)) (-15 -2703 (|#2|)) (-15 -2326 ($ |#2|)) (-15 -2315 (|#2| $)) (-15 -4238 ((-1287 |#1|) $)) (-15 -3770 ($ (-1287 |#1|))) (-15 -3396 ((-1287 |#1|) $)) (-15 -2972 ((-975 $))) (-15 -2957 ((-975 $))) (IF (|has| |#1| (-360)) (-15 -2893 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1068) (-1263 |#1|)) (T -724))
+((-4088 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) (-2703 (*1 *2) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) (-2326 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) (-2315 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) (-4238 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-3396 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-2972 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-2957 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-2893 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1068)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1263 *2)))))
+(-13 (-1263 |#1|) (-628 |#2|) (-10 -8 (-15 -4088 (|#2| |#2|)) (-15 -2703 (|#2|)) (-15 -2326 ($ |#2|)) (-15 -2315 (|#2| $)) (-15 -4238 ((-1287 |#1|) $)) (-15 -3770 ($ (-1287 |#1|))) (-15 -3396 ((-1287 |#1|) $)) (-15 -2972 ((-975 $))) (-15 -2957 ((-975 $))) (IF (|has| |#1| (-360)) (-15 -2893 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 ((|#1| $) 13)) (-3887 (((-1139) $) NIL)) (-2273 ((|#2| $) 12)) (-2869 (($ |#1| |#2|) 16)) (-2858 (((-874) $) NIL) (($ (-2 (|:| -4308 |#1|) (|:| -2273 |#2|))) 15) (((-2 (|:| -4308 |#1|) (|:| -2273 |#2|)) $) 14)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 11)))
+(((-725 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -4308 |#1|) (|:| -2273 |#2|))) (-10 -8 (-15 -2273 (|#2| $)) (-15 -4308 (|#1| $)) (-15 -2869 ($ |#1| |#2|)))) (-862) (-1119) (-1 (-112) (-2 (|:| -4308 |#1|) (|:| -2273 |#2|)) (-2 (|:| -4308 |#1|) (|:| -2273 |#2|)))) (T -725))
+((-2273 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -4308 *3) (|:| -2273 *2)) (-2 (|:| -4308 *3) (|:| -2273 *2)))))) (-4308 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *3)) (-2 (|:| -4308 *2) (|:| -2273 *3)))))) (-2869 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1119)) (-14 *4 (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *3)) (-2 (|:| -4308 *2) (|:| -2273 *3)))))))
+(-13 (-862) (-502 (-2 (|:| -4308 |#1|) (|:| -2273 |#2|))) (-10 -8 (-15 -2273 (|#2| $)) (-15 -4308 (|#1| $)) (-15 -2869 ($ |#1| |#2|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 66)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-4397 ((|#1| $) NIL) (((-115) $) 39)) (-4011 (((-3 $ "failed") $) 103)) (-3330 ((|#2| (-115) |#2|) 93)) (-1838 (((-112) $) NIL)) (-3323 (($ |#1| (-372 (-115))) 14)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2657 (($ $ (-1 |#2| |#2|)) 65)) (-2987 (($ $ (-1 |#2| |#2|)) 44)) (-2099 ((|#2| $ |#2|) 33)) (-1816 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-2858 (((-874) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) 37 T CONST)) (-2690 (((-112) $ $) NIL)) (-3634 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2022 (($) 21 T CONST)) (-2038 (($) 9 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) 48) (($ $ $) NIL)) (-3990 (($ $ $) 83)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174)))))
+(((-726 |#1| |#2|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3634 ($ $)) (-15 -3634 ($ $ $)) (-15 -1816 (|#1| |#1|))) |%noBranch|) (-15 -2987 ($ $ (-1 |#2| |#2|))) (-15 -2657 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3330 (|#2| (-115) |#2|)) (-15 -3323 ($ |#1| (-372 (-115)))))) (-1068) (-660 |#1|)) (T -726))
+((-3634 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3634 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-1816 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-3330 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-3323 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1068)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2)))))
+(-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3634 ($ $)) (-15 -3634 ($ $ $)) (-15 -1816 (|#1| |#1|))) |%noBranch|) (-15 -2987 ($ $ (-1 |#2| |#2|))) (-15 -2657 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3330 (|#2| (-115) |#2|)) (-15 -3323 ($ |#1| (-372 (-115))))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 33)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2326 (($ |#1| |#2|) 25)) (-4011 (((-3 $ "failed") $) 51)) (-1838 (((-112) $) 35)) (-2703 ((|#2| $) 12)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 52)) (-3887 (((-1139) $) NIL)) (-2149 (((-3 $ "failed") $ $) 50)) (-2858 (((-874) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-2981 (((-783)) 28 T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 16 T CONST)) (-2038 (($) 30 T CONST)) (-3889 (((-112) $ $) 41)) (-4002 (($ $) 46) (($ $ $) 40)) (-3990 (($ $ $) 43)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20)))
+(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1068) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2858 (|#1| $)) (-15 -2326 ($ |#1| |#2|)) (-15 -2149 ((-3 $ "failed") $ $)) (-15 -4011 ((-3 $ "failed") $)) (-15 -4324 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727))
+((-4011 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2858 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2326 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2149 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4324 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1068) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2858 (|#1| $)) (-15 -2326 ($ |#1| |#2|)) (-15 -2149 ((-3 $ "failed") $ $)) (-15 -4011 ((-3 $ "failed") $)) (-15 -4324 ($ $))))
+((* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-729 |#2|) (-174)) (T -728))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-729 |#1|) (-141) (-174)) (T -729))
+NIL
+(-13 (-111 |t#1| |t#1|) (-652 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3598 (($ |#1|) 17) (($ $ |#1|) 20)) (-2687 (($ |#1|) 18) (($ $ |#1|) 21)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1838 (((-112) $) NIL)) (-2369 (($ |#1| |#1| |#1| |#1|) 8)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 16)) (-3887 (((-1139) $) NIL)) (-3022 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-2480 (($ $ $) NIL)) (-2220 (($ $ $) NIL)) (-2858 (((-874) $) 39)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 9 T CONST)) (-3889 (((-112) $ $) 48)) (-4013 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14)))
+(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -2369 ($ |#1| |#1| |#1| |#1|)) (-15 -3598 ($ |#1|)) (-15 -2687 ($ |#1|)) (-15 -4011 ($)) (-15 -3598 ($ $ |#1|)) (-15 -2687 ($ $ |#1|)) (-15 -4011 ($ $)) (-15 -3022 (|#1| $ |#1|)) (-15 -3022 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730))
+((-2369 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3598 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2687 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-4011 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3598 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2687 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-4011 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3022 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3022 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))))
+(-13 (-485) (-10 -8 (-15 -2369 ($ |#1| |#1| |#1| |#1|)) (-15 -3598 ($ |#1|)) (-15 -2687 ($ |#1|)) (-15 -4011 ($)) (-15 -3598 ($ $ |#1|)) (-15 -2687 ($ $ |#1|)) (-15 -4011 ($ $)) (-15 -3022 (|#1| $ |#1|)) (-15 -3022 ((-845 |#1|) $ (-845 |#1|)))))
+((-4139 (($ $ (-938)) 19)) (-1406 (($ $ (-938)) 20)) (** (($ $ (-938)) 10)))
+(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-938))) (-15 -1406 (|#1| |#1| (-938))) (-15 -4139 (|#1| |#1| (-938)))) (-732)) (T -731))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-938))) (-15 -1406 (|#1| |#1| (-938))) (-15 -4139 (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-4139 (($ $ (-938)) 16)) (-1406 (($ $ (-938)) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)) (** (($ $ (-938)) 14)) (* (($ $ $) 17)))
+(((-732) (-141)) (T -732))
+((* (*1 *1 *1 *1) (-4 *1 (-732))) (-4139 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) (-1406 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))))
+(-13 (-1119) (-10 -8 (-15 * ($ $ $)) (-15 -4139 ($ $ (-938))) (-15 -1406 ($ $ (-938))) (-15 ** ($ $ (-938)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-4139 (($ $ (-938)) NIL) (($ $ (-783)) 18)) (-1838 (((-112) $) 10)) (-1406 (($ $ (-938)) NIL) (($ $ (-783)) 19)) (** (($ $ (-938)) NIL) (($ $ (-783)) 16)))
+(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1406 (|#1| |#1| (-783))) (-15 -4139 (|#1| |#1| (-783))) (-15 -1838 ((-112) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -1406 (|#1| |#1| (-938))) (-15 -4139 (|#1| |#1| (-938)))) (-734)) (T -733))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1406 (|#1| |#1| (-783))) (-15 -4139 (|#1| |#1| (-783))) (-15 -1838 ((-112) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -1406 (|#1| |#1| (-938))) (-15 -4139 (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-2100 (((-3 $ "failed") $) 18)) (-4139 (($ $ (-938)) 16) (($ $ (-783)) 23)) (-4011 (((-3 $ "failed") $) 20)) (-1838 (((-112) $) 24)) (-3080 (((-3 $ "failed") $) 19)) (-1406 (($ $ (-938)) 15) (($ $ (-783)) 22)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2038 (($) 25 T CONST)) (-3889 (((-112) $ $) 6)) (** (($ $ (-938)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17)))
+(((-734) (-141)) (T -734))
+((-2038 (*1 *1) (-4 *1 (-734))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-4139 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1406 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-4011 (*1 *1 *1) (|partial| -4 *1 (-734))) (-3080 (*1 *1 *1) (|partial| -4 *1 (-734))) (-2100 (*1 *1 *1) (|partial| -4 *1 (-734))))
+(-13 (-732) (-10 -8 (-15 (-2038) ($) -3712) (-15 -1838 ((-112) $)) (-15 -4139 ($ $ (-783))) (-15 -1406 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -4011 ((-3 $ "failed") $)) (-15 -3080 ((-3 $ "failed") $)) (-15 -2100 ((-3 $ "failed") $))))
+(((-102) . T) ((-625 (-874)) . T) ((-732) . T) ((-1119) . T))
+((-2422 (((-783)) 39)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4397 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2326 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-4011 (((-3 $ "failed") $) 69)) (-2107 (($) 43)) (-3075 ((|#2| $) 21)) (-3633 (($) 18)) (-2399 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4370 (((-701 |#2|) (-1287 $) (-1 |#2| |#2|)) 64)) (-2610 (((-1287 |#2|) $) NIL) (($ (-1287 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2528 ((|#3| $) 36)) (-4261 (((-1287 $)) 33)))
+(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2107 (|#1|)) (-15 -2422 ((-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4370 ((-701 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -2326 ((-3 |#1| "failed") (-419 |#3|))) (-15 -2610 (|#1| |#3|)) (-15 -2326 (|#1| |#3|)) (-15 -3633 (|#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2610 (|#3| |#1|)) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -4261 ((-1287 |#1|))) (-15 -2528 (|#3| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1263 |#2|)) (T -735))
+((-2422 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))))
+(-10 -8 (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2107 (|#1|)) (-15 -2422 ((-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4370 ((-701 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -2326 ((-3 |#1| "failed") (-419 |#3|))) (-15 -2610 (|#1| |#3|)) (-15 -2326 (|#1| |#3|)) (-15 -3633 (|#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2610 (|#3| |#1|)) (-15 -2610 (|#1| (-1287 |#2|))) (-15 -2610 ((-1287 |#2|) |#1|)) (-15 -4261 ((-1287 |#1|))) (-15 -2528 (|#3| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -4011 ((-3 |#1| "failed") |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-2150 (($ $) 106 (|has| |#1| (-374)))) (-2637 (((-112) $) 108 (|has| |#1| (-374)))) (-3940 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-1462 ((|#1| $) 59)) (-1398 (((-1209 (-938) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 125 (|has| |#1| (-374)))) (-2464 (((-430 $) $) 126 (|has| |#1| (-374)))) (-3417 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2422 (((-783)) 99 (|has| |#1| (-379)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 183 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 181 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 178)) (-4397 (((-576) $) 182 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 180 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 179)) (-2876 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-2780 (($ $ $) 120 (|has| |#1| (-374)))) (-3313 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-2085 (((-701 (-576)) (-1287 $)) 177 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 174) (((-701 |#1|) (-701 $)) 173) (((-701 |#1|) (-1287 $)) 172)) (-2326 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-4011 (((-3 $ "failed") $) 37)) (-4422 (((-938)) 61)) (-2107 (($) 102 (|has| |#1| (-379)))) (-2790 (($ $ $) 119 (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-3602 (($) 160 (|has| |#1| (-360)))) (-4429 (((-112) $) 161 (|has| |#1| (-360)))) (-2244 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-3011 (((-112) $) 127 (|has| |#1| (-374)))) (-2620 (((-938) $) 163 (|has| |#1| (-360))) (((-845 (-938)) $) 149 (|has| |#1| (-360)))) (-1838 (((-112) $) 35)) (-3075 ((|#1| $) 58)) (-3397 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-2510 ((|#2| $) 51 (|has| |#1| (-374)))) (-1654 (((-938) $) 101 (|has| |#1| (-379)))) (-2315 ((|#2| $) 167)) (-3862 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-2143 (((-1178) $) 10)) (-4324 (($ $) 128 (|has| |#1| (-374)))) (-3448 (($) 154 (|has| |#1| (-360)) CONST)) (-4308 (($ (-938)) 100 (|has| |#1| (-379)))) (-3887 (((-1139) $) 11)) (-3633 (($) 171)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 113 (|has| |#1| (-374)))) (-3901 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) 157 (|has| |#1| (-360)))) (-2367 (((-430 $) $) 124 (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 121 (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-3076 (((-783) $) 117 (|has| |#1| (-374)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 118 (|has| |#1| (-374)))) (-3880 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3447 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2399 (($ $ (-783)) 147 (-3739 (-3200 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-3739 (-3200 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196) (-783)) 140 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-656 (-1196))) 139 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196)) 137 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-4370 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1953 ((|#2|) 170)) (-1861 (($) 159 (|has| |#1| (-360)))) (-3392 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-2610 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69) ((|#2| $) 184) (($ |#2|) 168)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3689 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-2528 ((|#2| $) 52)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-4261 (((-1287 $)) 74)) (-3199 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-783)) 148 (-3739 (-3200 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-3739 (-3200 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196) (-783)) 143 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-656 (-1196))) 142 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196)) 138 (-3200 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 132 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374)))))
+(((-736 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -736))
+((-3633 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1263 *2)))) (-1953 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2326 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) (-2610 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2326 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1263 *5)) (-5 *2 (-701 *5)))))
+(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -3633 ($)) (-15 -1953 (|t#2|)) (-15 -2326 ($ |t#2|)) (-15 -2610 ($ |t#2|)) (-15 -2315 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -2326 ((-3 $ "failed") (-419 |t#2|))) (-15 -4370 ((-701 |t#1|) (-1287 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3739 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -3739 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -3739 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -3739 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3739 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))))) ((-915 (-1196)) -12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -3739 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))))) ((-937) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-360)) ((-1237) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1241) -3739 (|has| |#1| (-360)) (|has| |#1| (-374))))
+((-2574 (($) 11)) (-4011 (((-3 $ "failed") $) 14)) (-1838 (((-112) $) 10)) (** (($ $ (-938)) NIL) (($ $ (-783)) 20)))
+(((-737 |#1|) (-10 -8 (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1838 ((-112) |#1|)) (-15 -2574 (|#1|)) (-15 ** (|#1| |#1| (-938)))) (-738)) (T -737))
+NIL
+(-10 -8 (-15 -4011 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1838 ((-112) |#1|)) (-15 -2574 (|#1|)) (-15 ** (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-2574 (($) 19 T CONST)) (-4011 (((-3 $ "failed") $) 16)) (-1838 (((-112) $) 18)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2038 (($) 20 T CONST)) (-3889 (((-112) $ $) 6)) (** (($ $ (-938)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15)))
+(((-738) (-141)) (T -738))
+((-2038 (*1 *1) (-4 *1 (-738))) (-2574 (*1 *1) (-4 *1 (-738))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-4011 (*1 *1 *1) (|partial| -4 *1 (-738))))
+(-13 (-1131) (-10 -8 (-15 (-2038) ($) -3712) (-15 -2574 ($) -3712) (-15 -1838 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -4011 ((-3 $ "failed") $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1131) . T) ((-1119) . T))
+((-3439 (((-2 (|:| -1519 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3529 (((-2 (|:| -1519 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2903 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-2294 (((-2 (|:| |poly| |#2|) (|:| -1519 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48)))
+(((-739 |#1| |#2|) (-10 -7 (-15 -3529 ((-2 (|:| -1519 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3439 ((-2 (|:| -1519 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2903 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -2294 ((-2 (|:| |poly| |#2|) (|:| -1519 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -739))
+((-2294 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1519 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1519 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -1519 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))))
+(-10 -7 (-15 -3529 ((-2 (|:| -1519 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3439 ((-2 (|:| -1519 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2903 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -2294 ((-2 (|:| |poly| |#2|) (|:| -1519 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|))))
+((-2509 ((|#7| (-656 |#5|) |#6|) NIL)) (-2548 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2548 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2509 (|#7| (-656 |#5|) |#6|))) (-862) (-805) (-805) (-1068) (-1068) (-966 |#4| |#2| |#1|) (-966 |#5| |#3| |#1|)) (T -740))
+((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-1068)) (-4 *2 (-966 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-966 *8 *6 *5)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-966 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-966 *8 *6 *5)))))
+(-10 -7 (-15 -2548 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2509 (|#7| (-656 |#5|) |#6|)))
+((-2548 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2548 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-805) (-805) (-1068) (-966 |#5| |#3| |#1|) (-966 |#5| |#4| |#2|)) (T -741))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805)) (-4 *9 (-1068)) (-4 *2 (-966 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-966 *9 *7 *5)))))
+(-10 -7 (-15 -2548 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2367 (((-430 |#4|) |#4|) 42)))
+(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196))))) (-317) (-966 (-969 |#3|) |#1| |#2|)) (T -742))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-966 (-969 *6) *4 *5)))))
+(-10 -7 (-15 -2367 ((-430 |#4|) |#4|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-876 |#1|)) $) NIL)) (-3440 (((-1192 $) $ (-876 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2150 (($ $) NIL (|has| |#2| (-568)))) (-2637 (((-112) $) NIL (|has| |#2| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3179 (($ $) NIL (|has| |#2| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2495 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#2| (-926)))) (-2611 (($ $ |#2| (-543 (-876 |#1|)) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#2|) (-876 |#1|)) NIL) (($ (-1192 $) (-876 |#1|)) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#2| (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-876 |#1|)) NIL)) (-4389 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-4149 (($ (-1 (-543 (-876 |#1|)) (-543 (-876 |#1|))) $) NIL)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1848 (((-3 (-876 |#1|) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#2| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -2273 (-783))) "failed") $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#2| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-3880 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2399 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-4436 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))))) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-743 |#1| |#2|) (-966 |#2| (-543 (-876 |#1|)) (-876 |#1|)) (-656 (-1196)) (-1068)) (T -743))
+NIL
+(-966 |#2| (-543 (-876 |#1|)) (-876 |#1|))
+((-4273 (((-2 (|:| -1869 (-969 |#3|)) (|:| -4320 (-969 |#3|))) |#4|) 14)) (-2873 ((|#4| |#4| |#2|) 33)) (-1513 ((|#4| (-419 (-969 |#3|)) |#2|) 64)) (-2125 ((|#4| (-1192 (-969 |#3|)) |#2|) 77)) (-3522 ((|#4| (-1192 |#4|) |#2|) 51)) (-1510 ((|#4| |#4| |#2|) 54)) (-2367 (((-430 |#4|) |#4|) 40)))
+(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4273 ((-2 (|:| -1869 (-969 |#3|)) (|:| -4320 (-969 |#3|))) |#4|)) (-15 -1510 (|#4| |#4| |#2|)) (-15 -3522 (|#4| (-1192 |#4|) |#2|)) (-15 -2873 (|#4| |#4| |#2|)) (-15 -2125 (|#4| (-1192 (-969 |#3|)) |#2|)) (-15 -1513 (|#4| (-419 (-969 |#3|)) |#2|)) (-15 -2367 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)))) (-568) (-966 (-419 (-969 |#3|)) |#1| |#2|)) (T -744))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))) (-1513 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-969 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))))) (-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 (-969 *6))) (-4 *6 (-568)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))))) (-2873 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) (-3522 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *6 (-568)))) (-1510 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) (-4273 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -1869 (-969 *6)) (|:| -4320 (-969 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))))
+(-10 -7 (-15 -4273 ((-2 (|:| -1869 (-969 |#3|)) (|:| -4320 (-969 |#3|))) |#4|)) (-15 -1510 (|#4| |#4| |#2|)) (-15 -3522 (|#4| (-1192 |#4|) |#2|)) (-15 -2873 (|#4| |#4| |#2|)) (-15 -2125 (|#4| (-1192 (-969 |#3|)) |#2|)) (-15 -1513 (|#4| (-419 (-969 |#3|)) |#2|)) (-15 -2367 ((-430 |#4|) |#4|)))
+((-2367 (((-430 |#4|) |#4|) 54)))
+(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 |#4|) |#4|))) (-805) (-862) (-13 (-317) (-148)) (-966 (-419 |#3|) |#1| |#2|)) (T -745))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-966 (-419 *6) *4 *5)))))
+(-10 -7 (-15 -2367 ((-430 |#4|) |#4|)))
+((-2548 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18)))
+(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1068) (-1068) (-738)) (T -746))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7)))))
+(-10 -7 (-15 -2548 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 36)) (-3754 (((-656 (-2 (|:| -1788 |#1|) (|:| -3667 |#2|))) $) 37)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2422 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-4397 ((|#2| $) NIL) ((|#1| $) NIL)) (-4404 (($ $) 102 (|has| |#2| (-862)))) (-4011 (((-3 $ "failed") $) 85)) (-2107 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) 70)) (-2936 (((-656 $) $) 52)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| |#2|) 17)) (-2548 (($ (-1 |#1| |#1|) $) 68)) (-1654 (((-938) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4366 ((|#2| $) 101 (|has| |#2| (-862)))) (-4379 ((|#1| $) 100 (|has| |#2| (-862)))) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1788 |#1|) (|:| -3667 |#2|)))) 11)) (-2461 (((-656 |#1|) $) 54)) (-4417 ((|#1| $ |#2|) 115)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 12 T CONST)) (-2038 (($) 44 T CONST)) (-3889 (((-112) $ $) 105)) (-4002 (($ $) 61) (($ $ $) NIL)) (-3990 (($ $ $) 33)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-747 |#1| |#2|) (-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -2428 ($ |#1| |#2|)) (-15 -4417 (|#1| $ |#2|)) (-15 -2858 ($ (-656 (-2 (|:| -1788 |#1|) (|:| -3667 |#2|))))) (-15 -3754 ((-656 (-2 (|:| -1788 |#1|) (|:| -3667 |#2|))) $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (-15 -1711 ((-112) $)) (-15 -2461 ((-656 |#1|) $)) (-15 -2936 ((-656 $) $)) (-15 -1890 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -4366 (|#2| $)) (-15 -4379 (|#1| $)) (-15 -4404 ($ $))) |%noBranch|))) (-1068) (-738)) (T -747))
+((-2428 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-738)))) (-4417 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1788 *3) (|:| -3667 *4)))) (-4 *3 (-1068)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1788 *3) (|:| -3667 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-4366 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1068)))) (-4379 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *3 (-738)))) (-4404 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1068)) (-4 *3 (-738)))))
+(-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -2428 ($ |#1| |#2|)) (-15 -4417 (|#1| $ |#2|)) (-15 -2858 ($ (-656 (-2 (|:| -1788 |#1|) (|:| -3667 |#2|))))) (-15 -3754 ((-656 (-2 (|:| -1788 |#1|) (|:| -3667 |#2|))) $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (-15 -1711 ((-112) $)) (-15 -2461 ((-656 |#1|) $)) (-15 -2936 ((-656 $) $)) (-15 -1890 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -4366 (|#2| $)) (-15 -4379 (|#1| $)) (-15 -4404 ($ $))) |%noBranch|)))
+((-2835 (((-112) $ $) 19)) (-1675 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3178 (($ $ $) 73)) (-3483 (((-112) $ $) 74)) (-2746 (((-112) $ (-783)) 8)) (-1333 (($ (-656 |#1|)) 69) (($) 68)) (-3423 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3444 (($ $) 63)) (-3229 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) 65)) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22)) (-3310 (($ $ $) 70)) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3887 (((-1139) $) 21)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3414 (((-656 (-2 (|:| -3153 |#1|) (|:| -3902 (-783)))) $) 62)) (-3797 (($ $ |#1|) 72) (($ $ $) 71)) (-1801 (($) 50) (($ (-656 |#1|)) 49)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 51)) (-2858 (((-874) $) 18)) (-2554 (($ (-656 |#1|)) 67) (($) 66)) (-2690 (((-112) $ $) 23)) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20)) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-748 |#1|) (-141) (-1119)) (T -748))
+NIL
+(-13 (-707 |t#1|) (-1117 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-707 |#1|) . T) ((-1117 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-1675 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-3178 (($ $ $) 96)) (-3483 (((-112) $ $) 104)) (-2746 (((-112) $ (-783)) NIL)) (-1333 (($ (-656 |#1|)) 26) (($) 17)) (-3423 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-3444 (($ $) 85)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) 70 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 32 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) 103)) (-4079 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) 38)) (-3606 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 89)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3310 (($ $ $) 94)) (-2395 ((|#1| $) 62)) (-2329 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-3887 (((-1139) $) NIL)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3079 ((|#1| $) 61)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 56)) (-3849 (($) 14)) (-3414 (((-656 (-2 (|:| -3153 |#1|) (|:| -3902 (-783)))) $) 55)) (-3797 (($ $ |#1|) NIL) (($ $ $) 95)) (-1801 (($) 16) (($ (-656 |#1|)) 25)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 79)) (-2610 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 22)) (-2858 (((-874) $) 49)) (-2554 (($ (-656 |#1|)) 27) (($) 18)) (-2690 (((-112) $ $) NIL)) (-3195 (($ (-656 |#1|)) 24)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 100)) (-2845 (((-783) $) 67 (|has| $ (-6 -4462)))))
+(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -4079 ($)) (-15 -4079 ($ |#1|)) (-15 -4079 ($ (-656 |#1|))) (-15 -3531 ((-656 |#1|) $)) (-15 -3607 ($ |#1| $ (-576))) (-15 -3607 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3007 ($ |#1| $ (-576))) (-15 -3007 ($ (-1 (-112) |#1|) $ (-576))))) (-1119)) (T -749))
+((-4079 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-4079 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-4079 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-749 *3)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1119)))) (-3607 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-3607 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) (-5 *1 (-749 *4)))) (-3007 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-3007 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) (-5 *1 (-749 *4)))))
+(-13 (-748 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -4079 ($)) (-15 -4079 ($ |#1|)) (-15 -4079 ($ (-656 |#1|))) (-15 -3531 ((-656 |#1|) $)) (-15 -3607 ($ |#1| $ (-576))) (-15 -3607 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3007 ($ |#1| $ (-576))) (-15 -3007 ($ (-1 (-112) |#1|) $ (-576)))))
+((-1483 (((-1292) (-1178)) 8)))
+(((-750) (-10 -7 (-15 -1483 ((-1292) (-1178))))) (T -750))
+((-1483 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-750)))))
+(-10 -7 (-15 -1483 ((-1292) (-1178))))
+((-2634 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15)))
+(((-751 |#1|) (-10 -7 (-15 -2634 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-862)) (T -751))
+((-2634 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3)))))
+(-10 -7 (-15 -2634 ((-656 |#1|) (-656 |#1|) (-656 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 |#2|) $) 149)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-2150 (($ $) 141 (|has| |#1| (-568)))) (-2637 (((-112) $) 139 (|has| |#1| (-568)))) (-3897 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) 20)) (-2477 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3871 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-1542 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) 18 T CONST)) (-4404 (($ $) 133)) (-4011 (((-3 $ "failed") $) 37)) (-2488 (((-969 |#1|) $ (-783)) 111) (((-969 |#1|) $ (-783) (-783)) 110)) (-3219 (((-112) $) 150)) (-1663 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-1711 (((-112) $) 131)) (-2428 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-2548 (($ (-1 |#1| |#1|) $) 130)) (-3437 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) 128)) (-4379 ((|#1| $) 127)) (-2143 (((-1178) $) 10)) (-1850 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) 11)) (-3262 (($ $ (-783)) 116)) (-2825 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-2656 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-2399 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-4436 (((-543 |#2|) $) 129)) (-1553 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 151)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4417 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-3689 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) 140 (|has| |#1| (-568)))) (-1567 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-2888 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125)))
+(((-752 |#1| |#2|) (-141) (-1068) (-862)) (T -752))
+((-4417 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-862)))) (-4417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-862)))) (-2428 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-862)))) (-2428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-2620 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *2 (-783)))) (-2620 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)) (-5 *2 (-969 *4)))) (-2488 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)) (-5 *2 (-969 *4)))) (-1850 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576)))))))
+(-13 (-915 |t#2|) (-992 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -4417 ($ $ |t#2| (-783))) (-15 -4417 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3262 ($ $ (-783))) (-15 -2428 ($ $ |t#2| (-783))) (-15 -2428 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -2620 ((-783) $ |t#2|)) (-15 -2620 ((-783) $ |t#2| (-783))) (-15 -2488 ((-969 |t#1|) $ (-783))) (-15 -2488 ((-969 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $ |t#2|)) (-6 (-1021)) (-6 (-1222))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ |#2|) . T) ((-915 |#2|) . T) ((-917 |#2|) . T) ((-992 |#1| #0# |#2|) . T) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T))
+((-2367 (((-430 (-1192 |#4|)) (-1192 |#4|)) 30) (((-430 |#4|) |#4|) 26)))
+(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 |#4|) |#4|)) (-15 -2367 ((-430 (-1192 |#4|)) (-1192 |#4|)))) (-862) (-805) (-13 (-317) (-148)) (-966 |#3| |#2| |#1|)) (T -753))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))))
+(-10 -7 (-15 -2367 ((-430 |#4|) |#4|)) (-15 -2367 ((-430 (-1192 |#4|)) (-1192 |#4|))))
+((-3348 (((-430 |#4|) |#4| |#2|) 140)) (-2924 (((-430 |#4|) |#4|) NIL)) (-2464 (((-430 (-1192 |#4|)) (-1192 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-3846 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -2367 (-1192 |#4|)) (|:| -2273 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-2217 (((-1192 |#3|) (-1192 |#3|) (-576)) 166)) (-2607 (((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783)) 75)) (-2315 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-1364 (((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-2184 (((-2 (|:| -2279 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576)) 72)) (-4378 (((-576) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576))))) 162)) (-2891 ((|#4| (-576) (-430 |#4|)) 73)) (-2363 (((-112) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576))))) NIL)))
+(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-430 |#4|) |#4|)) (-15 -2464 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -2924 ((-430 |#4|) |#4|)) (-15 -4378 ((-576) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))))) (-15 -3348 ((-430 |#4|) |#4| |#2|)) (-15 -2184 ((-2 (|:| -2279 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576))) (-15 -3846 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -2367 (-1192 |#4|)) (|:| -2273 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1364 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2891 (|#4| (-576) (-430 |#4|))) (-15 -2363 ((-112) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))))) (-15 -2315 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -2607 ((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783))) (-15 -2217 ((-1192 |#3|) (-1192 |#3|) (-576)))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -754))
+((-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-2607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2315 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-966 *11 *9 *10)) (-5 *2 (-656 (-1192 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1192 *5)))) (-2363 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -2367 (-1192 *6)) (|:| -2273 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-966 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-317)))) (-1364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -2367 (-1192 *8)) (|:| -2273 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-966 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -2367 (-1192 *9)) (|:| -2273 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)))) (-2184 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-5 *2 (-2 (|:| -2279 (-1192 *9)) (|:| |polval| (-1192 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8)))) (-3348 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2367 (-1192 *6)) (|:| -2273 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))))
+(-10 -7 (-15 -2464 ((-430 |#4|) |#4|)) (-15 -2464 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -2924 ((-430 |#4|) |#4|)) (-15 -4378 ((-576) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))))) (-15 -3348 ((-430 |#4|) |#4| |#2|)) (-15 -2184 ((-2 (|:| -2279 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576))) (-15 -3846 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -2367 (-1192 |#4|)) (|:| -2273 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -1364 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2891 (|#4| (-576) (-430 |#4|))) (-15 -2363 ((-112) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))) (-656 (-2 (|:| -2367 (-1192 |#3|)) (|:| -2273 (-576)))))) (-15 -2315 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -2607 ((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783))) (-15 -2217 ((-1192 |#3|) (-1192 |#3|) (-576))))
+((-4141 (($ $ (-938)) 17)))
+(((-755 |#1| |#2|) (-10 -8 (-15 -4141 (|#1| |#1| (-938)))) (-756 |#2|) (-174)) (T -755))
+NIL
+(-10 -8 (-15 -4141 (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4139 (($ $ (-938)) 31)) (-4141 (($ $ (-938)) 38)) (-1406 (($ $ (-938)) 32)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2220 (($ $ $) 28)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2591 (($ $ $ $) 29)) (-2407 (($ $ $) 27)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-756 |#1|) (-141) (-174)) (T -756))
+((-4141 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-756 *3)) (-4 *3 (-174)))))
+(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -4141 ($ $ (-938)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T))
+((-2036 (((-1054) (-701 (-227)) (-576) (-112) (-576)) 25)) (-2070 (((-1054) (-701 (-227)) (-576) (-112) (-576)) 24)))
+(((-757) (-10 -7 (-15 -2070 ((-1054) (-701 (-227)) (-576) (-112) (-576))) (-15 -2036 ((-1054) (-701 (-227)) (-576) (-112) (-576))))) (T -757))
+((-2036 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-757)))) (-2070 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-757)))))
+(-10 -7 (-15 -2070 ((-1054) (-701 (-227)) (-576) (-112) (-576))) (-15 -2036 ((-1054) (-701 (-227)) (-576) (-112) (-576))))
+((-3056 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-1841 (((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-1744 (((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) 32)))
+(((-758) (-10 -7 (-15 -1744 ((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -1841 ((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3056 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758))
+((-3056 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) (-5 *1 (-758)))) (-1841 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) (-5 *1 (-758)))) (-1744 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) (-5 *2 (-1054)) (-5 *1 (-758)))))
+(-10 -7 (-15 -1744 ((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -1841 ((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3056 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))
+((-1395 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 34)) (-3041 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 33)) (-1809 (((-1054) (-576) (-701 (-227)) (-576)) 32)) (-2828 (((-1054) (-576) (-701 (-227)) (-576)) 31)) (-2410 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-2355 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-4361 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-1629 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-4252 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-4214 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-3278 (((-1054) (-576) (-701 (-227)) (-576)) 22)) (-3724 (((-1054) (-576) (-701 (-227)) (-576)) 21)))
+(((-759) (-10 -7 (-15 -3724 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3278 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -4214 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4252 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1629 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4361 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2355 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2410 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2828 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -1809 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3041 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -1395 ((-1054) (-576) (-576) (-701 (-227)) (-576))))) (T -759))
+((-1395 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3041 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-1809 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2828 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2410 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2355 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-4361 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-1629 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-4252 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-4214 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3278 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3724 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))))
+(-10 -7 (-15 -3724 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3278 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -4214 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4252 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1629 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4361 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2355 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2410 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2828 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -1809 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3041 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -1395 ((-1054) (-576) (-576) (-701 (-227)) (-576))))
+((-3967 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-4327 (((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-1990 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3287 (((-1054) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-2305 (((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-3558 (((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-2734 (((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3364 (((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-3648 (((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) 38)) (-1863 (((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) 37)) (-3165 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) 33)) (-4064 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) 32)))
+(((-760) (-10 -7 (-15 -4064 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -3165 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -1863 ((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -3648 ((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -3364 ((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2734 ((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3558 ((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2305 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3287 ((-1054) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -1990 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -4327 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3967 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760))
+((-3967 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-4327 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-1990 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3287 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2305 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3558 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2734 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3364 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3648 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-1863 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3165 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-4064 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) (-5 *2 (-1054)) (-5 *1 (-760)))))
+(-10 -7 (-15 -4064 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -3165 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -1863 ((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -3648 ((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))) (-15 -3364 ((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2734 ((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3558 ((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2305 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3287 ((-1054) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -1990 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -4327 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -3967 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))
+((-3085 (((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3192 (((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1341 (((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-1806 (((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-1793 (((-1054) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3398 (((-1054) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3572 (((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-3744 (((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-761) (-10 -7 (-15 -3744 ((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3572 ((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3398 ((-1054) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1793 ((-1054) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1806 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1341 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3192 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3192 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3085 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761))
+((-3085 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3192 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3192 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1054)) (-5 *1 (-761)))) (-1341 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-1806 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1054)) (-5 *1 (-761)))) (-1793 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3398 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3572 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3744 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))))
+(-10 -7 (-15 -3744 ((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3572 ((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3398 ((-1054) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1793 ((-1054) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1806 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1341 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3192 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3192 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -3085 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-2214 (((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-4125 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-1343 (((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23)))
+(((-762) (-10 -7 (-15 -1343 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4125 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -2214 ((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762))
+((-2214 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-762)))) (-4125 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1054)) (-5 *1 (-762)))) (-1343 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-762)))))
+(-10 -7 (-15 -1343 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4125 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -2214 ((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))
+((-1447 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-3471 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-2772 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-3874 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2820 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-2014 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-4043 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-2694 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-3693 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-2414 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21)))
+(((-763) (-10 -7 (-15 -2414 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3693 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2694 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4043 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2014 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2820 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3874 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2772 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3471 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -1447 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763))
+((-1447 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3471 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2772 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3874 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2820 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2014 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-4043 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2694 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3693 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2414 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))))
+(-10 -7 (-15 -2414 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3693 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2694 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4043 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2014 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2820 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3874 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2772 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3471 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -1447 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))
+((-3541 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-3326 (((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-3255 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-1565 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-4254 (((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-4126 (((-1054) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-2470 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-1616 (((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-2537 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-4173 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-3548 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-2268 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-4223 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-2482 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-3943 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-3233 (((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-4344 (((-1054) (-576) (-701 (-227)) (-227) (-576)) 24)) (-2566 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21)))
+(((-764) (-10 -7 (-15 -2566 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4344 ((-1054) (-576) (-701 (-227)) (-227) (-576))) (-15 -3233 ((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -3943 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2482 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -4223 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -2268 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3548 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -4173 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -2537 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1616 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2470 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4126 ((-1054) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -4254 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1565 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3255 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3326 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3541 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764))
+((-3541 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3326 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3255 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1565 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4254 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4126 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2470 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1616 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2537 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4173 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3548 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2268 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4223 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2482 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3943 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3233 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4344 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2566 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))))
+(-10 -7 (-15 -2566 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4344 ((-1054) (-576) (-701 (-227)) (-227) (-576))) (-15 -3233 ((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -3943 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -2482 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -4223 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -2268 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3548 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -4173 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -2537 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1616 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -2470 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -4126 ((-1054) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -4254 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1565 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3255 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -3326 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3541 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))
+((-2162 (((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-4255 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2711 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-2324 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-4423 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3145 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1725 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2484 (((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-765) (-10 -7 (-15 -2484 ((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1725 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3145 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4423 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2324 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2711 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -4255 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2162 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765))
+((-2162 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-4255 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2711 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2324 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-4423 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3145 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-1725 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2484 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))))
+(-10 -7 (-15 -2484 ((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1725 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3145 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -4423 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -2324 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2711 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -4255 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2162 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))
+((-1375 (((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-3294 (((-1054) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-3244 (((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-2839 (((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-4004 (((-1054) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-2861 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-2056 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-2274 (((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-4211 (((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-3282 (((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32)))
+(((-766) (-10 -7 (-15 -3282 ((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -4211 ((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2274 ((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2056 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -2861 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -4004 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -2839 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3244 ((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3294 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1375 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766))
+((-1375 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3294 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3244 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2839 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-4004 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2861 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2056 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2274 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-4211 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3282 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-766)))))
+(-10 -7 (-15 -3282 ((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -4211 ((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -2274 ((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2056 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -2861 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -4004 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -2839 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3244 ((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3294 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1375 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))
+((-3733 (((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-2682 (((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-2303 (((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-3140 (((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-3650 (((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-4142 (((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-3104 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1970 (((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3840 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2462 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-4313 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 25)) (-3980 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2895 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-1959 (((-1054) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-3569 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 21)))
+(((-767) (-10 -7 (-15 -3569 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -1959 ((-1054) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2895 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3980 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4313 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2462 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3840 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1970 ((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3104 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4142 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3650 ((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3140 ((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2303 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2303 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -2682 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3733 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767))
+((-3733 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2682 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2303 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2303 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3140 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3650 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-4142 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3104 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1970 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3840 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2462 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-4313 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3980 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2895 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1959 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3569 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))))
+(-10 -7 (-15 -3569 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -1959 ((-1054) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2895 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3980 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4313 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2462 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3840 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1970 ((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3104 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4142 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3650 ((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3140 ((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2303 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2303 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -2682 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3733 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))
+((-2128 (((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-3295 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-1923 (((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1709 (((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-3808 (((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-3661 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-2863 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-1454 (((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-3110 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-3876 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-1931 (((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22)))
+(((-768) (-10 -7 (-15 -1931 ((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3876 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3110 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1454 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2863 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3661 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3808 ((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1709 ((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -1923 ((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3295 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2128 ((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768))
+((-2128 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3295 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-1923 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-1709 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3808 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3661 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2863 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-1454 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3110 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3876 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-1931 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-768)))))
+(-10 -7 (-15 -1931 ((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3876 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3110 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1454 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2863 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -3661 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3808 ((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1709 ((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -1923 ((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3295 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2128 ((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))
+((-1681 (((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-1996 (((-1054) (-1178) (-576) (-576) (-701 (-227))) 28)) (-2704 (((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-1895 (((-1054) (-576) (-576) (-576) (-701 (-227))) 21)))
+(((-769) (-10 -7 (-15 -1895 ((-1054) (-576) (-576) (-576) (-701 (-227)))) (-15 -2704 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -1996 ((-1054) (-1178) (-576) (-576) (-701 (-227)))) (-15 -1681 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769))
+((-1681 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-1996 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2704 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-1895 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))))
+(-10 -7 (-15 -1895 ((-1054) (-576) (-576) (-576) (-701 (-227)))) (-15 -2704 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -1996 ((-1054) (-1178) (-576) (-576) (-701 (-227)))) (-15 -1681 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))
+((-2573 (((-1054) (-227) (-227) (-227) (-227) (-576)) 62)) (-1631 (((-1054) (-227) (-227) (-227) (-576)) 61)) (-4328 (((-1054) (-227) (-227) (-227) (-576)) 60)) (-3645 (((-1054) (-227) (-227) (-576)) 59)) (-3087 (((-1054) (-227) (-576)) 58)) (-1916 (((-1054) (-227) (-576)) 57)) (-1983 (((-1054) (-227) (-576)) 56)) (-3291 (((-1054) (-227) (-576)) 55)) (-1894 (((-1054) (-227) (-576)) 54)) (-3595 (((-1054) (-227) (-576)) 53)) (-3719 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 52)) (-2517 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 51)) (-1698 (((-1054) (-227) (-576)) 50)) (-4071 (((-1054) (-227) (-576)) 49)) (-2753 (((-1054) (-227) (-576)) 48)) (-1370 (((-1054) (-227) (-576)) 47)) (-4428 (((-1054) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576)) 46)) (-2145 (((-1054) (-1178) (-171 (-227)) (-1178) (-576)) 45)) (-3086 (((-1054) (-1178) (-171 (-227)) (-1178) (-576)) 44)) (-1617 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 43)) (-1409 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 42)) (-4312 (((-1054) (-227) (-576)) 39)) (-3673 (((-1054) (-227) (-576)) 38)) (-3362 (((-1054) (-227) (-576)) 37)) (-1365 (((-1054) (-227) (-576)) 36)) (-2245 (((-1054) (-227) (-576)) 35)) (-1692 (((-1054) (-227) (-576)) 34)) (-1772 (((-1054) (-227) (-576)) 33)) (-3234 (((-1054) (-227) (-576)) 32)) (-1851 (((-1054) (-227) (-576)) 31)) (-3932 (((-1054) (-227) (-576)) 30)) (-1540 (((-1054) (-227) (-227) (-227) (-576)) 29)) (-2524 (((-1054) (-227) (-576)) 28)) (-1812 (((-1054) (-227) (-576)) 27)) (-1660 (((-1054) (-227) (-576)) 26)) (-1866 (((-1054) (-227) (-576)) 25)) (-2519 (((-1054) (-227) (-576)) 24)) (-3953 (((-1054) (-171 (-227)) (-576)) 21)))
+(((-770) (-10 -7 (-15 -3953 ((-1054) (-171 (-227)) (-576))) (-15 -2519 ((-1054) (-227) (-576))) (-15 -1866 ((-1054) (-227) (-576))) (-15 -1660 ((-1054) (-227) (-576))) (-15 -1812 ((-1054) (-227) (-576))) (-15 -2524 ((-1054) (-227) (-576))) (-15 -1540 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3932 ((-1054) (-227) (-576))) (-15 -1851 ((-1054) (-227) (-576))) (-15 -3234 ((-1054) (-227) (-576))) (-15 -1772 ((-1054) (-227) (-576))) (-15 -1692 ((-1054) (-227) (-576))) (-15 -2245 ((-1054) (-227) (-576))) (-15 -1365 ((-1054) (-227) (-576))) (-15 -3362 ((-1054) (-227) (-576))) (-15 -3673 ((-1054) (-227) (-576))) (-15 -4312 ((-1054) (-227) (-576))) (-15 -1409 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1617 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3086 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -2145 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -4428 ((-1054) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1370 ((-1054) (-227) (-576))) (-15 -2753 ((-1054) (-227) (-576))) (-15 -4071 ((-1054) (-227) (-576))) (-15 -1698 ((-1054) (-227) (-576))) (-15 -2517 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3719 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3595 ((-1054) (-227) (-576))) (-15 -1894 ((-1054) (-227) (-576))) (-15 -3291 ((-1054) (-227) (-576))) (-15 -1983 ((-1054) (-227) (-576))) (-15 -1916 ((-1054) (-227) (-576))) (-15 -3087 ((-1054) (-227) (-576))) (-15 -3645 ((-1054) (-227) (-227) (-576))) (-15 -4328 ((-1054) (-227) (-227) (-227) (-576))) (-15 -1631 ((-1054) (-227) (-227) (-227) (-576))) (-15 -2573 ((-1054) (-227) (-227) (-227) (-227) (-576))))) (T -770))
+((-2573 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1631 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4328 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3645 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1894 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3719 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2517 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4428 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1178)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2145 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3086 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1617 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1409 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3362 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1365 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1540 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2524 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2519 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(-10 -7 (-15 -3953 ((-1054) (-171 (-227)) (-576))) (-15 -2519 ((-1054) (-227) (-576))) (-15 -1866 ((-1054) (-227) (-576))) (-15 -1660 ((-1054) (-227) (-576))) (-15 -1812 ((-1054) (-227) (-576))) (-15 -2524 ((-1054) (-227) (-576))) (-15 -1540 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3932 ((-1054) (-227) (-576))) (-15 -1851 ((-1054) (-227) (-576))) (-15 -3234 ((-1054) (-227) (-576))) (-15 -1772 ((-1054) (-227) (-576))) (-15 -1692 ((-1054) (-227) (-576))) (-15 -2245 ((-1054) (-227) (-576))) (-15 -1365 ((-1054) (-227) (-576))) (-15 -3362 ((-1054) (-227) (-576))) (-15 -3673 ((-1054) (-227) (-576))) (-15 -4312 ((-1054) (-227) (-576))) (-15 -1409 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1617 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3086 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -2145 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -4428 ((-1054) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1370 ((-1054) (-227) (-576))) (-15 -2753 ((-1054) (-227) (-576))) (-15 -4071 ((-1054) (-227) (-576))) (-15 -1698 ((-1054) (-227) (-576))) (-15 -2517 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3719 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3595 ((-1054) (-227) (-576))) (-15 -1894 ((-1054) (-227) (-576))) (-15 -3291 ((-1054) (-227) (-576))) (-15 -1983 ((-1054) (-227) (-576))) (-15 -1916 ((-1054) (-227) (-576))) (-15 -3087 ((-1054) (-227) (-576))) (-15 -3645 ((-1054) (-227) (-227) (-576))) (-15 -4328 ((-1054) (-227) (-227) (-227) (-576))) (-15 -1631 ((-1054) (-227) (-227) (-227) (-576))) (-15 -2573 ((-1054) (-227) (-227) (-227) (-227) (-576))))
+((-2181 (((-1292)) 20)) (-1503 (((-1178)) 31)) (-2138 (((-1178)) 30)) (-1975 (((-1123) (-1196) (-701 (-576))) 45) (((-1123) (-1196) (-701 (-227))) 41)) (-1491 (((-112)) 19)) (-2563 (((-1178) (-1178)) 34)))
+(((-771) (-10 -7 (-15 -2138 ((-1178))) (-15 -1503 ((-1178))) (-15 -2563 ((-1178) (-1178))) (-15 -1975 ((-1123) (-1196) (-701 (-227)))) (-15 -1975 ((-1123) (-1196) (-701 (-576)))) (-15 -1491 ((-112))) (-15 -2181 ((-1292))))) (T -771))
+((-2181 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-771)))) (-1491 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-576))) (-5 *2 (-1123)) (-5 *1 (-771)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-227))) (-5 *2 (-1123)) (-5 *1 (-771)))) (-2563 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))) (-1503 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))) (-2138 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))))
+(-10 -7 (-15 -2138 ((-1178))) (-15 -1503 ((-1178))) (-15 -2563 ((-1178) (-1178))) (-15 -1975 ((-1123) (-1196) (-701 (-227)))) (-15 -1975 ((-1123) (-1196) (-701 (-576)))) (-15 -1491 ((-112))) (-15 -2181 ((-1292))))
+((-2220 (($ $ $) 10)) (-2591 (($ $ $ $) 9)) (-2407 (($ $ $) 12)))
+(((-772 |#1|) (-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2591 (|#1| |#1| |#1| |#1|))) (-773)) (T -772))
+NIL
+(-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2591 (|#1| |#1| |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4139 (($ $ (-938)) 31)) (-1406 (($ $ (-938)) 32)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2220 (($ $ $) 28)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2591 (($ $ $ $) 29)) (-2407 (($ $ $) 27)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30)))
+(((-773) (-141)) (T -773))
+((-2591 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-2220 (*1 *1 *1 *1) (-4 *1 (-773))) (-2407 (*1 *1 *1 *1) (-4 *1 (-773))))
+(-13 (-21) (-732) (-10 -8 (-15 -2591 ($ $ $ $)) (-15 -2220 ($ $ $)) (-15 -2407 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1119) . T))
+((-2858 (((-874) $) NIL) (($ (-576)) 10)))
+(((-774 |#1|) (-10 -8 (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-775)) (T -774))
+NIL
+(-10 -8 (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2100 (((-3 $ "failed") $) 43)) (-4139 (($ $ (-938)) 31) (($ $ (-783)) 38)) (-4011 (((-3 $ "failed") $) 41)) (-1838 (((-112) $) 37)) (-3080 (((-3 $ "failed") $) 42)) (-1406 (($ $ (-938)) 32) (($ $ (-783)) 39)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2220 (($ $ $) 28)) (-2858 (((-874) $) 12) (($ (-576)) 34)) (-2981 (((-783)) 35 T CONST)) (-2690 (((-112) $ $) 9)) (-2591 (($ $ $ $) 29)) (-2407 (($ $ $) 27)) (-2022 (($) 19 T CONST)) (-2038 (($) 36 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 33) (($ $ (-783)) 40)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30)))
+(((-775) (-141)) (T -775))
+((-2981 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))))
+(-13 (-773) (-734) (-10 -8 (-15 -2981 ((-783)) -3712) (-15 -2858 ($ (-576)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1119) . T))
+((-2759 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-1846 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-2528 (((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196)) 20) (((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19)))
+(((-776 |#1|) (-10 -7 (-15 -2528 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -2528 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196))) (-15 -1846 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2759 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776))
+((-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-1846 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1196)) (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -2528 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -2528 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196))) (-15 -1846 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2759 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|)))
+((-2601 (((-176 (-576)) |#1|) 27)))
+(((-777 |#1|) (-10 -7 (-15 -2601 ((-176 (-576)) |#1|))) (-416)) (T -777))
+((-2601 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))))
+(-10 -7 (-15 -2601 ((-176 (-576)) |#1|)))
+((-2534 ((|#1| |#1| |#1|) 28)) (-1956 ((|#1| |#1| |#1|) 27)) (-4385 ((|#1| |#1| |#1|) 38)) (-1687 ((|#1| |#1| |#1|) 34)) (-1736 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2168 (((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|) 26)))
+(((-778 |#1| |#2|) (-10 -7 (-15 -2168 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -1956 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -1736 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1687 (|#1| |#1| |#1|)) (-15 -4385 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778))
+((-4385 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1687 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1736 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1956 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2168 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))))
+(-10 -7 (-15 -2168 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -1956 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -1736 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1687 (|#1| |#1| |#1|)) (-15 -4385 (|#1| |#1| |#1|)))
+((-4424 (((-703 (-1245)) $ (-1245)) 26)) (-2505 (((-703 (-561)) $ (-561)) 25)) (-1608 (((-783) $ (-129)) 27)) (-1400 (((-703 (-130)) $ (-130)) 24)) (-2633 (((-703 (-1245)) $) 12)) (-1349 (((-703 (-1243)) $) 8)) (-2314 (((-703 (-1242)) $) 10)) (-3354 (((-703 (-561)) $) 13)) (-4373 (((-703 (-559)) $) 9)) (-2167 (((-703 (-558)) $) 11)) (-2156 (((-783) $ (-129)) 7)) (-3379 (((-703 (-130)) $) 14)) (-3316 (((-112) $) 31)) (-3345 (((-703 $) |#1| (-971)) 32)) (-1723 (($ $) 6)))
+(((-779 |#1|) (-141) (-1119)) (T -779))
+((-3345 (*1 *2 *3 *4) (-12 (-5 *4 (-971)) (-4 *3 (-1119)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(-13 (-588) (-10 -8 (-15 -3345 ((-703 $) |t#1| (-971))) (-15 -3316 ((-112) $))))
+(((-175) . T) ((-539) . T) ((-588) . T) ((-872) . T))
+((-2784 (((-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-1666 (((-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-3880 (((-576)) 85)))
+(((-780 |#1| |#2|) (-10 -7 (-15 -3880 ((-576))) (-15 -1666 ((-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2784 ((-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1263 (-576)) (-421 (-576) |#1|)) (T -780))
+((-2784 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1666 (*1 *2) (-12 (-4 *3 (-1263 (-576))) (-5 *2 (-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-3880 (*1 *2) (-12 (-4 *3 (-1263 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3)))))
+(-10 -7 (-15 -3880 ((-576))) (-15 -1666 ((-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2784 ((-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576))))
+((-2835 (((-112) $ $) NIL)) (-4397 (((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 20) (($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-781) (-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2858 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2858 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4397 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))))
+(-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2858 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2858 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4397 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))
+((-3112 (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))) 18) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196))) 17)) (-2783 (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))) 20) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196))) 19)))
+(((-782 |#1|) (-10 -7 (-15 -3112 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -3112 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))))) (-568)) (T -782))
+((-2783 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))))
+(-10 -7 (-15 -3112 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -3112 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1869 (($ $ $) 10)) (-3161 (((-3 $ "failed") $ $) 15)) (-3598 (($ $ (-576)) 11)) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($ $) NIL)) (-2790 (($ $ $) NIL)) (-1838 (((-112) $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3901 (($ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 6 T CONST)) (-2038 (($) NIL T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL)))
+(((-783) (-13 (-805) (-738) (-10 -8 (-15 -2790 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -3901 ($ $ $)) (-15 -3684 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -2825 ((-3 $ "failed") $ $)) (-15 -3598 ($ $ (-576))) (-15 -2107 ($ $)) (-6 (-4464 "*"))))) (T -783))
+((-2790 (*1 *1 *1 *1) (-5 *1 (-783))) (-2780 (*1 *1 *1 *1) (-5 *1 (-783))) (-3901 (*1 *1 *1 *1) (-5 *1 (-783))) (-3684 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2647 (-783)) (|:| -2307 (-783)))) (-5 *1 (-783)))) (-2825 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-3598 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-2107 (*1 *1 *1) (-5 *1 (-783))))
+(-13 (-805) (-738) (-10 -8 (-15 -2790 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -3901 ($ $ $)) (-15 -3684 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -2825 ((-3 $ "failed") $ $)) (-15 -3598 ($ $ (-576))) (-15 -2107 ($ $)) (-6 (-4464 "*"))))
((|Integer|) (|%ige| |#1| 0))
-((-3520 (((-3 |#2| "failed") |#2| |#2| (-115) (-1194)) 37)))
-(((-783 |#1| |#2|) (-10 -7 (-15 -3520 ((-3 |#2| "failed") |#2| |#2| (-115) (-1194)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974))) (T -783))
-((-3520 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-783 *5 *2)) (-4 *2 (-13 (-29 *5) (-1220) (-974))))))
-(-10 -7 (-15 -3520 ((-3 |#2| "failed") |#2| |#2| (-115) (-1194))))
-((-2882 (((-785) |#1|) 8)))
-(((-784 |#1|) (-10 -7 (-15 -2882 ((-785) |#1|))) (-1235)) (T -784))
-((-2882 (*1 *2 *3) (-12 (-5 *2 (-785)) (-5 *1 (-784 *3)) (-4 *3 (-1235)))))
-(-10 -7 (-15 -2882 ((-785) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 7)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 9)))
-(((-785) (-1117)) (T -785))
-NIL
-(-1117)
-((-3390 ((|#2| |#4|) 35)))
-(((-786 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3390 (|#2| |#4|))) (-463) (-1261 |#1|) (-735 |#1| |#2|) (-1261 |#3|)) (T -786))
-((-3390 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-735 *4 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-786 *4 *2 *5 *3)) (-4 *3 (-1261 *5)))))
-(-10 -7 (-15 -3390 (|#2| |#4|)))
-((-4162 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4081 (((-1290) (-1176) (-1176) |#4| |#5|) 33)) (-2870 ((|#4| |#4| |#5|) 74)) (-2226 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|) 79)) (-3929 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 16)))
-(((-787 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4162 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2870 (|#4| |#4| |#5|)) (-15 -2226 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -4081 ((-1290) (-1176) (-1176) |#4| |#5|)) (-15 -3929 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -787))
-((-3929 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4081 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1176)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *4 (-1082 *6 *7 *8)) (-5 *2 (-1290)) (-5 *1 (-787 *6 *7 *8 *4 *5)) (-4 *5 (-1088 *6 *7 *8 *4)))) (-2226 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2870 (*1 *2 *2 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *2 (-1082 *4 *5 *6)) (-5 *1 (-787 *4 *5 *6 *2 *3)) (-4 *3 (-1088 *4 *5 *6 *2)))) (-4162 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(-10 -7 (-15 -4162 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2870 (|#4| |#4| |#5|)) (-15 -2226 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -4081 ((-1290) (-1176) (-1176) |#4| |#5|)) (-15 -3929 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)))
-((-2443 (((-3 (-1190 (-1190 |#1|)) "failed") |#4|) 51)) (-1461 (((-655 |#4|) |#4|) 22)) (-1514 ((|#4| |#4|) 17)))
-(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1461 ((-655 |#4|) |#4|)) (-15 -2443 ((-3 (-1190 (-1190 |#1|)) "failed") |#4|)) (-15 -1514 (|#4| |#4|))) (-359) (-338 |#1|) (-1261 |#2|) (-1261 |#3|) (-936)) (T -788))
-((-1514 (*1 *2 *2) (-12 (-4 *3 (-359)) (-4 *4 (-338 *3)) (-4 *5 (-1261 *4)) (-5 *1 (-788 *3 *4 *5 *2 *6)) (-4 *2 (-1261 *5)) (-14 *6 (-936)))) (-2443 (*1 *2 *3) (|partial| -12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5)) (-5 *2 (-1190 (-1190 *4))) (-5 *1 (-788 *4 *5 *6 *3 *7)) (-4 *3 (-1261 *6)) (-14 *7 (-936)))) (-1461 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5)) (-5 *2 (-655 *3)) (-5 *1 (-788 *4 *5 *6 *3 *7)) (-4 *3 (-1261 *6)) (-14 *7 (-936)))))
-(-10 -7 (-15 -1461 ((-655 |#4|) |#4|)) (-15 -2443 ((-3 (-1190 (-1190 |#1|)) "failed") |#4|)) (-15 -1514 (|#4| |#4|)))
-((-1701 (((-2 (|:| |deter| (-655 (-1190 |#5|))) (|:| |dterm| (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-655 |#1|)) (|:| |nlead| (-655 |#5|))) (-1190 |#5|) (-655 |#1|) (-655 |#5|)) 72)) (-2080 (((-655 (-782)) |#1|) 20)))
-(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1701 ((-2 (|:| |deter| (-655 (-1190 |#5|))) (|:| |dterm| (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-655 |#1|)) (|:| |nlead| (-655 |#5|))) (-1190 |#5|) (-655 |#1|) (-655 |#5|))) (-15 -2080 ((-655 (-782)) |#1|))) (-1261 |#4|) (-804) (-861) (-316) (-964 |#4| |#2| |#3|)) (T -789))
-((-2080 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-655 (-782))) (-5 *1 (-789 *3 *4 *5 *6 *7)) (-4 *3 (-1261 *6)) (-4 *7 (-964 *6 *4 *5)))) (-1701 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1261 *9)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-316)) (-4 *10 (-964 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-655 (-1190 *10))) (|:| |dterm| (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| *10))))) (|:| |nfacts| (-655 *6)) (|:| |nlead| (-655 *10)))) (-5 *1 (-789 *6 *7 *8 *9 *10)) (-5 *3 (-1190 *10)) (-5 *4 (-655 *6)) (-5 *5 (-655 *10)))))
-(-10 -7 (-15 -1701 ((-2 (|:| |deter| (-655 (-1190 |#5|))) (|:| |dterm| (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-655 |#1|)) (|:| |nlead| (-655 |#5|))) (-1190 |#5|) (-655 |#1|) (-655 |#5|))) (-15 -2080 ((-655 (-782)) |#1|)))
-((-3278 (((-655 (-2 (|:| |outval| |#1|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#1|))))) (-700 (-418 (-575))) |#1|) 31)) (-3222 (((-655 |#1|) (-700 (-418 (-575))) |#1|) 21)) (-2765 (((-967 (-418 (-575))) (-700 (-418 (-575))) (-1194)) 18) (((-967 (-418 (-575))) (-700 (-418 (-575)))) 17)))
-(((-790 |#1|) (-10 -7 (-15 -2765 ((-967 (-418 (-575))) (-700 (-418 (-575))))) (-15 -2765 ((-967 (-418 (-575))) (-700 (-418 (-575))) (-1194))) (-15 -3222 ((-655 |#1|) (-700 (-418 (-575))) |#1|)) (-15 -3278 ((-655 (-2 (|:| |outval| |#1|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#1|))))) (-700 (-418 (-575))) |#1|))) (-13 (-373) (-859))) (T -790))
-((-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-655 (-2 (|:| |outval| *4) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 *4)))))) (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))) (-3222 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *4 (-1194)) (-5 *2 (-967 (-418 (-575)))) (-5 *1 (-790 *5)) (-4 *5 (-13 (-373) (-859))))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-967 (-418 (-575)))) (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))))
-(-10 -7 (-15 -2765 ((-967 (-418 (-575))) (-700 (-418 (-575))))) (-15 -2765 ((-967 (-418 (-575))) (-700 (-418 (-575))) (-1194))) (-15 -3222 ((-655 |#1|) (-700 (-418 (-575))) |#1|)) (-15 -3278 ((-655 (-2 (|:| |outval| |#1|) (|:| |outmult| (-575)) (|:| |outvect| (-655 (-700 |#1|))))) (-700 (-418 (-575))) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 36)) (-1606 (((-655 |#2|) $) NIL)) (-3462 (((-1190 $) $ |#2|) NIL) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 |#2|)) NIL)) (-3460 (($ $) 30)) (-1388 (((-112) $ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ $) 110 (|has| |#1| (-567)))) (-2671 (((-655 $) $ $) 123 (|has| |#1| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-967 (-418 (-575)))) NIL (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))))) (((-3 $ "failed") (-967 (-575))) NIL (-3763 (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575)))))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194)))))) (((-3 $ "failed") (-967 |#1|)) NIL (-3763 (-12 (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575))))) (-3213 (|has| |#1| (-38 (-575))))) (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575))))) (-3213 (|has| |#1| (-556)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-1009 (-575))))))) (((-3 (-1142 |#1| |#2|) "failed") $) 21)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) ((|#2| $) NIL) (($ (-967 (-418 (-575)))) NIL (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))))) (($ (-967 (-575))) NIL (-3763 (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575)))))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194)))))) (($ (-967 |#1|)) NIL (-3763 (-12 (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575))))) (-3213 (|has| |#1| (-38 (-575))))) (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575))))) (-3213 (|has| |#1| (-556)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-1009 (-575))))))) (((-1142 |#1| |#2|) $) NIL)) (-4171 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-567)))) (-4406 (($ $) NIL) (($ $ |#2|) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-3073 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2784 (((-112) $) NIL)) (-1568 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 81)) (-1886 (($ $) 136 (|has| |#1| (-463)))) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ |#2|) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4430 (($ $) NIL (|has| |#1| (-567)))) (-4371 (($ $) NIL (|has| |#1| (-567)))) (-1533 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1734 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-4384 (($ $ |#1| (-542 |#2|) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3900 (((-112) $) 57)) (-1403 (((-782) $) NIL)) (-3621 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-1795 (($ $ $ $ $) 107 (|has| |#1| (-567)))) (-3757 ((|#2| $) 22)) (-2430 (($ (-1190 |#1|) |#2|) NIL) (($ (-1190 $) |#2|) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-542 |#2|)) NIL) (($ $ |#2| (-782)) 38) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-2172 (($ $ $) 63)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#2|) NIL)) (-3311 (((-112) $) NIL)) (-3143 (((-542 |#2|) $) NIL) (((-782) $ |#2|) NIL) (((-655 (-782)) $ (-655 |#2|)) NIL)) (-1333 (((-782) $) 23)) (-1946 (($ (-1 (-542 |#2|) (-542 |#2|)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (((-3 |#2| "failed") $) NIL)) (-2126 (($ $) NIL (|has| |#1| (-463)))) (-4369 (($ $) NIL (|has| |#1| (-463)))) (-1682 (((-655 $) $) NIL)) (-4299 (($ $) 39)) (-2019 (($ $) NIL (|has| |#1| (-463)))) (-1603 (((-655 $) $) 43)) (-4131 (($ $) 41)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2491 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2515 (-782))) $ $) 96)) (-2897 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $) 78) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $ |#2|) NIL)) (-2947 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $) NIL) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $ |#2|) NIL)) (-3211 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2237 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-4264 (((-1176) $) NIL)) (-3822 (($ $ $) 125 (|has| |#1| (-567)))) (-2902 (((-655 $) $) 32)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| |#2|) (|:| -1658 (-782))) "failed") $) NIL)) (-1992 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-4068 (($ $ $) NIL)) (-3472 (($ $) 24)) (-2057 (((-112) $ $) NIL)) (-4091 (((-112) $ $) NIL) (((-112) $ (-655 $)) NIL)) (-1986 (($ $ $) NIL)) (-1327 (($ $) 26)) (-3912 (((-1137) $) NIL)) (-4100 (((-2 (|:| -3923 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-567)))) (-3637 (((-2 (|:| -3923 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-567)))) (-4346 (((-112) $) 56)) (-4353 ((|#1| $) 58)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 ((|#1| |#1| $) 133 (|has| |#1| (-463))) (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-1410 (((-2 (|:| -3923 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-567)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-567)))) (-3992 (($ $ |#1|) 129 (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-3033 (($ $ |#1|) 128 (|has| |#1| (-567))) (($ $ $) NIL (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-655 |#2|) (-655 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-655 |#2|) (-655 $)) NIL)) (-2801 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-1753 (((-542 |#2|) $) NIL) (((-782) $ |#2|) 45) (((-655 (-782)) $ (-655 |#2|)) NIL)) (-3700 (($ $) NIL)) (-3790 (($ $) 35)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547))))) (($ (-967 (-418 (-575)))) NIL (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194))))) (($ (-967 (-575))) NIL (-3763 (-12 (|has| |#1| (-38 (-575))) (|has| |#2| (-625 (-1194))) (-3213 (|has| |#1| (-38 (-418 (-575)))))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#2| (-625 (-1194)))))) (($ (-967 |#1|)) NIL (|has| |#2| (-625 (-1194)))) (((-1176) $) NIL (-12 (|has| |#1| (-1055 (-575))) (|has| |#2| (-625 (-1194))))) (((-967 |#1|) $) NIL (|has| |#2| (-625 (-1194))))) (-3696 ((|#1| $) 132 (|has| |#1| (-463))) (($ $ |#2|) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-967 |#1|) $) NIL (|has| |#2| (-625 (-1194)))) (((-1142 |#1| |#2|) $) 18) (($ (-1142 |#1| |#2|)) 19) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-542 |#2|)) NIL) (($ $ |#2| (-782)) 47) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) 13 T CONST)) (-1483 (((-3 (-112) "failed") $ $) NIL)) (-2005 (($) 37 T CONST)) (-3233 (($ $ $ $ (-782)) 105 (|has| |#1| (-567)))) (-3470 (($ $ $ (-782)) 104 (|has| |#1| (-567)))) (-3428 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) 75)) (-4015 (($ $ $) 85)) (** (($ $ (-936)) NIL) (($ $ (-782)) 70)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 62) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
-(((-791 |#1| |#2|) (-13 (-1082 |#1| (-542 |#2|) |#2|) (-624 (-1142 |#1| |#2|)) (-1055 (-1142 |#1| |#2|))) (-1066) (-861)) (T -791))
-NIL
-(-13 (-1082 |#1| (-542 |#2|) |#2|) (-624 (-1142 |#1| |#2|)) (-1055 (-1142 |#1| |#2|)))
-((-2544 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 13)))
-(((-792 |#1| |#2|) (-10 -7 (-15 -2544 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1066) (-1066)) (T -792))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))))
-(-10 -7 (-15 -2544 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 12)) (-1770 (((-1285 |#1|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-2132 (($ (-1190 |#1|)) NIL)) (-3462 (((-1190 $) $ (-1099)) NIL) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2272 (((-655 $) $ $) 54 (|has| |#1| (-567)))) (-1665 (($ $ $) 50 (|has| |#1| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-4246 (($ $ (-782)) NIL)) (-2681 (($ $ (-782)) NIL)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-463)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL) (((-3 (-1190 |#1|) "failed") $) 10)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1099) $) NIL) (((-1190 |#1|) $) NIL)) (-4171 (($ $ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2804 (($ $ $) NIL)) (-2284 (($ $ $) 87 (|has| |#1| (-567)))) (-1568 (((-2 (|:| -1754 |#1|) (|:| -3262 $) (|:| -4041 $)) $ $) 86 (|has| |#1| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-782) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3369 (((-782) $ $) NIL (|has| |#1| (-567)))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-2430 (($ (-1190 |#1|) (-1099)) NIL) (($ (-1190 $) (-1099)) NIL)) (-1752 (($ $ (-782)) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2172 (($ $ $) 27)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1099)) NIL) (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-3143 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-1946 (($ (-1 (-782) (-782)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2918 (((-1190 |#1|) $) NIL)) (-2187 (((-3 (-1099) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-2491 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2515 (-782))) $ $) 37)) (-1841 (($ $ $) 41)) (-3896 (($ $ $) 47)) (-2897 (((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $) 46)) (-4264 (((-1176) $) NIL)) (-3822 (($ $ $) 56 (|has| |#1| (-567)))) (-3888 (((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782)) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-1099)) (|:| -1658 (-782))) "failed") $) NIL)) (-4388 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3472 (($) NIL (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-4100 (((-2 (|:| -3923 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-567)))) (-3637 (((-2 (|:| -3923 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-567)))) (-3290 (((-2 (|:| -4171 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-567)))) (-2083 (((-2 (|:| -4171 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-567)))) (-4346 (((-112) $) 13)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1834 (($ $ (-782) |#1| $) 26)) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-1410 (((-2 (|:| -3923 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-567)))) (-2428 (((-2 (|:| -4171 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-567)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-655 (-1099)) (-655 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) NIL (|has| |#1| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#1| (-567)))) (-2720 (((-3 $ "failed") $ (-782)) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2801 (($ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-1753 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-4095 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#1| (-567)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1099)) NIL) (((-1190 |#1|) $) 7) (($ (-1190 |#1|)) 8) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) 28 T CONST)) (-2005 (($) 32 T CONST)) (-3428 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) 40) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-793 |#1|) (-13 (-1261 |#1|) (-624 (-1190 |#1|)) (-1055 (-1190 |#1|)) (-10 -8 (-15 -1834 ($ $ (-782) |#1| $)) (-15 -2172 ($ $ $)) (-15 -2491 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2515 (-782))) $ $)) (-15 -1841 ($ $ $)) (-15 -2897 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -3896 ($ $ $)) (IF (|has| |#1| (-567)) (PROGN (-15 -2272 ((-655 $) $ $)) (-15 -3822 ($ $ $)) (-15 -1410 ((-2 (|:| -3923 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3637 ((-2 (|:| -3923 $) (|:| |coef1| $)) $ $)) (-15 -4100 ((-2 (|:| -3923 $) (|:| |coef2| $)) $ $)) (-15 -2428 ((-2 (|:| -4171 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2083 ((-2 (|:| -4171 |#1|) (|:| |coef1| $)) $ $)) (-15 -3290 ((-2 (|:| -4171 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1066)) (T -793))
-((-1834 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-782)) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) (-2172 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-793 *3)) (|:| |polden| *3) (|:| -2515 (-782)))) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) (-1841 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) (-2897 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1754 *3) (|:| |gap| (-782)) (|:| -3262 (-793 *3)) (|:| -4041 (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-1066)))) (-3896 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))) (-2272 (*1 *2 *1 *1) (-12 (-5 *2 (-655 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-3822 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-567)) (-4 *2 (-1066)))) (-1410 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3923 (-793 *3)) (|:| |coef1| (-793 *3)) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3923 (-793 *3)) (|:| |coef1| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-4100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3923 (-793 *3)) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-2428 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-793 *3)) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-2083 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))) (-3290 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef2| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))))
-(-13 (-1261 |#1|) (-624 (-1190 |#1|)) (-1055 (-1190 |#1|)) (-10 -8 (-15 -1834 ($ $ (-782) |#1| $)) (-15 -2172 ($ $ $)) (-15 -2491 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2515 (-782))) $ $)) (-15 -1841 ($ $ $)) (-15 -2897 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -3896 ($ $ $)) (IF (|has| |#1| (-567)) (PROGN (-15 -2272 ((-655 $) $ $)) (-15 -3822 ($ $ $)) (-15 -1410 ((-2 (|:| -3923 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3637 ((-2 (|:| -3923 $) (|:| |coef1| $)) $ $)) (-15 -4100 ((-2 (|:| -3923 $) (|:| |coef2| $)) $ $)) (-15 -2428 ((-2 (|:| -4171 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2083 ((-2 (|:| -4171 |#1|) (|:| |coef1| $)) $ $)) (-15 -3290 ((-2 (|:| -4171 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-2927 ((|#1| (-782) |#1|) 33 (|has| |#1| (-38 (-418 (-575)))))) (-2245 ((|#1| (-782) |#1|) 23)) (-2929 ((|#1| (-782) |#1|) 35 (|has| |#1| (-38 (-418 (-575)))))))
-(((-794 |#1|) (-10 -7 (-15 -2245 (|#1| (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -2929 (|#1| (-782) |#1|)) (-15 -2927 (|#1| (-782) |#1|))) |%noBranch|)) (-174)) (T -794))
-((-2927 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-174)))) (-2929 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-174)))) (-2245 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -2245 (|#1| (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -2929 (|#1| (-782) |#1|)) (-15 -2927 (|#1| (-782) |#1|))) |%noBranch|))
-((-2859 (((-112) $ $) 7)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) 86)) (-4014 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-4419 (((-112) $) 27)) (-3414 (((-112) $) 18 (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) 102) (((-112) $) 98)) (-1479 ((|#4| |#4| $) 93)) (-3312 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) 28)) (-3133 (((-112) $ (-782)) 45)) (-3983 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3261 (($) 46 T CONST)) (-1756 (((-112) $) 23 (|has| |#1| (-567)))) (-1600 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4415 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1759 (((-112) $) 26 (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2762 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 37)) (-4400 (($ (-655 |#4|)) 36)) (-1969 (((-3 $ "failed") $) 83)) (-3355 ((|#4| |#4| $) 90)) (-4070 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3305 ((|#4| |#4| $) 88)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) 106)) (-3209 (((-112) |#4| $) 137)) (-2546 (((-112) |#4| $) 134)) (-1486 (((-112) |#4| $) 138) (((-112) $) 135)) (-3999 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) 105) (((-112) $) 104)) (-3757 ((|#3| $) 35)) (-3541 (((-112) $ (-782)) 44)) (-4252 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 48)) (-3717 (((-655 |#3|) $) 33)) (-1789 (((-112) |#3| $) 32)) (-3218 (((-112) $ (-782)) 43)) (-4264 (((-1176) $) 10)) (-3656 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-3822 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3651 (((-3 |#4| "failed") $) 84)) (-3232 (((-655 $) |#4| $) 130)) (-3533 (((-3 (-112) (-655 $)) |#4| $) 133)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1872 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2400 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-4212 (((-655 |#4|) $) 108)) (-1992 (((-112) |#4| $) 100) (((-112) $) 96)) (-4068 ((|#4| |#4| $) 91)) (-2057 (((-112) $ $) 111)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) 101) (((-112) $) 97)) (-1986 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1955 (((-3 |#4| "failed") $) 85)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3629 (((-3 $ "failed") $ |#4|) 79)) (-1985 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-2718 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) 39)) (-2017 (((-112) $) 42)) (-1393 (($) 41)) (-1753 (((-782) $) 107)) (-3922 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3076 (($ $) 40)) (-2613 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 61)) (-3273 (($ $ |#3|) 29)) (-2078 (($ $ |#3|) 31)) (-3663 (($ $) 89)) (-4049 (($ $ |#3|) 30)) (-2882 (((-873) $) 12) (((-655 |#4|) $) 38)) (-2936 (((-782) $) 77 (|has| |#3| (-378)))) (-3685 (((-112) $ $) 9)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3039 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-4121 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) 82)) (-2360 (((-112) |#4| $) 136)) (-4060 (((-112) |#3| $) 81)) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-795 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -795))
-NIL
-(-13 (-1088 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T))
-((-3570 (((-3 (-389) "failed") (-325 |#1|) (-936)) 62 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-389) "failed") (-325 |#1|)) 54 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-389) "failed") (-418 (-967 |#1|)) (-936)) 41 (|has| |#1| (-567))) (((-3 (-389) "failed") (-418 (-967 |#1|))) 40 (|has| |#1| (-567))) (((-3 (-389) "failed") (-967 |#1|) (-936)) 31 (|has| |#1| (-1066))) (((-3 (-389) "failed") (-967 |#1|)) 30 (|has| |#1| (-1066)))) (-2679 (((-389) (-325 |#1|) (-936)) 99 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-389) (-325 |#1|)) 94 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-389) (-418 (-967 |#1|)) (-936)) 91 (|has| |#1| (-567))) (((-389) (-418 (-967 |#1|))) 90 (|has| |#1| (-567))) (((-389) (-967 |#1|) (-936)) 86 (|has| |#1| (-1066))) (((-389) (-967 |#1|)) 85 (|has| |#1| (-1066))) (((-389) |#1| (-936)) 76) (((-389) |#1|) 22)) (-2120 (((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)) (-936)) 71 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-325 (-171 |#1|))) 70 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-325 |#1|) (-936)) 63 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-325 |#1|)) 61 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))) (-936)) 46 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|)))) 45 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)) (-936)) 39 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-418 (-967 |#1|))) 38 (|has| |#1| (-567))) (((-3 (-171 (-389)) "failed") (-967 |#1|) (-936)) 28 (|has| |#1| (-1066))) (((-3 (-171 (-389)) "failed") (-967 |#1|)) 26 (|has| |#1| (-1066))) (((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)) (-936)) 18 (|has| |#1| (-174))) (((-3 (-171 (-389)) "failed") (-967 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1685 (((-171 (-389)) (-325 (-171 |#1|)) (-936)) 102 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-325 (-171 |#1|))) 101 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-325 |#1|) (-936)) 100 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-325 |#1|)) 98 (-12 (|has| |#1| (-567)) (|has| |#1| (-861)))) (((-171 (-389)) (-418 (-967 (-171 |#1|))) (-936)) 93 (|has| |#1| (-567))) (((-171 (-389)) (-418 (-967 (-171 |#1|)))) 92 (|has| |#1| (-567))) (((-171 (-389)) (-418 (-967 |#1|)) (-936)) 89 (|has| |#1| (-567))) (((-171 (-389)) (-418 (-967 |#1|))) 88 (|has| |#1| (-567))) (((-171 (-389)) (-967 |#1|) (-936)) 84 (|has| |#1| (-1066))) (((-171 (-389)) (-967 |#1|)) 83 (|has| |#1| (-1066))) (((-171 (-389)) (-967 (-171 |#1|)) (-936)) 78 (|has| |#1| (-174))) (((-171 (-389)) (-967 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-389)) (-171 |#1|) (-936)) 80 (|has| |#1| (-174))) (((-171 (-389)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-389)) |#1| (-936)) 27) (((-171 (-389)) |#1|) 25)))
-(((-796 |#1|) (-10 -7 (-15 -2679 ((-389) |#1|)) (-15 -2679 ((-389) |#1| (-936))) (-15 -1685 ((-171 (-389)) |#1|)) (-15 -1685 ((-171 (-389)) |#1| (-936))) (IF (|has| |#1| (-174)) (PROGN (-15 -1685 ((-171 (-389)) (-171 |#1|))) (-15 -1685 ((-171 (-389)) (-171 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -2679 ((-389) (-967 |#1|))) (-15 -2679 ((-389) (-967 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 |#1|))) (-15 -1685 ((-171 (-389)) (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -2679 ((-389) (-418 (-967 |#1|)))) (-15 -2679 ((-389) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -2679 ((-389) (-325 |#1|))) (-15 -2679 ((-389) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 |#1|))) (-15 -1685 ((-171 (-389)) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -3570 ((-3 (-389) "failed") (-967 |#1|))) (-15 -3570 ((-3 (-389) "failed") (-967 |#1|) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 |#1|))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -3570 ((-3 (-389) "failed") (-418 (-967 |#1|)))) (-15 -3570 ((-3 (-389) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -3570 ((-3 (-389) "failed") (-325 |#1|))) (-15 -3570 ((-3 (-389) "failed") (-325 |#1|) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 |#1|))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 |#1|) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|)) (-625 (-389))) (T -796))
-((-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-3570 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-3570 (*1 *2 *3) (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-3570 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-3570 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-3570 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-3570 (*1 *2 *3) (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-2120 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066)) (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-936)) (-4 *5 (-174)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4)))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) (-4 *3 (-625 (-389))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) (-4 *3 (-625 (-389))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-389)) (-5 *1 (-796 *3)) (-4 *3 (-625 *2)))) (-2679 (*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-796 *3)) (-4 *3 (-625 *2)))))
-(-10 -7 (-15 -2679 ((-389) |#1|)) (-15 -2679 ((-389) |#1| (-936))) (-15 -1685 ((-171 (-389)) |#1|)) (-15 -1685 ((-171 (-389)) |#1| (-936))) (IF (|has| |#1| (-174)) (PROGN (-15 -1685 ((-171 (-389)) (-171 |#1|))) (-15 -1685 ((-171 (-389)) (-171 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -2679 ((-389) (-967 |#1|))) (-15 -2679 ((-389) (-967 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-967 |#1|))) (-15 -1685 ((-171 (-389)) (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -2679 ((-389) (-418 (-967 |#1|)))) (-15 -2679 ((-389) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)))) (-15 -1685 ((-171 (-389)) (-418 (-967 |#1|)) (-936))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))))) (-15 -1685 ((-171 (-389)) (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -2679 ((-389) (-325 |#1|))) (-15 -2679 ((-389) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 |#1|))) (-15 -1685 ((-171 (-389)) (-325 |#1|) (-936))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)))) (-15 -1685 ((-171 (-389)) (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 (-171 |#1|)) (-936)))) |%noBranch|) (IF (|has| |#1| (-1066)) (PROGN (-15 -3570 ((-3 (-389) "failed") (-967 |#1|))) (-15 -3570 ((-3 (-389) "failed") (-967 |#1|) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 |#1|))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-967 |#1|) (-936)))) |%noBranch|) (IF (|has| |#1| (-567)) (PROGN (-15 -3570 ((-3 (-389) "failed") (-418 (-967 |#1|)))) (-15 -3570 ((-3 (-389) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 |#1|)) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-418 (-967 (-171 |#1|))) (-936))) (IF (|has| |#1| (-861)) (PROGN (-15 -3570 ((-3 (-389) "failed") (-325 |#1|))) (-15 -3570 ((-3 (-389) "failed") (-325 |#1|) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 |#1|))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 |#1|) (-936))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)))) (-15 -2120 ((-3 (-171 (-389)) "failed") (-325 (-171 |#1|)) (-936)))) |%noBranch|)) |%noBranch|))
-((-3505 (((-936) (-1176)) 89)) (-1744 (((-3 (-389) "failed") (-1176)) 36)) (-2535 (((-389) (-1176)) 34)) (-2934 (((-936) (-1176)) 63)) (-3226 (((-1176) (-936)) 73)) (-1592 (((-1176) (-936)) 62)))
-(((-797) (-10 -7 (-15 -1592 ((-1176) (-936))) (-15 -2934 ((-936) (-1176))) (-15 -3226 ((-1176) (-936))) (-15 -3505 ((-936) (-1176))) (-15 -2535 ((-389) (-1176))) (-15 -1744 ((-3 (-389) "failed") (-1176))))) (T -797))
-((-1744 (*1 *2 *3) (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797)))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797)))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797)))))
-(-10 -7 (-15 -1592 ((-1176) (-936))) (-15 -2934 ((-936) (-1176))) (-15 -3226 ((-1176) (-936))) (-15 -3505 ((-936) (-1176))) (-15 -2535 ((-389) (-1176))) (-15 -1744 ((-3 (-389) "failed") (-1176))))
-((-2859 (((-112) $ $) 7)) (-3452 (((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 16) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)) 14)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-798) (-141)) (T -798))
-((-2655 (*1 *2 *3 *4) (-12 (-4 *1 (-798)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052)))))) (-3452 (*1 *2 *3 *2) (-12 (-4 *1 (-798)) (-5 *2 (-1052)) (-5 *3 (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2655 (*1 *2 *3 *4) (-12 (-4 *1 (-798)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052)))))) (-3452 (*1 *2 *3 *2) (-12 (-4 *1 (-798)) (-5 *2 (-1052)) (-5 *3 (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(-13 (-1117) (-10 -7 (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3452 ((-1052) (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227))) (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)) (|:| |extra| (-1052))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3452 ((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1052)))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-4259 (((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389))) 55) (((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 52)) (-2879 (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 61)) (-1659 (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 50)) (-2370 (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389))) 63) (((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389))) 62)))
-(((-799) (-10 -7 (-15 -2370 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -2370 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -1659 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -4259 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -4259 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -2879 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))))) (T -799))
-((-2879 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-4259 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-575)) (-5 *6 (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389)))) (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-4259 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-575)) (-5 *6 (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389)))) (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-1659 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-2370 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))) (-2370 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389))) (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290)) (-5 *1 (-799)))))
-(-10 -7 (-15 -2370 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -2370 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -1659 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -4259 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))) (-15 -4259 ((-1290) (-1285 (-389)) (-575) (-389) (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))) (-389) (-1285 (-389)) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)) (-1285 (-389)))) (-15 -2879 ((-1290) (-1285 (-389)) (-575) (-389) (-389) (-575) (-1 (-1290) (-1285 (-389)) (-1285 (-389)) (-389)))))
-((-3148 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 64)) (-4058 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 40)) (-3051 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 63)) (-1901 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 38)) (-2665 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 62)) (-3527 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575)) 24)) (-3939 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575)) 41)) (-1718 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575)) 39)) (-1877 (((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575)) 37)))
-(((-800) (-10 -7 (-15 -1877 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -1718 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -3939 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -3527 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1901 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -4058 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -2665 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -3051 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -3148 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))))) (T -800))
-((-3148 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-3051 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-2665 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-4058 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1901 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-3527 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-3939 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1718 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))) (-1877 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389)) (-5 *2 (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575)) (|:| |success| (-112)))) (-5 *1 (-800)) (-5 *5 (-575)))))
-(-10 -7 (-15 -1877 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -1718 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -3939 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575) (-575))) (-15 -3527 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -1901 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -4058 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -2665 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -3051 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))) (-15 -3148 ((-2 (|:| -4181 (-389)) (|:| -3082 (-389)) (|:| |totalpts| (-575)) (|:| |success| (-112))) (-1 (-389) (-389)) (-389) (-389) (-389) (-389) (-575) (-575))))
-((-1898 (((-1230 |#1|) |#1| (-227) (-575)) 69)))
-(((-801 |#1|) (-10 -7 (-15 -1898 ((-1230 |#1|) |#1| (-227) (-575)))) (-991)) (T -801))
-((-1898 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-575)) (-5 *2 (-1230 *3)) (-5 *1 (-801 *3)) (-4 *3 (-991)))))
-(-10 -7 (-15 -1898 ((-1230 |#1|) |#1| (-227) (-575))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 25)) (-1708 (((-3 $ "failed") $ $) 27)) (-3261 (($) 24 T CONST)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 23 T CONST)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-4027 (($ $ $) 31) (($ $) 30)) (-4015 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26) (($ (-575) $) 29)))
-(((-802) (-141)) (T -802))
-NIL
-(-13 (-806) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-861) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 25)) (-3261 (($) 24 T CONST)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 23 T CONST)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-4015 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26)))
+((-2783 (((-3 |#2| "failed") |#2| |#2| (-115) (-1196)) 37)))
+(((-784 |#1| |#2|) (-10 -7 (-15 -2783 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976))) (T -784))
+((-2783 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-976))))))
+(-10 -7 (-15 -2783 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196))))
+((-2858 (((-786) |#1|) 8)))
+(((-785 |#1|) (-10 -7 (-15 -2858 ((-786) |#1|))) (-1237)) (T -785))
+((-2858 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1237)))))
+(-10 -7 (-15 -2858 ((-786) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 7)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 9)))
+(((-786) (-1119)) (T -786))
+NIL
+(-1119)
+((-3075 ((|#2| |#4|) 35)))
+(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3075 (|#2| |#4|))) (-464) (-1263 |#1|) (-736 |#1| |#2|) (-1263 |#3|)) (T -787))
+((-3075 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1263 *5)))))
+(-10 -7 (-15 -3075 (|#2| |#4|)))
+((-4011 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1997 (((-1292) (-1178) (-1178) |#4| |#5|) 33)) (-3809 ((|#4| |#4| |#5|) 74)) (-3485 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|) 79)) (-3100 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|) 16)))
+(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4011 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3809 (|#4| |#4| |#5|)) (-15 -3485 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -1997 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -3100 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -788))
+((-3100 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1997 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1292)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4)))) (-3485 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3809 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1090 *4 *5 *6 *2)))) (-4011 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(-10 -7 (-15 -4011 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3809 (|#4| |#4| |#5|)) (-15 -3485 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -1997 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -3100 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)))
+((-2454 (((-3 (-1192 (-1192 |#1|)) "failed") |#4|) 51)) (-1762 (((-656 |#4|) |#4|) 22)) (-2086 ((|#4| |#4|) 17)))
+(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1762 ((-656 |#4|) |#4|)) (-15 -2454 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -2086 (|#4| |#4|))) (-360) (-339 |#1|) (-1263 |#2|) (-1263 |#3|) (-938)) (T -789))
+((-2086 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1263 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-938)))) (-2454 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-938)))) (-1762 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-938)))))
+(-10 -7 (-15 -1762 ((-656 |#4|) |#4|)) (-15 -2454 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -2086 (|#4| |#4|)))
+((-1630 (((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-3057 (((-656 (-783)) |#1|) 20)))
+(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1630 ((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -3057 ((-656 (-783)) |#1|))) (-1263 |#4|) (-805) (-862) (-317) (-966 |#4| |#2| |#3|)) (T -790))
+((-3057 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *6)) (-4 *7 (-966 *6 *4 *5)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1263 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-966 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1192 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10)))))
+(-10 -7 (-15 -1630 ((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -3057 ((-656 (-783)) |#1|)))
+((-3675 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-2098 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-2528 (((-969 (-419 (-576))) (-701 (-419 (-576))) (-1196)) 18) (((-969 (-419 (-576))) (-701 (-419 (-576)))) 17)))
+(((-791 |#1|) (-10 -7 (-15 -2528 ((-969 (-419 (-576))) (-701 (-419 (-576))))) (-15 -2528 ((-969 (-419 (-576))) (-701 (-419 (-576))) (-1196))) (-15 -2098 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3675 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791))
+((-3675 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1196)) (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))))
+(-10 -7 (-15 -2528 ((-969 (-419 (-576))) (-701 (-419 (-576))))) (-15 -2528 ((-969 (-419 (-576))) (-701 (-419 (-576))) (-1196))) (-15 -2098 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3675 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 36)) (-1634 (((-656 |#2|) $) NIL)) (-3440 (((-1192 $) $ |#2|) NIL) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-3436 (($ $) 30)) (-3520 (((-112) $ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1546 (($ $ $) 110 (|has| |#1| (-568)))) (-1938 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (((-3 $ "failed") (-969 (-576))) NIL (-3739 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (((-3 $ "failed") (-969 |#1|)) NIL (-3739 (-12 (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576))))) (-3189 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576))))) (-3189 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-1011 (-576))))))) (((-3 (-1144 |#1| |#2|) "failed") $) 21)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#2| $) NIL) (($ (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (($ (-969 (-576))) NIL (-3739 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (($ (-969 |#1|)) NIL (-3739 (-12 (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576))))) (-3189 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576))))) (-3189 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-1011 (-576))))))) (((-1144 |#1| |#2|) $) NIL)) (-2495 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-4404 (($ $) NIL) (($ $ |#2|) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3527 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3769 (((-112) $) NIL)) (-2260 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 81)) (-2222 (($ $) 136 (|has| |#1| (-464)))) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2581 (($ $) NIL (|has| |#1| (-568)))) (-1995 (($ $) NIL (|has| |#1| (-568)))) (-4293 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3386 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2611 (($ $ |#1| (-543 |#2|) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1838 (((-112) $) 57)) (-1890 (((-783) $) NIL)) (-2914 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2208 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-4402 ((|#2| $) 22)) (-2441 (($ (-1192 |#1|) |#2|) NIL) (($ (-1192 $) |#2|) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3973 (($ $ $) 63)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#2|) NIL)) (-3071 (((-112) $) NIL)) (-4389 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-1878 (((-783) $) 23)) (-4149 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1848 (((-3 |#2| "failed") $) NIL)) (-3674 (($ $) NIL (|has| |#1| (-464)))) (-3254 (($ $) NIL (|has| |#1| (-464)))) (-3561 (((-656 $) $) NIL)) (-3653 (($ $) 39)) (-3218 (($ $) NIL (|has| |#1| (-464)))) (-4129 (((-656 $) $) 43)) (-4251 (($ $) 41)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2916 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1355 (-783))) $ $) 96)) (-1374 (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $) 78) (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $ |#2|) NIL)) (-2203 (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $) NIL) (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $ |#2|) NIL)) (-2293 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3288 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2143 (((-1178) $) NIL)) (-4362 (($ $ $) 125 (|has| |#1| (-568)))) (-3704 (((-656 $) $) 32)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| |#2|) (|:| -2273 (-783))) "failed") $) NIL)) (-2671 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2978 (($ $ $) NIL)) (-3448 (($ $) 24)) (-1700 (((-112) $ $) NIL)) (-1690 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3350 (($ $ $) NIL)) (-1371 (($ $) 26)) (-3887 (((-1139) $) NIL)) (-4364 (((-2 (|:| -3901 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-1991 (((-2 (|:| -3901 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-4336 (((-112) $) 56)) (-4347 ((|#1| $) 58)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3065 (((-2 (|:| -3901 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-1493 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-4412 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-3880 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-4436 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-1737 (($ $) NIL)) (-1942 (($ $) 35)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (($ (-969 (-576))) NIL (-3739 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-3189 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (($ (-969 |#1|)) NIL (|has| |#2| (-626 (-1196)))) (((-1178) $) NIL (-12 (|has| |#1| (-1057 (-576))) (|has| |#2| (-626 (-1196))))) (((-969 |#1|) $) NIL (|has| |#2| (-626 (-1196))))) (-4325 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-969 |#1|) $) NIL (|has| |#2| (-626 (-1196)))) (((-1144 |#1| |#2|) $) 18) (($ (-1144 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) 13 T CONST)) (-4091 (((-3 (-112) "failed") $ $) NIL)) (-2038 (($) 37 T CONST)) (-3578 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-2219 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-3404 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) 75)) (-3990 (($ $ $) 85)) (** (($ $ (-938)) NIL) (($ $ (-783)) 70)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+(((-792 |#1| |#2|) (-13 (-1084 |#1| (-543 |#2|) |#2|) (-625 (-1144 |#1| |#2|)) (-1057 (-1144 |#1| |#2|))) (-1068) (-862)) (T -792))
+NIL
+(-13 (-1084 |#1| (-543 |#2|) |#2|) (-625 (-1144 |#1| |#2|)) (-1057 (-1144 |#1| |#2|)))
+((-2548 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13)))
+(((-793 |#1| |#2|) (-10 -7 (-15 -2548 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1068) (-1068)) (T -793))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6)))))
+(-10 -7 (-15 -2548 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 12)) (-3402 (((-1287 |#1|) $ (-783)) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-3067 (($ (-1192 |#1|)) NIL)) (-3440 (((-1192 $) $ (-1101)) NIL) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2613 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-1546 (($ $ $) 50 (|has| |#1| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2949 (($ $ (-783)) NIL)) (-2689 (($ $ (-783)) NIL)) (-3811 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL) (((-3 (-1192 |#1|) "failed") $) 10)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL) (((-1192 |#1|) $) NIL)) (-2495 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2976 (($ $ $) NIL)) (-3051 (($ $ $) 87 (|has| |#1| (-568)))) (-2260 (((-2 (|:| -1788 |#1|) (|:| -2647 $) (|:| -2307 $)) $ $) 86 (|has| |#1| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-783) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2620 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-2441 (($ (-1192 |#1|) (-1101)) NIL) (($ (-1192 $) (-1101)) NIL)) (-4323 (($ $ (-783)) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3973 (($ $ $) 27)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1101)) NIL) (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-4389 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4149 (($ (-1 (-783) (-783)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-2760 (((-1192 |#1|) $) NIL)) (-1848 (((-3 (-1101) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2916 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1355 (-783))) $ $) 37)) (-4259 (($ $ $) 41)) (-2667 (($ $ $) 47)) (-1374 (((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $) 46)) (-2143 (((-1178) $) NIL)) (-4362 (($ $ $) 56 (|has| |#1| (-568)))) (-3300 (((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783)) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-1101)) (|:| -2273 (-783))) "failed") $) NIL)) (-1850 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($) NIL (|has| |#1| (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-4364 (((-2 (|:| -3901 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-1991 (((-2 (|:| -3901 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-2450 (((-2 (|:| -2495 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3365 (((-2 (|:| -2495 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-4336 (((-112) $) 13)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1930 (($ $ (-783) |#1| $) 26)) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3065 (((-2 (|:| -3901 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1373 (((-2 (|:| -2495 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2065 (((-3 $ "failed") $ (-783)) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-3880 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-4436 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2033 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1101)) NIL) (((-1192 |#1|) $) 7) (($ (-1192 |#1|)) 8) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) 28 T CONST)) (-2038 (($) 32 T CONST)) (-3404 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) 40) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-794 |#1|) (-13 (-1263 |#1|) (-625 (-1192 |#1|)) (-1057 (-1192 |#1|)) (-10 -8 (-15 -1930 ($ $ (-783) |#1| $)) (-15 -3973 ($ $ $)) (-15 -2916 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1355 (-783))) $ $)) (-15 -4259 ($ $ $)) (-15 -1374 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -2667 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2613 ((-656 $) $ $)) (-15 -4362 ($ $ $)) (-15 -3065 ((-2 (|:| -3901 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1991 ((-2 (|:| -3901 $) (|:| |coef1| $)) $ $)) (-15 -4364 ((-2 (|:| -3901 $) (|:| |coef2| $)) $ $)) (-15 -1373 ((-2 (|:| -2495 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3365 ((-2 (|:| -2495 |#1|) (|:| |coef1| $)) $ $)) (-15 -2450 ((-2 (|:| -2495 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1068)) (T -794))
+((-1930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-3973 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-2916 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -1355 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-4259 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-1374 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1788 *3) (|:| |gap| (-783)) (|:| -2647 (-794 *3)) (|:| -2307 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-2667 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-2613 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-4362 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) (-3065 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3901 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-1991 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3901 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-4364 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3901 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-1373 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2495 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3365 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2495 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2450 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2495 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))))
+(-13 (-1263 |#1|) (-625 (-1192 |#1|)) (-1057 (-1192 |#1|)) (-10 -8 (-15 -1930 ($ $ (-783) |#1| $)) (-15 -3973 ($ $ $)) (-15 -2916 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1355 (-783))) $ $)) (-15 -4259 ($ $ $)) (-15 -1374 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -2667 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2613 ((-656 $) $ $)) (-15 -4362 ($ $ $)) (-15 -3065 ((-2 (|:| -3901 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1991 ((-2 (|:| -3901 $) (|:| |coef1| $)) $ $)) (-15 -4364 ((-2 (|:| -3901 $) (|:| |coef2| $)) $ $)) (-15 -1373 ((-2 (|:| -2495 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3365 ((-2 (|:| -2495 |#1|) (|:| |coef1| $)) $ $)) (-15 -2450 ((-2 (|:| -2495 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2235 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-2716 ((|#1| (-783) |#1|) 23)) (-4260 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576)))))))
+(((-795 |#1|) (-10 -7 (-15 -2716 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4260 (|#1| (-783) |#1|)) (-15 -2235 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795))
+((-2235 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4260 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-2716 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -2716 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4260 (|#1| (-783) |#1|)) (-15 -2235 (|#1| (-783) |#1|))) |%noBranch|))
+((-2835 (((-112) $ $) 7)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) 86)) (-1952 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1634 (((-656 |#3|) $) 34)) (-4001 (((-112) $) 27)) (-3169 (((-112) $) 18 (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) 102) (((-112) $) 98)) (-1778 ((|#4| |#4| $) 93)) (-3179 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| $) 127)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) 28)) (-2746 (((-112) $ (-783)) 45)) (-3959 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-2574 (($) 46 T CONST)) (-1516 (((-112) $) 23 (|has| |#1| (-568)))) (-2097 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3593 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3695 (((-112) $) 26 (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3390 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 37)) (-4397 (($ (-656 |#4|)) 36)) (-2003 (((-3 $ "failed") $) 83)) (-2040 ((|#4| |#4| $) 90)) (-3229 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3586 ((|#4| |#4| $) 88)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) 106)) (-3275 (((-112) |#4| $) 137)) (-4438 (((-112) |#4| $) 134)) (-4310 (((-112) |#4| $) 138) (((-112) $) 135)) (-3975 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) 105) (((-112) $) 104)) (-4402 ((|#3| $) 35)) (-3639 (((-112) $ (-783)) 44)) (-3531 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 48)) (-2804 (((-656 |#3|) $) 33)) (-2872 (((-112) |#3| $) 32)) (-1684 (((-112) $ (-783)) 43)) (-2143 (((-1178) $) 10)) (-3342 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4362 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| |#4| $) 128)) (-3627 (((-3 |#4| "failed") $) 84)) (-1611 (((-656 $) |#4| $) 130)) (-4270 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3310 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1501 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3025 (((-656 |#4|) $) 108)) (-2671 (((-112) |#4| $) 100) (((-112) $) 96)) (-2978 ((|#4| |#4| $) 91)) (-1700 (((-112) $ $) 111)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) 101) (((-112) $) 97)) (-3350 ((|#4| |#4| $) 92)) (-3887 (((-1139) $) 11)) (-1989 (((-3 |#4| "failed") $) 85)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2451 (((-3 $ "failed") $ |#4|) 79)) (-3262 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1910 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) 39)) (-3001 (((-112) $) 42)) (-3849 (($) 41)) (-4436 (((-783) $) 107)) (-3902 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-3052 (($ $) 40)) (-2610 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 61)) (-4426 (($ $ |#3|) 29)) (-4127 (($ $ |#3|) 31)) (-2693 (($ $) 89)) (-3668 (($ $ |#3|) 30)) (-2858 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3506 (((-783) $) 77 (|has| |#3| (-379)))) (-2690 (((-112) $ $) 9)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3828 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2714 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) 82)) (-2212 (((-112) |#4| $) 136)) (-2576 (((-112) |#3| $) 81)) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -796))
+NIL
+(-13 (-1090 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T))
+((-2811 (((-3 (-390) "failed") (-326 |#1|) (-938)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-969 |#1|)) (-938)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-969 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-969 |#1|) (-938)) 31 (|has| |#1| (-1068))) (((-3 (-390) "failed") (-969 |#1|)) 30 (|has| |#1| (-1068)))) (-2669 (((-390) (-326 |#1|) (-938)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-969 |#1|)) (-938)) 91 (|has| |#1| (-568))) (((-390) (-419 (-969 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-969 |#1|) (-938)) 86 (|has| |#1| (-1068))) (((-390) (-969 |#1|)) 85 (|has| |#1| (-1068))) (((-390) |#1| (-938)) 76) (((-390) |#1|) 22)) (-4207 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-938)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)) 28 (|has| |#1| (-1068))) (((-3 (-171 (-390)) "failed") (-969 |#1|)) 26 (|has| |#1| (-1068))) (((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-969 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-1719 (((-171 (-390)) (-326 (-171 |#1|)) (-938)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-938)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 |#1|)) (-938)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-969 |#1|) (-938)) 84 (|has| |#1| (-1068))) (((-171 (-390)) (-969 |#1|)) 83 (|has| |#1| (-1068))) (((-171 (-390)) (-969 (-171 |#1|)) (-938)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-969 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-938)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-938)) 27) (((-171 (-390)) |#1|) 25)))
+(((-797 |#1|) (-10 -7 (-15 -2669 ((-390) |#1|)) (-15 -2669 ((-390) |#1| (-938))) (-15 -1719 ((-171 (-390)) |#1|)) (-15 -1719 ((-171 (-390)) |#1| (-938))) (IF (|has| |#1| (-174)) (PROGN (-15 -1719 ((-171 (-390)) (-171 |#1|))) (-15 -1719 ((-171 (-390)) (-171 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-969 (-171 |#1|)))) (-15 -1719 ((-171 (-390)) (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2669 ((-390) (-969 |#1|))) (-15 -2669 ((-390) (-969 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-969 |#1|))) (-15 -1719 ((-171 (-390)) (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2669 ((-390) (-419 (-969 |#1|)))) (-15 -2669 ((-390) (-419 (-969 |#1|)) (-938))) (-15 -1719 ((-171 (-390)) (-419 (-969 |#1|)))) (-15 -1719 ((-171 (-390)) (-419 (-969 |#1|)) (-938))) (-15 -1719 ((-171 (-390)) (-419 (-969 (-171 |#1|))))) (-15 -1719 ((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2669 ((-390) (-326 |#1|))) (-15 -2669 ((-390) (-326 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-326 |#1|))) (-15 -1719 ((-171 (-390)) (-326 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1719 ((-171 (-390)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2811 ((-3 (-390) "failed") (-969 |#1|))) (-15 -2811 ((-3 (-390) "failed") (-969 |#1|) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 |#1|))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2811 ((-3 (-390) "failed") (-419 (-969 |#1|)))) (-15 -2811 ((-3 (-390) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2811 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2811 ((-3 (-390) "failed") (-326 |#1|) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797))
+((-4207 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4207 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2811 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2811 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4207 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4207 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2811 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2811 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4207 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2811 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2811 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4207 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-1719 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))))
+(-10 -7 (-15 -2669 ((-390) |#1|)) (-15 -2669 ((-390) |#1| (-938))) (-15 -1719 ((-171 (-390)) |#1|)) (-15 -1719 ((-171 (-390)) |#1| (-938))) (IF (|has| |#1| (-174)) (PROGN (-15 -1719 ((-171 (-390)) (-171 |#1|))) (-15 -1719 ((-171 (-390)) (-171 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-969 (-171 |#1|)))) (-15 -1719 ((-171 (-390)) (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2669 ((-390) (-969 |#1|))) (-15 -2669 ((-390) (-969 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-969 |#1|))) (-15 -1719 ((-171 (-390)) (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2669 ((-390) (-419 (-969 |#1|)))) (-15 -2669 ((-390) (-419 (-969 |#1|)) (-938))) (-15 -1719 ((-171 (-390)) (-419 (-969 |#1|)))) (-15 -1719 ((-171 (-390)) (-419 (-969 |#1|)) (-938))) (-15 -1719 ((-171 (-390)) (-419 (-969 (-171 |#1|))))) (-15 -1719 ((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2669 ((-390) (-326 |#1|))) (-15 -2669 ((-390) (-326 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-326 |#1|))) (-15 -1719 ((-171 (-390)) (-326 |#1|) (-938))) (-15 -1719 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -1719 ((-171 (-390)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2811 ((-3 (-390) "failed") (-969 |#1|))) (-15 -2811 ((-3 (-390) "failed") (-969 |#1|) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 |#1|))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2811 ((-3 (-390) "failed") (-419 (-969 |#1|)))) (-15 -2811 ((-3 (-390) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2811 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2811 ((-3 (-390) "failed") (-326 |#1|) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-938))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -4207 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|))
+((-3617 (((-938) (-1178)) 89)) (-1757 (((-3 (-390) "failed") (-1178)) 36)) (-2600 (((-390) (-1178)) 34)) (-3321 (((-938) (-1178)) 63)) (-4224 (((-1178) (-938)) 73)) (-2623 (((-1178) (-938)) 62)))
+(((-798) (-10 -7 (-15 -2623 ((-1178) (-938))) (-15 -3321 ((-938) (-1178))) (-15 -4224 ((-1178) (-938))) (-15 -3617 ((-938) (-1178))) (-15 -2600 ((-390) (-1178))) (-15 -1757 ((-3 (-390) "failed") (-1178))))) (T -798))
+((-1757 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798)))))
+(-10 -7 (-15 -2623 ((-1178) (-938))) (-15 -3321 ((-938) (-1178))) (-15 -4224 ((-1178) (-938))) (-15 -3617 ((-938) (-1178))) (-15 -2600 ((-390) (-1178))) (-15 -1757 ((-3 (-390) "failed") (-1178))))
+((-2835 (((-112) $ $) 7)) (-3336 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 16) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 14)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-799) (-141)) (T -799))
+((-2605 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054)))))) (-3336 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2605 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054)))))) (-3336 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(-13 (-1119) (-10 -7 (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3336 ((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3336 ((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2904 (((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390))) 55) (((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 52)) (-3394 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 61)) (-2361 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 50)) (-3806 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390))) 63) (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 62)))
+(((-800) (-10 -7 (-15 -3806 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -3806 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -2361 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -2904 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -2904 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -3394 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))))) (T -800))
+((-3394 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-2904 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390)))) (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-2904 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390)))) (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-2361 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-3806 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-3806 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))))
+(-10 -7 (-15 -3806 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -3806 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -2361 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -2904 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -2904 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -3394 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))))
+((-3654 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-3453 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-2409 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-3018 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-2478 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-2051 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-2580 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-2827 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-2500 (((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37)))
+(((-801) (-10 -7 (-15 -2500 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2827 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2580 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2051 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3018 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3453 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2478 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2409 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3654 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801))
+((-3654 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2409 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3453 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3018 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2051 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2580 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2827 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2500 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))))
+(-10 -7 (-15 -2500 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2827 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2580 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -2051 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3018 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3453 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2478 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2409 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3654 ((-2 (|:| -4160 (-390)) (|:| -3058 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))
+((-3931 (((-1232 |#1|) |#1| (-227) (-576)) 69)))
+(((-802 |#1|) (-10 -7 (-15 -3931 ((-1232 |#1|) |#1| (-227) (-576)))) (-993)) (T -802))
+((-3931 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1232 *3)) (-5 *1 (-802 *3)) (-4 *3 (-993)))))
+(-10 -7 (-15 -3931 ((-1232 |#1|) |#1| (-227) (-576))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 25)) (-3161 (((-3 $ "failed") $ $) 27)) (-2574 (($) 24 T CONST)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 23 T CONST)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-4002 (($ $ $) 31) (($ $) 30)) (-3990 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26) (($ (-576) $) 29)))
(((-803) (-141)) (T -803))
NIL
-(-13 (-805) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-805) . T) ((-861) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 25)) (-3081 (($ $ $) 28)) (-1708 (((-3 $ "failed") $ $) 27)) (-3261 (($) 24 T CONST)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 23 T CONST)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-4015 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26)))
+(-13 (-807) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 25)) (-2574 (($) 24 T CONST)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 23 T CONST)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-3990 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26)))
(((-804) (-141)) (T -804))
-((-3081 (*1 *1 *1 *1) (-4 *1 (-804))))
-(-13 (-806) (-10 -8 (-15 -3081 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-861) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-4015 (($ $ $) 21)) (* (($ (-936) $) 22)))
-(((-805) (-141)) (T -805))
NIL
-(-13 (-861) (-25))
-(((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-861) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 25)) (-1708 (((-3 $ "failed") $ $) 27)) (-3261 (($) 24 T CONST)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 23 T CONST)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-4015 (($ $ $) 21)) (* (($ (-936) $) 22) (($ (-782) $) 26)))
+(-13 (-806) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-806) . T) ((-862) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 25)) (-1869 (($ $ $) 28)) (-3161 (((-3 $ "failed") $ $) 27)) (-2574 (($) 24 T CONST)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 23 T CONST)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-3990 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26)))
+(((-805) (-141)) (T -805))
+((-1869 (*1 *1 *1 *1) (-4 *1 (-805))))
+(-13 (-807) (-10 -8 (-15 -1869 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-3990 (($ $ $) 21)) (* (($ (-938) $) 22)))
(((-806) (-141)) (T -806))
NIL
-(-13 (-803) (-132))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-803) . T) ((-805) . T) ((-861) . T) ((-1117) . T))
-((-2045 (((-112) $) 42)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4400 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 43)) (-2157 (((-3 (-418 (-575)) "failed") $) 78)) (-2188 (((-112) $) 72)) (-1622 (((-418 (-575)) $) 76)) (-3390 ((|#2| $) 26)) (-2544 (($ (-1 |#2| |#2|) $) 23)) (-4332 (($ $) 58)) (-2613 (((-547) $) 67)) (-3516 (($ $) 21)) (-2882 (((-873) $) 53) (($ (-575)) 40) (($ |#2|) 38) (($ (-418 (-575))) NIL)) (-4421 (((-782)) 10)) (-3863 ((|#2| $) 71)) (-3913 (((-112) $ $) 30)) (-3940 (((-112) $ $) 69)) (-4027 (($ $) 32) (($ $ $) NIL)) (-4015 (($ $ $) 31)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-807 |#1| |#2|) (-10 -8 (-15 -3940 ((-112) |#1| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -3863 (|#2| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-808 |#2|) (-174)) (T -807))
-((-4421 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-807 *3 *4)) (-4 *3 (-808 *4)))))
-(-10 -8 (-15 -3940 ((-112) |#1| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -4332 (|#1| |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -3863 (|#2| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-2409 (((-782)) 58 (|has| |#1| (-378)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 100 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 97 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 94)) (-4400 (((-575) $) 99 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 96 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 95)) (-4162 (((-3 $ "failed") $) 37)) (-2481 ((|#1| $) 84)) (-2157 (((-3 (-418 (-575)) "failed") $) 71 (|has| |#1| (-556)))) (-2188 (((-112) $) 73 (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) 72 (|has| |#1| (-556)))) (-2073 (($) 61 (|has| |#1| (-378)))) (-3900 (((-112) $) 35)) (-2715 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3390 ((|#1| $) 76)) (-1914 (($ $ $) 67 (|has| |#1| (-861)))) (-3503 (($ $ $) 66 (|has| |#1| (-861)))) (-2544 (($ (-1 |#1| |#1|) $) 86)) (-1894 (((-936) $) 60 (|has| |#1| (-378)))) (-4264 (((-1176) $) 10)) (-4332 (($ $) 70 (|has| |#1| (-373)))) (-4317 (($ (-936)) 59 (|has| |#1| (-378)))) (-4239 ((|#1| $) 81)) (-1465 ((|#1| $) 82)) (-2308 ((|#1| $) 83)) (-4197 ((|#1| $) 77)) (-3433 ((|#1| $) 78)) (-2682 ((|#1| $) 79)) (-4089 ((|#1| $) 80)) (-3912 (((-1137) $) 11)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) 92 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 90 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 89 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 88 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 87 (|has| |#1| (-525 (-1194) |#1|)))) (-2065 (($ $ |#1|) 93 (|has| |#1| (-295 |#1| |#1|)))) (-2613 (((-547) $) 68 (|has| |#1| (-625 (-547))))) (-3516 (($ $) 85)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ (-418 (-575))) 98 (|has| |#1| (-1055 (-418 (-575)))))) (-1724 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3863 ((|#1| $) 74 (|has| |#1| (-1077)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 64 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 63 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 65 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 62 (|has| |#1| (-861)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-808 |#1|) (-141) (-174)) (T -808))
-((-3516 (*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-2715 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-2157 (*1 *2 *1) (|partial| -12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-4332 (*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-373)))))
-(-13 (-38 |t#1|) (-422 |t#1|) (-348 |t#1|) (-10 -8 (-15 -3516 ($ $)) (-15 -2481 (|t#1| $)) (-15 -2308 (|t#1| $)) (-15 -1465 (|t#1| $)) (-15 -4239 (|t#1| $)) (-15 -4089 (|t#1| $)) (-15 -2682 (|t#1| $)) (-15 -3433 (|t#1| $)) (-15 -4197 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -2715 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-378)) (-6 (-378)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -3863 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-373)) (-15 -4332 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-378) |has| |#1| (-378)) ((-348 |#1|) . T) ((-422 |#1|) . T) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-737) . T) ((-861) |has| |#1| (-861)) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) |has| |#1| (-295 |#1| |#1|)))
-((-2544 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#3| (-1 |#4| |#2|) |#1|))) (-808 |#2|) (-174) (-808 |#4|) (-174)) (T -809))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-808 *6)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *4 (-808 *5)))))
-(-10 -7 (-15 -2544 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-1016 |#1|) "failed") $) 35) (((-3 (-575) "failed") $) NIL (-3763 (|has| (-1016 |#1|) (-1055 (-575))) (|has| |#1| (-1055 (-575))))) (((-3 (-418 (-575)) "failed") $) NIL (-3763 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-4400 ((|#1| $) NIL) (((-1016 |#1|) $) 33) (((-575) $) NIL (-3763 (|has| (-1016 |#1|) (-1055 (-575))) (|has| |#1| (-1055 (-575))))) (((-418 (-575)) $) NIL (-3763 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-4162 (((-3 $ "failed") $) NIL)) (-2481 ((|#1| $) 16)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-556)))) (-2188 (((-112) $) NIL (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) NIL (|has| |#1| (-556)))) (-2073 (($) NIL (|has| |#1| (-378)))) (-3900 (((-112) $) NIL)) (-2715 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1016 |#1|) (-1016 |#1|)) 29)) (-3390 ((|#1| $) NIL)) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-4239 ((|#1| $) 22)) (-1465 ((|#1| $) 20)) (-2308 ((|#1| $) 18)) (-4197 ((|#1| $) 26)) (-3433 ((|#1| $) 25)) (-2682 ((|#1| $) 24)) (-4089 ((|#1| $) 23)) (-3912 (((-1137) $) NIL)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-2065 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-3516 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1016 |#1|)) 30) (($ (-418 (-575))) NIL (-3763 (|has| (-1016 |#1|) (-1055 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3863 ((|#1| $) NIL (|has| |#1| (-1077)))) (-1989 (($) 8 T CONST)) (-2005 (($) 12 T CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-810 |#1|) (-13 (-808 |#1|) (-422 (-1016 |#1|)) (-10 -8 (-15 -2715 ($ (-1016 |#1|) (-1016 |#1|))))) (-174)) (T -810))
-((-2715 (*1 *1 *2 *2) (-12 (-5 *2 (-1016 *3)) (-4 *3 (-174)) (-5 *1 (-810 *3)))))
-(-13 (-808 |#1|) (-422 (-1016 |#1|)) (-10 -8 (-15 -2715 ($ (-1016 |#1|) (-1016 |#1|)))))
-((-2859 (((-112) $ $) 7)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2529 (((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3913 (((-112) $ $) 6)))
-(((-811) (-141)) (T -811))
-((-2655 (*1 *2 *3 *4) (-12 (-4 *1 (-811)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)))))) (-2529 (*1 *2 *3) (-12 (-4 *1 (-811)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1052)))))
-(-13 (-1117) (-10 -7 (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2529 ((-1052) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-3103 (((-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#3| |#2| (-1194)) 19)))
-(((-812 |#1| |#2| |#3|) (-10 -7 (-15 -3103 ((-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#3| |#2| (-1194)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974)) (-667 |#2|)) (T -812))
-((-3103 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1194)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-4 *4 (-13 (-29 *6) (-1220) (-974))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2098 (-655 *4)))) (-5 *1 (-812 *6 *4 *3)) (-4 *3 (-667 *4)))))
-(-10 -7 (-15 -3103 ((-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#3| |#2| (-1194))))
-((-3520 (((-3 |#2| "failed") |#2| (-115) (-303 |#2|) (-655 |#2|)) 28) (((-3 |#2| "failed") (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#2| "failed") |#2| (-115) (-1194)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#2| "failed") (-303 |#2|) (-115) (-1194)) 18) (((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-655 |#2|) (-655 (-115)) (-1194)) 24) (((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-655 (-303 |#2|)) (-655 (-115)) (-1194)) 26) (((-3 (-655 (-1285 |#2|)) "failed") (-700 |#2|) (-1194)) 37) (((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-700 |#2|) (-1285 |#2|) (-1194)) 35)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-700 |#2|) (-1285 |#2|) (-1194))) (-15 -3520 ((-3 (-655 (-1285 |#2|)) "failed") (-700 |#2|) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-655 (-303 |#2|)) (-655 (-115)) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-655 |#2|) (-655 (-115)) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#2| "failed") (-303 |#2|) (-115) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#2| "failed") |#2| (-115) (-1194))) (-15 -3520 ((-3 |#2| "failed") (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -3520 ((-3 |#2| "failed") |#2| (-115) (-303 |#2|) (-655 |#2|)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974))) (T -813))
-((-3520 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-303 *2)) (-5 *5 (-655 *2)) (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-813 *6 *2)))) (-3520 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-303 *2)) (-5 *4 (-115)) (-5 *5 (-655 *2)) (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-5 *1 (-813 *6 *2)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))))) (-3520 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1194)) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2098 (-655 *3))) *3 "failed")) (-5 *1 (-813 *6 *3)) (-4 *3 (-13 (-29 *6) (-1220) (-974))))) (-3520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2098 (-655 *7))) *7 "failed")) (-5 *1 (-813 *6 *7)))) (-3520 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-2 (|:| |particular| (-1285 *7)) (|:| -2098 (-655 (-1285 *7))))) (-5 *1 (-813 *6 *7)))) (-3520 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-2 (|:| |particular| (-1285 *7)) (|:| -2098 (-655 (-1285 *7))))) (-5 *1 (-813 *6 *7)))) (-3520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-700 *6)) (-5 *4 (-1194)) (-4 *6 (-13 (-29 *5) (-1220) (-974))) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-1285 *6))) (-5 *1 (-813 *5 *6)))) (-3520 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-700 *7)) (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974))) (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-2 (|:| |particular| (-1285 *7)) (|:| -2098 (-655 (-1285 *7))))) (-5 *1 (-813 *6 *7)) (-5 *4 (-1285 *7)))))
-(-10 -7 (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-700 |#2|) (-1285 |#2|) (-1194))) (-15 -3520 ((-3 (-655 (-1285 |#2|)) "failed") (-700 |#2|) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-655 (-303 |#2|)) (-655 (-115)) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#2|)) (|:| -2098 (-655 (-1285 |#2|)))) "failed") (-655 |#2|) (-655 (-115)) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#2| "failed") (-303 |#2|) (-115) (-1194))) (-15 -3520 ((-3 (-2 (|:| |particular| |#2|) (|:| -2098 (-655 |#2|))) |#2| "failed") |#2| (-115) (-1194))) (-15 -3520 ((-3 |#2| "failed") (-303 |#2|) (-115) (-303 |#2|) (-655 |#2|))) (-15 -3520 ((-3 |#2| "failed") |#2| (-115) (-303 |#2|) (-655 |#2|))))
-((-2021 (($) 9)) (-1646 (((-3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-1995 (((-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-4218 (($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))) 24)) (-2983 (($ (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) 22)) (-2229 (((-1290)) 11)))
-(((-814) (-10 -8 (-15 -2021 ($)) (-15 -2229 ((-1290))) (-15 -1995 ((-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2983 ($ (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))))) (-15 -4218 ($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) (-15 -1646 ((-3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -814))
-((-1646 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))) (-5 *1 (-814)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))) (-5 *1 (-814)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) (-5 *1 (-814)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-814)))) (-2229 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-814)))) (-2021 (*1 *1) (-5 *1 (-814))))
-(-10 -8 (-15 -2021 ($)) (-15 -2229 ((-1290))) (-15 -1995 ((-655 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2983 ($ (-655 (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389)))))))) (-15 -4218 ($ (-2 (|:| -4169 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3179 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))))))) (-15 -1646 ((-3 (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389)) (|:| |expense| (-389)) (|:| |accuracy| (-389)) (|:| |intermediateResults| (-389))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
-((-2514 ((|#2| |#2| (-1194)) 17)) (-1738 ((|#2| |#2| (-1194)) 56)) (-3902 (((-1 |#2| |#2|) (-1194)) 11)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -2514 (|#2| |#2| (-1194))) (-15 -1738 (|#2| |#2| (-1194))) (-15 -3902 ((-1 |#2| |#2|) (-1194)))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)) (-13 (-29 |#1|) (-1220) (-974))) (T -815))
-((-3902 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-815 *4 *5)) (-4 *5 (-13 (-29 *4) (-1220) (-974))))) (-1738 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974))))) (-2514 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974))))))
-(-10 -7 (-15 -2514 (|#2| |#2| (-1194))) (-15 -1738 (|#2| |#2| (-1194))) (-15 -3902 ((-1 |#2| |#2|) (-1194))))
-((-3520 (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389) (-389)) 128) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389)) 129) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-655 (-389)) (-389)) 131) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-389)) 133) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-389)) 134) (((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389))) 136) (((-1052) (-819) (-1080)) 120) (((-1052) (-819)) 121)) (-2655 (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819) (-1080)) 80) (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819)) 82)))
-(((-816) (-10 -7 (-15 -3520 ((-1052) (-819))) (-15 -3520 ((-1052) (-819) (-1080))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-655 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389) (-389))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819) (-1080))))) (T -816))
-((-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-816)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389))) (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-816)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1052)) (-5 *1 (-816)))))
-(-10 -7 (-15 -3520 ((-1052) (-819))) (-15 -3520 ((-1052) (-819) (-1080))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-655 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389))) (-15 -3520 ((-1052) (-1285 (-325 (-389))) (-389) (-389) (-655 (-389)) (-325 (-389)) (-655 (-389)) (-389) (-389))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-819) (-1080))))
-((-2798 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2098 (-655 |#4|))) (-664 |#4|) |#4|) 33)))
-(((-817 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2798 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2098 (-655 |#4|))) (-664 |#4|) |#4|))) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|)) (T -817))
-((-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-664 *4)) (-4 *4 (-352 *5 *6 *7)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-817 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2798 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2098 (-655 |#4|))) (-664 |#4|) |#4|)))
-((-1657 (((-2 (|:| -2566 |#3|) (|:| |rh| (-655 (-418 |#2|)))) |#4| (-655 (-418 |#2|))) 53)) (-2958 (((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#4| |#2|) 62) (((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#4|) 61) (((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#3| |#2|) 20) (((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#3|) 21)) (-3129 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2268 ((|#2| |#3| (-655 (-418 |#2|))) 109) (((-3 |#2| "failed") |#3| (-418 |#2|)) 105)))
-(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2268 ((-3 |#2| "failed") |#3| (-418 |#2|))) (-15 -2268 (|#2| |#3| (-655 (-418 |#2|)))) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#3|)) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#3| |#2|)) (-15 -3129 (|#2| |#3| |#1|)) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#4|)) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#4| |#2|)) (-15 -3129 (|#2| |#4| |#1|)) (-15 -1657 ((-2 (|:| -2566 |#3|) (|:| |rh| (-655 (-418 |#2|)))) |#4| (-655 (-418 |#2|))))) (-13 (-373) (-148) (-1055 (-418 (-575)))) (-1261 |#1|) (-667 |#2|) (-667 (-418 |#2|))) (T -818))
-((-1657 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-2 (|:| -2566 *7) (|:| |rh| (-655 (-418 *6))))) (-5 *1 (-818 *5 *6 *7 *3)) (-5 *4 (-655 (-418 *6))) (-4 *7 (-667 *6)) (-4 *3 (-667 (-418 *6))))) (-3129 (*1 *2 *3 *4) (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *5 *3)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-667 *2)) (-4 *3 (-667 (-418 *2))))) (-2958 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2674 *4)))) (-5 *1 (-818 *5 *4 *6 *3)) (-4 *6 (-667 *4)) (-4 *3 (-667 (-418 *4))))) (-2958 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2674 *5)))) (-5 *1 (-818 *4 *5 *6 *3)) (-4 *6 (-667 *5)) (-4 *3 (-667 (-418 *5))))) (-3129 (*1 *2 *3 *4) (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *3 *5)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *5 (-667 (-418 *2))))) (-2958 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2674 *4)))) (-5 *1 (-818 *5 *4 *3 *6)) (-4 *3 (-667 *4)) (-4 *6 (-667 (-418 *4))))) (-2958 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2674 *5)))) (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-667 (-418 *5))))) (-2268 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-418 *2))) (-4 *2 (-1261 *5)) (-5 *1 (-818 *5 *2 *3 *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *6 (-667 (-418 *2))))) (-2268 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-418 *2)) (-4 *2 (-1261 *5)) (-5 *1 (-818 *5 *2 *3 *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *6 (-667 *4)))))
-(-10 -7 (-15 -2268 ((-3 |#2| "failed") |#3| (-418 |#2|))) (-15 -2268 (|#2| |#3| (-655 (-418 |#2|)))) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#3|)) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#3| |#2|)) (-15 -3129 (|#2| |#3| |#1|)) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#4|)) (-15 -2958 ((-655 (-2 (|:| -1751 |#2|) (|:| -2674 |#2|))) |#4| |#2|)) (-15 -3129 (|#2| |#4| |#1|)) (-15 -1657 ((-2 (|:| -2566 |#3|) (|:| |rh| (-655 (-418 |#2|)))) |#4| (-655 (-418 |#2|)))))
-((-2859 (((-112) $ $) NIL)) (-4400 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-819) (-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4400 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -819))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-819)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-819)))))
-(-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4400 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
-((-3098 (((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2566 |#3|))) |#3| (-1 (-655 |#2|) |#2| (-1190 |#2|)) (-1 (-429 |#2|) |#2|)) 154)) (-2093 (((-655 (-2 (|:| |poly| |#2|) (|:| -2566 |#3|))) |#3| (-1 (-655 |#1|) |#2|)) 52)) (-2935 (((-655 (-2 (|:| |deg| (-782)) (|:| -2566 |#2|))) |#3|) 122)) (-3424 ((|#2| |#3|) 42)) (-3109 (((-655 (-2 (|:| -3736 |#1|) (|:| -2566 |#3|))) |#3| (-1 (-655 |#1|) |#2|)) 99)) (-2072 ((|#3| |#3| (-418 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
-(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3424 (|#2| |#3|)) (-15 -2935 ((-655 (-2 (|:| |deg| (-782)) (|:| -2566 |#2|))) |#3|)) (-15 -3109 ((-655 (-2 (|:| -3736 |#1|) (|:| -2566 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -2093 ((-655 (-2 (|:| |poly| |#2|) (|:| -2566 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -3098 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2566 |#3|))) |#3| (-1 (-655 |#2|) |#2| (-1190 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -2072 (|#3| |#3| |#2|)) (-15 -2072 (|#3| |#3| (-418 |#2|)))) (-13 (-373) (-148) (-1055 (-418 (-575)))) (-1261 |#1|) (-667 |#2|) (-667 (-418 |#2|))) (T -820))
-((-2072 (*1 *2 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *1 (-820 *4 *5 *2 *6)) (-4 *2 (-667 *5)) (-4 *6 (-667 *3)))) (-2072 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-1261 *4)) (-5 *1 (-820 *4 *3 *2 *5)) (-4 *2 (-667 *3)) (-4 *5 (-667 (-418 *3))))) (-3098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-655 *7) *7 (-1190 *7))) (-5 *5 (-1 (-429 *7) *7)) (-4 *7 (-1261 *6)) (-4 *6 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-5 *2 (-655 (-2 (|:| |frac| (-418 *7)) (|:| -2566 *3)))) (-5 *1 (-820 *6 *7 *3 *8)) (-4 *3 (-667 *7)) (-4 *8 (-667 (-418 *7))))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2566 *3)))) (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6)) (-4 *7 (-667 (-418 *6))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -3736 *5) (|:| -2566 *3)))) (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6)) (-4 *7 (-667 (-418 *6))))) (-2935 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -2566 *5)))) (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-667 (-418 *5))))) (-3424 (*1 *2 *3) (-12 (-4 *2 (-1261 *4)) (-5 *1 (-820 *4 *2 *3 *5)) (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2)) (-4 *5 (-667 (-418 *2))))))
-(-10 -7 (-15 -3424 (|#2| |#3|)) (-15 -2935 ((-655 (-2 (|:| |deg| (-782)) (|:| -2566 |#2|))) |#3|)) (-15 -3109 ((-655 (-2 (|:| -3736 |#1|) (|:| -2566 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -2093 ((-655 (-2 (|:| |poly| |#2|) (|:| -2566 |#3|))) |#3| (-1 (-655 |#1|) |#2|))) (-15 -3098 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2566 |#3|))) |#3| (-1 (-655 |#2|) |#2| (-1190 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -2072 (|#3| |#3| |#2|)) (-15 -2072 (|#3| |#3| (-418 |#2|))))
-((-3687 (((-2 (|:| -2098 (-655 (-418 |#2|))) (|:| -3415 (-700 |#1|))) (-665 |#2| (-418 |#2|)) (-655 (-418 |#2|))) 147) (((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -2098 (-655 (-418 |#2|)))) (-665 |#2| (-418 |#2|)) (-418 |#2|)) 146) (((-2 (|:| -2098 (-655 (-418 |#2|))) (|:| -3415 (-700 |#1|))) (-664 (-418 |#2|)) (-655 (-418 |#2|))) 141) (((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -2098 (-655 (-418 |#2|)))) (-664 (-418 |#2|)) (-418 |#2|)) 139)) (-1765 ((|#2| (-665 |#2| (-418 |#2|))) 88) ((|#2| (-664 (-418 |#2|))) 91)))
-(((-821 |#1| |#2|) (-10 -7 (-15 -3687 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -2098 (-655 (-418 |#2|)))) (-664 (-418 |#2|)) (-418 |#2|))) (-15 -3687 ((-2 (|:| -2098 (-655 (-418 |#2|))) (|:| -3415 (-700 |#1|))) (-664 (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -3687 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -2098 (-655 (-418 |#2|)))) (-665 |#2| (-418 |#2|)) (-418 |#2|))) (-15 -3687 ((-2 (|:| -2098 (-655 (-418 |#2|))) (|:| -3415 (-700 |#1|))) (-665 |#2| (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -1765 (|#2| (-664 (-418 |#2|)))) (-15 -1765 (|#2| (-665 |#2| (-418 |#2|))))) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -821))
-((-1765 (*1 *2 *3) (-12 (-5 *3 (-665 *2 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-821 *4 *2)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-664 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-821 *4 *2)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| -2098 (-655 (-418 *6))) (|:| -3415 (-700 *5)))) (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6))))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-821 *5 *6)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| -2098 (-655 (-418 *6))) (|:| -3415 (-700 *5)))) (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6))))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-821 *5 *6)))))
-(-10 -7 (-15 -3687 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -2098 (-655 (-418 |#2|)))) (-664 (-418 |#2|)) (-418 |#2|))) (-15 -3687 ((-2 (|:| -2098 (-655 (-418 |#2|))) (|:| -3415 (-700 |#1|))) (-664 (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -3687 ((-2 (|:| |particular| (-3 (-418 |#2|) "failed")) (|:| -2098 (-655 (-418 |#2|)))) (-665 |#2| (-418 |#2|)) (-418 |#2|))) (-15 -3687 ((-2 (|:| -2098 (-655 (-418 |#2|))) (|:| -3415 (-700 |#1|))) (-665 |#2| (-418 |#2|)) (-655 (-418 |#2|)))) (-15 -1765 (|#2| (-664 (-418 |#2|)))) (-15 -1765 (|#2| (-665 |#2| (-418 |#2|)))))
-((-1945 (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) |#5| |#4|) 49)))
-(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1945 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) |#5| |#4|))) (-373) (-667 |#1|) (-1261 |#1|) (-735 |#1| |#3|) (-667 |#4|)) (T -822))
-((-1945 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *7 (-1261 *5)) (-4 *4 (-735 *5 *7)) (-5 *2 (-2 (|:| -3415 (-700 *6)) (|:| |vec| (-1285 *5)))) (-5 *1 (-822 *5 *6 *7 *4 *3)) (-4 *6 (-667 *5)) (-4 *3 (-667 *4)))))
-(-10 -7 (-15 -1945 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) |#5| |#4|)))
-((-3098 (((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2566 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)) 47)) (-3761 (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|))) 164 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-429 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-664 (-418 |#2|))) 166 (|has| |#1| (-27))) (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|)) 38) (((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 39) (((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|)) 36) (((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 37)) (-2093 (((-655 (-2 (|:| |poly| |#2|) (|:| -2566 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|)) 96)))
-(((-823 |#1| |#2|) (-10 -7 (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3098 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2566 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -2093 ((-655 (-2 (|:| |poly| |#2|) (|:| -2566 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)))) (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)))) |%noBranch|)) (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))) (-1261 |#1|)) (T -823))
-((-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-665 *5 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-664 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5)))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2566 (-665 *6 (-418 *6)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6))))) (-3098 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-5 *2 (-655 (-2 (|:| |frac| (-418 *6)) (|:| -2566 (-665 *6 (-418 *6)))))) (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6))))) (-3761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *7 (-418 *7))) (-5 *4 (-1 (-655 *6) *7)) (-5 *5 (-1 (-429 *7) *7)) (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))) (-3761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-664 (-418 *7))) (-5 *4 (-1 (-655 *6) *7)) (-5 *5 (-1 (-429 *7) *7)) (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-655 *5) *6)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))))
-(-10 -7 (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|) (-1 (-429 |#2|) |#2|))) (-15 -3098 ((-655 (-2 (|:| |frac| (-418 |#2|)) (|:| -2566 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -2093 ((-655 (-2 (|:| |poly| |#2|) (|:| -2566 (-665 |#2| (-418 |#2|))))) (-665 |#2| (-418 |#2|)) (-1 (-655 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)))) (-15 -3761 ((-655 (-418 |#2|)) (-664 (-418 |#2|)) (-1 (-429 |#2|) |#2|))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)))) (-15 -3761 ((-655 (-418 |#2|)) (-665 |#2| (-418 |#2|)) (-1 (-429 |#2|) |#2|)))) |%noBranch|))
-((-2361 (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) (-700 |#2|) (-1285 |#1|)) 110) (((-2 (|:| A (-700 |#1|)) (|:| |eqs| (-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)) (|:| -2566 |#2|) (|:| |rh| |#1|))))) (-700 |#1|) (-1285 |#1|)) 15)) (-2843 (((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-700 |#2|) (-1285 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2098 (-655 |#1|))) |#2| |#1|)) 116)) (-3520 (((-3 (-2 (|:| |particular| (-1285 |#1|)) (|:| -2098 (-700 |#1|))) "failed") (-700 |#1|) (-1285 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed") |#2| |#1|)) 54)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -2361 ((-2 (|:| A (-700 |#1|)) (|:| |eqs| (-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)) (|:| -2566 |#2|) (|:| |rh| |#1|))))) (-700 |#1|) (-1285 |#1|))) (-15 -2361 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) (-700 |#2|) (-1285 |#1|))) (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#1|)) (|:| -2098 (-700 |#1|))) "failed") (-700 |#1|) (-1285 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed") |#2| |#1|))) (-15 -2843 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-700 |#2|) (-1285 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2098 (-655 |#1|))) |#2| |#1|)))) (-373) (-667 |#1|)) (T -824))
-((-2843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2098 (-655 *6))) *7 *6)) (-4 *6 (-373)) (-4 *7 (-667 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1285 *6) "failed")) (|:| -2098 (-655 (-1285 *6))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1285 *6)))) (-3520 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2098 (-655 *6))) "failed") *7 *6)) (-4 *6 (-373)) (-4 *7 (-667 *6)) (-5 *2 (-2 (|:| |particular| (-1285 *6)) (|:| -2098 (-700 *6)))) (-5 *1 (-824 *6 *7)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *6)))) (-2361 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-4 *6 (-667 *5)) (-5 *2 (-2 (|:| -3415 (-700 *6)) (|:| |vec| (-1285 *5)))) (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *5)))) (-2361 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-5 *2 (-2 (|:| A (-700 *5)) (|:| |eqs| (-655 (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5)) (|:| -2566 *6) (|:| |rh| *5)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *6 (-667 *5)))))
-(-10 -7 (-15 -2361 ((-2 (|:| A (-700 |#1|)) (|:| |eqs| (-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)) (|:| -2566 |#2|) (|:| |rh| |#1|))))) (-700 |#1|) (-1285 |#1|))) (-15 -2361 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#1|))) (-700 |#2|) (-1285 |#1|))) (-15 -3520 ((-3 (-2 (|:| |particular| (-1285 |#1|)) (|:| -2098 (-700 |#1|))) "failed") (-700 |#1|) (-1285 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2098 (-655 |#1|))) "failed") |#2| |#1|))) (-15 -2843 ((-2 (|:| |particular| (-3 (-1285 |#1|) "failed")) (|:| -2098 (-655 (-1285 |#1|)))) (-700 |#2|) (-1285 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2098 (-655 |#1|))) |#2| |#1|))))
-((-2392 (((-700 |#1|) (-655 |#1|) (-782)) 14) (((-700 |#1|) (-655 |#1|)) 15)) (-2269 (((-3 (-1285 |#1|) "failed") |#2| |#1| (-655 |#1|)) 39)) (-2883 (((-3 |#1| "failed") |#2| |#1| (-655 |#1|) (-1 |#1| |#1|)) 46)))
-(((-825 |#1| |#2|) (-10 -7 (-15 -2392 ((-700 |#1|) (-655 |#1|))) (-15 -2392 ((-700 |#1|) (-655 |#1|) (-782))) (-15 -2269 ((-3 (-1285 |#1|) "failed") |#2| |#1| (-655 |#1|))) (-15 -2883 ((-3 |#1| "failed") |#2| |#1| (-655 |#1|) (-1 |#1| |#1|)))) (-373) (-667 |#1|)) (T -825))
-((-2883 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-655 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-373)) (-5 *1 (-825 *2 *3)) (-4 *3 (-667 *2)))) (-2269 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-1285 *4)) (-5 *1 (-825 *4 *3)) (-4 *3 (-667 *4)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-373)) (-5 *2 (-700 *5)) (-5 *1 (-825 *5 *6)) (-4 *6 (-667 *5)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-700 *4)) (-5 *1 (-825 *4 *5)) (-4 *5 (-667 *4)))))
-(-10 -7 (-15 -2392 ((-700 |#1|) (-655 |#1|))) (-15 -2392 ((-700 |#1|) (-655 |#1|) (-782))) (-15 -2269 ((-3 (-1285 |#1|) "failed") |#2| |#1| (-655 |#1|))) (-15 -2883 ((-3 |#1| "failed") |#2| |#1| (-655 |#1|) (-1 |#1| |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-2045 (((-112) $) NIL (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))))) (-4126 (($ (-936)) NIL (|has| |#2| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3081 (($ $ $) NIL (|has| |#2| (-804)))) (-1708 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#2| (-378)))) (-3052 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1117)))) (-4400 (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) ((|#2| $) NIL (|has| |#2| (-1117)))) (-2862 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#2| (-1066)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-700 $)) NIL (|has| |#2| (-1066))) (((-700 |#2|) (-1285 $)) NIL (|has| |#2| (-1066)))) (-4162 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-2073 (($) NIL (|has| |#2| (-378)))) (-2857 ((|#2| $ (-575) |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ (-575)) NIL)) (-3999 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL (|has| |#2| (-1066)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#2| (-861)))) (-4252 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#2| (-861)))) (-2844 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#2| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#2| (-1117)))) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#2| (-378)))) (-3912 (((-1137) $) NIL (|has| |#2| (-1117)))) (-1955 ((|#2| $) NIL (|has| (-575) (-861)))) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ (-575) |#2|) NIL) ((|#2| $ (-575)) NIL)) (-2988 ((|#2| $ $) NIL (|has| |#2| (-1066)))) (-1975 (($ (-1285 |#2|)) NIL)) (-1605 (((-135)) NIL (|has| |#2| (-373)))) (-2382 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3922 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1285 |#2|) $) NIL) (($ (-575)) NIL (-3763 (-12 (|has| |#2| (-1055 (-575))) (|has| |#2| (-1117))) (|has| |#2| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#2| (-1055 (-418 (-575)))) (|has| |#2| (-1117)))) (($ |#2|) NIL (|has| |#2| (-1117))) (((-873) $) NIL (|has| |#2| (-624 (-873))))) (-4421 (((-782)) NIL (|has| |#2| (-1066)) CONST)) (-3685 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-4121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-1989 (($) NIL (-3763 (|has| |#2| (-23)) (|has| |#2| (-737))) CONST)) (-2005 (($) NIL (|has| |#2| (-1066)) CONST)) (-3428 (($ $ (-782)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#2| (-915 (-1194))) (|has| |#2| (-1066)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1066))) (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#2| (-1066)))) (-3980 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#2| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3940 (((-112) $ $) 11 (|has| |#2| (-861)))) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4015 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-782)) NIL (|has| |#2| (-1066))) (($ $ (-936)) NIL (|has| |#2| (-1066)))) (* (($ $ $) NIL (|has| |#2| (-1066))) (($ $ |#2|) NIL (|has| |#2| (-737))) (($ |#2| $) NIL (|has| |#2| (-737))) (($ (-575) $) NIL (|has| |#2| (-21))) (($ (-782) $) NIL (|has| |#2| (-23))) (($ (-936) $) NIL (|has| |#2| (-25)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-826 |#1| |#2| |#3|) (-243 |#1| |#2|) (-782) (-804) (-1 (-112) (-1285 |#2|) (-1285 |#2|))) (T -826))
+(-13 (-862) (-25))
+(((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 25)) (-3161 (((-3 $ "failed") $ $) 27)) (-2574 (($) 24 T CONST)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 23 T CONST)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-3990 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26)))
+(((-807) (-141)) (T -807))
+NIL
+(-13 (-804) (-132))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-862) . T) ((-1119) . T))
+((-3203 (((-112) $) 42)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4397 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-3660 (((-3 (-419 (-576)) "failed") $) 78)) (-1946 (((-112) $) 72)) (-3269 (((-419 (-576)) $) 76)) (-3075 ((|#2| $) 26)) (-2548 (($ (-1 |#2| |#2|) $) 23)) (-4324 (($ $) 58)) (-2610 (((-548) $) 67)) (-2480 (($ $) 21)) (-2858 (((-874) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-2981 (((-783)) 10)) (-3680 ((|#2| $) 71)) (-3889 (((-112) $ $) 30)) (-3916 (((-112) $ $) 69)) (-4002 (($ $) 32) (($ $ $) NIL)) (-3990 (($ $ $) 31)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-808 |#1| |#2|) (-10 -8 (-15 -3916 ((-112) |#1| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -4324 (|#1| |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3680 (|#2| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3203 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808))
+((-2981 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4)))))
+(-10 -8 (-15 -3916 ((-112) |#1| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -4324 (|#1| |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3680 (|#2| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3203 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2422 (((-783)) 58 (|has| |#1| (-379)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 94)) (-4397 (((-576) $) 99 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 96 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 95)) (-4011 (((-3 $ "failed") $) 37)) (-2490 ((|#1| $) 84)) (-3660 (((-3 (-419 (-576)) "failed") $) 71 (|has| |#1| (-557)))) (-1946 (((-112) $) 73 (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) 72 (|has| |#1| (-557)))) (-2107 (($) 61 (|has| |#1| (-379)))) (-1838 (((-112) $) 35)) (-2840 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3075 ((|#1| $) 76)) (-1950 (($ $ $) 67 (|has| |#1| (-862)))) (-1492 (($ $ $) 66 (|has| |#1| (-862)))) (-2548 (($ (-1 |#1| |#1|) $) 86)) (-1654 (((-938) $) 60 (|has| |#1| (-379)))) (-2143 (((-1178) $) 10)) (-4324 (($ $) 70 (|has| |#1| (-374)))) (-4308 (($ (-938)) 59 (|has| |#1| (-379)))) (-3655 ((|#1| $) 81)) (-2052 ((|#1| $) 82)) (-4390 ((|#1| $) 83)) (-2925 ((|#1| $) 77)) (-2117 ((|#1| $) 78)) (-2776 ((|#1| $) 79)) (-2737 ((|#1| $) 80)) (-3887 (((-1139) $) 11)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) 92 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 89 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 88 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 87 (|has| |#1| (-526 (-1196) |#1|)))) (-2099 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|)))) (-2610 (((-548) $) 68 (|has| |#1| (-626 (-548))))) (-2480 (($ $) 85)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (|has| |#1| (-1057 (-419 (-576)))))) (-3689 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3680 ((|#1| $) 74 (|has| |#1| (-1079)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 64 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 63 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 65 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 62 (|has| |#1| (-862)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-809 |#1|) (-141) (-174)) (T -809))
+((-2480 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2840 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3660 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-4324 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374)))))
+(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -2480 ($ $)) (-15 -2490 (|t#1| $)) (-15 -4390 (|t#1| $)) (-15 -2052 (|t#1| $)) (-15 -3655 (|t#1| $)) (-15 -2737 (|t#1| $)) (-15 -2776 (|t#1| $)) (-15 -2117 (|t#1| $)) (-15 -2925 (|t#1| $)) (-15 -3075 (|t#1| $)) (-15 -2840 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3680 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4324 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) |has| |#1| (-296 |#1| |#1|)))
+((-2548 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5)))))
+(-10 -7 (-15 -2548 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-1018 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-3739 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-3739 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-4397 ((|#1| $) NIL) (((-1018 |#1|) $) 33) (((-576) $) NIL (-3739 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576))))) (((-419 (-576)) $) NIL (-3739 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-4011 (((-3 $ "failed") $) NIL)) (-2490 ((|#1| $) 16)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-1946 (((-112) $) NIL (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-2107 (($) NIL (|has| |#1| (-379)))) (-1838 (((-112) $) NIL)) (-2840 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1018 |#1|) (-1018 |#1|)) 29)) (-3075 ((|#1| $) NIL)) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-3655 ((|#1| $) 22)) (-2052 ((|#1| $) 20)) (-4390 ((|#1| $) 18)) (-2925 ((|#1| $) 26)) (-2117 ((|#1| $) 25)) (-2776 ((|#1| $) 24)) (-2737 ((|#1| $) 23)) (-3887 (((-1139) $) NIL)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-2099 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2480 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1018 |#1|)) 30) (($ (-419 (-576))) NIL (-3739 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3680 ((|#1| $) NIL (|has| |#1| (-1079)))) (-2022 (($) 8 T CONST)) (-2038 (($) 12 T CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1018 |#1|)) (-10 -8 (-15 -2840 ($ (-1018 |#1|) (-1018 |#1|))))) (-174)) (T -811))
+((-2840 (*1 *1 *2 *2) (-12 (-5 *2 (-1018 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3)))))
+(-13 (-809 |#1|) (-423 (-1018 |#1|)) (-10 -8 (-15 -2840 ($ (-1018 |#1|) (-1018 |#1|)))))
+((-2835 (((-112) $ $) 7)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3257 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3889 (((-112) $ $) 6)))
+(((-812) (-141)) (T -812))
+((-2605 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)))))) (-3257 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1054)))))
+(-13 (-1119) (-10 -7 (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3257 ((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2588 (((-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#3| |#2| (-1196)) 19)))
+(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2588 ((-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#3| |#2| (-1196)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976)) (-668 |#2|)) (T -813))
+((-2588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1222) (-976))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4261 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4)))))
+(-10 -7 (-15 -2588 ((-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#3| |#2| (-1196))))
+((-2783 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196)) 18) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196)) 24) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196)) 26) (((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196)) 37) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196)) 35)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196))) (-15 -2783 ((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196))) (-15 -2783 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2783 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976))) (T -814))
+((-2783 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-2783 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))))) (-2783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4261 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-976))))) (-2783 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4261 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-2783 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -4261 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)))) (-2783 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -4261 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1196)) (-4 *6 (-13 (-29 *5) (-1222) (-976))) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1287 *6))) (-5 *1 (-814 *5 *6)))) (-2783 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -4261 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1287 *7)))))
+(-10 -7 (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196))) (-15 -2783 ((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -4261 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196))) (-15 -2783 ((-3 (-2 (|:| |particular| |#2|) (|:| -4261 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196))) (-15 -2783 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2783 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|))))
+((-3825 (($) 9)) (-3564 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2029 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2329 (($ (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-1646 (($ (-656 (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3787 (((-1292)) 11)))
+(((-815) (-10 -8 (-15 -3825 ($)) (-15 -3787 ((-1292))) (-15 -2029 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1646 ($ (-656 (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2329 ($ (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3564 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815))
+((-3564 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-1646 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-3787 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-815)))) (-3825 (*1 *1) (-5 *1 (-815))))
+(-10 -8 (-15 -3825 ($)) (-15 -3787 ((-1292))) (-15 -2029 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1646 ($ (-656 (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2329 ($ (-2 (|:| -4147 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -3153 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3564 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))
+((-2522 ((|#2| |#2| (-1196)) 17)) (-2536 ((|#2| |#2| (-1196)) 56)) (-1957 (((-1 |#2| |#2|) (-1196)) 11)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -2522 (|#2| |#2| (-1196))) (-15 -2536 (|#2| |#2| (-1196))) (-15 -1957 ((-1 |#2| |#2|) (-1196)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976))) (T -816))
+((-1957 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1222) (-976))))) (-2536 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976))))) (-2522 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976))))))
+(-10 -7 (-15 -2522 (|#2| |#2| (-1196))) (-15 -2536 (|#2| |#2| (-1196))) (-15 -1957 ((-1 |#2| |#2|) (-1196))))
+((-2783 (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1054) (-820) (-1082)) 120) (((-1054) (-820)) 121)) (-2605 (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1082)) 80) (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820)) 82)))
+(((-817) (-10 -7 (-15 -2783 ((-1054) (-820))) (-15 -2783 ((-1054) (-820) (-1082))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1082))))) (T -817))
+((-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-817)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1054)) (-5 *1 (-817)))))
+(-10 -7 (-15 -2783 ((-1054) (-820))) (-15 -2783 ((-1054) (-820) (-1082))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2783 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1082))))
+((-3688 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4261 (-656 |#4|))) (-665 |#4|) |#4|) 33)))
+(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4261 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818))
+((-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3688 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4261 (-656 |#4|))) (-665 |#4|) |#4|)))
+((-3363 (((-2 (|:| -2568 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-2977 (((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#4|) 61) (((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#3|) 21)) (-2487 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3371 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105)))
+(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3371 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3371 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#3|)) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#3| |#2|)) (-15 -2487 (|#2| |#3| |#1|)) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#4|)) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#4| |#2|)) (-15 -2487 (|#2| |#4| |#1|)) (-15 -3363 ((-2 (|:| -2568 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-419 (-576)))) (-1263 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819))
+((-3363 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -2568 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-2487 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-2977 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -1785 *4) (|:| -2666 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-2977 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -1785 *5) (|:| -2666 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-2487 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-2977 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -1785 *4) (|:| -2666 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-2977 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -1785 *5) (|:| -2666 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-3371 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))))
+(-10 -7 (-15 -3371 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3371 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#3|)) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#3| |#2|)) (-15 -2487 (|#2| |#3| |#1|)) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#4|)) (-15 -2977 ((-656 (-2 (|:| -1785 |#2|) (|:| -2666 |#2|))) |#4| |#2|)) (-15 -2487 (|#2| |#4| |#1|)) (-15 -3363 ((-2 (|:| -2568 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|)))))
+((-2835 (((-112) $ $) NIL)) (-4397 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-820) (-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4397 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))))
+(-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4397 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))
+((-3117 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2568 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-1920 (((-656 (-2 (|:| |poly| |#2|) (|:| -2568 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-3408 (((-656 (-2 (|:| |deg| (-783)) (|:| -2568 |#2|))) |#3|) 122)) (-2638 ((|#2| |#3|) 42)) (-2890 (((-656 (-2 (|:| -3712 |#1|) (|:| -2568 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-3666 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96)))
+(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2638 (|#2| |#3|)) (-15 -3408 ((-656 (-2 (|:| |deg| (-783)) (|:| -2568 |#2|))) |#3|)) (-15 -2890 ((-656 (-2 (|:| -3712 |#1|) (|:| -2568 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1920 ((-656 (-2 (|:| |poly| |#2|) (|:| -2568 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3117 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2568 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3666 (|#3| |#3| |#2|)) (-15 -3666 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1057 (-419 (-576)))) (-1263 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821))
+((-3666 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-3666 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-1263 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-3117 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1192 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -2568 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2568 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2890 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -3712 *5) (|:| -2568 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-3408 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2568 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-2638 (*1 *2 *3) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))))
+(-10 -7 (-15 -2638 (|#2| |#3|)) (-15 -3408 ((-656 (-2 (|:| |deg| (-783)) (|:| -2568 |#2|))) |#3|)) (-15 -2890 ((-656 (-2 (|:| -3712 |#1|) (|:| -2568 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1920 ((-656 (-2 (|:| |poly| |#2|) (|:| -2568 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3117 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2568 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3666 (|#3| |#3| |#2|)) (-15 -3666 (|#3| |#3| (-419 |#2|))))
+((-2803 (((-2 (|:| -4261 (-656 (-419 |#2|))) (|:| -3260 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 147) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4261 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 146) (((-2 (|:| -4261 (-656 (-419 |#2|))) (|:| -3260 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 141) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4261 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 139)) (-2993 ((|#2| (-666 |#2| (-419 |#2|))) 88) ((|#2| (-665 (-419 |#2|))) 91)))
+(((-822 |#1| |#2|) (-10 -7 (-15 -2803 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4261 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2803 ((-2 (|:| -4261 (-656 (-419 |#2|))) (|:| -3260 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2803 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4261 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2803 ((-2 (|:| -4261 (-656 (-419 |#2|))) (|:| -3260 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2993 (|#2| (-665 (-419 |#2|)))) (-15 -2993 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -822))
+((-2993 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| -4261 (-656 (-419 *6))) (|:| -3260 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| -4261 (-656 (-419 *6))) (|:| -3260 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-822 *5 *6)))))
+(-10 -7 (-15 -2803 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4261 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2803 ((-2 (|:| -4261 (-656 (-419 |#2|))) (|:| -3260 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2803 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -4261 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2803 ((-2 (|:| -4261 (-656 (-419 |#2|))) (|:| -3260 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2993 (|#2| (-665 (-419 |#2|)))) (-15 -2993 (|#2| (-666 |#2| (-419 |#2|)))))
+((-2221 (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|) 49)))
+(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2221 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1263 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823))
+((-2221 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1263 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -3260 (-701 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4)))))
+(-10 -7 (-15 -2221 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|)))
+((-3117 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2568 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-1495 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-1920 (((-656 (-2 (|:| |poly| |#2|) (|:| -2568 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3117 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2568 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1920 ((-656 (-2 (|:| |poly| |#2|) (|:| -2568 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -824))
+((-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2568 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3117 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -2568 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))))
+(-10 -7 (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3117 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -2568 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1920 ((-656 (-2 (|:| |poly| |#2|) (|:| -2568 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -1495 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -1495 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|))
+((-4150 (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -2568 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|)) 15)) (-3112 (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4261 (-656 |#1|))) |#2| |#1|)) 116)) (-2783 (((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -4261 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed") |#2| |#1|)) 54)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -4150 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -2568 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|))) (-15 -4150 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|))) (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -4261 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -3112 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4261 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825))
+((-3112 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4261 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *6) "failed")) (|:| -4261 (-656 (-1287 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1287 *6)))) (-2783 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4261 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -4261 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *6)))) (-4150 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -3260 (-701 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *5)))) (-4150 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)) (|:| -2568 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *6 (-668 *5)))))
+(-10 -7 (-15 -4150 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -2568 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|))) (-15 -4150 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|))) (-15 -2783 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -4261 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4261 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -3112 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -4261 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4261 (-656 |#1|))) |#2| |#1|))))
+((-2112 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-2284 (((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-2521 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -2112 ((-701 |#1|) (-656 |#1|))) (-15 -2112 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2284 ((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2521 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826))
+((-2521 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-2284 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1287 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))))
+(-10 -7 (-15 -2112 ((-701 |#1|) (-656 |#1|))) (-15 -2112 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2284 ((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2521 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3203 (((-112) $) NIL (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))))) (-2002 (($ (-938)) NIL (|has| |#2| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-1869 (($ $ $) NIL (|has| |#2| (-805)))) (-3161 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#2| (-379)))) (-3028 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1119)))) (-4397 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) NIL (|has| |#2| (-1119)))) (-2085 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1068)))) (-4011 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-2107 (($) NIL (|has| |#2| (-379)))) (-2832 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ (-576)) NIL)) (-3975 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL (|has| |#2| (-1068)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#2| (-862)))) (-3531 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#2| (-862)))) (-2822 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#2| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#2| (-1119)))) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-4308 (($ (-938)) NIL (|has| |#2| (-379)))) (-3887 (((-1139) $) NIL (|has| |#2| (-1119)))) (-1989 ((|#2| $) NIL (|has| (-576) (-862)))) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2139 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-2009 (($ (-1287 |#2|)) NIL)) (-4340 (((-135)) NIL (|has| |#2| (-374)))) (-2399 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3902 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1287 |#2|) $) NIL) (($ (-576)) NIL (-3739 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) NIL (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-2981 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-2690 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2714 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2022 (($) NIL (-3739 (|has| |#2| (-23)) (|has| |#2| (-738))) CONST)) (-2038 (($) NIL (|has| |#2| (-1068)) CONST)) (-3404 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3916 (((-112) $ $) 11 (|has| |#2| (-862)))) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3990 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) NIL (|has| |#2| (-1068))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1287 |#2|) (-1287 |#2|))) (T -827))
NIL
(-243 |#1| |#2|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3552 (((-655 (-782)) $) NIL) (((-655 (-782)) $ (-1194)) NIL)) (-2213 (((-782) $) NIL) (((-782) $ (-1194)) NIL)) (-1606 (((-655 (-829 (-1194))) $) NIL)) (-3462 (((-1190 $) $ (-829 (-1194))) NIL) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-829 (-1194)))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3783 (($ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-829 (-1194)) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL) (((-3 (-1142 |#1| (-1194)) "failed") $) NIL)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-829 (-1194)) $) NIL) (((-1194) $) NIL) (((-1142 |#1| (-1194)) $) NIL)) (-4171 (($ $ $ (-829 (-1194))) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ (-829 (-1194))) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-542 (-829 (-1194))) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-829 (-1194)) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-829 (-1194)) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3369 (((-782) $ (-1194)) NIL) (((-782) $) NIL)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#1|) (-829 (-1194))) NIL) (($ (-1190 $) (-829 (-1194))) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-542 (-829 (-1194)))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-829 (-1194))) NIL)) (-3143 (((-542 (-829 (-1194))) $) NIL) (((-782) $ (-829 (-1194))) NIL) (((-655 (-782)) $ (-655 (-829 (-1194)))) NIL)) (-1946 (($ (-1 (-542 (-829 (-1194))) (-542 (-829 (-1194)))) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-1470 (((-1 $ (-782)) (-1194)) NIL) (((-1 $ (-782)) $) NIL (|has| |#1| (-238)))) (-2187 (((-3 (-829 (-1194)) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2141 (((-829 (-1194)) $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-3187 (((-112) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-829 (-1194))) (|:| -1658 (-782))) "failed") $) NIL)) (-2814 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-829 (-1194)) |#1|) NIL) (($ $ (-655 (-829 (-1194))) (-655 |#1|)) NIL) (($ $ (-829 (-1194)) $) NIL) (($ $ (-655 (-829 (-1194))) (-655 $)) NIL) (($ $ (-1194) $) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 $)) NIL (|has| |#1| (-238))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-238)))) (-2801 (($ $ (-829 (-1194))) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194)))) NIL) (($ $ (-829 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-2425 (((-655 (-1194)) $) NIL)) (-1753 (((-542 (-829 (-1194))) $) NIL) (((-782) $ (-829 (-1194))) NIL) (((-655 (-782)) $ (-655 (-829 (-1194)))) NIL) (((-782) $ (-1194)) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-829 (-1194)) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-829 (-1194)) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-829 (-1194)) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-829 (-1194))) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-829 (-1194))) NIL) (($ (-1194)) NIL) (($ (-1142 |#1| (-1194))) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-542 (-829 (-1194)))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-829 (-1194))) (-655 (-782))) NIL) (($ $ (-829 (-1194)) (-782)) NIL) (($ $ (-655 (-829 (-1194)))) NIL) (($ $ (-829 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-827 |#1|) (-13 (-259 |#1| (-1194) (-829 (-1194)) (-542 (-829 (-1194)))) (-1055 (-1142 |#1| (-1194)))) (-1066)) (T -827))
-NIL
-(-13 (-259 |#1| (-1194) (-829 (-1194)) (-542 (-829 (-1194)))) (-1055 (-1142 |#1| (-1194))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-373)))) (-2456 (($ $) NIL (|has| |#2| (-373)))) (-3978 (((-112) $) NIL (|has| |#2| (-373)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#2| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#2| (-373)))) (-3599 (((-112) $ $) NIL (|has| |#2| (-373)))) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL (|has| |#2| (-373)))) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#2| (-373)))) (-3559 (((-112) $) NIL (|has| |#2| (-373)))) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-3886 (($ (-655 $)) NIL (|has| |#2| (-373))) (($ $ $) NIL (|has| |#2| (-373)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 20 (|has| |#2| (-373)))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#2| (-373))) (($ $ $) NIL (|has| |#2| (-373)))) (-2347 (((-429 $) $) NIL (|has| |#2| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#2| (-373)))) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#2| (-373)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-1720 (((-782) $) NIL (|has| |#2| (-373)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-373)))) (-2382 (($ $) 13) (($ $ (-782)) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-418 (-575))) NIL (|has| |#2| (-373))) (($ $) NIL (|has| |#2| (-373)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#2| (-373)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) 15 (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL) (($ $ (-575)) 18 (|has| |#2| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-418 (-575)) $) NIL (|has| |#2| (-373))) (($ $ (-418 (-575))) NIL (|has| |#2| (-373)))))
-(((-828 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-501 |#2|) (-10 -7 (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|))) (-1117) (-913 |#1|) |#1|) (T -828))
-NIL
-(-13 (-111 $ $) (-238) (-501 |#2|) (-10 -7 (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-2213 (((-782) $) NIL)) (-1441 ((|#1| $) 10)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-3369 (((-782) $) 11)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-1470 (($ |#1| (-782)) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2382 (($ $ (-782)) NIL) (($ $) NIL)) (-2882 (((-873) $) NIL) (($ |#1|) NIL)) (-3685 (((-112) $ $) NIL)) (-3428 (($ $ (-782)) NIL) (($ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-829 |#1|) (-274 |#1|) (-861)) (T -829))
-NIL
-(-274 |#1|)
-((-2859 (((-112) $ $) NIL)) (-3486 (((-655 |#1|) $) 38)) (-2409 (((-782) $) NIL)) (-3261 (($) NIL T CONST)) (-1735 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-1969 (($ $) 42)) (-4162 (((-3 $ "failed") $) NIL)) (-2387 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3900 (((-112) $) NIL)) (-2834 ((|#1| $ (-575)) NIL)) (-1574 (((-782) $ (-575)) NIL)) (-1488 (($ $) 54)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-1335 (($ (-1 |#1| |#1|) $) NIL)) (-2860 (($ (-1 (-782) (-782)) $) NIL)) (-2431 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3085 (((-112) $ $) 51)) (-1840 (((-782) $) 34)) (-4264 (((-1176) $) NIL)) (-2090 (($ $ $) NIL)) (-2022 (($ $ $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 ((|#1| $) 41)) (-1366 (((-655 (-2 (|:| |gen| |#1|) (|:| -2663 (-782)))) $) NIL)) (-4416 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2836 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2882 (((-873) $) NIL) (($ |#1|) NIL)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 20 T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 53)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ |#1| (-782)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-830 |#1|) (-13 (-396 |#1|) (-857) (-10 -8 (-15 -1955 (|#1| $)) (-15 -1969 ($ $)) (-15 -1488 ($ $)) (-15 -3085 ((-112) $ $)) (-15 -2431 ((-3 $ "failed") $ |#1|)) (-15 -1735 ((-3 $ "failed") $ |#1|)) (-15 -2836 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1840 ((-782) $)) (-15 -3486 ((-655 |#1|) $)))) (-861)) (T -830))
-((-1955 (*1 *2 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-1969 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-1488 (*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-3085 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-861)))) (-2431 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-1735 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861)))) (-2836 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-830 *3)) (|:| |rm| (-830 *3)))) (-5 *1 (-830 *3)) (-4 *3 (-861)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-830 *3)) (-4 *3 (-861)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-830 *3)) (-4 *3 (-861)))))
-(-13 (-396 |#1|) (-857) (-10 -8 (-15 -1955 (|#1| $)) (-15 -1969 ($ $)) (-15 -1488 ($ $)) (-15 -3085 ((-112) $ $)) (-15 -2431 ((-3 $ "failed") $ |#1|)) (-15 -1735 ((-3 $ "failed") $ |#1|)) (-15 -2836 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1840 ((-782) $)) (-15 -3486 ((-655 |#1|) $))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-2326 (((-575) $) 59)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-2359 (((-112) $) 57)) (-3900 (((-112) $) 35)) (-1721 (((-112) $) 58)) (-1914 (($ $ $) 56)) (-3503 (($ $ $) 55)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ $) 48)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-3863 (($ $) 60)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 53)) (-3955 (((-112) $ $) 52)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 54)) (-3940 (((-112) $ $) 51)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-831) (-141)) (T -831))
-NIL
-(-13 (-567) (-859))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-1750 (($ (-1137)) 7)) (-2698 (((-112) $ (-1176) (-1137)) 15)) (-3619 (((-833) $) 12)) (-4145 (((-833) $) 11)) (-2589 (((-1290) $) 9)) (-3150 (((-112) $ (-1137)) 16)))
-(((-832) (-10 -8 (-15 -1750 ($ (-1137))) (-15 -2589 ((-1290) $)) (-15 -4145 ((-833) $)) (-15 -3619 ((-833) $)) (-15 -2698 ((-112) $ (-1176) (-1137))) (-15 -3150 ((-112) $ (-1137))))) (T -832))
-((-3150 (*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-112)) (-5 *1 (-832)))) (-2698 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-1137)) (-5 *2 (-112)) (-5 *1 (-832)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-832)))) (-1750 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-832)))))
-(-10 -8 (-15 -1750 ($ (-1137))) (-15 -2589 ((-1290) $)) (-15 -4145 ((-833) $)) (-15 -3619 ((-833) $)) (-15 -2698 ((-112) $ (-1176) (-1137))) (-15 -3150 ((-112) $ (-1137))))
-((-3009 (((-1290) $ (-834)) 12)) (-3587 (((-1290) $ (-1194)) 32)) (-1983 (((-1290) $ (-1176) (-1176)) 34)) (-4153 (((-1290) $ (-1176)) 33)) (-3212 (((-1290) $) 19)) (-3275 (((-1290) $ (-575)) 28)) (-4412 (((-1290) $ (-227)) 30)) (-2282 (((-1290) $) 18)) (-2813 (((-1290) $) 26)) (-2164 (((-1290) $) 25)) (-3487 (((-1290) $) 23)) (-3574 (((-1290) $) 24)) (-1767 (((-1290) $) 22)) (-2384 (((-1290) $) 21)) (-3558 (((-1290) $) 20)) (-4257 (((-1290) $) 16)) (-3712 (((-1290) $) 17)) (-3251 (((-1290) $) 15)) (-1832 (((-1290) $) 14)) (-4293 (((-1290) $) 13)) (-4008 (($ (-1176) (-834)) 9)) (-2354 (($ (-1176) (-1176) (-834)) 8)) (-3495 (((-1194) $) 51)) (-4381 (((-1194) $) 55)) (-3538 (((-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))) $) 54)) (-2385 (((-1176) $) 52)) (-2099 (((-1290) $) 41)) (-4440 (((-575) $) 49)) (-2110 (((-227) $) 50)) (-2152 (((-1290) $) 40)) (-2685 (((-1290) $) 48)) (-3987 (((-1290) $) 47)) (-1705 (((-1290) $) 45)) (-2699 (((-1290) $) 46)) (-2064 (((-1290) $) 44)) (-3697 (((-1290) $) 43)) (-1864 (((-1290) $) 42)) (-2542 (((-1290) $) 38)) (-1482 (((-1290) $) 39)) (-1858 (((-1290) $) 37)) (-3048 (((-1290) $) 36)) (-3630 (((-1290) $) 35)) (-2380 (((-1290) $) 11)))
-(((-833) (-10 -8 (-15 -2354 ($ (-1176) (-1176) (-834))) (-15 -4008 ($ (-1176) (-834))) (-15 -2380 ((-1290) $)) (-15 -3009 ((-1290) $ (-834))) (-15 -4293 ((-1290) $)) (-15 -1832 ((-1290) $)) (-15 -3251 ((-1290) $)) (-15 -4257 ((-1290) $)) (-15 -3712 ((-1290) $)) (-15 -2282 ((-1290) $)) (-15 -3212 ((-1290) $)) (-15 -3558 ((-1290) $)) (-15 -2384 ((-1290) $)) (-15 -1767 ((-1290) $)) (-15 -3487 ((-1290) $)) (-15 -3574 ((-1290) $)) (-15 -2164 ((-1290) $)) (-15 -2813 ((-1290) $)) (-15 -3275 ((-1290) $ (-575))) (-15 -4412 ((-1290) $ (-227))) (-15 -3587 ((-1290) $ (-1194))) (-15 -4153 ((-1290) $ (-1176))) (-15 -1983 ((-1290) $ (-1176) (-1176))) (-15 -3630 ((-1290) $)) (-15 -3048 ((-1290) $)) (-15 -1858 ((-1290) $)) (-15 -2542 ((-1290) $)) (-15 -1482 ((-1290) $)) (-15 -2152 ((-1290) $)) (-15 -2099 ((-1290) $)) (-15 -1864 ((-1290) $)) (-15 -3697 ((-1290) $)) (-15 -2064 ((-1290) $)) (-15 -1705 ((-1290) $)) (-15 -2699 ((-1290) $)) (-15 -3987 ((-1290) $)) (-15 -2685 ((-1290) $)) (-15 -4440 ((-575) $)) (-15 -2110 ((-227) $)) (-15 -3495 ((-1194) $)) (-15 -2385 ((-1176) $)) (-15 -3538 ((-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))) $)) (-15 -4381 ((-1194) $)))) (T -833))
-((-4381 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1176)) (|:| -1777 (-1176)))) (-5 *1 (-833)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-833)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-833)))) (-4440 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-833)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1983 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-3587 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-4412 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-3275 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-4257 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-3009 (*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1290)) (-5 *1 (-833)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))) (-4008 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833)))) (-2354 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833)))))
-(-10 -8 (-15 -2354 ($ (-1176) (-1176) (-834))) (-15 -4008 ($ (-1176) (-834))) (-15 -2380 ((-1290) $)) (-15 -3009 ((-1290) $ (-834))) (-15 -4293 ((-1290) $)) (-15 -1832 ((-1290) $)) (-15 -3251 ((-1290) $)) (-15 -4257 ((-1290) $)) (-15 -3712 ((-1290) $)) (-15 -2282 ((-1290) $)) (-15 -3212 ((-1290) $)) (-15 -3558 ((-1290) $)) (-15 -2384 ((-1290) $)) (-15 -1767 ((-1290) $)) (-15 -3487 ((-1290) $)) (-15 -3574 ((-1290) $)) (-15 -2164 ((-1290) $)) (-15 -2813 ((-1290) $)) (-15 -3275 ((-1290) $ (-575))) (-15 -4412 ((-1290) $ (-227))) (-15 -3587 ((-1290) $ (-1194))) (-15 -4153 ((-1290) $ (-1176))) (-15 -1983 ((-1290) $ (-1176) (-1176))) (-15 -3630 ((-1290) $)) (-15 -3048 ((-1290) $)) (-15 -1858 ((-1290) $)) (-15 -2542 ((-1290) $)) (-15 -1482 ((-1290) $)) (-15 -2152 ((-1290) $)) (-15 -2099 ((-1290) $)) (-15 -1864 ((-1290) $)) (-15 -3697 ((-1290) $)) (-15 -2064 ((-1290) $)) (-15 -1705 ((-1290) $)) (-15 -2699 ((-1290) $)) (-15 -3987 ((-1290) $)) (-15 -2685 ((-1290) $)) (-15 -4440 ((-575) $)) (-15 -2110 ((-227) $)) (-15 -3495 ((-1194) $)) (-15 -2385 ((-1176) $)) (-15 -3538 ((-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))) $)) (-15 -4381 ((-1194) $)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 13)) (-3685 (((-112) $ $) NIL)) (-3714 (($) 16)) (-4368 (($) 14)) (-2220 (($) 17)) (-2817 (($) 15)) (-3913 (((-112) $ $) 9)))
-(((-834) (-13 (-1117) (-10 -8 (-15 -4368 ($)) (-15 -3714 ($)) (-15 -2220 ($)) (-15 -2817 ($))))) (T -834))
-((-4368 (*1 *1) (-5 *1 (-834))) (-3714 (*1 *1) (-5 *1 (-834))) (-2220 (*1 *1) (-5 *1 (-834))) (-2817 (*1 *1) (-5 *1 (-834))))
-(-13 (-1117) (-10 -8 (-15 -4368 ($)) (-15 -3714 ($)) (-15 -2220 ($)) (-15 -2817 ($))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 23) (($ (-1194)) 19)) (-3685 (((-112) $ $) NIL)) (-2749 (((-112) $) 10)) (-3644 (((-112) $) 9)) (-2692 (((-112) $) 11)) (-3954 (((-112) $) 8)) (-3913 (((-112) $ $) 21)))
-(((-835) (-13 (-1117) (-10 -8 (-15 -2882 ($ (-1194))) (-15 -3954 ((-112) $)) (-15 -3644 ((-112) $)) (-15 -2749 ((-112) $)) (-15 -2692 ((-112) $))))) (T -835))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-835)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))))
-(-13 (-1117) (-10 -8 (-15 -2882 ($ (-1194))) (-15 -3954 ((-112) $)) (-15 -3644 ((-112) $)) (-15 -2749 ((-112) $)) (-15 -2692 ((-112) $))))
-((-2859 (((-112) $ $) NIL)) (-3703 (($ (-835) (-655 (-1194))) 32)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4174 (((-835) $) 33)) (-4112 (((-655 (-1194)) $) 34)) (-2882 (((-873) $) 31)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-836) (-13 (-1117) (-10 -8 (-15 -4174 ((-835) $)) (-15 -4112 ((-655 (-1194)) $)) (-15 -3703 ($ (-835) (-655 (-1194))))))) (T -836))
-((-4174 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-836)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-836)))) (-3703 (*1 *1 *2 *3) (-12 (-5 *2 (-835)) (-5 *3 (-655 (-1194))) (-5 *1 (-836)))))
-(-13 (-1117) (-10 -8 (-15 -4174 ((-835) $)) (-15 -4112 ((-655 (-1194)) $)) (-15 -3703 ($ (-835) (-655 (-1194))))))
-((-2225 (((-1290) (-833) (-325 |#1|) (-112)) 23) (((-1290) (-833) (-325 |#1|)) 89) (((-1176) (-325 |#1|) (-112)) 88) (((-1176) (-325 |#1|)) 87)))
-(((-837 |#1|) (-10 -7 (-15 -2225 ((-1176) (-325 |#1|))) (-15 -2225 ((-1176) (-325 |#1|) (-112))) (-15 -2225 ((-1290) (-833) (-325 |#1|))) (-15 -2225 ((-1290) (-833) (-325 |#1|) (-112)))) (-13 (-839) (-1066))) (T -837))
-((-2225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-833)) (-5 *4 (-325 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-839) (-1066))) (-5 *2 (-1290)) (-5 *1 (-837 *6)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-325 *5)) (-4 *5 (-13 (-839) (-1066))) (-5 *2 (-1290)) (-5 *1 (-837 *5)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *3 (-325 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-1066))) (-5 *2 (-1176)) (-5 *1 (-837 *5)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-325 *4)) (-4 *4 (-13 (-839) (-1066))) (-5 *2 (-1176)) (-5 *1 (-837 *4)))))
-(-10 -7 (-15 -2225 ((-1176) (-325 |#1|))) (-15 -2225 ((-1176) (-325 |#1|) (-112))) (-15 -2225 ((-1290) (-833) (-325 |#1|))) (-15 -2225 ((-1290) (-833) (-325 |#1|) (-112))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2775 ((|#1| $) 10)) (-1575 (($ |#1|) 9)) (-3900 (((-112) $) NIL)) (-2414 (($ |#2| (-782)) NIL)) (-3143 (((-782) $) NIL)) (-4383 ((|#2| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2382 (($ $) NIL (|has| |#1| (-238))) (($ $ (-782)) NIL (|has| |#1| (-238)))) (-1753 (((-782) $) NIL)) (-2882 (((-873) $) 17) (($ (-575)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3002 ((|#2| $ (-782)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#1| (-238))) (($ $ (-782)) NIL (|has| |#1| (-238)))) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-838 |#1| |#2|) (-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1575 ($ |#1|)) (-15 -2775 (|#1| $)))) (-719 |#2|) (-1066)) (T -838))
-((-1575 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-838 *2 *3)) (-4 *2 (-719 *3)))) (-2775 (*1 *2 *1) (-12 (-4 *2 (-719 *3)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1066)))))
-(-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1575 ($ |#1|)) (-15 -2775 (|#1| $))))
-((-2225 (((-1290) (-833) $ (-112)) 9) (((-1290) (-833) $) 8) (((-1176) $ (-112)) 7) (((-1176) $) 6)))
-(((-839) (-141)) (T -839))
-((-2225 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *4 (-112)) (-5 *2 (-1290)))) (-2225 (*1 *2 *3 *1) (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *2 (-1290)))) (-2225 (*1 *2 *1 *3) (-12 (-4 *1 (-839)) (-5 *3 (-112)) (-5 *2 (-1176)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-1176)))))
-(-13 (-10 -8 (-15 -2225 ((-1176) $)) (-15 -2225 ((-1176) $ (-112))) (-15 -2225 ((-1290) (-833) $)) (-15 -2225 ((-1290) (-833) $ (-112)))))
-((-3040 (((-321) (-1176) (-1176)) 12)) (-1885 (((-112) (-1176) (-1176)) 34)) (-4413 (((-112) (-1176)) 33)) (-1493 (((-52) (-1176)) 25)) (-2629 (((-52) (-1176)) 23)) (-1394 (((-52) (-833)) 17)) (-3014 (((-655 (-1176)) (-1176)) 28)) (-3201 (((-655 (-1176))) 27)))
-(((-840) (-10 -7 (-15 -1394 ((-52) (-833))) (-15 -2629 ((-52) (-1176))) (-15 -1493 ((-52) (-1176))) (-15 -3201 ((-655 (-1176)))) (-15 -3014 ((-655 (-1176)) (-1176))) (-15 -4413 ((-112) (-1176))) (-15 -1885 ((-112) (-1176) (-1176))) (-15 -3040 ((-321) (-1176) (-1176))))) (T -840))
-((-3040 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-840)))) (-1885 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840)))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840)))) (-3014 (*1 *2 *3) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)) (-5 *3 (-1176)))) (-3201 (*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-840)))))
-(-10 -7 (-15 -1394 ((-52) (-833))) (-15 -2629 ((-52) (-1176))) (-15 -1493 ((-52) (-1176))) (-15 -3201 ((-655 (-1176)))) (-15 -3014 ((-655 (-1176)) (-1176))) (-15 -4413 ((-112) (-1176))) (-15 -1885 ((-112) (-1176) (-1176))) (-15 -3040 ((-321) (-1176) (-1176))))
-((-2859 (((-112) $ $) 19)) (-1644 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2081 (($ $ $) 73)) (-2210 (((-112) $ $) 74)) (-3133 (((-112) $ (-782)) 8)) (-1330 (($ (-655 |#1|)) 69) (($) 68)) (-1932 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-1413 (($ $) 63)) (-4070 (($ $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ |#1| $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) 65)) (-3541 (((-112) $ (-782)) 9)) (-1914 ((|#1| $) 79)) (-3167 (($ $ $) 82)) (-4167 (($ $ $) 81)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3503 ((|#1| $) 80)) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22)) (-1872 (($ $ $) 70)) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41) (($ |#1| $ (-782)) 64)) (-3912 (((-1137) $) 21)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-4203 (((-655 (-2 (|:| -3179 |#1|) (|:| -3922 (-782)))) $) 62)) (-4050 (($ $ |#1|) 72) (($ $ $) 71)) (-3323 (($) 50) (($ (-655 |#1|)) 49)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 51)) (-2882 (((-873) $) 18)) (-2550 (($ (-655 |#1|)) 67) (($) 66)) (-3685 (((-112) $ $) 23)) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20)) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-841 |#1|) (-141) (-861)) (T -841))
-((-1914 (*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-861)))))
-(-13 (-747 |t#1|) (-985 |t#1|) (-10 -8 (-15 -1914 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-240 |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-706 |#1|) . T) ((-747 |#1|) . T) ((-985 |#1|) . T) ((-1115 |#1|) . T) ((-1117) . T) ((-1235) . T))
-((-2076 (((-1290) (-1137) (-1137)) 48)) (-2487 (((-1290) (-832) (-52)) 45)) (-3680 (((-52) (-832)) 16)))
-(((-842) (-10 -7 (-15 -3680 ((-52) (-832))) (-15 -2487 ((-1290) (-832) (-52))) (-15 -2076 ((-1290) (-1137) (-1137))))) (T -842))
-((-2076 (*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1290)) (-5 *1 (-842)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-52)) (-5 *2 (-1290)) (-5 *1 (-842)))) (-3680 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-842)))))
-(-10 -7 (-15 -3680 ((-52) (-832))) (-15 -2487 ((-1290) (-832) (-52))) (-15 -2076 ((-1290) (-1137) (-1137))))
-((-2544 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)) 12) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 13)))
-(((-843 |#1| |#2|) (-10 -7 (-15 -2544 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -2544 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)))) (-1117) (-1117)) (T -843))
-((-2544 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-843 *5 *6)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))))
-(-10 -7 (-15 -2544 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -2544 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL (|has| |#1| (-21)))) (-1708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2326 (((-575) $) NIL (|has| |#1| (-859)))) (-3261 (($) NIL (|has| |#1| (-21)) CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 15)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 9)) (-4162 (((-3 $ "failed") $) 42 (|has| |#1| (-859)))) (-2157 (((-3 (-418 (-575)) "failed") $) 52 (|has| |#1| (-556)))) (-2188 (((-112) $) 46 (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) 49 (|has| |#1| (-556)))) (-2359 (((-112) $) NIL (|has| |#1| (-859)))) (-3900 (((-112) $) NIL (|has| |#1| (-859)))) (-1721 (((-112) $) NIL (|has| |#1| (-859)))) (-1914 (($ $ $) NIL (|has| |#1| (-859)))) (-3503 (($ $ $) NIL (|has| |#1| (-859)))) (-4264 (((-1176) $) NIL)) (-1641 (($) 13)) (-3786 (((-112) $) 12)) (-3912 (((-1137) $) NIL)) (-3314 (((-112) $) 11)) (-2882 (((-873) $) 18) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 8) (($ (-575)) NIL (-3763 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))))) (-4421 (((-782)) 36 (|has| |#1| (-859)) CONST)) (-3685 (((-112) $ $) 54)) (-3863 (($ $) NIL (|has| |#1| (-859)))) (-1989 (($) 23 (|has| |#1| (-21)) CONST)) (-2005 (($) 33 (|has| |#1| (-859)) CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3913 (((-112) $ $) 21)) (-3967 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3940 (((-112) $ $) 45 (|has| |#1| (-859)))) (-4027 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4015 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-936)) NIL (|has| |#1| (-859))) (($ $ (-782)) NIL (|has| |#1| (-859)))) (* (($ $ $) 39 (|has| |#1| (-859))) (($ (-575) $) 27 (|has| |#1| (-21))) (($ (-782) $) NIL (|has| |#1| (-21))) (($ (-936) $) NIL (|has| |#1| (-21)))))
-(((-844 |#1|) (-13 (-1117) (-422 |#1|) (-10 -8 (-15 -1641 ($)) (-15 -3314 ((-112) $)) (-15 -3786 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) (-1117)) (T -844))
-((-1641 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1117)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-2157 (*1 *2 *1) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))))
-(-13 (-1117) (-422 |#1|) (-10 -8 (-15 -1641 ($)) (-15 -3314 ((-112) $)) (-15 -3786 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|)))
-((-3371 (((-112) $ |#2|) 14)) (-2882 (((-873) $) 11)))
-(((-845 |#1| |#2|) (-10 -8 (-15 -3371 ((-112) |#1| |#2|)) (-15 -2882 ((-873) |#1|))) (-846 |#2|) (-1117)) (T -845))
-NIL
-(-10 -8 (-15 -3371 ((-112) |#1| |#2|)) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-1777 ((|#1| $) 16)) (-4264 (((-1176) $) 10)) (-3371 (((-112) $ |#1|) 14)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3425 (((-55) $) 15)) (-3913 (((-112) $ $) 6)))
-(((-846 |#1|) (-141) (-1117)) (T -846))
-((-1777 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1117)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-55)))) (-3371 (*1 *2 *1 *3) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(-13 (-1117) (-10 -8 (-15 -1777 (|t#1| $)) (-15 -3425 ((-55) $)) (-15 -3371 ((-112) $ |t#1|))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-4400 ((|#1| $) NIL) (((-115) $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-1733 ((|#1| (-115) |#1|) NIL)) (-3900 (((-112) $) NIL)) (-2441 (($ |#1| (-371 (-115))) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1936 (($ $ (-1 |#1| |#1|)) NIL)) (-3097 (($ $ (-1 |#1| |#1|)) NIL)) (-2065 ((|#1| $ |#1|) NIL)) (-1690 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1702 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ (-115) (-575)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-847 |#1|) (-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1702 ($ $)) (-15 -1702 ($ $ $)) (-15 -1690 (|#1| |#1|))) |%noBranch|) (-15 -3097 ($ $ (-1 |#1| |#1|))) (-15 -1936 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -1733 (|#1| (-115) |#1|)) (-15 -2441 ($ |#1| (-371 (-115)))))) (-1066)) (T -847))
-((-1702 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) (-1702 (*1 *1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) (-1690 (*1 *2 *2) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-5 *1 (-847 *4)) (-4 *4 (-1066)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-847 *3)) (-4 *3 (-1066)))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-847 *2)) (-4 *2 (-1066)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *3 (-371 (-115))) (-5 *1 (-847 *2)) (-4 *2 (-1066)))))
-(-13 (-1066) (-1055 |#1|) (-1055 (-115)) (-295 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1702 ($ $)) (-15 -1702 ($ $ $)) (-15 -1690 (|#1| |#1|))) |%noBranch|) (-15 -3097 ($ $ (-1 |#1| |#1|))) (-15 -1936 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-575))) (-15 ** ($ $ (-575))) (-15 -1733 (|#1| (-115) |#1|)) (-15 -2441 ($ |#1| (-371 (-115))))))
-((-2580 (((-216 (-513)) (-1176)) 9)))
-(((-848) (-10 -7 (-15 -2580 ((-216 (-513)) (-1176))))) (T -848))
-((-2580 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-216 (-513))) (-5 *1 (-848)))))
-(-10 -7 (-15 -2580 ((-216 (-513)) (-1176))))
-((-2859 (((-112) $ $) NIL)) (-1380 (((-1135) $) 10)) (-1777 (((-517) $) 9)) (-4264 (((-1176) $) NIL)) (-3371 (((-112) $ (-517)) NIL)) (-3912 (((-1137) $) NIL)) (-2893 (($ (-517) (-1135)) 8)) (-2882 (((-873) $) 25)) (-3685 (((-112) $ $) NIL)) (-3425 (((-55) $) 20)) (-3913 (((-112) $ $) 12)))
-(((-849) (-13 (-846 (-517)) (-10 -8 (-15 -1380 ((-1135) $)) (-15 -2893 ($ (-517) (-1135)))))) (T -849))
-((-1380 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-849)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-849)))))
-(-13 (-846 (-517)) (-10 -8 (-15 -1380 ((-1135) $)) (-15 -2893 ($ (-517) (-1135)))))
-((-2859 (((-112) $ $) 7)) (-4397 (((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 15) (((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 14)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 17) (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 16)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-850) (-141)) (T -850))
-((-2655 (*1 *2 *3 *4) (-12 (-4 *1 (-850)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)))))) (-2655 (*1 *2 *3 *4) (-12 (-4 *1 (-850)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)))))) (-4397 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *3 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) (-5 *2 (-1052)))) (-4397 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *3 (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *2 (-1052)))))
-(-13 (-1117) (-10 -7 (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -4397 ((-1052) (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -4397 ((-1052) (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2584 (((-1052) (-655 (-325 (-389))) (-655 (-389))) 166) (((-1052) (-325 (-389)) (-655 (-389))) 164) (((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-854 (-389)))) 162) (((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-325 (-389))) (-655 (-854 (-389)))) 160) (((-1052) (-852)) 125) (((-1052) (-852) (-1080)) 124)) (-2655 (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852) (-1080)) 85) (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852)) 87)) (-2024 (((-1052) (-655 (-325 (-389))) (-655 (-389))) 167) (((-1052) (-852)) 150)))
-(((-851) (-10 -7 (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852) (-1080))) (-15 -2584 ((-1052) (-852) (-1080))) (-15 -2584 ((-1052) (-852))) (-15 -2024 ((-1052) (-852))) (-15 -2584 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-325 (-389))) (-655 (-854 (-389))))) (-15 -2584 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-854 (-389))))) (-15 -2584 ((-1052) (-325 (-389)) (-655 (-389)))) (-15 -2584 ((-1052) (-655 (-325 (-389))) (-655 (-389)))) (-15 -2024 ((-1052) (-655 (-325 (-389))) (-655 (-389)))))) (T -851))
-((-2024 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2584 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) (-5 *5 (-655 (-854 (-389)))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2584 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-655 (-389))) (-5 *5 (-655 (-854 (-389)))) (-5 *6 (-655 (-325 (-389)))) (-5 *3 (-325 (-389))) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-851)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-852)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-851)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-851)))))
-(-10 -7 (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-852) (-1080))) (-15 -2584 ((-1052) (-852) (-1080))) (-15 -2584 ((-1052) (-852))) (-15 -2024 ((-1052) (-852))) (-15 -2584 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-325 (-389))) (-655 (-854 (-389))))) (-15 -2584 ((-1052) (-325 (-389)) (-655 (-389)) (-655 (-854 (-389))) (-655 (-854 (-389))))) (-15 -2584 ((-1052) (-325 (-389)) (-655 (-389)))) (-15 -2584 ((-1052) (-655 (-325 (-389))) (-655 (-389)))) (-15 -2024 ((-1052) (-655 (-325 (-389))) (-655 (-389)))))
-((-2859 (((-112) $ $) NIL)) (-4400 (((-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) $) 21)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 20) (($ (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) 14) (($ (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))))) 18)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-852) (-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2882 ($ (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -2882 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))))) (-15 -4400 ((-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) $))))) (T -852))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (-5 *1 (-852)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))) (-5 *1 (-852)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))))) (-5 *1 (-852)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227))))))) (-5 *1 (-852)))))
-(-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227))))))) (-15 -2882 ($ (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) (-15 -2882 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))))) (-15 -4400 ((-3 (|:| |noa| (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227))) (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227)))) (|:| |ub| (-655 (-854 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))) $))))
-((-2544 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)) 13) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 14)))
-(((-853 |#1| |#2|) (-10 -7 (-15 -2544 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -2544 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)))) (-1117) (-1117)) (T -853))
-((-2544 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-853 *5 *6)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6)))))
-(-10 -7 (-15 -2544 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -2544 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL (|has| |#1| (-21)))) (-2452 (((-1137) $) 31)) (-1708 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2326 (((-575) $) NIL (|has| |#1| (-859)))) (-3261 (($) NIL (|has| |#1| (-21)) CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 18)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 9)) (-4162 (((-3 $ "failed") $) 58 (|has| |#1| (-859)))) (-2157 (((-3 (-418 (-575)) "failed") $) 65 (|has| |#1| (-556)))) (-2188 (((-112) $) 60 (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) 63 (|has| |#1| (-556)))) (-2359 (((-112) $) NIL (|has| |#1| (-859)))) (-2026 (($) 14)) (-3900 (((-112) $) NIL (|has| |#1| (-859)))) (-1721 (((-112) $) NIL (|has| |#1| (-859)))) (-2037 (($) 16)) (-1914 (($ $ $) NIL (|has| |#1| (-859)))) (-3503 (($ $ $) NIL (|has| |#1| (-859)))) (-4264 (((-1176) $) NIL)) (-3786 (((-112) $) 12)) (-3912 (((-1137) $) NIL)) (-3314 (((-112) $) 11)) (-2882 (((-873) $) 24) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 8) (($ (-575)) NIL (-3763 (|has| |#1| (-859)) (|has| |#1| (-1055 (-575)))))) (-4421 (((-782)) 51 (|has| |#1| (-859)) CONST)) (-3685 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| |#1| (-859)))) (-1989 (($) 37 (|has| |#1| (-21)) CONST)) (-2005 (($) 48 (|has| |#1| (-859)) CONST)) (-3980 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3913 (((-112) $ $) 35)) (-3967 (((-112) $ $) NIL (|has| |#1| (-859)))) (-3940 (((-112) $ $) 59 (|has| |#1| (-859)))) (-4027 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4015 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-936)) NIL (|has| |#1| (-859))) (($ $ (-782)) NIL (|has| |#1| (-859)))) (* (($ $ $) 55 (|has| |#1| (-859))) (($ (-575) $) 42 (|has| |#1| (-21))) (($ (-782) $) NIL (|has| |#1| (-21))) (($ (-936) $) NIL (|has| |#1| (-21)))))
-(((-854 |#1|) (-13 (-1117) (-422 |#1|) (-10 -8 (-15 -2026 ($)) (-15 -2037 ($)) (-15 -3314 ((-112) $)) (-15 -3786 ((-112) $)) (-15 -2452 ((-1137) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|))) (-1117)) (T -854))
-((-2026 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117)))) (-2037 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))) (-2157 (*1 *2 *1) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117)))))
-(-13 (-1117) (-422 |#1|) (-10 -8 (-15 -2026 ($)) (-15 -2037 ($)) (-15 -3314 ((-112) $)) (-15 -3786 ((-112) $)) (-15 -2452 ((-1137) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|)))
-((-2859 (((-112) $ $) 7)) (-2409 (((-782)) 23)) (-2073 (($) 26)) (-1914 (($ $ $) 14) (($) 22 T CONST)) (-3503 (($ $ $) 15) (($) 21 T CONST)) (-1894 (((-936) $) 25)) (-4264 (((-1176) $) 10)) (-4317 (($ (-936)) 24)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)))
-(((-855) (-141)) (T -855))
-((-1914 (*1 *1) (-4 *1 (-855))) (-3503 (*1 *1) (-4 *1 (-855))))
-(-13 (-861) (-378) (-10 -8 (-15 -1914 ($) -3736) (-15 -3503 ($) -3736)))
-(((-102) . T) ((-624 (-873)) . T) ((-378) . T) ((-861) . T) ((-1117) . T))
-((-1550 (((-112) (-1285 |#2|) (-1285 |#2|)) 19)) (-3496 (((-112) (-1285 |#2|) (-1285 |#2|)) 20)) (-2397 (((-112) (-1285 |#2|) (-1285 |#2|)) 16)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -2397 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -1550 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -3496 ((-112) (-1285 |#2|) (-1285 |#2|)))) (-782) (-803)) (T -856))
-((-3496 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))) (-1550 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))) (-2397 (*1 *2 *3 *3) (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112)) (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))))
-(-10 -7 (-15 -2397 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -1550 ((-112) (-1285 |#2|) (-1285 |#2|))) (-15 -3496 ((-112) (-1285 |#2|) (-1285 |#2|))))
-((-2859 (((-112) $ $) 7)) (-3261 (($) 24 T CONST)) (-4162 (((-3 $ "failed") $) 27)) (-3900 (((-112) $) 25)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2005 (($) 23 T CONST)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (** (($ $ (-936)) 22) (($ $ (-782)) 26)) (* (($ $ $) 21)))
-(((-857) (-141)) (T -857))
-NIL
-(-13 (-868) (-737))
-(((-102) . T) ((-624 (-873)) . T) ((-737) . T) ((-868) . T) ((-861) . T) ((-1129) . T) ((-1117) . T))
-((-2326 (((-575) $) 21)) (-2359 (((-112) $) 10)) (-1721 (((-112) $) 12)) (-3863 (($ $) 23)))
-(((-858 |#1|) (-10 -8 (-15 -3863 (|#1| |#1|)) (-15 -2326 ((-575) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -2359 ((-112) |#1|))) (-859)) (T -858))
-NIL
-(-10 -8 (-15 -3863 (|#1| |#1|)) (-15 -2326 ((-575) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -2359 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 25)) (-1708 (((-3 $ "failed") $ $) 27)) (-2326 (((-575) $) 37)) (-3261 (($) 24 T CONST)) (-4162 (((-3 $ "failed") $) 42)) (-2359 (((-112) $) 39)) (-3900 (((-112) $) 44)) (-1721 (((-112) $) 38)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 46)) (-4421 (((-782)) 47 T CONST)) (-3685 (((-112) $ $) 9)) (-3863 (($ $) 36)) (-1989 (($) 23 T CONST)) (-2005 (($) 45 T CONST)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (-4027 (($ $ $) 31) (($ $) 30)) (-4015 (($ $ $) 21)) (** (($ $ (-782)) 43) (($ $ (-936)) 40)) (* (($ (-936) $) 22) (($ (-782) $) 26) (($ (-575) $) 29) (($ $ $) 41)))
-(((-859) (-141)) (T -859))
-((-2359 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-575)))) (-3863 (*1 *1 *1) (-4 *1 (-859))))
-(-13 (-802) (-1066) (-737) (-10 -8 (-15 -2359 ((-112) $)) (-15 -1721 ((-112) $)) (-15 -2326 ((-575) $)) (-15 -3863 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-861) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-1914 (($ $ $) 12)) (-3503 (($ $ $) 11)) (-3685 (((-112) $ $) 9)) (-3980 (((-112) $ $) 15)) (-3955 (((-112) $ $) 13)) (-3967 (((-112) $ $) 16)))
-(((-860 |#1|) (-10 -8 (-15 -1914 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3967 ((-112) |#1| |#1|)) (-15 -3980 ((-112) |#1| |#1|)) (-15 -3955 ((-112) |#1| |#1|)) (-15 -3685 ((-112) |#1| |#1|))) (-861)) (T -860))
-NIL
-(-10 -8 (-15 -1914 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3967 ((-112) |#1| |#1|)) (-15 -3980 ((-112) |#1| |#1|)) (-15 -3955 ((-112) |#1| |#1|)) (-15 -3685 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)))
-(((-861) (-141)) (T -861))
-((-3940 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3955 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3980 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3967 (*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-3503 (*1 *1 *1 *1) (-4 *1 (-861))) (-1914 (*1 *1 *1 *1) (-4 *1 (-861))))
-(-13 (-1117) (-10 -8 (-15 -3940 ((-112) $ $)) (-15 -3955 ((-112) $ $)) (-15 -3980 ((-112) $ $)) (-15 -3967 ((-112) $ $)) (-15 -3503 ($ $ $)) (-15 -1914 ($ $ $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-3870 (($ $ $) 49)) (-1347 (($ $ $) 48)) (-4201 (($ $ $) 46)) (-3022 (($ $ $) 55)) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 50)) (-1497 (((-3 $ "failed") $ $) 53)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2379 (($ $) 39)) (-3021 (($ $ $) 43)) (-3028 (($ $ $) 42)) (-2029 (($ $ $) 51)) (-2247 (($ $ $) 57)) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 45)) (-3746 (((-3 $ "failed") $ $) 52)) (-2849 (((-3 $ "failed") $ |#2|) 32)) (-3696 ((|#2| $) 36)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ |#2|) 13)) (-2212 (((-655 |#2|) $) 21)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-862 |#1| |#2|) (-10 -8 (-15 -2029 (|#1| |#1| |#1|)) (-15 -4359 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3657 |#1|)) |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -1497 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3870 (|#1| |#1| |#1|)) (-15 -1347 (|#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| |#1|)) (-15 -1863 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3657 |#1|)) |#1| |#1|)) (-15 -2247 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2212 ((-655 |#2|) |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -2882 ((-873) |#1|))) (-863 |#2|) (-1066)) (T -862))
-NIL
-(-10 -8 (-15 -2029 (|#1| |#1| |#1|)) (-15 -4359 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3657 |#1|)) |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -1497 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3870 (|#1| |#1| |#1|)) (-15 -1347 (|#1| |#1| |#1|)) (-15 -4201 (|#1| |#1| |#1|)) (-15 -1863 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3657 |#1|)) |#1| |#1|)) (-15 -2247 (|#1| |#1| |#1|)) (-15 -3746 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2849 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2212 ((-655 |#2|) |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-3870 (($ $ $) 50 (|has| |#1| (-373)))) (-1347 (($ $ $) 51 (|has| |#1| (-373)))) (-4201 (($ $ $) 53 (|has| |#1| (-373)))) (-3022 (($ $ $) 48 (|has| |#1| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 47 (|has| |#1| (-373)))) (-1497 (((-3 $ "failed") $ $) 49 (|has| |#1| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 52 (|has| |#1| (-373)))) (-2443 (((-3 (-575) "failed") $) 80 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 77 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 74)) (-4400 (((-575) $) 79 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 76 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 75)) (-4406 (($ $) 69)) (-4162 (((-3 $ "failed") $) 37)) (-2379 (($ $) 60 (|has| |#1| (-463)))) (-3900 (((-112) $) 35)) (-2414 (($ |#1| (-782)) 67)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 62 (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63 (|has| |#1| (-567)))) (-3143 (((-782) $) 71)) (-3021 (($ $ $) 57 (|has| |#1| (-373)))) (-3028 (($ $ $) 58 (|has| |#1| (-373)))) (-2029 (($ $ $) 46 (|has| |#1| (-373)))) (-2247 (($ $ $) 55 (|has| |#1| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 54 (|has| |#1| (-373)))) (-3746 (((-3 $ "failed") $ $) 56 (|has| |#1| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 59 (|has| |#1| (-373)))) (-4383 ((|#1| $) 70)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-567)))) (-1753 (((-782) $) 72)) (-3696 ((|#1| $) 61 (|has| |#1| (-463)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 78 (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) 73)) (-2212 (((-655 |#1|) $) 66)) (-3002 ((|#1| $ (-782)) 68)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1943 ((|#1| $ |#1| |#1|) 65)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-863 |#1|) (-141) (-1066)) (T -863))
-((-1753 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-4406 (*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-655 *3)))) (-1943 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)))) (-2849 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3)))) (-3710 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463)))) (-1567 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3)))) (-3028 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3746 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-2247 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-1863 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3657 *1))) (-4 *1 (-863 *3)))) (-4201 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4431 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3)))) (-1347 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3870 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-1497 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4359 (*1 *2 *1 *1) (-12 (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3657 *1))) (-4 *1 (-863 *3)))) (-2029 (*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(-13 (-1066) (-111 |t#1| |t#1|) (-422 |t#1|) (-10 -8 (-15 -1753 ((-782) $)) (-15 -3143 ((-782) $)) (-15 -4383 (|t#1| $)) (-15 -4406 ($ $)) (-15 -3002 (|t#1| $ (-782))) (-15 -2414 ($ |t#1| (-782))) (-15 -2212 ((-655 |t#1|) $)) (-15 -1943 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-15 -2849 ((-3 $ "failed") $ |t#1|)) (-15 -3514 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -3710 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-15 -3696 (|t#1| $)) (-15 -2379 ($ $))) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-15 -1567 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -3028 ($ $ $)) (-15 -3021 ($ $ $)) (-15 -3746 ((-3 $ "failed") $ $)) (-15 -2247 ($ $ $)) (-15 -1863 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $)) (-15 -4201 ($ $ $)) (-15 -4431 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -1347 ($ $ $)) (-15 -3870 ($ $ $)) (-15 -1497 ((-3 $ "failed") $ $)) (-15 -3022 ($ $ $)) (-15 -4359 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $)) (-15 -2029 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 #0=(-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-422 |#1|) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1055 #0#) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-3645 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4431 (((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-373)))) (-3710 (((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-567)))) (-1567 (((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-373)))) (-1943 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
-(((-864 |#1| |#2|) (-10 -7 (-15 -3645 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1943 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-567)) (PROGN (-15 -3514 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3710 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -1567 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4431 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1066) (-863 |#1|)) (T -864))
-((-4431 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-1567 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-3710 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-3514 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3)) (-4 *3 (-863 *5)))) (-1943 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1066)) (-5 *1 (-864 *2 *3)) (-4 *3 (-863 *2)))) (-3645 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1066)) (-5 *1 (-864 *5 *2)) (-4 *2 (-863 *5)))))
-(-10 -7 (-15 -3645 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1943 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-567)) (PROGN (-15 -3514 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3710 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -1567 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4431 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-3870 (($ $ $) NIL (|has| |#1| (-373)))) (-1347 (($ $ $) NIL (|has| |#1| (-373)))) (-4201 (($ $ $) NIL (|has| |#1| (-373)))) (-3022 (($ $ $) NIL (|has| |#1| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1497 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 34 (|has| |#1| (-373)))) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463)))) (-2830 (((-873) $ (-873)) NIL)) (-3900 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) NIL)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 30 (|has| |#1| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 28 (|has| |#1| (-567)))) (-3143 (((-782) $) NIL)) (-3021 (($ $ $) NIL (|has| |#1| (-373)))) (-3028 (($ $ $) NIL (|has| |#1| (-373)))) (-2029 (($ $ $) NIL (|has| |#1| (-373)))) (-2247 (($ $ $) NIL (|has| |#1| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 32 (|has| |#1| (-373)))) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-1753 (((-782) $) NIL)) (-3696 ((|#1| $) NIL (|has| |#1| (-463)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-1055 (-418 (-575))))) (($ |#1|) NIL)) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1943 ((|#1| $ |#1| |#1|) 15)) (-1989 (($) NIL T CONST)) (-2005 (($) 23 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) 19) (($ $ (-782)) 24)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-865 |#1| |#2| |#3|) (-13 (-863 |#1|) (-10 -8 (-15 -2830 ((-873) $ (-873))))) (-1066) (-99 |#1|) (-1 |#1| |#1|)) (T -865))
-((-2830 (*1 *2 *1 *2) (-12 (-5 *2 (-873)) (-5 *1 (-865 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-863 |#1|) (-10 -8 (-15 -2830 ((-873) $ (-873)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-3870 (($ $ $) NIL (|has| |#2| (-373)))) (-1347 (($ $ $) NIL (|has| |#2| (-373)))) (-4201 (($ $ $) NIL (|has| |#2| (-373)))) (-3022 (($ $ $) NIL (|has| |#2| (-373)))) (-4359 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#2| (-373)))) (-1497 (((-3 $ "failed") $ $) NIL (|has| |#2| (-373)))) (-4431 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-373)))) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#2| (-463)))) (-3900 (((-112) $) NIL)) (-2414 (($ |#2| (-782)) 17)) (-3710 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-567)))) (-3514 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-567)))) (-3143 (((-782) $) NIL)) (-3021 (($ $ $) NIL (|has| |#2| (-373)))) (-3028 (($ $ $) NIL (|has| |#2| (-373)))) (-2029 (($ $ $) NIL (|has| |#2| (-373)))) (-2247 (($ $ $) NIL (|has| |#2| (-373)))) (-1863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#2| (-373)))) (-3746 (((-3 $ "failed") $ $) NIL (|has| |#2| (-373)))) (-1567 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-373)))) (-4383 ((|#2| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567)))) (-1753 (((-782) $) NIL)) (-3696 ((|#2| $) NIL (|has| |#2| (-463)))) (-2882 (((-873) $) 24) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) NIL) (($ (-1281 |#1|)) 19)) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-782)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1943 ((|#2| $ |#2| |#2|) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) 13 T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-866 |#1| |#2| |#3| |#4|) (-13 (-863 |#2|) (-627 (-1281 |#1|))) (-1194) (-1066) (-99 |#2|) (-1 |#2| |#2|)) (T -866))
-NIL
-(-13 (-863 |#2|) (-627 (-1281 |#1|)))
-((-3847 ((|#1| (-782) |#1|) 45 (|has| |#1| (-38 (-418 (-575)))))) (-3466 ((|#1| (-782) (-782) |#1|) 36) ((|#1| (-782) |#1|) 24)) (-3438 ((|#1| (-782) |#1|) 40)) (-3821 ((|#1| (-782) |#1|) 38)) (-2955 ((|#1| (-782) |#1|) 37)))
-(((-867 |#1|) (-10 -7 (-15 -2955 (|#1| (-782) |#1|)) (-15 -3821 (|#1| (-782) |#1|)) (-15 -3438 (|#1| (-782) |#1|)) (-15 -3466 (|#1| (-782) |#1|)) (-15 -3466 (|#1| (-782) (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -3847 (|#1| (-782) |#1|)) |%noBranch|)) (-174)) (T -867))
-((-3847 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-174)))) (-3466 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-3466 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-3438 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-3821 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))) (-2955 (*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))))
-(-10 -7 (-15 -2955 (|#1| (-782) |#1|)) (-15 -3821 (|#1| (-782) |#1|)) (-15 -3438 (|#1| (-782) |#1|)) (-15 -3466 (|#1| (-782) |#1|)) (-15 -3466 (|#1| (-782) (-782) |#1|)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -3847 (|#1| (-782) |#1|)) |%noBranch|))
-((-2859 (((-112) $ $) 7)) (-1914 (($ $ $) 14)) (-3503 (($ $ $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3980 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 16)) (-3940 (((-112) $ $) 19)) (** (($ $ (-936)) 22)) (* (($ $ $) 21)))
-(((-868) (-141)) (T -868))
-NIL
-(-13 (-861) (-1129))
-(((-102) . T) ((-624 (-873)) . T) ((-861) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-4181 (((-575) $) 14)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 20) (($ (-575)) 13)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 9)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 11)))
-(((-869) (-13 (-861) (-10 -8 (-15 -2882 ($ (-575))) (-15 -4181 ((-575) $))))) (T -869))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-869)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-869)))))
-(-13 (-861) (-10 -8 (-15 -2882 ($ (-575))) (-15 -4181 ((-575) $))))
-((-4155 (((-702 (-1243)) $ (-1243)) 15)) (-1591 (((-702 (-560)) $ (-560)) 12)) (-1596 (((-782) $ (-129)) 30)))
-(((-870 |#1|) (-10 -8 (-15 -1596 ((-782) |#1| (-129))) (-15 -4155 ((-702 (-1243)) |#1| (-1243))) (-15 -1591 ((-702 (-560)) |#1| (-560)))) (-871)) (T -870))
-NIL
-(-10 -8 (-15 -1596 ((-782) |#1| (-129))) (-15 -4155 ((-702 (-1243)) |#1| (-1243))) (-15 -1591 ((-702 (-560)) |#1| (-560))))
-((-4155 (((-702 (-1243)) $ (-1243)) 8)) (-1591 (((-702 (-560)) $ (-560)) 9)) (-1596 (((-782) $ (-129)) 7)) (-3614 (((-702 (-130)) $ (-130)) 10)) (-3265 (($ $) 6)))
-(((-871) (-141)) (T -871))
-((-3614 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *2 (-702 (-130))) (-5 *3 (-130)))) (-1591 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *2 (-702 (-560))) (-5 *3 (-560)))) (-4155 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *2 (-702 (-1243))) (-5 *3 (-1243)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *3 (-129)) (-5 *2 (-782)))))
-(-13 (-175) (-10 -8 (-15 -3614 ((-702 (-130)) $ (-130))) (-15 -1591 ((-702 (-560)) $ (-560))) (-15 -4155 ((-702 (-1243)) $ (-1243))) (-15 -1596 ((-782) $ (-129)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3525 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1196)) NIL)) (-2551 (((-783) $) NIL) (((-783) $ (-1196)) NIL)) (-1634 (((-656 (-830 (-1196))) $) NIL)) (-3440 (((-1192 $) $ (-830 (-1196))) NIL) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1196)))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2635 (($ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-830 (-1196)) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL) (((-3 (-1144 |#1| (-1196)) "failed") $) NIL)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-830 (-1196)) $) NIL) (((-1196) $) NIL) (((-1144 |#1| (-1196)) $) NIL)) (-2495 (($ $ $ (-830 (-1196))) NIL (|has| |#1| (-174)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1196))) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-543 (-830 (-1196))) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-830 (-1196)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-830 (-1196)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2620 (((-783) $ (-1196)) NIL) (((-783) $) NIL)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#1|) (-830 (-1196))) NIL) (($ (-1192 $) (-830 (-1196))) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-543 (-830 (-1196)))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-830 (-1196))) NIL)) (-4389 (((-543 (-830 (-1196))) $) NIL) (((-783) $ (-830 (-1196))) NIL) (((-656 (-783)) $ (-656 (-830 (-1196)))) NIL)) (-4149 (($ (-1 (-543 (-830 (-1196))) (-543 (-830 (-1196)))) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-4271 (((-1 $ (-783)) (-1196)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-1848 (((-3 (-830 (-1196)) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2175 (((-830 (-1196)) $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-1511 (((-112) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-830 (-1196))) (|:| -2273 (-783))) "failed") $) NIL)) (-2793 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1196)) |#1|) NIL) (($ $ (-656 (-830 (-1196))) (-656 |#1|)) NIL) (($ $ (-830 (-1196)) $) NIL) (($ $ (-656 (-830 (-1196))) (-656 $)) NIL) (($ $ (-1196) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-3880 (($ $ (-830 (-1196))) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196)))) NIL) (($ $ (-830 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4133 (((-656 (-1196)) $) NIL)) (-4436 (((-543 (-830 (-1196))) $) NIL) (((-783) $ (-830 (-1196))) NIL) (((-656 (-783)) $ (-656 (-830 (-1196)))) NIL) (((-783) $ (-1196)) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1196))) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1196))) NIL) (($ (-1196)) NIL) (($ (-1144 |#1| (-1196))) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-543 (-830 (-1196)))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196)))) NIL) (($ $ (-830 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-828 |#1|) (-13 (-260 |#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) (-1057 (-1144 |#1| (-1196)))) (-1068)) (T -828))
+NIL
+(-13 (-260 |#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) (-1057 (-1144 |#1| (-1196))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-2150 (($ $) NIL (|has| |#2| (-374)))) (-2637 (((-112) $) NIL (|has| |#2| (-374)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#2| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#2| (-374)))) (-3417 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL (|has| |#2| (-374)))) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL (|has| |#2| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-3011 (((-112) $) NIL (|has| |#2| (-374)))) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3862 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 20 (|has| |#2| (-374)))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2367 (((-430 $) $) NIL (|has| |#2| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#2| (-374)))) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3076 (((-783) $) NIL (|has| |#2| (-374)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-374)))) (-2399 (($ $) 13) (($ $ (-783)) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) 15 (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374)))))
+(((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1119) (-915 |#1|) |#1|) (T -829))
+NIL
+(-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-2551 (((-783) $) NIL)) (-1455 ((|#1| $) 10)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-2620 (((-783) $) 11)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-4271 (($ |#1| (-783)) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2399 (($ $ (-783)) NIL) (($ $) NIL)) (-2858 (((-874) $) NIL) (($ |#1|) NIL)) (-2690 (((-112) $ $) NIL)) (-3404 (($ $ (-783)) NIL) (($ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-830 |#1|) (-275 |#1|) (-862)) (T -830))
+NIL
+(-275 |#1|)
+((-2835 (((-112) $ $) NIL)) (-3463 (((-656 |#1|) $) 38)) (-2422 (((-783) $) NIL)) (-2574 (($) NIL T CONST)) (-3478 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-2003 (($ $) 42)) (-4011 (((-3 $ "failed") $) NIL)) (-2882 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1838 (((-112) $) NIL)) (-3601 ((|#1| $ (-576)) NIL)) (-1478 (((-783) $ (-576)) NIL)) (-1419 (($ $) 54)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2124 (($ (-1 |#1| |#1|) $) NIL)) (-1898 (($ (-1 (-783) (-783)) $) NIL)) (-1504 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2232 (((-112) $ $) 51)) (-1873 (((-783) $) 34)) (-2143 (((-1178) $) NIL)) (-2819 (($ $ $) NIL)) (-1765 (($ $ $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 ((|#1| $) 41)) (-1603 (((-656 (-2 (|:| |gen| |#1|) (|:| -2656 (-783)))) $) NIL)) (-3684 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2813 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2858 (((-874) $) NIL) (($ |#1|) NIL)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 20 T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 53)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -1989 (|#1| $)) (-15 -2003 ($ $)) (-15 -1419 ($ $)) (-15 -2232 ((-112) $ $)) (-15 -1504 ((-3 $ "failed") $ |#1|)) (-15 -3478 ((-3 $ "failed") $ |#1|)) (-15 -2813 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1873 ((-783) $)) (-15 -3463 ((-656 |#1|) $)))) (-862)) (T -831))
+((-1989 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-1419 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2232 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-1504 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2813 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862)))))
+(-13 (-397 |#1|) (-858) (-10 -8 (-15 -1989 (|#1| $)) (-15 -2003 ($ $)) (-15 -1419 ($ $)) (-15 -2232 ((-112) $ $)) (-15 -1504 ((-3 $ "failed") $ |#1|)) (-15 -3478 ((-3 $ "failed") $ |#1|)) (-15 -2813 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1873 ((-783) $)) (-15 -3463 ((-656 |#1|) $))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-1727 (((-576) $) 59)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-2127 (((-112) $) 57)) (-1838 (((-112) $) 35)) (-3196 (((-112) $) 58)) (-1950 (($ $ $) 56)) (-1492 (($ $ $) 55)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ $) 48)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-3680 (($ $) 60)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 53)) (-3930 (((-112) $ $) 52)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 54)) (-3916 (((-112) $ $) 51)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-832) (-141)) (T -832))
+NIL
+(-13 (-568) (-860))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-4220 (($ (-1139)) 7)) (-3676 (((-112) $ (-1178) (-1139)) 15)) (-3867 (((-834) $) 12)) (-3063 (((-834) $) 11)) (-3737 (((-1292) $) 9)) (-3851 (((-112) $ (-1139)) 16)))
+(((-833) (-10 -8 (-15 -4220 ($ (-1139))) (-15 -3737 ((-1292) $)) (-15 -3063 ((-834) $)) (-15 -3867 ((-834) $)) (-15 -3676 ((-112) $ (-1178) (-1139))) (-15 -3851 ((-112) $ (-1139))))) (T -833))
+((-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3676 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-833)))) (-4220 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-833)))))
+(-10 -8 (-15 -4220 ($ (-1139))) (-15 -3737 ((-1292) $)) (-15 -3063 ((-834) $)) (-15 -3867 ((-834) $)) (-15 -3676 ((-112) $ (-1178) (-1139))) (-15 -3851 ((-112) $ (-1139))))
+((-3992 (((-1292) $ (-835)) 12)) (-3740 (((-1292) $ (-1196)) 32)) (-3096 (((-1292) $ (-1178) (-1178)) 34)) (-4175 (((-1292) $ (-1178)) 33)) (-2417 (((-1292) $) 19)) (-1505 (((-1292) $ (-576)) 28)) (-1396 (((-1292) $ (-227)) 30)) (-4065 (((-1292) $) 18)) (-2474 (((-1292) $) 26)) (-4419 (((-1292) $) 25)) (-4371 (((-1292) $) 23)) (-2007 (((-1292) $) 24)) (-3113 (((-1292) $) 22)) (-2614 (((-1292) $) 21)) (-4097 (((-1292) $) 20)) (-2715 (((-1292) $) 16)) (-2197 (((-1292) $) 17)) (-3961 (((-1292) $) 15)) (-1729 (((-1292) $) 14)) (-4187 (((-1292) $) 13)) (-2529 (($ (-1178) (-835)) 9)) (-2799 (($ (-1178) (-1178) (-835)) 8)) (-1966 (((-1196) $) 51)) (-2377 (((-1196) $) 55)) (-1457 (((-2 (|:| |cd| (-1178)) (|:| -1811 (-1178))) $) 54)) (-2695 (((-1178) $) 52)) (-4358 (((-1292) $) 41)) (-4206 (((-576) $) 49)) (-4432 (((-227) $) 50)) (-4439 (((-1292) $) 40)) (-1847 (((-1292) $) 48)) (-2198 (((-1292) $) 47)) (-3991 (((-1292) $) 45)) (-3775 (((-1292) $) 46)) (-4276 (((-1292) $) 44)) (-1356 (((-1292) $) 43)) (-3789 (((-1292) $) 42)) (-1941 (((-1292) $) 38)) (-2134 (((-1292) $) 39)) (-1436 (((-1292) $) 37)) (-3315 (((-1292) $) 36)) (-2558 (((-1292) $) 35)) (-3503 (((-1292) $) 11)))
+(((-834) (-10 -8 (-15 -2799 ($ (-1178) (-1178) (-835))) (-15 -2529 ($ (-1178) (-835))) (-15 -3503 ((-1292) $)) (-15 -3992 ((-1292) $ (-835))) (-15 -4187 ((-1292) $)) (-15 -1729 ((-1292) $)) (-15 -3961 ((-1292) $)) (-15 -2715 ((-1292) $)) (-15 -2197 ((-1292) $)) (-15 -4065 ((-1292) $)) (-15 -2417 ((-1292) $)) (-15 -4097 ((-1292) $)) (-15 -2614 ((-1292) $)) (-15 -3113 ((-1292) $)) (-15 -4371 ((-1292) $)) (-15 -2007 ((-1292) $)) (-15 -4419 ((-1292) $)) (-15 -2474 ((-1292) $)) (-15 -1505 ((-1292) $ (-576))) (-15 -1396 ((-1292) $ (-227))) (-15 -3740 ((-1292) $ (-1196))) (-15 -4175 ((-1292) $ (-1178))) (-15 -3096 ((-1292) $ (-1178) (-1178))) (-15 -2558 ((-1292) $)) (-15 -3315 ((-1292) $)) (-15 -1436 ((-1292) $)) (-15 -1941 ((-1292) $)) (-15 -2134 ((-1292) $)) (-15 -4439 ((-1292) $)) (-15 -4358 ((-1292) $)) (-15 -3789 ((-1292) $)) (-15 -1356 ((-1292) $)) (-15 -4276 ((-1292) $)) (-15 -3991 ((-1292) $)) (-15 -3775 ((-1292) $)) (-15 -2198 ((-1292) $)) (-15 -1847 ((-1292) $)) (-15 -4206 ((-576) $)) (-15 -4432 ((-227) $)) (-15 -1966 ((-1196) $)) (-15 -2695 ((-1178) $)) (-15 -1457 ((-2 (|:| |cd| (-1178)) (|:| -1811 (-1178))) $)) (-15 -2377 ((-1196) $)))) (T -834))
+((-2377 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1178)) (|:| -1811 (-1178)))) (-5 *1 (-834)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-834)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))) (-4432 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4439 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3096 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-4175 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-3740 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-1396 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-1505 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4419 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4187 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3992 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2529 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834)))) (-2799 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834)))))
+(-10 -8 (-15 -2799 ($ (-1178) (-1178) (-835))) (-15 -2529 ($ (-1178) (-835))) (-15 -3503 ((-1292) $)) (-15 -3992 ((-1292) $ (-835))) (-15 -4187 ((-1292) $)) (-15 -1729 ((-1292) $)) (-15 -3961 ((-1292) $)) (-15 -2715 ((-1292) $)) (-15 -2197 ((-1292) $)) (-15 -4065 ((-1292) $)) (-15 -2417 ((-1292) $)) (-15 -4097 ((-1292) $)) (-15 -2614 ((-1292) $)) (-15 -3113 ((-1292) $)) (-15 -4371 ((-1292) $)) (-15 -2007 ((-1292) $)) (-15 -4419 ((-1292) $)) (-15 -2474 ((-1292) $)) (-15 -1505 ((-1292) $ (-576))) (-15 -1396 ((-1292) $ (-227))) (-15 -3740 ((-1292) $ (-1196))) (-15 -4175 ((-1292) $ (-1178))) (-15 -3096 ((-1292) $ (-1178) (-1178))) (-15 -2558 ((-1292) $)) (-15 -3315 ((-1292) $)) (-15 -1436 ((-1292) $)) (-15 -1941 ((-1292) $)) (-15 -2134 ((-1292) $)) (-15 -4439 ((-1292) $)) (-15 -4358 ((-1292) $)) (-15 -3789 ((-1292) $)) (-15 -1356 ((-1292) $)) (-15 -4276 ((-1292) $)) (-15 -3991 ((-1292) $)) (-15 -3775 ((-1292) $)) (-15 -2198 ((-1292) $)) (-15 -1847 ((-1292) $)) (-15 -4206 ((-576) $)) (-15 -4432 ((-227) $)) (-15 -1966 ((-1196) $)) (-15 -2695 ((-1178) $)) (-15 -1457 ((-2 (|:| |cd| (-1178)) (|:| -1811 (-1178))) $)) (-15 -2377 ((-1196) $)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 13)) (-2690 (((-112) $ $) NIL)) (-1598 (($) 16)) (-1474 (($) 14)) (-4135 (($) 17)) (-2766 (($) 15)) (-3889 (((-112) $ $) 9)))
+(((-835) (-13 (-1119) (-10 -8 (-15 -1474 ($)) (-15 -1598 ($)) (-15 -4135 ($)) (-15 -2766 ($))))) (T -835))
+((-1474 (*1 *1) (-5 *1 (-835))) (-1598 (*1 *1) (-5 *1 (-835))) (-4135 (*1 *1) (-5 *1 (-835))) (-2766 (*1 *1) (-5 *1 (-835))))
+(-13 (-1119) (-10 -8 (-15 -1474 ($)) (-15 -1598 ($)) (-15 -4135 ($)) (-15 -2766 ($))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 23) (($ (-1196)) 19)) (-2690 (((-112) $ $) NIL)) (-1352 (((-112) $) 10)) (-1537 (((-112) $) 9)) (-4299 (((-112) $) 11)) (-2286 (((-112) $) 8)) (-3889 (((-112) $ $) 21)))
+(((-836) (-13 (-1119) (-10 -8 (-15 -2858 ($ (-1196))) (-15 -2286 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -1352 ((-112) $)) (-15 -4299 ((-112) $))))) (T -836))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-836)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(-13 (-1119) (-10 -8 (-15 -2858 ($ (-1196))) (-15 -2286 ((-112) $)) (-15 -1537 ((-112) $)) (-15 -1352 ((-112) $)) (-15 -4299 ((-112) $))))
+((-2835 (((-112) $ $) NIL)) (-3969 (($ (-836) (-656 (-1196))) 32)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2795 (((-836) $) 33)) (-3034 (((-656 (-1196)) $) 34)) (-2858 (((-874) $) 31)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-837) (-13 (-1119) (-10 -8 (-15 -2795 ((-836) $)) (-15 -3034 ((-656 (-1196)) $)) (-15 -3969 ($ (-836) (-656 (-1196))))))) (T -837))
+((-2795 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-837)))) (-3969 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1196))) (-5 *1 (-837)))))
+(-13 (-1119) (-10 -8 (-15 -2795 ((-836) $)) (-15 -3034 ((-656 (-1196)) $)) (-15 -3969 ($ (-836) (-656 (-1196))))))
+((-1445 (((-1292) (-834) (-326 |#1|) (-112)) 23) (((-1292) (-834) (-326 |#1|)) 89) (((-1178) (-326 |#1|) (-112)) 88) (((-1178) (-326 |#1|)) 87)))
+(((-838 |#1|) (-10 -7 (-15 -1445 ((-1178) (-326 |#1|))) (-15 -1445 ((-1178) (-326 |#1|) (-112))) (-15 -1445 ((-1292) (-834) (-326 |#1|))) (-15 -1445 ((-1292) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1068))) (T -838))
+((-1445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1068))) (-5 *2 (-1292)) (-5 *1 (-838 *6)))) (-1445 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1068))) (-5 *2 (-1292)) (-5 *1 (-838 *5)))) (-1445 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1068))) (-5 *2 (-1178)) (-5 *1 (-838 *5)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1068))) (-5 *2 (-1178)) (-5 *1 (-838 *4)))))
+(-10 -7 (-15 -1445 ((-1178) (-326 |#1|))) (-15 -1445 ((-1178) (-326 |#1|) (-112))) (-15 -1445 ((-1292) (-834) (-326 |#1|))) (-15 -1445 ((-1292) (-834) (-326 |#1|) (-112))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-4144 ((|#1| $) 10)) (-1600 (($ |#1|) 9)) (-1838 (((-112) $) NIL)) (-2428 (($ |#2| (-783)) NIL)) (-4389 (((-783) $) NIL)) (-4379 ((|#2| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2399 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-4436 (((-783) $) NIL)) (-2858 (((-874) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4417 ((|#2| $ (-783)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1600 ($ |#1|)) (-15 -4144 (|#1| $)))) (-720 |#2|) (-1068)) (T -839))
+((-1600 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1068)))))
+(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1600 ($ |#1|)) (-15 -4144 (|#1| $))))
+((-1445 (((-1292) (-834) $ (-112)) 9) (((-1292) (-834) $) 8) (((-1178) $ (-112)) 7) (((-1178) $) 6)))
+(((-840) (-141)) (T -840))
+((-1445 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1292)))) (-1445 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1292)))) (-1445 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1178)))) (-1445 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1178)))))
+(-13 (-10 -8 (-15 -1445 ((-1178) $)) (-15 -1445 ((-1178) $ (-112))) (-15 -1445 ((-1292) (-834) $)) (-15 -1445 ((-1292) (-834) $ (-112)))))
+((-3977 (((-322) (-1178) (-1178)) 12)) (-2116 (((-112) (-1178) (-1178)) 34)) (-1506 (((-112) (-1178)) 33)) (-3900 (((-52) (-1178)) 25)) (-1905 (((-52) (-1178)) 23)) (-3987 (((-52) (-834)) 17)) (-3318 (((-656 (-1178)) (-1178)) 28)) (-3573 (((-656 (-1178))) 27)))
+(((-841) (-10 -7 (-15 -3987 ((-52) (-834))) (-15 -1905 ((-52) (-1178))) (-15 -3900 ((-52) (-1178))) (-15 -3573 ((-656 (-1178)))) (-15 -3318 ((-656 (-1178)) (-1178))) (-15 -1506 ((-112) (-1178))) (-15 -2116 ((-112) (-1178) (-1178))) (-15 -3977 ((-322) (-1178) (-1178))))) (T -841))
+((-3977 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-841)))) (-2116 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))) (-3318 (*1 *2 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)) (-5 *3 (-1178)))) (-3573 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(-10 -7 (-15 -3987 ((-52) (-834))) (-15 -1905 ((-52) (-1178))) (-15 -3900 ((-52) (-1178))) (-15 -3573 ((-656 (-1178)))) (-15 -3318 ((-656 (-1178)) (-1178))) (-15 -1506 ((-112) (-1178))) (-15 -2116 ((-112) (-1178) (-1178))) (-15 -3977 ((-322) (-1178) (-1178))))
+((-2835 (((-112) $ $) 19)) (-1675 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3178 (($ $ $) 73)) (-3483 (((-112) $ $) 74)) (-2746 (((-112) $ (-783)) 8)) (-1333 (($ (-656 |#1|)) 69) (($) 68)) (-3423 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3444 (($ $) 63)) (-3229 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) 65)) (-3639 (((-112) $ (-783)) 9)) (-1950 ((|#1| $) 79)) (-1932 (($ $ $) 82)) (-3343 (($ $ $) 81)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-1492 ((|#1| $) 80)) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22)) (-3310 (($ $ $) 70)) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3887 (((-1139) $) 21)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3414 (((-656 (-2 (|:| -3153 |#1|) (|:| -3902 (-783)))) $) 62)) (-3797 (($ $ |#1|) 72) (($ $ $) 71)) (-1801 (($) 50) (($ (-656 |#1|)) 49)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 51)) (-2858 (((-874) $) 18)) (-2554 (($ (-656 |#1|)) 67) (($) 66)) (-2690 (((-112) $ $) 23)) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20)) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-842 |#1|) (-141) (-862)) (T -842))
+((-1950 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862)))))
+(-13 (-748 |t#1|) (-987 |t#1|) (-10 -8 (-15 -1950 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-987 |#1|) . T) ((-1117 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-3955 (((-1292) (-1139) (-1139)) 48)) (-3908 (((-1292) (-833) (-52)) 45)) (-3458 (((-52) (-833)) 16)))
+(((-843) (-10 -7 (-15 -3458 ((-52) (-833))) (-15 -3908 ((-1292) (-833) (-52))) (-15 -3955 ((-1292) (-1139) (-1139))))) (T -843))
+((-3955 (*1 *2 *3 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-1292)) (-5 *1 (-843)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1292)) (-5 *1 (-843)))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843)))))
+(-10 -7 (-15 -3458 ((-52) (-833))) (-15 -3908 ((-1292) (-833) (-52))) (-15 -3955 ((-1292) (-1139) (-1139))))
+((-2548 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13)))
+(((-844 |#1| |#2|) (-10 -7 (-15 -2548 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2548 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1119) (-1119)) (T -844))
+((-2548 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-844 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6)))))
+(-10 -7 (-15 -2548 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2548 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL (|has| |#1| (-21)))) (-3161 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1727 (((-576) $) NIL (|has| |#1| (-860)))) (-2574 (($) NIL (|has| |#1| (-21)) CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 9)) (-4011 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-3660 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-1946 (((-112) $) 46 (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-2127 (((-112) $) NIL (|has| |#1| (-860)))) (-1838 (((-112) $) NIL (|has| |#1| (-860)))) (-3196 (((-112) $) NIL (|has| |#1| (-860)))) (-1950 (($ $ $) NIL (|has| |#1| (-860)))) (-1492 (($ $ $) NIL (|has| |#1| (-860)))) (-2143 (((-1178) $) NIL)) (-1672 (($) 13)) (-2850 (((-112) $) 12)) (-3887 (((-1139) $) NIL)) (-3384 (((-112) $) 11)) (-2858 (((-874) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3739 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))))) (-2981 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-2690 (((-112) $ $) 54)) (-3680 (($ $) NIL (|has| |#1| (-860)))) (-2022 (($) 23 (|has| |#1| (-21)) CONST)) (-2038 (($) 33 (|has| |#1| (-860)) CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3889 (((-112) $ $) 21)) (-3944 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3916 (((-112) $ $) 45 (|has| |#1| (-860)))) (-4002 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3990 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-938)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-21)))))
+(((-845 |#1|) (-13 (-1119) (-423 |#1|) (-10 -8 (-15 -1672 ($)) (-15 -3384 ((-112) $)) (-15 -2850 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1119)) (T -845))
+((-1672 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1119)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3660 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))))
+(-13 (-1119) (-423 |#1|) (-10 -8 (-15 -1672 ($)) (-15 -3384 ((-112) $)) (-15 -2850 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|)))
+((-2729 (((-112) $ |#2|) 14)) (-2858 (((-874) $) 11)))
+(((-846 |#1| |#2|) (-10 -8 (-15 -2729 ((-112) |#1| |#2|)) (-15 -2858 ((-874) |#1|))) (-847 |#2|) (-1119)) (T -846))
+NIL
+(-10 -8 (-15 -2729 ((-112) |#1| |#2|)) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-1811 ((|#1| $) 16)) (-2143 (((-1178) $) 10)) (-2729 (((-112) $ |#1|) 14)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2727 (((-55) $) 15)) (-3889 (((-112) $ $) 6)))
+(((-847 |#1|) (-141) (-1119)) (T -847))
+((-1811 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1119)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-55)))) (-2729 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(-13 (-1119) (-10 -8 (-15 -1811 (|t#1| $)) (-15 -2727 ((-55) $)) (-15 -2729 ((-112) $ |t#1|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-4397 ((|#1| $) NIL) (((-115) $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3330 ((|#1| (-115) |#1|) NIL)) (-1838 (((-112) $) NIL)) (-3323 (($ |#1| (-372 (-115))) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2657 (($ $ (-1 |#1| |#1|)) NIL)) (-2987 (($ $ (-1 |#1| |#1|)) NIL)) (-2099 ((|#1| $ |#1|) NIL)) (-1816 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3634 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-848 |#1|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3634 ($ $)) (-15 -3634 ($ $ $)) (-15 -1816 (|#1| |#1|))) |%noBranch|) (-15 -2987 ($ $ (-1 |#1| |#1|))) (-15 -2657 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3330 (|#1| (-115) |#1|)) (-15 -3323 ($ |#1| (-372 (-115)))))) (-1068)) (T -848))
+((-3634 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-3634 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-1816 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1068)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1068)))) (-3330 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1068)))) (-3323 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1068)))))
+(-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3634 ($ $)) (-15 -3634 ($ $ $)) (-15 -1816 (|#1| |#1|))) |%noBranch|) (-15 -2987 ($ $ (-1 |#1| |#1|))) (-15 -2657 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -3330 (|#1| (-115) |#1|)) (-15 -3323 ($ |#1| (-372 (-115))))))
+((-4165 (((-216 (-514)) (-1178)) 9)))
+(((-849) (-10 -7 (-15 -4165 ((-216 (-514)) (-1178))))) (T -849))
+((-4165 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-216 (-514))) (-5 *1 (-849)))))
+(-10 -7 (-15 -4165 ((-216 (-514)) (-1178))))
+((-2835 (((-112) $ $) NIL)) (-1389 (((-1137) $) 10)) (-1811 (((-518) $) 9)) (-2143 (((-1178) $) NIL)) (-2729 (((-112) $ (-518)) NIL)) (-3887 (((-1139) $) NIL)) (-2869 (($ (-518) (-1137)) 8)) (-2858 (((-874) $) 25)) (-2690 (((-112) $ $) NIL)) (-2727 (((-55) $) 20)) (-3889 (((-112) $ $) 12)))
+(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -1389 ((-1137) $)) (-15 -2869 ($ (-518) (-1137)))))) (T -850))
+((-1389 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-850)))) (-2869 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-850)))))
+(-13 (-847 (-518)) (-10 -8 (-15 -1389 ((-1137) $)) (-15 -2869 ($ (-518) (-1137)))))
+((-2835 (((-112) $ $) 7)) (-1413 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 15) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 16)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-851) (-141)) (T -851))
+((-2605 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)))))) (-2605 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)))))) (-1413 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) (-5 *2 (-1054)))) (-1413 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1054)))))
+(-13 (-1119) (-10 -7 (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -1413 ((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -1413 ((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2584 (((-1054) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1054) (-326 (-390)) (-656 (-390))) 164) (((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1054) (-853)) 125) (((-1054) (-853) (-1082)) 124)) (-2605 (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1082)) 85) (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853)) 87)) (-1961 (((-1054) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1054) (-853)) 150)))
+(((-852) (-10 -7 (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1082))) (-15 -2584 ((-1054) (-853) (-1082))) (-15 -2584 ((-1054) (-853))) (-15 -1961 ((-1054) (-853))) (-15 -2584 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -2584 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -2584 ((-1054) (-326 (-390)) (-656 (-390)))) (-15 -2584 ((-1054) (-656 (-326 (-390))) (-656 (-390)))) (-15 -1961 ((-1054) (-656 (-326 (-390))) (-656 (-390)))))) (T -852))
+((-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2584 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2584 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-852)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-852)))))
+(-10 -7 (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1082))) (-15 -2584 ((-1054) (-853) (-1082))) (-15 -2584 ((-1054) (-853))) (-15 -1961 ((-1054) (-853))) (-15 -2584 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -2584 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -2584 ((-1054) (-326 (-390)) (-656 (-390)))) (-15 -2584 ((-1054) (-656 (-326 (-390))) (-656 (-390)))) (-15 -1961 ((-1054) (-656 (-326 (-390))) (-656 (-390)))))
+((-2835 (((-112) $ $) NIL)) (-4397 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) $) 21)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))))) 18)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-853) (-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2858 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -2858 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))))) (-15 -4397 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) $))))) (T -853))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))) (-5 *1 (-853)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))))) (-5 *1 (-853)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227))))))) (-5 *1 (-853)))))
+(-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2858 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) (-15 -2858 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))))) (-15 -4397 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))) $))))
+((-2548 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -2548 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2548 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1119) (-1119)) (T -854))
+((-2548 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-854 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))))
+(-10 -7 (-15 -2548 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2548 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL (|has| |#1| (-21)))) (-1951 (((-1139) $) 31)) (-3161 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1727 (((-576) $) NIL (|has| |#1| (-860)))) (-2574 (($) NIL (|has| |#1| (-21)) CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 9)) (-4011 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-3660 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-1946 (((-112) $) 60 (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-2127 (((-112) $) NIL (|has| |#1| (-860)))) (-2060 (($) 14)) (-1838 (((-112) $) NIL (|has| |#1| (-860)))) (-3196 (((-112) $) NIL (|has| |#1| (-860)))) (-2071 (($) 16)) (-1950 (($ $ $) NIL (|has| |#1| (-860)))) (-1492 (($ $ $) NIL (|has| |#1| (-860)))) (-2143 (((-1178) $) NIL)) (-2850 (((-112) $) 12)) (-3887 (((-1139) $) NIL)) (-3384 (((-112) $) 11)) (-2858 (((-874) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3739 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))))) (-2981 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-2690 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| |#1| (-860)))) (-2022 (($) 37 (|has| |#1| (-21)) CONST)) (-2038 (($) 48 (|has| |#1| (-860)) CONST)) (-3956 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3889 (((-112) $ $) 35)) (-3944 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3916 (((-112) $ $) 59 (|has| |#1| (-860)))) (-4002 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3990 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-938)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-21)))))
+(((-855 |#1|) (-13 (-1119) (-423 |#1|) (-10 -8 (-15 -2060 ($)) (-15 -2071 ($)) (-15 -3384 ((-112) $)) (-15 -2850 ((-112) $)) (-15 -1951 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1119)) (T -855))
+((-2060 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))) (-2071 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3660 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))))
+(-13 (-1119) (-423 |#1|) (-10 -8 (-15 -2060 ($)) (-15 -2071 ($)) (-15 -3384 ((-112) $)) (-15 -2850 ((-112) $)) (-15 -1951 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|)))
+((-2835 (((-112) $ $) 7)) (-2422 (((-783)) 23)) (-2107 (($) 26)) (-1950 (($ $ $) 14) (($) 22 T CONST)) (-1492 (($ $ $) 15) (($) 21 T CONST)) (-1654 (((-938) $) 25)) (-2143 (((-1178) $) 10)) (-4308 (($ (-938)) 24)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)))
+(((-856) (-141)) (T -856))
+((-1950 (*1 *1) (-4 *1 (-856))) (-1492 (*1 *1) (-4 *1 (-856))))
+(-13 (-862) (-379) (-10 -8 (-15 -1950 ($) -3712) (-15 -1492 ($) -3712)))
+(((-102) . T) ((-625 (-874)) . T) ((-379) . T) ((-862) . T) ((-1119) . T))
+((-3159 (((-112) (-1287 |#2|) (-1287 |#2|)) 19)) (-2091 (((-112) (-1287 |#2|) (-1287 |#2|)) 20)) (-4306 (((-112) (-1287 |#2|) (-1287 |#2|)) 16)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -4306 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -3159 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -2091 ((-112) (-1287 |#2|) (-1287 |#2|)))) (-783) (-804)) (T -857))
+((-2091 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-3159 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-4306 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
+(-10 -7 (-15 -4306 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -3159 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -2091 ((-112) (-1287 |#2|) (-1287 |#2|))))
+((-2835 (((-112) $ $) 7)) (-2574 (($) 24 T CONST)) (-4011 (((-3 $ "failed") $) 27)) (-1838 (((-112) $) 25)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2038 (($) 23 T CONST)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (** (($ $ (-938)) 22) (($ $ (-783)) 26)) (* (($ $ $) 21)))
+(((-858) (-141)) (T -858))
+NIL
+(-13 (-869) (-738))
+(((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-869) . T) ((-862) . T) ((-1131) . T) ((-1119) . T))
+((-1727 (((-576) $) 21)) (-2127 (((-112) $) 10)) (-3196 (((-112) $) 12)) (-3680 (($ $) 23)))
+(((-859 |#1|) (-10 -8 (-15 -3680 (|#1| |#1|)) (-15 -1727 ((-576) |#1|)) (-15 -3196 ((-112) |#1|)) (-15 -2127 ((-112) |#1|))) (-860)) (T -859))
+NIL
+(-10 -8 (-15 -3680 (|#1| |#1|)) (-15 -1727 ((-576) |#1|)) (-15 -3196 ((-112) |#1|)) (-15 -2127 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 25)) (-3161 (((-3 $ "failed") $ $) 27)) (-1727 (((-576) $) 37)) (-2574 (($) 24 T CONST)) (-4011 (((-3 $ "failed") $) 42)) (-2127 (((-112) $) 39)) (-1838 (((-112) $) 44)) (-3196 (((-112) $) 38)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 46)) (-2981 (((-783)) 47 T CONST)) (-2690 (((-112) $ $) 9)) (-3680 (($ $) 36)) (-2022 (($) 23 T CONST)) (-2038 (($) 45 T CONST)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (-4002 (($ $ $) 31) (($ $) 30)) (-3990 (($ $ $) 21)) (** (($ $ (-783)) 43) (($ $ (-938)) 40)) (* (($ (-938) $) 22) (($ (-783) $) 26) (($ (-576) $) 29) (($ $ $) 41)))
+(((-860) (-141)) (T -860))
+((-2127 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3196 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-3680 (*1 *1 *1) (-4 *1 (-860))))
+(-13 (-803) (-1068) (-738) (-10 -8 (-15 -2127 ((-112) $)) (-15 -3196 ((-112) $)) (-15 -1727 ((-576) $)) (-15 -3680 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-1950 (($ $ $) 12)) (-1492 (($ $ $) 11)) (-2690 (((-112) $ $) 9)) (-3956 (((-112) $ $) 15)) (-3930 (((-112) $ $) 13)) (-3944 (((-112) $ $) 16)))
+(((-861 |#1|) (-10 -8 (-15 -1950 (|#1| |#1| |#1|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -3944 ((-112) |#1| |#1|)) (-15 -3956 ((-112) |#1| |#1|)) (-15 -3930 ((-112) |#1| |#1|)) (-15 -2690 ((-112) |#1| |#1|))) (-862)) (T -861))
+NIL
+(-10 -8 (-15 -1950 (|#1| |#1| |#1|)) (-15 -1492 (|#1| |#1| |#1|)) (-15 -3944 ((-112) |#1| |#1|)) (-15 -3956 ((-112) |#1| |#1|)) (-15 -3930 ((-112) |#1| |#1|)) (-15 -2690 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)))
+(((-862) (-141)) (T -862))
+((-3916 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3930 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3956 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-1492 (*1 *1 *1 *1) (-4 *1 (-862))) (-1950 (*1 *1 *1 *1) (-4 *1 (-862))))
+(-13 (-1119) (-10 -8 (-15 -3916 ((-112) $ $)) (-15 -3930 ((-112) $ $)) (-15 -3956 ((-112) $ $)) (-15 -3944 ((-112) $ $)) (-15 -1492 ($ $ $)) (-15 -1950 ($ $ $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-3126 (($ $ $) 49)) (-2910 (($ $ $) 48)) (-3279 (($ $ $) 46)) (-2668 (($ $ $) 55)) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 50)) (-3154 (((-3 $ "failed") $ $) 53)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3420 (($ $) 39)) (-2534 (($ $ $) 43)) (-1956 (($ $ $) 42)) (-4385 (($ $ $) 51)) (-1687 (($ $ $) 57)) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 45)) (-1736 (((-3 $ "failed") $ $) 52)) (-2825 (((-3 $ "failed") $ |#2|) 32)) (-4325 ((|#2| $) 36)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-2461 (((-656 |#2|) $) 21)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-863 |#1| |#2|) (-10 -8 (-15 -4385 (|#1| |#1| |#1|)) (-15 -3039 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3633 |#1|)) |#1| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -3154 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3126 (|#1| |#1| |#1|)) (-15 -2910 (|#1| |#1| |#1|)) (-15 -3279 (|#1| |#1| |#1|)) (-15 -3701 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3633 |#1|)) |#1| |#1|)) (-15 -1687 (|#1| |#1| |#1|)) (-15 -1736 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2461 ((-656 |#2|) |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -2858 ((-874) |#1|))) (-864 |#2|) (-1068)) (T -863))
+NIL
+(-10 -8 (-15 -4385 (|#1| |#1| |#1|)) (-15 -3039 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3633 |#1|)) |#1| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -3154 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3126 (|#1| |#1| |#1|)) (-15 -2910 (|#1| |#1| |#1|)) (-15 -3279 (|#1| |#1| |#1|)) (-15 -3701 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3633 |#1|)) |#1| |#1|)) (-15 -1687 (|#1| |#1| |#1|)) (-15 -1736 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2825 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2461 ((-656 |#2|) |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-3126 (($ $ $) 50 (|has| |#1| (-374)))) (-2910 (($ $ $) 51 (|has| |#1| (-374)))) (-3279 (($ $ $) 53 (|has| |#1| (-374)))) (-2668 (($ $ $) 48 (|has| |#1| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 47 (|has| |#1| (-374)))) (-3154 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 52 (|has| |#1| (-374)))) (-2454 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-4397 (((-576) $) 79 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 75)) (-4404 (($ $) 69)) (-4011 (((-3 $ "failed") $) 37)) (-3420 (($ $) 60 (|has| |#1| (-464)))) (-1838 (((-112) $) 35)) (-2428 (($ |#1| (-783)) 67)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 62 (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63 (|has| |#1| (-568)))) (-4389 (((-783) $) 71)) (-2534 (($ $ $) 57 (|has| |#1| (-374)))) (-1956 (($ $ $) 58 (|has| |#1| (-374)))) (-4385 (($ $ $) 46 (|has| |#1| (-374)))) (-1687 (($ $ $) 55 (|has| |#1| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 54 (|has| |#1| (-374)))) (-1736 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 59 (|has| |#1| (-374)))) (-4379 ((|#1| $) 70)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-4436 (((-783) $) 72)) (-4325 ((|#1| $) 61 (|has| |#1| (-464)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 73)) (-2461 (((-656 |#1|) $) 66)) (-4417 ((|#1| $ (-783)) 68)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-1977 ((|#1| $ |#1| |#1|) 65)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-864 |#1|) (-141) (-1068)) (T -864))
+((-4436 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-4404 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-4417 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-656 *3)))) (-1977 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2825 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3)))) (-3422 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-3420 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-2168 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3)))) (-1956 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1736 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1687 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3701 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3633 *1))) (-4 *1 (-864 *3)))) (-3279 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2675 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3)))) (-2910 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3126 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3154 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2668 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3039 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3633 *1))) (-4 *1 (-864 *3)))) (-4385 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(-13 (-1068) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -4436 ((-783) $)) (-15 -4389 ((-783) $)) (-15 -4379 (|t#1| $)) (-15 -4404 ($ $)) (-15 -4417 (|t#1| $ (-783))) (-15 -2428 ($ |t#1| (-783))) (-15 -2461 ((-656 |t#1|) $)) (-15 -1977 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -2825 ((-3 $ "failed") $ |t#1|)) (-15 -3427 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -3422 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -4325 (|t#1| $)) (-15 -3420 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2168 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -1956 ($ $ $)) (-15 -2534 ($ $ $)) (-15 -1736 ((-3 $ "failed") $ $)) (-15 -1687 ($ $ $)) (-15 -3701 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $)) (-15 -3279 ($ $ $)) (-15 -2675 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -2910 ($ $ $)) (-15 -3126 ($ $ $)) (-15 -3154 ((-3 $ "failed") $ $)) (-15 -2668 ($ $ $)) (-15 -3039 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $)) (-15 -4385 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-3622 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2675 (((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-3422 (((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2168 (((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-1977 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33)))
+(((-865 |#1| |#2|) (-10 -7 (-15 -3622 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1977 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3427 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3422 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2168 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2675 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1068) (-864 |#1|)) (T -865))
+((-2675 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2168 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-3422 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-3427 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-1977 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))) (-3622 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5)))))
+(-10 -7 (-15 -3622 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1977 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3427 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3422 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2168 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2675 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3126 (($ $ $) NIL (|has| |#1| (-374)))) (-2910 (($ $ $) NIL (|has| |#1| (-374)))) (-3279 (($ $ $) NIL (|has| |#1| (-374)))) (-2668 (($ $ $) NIL (|has| |#1| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 34 (|has| |#1| (-374)))) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-1421 (((-874) $ (-874)) NIL)) (-1838 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) NIL)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 30 (|has| |#1| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 28 (|has| |#1| (-568)))) (-4389 (((-783) $) NIL)) (-2534 (($ $ $) NIL (|has| |#1| (-374)))) (-1956 (($ $ $) NIL (|has| |#1| (-374)))) (-4385 (($ $ $) NIL (|has| |#1| (-374)))) (-1687 (($ $ $) NIL (|has| |#1| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-1736 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 32 (|has| |#1| (-374)))) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4436 (((-783) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-464)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1977 ((|#1| $ |#1| |#1|) 15)) (-2022 (($) NIL T CONST)) (-2038 (($) 23 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) 19) (($ $ (-783)) 24)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-866 |#1| |#2| |#3|) (-13 (-864 |#1|) (-10 -8 (-15 -1421 ((-874) $ (-874))))) (-1068) (-99 |#1|) (-1 |#1| |#1|)) (T -866))
+((-1421 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-864 |#1|) (-10 -8 (-15 -1421 ((-874) $ (-874)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-3126 (($ $ $) NIL (|has| |#2| (-374)))) (-2910 (($ $ $) NIL (|has| |#2| (-374)))) (-3279 (($ $ $) NIL (|has| |#2| (-374)))) (-2668 (($ $ $) NIL (|has| |#2| (-374)))) (-3039 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#2| (-374)))) (-3154 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2675 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-374)))) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#2| (-464)))) (-1838 (((-112) $) NIL)) (-2428 (($ |#2| (-783)) 17)) (-3422 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-568)))) (-3427 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-568)))) (-4389 (((-783) $) NIL)) (-2534 (($ $ $) NIL (|has| |#2| (-374)))) (-1956 (($ $ $) NIL (|has| |#2| (-374)))) (-4385 (($ $ $) NIL (|has| |#2| (-374)))) (-1687 (($ $ $) NIL (|has| |#2| (-374)))) (-3701 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#2| (-374)))) (-1736 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2168 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-374)))) (-4379 ((|#2| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-4436 (((-783) $) NIL)) (-4325 ((|#2| $) NIL (|has| |#2| (-464)))) (-2858 (((-874) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (($ (-1283 |#1|)) 19)) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-783)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1977 ((|#2| $ |#2| |#2|) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) 13 T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-867 |#1| |#2| |#3| |#4|) (-13 (-864 |#2|) (-628 (-1283 |#1|))) (-1196) (-1068) (-99 |#2|) (-1 |#2| |#2|)) (T -867))
+NIL
+(-13 (-864 |#2|) (-628 (-1283 |#1|)))
+((-1704 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-1763 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-1335 ((|#1| (-783) |#1|) 40)) (-4218 ((|#1| (-783) |#1|) 38)) (-3786 ((|#1| (-783) |#1|) 37)))
+(((-868 |#1|) (-10 -7 (-15 -3786 (|#1| (-783) |#1|)) (-15 -4218 (|#1| (-783) |#1|)) (-15 -1335 (|#1| (-783) |#1|)) (-15 -1763 (|#1| (-783) |#1|)) (-15 -1763 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1704 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -868))
+((-1704 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1763 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1763 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1335 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-4218 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-3786 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))))
+(-10 -7 (-15 -3786 (|#1| (-783) |#1|)) (-15 -4218 (|#1| (-783) |#1|)) (-15 -1335 (|#1| (-783) |#1|)) (-15 -1763 (|#1| (-783) |#1|)) (-15 -1763 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1704 (|#1| (-783) |#1|)) |%noBranch|))
+((-2835 (((-112) $ $) 7)) (-1950 (($ $ $) 14)) (-1492 (($ $ $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3956 (((-112) $ $) 17)) (-3930 (((-112) $ $) 18)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 16)) (-3916 (((-112) $ $) 19)) (** (($ $ (-938)) 22)) (* (($ $ $) 21)))
+(((-869) (-141)) (T -869))
+NIL
+(-13 (-862) (-1131))
+(((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-4160 (((-576) $) 14)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 20) (($ (-576)) 13)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 9)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 11)))
+(((-870) (-13 (-862) (-10 -8 (-15 -2858 ($ (-576))) (-15 -4160 ((-576) $))))) (T -870))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870)))))
+(-13 (-862) (-10 -8 (-15 -2858 ($ (-576))) (-15 -4160 ((-576) $))))
+((-4424 (((-703 (-1245)) $ (-1245)) 15)) (-2505 (((-703 (-561)) $ (-561)) 12)) (-1608 (((-783) $ (-129)) 30)))
+(((-871 |#1|) (-10 -8 (-15 -1608 ((-783) |#1| (-129))) (-15 -4424 ((-703 (-1245)) |#1| (-1245))) (-15 -2505 ((-703 (-561)) |#1| (-561)))) (-872)) (T -871))
+NIL
+(-10 -8 (-15 -1608 ((-783) |#1| (-129))) (-15 -4424 ((-703 (-1245)) |#1| (-1245))) (-15 -2505 ((-703 (-561)) |#1| (-561))))
+((-4424 (((-703 (-1245)) $ (-1245)) 8)) (-2505 (((-703 (-561)) $ (-561)) 9)) (-1608 (((-783) $ (-129)) 7)) (-1400 (((-703 (-130)) $ (-130)) 10)) (-1723 (($ $) 6)))
+(((-872) (-141)) (T -872))
+((-1400 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-2505 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-4424 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1245))) (-5 *3 (-1245)))) (-1608 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(-13 (-175) (-10 -8 (-15 -1400 ((-703 (-130)) $ (-130))) (-15 -2505 ((-703 (-561)) $ (-561))) (-15 -4424 ((-703 (-1245)) $ (-1245))) (-15 -1608 ((-783) $ (-129)))))
(((-175) . T))
-((-4155 (((-702 (-1243)) $ (-1243)) NIL)) (-1591 (((-702 (-560)) $ (-560)) NIL)) (-1596 (((-782) $ (-129)) NIL)) (-3614 (((-702 (-130)) $ (-130)) 22)) (-2996 (($ (-399)) 12) (($ (-1176)) 14)) (-2223 (((-112) $) 19)) (-2882 (((-873) $) 26)) (-3265 (($ $) 23)))
-(((-872) (-13 (-871) (-624 (-873)) (-10 -8 (-15 -2996 ($ (-399))) (-15 -2996 ($ (-1176))) (-15 -2223 ((-112) $))))) (T -872))
-((-2996 (*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-872)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-872)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))))
-(-13 (-871) (-624 (-873)) (-10 -8 (-15 -2996 ($ (-399))) (-15 -2996 ($ (-1176))) (-15 -2223 ((-112) $))))
-((-2859 (((-112) $ $) NIL) (($ $ $) 85)) (-1371 (($ $ $) 125)) (-2235 (((-575) $) 31) (((-575)) 36)) (-2186 (($ (-575)) 53)) (-1560 (($ $ $) 54) (($ (-655 $)) 84)) (-4196 (($ $ (-655 $)) 82)) (-1639 (((-575) $) 34)) (-2239 (($ $ $) 73)) (-4376 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3876 (((-575) $) 33)) (-3966 (($ $ $) 72)) (-1650 (($ $) 114)) (-1490 (($ $ $) 129)) (-3068 (($ (-655 $)) 61)) (-1850 (($ $ (-655 $)) 79)) (-2084 (($ (-575) (-575)) 55)) (-3956 (($ $) 126) (($ $ $) 127)) (-2429 (($ $ (-575)) 43) (($ $) 46)) (-2800 (($ $ $) 97)) (-4023 (($ $ $) 132)) (-2147 (($ $) 115)) (-2811 (($ $ $) 98)) (-3989 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3518 (((-1290) $) 10)) (-4210 (($ $) 118) (($ $ (-782)) 122)) (-3755 (($ $ $) 75)) (-1405 (($ $ $) 74)) (-2489 (($ $ (-655 $)) 110)) (-2218 (($ $ $) 113)) (-1677 (($ (-655 $)) 59)) (-1412 (($ $) 70) (($ (-655 $)) 71)) (-3137 (($ $ $) 123)) (-3979 (($ $) 116)) (-3642 (($ $ $) 128)) (-2830 (($ (-575)) 21) (($ (-1194)) 23) (($ (-1176)) 30) (($ (-227)) 25)) (-3236 (($ $ $) 101)) (-3213 (($ $) 102)) (-1784 (((-1290) (-1176)) 15)) (-3975 (($ (-1176)) 14)) (-4316 (($ (-655 (-655 $))) 58)) (-2412 (($ $ (-575)) 42) (($ $) 45)) (-4264 (((-1176) $) NIL)) (-1766 (($ $ $) 131)) (-2514 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3526 (((-112) $) 108)) (-2763 (($ $ (-655 $)) 111) (($ $ $ $) 112)) (-1812 (($ (-575)) 39)) (-3340 (((-575) $) 32) (((-575)) 35)) (-1476 (($ $ $) 40) (($ (-655 $)) 83)) (-3912 (((-1137) $) NIL)) (-2849 (($ $ $) 99)) (-1393 (($) 13)) (-2065 (($ $ (-655 $)) 109)) (-2713 (((-1176) (-1176)) 8)) (-2988 (($ $) 117) (($ $ (-782)) 121)) (-2836 (($ $ $) 96)) (-2382 (($ $ (-782)) 139)) (-1616 (($ (-655 $)) 60)) (-2882 (((-873) $) 19)) (-1751 (($ $ (-575)) 41) (($ $) 44)) (-1526 (($ $) 68) (($ (-655 $)) 69)) (-2550 (($ $) 66) (($ (-655 $)) 67)) (-2394 (($ $) 124)) (-1584 (($ (-655 $)) 65)) (-2266 (($ $ $) 105)) (-3685 (((-112) $ $) NIL)) (-4069 (($ $ $) 130)) (-3224 (($ $ $) 100)) (-1859 (($ $ $) 103) (($ $) 104)) (-3980 (($ $ $) 89)) (-3955 (($ $ $) 87)) (-3913 (((-112) $ $) 16) (($ $ $) 17)) (-3967 (($ $ $) 88)) (-3940 (($ $ $) 86)) (-4038 (($ $ $) 94)) (-4027 (($ $ $) 91) (($ $) 92)) (-4015 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-873) (-13 (-1117) (-10 -8 (-15 -3518 ((-1290) $)) (-15 -3975 ($ (-1176))) (-15 -1784 ((-1290) (-1176))) (-15 -2830 ($ (-575))) (-15 -2830 ($ (-1194))) (-15 -2830 ($ (-1176))) (-15 -2830 ($ (-227))) (-15 -1393 ($)) (-15 -2713 ((-1176) (-1176))) (-15 -2235 ((-575) $)) (-15 -3340 ((-575) $)) (-15 -2235 ((-575))) (-15 -3340 ((-575))) (-15 -3876 ((-575) $)) (-15 -1639 ((-575) $)) (-15 -1812 ($ (-575))) (-15 -2186 ($ (-575))) (-15 -2084 ($ (-575) (-575))) (-15 -2412 ($ $ (-575))) (-15 -2429 ($ $ (-575))) (-15 -1751 ($ $ (-575))) (-15 -2412 ($ $)) (-15 -2429 ($ $)) (-15 -1751 ($ $)) (-15 -1476 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -1476 ($ (-655 $))) (-15 -1560 ($ (-655 $))) (-15 -2489 ($ $ (-655 $))) (-15 -2763 ($ $ (-655 $))) (-15 -2763 ($ $ $ $)) (-15 -2218 ($ $ $)) (-15 -3526 ((-112) $)) (-15 -2065 ($ $ (-655 $))) (-15 -1650 ($ $)) (-15 -1766 ($ $ $)) (-15 -2394 ($ $)) (-15 -4316 ($ (-655 (-655 $)))) (-15 -1371 ($ $ $)) (-15 -3956 ($ $)) (-15 -3956 ($ $ $)) (-15 -3642 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -4069 ($ $ $)) (-15 -4023 ($ $ $)) (-15 -2382 ($ $ (-782))) (-15 -2266 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -2239 ($ $ $)) (-15 -1405 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -1850 ($ $ (-655 $))) (-15 -4196 ($ $ (-655 $))) (-15 -2147 ($ $)) (-15 -2988 ($ $)) (-15 -2988 ($ $ (-782))) (-15 -4210 ($ $)) (-15 -4210 ($ $ (-782))) (-15 -3979 ($ $)) (-15 -3137 ($ $ $)) (-15 -4376 ($ $)) (-15 -4376 ($ $ $)) (-15 -4376 ($ $ $ $)) (-15 -3989 ($ $)) (-15 -3989 ($ $ $)) (-15 -3989 ($ $ $ $)) (-15 -2514 ($ $)) (-15 -2514 ($ $ $)) (-15 -2514 ($ $ $ $)) (-15 -2550 ($ $)) (-15 -2550 ($ (-655 $))) (-15 -1526 ($ $)) (-15 -1526 ($ (-655 $))) (-15 -1412 ($ $)) (-15 -1412 ($ (-655 $))) (-15 -1677 ($ (-655 $))) (-15 -1616 ($ (-655 $))) (-15 -3068 ($ (-655 $))) (-15 -1584 ($ (-655 $))) (-15 -3913 ($ $ $)) (-15 -2859 ($ $ $)) (-15 -3940 ($ $ $)) (-15 -3955 ($ $ $)) (-15 -3967 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -4027 ($ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ $)) (-15 -2836 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -3213 ($ $)) (-15 -1859 ($ $ $)) (-15 -1859 ($ $))))) (T -873))
-((-3518 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-873)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-873)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-873)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-873)))) (-1393 (*1 *1) (-5 *1 (-873))) (-2713 (*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2235 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3340 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2186 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2084 (*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2412 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))) (-2412 (*1 *1 *1) (-5 *1 (-873))) (-2429 (*1 *1 *1) (-5 *1 (-873))) (-1751 (*1 *1 *1) (-5 *1 (-873))) (-1476 (*1 *1 *1 *1) (-5 *1 (-873))) (-1560 (*1 *1 *1 *1) (-5 *1 (-873))) (-1476 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2763 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2763 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-2218 (*1 *1 *1 *1) (-5 *1 (-873))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1650 (*1 *1 *1) (-5 *1 (-873))) (-1766 (*1 *1 *1 *1) (-5 *1 (-873))) (-2394 (*1 *1 *1) (-5 *1 (-873))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-873)))) (-1371 (*1 *1 *1 *1) (-5 *1 (-873))) (-3956 (*1 *1 *1) (-5 *1 (-873))) (-3956 (*1 *1 *1 *1) (-5 *1 (-873))) (-3642 (*1 *1 *1 *1) (-5 *1 (-873))) (-1490 (*1 *1 *1 *1) (-5 *1 (-873))) (-4069 (*1 *1 *1 *1) (-5 *1 (-873))) (-4023 (*1 *1 *1 *1) (-5 *1 (-873))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) (-2266 (*1 *1 *1 *1) (-5 *1 (-873))) (-3966 (*1 *1 *1 *1) (-5 *1 (-873))) (-2239 (*1 *1 *1 *1) (-5 *1 (-873))) (-1405 (*1 *1 *1 *1) (-5 *1 (-873))) (-3755 (*1 *1 *1 *1) (-5 *1 (-873))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-2147 (*1 *1 *1) (-5 *1 (-873))) (-2988 (*1 *1 *1) (-5 *1 (-873))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) (-4210 (*1 *1 *1) (-5 *1 (-873))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873)))) (-3979 (*1 *1 *1) (-5 *1 (-873))) (-3137 (*1 *1 *1 *1) (-5 *1 (-873))) (-4376 (*1 *1 *1) (-5 *1 (-873))) (-4376 (*1 *1 *1 *1) (-5 *1 (-873))) (-4376 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-3989 (*1 *1 *1) (-5 *1 (-873))) (-3989 (*1 *1 *1 *1) (-5 *1 (-873))) (-3989 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-2514 (*1 *1 *1) (-5 *1 (-873))) (-2514 (*1 *1 *1 *1) (-5 *1 (-873))) (-2514 (*1 *1 *1 *1 *1) (-5 *1 (-873))) (-2550 (*1 *1 *1) (-5 *1 (-873))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1526 (*1 *1 *1) (-5 *1 (-873))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1412 (*1 *1 *1) (-5 *1 (-873))) (-1412 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1677 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-1584 (*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))) (-3913 (*1 *1 *1 *1) (-5 *1 (-873))) (-2859 (*1 *1 *1 *1) (-5 *1 (-873))) (-3940 (*1 *1 *1 *1) (-5 *1 (-873))) (-3955 (*1 *1 *1 *1) (-5 *1 (-873))) (-3967 (*1 *1 *1 *1) (-5 *1 (-873))) (-3980 (*1 *1 *1 *1) (-5 *1 (-873))) (-4015 (*1 *1 *1 *1) (-5 *1 (-873))) (-4027 (*1 *1 *1 *1) (-5 *1 (-873))) (-4027 (*1 *1 *1) (-5 *1 (-873))) (* (*1 *1 *1 *1) (-5 *1 (-873))) (-4038 (*1 *1 *1 *1) (-5 *1 (-873))) (** (*1 *1 *1 *1) (-5 *1 (-873))) (-2836 (*1 *1 *1 *1) (-5 *1 (-873))) (-2800 (*1 *1 *1 *1) (-5 *1 (-873))) (-2811 (*1 *1 *1 *1) (-5 *1 (-873))) (-2849 (*1 *1 *1 *1) (-5 *1 (-873))) (-3224 (*1 *1 *1 *1) (-5 *1 (-873))) (-3236 (*1 *1 *1 *1) (-5 *1 (-873))) (-3213 (*1 *1 *1) (-5 *1 (-873))) (-1859 (*1 *1 *1 *1) (-5 *1 (-873))) (-1859 (*1 *1 *1) (-5 *1 (-873))))
-(-13 (-1117) (-10 -8 (-15 -3518 ((-1290) $)) (-15 -3975 ($ (-1176))) (-15 -1784 ((-1290) (-1176))) (-15 -2830 ($ (-575))) (-15 -2830 ($ (-1194))) (-15 -2830 ($ (-1176))) (-15 -2830 ($ (-227))) (-15 -1393 ($)) (-15 -2713 ((-1176) (-1176))) (-15 -2235 ((-575) $)) (-15 -3340 ((-575) $)) (-15 -2235 ((-575))) (-15 -3340 ((-575))) (-15 -3876 ((-575) $)) (-15 -1639 ((-575) $)) (-15 -1812 ($ (-575))) (-15 -2186 ($ (-575))) (-15 -2084 ($ (-575) (-575))) (-15 -2412 ($ $ (-575))) (-15 -2429 ($ $ (-575))) (-15 -1751 ($ $ (-575))) (-15 -2412 ($ $)) (-15 -2429 ($ $)) (-15 -1751 ($ $)) (-15 -1476 ($ $ $)) (-15 -1560 ($ $ $)) (-15 -1476 ($ (-655 $))) (-15 -1560 ($ (-655 $))) (-15 -2489 ($ $ (-655 $))) (-15 -2763 ($ $ (-655 $))) (-15 -2763 ($ $ $ $)) (-15 -2218 ($ $ $)) (-15 -3526 ((-112) $)) (-15 -2065 ($ $ (-655 $))) (-15 -1650 ($ $)) (-15 -1766 ($ $ $)) (-15 -2394 ($ $)) (-15 -4316 ($ (-655 (-655 $)))) (-15 -1371 ($ $ $)) (-15 -3956 ($ $)) (-15 -3956 ($ $ $)) (-15 -3642 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -4069 ($ $ $)) (-15 -4023 ($ $ $)) (-15 -2382 ($ $ (-782))) (-15 -2266 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -2239 ($ $ $)) (-15 -1405 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -1850 ($ $ (-655 $))) (-15 -4196 ($ $ (-655 $))) (-15 -2147 ($ $)) (-15 -2988 ($ $)) (-15 -2988 ($ $ (-782))) (-15 -4210 ($ $)) (-15 -4210 ($ $ (-782))) (-15 -3979 ($ $)) (-15 -3137 ($ $ $)) (-15 -4376 ($ $)) (-15 -4376 ($ $ $)) (-15 -4376 ($ $ $ $)) (-15 -3989 ($ $)) (-15 -3989 ($ $ $)) (-15 -3989 ($ $ $ $)) (-15 -2514 ($ $)) (-15 -2514 ($ $ $)) (-15 -2514 ($ $ $ $)) (-15 -2550 ($ $)) (-15 -2550 ($ (-655 $))) (-15 -1526 ($ $)) (-15 -1526 ($ (-655 $))) (-15 -1412 ($ $)) (-15 -1412 ($ (-655 $))) (-15 -1677 ($ (-655 $))) (-15 -1616 ($ (-655 $))) (-15 -3068 ($ (-655 $))) (-15 -1584 ($ (-655 $))) (-15 -3913 ($ $ $)) (-15 -2859 ($ $ $)) (-15 -3940 ($ $ $)) (-15 -3955 ($ $ $)) (-15 -3967 ($ $ $)) (-15 -3980 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -4027 ($ $)) (-15 * ($ $ $)) (-15 -4038 ($ $ $)) (-15 ** ($ $ $)) (-15 -2836 ($ $ $)) (-15 -2800 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -3213 ($ $)) (-15 -1859 ($ $ $)) (-15 -1859 ($ $))))
-((-1416 (((-1290) (-655 (-52))) 23)) (-3720 (((-1290) (-1176) (-873)) 13) (((-1290) (-873)) 8) (((-1290) (-1176)) 10)))
-(((-874) (-10 -7 (-15 -3720 ((-1290) (-1176))) (-15 -3720 ((-1290) (-873))) (-15 -3720 ((-1290) (-1176) (-873))) (-15 -1416 ((-1290) (-655 (-52)))))) (T -874))
-((-1416 (*1 *2 *3) (-12 (-5 *3 (-655 (-52))) (-5 *2 (-1290)) (-5 *1 (-874)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-874)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-874)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-874)))))
-(-10 -7 (-15 -3720 ((-1290) (-1176))) (-15 -3720 ((-1290) (-873))) (-15 -3720 ((-1290) (-1176) (-873))) (-15 -1416 ((-1290) (-655 (-52)))))
-((-2859 (((-112) $ $) NIL)) (-1441 (((-3 $ "failed") (-1194)) 36)) (-2409 (((-782)) 32)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) 29)) (-4264 (((-1176) $) 43)) (-4317 (($ (-936)) 28)) (-3912 (((-1137) $) NIL)) (-2613 (((-1194) $) 13) (((-547) $) 19) (((-904 (-389)) $) 26) (((-904 (-575)) $) 22)) (-2882 (((-873) $) 16)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 40)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 38)))
-(((-875 |#1|) (-13 (-855) (-625 (-1194)) (-625 (-547)) (-625 (-904 (-389))) (-625 (-904 (-575))) (-10 -8 (-15 -1441 ((-3 $ "failed") (-1194))))) (-655 (-1194))) (T -875))
-((-1441 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-875 *3)) (-14 *3 (-655 *2)))))
-(-13 (-855) (-625 (-1194)) (-625 (-547)) (-625 (-904 (-389))) (-625 (-904 (-575))) (-10 -8 (-15 -1441 ((-3 $ "failed") (-1194)))))
-((-2859 (((-112) $ $) NIL)) (-1777 (((-517) $) 9)) (-4252 (((-655 (-450)) $) 13)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 21)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 16)))
-(((-876) (-13 (-1117) (-10 -8 (-15 -1777 ((-517) $)) (-15 -4252 ((-655 (-450)) $))))) (T -876))
-((-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-876)))) (-4252 (*1 *2 *1) (-12 (-5 *2 (-655 (-450))) (-5 *1 (-876)))))
-(-13 (-1117) (-10 -8 (-15 -1777 ((-517) $)) (-15 -4252 ((-655 (-450)) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-967 |#1|)) NIL) (((-967 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-4421 (((-782)) NIL T CONST)) (-3873 (((-1290) (-782)) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-877 |#1| |#2| |#3| |#4|) (-13 (-1066) (-501 (-967 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3873 ((-1290) (-782))))) (-1066) (-655 (-1194)) (-655 (-782)) (-782)) (T -877))
-((-4038 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-877 *2 *3 *4 *5)) (-4 *2 (-373)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-782))) (-14 *5 (-782)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-877 *4 *5 *6 *7)) (-4 *4 (-1066)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 *3)) (-14 *7 *3))))
-(-13 (-1066) (-501 (-967 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3873 ((-1290) (-782)))))
-((-3443 (((-3 (-176 |#3|) "failed") (-782) (-782) |#2| |#2|) 38)) (-4382 (((-3 (-418 |#3|) "failed") (-782) (-782) |#2| |#2|) 29)))
-(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -4382 ((-3 (-418 |#3|) "failed") (-782) (-782) |#2| |#2|)) (-15 -3443 ((-3 (-176 |#3|) "failed") (-782) (-782) |#2| |#2|))) (-373) (-1276 |#1|) (-1261 |#1|)) (T -878))
-((-3443 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-176 *6)) (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5)))) (-4382 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-418 *6)) (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5)))))
-(-10 -7 (-15 -4382 ((-3 (-418 |#3|) "failed") (-782) (-782) |#2| |#2|)) (-15 -3443 ((-3 (-176 |#3|) "failed") (-782) (-782) |#2| |#2|)))
-((-4382 (((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|)) 30) (((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) 28)))
-(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -4382 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (-15 -4382 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|)))) (-373) (-1194) |#1|) (T -879))
-((-4382 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373)) (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5))) (-5 *1 (-879 *5 *6 *7)))) (-4382 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373)) (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5))) (-5 *1 (-879 *5 *6 *7)))))
-(-10 -7 (-15 -4382 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (-15 -4382 ((-3 (-418 (-1258 |#2| |#1|)) "failed") (-782) (-782) (-1277 |#1| |#2| |#3|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-2467 (($ $ (-575)) 68)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-3956 (($ (-1190 (-575)) (-575)) 67)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2066 (($ $) 70)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3369 (((-782) $) 75)) (-3900 (((-112) $) 35)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1444 (((-575)) 72)) (-3593 (((-575) $) 71)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1985 (($ $ (-575)) 74)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2323 (((-1174 (-575)) $) 76)) (-3575 (($ $) 73)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-3493 (((-575) $ (-575)) 69)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-880 |#1|) (-141) (-575)) (T -880))
-((-2323 (*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-1174 (-575))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-782)))) (-1985 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-3575 (*1 *1 *1) (-4 *1 (-880 *2))) (-1444 (*1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-2066 (*1 *1 *1) (-4 *1 (-880 *2))) (-3493 (*1 *2 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-2467 (*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))) (-3956 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *3 (-575)) (-4 *1 (-880 *4)))))
-(-13 (-316) (-148) (-10 -8 (-15 -2323 ((-1174 (-575)) $)) (-15 -3369 ((-782) $)) (-15 -1985 ($ $ (-575))) (-15 -3575 ($ $)) (-15 -1444 ((-575))) (-15 -3593 ((-575) $)) (-15 -2066 ($ $)) (-15 -3493 ((-575) $ (-575))) (-15 -2467 ($ $ (-575))) (-15 -3956 ($ (-1190 (-575)) (-575)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-316) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $ (-575)) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-3956 (($ (-1190 (-575)) (-575)) NIL)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2066 (($ $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3369 (((-782) $) NIL)) (-3900 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1444 (((-575)) NIL)) (-3593 (((-575) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1985 (($ $ (-575)) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2323 (((-1174 (-575)) $) NIL)) (-3575 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-575) $ (-575)) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL)))
-(((-881 |#1|) (-880 |#1|) (-575)) (T -881))
-NIL
-(-880 |#1|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-881 |#1|) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-881 |#1|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| (-881 |#1|) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-881 |#1|) (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| (-881 |#1|) (-1055 (-575))))) (-4400 (((-881 |#1|) $) NIL) (((-1194) $) NIL (|has| (-881 |#1|) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-881 |#1|) (-1055 (-575)))) (((-575) $) NIL (|has| (-881 |#1|) (-1055 (-575))))) (-3709 (($ $) NIL) (($ (-575) $) NIL)) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-881 |#1|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-881 |#1|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-881 |#1|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-881 |#1|))) (|:| |vec| (-1285 (-881 |#1|)))) (-700 $) (-1285 $)) NIL) (((-700 (-881 |#1|)) (-700 $)) NIL) (((-700 (-881 |#1|)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-881 |#1|) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| (-881 |#1|) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-881 |#1|) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-881 |#1|) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-881 |#1|) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| (-881 |#1|) (-1169)))) (-1721 (((-112) $) NIL (|has| (-881 |#1|) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-881 |#1|) (-861)))) (-3503 (($ $ $) NIL (|has| (-881 |#1|) (-861)))) (-2544 (($ (-1 (-881 |#1|) (-881 |#1|)) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-881 |#1|) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-881 |#1|) (-316)))) (-3920 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-881 |#1|) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-881 |#1|)) (-655 (-881 |#1|))) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-881 |#1|) (-881 |#1|)) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-303 (-881 |#1|))) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-655 (-303 (-881 |#1|)))) NIL (|has| (-881 |#1|) (-318 (-881 |#1|)))) (($ $ (-655 (-1194)) (-655 (-881 |#1|))) NIL (|has| (-881 |#1|) (-525 (-1194) (-881 |#1|)))) (($ $ (-1194) (-881 |#1|)) NIL (|has| (-881 |#1|) (-525 (-1194) (-881 |#1|))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-881 |#1|)) NIL (|has| (-881 |#1|) (-295 (-881 |#1|) (-881 |#1|))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-881 |#1|) (-881 |#1|))) NIL) (($ $ (-1 (-881 |#1|) (-881 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-881 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-881 |#1|) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-881 |#1|) $) NIL)) (-2613 (((-904 (-575)) $) NIL (|has| (-881 |#1|) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-881 |#1|) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-881 |#1|) (-625 (-547)))) (((-389) $) NIL (|has| (-881 |#1|) (-1039))) (((-227) $) NIL (|has| (-881 |#1|) (-1039)))) (-4313 (((-176 (-418 (-575))) $) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-881 |#1|) (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL) (($ (-881 |#1|)) NIL) (($ (-1194)) NIL (|has| (-881 |#1|) (-1055 (-1194))))) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-881 |#1|) (-924))) (|has| (-881 |#1|) (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 (((-881 |#1|) $) NIL (|has| (-881 |#1|) (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-418 (-575)) $ (-575)) NIL)) (-3863 (($ $) NIL (|has| (-881 |#1|) (-831)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-881 |#1|) (-881 |#1|))) NIL) (($ $ (-1 (-881 |#1|) (-881 |#1|)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-881 |#1|) (-915 (-1194)))) (($ $) NIL (|has| (-881 |#1|) (-237))) (($ $ (-782)) NIL (|has| (-881 |#1|) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-881 |#1|) (-861)))) (-4038 (($ $ $) NIL) (($ (-881 |#1|) (-881 |#1|)) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-881 |#1|) $) NIL) (($ $ (-881 |#1|)) NIL)))
-(((-882 |#1|) (-13 (-1009 (-881 |#1|)) (-10 -8 (-15 -3493 ((-418 (-575)) $ (-575))) (-15 -4313 ((-176 (-418 (-575))) $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $)))) (-575)) (T -882))
-((-3493 (*1 *2 *1 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-882 *4)) (-14 *4 *3) (-5 *3 (-575)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-882 *3)) (-14 *3 (-575)))) (-3709 (*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-14 *2 (-575)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-882 *3)) (-14 *3 *2))))
-(-13 (-1009 (-881 |#1|)) (-10 -8 (-15 -3493 ((-418 (-575)) $ (-575))) (-15 -4313 ((-176 (-418 (-575))) $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 ((|#2| $) NIL (|has| |#2| (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| |#2| (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (|has| |#2| (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575))))) (-4400 ((|#2| $) NIL) (((-1194) $) NIL (|has| |#2| (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-575)))) (((-575) $) NIL (|has| |#2| (-1055 (-575))))) (-3709 (($ $) 35) (($ (-575) $) 38)) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) 64)) (-2073 (($) NIL (|has| |#2| (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) NIL (|has| |#2| (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| |#2| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| |#2| (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 ((|#2| $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#2| (-1169)))) (-1721 (((-112) $) NIL (|has| |#2| (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| |#2| (-861)))) (-3503 (($ $ $) NIL (|has| |#2| (-861)))) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 60)) (-3472 (($) NIL (|has| |#2| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| |#2| (-316)))) (-3920 ((|#2| $) NIL (|has| |#2| (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 |#2|) (-655 |#2|)) NIL (|has| |#2| (-318 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-318 |#2|))) (($ $ (-303 |#2|)) NIL (|has| |#2| (-318 |#2|))) (($ $ (-655 (-303 |#2|))) NIL (|has| |#2| (-318 |#2|))) (($ $ (-655 (-1194)) (-655 |#2|)) NIL (|has| |#2| (-525 (-1194) |#2|))) (($ $ (-1194) |#2|) NIL (|has| |#2| (-525 (-1194) |#2|)))) (-1720 (((-782) $) NIL)) (-2065 (($ $ |#2|) NIL (|has| |#2| (-295 |#2| |#2|)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237)))) (-2325 (($ $) NIL)) (-1608 ((|#2| $) NIL)) (-2613 (((-904 (-575)) $) NIL (|has| |#2| (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| |#2| (-625 (-904 (-389))))) (((-547) $) NIL (|has| |#2| (-625 (-547)))) (((-389) $) NIL (|has| |#2| (-1039))) (((-227) $) NIL (|has| |#2| (-1039)))) (-4313 (((-176 (-418 (-575))) $) 78)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-2882 (((-873) $) 106) (($ (-575)) 20) (($ $) NIL) (($ (-418 (-575))) 25) (($ |#2|) 19) (($ (-1194)) NIL (|has| |#2| (-1055 (-1194))))) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-4421 (((-782)) NIL T CONST)) (-4248 ((|#2| $) NIL (|has| |#2| (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-418 (-575)) $ (-575)) 71)) (-3863 (($ $) NIL (|has| |#2| (-831)))) (-1989 (($) 15 T CONST)) (-2005 (($) 17 T CONST)) (-3428 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237)))) (-3980 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3913 (((-112) $ $) 46)) (-3967 (((-112) $ $) NIL (|has| |#2| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#2| (-861)))) (-4038 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4027 (($ $) 50) (($ $ $) 52)) (-4015 (($ $ $) 48)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) 61)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 53) (($ $ $) 55) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-883 |#1| |#2|) (-13 (-1009 |#2|) (-10 -8 (-15 -3493 ((-418 (-575)) $ (-575))) (-15 -4313 ((-176 (-418 (-575))) $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $)))) (-575) (-880 |#1|)) (T -883))
-((-3493 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-418 (-575))) (-5 *1 (-883 *4 *5)) (-5 *3 (-575)) (-4 *5 (-880 *4)))) (-4313 (*1 *2 *1) (-12 (-14 *3 (-575)) (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-883 *3 *4)) (-4 *4 (-880 *3)))) (-3709 (*1 *1 *1) (-12 (-14 *2 (-575)) (-5 *1 (-883 *2 *3)) (-4 *3 (-880 *2)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-14 *3 *2) (-5 *1 (-883 *3 *4)) (-4 *4 (-880 *3)))))
-(-13 (-1009 |#2|) (-10 -8 (-15 -3493 ((-418 (-575)) $ (-575))) (-15 -4313 ((-176 (-418 (-575))) $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $))))
-((-2859 (((-112) $ $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-2975 ((|#2| $) 12)) (-4351 (($ |#1| |#2|) 9)) (-4264 (((-1176) $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-3912 (((-1137) $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#1| $) 11)) (-2893 (($ |#1| |#2|) 10)) (-2882 (((-873) $) 18 (-3763 (-12 (|has| |#1| (-624 (-873))) (|has| |#2| (-624 (-873)))) (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117)))))) (-3685 (((-112) $ $) NIL (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))) (-3913 (((-112) $ $) 23 (-12 (|has| |#1| (-1117)) (|has| |#2| (-1117))))))
-(((-884 |#1| |#2|) (-13 (-1235) (-10 -8 (IF (|has| |#1| (-624 (-873))) (IF (|has| |#2| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1117)) (IF (|has| |#2| (-1117)) (-6 (-1117)) |%noBranch|) |%noBranch|) (-15 -4351 ($ |#1| |#2|)) (-15 -2893 ($ |#1| |#2|)) (-15 -1955 (|#1| $)) (-15 -2975 (|#2| $)))) (-1235) (-1235)) (T -884))
-((-4351 (*1 *1 *2 *3) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235)))) (-1955 (*1 *2 *1) (-12 (-4 *2 (-1235)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1235)))) (-2975 (*1 *2 *1) (-12 (-4 *2 (-1235)) (-5 *1 (-884 *3 *2)) (-4 *3 (-1235)))))
-(-13 (-1235) (-10 -8 (IF (|has| |#1| (-624 (-873))) (IF (|has| |#2| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1117)) (IF (|has| |#2| (-1117)) (-6 (-1117)) |%noBranch|) |%noBranch|) (-15 -4351 ($ |#1| |#2|)) (-15 -2893 ($ |#1| |#2|)) (-15 -1955 (|#1| $)) (-15 -2975 (|#2| $))))
-((-2859 (((-112) $ $) NIL)) (-3285 (((-575) $) 16)) (-1688 (($ (-158)) 13)) (-3572 (($ (-158)) 14)) (-4264 (((-1176) $) NIL)) (-3803 (((-158) $) 15)) (-3912 (((-1137) $) NIL)) (-2831 (($ (-158)) 11)) (-2180 (($ (-158)) 10)) (-2882 (((-873) $) 24) (($ (-158)) 17)) (-3019 (($ (-158)) 12)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-885) (-13 (-1117) (-10 -8 (-15 -2180 ($ (-158))) (-15 -2831 ($ (-158))) (-15 -3019 ($ (-158))) (-15 -1688 ($ (-158))) (-15 -3572 ($ (-158))) (-15 -3803 ((-158) $)) (-15 -3285 ((-575) $)) (-15 -2882 ($ (-158)))))) (T -885))
-((-2180 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-1688 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-885)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-885)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))))
-(-13 (-1117) (-10 -8 (-15 -2180 ($ (-158))) (-15 -2831 ($ (-158))) (-15 -3019 ($ (-158))) (-15 -1688 ($ (-158))) (-15 -3572 ($ (-158))) (-15 -3803 ((-158) $)) (-15 -3285 ((-575) $)) (-15 -2882 ($ (-158)))))
-((-2882 (((-325 (-575)) (-418 (-967 (-48)))) 23) (((-325 (-575)) (-967 (-48))) 18)))
-(((-886) (-10 -7 (-15 -2882 ((-325 (-575)) (-967 (-48)))) (-15 -2882 ((-325 (-575)) (-418 (-967 (-48))))))) (T -886))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 (-48)))) (-5 *2 (-325 (-575))) (-5 *1 (-886)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-967 (-48))) (-5 *2 (-325 (-575))) (-5 *1 (-886)))))
-(-10 -7 (-15 -2882 ((-325 (-575)) (-967 (-48)))) (-15 -2882 ((-325 (-575)) (-418 (-967 (-48))))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 18) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1977 (((-112) $ (|[\|\|]| (-517))) 9) (((-112) $ (|[\|\|]| (-1176))) 13)) (-3685 (((-112) $ $) NIL)) (-3132 (((-517) $) 10) (((-1176) $) 14)) (-3913 (((-112) $ $) 15)))
-(((-887) (-13 (-1100) (-1280) (-10 -8 (-15 -1977 ((-112) $ (|[\|\|]| (-517)))) (-15 -3132 ((-517) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3132 ((-1176) $))))) (T -887))
-((-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-887)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-887)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-887)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-887)))))
-(-13 (-1100) (-1280) (-10 -8 (-15 -1977 ((-112) $ (|[\|\|]| (-517)))) (-15 -3132 ((-517) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3132 ((-1176) $))))
-((-2544 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 15)))
-(((-888 |#1| |#2|) (-10 -7 (-15 -2544 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1235) (-1235)) (T -888))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))))
-(-10 -7 (-15 -2544 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|))))
-((-2611 (($ |#1| |#1|) 8)) (-2010 ((|#1| $ (-782)) 15)))
-(((-889 |#1|) (-10 -8 (-15 -2611 ($ |#1| |#1|)) (-15 -2010 (|#1| $ (-782)))) (-1235)) (T -889))
-((-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-889 *2)) (-4 *2 (-1235)))) (-2611 (*1 *1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1235)))))
-(-10 -8 (-15 -2611 ($ |#1| |#1|)) (-15 -2010 (|#1| $ (-782))))
-((-2544 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 15)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -2544 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1235) (-1235)) (T -890))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))))
-(-10 -7 (-15 -2544 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|))))
-((-2611 (($ |#1| |#1| |#1|) 8)) (-2010 ((|#1| $ (-782)) 15)))
-(((-891 |#1|) (-10 -8 (-15 -2611 ($ |#1| |#1| |#1|)) (-15 -2010 (|#1| $ (-782)))) (-1235)) (T -891))
-((-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-891 *2)) (-4 *2 (-1235)))) (-2611 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1235)))))
-(-10 -8 (-15 -2611 ($ |#1| |#1| |#1|)) (-15 -2010 (|#1| $ (-782))))
-((-1817 (((-655 (-1199)) (-1176)) 9)))
-(((-892) (-10 -7 (-15 -1817 ((-655 (-1199)) (-1176))))) (T -892))
-((-1817 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-892)))))
-(-10 -7 (-15 -1817 ((-655 (-1199)) (-1176))))
-((-2544 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15)))
-(((-893 |#1| |#2|) (-10 -7 (-15 -2544 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1235) (-1235)) (T -893))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))))
-(-10 -7 (-15 -2544 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|))))
-((-2906 (($ |#1| |#1| |#1|) 8)) (-2010 ((|#1| $ (-782)) 15)))
-(((-894 |#1|) (-10 -8 (-15 -2906 ($ |#1| |#1| |#1|)) (-15 -2010 (|#1| $ (-782)))) (-1235)) (T -894))
-((-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-894 *2)) (-4 *2 (-1235)))) (-2906 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1235)))))
-(-10 -8 (-15 -2906 ($ |#1| |#1| |#1|)) (-15 -2010 (|#1| $ (-782))))
-((-3817 (((-1174 (-655 (-575))) (-655 (-575)) (-1174 (-655 (-575)))) 41)) (-2768 (((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575))) 31)) (-3590 (((-1174 (-655 (-575))) (-655 (-575))) 53) (((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575))) 50)) (-1895 (((-1174 (-655 (-575))) (-575)) 55)) (-3960 (((-1174 (-655 (-936))) (-1174 (-655 (-936)))) 22)) (-3516 (((-655 (-936)) (-655 (-936))) 18)))
-(((-895) (-10 -7 (-15 -3516 ((-655 (-936)) (-655 (-936)))) (-15 -3960 ((-1174 (-655 (-936))) (-1174 (-655 (-936))))) (-15 -2768 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -3817 ((-1174 (-655 (-575))) (-655 (-575)) (-1174 (-655 (-575))))) (-15 -3590 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -3590 ((-1174 (-655 (-575))) (-655 (-575)))) (-15 -1895 ((-1174 (-655 (-575))) (-575))))) (T -895))
-((-1895 (*1 *2 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-575)))) (-3590 (*1 *2 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-655 (-575))))) (-3590 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-655 (-575))))) (-3817 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *3 (-655 (-575))) (-5 *1 (-895)))) (-2768 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-655 (-575))))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-1174 (-655 (-936)))) (-5 *1 (-895)))) (-3516 (*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-895)))))
-(-10 -7 (-15 -3516 ((-655 (-936)) (-655 (-936)))) (-15 -3960 ((-1174 (-655 (-936))) (-1174 (-655 (-936))))) (-15 -2768 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -3817 ((-1174 (-655 (-575))) (-655 (-575)) (-1174 (-655 (-575))))) (-15 -3590 ((-1174 (-655 (-575))) (-655 (-575)) (-655 (-575)))) (-15 -3590 ((-1174 (-655 (-575))) (-655 (-575)))) (-15 -1895 ((-1174 (-655 (-575))) (-575))))
-((-2613 (((-904 (-389)) $) 9 (|has| |#1| (-625 (-904 (-389))))) (((-904 (-575)) $) 8 (|has| |#1| (-625 (-904 (-575)))))))
-(((-896 |#1|) (-141) (-1235)) (T -896))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-625 (-904 (-575)))) (-6 (-625 (-904 (-575)))) |%noBranch|) (IF (|has| |t#1| (-625 (-904 (-389)))) (-6 (-625 (-904 (-389)))) |%noBranch|)))
-(((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))))
-((-2859 (((-112) $ $) NIL)) (-2303 (($) 14)) (-2365 (($ (-901 |#1| |#2|) (-901 |#1| |#3|)) 28)) (-1365 (((-901 |#1| |#3|) $) 16)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3025 (((-112) $) 22)) (-3419 (($) 19)) (-2882 (((-873) $) 31)) (-3685 (((-112) $ $) NIL)) (-2069 (((-901 |#1| |#2|) $) 15)) (-3913 (((-112) $ $) 26)))
-(((-897 |#1| |#2| |#3|) (-13 (-1117) (-10 -8 (-15 -3025 ((-112) $)) (-15 -3419 ($)) (-15 -2303 ($)) (-15 -2365 ($ (-901 |#1| |#2|) (-901 |#1| |#3|))) (-15 -2069 ((-901 |#1| |#2|) $)) (-15 -1365 ((-901 |#1| |#3|) $)))) (-1117) (-1117) (-677 |#2|)) (T -897))
-((-3025 (*1 *2 *1) (-12 (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-897 *3 *4 *5)) (-4 *3 (-1117)) (-4 *5 (-677 *4)))) (-3419 (*1 *1) (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117)) (-4 *4 (-677 *3)))) (-2303 (*1 *1) (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117)) (-4 *4 (-677 *3)))) (-2365 (*1 *1 *2 *3) (-12 (-5 *2 (-901 *4 *5)) (-5 *3 (-901 *4 *6)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-677 *5)) (-5 *1 (-897 *4 *5 *6)))) (-2069 (*1 *2 *1) (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *4)) (-5 *1 (-897 *3 *4 *5)) (-4 *3 (-1117)) (-4 *5 (-677 *4)))) (-1365 (*1 *2 *1) (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *5)) (-5 *1 (-897 *3 *4 *5)) (-4 *3 (-1117)) (-4 *5 (-677 *4)))))
-(-13 (-1117) (-10 -8 (-15 -3025 ((-112) $)) (-15 -3419 ($)) (-15 -2303 ($)) (-15 -2365 ($ (-901 |#1| |#2|) (-901 |#1| |#3|))) (-15 -2069 ((-901 |#1| |#2|) $)) (-15 -1365 ((-901 |#1| |#3|) $))))
-((-2859 (((-112) $ $) 7)) (-1806 (((-901 |#1| $) $ (-904 |#1|) (-901 |#1| $)) 14)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-898 |#1|) (-141) (-1117)) (T -898))
-((-1806 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-901 *4 *1)) (-5 *3 (-904 *4)) (-4 *1 (-898 *4)) (-4 *4 (-1117)))))
-(-13 (-1117) (-10 -8 (-15 -1806 ((-901 |t#1| $) $ (-904 |t#1|) (-901 |t#1| $)))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-3371 (((-112) (-655 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1792 (((-901 |#1| |#2|) |#2| |#3|) 45 (-12 (-3213 (|has| |#2| (-1055 (-1194)))) (-3213 (|has| |#2| (-1066))))) (((-655 (-303 (-967 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1066)) (-3213 (|has| |#2| (-1055 (-1194)))))) (((-655 (-303 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1055 (-1194)))) (((-897 |#1| |#2| (-655 |#2|)) (-655 |#2|) |#3|) 21)))
-(((-899 |#1| |#2| |#3|) (-10 -7 (-15 -3371 ((-112) |#2| |#3|)) (-15 -3371 ((-112) (-655 |#2|) |#3|)) (-15 -1792 ((-897 |#1| |#2| (-655 |#2|)) (-655 |#2|) |#3|)) (IF (|has| |#2| (-1055 (-1194))) (-15 -1792 ((-655 (-303 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1066)) (-15 -1792 ((-655 (-303 (-967 |#2|))) |#2| |#3|)) (-15 -1792 ((-901 |#1| |#2|) |#2| |#3|))))) (-1117) (-898 |#1|) (-625 (-904 |#1|))) (T -899))
-((-1792 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-901 *5 *3)) (-5 *1 (-899 *5 *3 *4)) (-3213 (-4 *3 (-1055 (-1194)))) (-3213 (-4 *3 (-1066))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) (-1792 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 (-967 *3)))) (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-1066)) (-3213 (-4 *3 (-1055 (-1194)))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) (-1792 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 *3))) (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-1055 (-1194))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))) (-1792 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-4 *6 (-898 *5)) (-5 *2 (-897 *5 *6 (-655 *6))) (-5 *1 (-899 *5 *6 *4)) (-5 *3 (-655 *6)) (-4 *4 (-625 (-904 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-4 *6 (-898 *5)) (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-899 *5 *6 *4)) (-4 *4 (-625 (-904 *5))))) (-3371 (*1 *2 *3 *4) (-12 (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))))
-(-10 -7 (-15 -3371 ((-112) |#2| |#3|)) (-15 -3371 ((-112) (-655 |#2|) |#3|)) (-15 -1792 ((-897 |#1| |#2| (-655 |#2|)) (-655 |#2|) |#3|)) (IF (|has| |#2| (-1055 (-1194))) (-15 -1792 ((-655 (-303 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1066)) (-15 -1792 ((-655 (-303 (-967 |#2|))) |#2| |#3|)) (-15 -1792 ((-901 |#1| |#2|) |#2| |#3|)))))
-((-2544 (((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)) 22)))
-(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -2544 ((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|)))) (-1117) (-1117) (-1117)) (T -900))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-901 *5 *6)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-901 *5 *7)) (-5 *1 (-900 *5 *6 *7)))))
-(-10 -7 (-15 -2544 ((-901 |#1| |#3|) (-1 |#3| |#2|) (-901 |#1| |#2|))))
-((-2859 (((-112) $ $) NIL)) (-1644 (($ $ $) 40)) (-1870 (((-3 (-112) "failed") $ (-904 |#1|)) 37)) (-2303 (($) 12)) (-4264 (((-1176) $) NIL)) (-2465 (($ (-904 |#1|) |#2| $) 20)) (-3912 (((-1137) $) NIL)) (-1571 (((-3 |#2| "failed") (-904 |#1|) $) 51)) (-3025 (((-112) $) 15)) (-3419 (($) 13)) (-3841 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))) $) 25)) (-2893 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|)))) 23)) (-2882 (((-873) $) 45)) (-3685 (((-112) $ $) NIL)) (-3798 (($ (-904 |#1|) |#2| $ |#2|) 49)) (-4407 (($ (-904 |#1|) |#2| $) 48)) (-3913 (((-112) $ $) 42)))
-(((-901 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -3025 ((-112) $)) (-15 -3419 ($)) (-15 -2303 ($)) (-15 -1644 ($ $ $)) (-15 -1571 ((-3 |#2| "failed") (-904 |#1|) $)) (-15 -4407 ($ (-904 |#1|) |#2| $)) (-15 -2465 ($ (-904 |#1|) |#2| $)) (-15 -3798 ($ (-904 |#1|) |#2| $ |#2|)) (-15 -3841 ((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))) $)) (-15 -2893 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))))) (-15 -1870 ((-3 (-112) "failed") $ (-904 |#1|))))) (-1117) (-1117)) (T -901))
-((-3025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3419 (*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2303 (*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-1644 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-1571 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-4 *2 (-1117)) (-5 *1 (-901 *4 *2)))) (-4407 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1117)))) (-2465 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1117)))) (-3798 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3)) (-4 *3 (-1117)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4)))) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4)))) (-4 *4 (-1117)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)))) (-1870 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-901 *4 *5)) (-4 *5 (-1117)))))
-(-13 (-1117) (-10 -8 (-15 -3025 ((-112) $)) (-15 -3419 ($)) (-15 -2303 ($)) (-15 -1644 ($ $ $)) (-15 -1571 ((-3 |#2| "failed") (-904 |#1|) $)) (-15 -4407 ($ (-904 |#1|) |#2| $)) (-15 -2465 ($ (-904 |#1|) |#2| $)) (-15 -3798 ($ (-904 |#1|) |#2| $ |#2|)) (-15 -3841 ((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))) $)) (-15 -2893 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 |#2|))))) (-15 -1870 ((-3 (-112) "failed") $ (-904 |#1|)))))
-((-1692 (((-904 |#1|) (-904 |#1|) (-655 (-1194)) (-1 (-112) (-655 |#2|))) 32) (((-904 |#1|) (-904 |#1|) (-655 (-1 (-112) |#2|))) 46) (((-904 |#1|) (-904 |#1|) (-1 (-112) |#2|)) 35)) (-1870 (((-112) (-655 |#2|) (-904 |#1|)) 42) (((-112) |#2| (-904 |#1|)) 36)) (-2390 (((-1 (-112) |#2|) (-904 |#1|)) 16)) (-1786 (((-655 |#2|) (-904 |#1|)) 24)) (-1933 (((-904 |#1|) (-904 |#1|) |#2|) 20)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -1692 ((-904 |#1|) (-904 |#1|) (-1 (-112) |#2|))) (-15 -1692 ((-904 |#1|) (-904 |#1|) (-655 (-1 (-112) |#2|)))) (-15 -1692 ((-904 |#1|) (-904 |#1|) (-655 (-1194)) (-1 (-112) (-655 |#2|)))) (-15 -2390 ((-1 (-112) |#2|) (-904 |#1|))) (-15 -1870 ((-112) |#2| (-904 |#1|))) (-15 -1870 ((-112) (-655 |#2|) (-904 |#1|))) (-15 -1933 ((-904 |#1|) (-904 |#1|) |#2|)) (-15 -1786 ((-655 |#2|) (-904 |#1|)))) (-1117) (-1235)) (T -902))
-((-1786 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-655 *5)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1235)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1235)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-902 *5 *3)) (-4 *3 (-1235)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1235)))) (-1692 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-904 *5)) (-5 *3 (-655 (-1194))) (-5 *4 (-1 (-112) (-655 *6))) (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *1 (-902 *5 *6)))) (-1692 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-5 *3 (-655 (-1 (-112) *5))) (-4 *4 (-1117)) (-4 *5 (-1235)) (-5 *1 (-902 *4 *5)))) (-1692 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1117)) (-4 *5 (-1235)) (-5 *1 (-902 *4 *5)))))
-(-10 -7 (-15 -1692 ((-904 |#1|) (-904 |#1|) (-1 (-112) |#2|))) (-15 -1692 ((-904 |#1|) (-904 |#1|) (-655 (-1 (-112) |#2|)))) (-15 -1692 ((-904 |#1|) (-904 |#1|) (-655 (-1194)) (-1 (-112) (-655 |#2|)))) (-15 -2390 ((-1 (-112) |#2|) (-904 |#1|))) (-15 -1870 ((-112) |#2| (-904 |#1|))) (-15 -1870 ((-112) (-655 |#2|) (-904 |#1|))) (-15 -1933 ((-904 |#1|) (-904 |#1|) |#2|)) (-15 -1786 ((-655 |#2|) (-904 |#1|))))
-((-2544 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 19)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -2544 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) (-1117) (-1117)) (T -903))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6)))))
-(-10 -7 (-15 -2544 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|))))
-((-2859 (((-112) $ $) NIL)) (-3328 (($ $ (-655 (-52))) 74)) (-1606 (((-655 $) $) 139)) (-4130 (((-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))) $) 30)) (-3704 (((-112) $) 35)) (-1602 (($ $ (-655 (-1194)) (-52)) 31)) (-4294 (($ $ (-655 (-52))) 73)) (-2443 (((-3 |#1| "failed") $) 71) (((-3 (-1194) "failed") $) 164)) (-4400 ((|#1| $) 68) (((-1194) $) NIL)) (-4224 (($ $) 126)) (-2312 (((-112) $) 55)) (-2919 (((-655 (-52)) $) 50)) (-4263 (($ (-1194) (-112) (-112) (-112)) 75)) (-3294 (((-3 (-655 $) "failed") (-655 $)) 82)) (-3567 (((-112) $) 58)) (-4172 (((-112) $) 57)) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) 41)) (-3292 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1963 (((-3 (-2 (|:| |val| $) (|:| -1658 $)) "failed") $) 97)) (-1512 (((-3 (-655 $) "failed") $) 40)) (-1670 (((-3 (-655 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1575 (-115)) (|:| |arg| (-655 $))) "failed") $) 107)) (-3476 (((-3 (-655 $) "failed") $) 42)) (-2329 (((-3 (-2 (|:| |val| $) (|:| -1658 (-782))) "failed") $) 45)) (-2077 (((-112) $) 34)) (-3912 (((-1137) $) NIL)) (-4435 (((-112) $) 28)) (-3865 (((-112) $) 52)) (-4035 (((-655 (-52)) $) 130)) (-1319 (((-112) $) 56)) (-2065 (($ (-115) (-655 $)) 104)) (-3321 (((-782) $) 33)) (-3076 (($ $) 72)) (-2613 (($ (-655 $)) 69)) (-3054 (((-112) $) 32)) (-2882 (((-873) $) 63) (($ |#1|) 23) (($ (-1194)) 76)) (-3685 (((-112) $ $) NIL)) (-1933 (($ $ (-52)) 129)) (-1989 (($) 103 T CONST)) (-2005 (($) 83 T CONST)) (-3913 (((-112) $ $) 93)) (-4038 (($ $ $) 117)) (-4015 (($ $ $) 121)) (** (($ $ (-782)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-904 |#1|) (-13 (-1117) (-1055 |#1|) (-1055 (-1194)) (-10 -8 (-15 0 ($) -3736) (-15 1 ($) -3736) (-15 -1512 ((-3 (-655 $) "failed") $)) (-15 -1445 ((-3 (-655 $) "failed") $)) (-15 -1670 ((-3 (-655 $) "failed") $ (-115))) (-15 -1670 ((-3 (-2 (|:| -1575 (-115)) (|:| |arg| (-655 $))) "failed") $)) (-15 -2329 ((-3 (-2 (|:| |val| $) (|:| -1658 (-782))) "failed") $)) (-15 -3292 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3476 ((-3 (-655 $) "failed") $)) (-15 -1963 ((-3 (-2 (|:| |val| $) (|:| -1658 $)) "failed") $)) (-15 -2065 ($ (-115) (-655 $))) (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ $)) (-15 -4038 ($ $ $)) (-15 -3321 ((-782) $)) (-15 -2613 ($ (-655 $))) (-15 -3076 ($ $)) (-15 -2077 ((-112) $)) (-15 -2312 ((-112) $)) (-15 -3704 ((-112) $)) (-15 -3054 ((-112) $)) (-15 -1319 ((-112) $)) (-15 -4172 ((-112) $)) (-15 -3567 ((-112) $)) (-15 -3865 ((-112) $)) (-15 -2919 ((-655 (-52)) $)) (-15 -4294 ($ $ (-655 (-52)))) (-15 -3328 ($ $ (-655 (-52)))) (-15 -4263 ($ (-1194) (-112) (-112) (-112))) (-15 -1602 ($ $ (-655 (-1194)) (-52))) (-15 -4130 ((-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))) $)) (-15 -4435 ((-112) $)) (-15 -4224 ($ $)) (-15 -1933 ($ $ (-52))) (-15 -4035 ((-655 (-52)) $)) (-15 -1606 ((-655 $) $)) (-15 -3294 ((-3 (-655 $) "failed") (-655 $))))) (-1117)) (T -904))
-((-1989 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-2005 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-1512 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1445 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1670 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-904 *4))) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-1670 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1575 (-115)) (|:| |arg| (-655 (-904 *3))))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2329 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -1658 (-782)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3292 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-904 *3)) (|:| |den| (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3476 (*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1963 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -1658 (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2065 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 (-904 *4))) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-4015 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-4038 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4294 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4263 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-112)) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-1602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-52)) (-5 *1 (-904 *4)) (-4 *4 (-1117)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52)))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4224 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))) (-3294 (*1 *2 *2) (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(-13 (-1117) (-1055 |#1|) (-1055 (-1194)) (-10 -8 (-15 (-1989) ($) -3736) (-15 (-2005) ($) -3736) (-15 -1512 ((-3 (-655 $) "failed") $)) (-15 -1445 ((-3 (-655 $) "failed") $)) (-15 -1670 ((-3 (-655 $) "failed") $ (-115))) (-15 -1670 ((-3 (-2 (|:| -1575 (-115)) (|:| |arg| (-655 $))) "failed") $)) (-15 -2329 ((-3 (-2 (|:| |val| $) (|:| -1658 (-782))) "failed") $)) (-15 -3292 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3476 ((-3 (-655 $) "failed") $)) (-15 -1963 ((-3 (-2 (|:| |val| $) (|:| -1658 $)) "failed") $)) (-15 -2065 ($ (-115) (-655 $))) (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782))) (-15 ** ($ $ $)) (-15 -4038 ($ $ $)) (-15 -3321 ((-782) $)) (-15 -2613 ($ (-655 $))) (-15 -3076 ($ $)) (-15 -2077 ((-112) $)) (-15 -2312 ((-112) $)) (-15 -3704 ((-112) $)) (-15 -3054 ((-112) $)) (-15 -1319 ((-112) $)) (-15 -4172 ((-112) $)) (-15 -3567 ((-112) $)) (-15 -3865 ((-112) $)) (-15 -2919 ((-655 (-52)) $)) (-15 -4294 ($ $ (-655 (-52)))) (-15 -3328 ($ $ (-655 (-52)))) (-15 -4263 ($ (-1194) (-112) (-112) (-112))) (-15 -1602 ($ $ (-655 (-1194)) (-52))) (-15 -4130 ((-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))) $)) (-15 -4435 ((-112) $)) (-15 -4224 ($ $)) (-15 -1933 ($ $ (-52))) (-15 -4035 ((-655 (-52)) $)) (-15 -1606 ((-655 $) $)) (-15 -3294 ((-3 (-655 $) "failed") (-655 $)))))
-((-2859 (((-112) $ $) NIL)) (-3486 (((-655 |#1|) $) 19)) (-2332 (((-112) $) 49)) (-2443 (((-3 (-683 |#1|) "failed") $) 56)) (-4400 (((-683 |#1|) $) 54)) (-1969 (($ $) 23)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-1840 (((-782) $) 61)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-683 |#1|) $) 21)) (-2882 (((-873) $) 47) (($ (-683 |#1|)) 26) (((-830 |#1|) $) 36) (($ |#1|) 25)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 9 T CONST)) (-1332 (((-655 (-683 |#1|)) $) 28)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 12)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 67)))
-(((-905 |#1|) (-13 (-861) (-1055 (-683 |#1|)) (-10 -8 (-15 1 ($) -3736) (-15 -2882 ((-830 |#1|) $)) (-15 -2882 ($ |#1|)) (-15 -1955 ((-683 |#1|) $)) (-15 -1840 ((-782) $)) (-15 -1332 ((-655 (-683 |#1|)) $)) (-15 -1969 ($ $)) (-15 -2332 ((-112) $)) (-15 -3486 ((-655 |#1|) $)))) (-861)) (T -905))
-((-2005 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-2882 (*1 *1 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-655 (-683 *3))) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-1969 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-861)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861)))))
-(-13 (-861) (-1055 (-683 |#1|)) (-10 -8 (-15 (-2005) ($) -3736) (-15 -2882 ((-830 |#1|) $)) (-15 -2882 ($ |#1|)) (-15 -1955 ((-683 |#1|) $)) (-15 -1840 ((-782) $)) (-15 -1332 ((-655 (-683 |#1|)) $)) (-15 -1969 ($ $)) (-15 -2332 ((-112) $)) (-15 -3486 ((-655 |#1|) $))))
-((-3252 ((|#1| |#1| |#1|) 19)))
-(((-906 |#1| |#2|) (-10 -7 (-15 -3252 (|#1| |#1| |#1|))) (-1261 |#2|) (-1066)) (T -906))
-((-3252 (*1 *2 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-906 *2 *3)) (-4 *2 (-1261 *3)))))
-(-10 -7 (-15 -3252 (|#1| |#1| |#1|)))
-((-3428 ((|#2| $ |#3|) 10)))
-(((-907 |#1| |#2| |#3|) (-10 -8 (-15 -3428 (|#2| |#1| |#3|))) (-908 |#2| |#3|) (-1235) (-1235)) (T -907))
-NIL
-(-10 -8 (-15 -3428 (|#2| |#1| |#3|)))
-((-2382 ((|#1| $ |#2|) 7)) (-3428 ((|#1| $ |#2|) 6)))
-(((-908 |#1| |#2|) (-141) (-1235) (-1235)) (T -908))
-((-2382 (*1 *2 *1 *3) (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235)))) (-3428 (*1 *2 *1 *3) (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2382 (|t#1| $ |t#2|)) (-15 -3428 (|t#1| $ |t#2|))))
-(((-1235) . T))
-((-2859 (((-112) $ $) 7)) (-2655 (((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1922 (((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 14)) (-3913 (((-112) $ $) 6)))
-(((-909) (-141)) (T -909))
-((-2655 (*1 *2 *3 *4) (-12 (-4 *1 (-909)) (-5 *3 (-1080)) (-5 *4 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176)))))) (-1922 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *3 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *2 (-1052)))))
-(-13 (-1117) (-10 -7 (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))) (-1080) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))) (-15 -1922 ((-1052) (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2013 ((|#1| |#1| (-782)) 27)) (-1961 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3345 (((-3 (-2 (|:| -2412 |#1|) (|:| -2429 |#1|)) "failed") |#1| (-782) (-782)) 30) (((-655 |#1|) |#1|) 38)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -3345 ((-655 |#1|) |#1|)) (-15 -3345 ((-3 (-2 (|:| -2412 |#1|) (|:| -2429 |#1|)) "failed") |#1| (-782) (-782))) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2013 (|#1| |#1| (-782)))) (-1261 |#2|) (-373)) (T -910))
-((-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-5 *1 (-910 *2 *4)) (-4 *2 (-1261 *4)))) (-1961 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-373)) (-5 *1 (-910 *2 *3)) (-4 *2 (-1261 *3)))) (-3345 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-782)) (-4 *5 (-373)) (-5 *2 (-2 (|:| -2412 *3) (|:| -2429 *3))) (-5 *1 (-910 *3 *5)) (-4 *3 (-1261 *5)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-910 *3 *4)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -3345 ((-655 |#1|) |#1|)) (-15 -3345 ((-3 (-2 (|:| -2412 |#1|) (|:| -2429 |#1|)) "failed") |#1| (-782) (-782))) (-15 -1961 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2013 (|#1| |#1| (-782))))
-((-3520 (((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176)) 104) (((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176) (-227)) 100) (((-1052) (-912) (-1080)) 92) (((-1052) (-912)) 93)) (-2655 (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912) (-1080)) 62) (((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912)) 64)))
-(((-911) (-10 -7 (-15 -3520 ((-1052) (-912))) (-15 -3520 ((-1052) (-912) (-1080))) (-15 -3520 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176) (-227))) (-15 -3520 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912) (-1080))))) (T -911))
-((-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1080)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-911)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176))))) (-5 *1 (-911)))) (-3520 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176)) (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) (-5 *2 (-1052)) (-5 *1 (-911)))) (-3520 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176)) (-5 *8 (-227)) (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) (-5 *2 (-1052)) (-5 *1 (-911)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-912)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-911)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1052)) (-5 *1 (-911)))))
-(-10 -7 (-15 -3520 ((-1052) (-912))) (-15 -3520 ((-1052) (-912) (-1080))) (-15 -3520 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176) (-227))) (-15 -3520 ((-1052) (-389) (-389) (-389) (-389) (-782) (-782) (-655 (-325 (-389))) (-655 (-655 (-325 (-389)))) (-1176))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912))) (-15 -2655 ((-2 (|:| -2655 (-389)) (|:| -1777 (-1176)) (|:| |explanations| (-655 (-1176)))) (-912) (-1080))))
-((-2859 (((-112) $ $) NIL)) (-4400 (((-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))) $) 19)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 21) (($ (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) 18)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-912) (-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))) (-15 -4400 ((-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))) $))))) (T -912))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *1 (-912)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227)))) (-5 *1 (-912)))))
-(-13 (-1117) (-10 -8 (-15 -2882 ($ (-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))))) (-15 -4400 ((-2 (|:| |pde| (-655 (-325 (-227)))) (|:| |constraints| (-655 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-782)) (|:| |boundaryType| (-575)) (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227)))))) (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176)) (|:| |tol| (-227))) $))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2382 (($ $ (-655 |#1|) (-655 (-782))) 44) (($ $ |#1| (-782)) 43) (($ $ (-655 |#1|)) 42) (($ $ |#1|) 40)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-655 |#1|) (-655 (-782))) 47) (($ $ |#1| (-782)) 46) (($ $ (-655 |#1|)) 45) (($ $ |#1|) 41)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-913 |#1|) (-141) (-1117)) (T -913))
-NIL
-(-13 (-1066) (-915 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-908 $ |#1|) . T) ((-915 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-2382 (($ $ |#2|) NIL) (($ $ (-655 |#2|)) 10) (($ $ |#2| (-782)) 12) (($ $ (-655 |#2|) (-655 (-782))) 15)) (-3428 (($ $ |#2|) 16) (($ $ (-655 |#2|)) 18) (($ $ |#2| (-782)) 19) (($ $ (-655 |#2|) (-655 (-782))) 21)))
-(((-914 |#1| |#2|) (-10 -8 (-15 -3428 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -3428 (|#1| |#1| |#2| (-782))) (-15 -3428 (|#1| |#1| (-655 |#2|))) (-15 -2382 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -2382 (|#1| |#1| |#2| (-782))) (-15 -2382 (|#1| |#1| (-655 |#2|))) (-15 -3428 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#2|))) (-915 |#2|) (-1117)) (T -914))
-NIL
-(-10 -8 (-15 -3428 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -3428 (|#1| |#1| |#2| (-782))) (-15 -3428 (|#1| |#1| (-655 |#2|))) (-15 -2382 (|#1| |#1| (-655 |#2|) (-655 (-782)))) (-15 -2382 (|#1| |#1| |#2| (-782))) (-15 -2382 (|#1| |#1| (-655 |#2|))) (-15 -3428 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#2|)))
-((-2382 (($ $ |#1|) 7) (($ $ (-655 |#1|)) 15) (($ $ |#1| (-782)) 14) (($ $ (-655 |#1|) (-655 (-782))) 13)) (-3428 (($ $ |#1|) 6) (($ $ (-655 |#1|)) 12) (($ $ |#1| (-782)) 11) (($ $ (-655 |#1|) (-655 (-782))) 10)))
-(((-915 |#1|) (-141) (-1117)) (T -915))
-((-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4)) (-4 *4 (-1117)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117)))) (-3428 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117)))) (-3428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4)) (-4 *4 (-1117)))))
-(-13 (-908 $ |t#1|) (-10 -8 (-15 -2382 ($ $ (-655 |t#1|))) (-15 -2382 ($ $ |t#1| (-782))) (-15 -2382 ($ $ (-655 |t#1|) (-655 (-782)))) (-15 -3428 ($ $ (-655 |t#1|))) (-15 -3428 ($ $ |t#1| (-782))) (-15 -3428 ($ $ (-655 |t#1|) (-655 (-782))))))
-(((-908 $ |#1|) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) 26)) (-3133 (((-112) $ (-782)) NIL)) (-2328 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-3853 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3451 (($ $ $) NIL (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) (($ $ "left" $) NIL (|has| $ (-6 -4461))) (($ $ "right" $) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2429 (($ $) 25)) (-3948 (($ |#1|) 12) (($ $ $) 17)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-2412 (($ $) 23)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) 20)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1816 (((-575) $ $) NIL)) (-3482 (((-112) $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1221 |#1|) $) 9) (((-873) $) 29 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 21 (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-916 |#1|) (-13 (-120 |#1|) (-624 (-1221 |#1|)) (-10 -8 (-15 -3948 ($ |#1|)) (-15 -3948 ($ $ $)))) (-1117)) (T -916))
-((-3948 (*1 *1 *2) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117)))) (-3948 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117)))))
-(-13 (-120 |#1|) (-624 (-1221 |#1|)) (-10 -8 (-15 -3948 ($ |#1|)) (-15 -3948 ($ $ $))))
-((-3339 ((|#2| (-1159 |#1| |#2|)) 48)))
-(((-917 |#1| |#2|) (-10 -7 (-15 -3339 (|#2| (-1159 |#1| |#2|)))) (-936) (-13 (-1066) (-10 -7 (-6 (-4462 "*"))))) (T -917))
-((-3339 (*1 *2 *3) (-12 (-5 *3 (-1159 *4 *2)) (-14 *4 (-936)) (-4 *2 (-13 (-1066) (-10 -7 (-6 (-4462 "*"))))) (-5 *1 (-917 *4 *2)))))
-(-10 -7 (-15 -3339 (|#2| (-1159 |#1| |#2|))))
-((-2859 (((-112) $ $) 7)) (-1506 (((-1119 |#1|) $) 35)) (-3261 (($) 19 T CONST)) (-4162 (((-3 $ "failed") $) 16)) (-2216 (((-1119 |#1|) $ |#1|) 34)) (-3900 (((-112) $) 18)) (-1914 (($ $ $) 32 (-3763 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3503 (($ $ $) 31 (-3763 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-4264 (((-1176) $) 10)) (-4332 (($ $) 25)) (-3912 (((-1137) $) 11)) (-2065 ((|#1| $ |#1|) 38)) (-2236 (($ (-655 (-655 |#1|))) 36)) (-2444 (($ (-655 |#1|)) 37)) (-3516 (($ $ $) 22)) (-4152 (($ $ $) 21)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-2005 (($) 20 T CONST)) (-3980 (((-112) $ $) 29 (-3763 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3955 (((-112) $ $) 28 (-3763 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 30 (-3763 (|has| |#1| (-861)) (|has| |#1| (-378))))) (-3940 (((-112) $ $) 33)) (-4038 (($ $ $) 24)) (** (($ $ (-936)) 14) (($ $ (-782)) 17) (($ $ (-575)) 23)) (* (($ $ $) 15)))
-(((-918 |#1|) (-141) (-1117)) (T -918))
-((-2444 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-918 *3)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-4 *1 (-918 *3)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3)))) (-2216 (*1 *2 *1 *3) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3)))) (-3940 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(-13 (-484) (-295 |t#1| |t#1|) (-10 -8 (-15 -2444 ($ (-655 |t#1|))) (-15 -2236 ($ (-655 (-655 |t#1|)))) (-15 -1506 ((-1119 |t#1|) $)) (-15 -2216 ((-1119 |t#1|) $ |t#1|)) (-15 -3940 ((-112) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-378)) (-6 (-861)) |%noBranch|)))
-(((-102) . T) ((-624 (-873)) . T) ((-295 |#1| |#1|) . T) ((-484) . T) ((-737) . T) ((-861) -3763 (|has| |#1| (-861)) (|has| |#1| (-378))) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2818 (((-655 (-655 (-782))) $) 160)) (-1462 (((-655 (-782)) (-920 |#1|) $) 188)) (-2315 (((-655 (-782)) (-920 |#1|) $) 189)) (-1506 (((-1119 |#1|) $) 152)) (-2585 (((-655 (-920 |#1|)) $) 149)) (-2073 (((-920 |#1|) $ (-575)) 154) (((-920 |#1|) $) 155)) (-3809 (($ (-655 (-920 |#1|))) 162)) (-3369 (((-782) $) 156)) (-2595 (((-1119 (-1119 |#1|)) $) 186)) (-2216 (((-1119 |#1|) $ |#1|) 177) (((-1119 (-1119 |#1|)) $ (-1119 |#1|)) 197) (((-1119 (-655 |#1|)) $ (-655 |#1|)) 200)) (-1322 (((-112) (-920 |#1|) $) 137)) (-4264 (((-1176) $) NIL)) (-3762 (((-1290) $) 142) (((-1290) $ (-575) (-575)) 201)) (-3912 (((-1137) $) NIL)) (-3969 (((-655 (-920 |#1|)) $) 143)) (-2065 (((-920 |#1|) $ (-782)) 150)) (-1753 (((-782) $) 157)) (-2882 (((-873) $) 174) (((-655 (-920 |#1|)) $) 28) (($ (-655 (-920 |#1|))) 161)) (-3685 (((-112) $ $) NIL)) (-1548 (((-655 |#1|) $) 159)) (-3913 (((-112) $ $) 194)) (-3967 (((-112) $ $) 192)) (-3940 (((-112) $ $) 191)))
-(((-919 |#1|) (-13 (-1117) (-10 -8 (-15 -2882 ((-655 (-920 |#1|)) $)) (-15 -3969 ((-655 (-920 |#1|)) $)) (-15 -2065 ((-920 |#1|) $ (-782))) (-15 -2073 ((-920 |#1|) $ (-575))) (-15 -2073 ((-920 |#1|) $)) (-15 -3369 ((-782) $)) (-15 -1753 ((-782) $)) (-15 -1548 ((-655 |#1|) $)) (-15 -2585 ((-655 (-920 |#1|)) $)) (-15 -2818 ((-655 (-655 (-782))) $)) (-15 -2882 ($ (-655 (-920 |#1|)))) (-15 -3809 ($ (-655 (-920 |#1|)))) (-15 -2216 ((-1119 |#1|) $ |#1|)) (-15 -2595 ((-1119 (-1119 |#1|)) $)) (-15 -2216 ((-1119 (-1119 |#1|)) $ (-1119 |#1|))) (-15 -2216 ((-1119 (-655 |#1|)) $ (-655 |#1|))) (-15 -1322 ((-112) (-920 |#1|) $)) (-15 -1462 ((-655 (-782)) (-920 |#1|) $)) (-15 -2315 ((-655 (-782)) (-920 |#1|) $)) (-15 -1506 ((-1119 |#1|) $)) (-15 -3940 ((-112) $ $)) (-15 -3967 ((-112) $ $)) (-15 -3762 ((-1290) $)) (-15 -3762 ((-1290) $ (-575) (-575))))) (-1117)) (T -919))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4)) (-4 *4 (-1117)))) (-2073 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4)) (-4 *4 (-1117)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-782)))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3)))) (-2216 (*1 *2 *1 *3) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1119 (-1119 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-2216 (*1 *2 *1 *3) (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-1119 *4))) (-5 *1 (-919 *4)) (-5 *3 (-1119 *4)))) (-2216 (*1 *2 *1 *3) (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-655 *4))) (-5 *1 (-919 *4)) (-5 *3 (-655 *4)))) (-1322 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-919 *4)))) (-1462 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782))) (-5 *1 (-919 *4)))) (-2315 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782))) (-5 *1 (-919 *4)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3940 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3967 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))) (-3762 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-919 *4)) (-4 *4 (-1117)))))
-(-13 (-1117) (-10 -8 (-15 -2882 ((-655 (-920 |#1|)) $)) (-15 -3969 ((-655 (-920 |#1|)) $)) (-15 -2065 ((-920 |#1|) $ (-782))) (-15 -2073 ((-920 |#1|) $ (-575))) (-15 -2073 ((-920 |#1|) $)) (-15 -3369 ((-782) $)) (-15 -1753 ((-782) $)) (-15 -1548 ((-655 |#1|) $)) (-15 -2585 ((-655 (-920 |#1|)) $)) (-15 -2818 ((-655 (-655 (-782))) $)) (-15 -2882 ($ (-655 (-920 |#1|)))) (-15 -3809 ($ (-655 (-920 |#1|)))) (-15 -2216 ((-1119 |#1|) $ |#1|)) (-15 -2595 ((-1119 (-1119 |#1|)) $)) (-15 -2216 ((-1119 (-1119 |#1|)) $ (-1119 |#1|))) (-15 -2216 ((-1119 (-655 |#1|)) $ (-655 |#1|))) (-15 -1322 ((-112) (-920 |#1|) $)) (-15 -1462 ((-655 (-782)) (-920 |#1|) $)) (-15 -2315 ((-655 (-782)) (-920 |#1|) $)) (-15 -1506 ((-1119 |#1|) $)) (-15 -3940 ((-112) $ $)) (-15 -3967 ((-112) $ $)) (-15 -3762 ((-1290) $)) (-15 -3762 ((-1290) $ (-575) (-575)))))
-((-2859 (((-112) $ $) NIL)) (-1506 (((-1119 |#1|) $) 60)) (-2025 (((-655 $) (-655 $)) 103)) (-2326 (((-575) $) 83)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3369 (((-782) $) 80)) (-2216 (((-1119 |#1|) $ |#1|) 70)) (-3900 (((-112) $) NIL)) (-4254 (((-112) $) 88)) (-2549 (((-782) $) 84)) (-1914 (($ $ $) NIL (-3763 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3503 (($ $ $) NIL (-3763 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-4390 (((-2 (|:| |preimage| (-655 |#1|)) (|:| |image| (-655 |#1|))) $) 55)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 130)) (-3912 (((-1137) $) NIL)) (-2074 (((-1119 |#1|) $) 136 (|has| |#1| (-378)))) (-3095 (((-112) $) 81)) (-2065 ((|#1| $ |#1|) 68)) (-1753 (((-782) $) 62)) (-2236 (($ (-655 (-655 |#1|))) 118)) (-1920 (((-988) $) 74)) (-2444 (($ (-655 |#1|)) 32)) (-3516 (($ $ $) NIL)) (-4152 (($ $ $) NIL)) (-3857 (($ (-655 (-655 |#1|))) 57)) (-1930 (($ (-655 (-655 |#1|))) 123)) (-2422 (($ (-655 |#1|)) 132)) (-2882 (((-873) $) 117) (($ (-655 (-655 |#1|))) 91) (($ (-655 |#1|)) 92)) (-3685 (((-112) $ $) NIL)) (-2005 (($) 24 T CONST)) (-3980 (((-112) $ $) NIL (-3763 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3955 (((-112) $ $) NIL (-3763 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3913 (((-112) $ $) 66)) (-3967 (((-112) $ $) NIL (-3763 (|has| |#1| (-378)) (|has| |#1| (-861))))) (-3940 (((-112) $ $) 90)) (-4038 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ $ $) 33)))
-(((-920 |#1|) (-13 (-918 |#1|) (-10 -8 (-15 -4390 ((-2 (|:| |preimage| (-655 |#1|)) (|:| |image| (-655 |#1|))) $)) (-15 -3857 ($ (-655 (-655 |#1|)))) (-15 -2882 ($ (-655 (-655 |#1|)))) (-15 -2882 ($ (-655 |#1|))) (-15 -1930 ($ (-655 (-655 |#1|)))) (-15 -1753 ((-782) $)) (-15 -1920 ((-988) $)) (-15 -3369 ((-782) $)) (-15 -2549 ((-782) $)) (-15 -2326 ((-575) $)) (-15 -3095 ((-112) $)) (-15 -4254 ((-112) $)) (-15 -2025 ((-655 $) (-655 $))) (IF (|has| |#1| (-378)) (-15 -2074 ((-1119 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2422 ($ (-655 |#1|))) (IF (|has| |#1| (-378)) (-15 -2422 ($ (-655 |#1|))) |%noBranch|)))) (-1117)) (T -920))
-((-4390 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-655 *3)) (|:| |image| (-655 *3)))) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-1930 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2549 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2025 (*1 *2 *2) (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1117)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-920 *3)) (-4 *3 (-378)) (-4 *3 (-1117)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3)))))
-(-13 (-918 |#1|) (-10 -8 (-15 -4390 ((-2 (|:| |preimage| (-655 |#1|)) (|:| |image| (-655 |#1|))) $)) (-15 -3857 ($ (-655 (-655 |#1|)))) (-15 -2882 ($ (-655 (-655 |#1|)))) (-15 -2882 ($ (-655 |#1|))) (-15 -1930 ($ (-655 (-655 |#1|)))) (-15 -1753 ((-782) $)) (-15 -1920 ((-988) $)) (-15 -3369 ((-782) $)) (-15 -2549 ((-782) $)) (-15 -2326 ((-575) $)) (-15 -3095 ((-112) $)) (-15 -4254 ((-112) $)) (-15 -2025 ((-655 $) (-655 $))) (IF (|has| |#1| (-378)) (-15 -2074 ((-1119 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -2422 ($ (-655 |#1|))) (IF (|has| |#1| (-378)) (-15 -2422 ($ (-655 |#1|))) |%noBranch|))))
-((-1828 (((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|)) 160)) (-1980 ((|#1|) 97)) (-4090 (((-429 (-1190 |#4|)) (-1190 |#4|)) 169)) (-2700 (((-429 (-1190 |#4|)) (-655 |#3|) (-1190 |#4|)) 84)) (-1691 (((-429 (-1190 |#4|)) (-1190 |#4|)) 179)) (-4085 (((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|) |#3|) 113)))
-(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1828 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|))) (-15 -1691 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -4090 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -1980 (|#1|)) (-15 -4085 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|) |#3|)) (-15 -2700 ((-429 (-1190 |#4|)) (-655 |#3|) (-1190 |#4|)))) (-924) (-804) (-861) (-964 |#1| |#2| |#3|)) (T -921))
-((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *7)) (-4 *7 (-861)) (-4 *5 (-924)) (-4 *6 (-804)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-429 (-1190 *8))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-1190 *8)))) (-4085 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7)) (-4 *7 (-964 *5 *6 *4)) (-4 *5 (-924)) (-4 *6 (-804)) (-4 *4 (-861)) (-5 *1 (-921 *5 *6 *4 *7)))) (-1980 (*1 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924)) (-5 *1 (-921 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-1691 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7)))) (-1828 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-921 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1828 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|))) (-15 -1691 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -4090 ((-429 (-1190 |#4|)) (-1190 |#4|))) (-15 -1980 (|#1|)) (-15 -4085 ((-3 (-655 (-1190 |#4|)) "failed") (-655 (-1190 |#4|)) (-1190 |#4|) |#3|)) (-15 -2700 ((-429 (-1190 |#4|)) (-655 |#3|) (-1190 |#4|))))
-((-1828 (((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|)) 39)) (-1980 ((|#1|) 72)) (-4090 (((-429 (-1190 |#2|)) (-1190 |#2|)) 121)) (-2700 (((-429 (-1190 |#2|)) (-1190 |#2|)) 105)) (-1691 (((-429 (-1190 |#2|)) (-1190 |#2|)) 132)))
-(((-922 |#1| |#2|) (-10 -7 (-15 -1828 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|))) (-15 -1691 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -4090 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -1980 (|#1|)) (-15 -2700 ((-429 (-1190 |#2|)) (-1190 |#2|)))) (-924) (-1261 |#1|)) (T -922))
-((-2700 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))) (-1980 (*1 *2) (-12 (-4 *2 (-924)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1261 *2)))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))) (-1691 (*1 *2 *3) (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))) (-1828 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-924)) (-5 *1 (-922 *4 *5)))))
-(-10 -7 (-15 -1828 ((-3 (-655 (-1190 |#2|)) "failed") (-655 (-1190 |#2|)) (-1190 |#2|))) (-15 -1691 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -4090 ((-429 (-1190 |#2|)) (-1190 |#2|))) (-15 -1980 (|#1|)) (-15 -2700 ((-429 (-1190 |#2|)) (-1190 |#2|))))
-((-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 42)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 18)) (-1724 (((-3 $ "failed") $) 36)))
-(((-923 |#1|) (-10 -8 (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|)))) (-924)) (T -923))
-NIL
-(-10 -8 (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-4005 (((-429 (-1190 $)) (-1190 $)) 66)) (-3312 (($ $) 57)) (-4281 (((-429 $) $) 58)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 63)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3559 (((-112) $) 59)) (-3900 (((-112) $) 35)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-1343 (((-429 (-1190 $)) (-1190 $)) 64)) (-3154 (((-429 (-1190 $)) (-1190 $)) 65)) (-2347 (((-429 $) $) 56)) (-2849 (((-3 $ "failed") $ $) 48)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 62 (|has| $ (-146)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-1724 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-924) (-141)) (T -924))
-((-3354 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-924)))) (-4005 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))) (-3154 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))) (-1343 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))) (-4047 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-655 (-1190 *1))) (-5 *3 (-1190 *1)) (-4 *1 (-924)))) (-1511 (*1 *2 *3) (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-146)) (-4 *1 (-924)) (-5 *2 (-1285 *1)))) (-1724 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-924)))))
-(-13 (-1239) (-10 -8 (-15 -4005 ((-429 (-1190 $)) (-1190 $))) (-15 -3154 ((-429 (-1190 $)) (-1190 $))) (-15 -1343 ((-429 (-1190 $)) (-1190 $))) (-15 -3354 ((-1190 $) (-1190 $) (-1190 $))) (-15 -4047 ((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $))) (IF (|has| $ (-146)) (PROGN (-15 -1511 ((-3 (-1285 $) "failed") (-700 $))) (-15 -1724 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2770 (((-112) $) NIL)) (-4142 (((-782)) NIL)) (-1448 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2309 (((-1207 (-936) (-782)) (-575)) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 $ "failed") $) NIL)) (-4400 (($ $) NIL)) (-3898 (($ (-1285 $)) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-1758 (($) NIL)) (-3228 (((-112) $) NIL)) (-2457 (($ $) NIL) (($ $ (-782)) NIL)) (-3559 (((-112) $) NIL)) (-3369 (((-844 (-936)) $) NIL) (((-936) $) NIL)) (-3900 (((-112) $) NIL)) (-2772 (($) NIL (|has| $ (-378)))) (-2313 (((-112) $) NIL (|has| $ (-378)))) (-3390 (($ $ (-936)) NIL (|has| $ (-378))) (($ $) NIL)) (-2808 (((-3 $ "failed") $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3977 (((-1190 $) $ (-936)) NIL (|has| $ (-378))) (((-1190 $) $) NIL)) (-1894 (((-936) $) NIL)) (-2815 (((-1190 $) $) NIL (|has| $ (-378)))) (-3388 (((-3 (-1190 $) "failed") $ $) NIL (|has| $ (-378))) (((-1190 $) $) NIL (|has| $ (-378)))) (-2281 (($ $ (-1190 $)) NIL (|has| $ (-378)))) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL T CONST)) (-4317 (($ (-936)) NIL)) (-3953 (((-112) $) NIL)) (-3912 (((-1137) $) NIL)) (-3657 (($) NIL (|has| $ (-378)))) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL)) (-2347 (((-429 $) $) NIL)) (-2113 (((-936)) NIL) (((-844 (-936))) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2619 (((-3 (-782) "failed") $ $) NIL) (((-782) $) NIL)) (-1605 (((-135)) NIL)) (-2382 (($ $) NIL) (($ $ (-782)) NIL)) (-1753 (((-936) $) NIL) (((-844 (-936)) $) NIL)) (-4436 (((-1190 $)) NIL)) (-1847 (($) NIL)) (-1908 (($) NIL (|has| $ (-378)))) (-2209 (((-700 $) (-1285 $)) NIL) (((-1285 $) $) NIL)) (-2613 (((-575) $) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL)) (-1724 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $) (-936)) NIL) (((-1285 $)) NIL)) (-3930 (((-112) $ $) NIL)) (-4060 (((-112) $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-1514 (($ $ (-782)) NIL (|has| $ (-378))) (($ $) NIL (|has| $ (-378)))) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-925 |#1|) (-13 (-359) (-338 $) (-625 (-575))) (-936)) (T -925))
-NIL
-(-13 (-359) (-338 $) (-625 (-575)))
-((-2165 (((-3 (-2 (|:| -3369 (-782)) (|:| -3760 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)) 77)) (-4417 (((-112) (-346 |#2| |#3| |#4| |#5|)) 17)) (-3369 (((-3 (-782) "failed") (-346 |#2| |#3| |#4| |#5|)) 15)))
-(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3369 ((-3 (-782) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -4417 ((-112) (-346 |#2| |#3| |#4| |#5|))) (-15 -2165 ((-3 (-2 (|:| -3369 (-782)) (|:| -3760 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) (-13 (-567) (-1055 (-575))) (-441 |#1|) (-1261 |#2|) (-1261 (-418 |#3|)) (-352 |#2| |#3| |#4|)) (T -926))
-((-2165 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-2 (|:| -3369 (-782)) (|:| -3760 *8))) (-5 *1 (-926 *4 *5 *6 *7 *8)))) (-4417 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7 *8)))) (-3369 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-782)) (-5 *1 (-926 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3369 ((-3 (-782) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -4417 ((-112) (-346 |#2| |#3| |#4| |#5|))) (-15 -2165 ((-3 (-2 (|:| -3369 (-782)) (|:| -3760 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|))))
-((-2165 (((-3 (-2 (|:| -3369 (-782)) (|:| -3760 |#3|)) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)) 64)) (-4417 (((-112) (-346 (-418 (-575)) |#1| |#2| |#3|)) 16)) (-3369 (((-3 (-782) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)) 14)))
-(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -3369 ((-3 (-782) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -4417 ((-112) (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -2165 ((-3 (-2 (|:| -3369 (-782)) (|:| -3760 |#3|)) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|)))) (-1261 (-418 (-575))) (-1261 (-418 |#1|)) (-352 (-418 (-575)) |#1| |#2|)) (T -927))
-((-2165 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-2 (|:| -3369 (-782)) (|:| -3760 *6))) (-5 *1 (-927 *4 *5 *6)))) (-4417 (*1 *2 *3) (-12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6)))) (-3369 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6)) (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-782)) (-5 *1 (-927 *4 *5 *6)))))
-(-10 -7 (-15 -3369 ((-3 (-782) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -4417 ((-112) (-346 (-418 (-575)) |#1| |#2| |#3|))) (-15 -2165 ((-3 (-2 (|:| -3369 (-782)) (|:| -3760 |#3|)) "failed") (-346 (-418 (-575)) |#1| |#2| |#3|))))
-((-2439 ((|#2| |#2|) 26)) (-2502 (((-575) (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))))) 15)) (-1323 (((-936) (-575)) 38)) (-2931 (((-575) |#2|) 45)) (-2095 (((-575) |#2|) 21) (((-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))) |#1|) 20)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -1323 ((-936) (-575))) (-15 -2095 ((-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))) |#1|)) (-15 -2095 ((-575) |#2|)) (-15 -2502 ((-575) (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))))) (-15 -2931 ((-575) |#2|)) (-15 -2439 (|#2| |#2|))) (-1261 (-418 (-575))) (-1261 (-418 |#1|))) (T -928))
-((-2439 (*1 *2 *2) (-12 (-4 *3 (-1261 (-418 (-575)))) (-5 *1 (-928 *3 *2)) (-4 *2 (-1261 (-418 *3))))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3)) (-4 *3 (-1261 (-418 *4))))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))))) (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *5)) (-4 *5 (-1261 (-418 *4))))) (-2095 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3)) (-4 *3 (-1261 (-418 *4))))) (-2095 (*1 *2 *3) (-12 (-4 *3 (-1261 (-418 (-575)))) (-5 *2 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))) (-5 *1 (-928 *3 *4)) (-4 *4 (-1261 (-418 *3))))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-575)) (-4 *4 (-1261 (-418 *3))) (-5 *2 (-936)) (-5 *1 (-928 *4 *5)) (-4 *5 (-1261 (-418 *4))))))
-(-10 -7 (-15 -1323 ((-936) (-575))) (-15 -2095 ((-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))) |#1|)) (-15 -2095 ((-575) |#2|)) (-15 -2502 ((-575) (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))))) (-15 -2931 ((-575) |#2|)) (-15 -2439 (|#2| |#2|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 ((|#1| $) 100)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-2800 (($ $ $) NIL)) (-4162 (((-3 $ "failed") $) 94)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2177 (($ |#1| (-429 |#1|)) 92)) (-1808 (((-1190 |#1|) |#1| |#1|) 53)) (-3506 (($ $) 61)) (-3900 (((-112) $) NIL)) (-3674 (((-575) $) 97)) (-2301 (($ $ (-575)) 99)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-3282 ((|#1| $) 96)) (-3238 (((-429 |#1|) $) 95)) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) 93)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-4289 (($ $) 50)) (-2882 (((-873) $) 124) (($ (-575)) 73) (($ $) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 41) (((-418 |#1|) $) 78) (($ (-418 (-429 |#1|))) 86)) (-4421 (((-782)) 71 T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) 26 T CONST)) (-2005 (($) 15 T CONST)) (-3913 (((-112) $ $) 87)) (-4038 (($ $ $) NIL)) (-4027 (($ $) 108) (($ $ $) NIL)) (-4015 (($ $ $) 49)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 110) (($ $ $) 48) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-929 |#1|) (-13 (-373) (-38 |#1|) (-10 -8 (-15 -2882 ((-418 |#1|) $)) (-15 -2882 ($ (-418 (-429 |#1|)))) (-15 -4289 ($ $)) (-15 -3238 ((-429 |#1|) $)) (-15 -3282 (|#1| $)) (-15 -2301 ($ $ (-575))) (-15 -3674 ((-575) $)) (-15 -1808 ((-1190 |#1|) |#1| |#1|)) (-15 -3506 ($ $)) (-15 -2177 ($ |#1| (-429 |#1|))) (-15 -3824 (|#1| $)))) (-316)) (T -929))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-418 (-429 *3))) (-4 *3 (-316)) (-5 *1 (-929 *3)))) (-4289 (*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-429 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-3282 (*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-3674 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-1808 (*1 *2 *3 *3) (-12 (-5 *2 (-1190 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))) (-3506 (*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))) (-2177 (*1 *1 *2 *3) (-12 (-5 *3 (-429 *2)) (-4 *2 (-316)) (-5 *1 (-929 *2)))) (-3824 (*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))))
-(-13 (-373) (-38 |#1|) (-10 -8 (-15 -2882 ((-418 |#1|) $)) (-15 -2882 ($ (-418 (-429 |#1|)))) (-15 -4289 ($ $)) (-15 -3238 ((-429 |#1|) $)) (-15 -3282 (|#1| $)) (-15 -2301 ($ $ (-575))) (-15 -3674 ((-575) $)) (-15 -1808 ((-1190 |#1|) |#1| |#1|)) (-15 -3506 ($ $)) (-15 -2177 ($ |#1| (-429 |#1|))) (-15 -3824 (|#1| $))))
-((-2177 (((-52) (-967 |#1|) (-429 (-967 |#1|)) (-1194)) 17) (((-52) (-418 (-967 |#1|)) (-1194)) 18)))
-(((-930 |#1|) (-10 -7 (-15 -2177 ((-52) (-418 (-967 |#1|)) (-1194))) (-15 -2177 ((-52) (-967 |#1|) (-429 (-967 |#1|)) (-1194)))) (-13 (-316) (-148))) (T -930))
-((-2177 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-429 (-967 *6))) (-5 *5 (-1194)) (-5 *3 (-967 *6)) (-4 *6 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *6)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *5)))))
-(-10 -7 (-15 -2177 ((-52) (-418 (-967 |#1|)) (-1194))) (-15 -2177 ((-52) (-967 |#1|) (-429 (-967 |#1|)) (-1194))))
-((-3023 ((|#4| (-655 |#4|)) 147) (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3923 (((-1190 |#4|) (-655 (-1190 |#4|))) 140) (((-1190 |#4|) (-1190 |#4|) (-1190 |#4|)) 61) ((|#4| (-655 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
-(((-931 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3923 (|#4| |#4| |#4|)) (-15 -3923 (|#4| (-655 |#4|))) (-15 -3923 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3923 ((-1190 |#4|) (-655 (-1190 |#4|)))) (-15 -3023 (|#4| |#4| |#4|)) (-15 -3023 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3023 (|#4| (-655 |#4|)))) (-804) (-861) (-316) (-964 |#3| |#1| |#2|)) (T -931))
-((-3023 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5)) (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)))) (-3023 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6)))) (-3023 (*1 *2 *2 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-655 (-1190 *7))) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-1190 *7)) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))) (-3923 (*1 *2 *2 *2) (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5)) (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)))) (-3923 (*1 *2 *2 *2) (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4)))))
-(-10 -7 (-15 -3923 (|#4| |#4| |#4|)) (-15 -3923 (|#4| (-655 |#4|))) (-15 -3923 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3923 ((-1190 |#4|) (-655 (-1190 |#4|)))) (-15 -3023 (|#4| |#4| |#4|)) (-15 -3023 ((-1190 |#4|) (-1190 |#4|) (-1190 |#4|))) (-15 -3023 (|#4| (-655 |#4|))))
-((-2797 (((-919 (-575)) (-988)) 38) (((-919 (-575)) (-655 (-575))) 34)) (-2729 (((-919 (-575)) (-655 (-575))) 67) (((-919 (-575)) (-936)) 68)) (-2101 (((-919 (-575))) 39)) (-4429 (((-919 (-575))) 53) (((-919 (-575)) (-655 (-575))) 52)) (-1440 (((-919 (-575))) 51) (((-919 (-575)) (-655 (-575))) 50)) (-3413 (((-919 (-575))) 49) (((-919 (-575)) (-655 (-575))) 48)) (-4199 (((-919 (-575))) 47) (((-919 (-575)) (-655 (-575))) 46)) (-2725 (((-919 (-575))) 45) (((-919 (-575)) (-655 (-575))) 44)) (-3105 (((-919 (-575))) 55) (((-919 (-575)) (-655 (-575))) 54)) (-2871 (((-919 (-575)) (-655 (-575))) 72) (((-919 (-575)) (-936)) 74)) (-1746 (((-919 (-575)) (-655 (-575))) 69) (((-919 (-575)) (-936)) 70)) (-1900 (((-919 (-575)) (-655 (-575))) 65) (((-919 (-575)) (-936)) 66)) (-2131 (((-919 (-575)) (-655 (-936))) 57)))
-(((-932) (-10 -7 (-15 -2729 ((-919 (-575)) (-936))) (-15 -2729 ((-919 (-575)) (-655 (-575)))) (-15 -1900 ((-919 (-575)) (-936))) (-15 -1900 ((-919 (-575)) (-655 (-575)))) (-15 -2131 ((-919 (-575)) (-655 (-936)))) (-15 -1746 ((-919 (-575)) (-936))) (-15 -1746 ((-919 (-575)) (-655 (-575)))) (-15 -2871 ((-919 (-575)) (-936))) (-15 -2871 ((-919 (-575)) (-655 (-575)))) (-15 -2725 ((-919 (-575)) (-655 (-575)))) (-15 -2725 ((-919 (-575)))) (-15 -4199 ((-919 (-575)) (-655 (-575)))) (-15 -4199 ((-919 (-575)))) (-15 -3413 ((-919 (-575)) (-655 (-575)))) (-15 -3413 ((-919 (-575)))) (-15 -1440 ((-919 (-575)) (-655 (-575)))) (-15 -1440 ((-919 (-575)))) (-15 -4429 ((-919 (-575)) (-655 (-575)))) (-15 -4429 ((-919 (-575)))) (-15 -3105 ((-919 (-575)) (-655 (-575)))) (-15 -3105 ((-919 (-575)))) (-15 -2101 ((-919 (-575)))) (-15 -2797 ((-919 (-575)) (-655 (-575)))) (-15 -2797 ((-919 (-575)) (-988))))) (T -932))
-((-2797 (*1 *2 *3) (-12 (-5 *3 (-988)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2101 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3105 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4429 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4429 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1440 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3413 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4199 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2725 (*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(-10 -7 (-15 -2729 ((-919 (-575)) (-936))) (-15 -2729 ((-919 (-575)) (-655 (-575)))) (-15 -1900 ((-919 (-575)) (-936))) (-15 -1900 ((-919 (-575)) (-655 (-575)))) (-15 -2131 ((-919 (-575)) (-655 (-936)))) (-15 -1746 ((-919 (-575)) (-936))) (-15 -1746 ((-919 (-575)) (-655 (-575)))) (-15 -2871 ((-919 (-575)) (-936))) (-15 -2871 ((-919 (-575)) (-655 (-575)))) (-15 -2725 ((-919 (-575)) (-655 (-575)))) (-15 -2725 ((-919 (-575)))) (-15 -4199 ((-919 (-575)) (-655 (-575)))) (-15 -4199 ((-919 (-575)))) (-15 -3413 ((-919 (-575)) (-655 (-575)))) (-15 -3413 ((-919 (-575)))) (-15 -1440 ((-919 (-575)) (-655 (-575)))) (-15 -1440 ((-919 (-575)))) (-15 -4429 ((-919 (-575)) (-655 (-575)))) (-15 -4429 ((-919 (-575)))) (-15 -3105 ((-919 (-575)) (-655 (-575)))) (-15 -3105 ((-919 (-575)))) (-15 -2101 ((-919 (-575)))) (-15 -2797 ((-919 (-575)) (-655 (-575)))) (-15 -2797 ((-919 (-575)) (-988))))
-((-4287 (((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))) 14)) (-1498 (((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))) 13)))
-(((-933 |#1|) (-10 -7 (-15 -1498 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -4287 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194))))) (-463)) (T -933))
-((-4287 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463)) (-5 *1 (-933 *4)))) (-1498 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463)) (-5 *1 (-933 *4)))))
-(-10 -7 (-15 -1498 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -4287 ((-655 (-967 |#1|)) (-655 (-967 |#1|)) (-655 (-1194)))))
-((-2882 (((-325 |#1|) (-488)) 16)))
-(((-934 |#1|) (-10 -7 (-15 -2882 ((-325 |#1|) (-488)))) (-567)) (T -934))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-488)) (-5 *2 (-325 *4)) (-5 *1 (-934 *4)) (-4 *4 (-567)))))
-(-10 -7 (-15 -2882 ((-325 |#1|) (-488))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3900 (((-112) $) 35)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-935) (-141)) (T -935))
-((-2105 (*1 *2 *3) (-12 (-4 *1 (-935)) (-5 *2 (-2 (|:| -1754 (-655 *1)) (|:| -3657 *1))) (-5 *3 (-655 *1)))) (-2880 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-935)))))
-(-13 (-463) (-10 -8 (-15 -2105 ((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $))) (-15 -2880 ((-3 (-655 $) "failed") (-655 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3923 (($ $ $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-2005 (($) NIL T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ $ $) NIL)))
-(((-936) (-13 (-805) (-737) (-10 -8 (-15 -3923 ($ $ $)) (-6 (-4462 "*"))))) (T -936))
-((-3923 (*1 *1 *1 *1) (-5 *1 (-936))))
-(-13 (-805) (-737) (-10 -8 (-15 -3923 ($ $ $)) (-6 (-4462 "*"))))
+((-4424 (((-703 (-1245)) $ (-1245)) NIL)) (-2505 (((-703 (-561)) $ (-561)) NIL)) (-1608 (((-783) $ (-129)) NIL)) (-1400 (((-703 (-130)) $ (-130)) 22)) (-1906 (($ (-400)) 12) (($ (-1178)) 14)) (-4354 (((-112) $) 19)) (-2858 (((-874) $) 26)) (-1723 (($ $) 23)))
+(((-873) (-13 (-872) (-625 (-874)) (-10 -8 (-15 -1906 ($ (-400))) (-15 -1906 ($ (-1178))) (-15 -4354 ((-112) $))))) (T -873))
+((-1906 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-873)))) (-4354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))))
+(-13 (-872) (-625 (-874)) (-10 -8 (-15 -1906 ($ (-400))) (-15 -1906 ($ (-1178))) (-15 -4354 ((-112) $))))
+((-2835 (((-112) $ $) NIL) (($ $ $) 85)) (-3045 (($ $ $) 125)) (-2264 (((-576) $) 31) (((-576)) 36)) (-1747 (($ (-576)) 53)) (-2738 (($ $ $) 54) (($ (-656 $)) 84)) (-4045 (($ $ (-656 $)) 82)) (-4208 (((-576) $) 34)) (-2269 (($ $ $) 73)) (-4372 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3588 (((-576) $) 33)) (-2964 (($ $ $) 72)) (-1682 (($ $) 114)) (-3553 (($ $ $) 129)) (-3162 (($ (-656 $)) 61)) (-1885 (($ $ (-656 $)) 79)) (-3451 (($ (-576) (-576)) 55)) (-1469 (($ $) 126) (($ $ $) 127)) (-2442 (($ $ (-576)) 43) (($ $) 46)) (-2780 (($ $ $) 97)) (-4440 (($ $ $) 132)) (-2109 (($ $) 115)) (-2790 (($ $ $) 98)) (-4253 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3494 (((-1292) $) 10)) (-4038 (($ $) 118) (($ $ (-783)) 122)) (-4189 (($ $ $) 75)) (-2030 (($ $ $) 74)) (-2501 (($ $ (-656 $)) 110)) (-2119 (($ $ $) 113)) (-3118 (($ (-656 $)) 59)) (-1739 (($ $) 70) (($ (-656 $)) 71)) (-1936 (($ $ $) 123)) (-2736 (($ $) 116)) (-4434 (($ $ $) 128)) (-1421 (($ (-576)) 21) (($ (-1196)) 23) (($ (-1178)) 30) (($ (-227)) 25)) (-3212 (($ $ $) 101)) (-3189 (($ $) 102)) (-2287 (((-1292) (-1178)) 15)) (-3951 (($ (-1178)) 14)) (-4307 (($ (-656 (-656 $))) 58)) (-2425 (($ $ (-576)) 42) (($ $) 45)) (-2143 (((-1178) $) NIL)) (-1800 (($ $ $) 131)) (-2522 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3502 (((-112) $) 108)) (-2300 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-4375 (($ (-576)) 39)) (-3317 (((-576) $) 32) (((-576)) 35)) (-1500 (($ $ $) 40) (($ (-656 $)) 83)) (-3887 (((-1139) $) NIL)) (-2825 (($ $ $) 99)) (-3849 (($) 13)) (-2099 (($ $ (-656 $)) 109)) (-2664 (((-1178) (-1178)) 8)) (-2139 (($ $) 117) (($ $ (-783)) 121)) (-2813 (($ $ $) 96)) (-2399 (($ $ (-783)) 139)) (-3906 (($ (-656 $)) 60)) (-2858 (((-874) $) 19)) (-1785 (($ $ (-576)) 41) (($ $) 44)) (-2013 (($ $) 68) (($ (-656 $)) 69)) (-2554 (($ $) 66) (($ (-656 $)) 67)) (-2435 (($ $) 124)) (-4068 (($ (-656 $)) 65)) (-3176 (($ $ $) 105)) (-2690 (((-112) $ $) NIL)) (-3119 (($ $ $) 130)) (-3200 (($ $ $) 100)) (-1892 (($ $ $) 103) (($ $) 104)) (-3956 (($ $ $) 89)) (-3930 (($ $ $) 87)) (-3889 (((-112) $ $) 16) (($ $ $) 17)) (-3944 (($ $ $) 88)) (-3916 (($ $ $) 86)) (-4013 (($ $ $) 94)) (-4002 (($ $ $) 91) (($ $) 92)) (-3990 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-874) (-13 (-1119) (-10 -8 (-15 -3494 ((-1292) $)) (-15 -3951 ($ (-1178))) (-15 -2287 ((-1292) (-1178))) (-15 -1421 ($ (-576))) (-15 -1421 ($ (-1196))) (-15 -1421 ($ (-1178))) (-15 -1421 ($ (-227))) (-15 -3849 ($)) (-15 -2664 ((-1178) (-1178))) (-15 -2264 ((-576) $)) (-15 -3317 ((-576) $)) (-15 -2264 ((-576))) (-15 -3317 ((-576))) (-15 -3588 ((-576) $)) (-15 -4208 ((-576) $)) (-15 -4375 ($ (-576))) (-15 -1747 ($ (-576))) (-15 -3451 ($ (-576) (-576))) (-15 -2425 ($ $ (-576))) (-15 -2442 ($ $ (-576))) (-15 -1785 ($ $ (-576))) (-15 -2425 ($ $)) (-15 -2442 ($ $)) (-15 -1785 ($ $)) (-15 -1500 ($ $ $)) (-15 -2738 ($ $ $)) (-15 -1500 ($ (-656 $))) (-15 -2738 ($ (-656 $))) (-15 -2501 ($ $ (-656 $))) (-15 -2300 ($ $ (-656 $))) (-15 -2300 ($ $ $ $)) (-15 -2119 ($ $ $)) (-15 -3502 ((-112) $)) (-15 -2099 ($ $ (-656 $))) (-15 -1682 ($ $)) (-15 -1800 ($ $ $)) (-15 -2435 ($ $)) (-15 -4307 ($ (-656 (-656 $)))) (-15 -3045 ($ $ $)) (-15 -1469 ($ $)) (-15 -1469 ($ $ $)) (-15 -4434 ($ $ $)) (-15 -3553 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4440 ($ $ $)) (-15 -2399 ($ $ (-783))) (-15 -3176 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -2030 ($ $ $)) (-15 -4189 ($ $ $)) (-15 -1885 ($ $ (-656 $))) (-15 -4045 ($ $ (-656 $))) (-15 -2109 ($ $)) (-15 -2139 ($ $)) (-15 -2139 ($ $ (-783))) (-15 -4038 ($ $)) (-15 -4038 ($ $ (-783))) (-15 -2736 ($ $)) (-15 -1936 ($ $ $)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -4372 ($ $ $ $)) (-15 -4253 ($ $)) (-15 -4253 ($ $ $)) (-15 -4253 ($ $ $ $)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2522 ($ $ $ $)) (-15 -2554 ($ $)) (-15 -2554 ($ (-656 $))) (-15 -2013 ($ $)) (-15 -2013 ($ (-656 $))) (-15 -1739 ($ $)) (-15 -1739 ($ (-656 $))) (-15 -3118 ($ (-656 $))) (-15 -3906 ($ (-656 $))) (-15 -3162 ($ (-656 $))) (-15 -4068 ($ (-656 $))) (-15 -3889 ($ $ $)) (-15 -2835 ($ $ $)) (-15 -3916 ($ $ $)) (-15 -3930 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3956 ($ $ $)) (-15 -3990 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -4002 ($ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -2790 ($ $ $)) (-15 -2825 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -3212 ($ $ $)) (-15 -3189 ($ $)) (-15 -1892 ($ $ $)) (-15 -1892 ($ $))))) (T -874))
+((-3494 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-874)))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-874)))) (-1421 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1421 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-874)))) (-1421 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-1421 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) (-3849 (*1 *1) (-5 *1 (-874))) (-2664 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2264 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3317 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1747 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3451 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2425 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2425 (*1 *1 *1) (-5 *1 (-874))) (-2442 (*1 *1 *1) (-5 *1 (-874))) (-1785 (*1 *1 *1) (-5 *1 (-874))) (-1500 (*1 *1 *1 *1) (-5 *1 (-874))) (-2738 (*1 *1 *1 *1) (-5 *1 (-874))) (-1500 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2501 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2300 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2119 (*1 *1 *1 *1) (-5 *1 (-874))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1682 (*1 *1 *1) (-5 *1 (-874))) (-1800 (*1 *1 *1 *1) (-5 *1 (-874))) (-2435 (*1 *1 *1) (-5 *1 (-874))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) (-3045 (*1 *1 *1 *1) (-5 *1 (-874))) (-1469 (*1 *1 *1) (-5 *1 (-874))) (-1469 (*1 *1 *1 *1) (-5 *1 (-874))) (-4434 (*1 *1 *1 *1) (-5 *1 (-874))) (-3553 (*1 *1 *1 *1) (-5 *1 (-874))) (-3119 (*1 *1 *1 *1) (-5 *1 (-874))) (-4440 (*1 *1 *1 *1) (-5 *1 (-874))) (-2399 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-3176 (*1 *1 *1 *1) (-5 *1 (-874))) (-2964 (*1 *1 *1 *1) (-5 *1 (-874))) (-2269 (*1 *1 *1 *1) (-5 *1 (-874))) (-2030 (*1 *1 *1 *1) (-5 *1 (-874))) (-4189 (*1 *1 *1 *1) (-5 *1 (-874))) (-1885 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4045 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2109 (*1 *1 *1) (-5 *1 (-874))) (-2139 (*1 *1 *1) (-5 *1 (-874))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4038 (*1 *1 *1) (-5 *1 (-874))) (-4038 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-2736 (*1 *1 *1) (-5 *1 (-874))) (-1936 (*1 *1 *1 *1) (-5 *1 (-874))) (-4372 (*1 *1 *1) (-5 *1 (-874))) (-4372 (*1 *1 *1 *1) (-5 *1 (-874))) (-4372 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-4253 (*1 *1 *1) (-5 *1 (-874))) (-4253 (*1 *1 *1 *1) (-5 *1 (-874))) (-4253 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2522 (*1 *1 *1) (-5 *1 (-874))) (-2522 (*1 *1 *1 *1) (-5 *1 (-874))) (-2522 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2554 (*1 *1 *1) (-5 *1 (-874))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2013 (*1 *1 *1) (-5 *1 (-874))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1739 (*1 *1 *1) (-5 *1 (-874))) (-1739 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3906 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3162 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4068 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3889 (*1 *1 *1 *1) (-5 *1 (-874))) (-2835 (*1 *1 *1 *1) (-5 *1 (-874))) (-3916 (*1 *1 *1 *1) (-5 *1 (-874))) (-3930 (*1 *1 *1 *1) (-5 *1 (-874))) (-3944 (*1 *1 *1 *1) (-5 *1 (-874))) (-3956 (*1 *1 *1 *1) (-5 *1 (-874))) (-3990 (*1 *1 *1 *1) (-5 *1 (-874))) (-4002 (*1 *1 *1 *1) (-5 *1 (-874))) (-4002 (*1 *1 *1) (-5 *1 (-874))) (* (*1 *1 *1 *1) (-5 *1 (-874))) (-4013 (*1 *1 *1 *1) (-5 *1 (-874))) (** (*1 *1 *1 *1) (-5 *1 (-874))) (-2813 (*1 *1 *1 *1) (-5 *1 (-874))) (-2780 (*1 *1 *1 *1) (-5 *1 (-874))) (-2790 (*1 *1 *1 *1) (-5 *1 (-874))) (-2825 (*1 *1 *1 *1) (-5 *1 (-874))) (-3200 (*1 *1 *1 *1) (-5 *1 (-874))) (-3212 (*1 *1 *1 *1) (-5 *1 (-874))) (-3189 (*1 *1 *1) (-5 *1 (-874))) (-1892 (*1 *1 *1 *1) (-5 *1 (-874))) (-1892 (*1 *1 *1) (-5 *1 (-874))))
+(-13 (-1119) (-10 -8 (-15 -3494 ((-1292) $)) (-15 -3951 ($ (-1178))) (-15 -2287 ((-1292) (-1178))) (-15 -1421 ($ (-576))) (-15 -1421 ($ (-1196))) (-15 -1421 ($ (-1178))) (-15 -1421 ($ (-227))) (-15 -3849 ($)) (-15 -2664 ((-1178) (-1178))) (-15 -2264 ((-576) $)) (-15 -3317 ((-576) $)) (-15 -2264 ((-576))) (-15 -3317 ((-576))) (-15 -3588 ((-576) $)) (-15 -4208 ((-576) $)) (-15 -4375 ($ (-576))) (-15 -1747 ($ (-576))) (-15 -3451 ($ (-576) (-576))) (-15 -2425 ($ $ (-576))) (-15 -2442 ($ $ (-576))) (-15 -1785 ($ $ (-576))) (-15 -2425 ($ $)) (-15 -2442 ($ $)) (-15 -1785 ($ $)) (-15 -1500 ($ $ $)) (-15 -2738 ($ $ $)) (-15 -1500 ($ (-656 $))) (-15 -2738 ($ (-656 $))) (-15 -2501 ($ $ (-656 $))) (-15 -2300 ($ $ (-656 $))) (-15 -2300 ($ $ $ $)) (-15 -2119 ($ $ $)) (-15 -3502 ((-112) $)) (-15 -2099 ($ $ (-656 $))) (-15 -1682 ($ $)) (-15 -1800 ($ $ $)) (-15 -2435 ($ $)) (-15 -4307 ($ (-656 (-656 $)))) (-15 -3045 ($ $ $)) (-15 -1469 ($ $)) (-15 -1469 ($ $ $)) (-15 -4434 ($ $ $)) (-15 -3553 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -4440 ($ $ $)) (-15 -2399 ($ $ (-783))) (-15 -3176 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -2030 ($ $ $)) (-15 -4189 ($ $ $)) (-15 -1885 ($ $ (-656 $))) (-15 -4045 ($ $ (-656 $))) (-15 -2109 ($ $)) (-15 -2139 ($ $)) (-15 -2139 ($ $ (-783))) (-15 -4038 ($ $)) (-15 -4038 ($ $ (-783))) (-15 -2736 ($ $)) (-15 -1936 ($ $ $)) (-15 -4372 ($ $)) (-15 -4372 ($ $ $)) (-15 -4372 ($ $ $ $)) (-15 -4253 ($ $)) (-15 -4253 ($ $ $)) (-15 -4253 ($ $ $ $)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2522 ($ $ $ $)) (-15 -2554 ($ $)) (-15 -2554 ($ (-656 $))) (-15 -2013 ($ $)) (-15 -2013 ($ (-656 $))) (-15 -1739 ($ $)) (-15 -1739 ($ (-656 $))) (-15 -3118 ($ (-656 $))) (-15 -3906 ($ (-656 $))) (-15 -3162 ($ (-656 $))) (-15 -4068 ($ (-656 $))) (-15 -3889 ($ $ $)) (-15 -2835 ($ $ $)) (-15 -3916 ($ $ $)) (-15 -3930 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3956 ($ $ $)) (-15 -3990 ($ $ $)) (-15 -4002 ($ $ $)) (-15 -4002 ($ $)) (-15 * ($ $ $)) (-15 -4013 ($ $ $)) (-15 ** ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2780 ($ $ $)) (-15 -2790 ($ $ $)) (-15 -2825 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -3212 ($ $ $)) (-15 -3189 ($ $)) (-15 -1892 ($ $ $)) (-15 -1892 ($ $))))
+((-1428 (((-1292) (-656 (-52))) 23)) (-3696 (((-1292) (-1178) (-874)) 13) (((-1292) (-874)) 8) (((-1292) (-1178)) 10)))
+(((-875) (-10 -7 (-15 -3696 ((-1292) (-1178))) (-15 -3696 ((-1292) (-874))) (-15 -3696 ((-1292) (-1178) (-874))) (-15 -1428 ((-1292) (-656 (-52)))))) (T -875))
+((-1428 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875)))))
+(-10 -7 (-15 -3696 ((-1292) (-1178))) (-15 -3696 ((-1292) (-874))) (-15 -3696 ((-1292) (-1178) (-874))) (-15 -1428 ((-1292) (-656 (-52)))))
+((-2835 (((-112) $ $) NIL)) (-1455 (((-3 $ "failed") (-1196)) 36)) (-2422 (((-783)) 32)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) 29)) (-2143 (((-1178) $) 43)) (-4308 (($ (-938)) 28)) (-3887 (((-1139) $) NIL)) (-2610 (((-1196) $) 13) (((-548) $) 19) (((-905 (-390)) $) 26) (((-905 (-576)) $) 22)) (-2858 (((-874) $) 16)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 40)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 38)))
+(((-876 |#1|) (-13 (-856) (-626 (-1196)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1455 ((-3 $ "failed") (-1196))))) (-656 (-1196))) (T -876))
+((-1455 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2)))))
+(-13 (-856) (-626 (-1196)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1455 ((-3 $ "failed") (-1196)))))
+((-2835 (((-112) $ $) NIL)) (-1811 (((-518) $) 9)) (-3531 (((-656 (-451)) $) 13)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 21)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 16)))
+(((-877) (-13 (-1119) (-10 -8 (-15 -1811 ((-518) $)) (-15 -3531 ((-656 (-451)) $))))) (T -877))
+((-1811 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877)))))
+(-13 (-1119) (-10 -8 (-15 -1811 ((-518) $)) (-15 -3531 ((-656 (-451)) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-969 |#1|)) NIL) (((-969 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2981 (((-783)) NIL T CONST)) (-3320 (((-1292) (-783)) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-878 |#1| |#2| |#3| |#4|) (-13 (-1068) (-502 (-969 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3320 ((-1292) (-783))))) (-1068) (-656 (-1196)) (-656 (-783)) (-783)) (T -878))
+((-4013 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-878 *4 *5 *6 *7)) (-4 *4 (-1068)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 *3)) (-14 *7 *3))))
+(-13 (-1068) (-502 (-969 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3320 ((-1292) (-783)))))
+((-3715 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-2493 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29)))
+(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -2493 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -3715 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1278 |#1|) (-1263 |#1|)) (T -879))
+((-3715 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))) (-2493 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))))
+(-10 -7 (-15 -2493 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -3715 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|)))
+((-2493 (((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) 28)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2493 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (-15 -2493 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)))) (-374) (-1196) |#1|) (T -880))
+((-2493 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) (-5 *1 (-880 *5 *6 *7)))) (-2493 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) (-5 *1 (-880 *5 *6 *7)))))
+(-10 -7 (-15 -2493 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (-15 -2493 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-2477 (($ $ (-576)) 68)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-1469 (($ (-1192 (-576)) (-576)) 67)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-4376 (($ $) 70)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-2620 (((-783) $) 75)) (-1838 (((-112) $) 35)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2703 (((-576)) 72)) (-4119 (((-576) $) 71)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3262 (($ $ (-576)) 74)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-4107 (((-1176 (-576)) $) 76)) (-2137 (($ $) 73)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-3468 (((-576) $ (-576)) 69)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-881 |#1|) (-141) (-576)) (T -881))
+((-4107 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1176 (-576))))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) (-3262 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-2137 (*1 *1 *1) (-4 *1 (-881 *2))) (-2703 (*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-4376 (*1 *1 *1) (-4 *1 (-881 *2))) (-3468 (*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-2477 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1469 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4)))))
+(-13 (-317) (-148) (-10 -8 (-15 -4107 ((-1176 (-576)) $)) (-15 -2620 ((-783) $)) (-15 -3262 ($ $ (-576))) (-15 -2137 ($ $)) (-15 -2703 ((-576))) (-15 -4119 ((-576) $)) (-15 -4376 ($ $)) (-15 -3468 ((-576) $ (-576))) (-15 -2477 ($ $ (-576))) (-15 -1469 ($ (-1192 (-576)) (-576)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $ (-576)) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-1469 (($ (-1192 (-576)) (-576)) NIL)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-4376 (($ $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-2620 (((-783) $) NIL)) (-1838 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2703 (((-576)) NIL)) (-4119 (((-576) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3262 (($ $ (-576)) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-4107 (((-1176 (-576)) $) NIL)) (-2137 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-576) $ (-576)) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL)))
+(((-882 |#1|) (-881 |#1|) (-576)) (T -882))
+NIL
+(-881 |#1|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-882 |#1|) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-882 |#1|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-576))))) (-4397 (((-882 |#1|) $) NIL) (((-1196) $) NIL (|has| (-882 |#1|) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-882 |#1|) (-1057 (-576)))) (((-576) $) NIL (|has| (-882 |#1|) (-1057 (-576))))) (-2444 (($ $) NIL) (($ (-576) $) NIL)) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-882 |#1|))) (|:| |vec| (-1287 (-882 |#1|)))) (-701 $) (-1287 $)) NIL) (((-701 (-882 |#1|)) (-701 $)) NIL) (((-701 (-882 |#1|)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-882 |#1|) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-882 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-882 |#1|) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-882 |#1|) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-1171)))) (-3196 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-1492 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-2548 (($ (-1 (-882 |#1|) (-882 |#1|)) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-882 |#1|) (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-882 |#1|) (-317)))) (-3807 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-882 |#1|)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-882 |#1|) (-882 |#1|)) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-304 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-304 (-882 |#1|)))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-1196)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-526 (-1196) (-882 |#1|)))) (($ $ (-1196) (-882 |#1|)) NIL (|has| (-882 |#1|) (-526 (-1196) (-882 |#1|))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-882 |#1|)) NIL (|has| (-882 |#1|) (-296 (-882 |#1|) (-882 |#1|))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-882 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-882 |#1|) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-882 |#1|) $) NIL)) (-2610 (((-905 (-576)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-882 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-882 |#1|) (-1041))) (((-227) $) NIL (|has| (-882 |#1|) (-1041)))) (-2601 (((-176 (-419 (-576))) $) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-882 |#1|)) NIL) (($ (-1196)) NIL (|has| (-882 |#1|) (-1057 (-1196))))) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-926))) (|has| (-882 |#1|) (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-419 (-576)) $ (-576)) NIL)) (-3680 (($ $) NIL (|has| (-882 |#1|) (-832)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-882 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-882 |#1|) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-4013 (($ $ $) NIL) (($ (-882 |#1|) (-882 |#1|)) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-882 |#1|) $) NIL) (($ $ (-882 |#1|)) NIL)))
+(((-883 |#1|) (-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -3468 ((-419 (-576)) $ (-576))) (-15 -2601 ((-176 (-419 (-576))) $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $)))) (-576)) (T -883))
+((-3468 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) (-2444 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2))))
+(-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -3468 ((-419 (-576)) $ (-576))) (-15 -2601 ((-176 (-419 (-576))) $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 ((|#2| $) NIL (|has| |#2| (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| |#2| (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| |#2| (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576))))) (-4397 ((|#2| $) NIL) (((-1196) $) NIL (|has| |#2| (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-576)))) (((-576) $) NIL (|has| |#2| (-1057 (-576))))) (-2444 (($ $) 35) (($ (-576) $) 38)) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) 64)) (-2107 (($) NIL (|has| |#2| (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) NIL (|has| |#2| (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#2| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#2| (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 ((|#2| $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| |#2| (-1171)))) (-3196 (((-112) $) NIL (|has| |#2| (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| |#2| (-862)))) (-1492 (($ $ $) NIL (|has| |#2| (-862)))) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 60)) (-3448 (($) NIL (|has| |#2| (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| |#2| (-317)))) (-3807 ((|#2| $) NIL (|has| |#2| (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1196)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1196) |#2|))) (($ $ (-1196) |#2|) NIL (|has| |#2| (-526 (-1196) |#2|)))) (-3076 (((-783) $) NIL)) (-2099 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3560 (($ $) NIL)) (-1635 ((|#2| $) NIL)) (-2610 (((-905 (-576)) $) NIL (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#2| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1041))) (((-227) $) NIL (|has| |#2| (-1041)))) (-2601 (((-176 (-419 (-576))) $) 78)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-2858 (((-874) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1196)) NIL (|has| |#2| (-1057 (-1196))))) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2981 (((-783)) NIL T CONST)) (-3156 ((|#2| $) NIL (|has| |#2| (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-419 (-576)) $ (-576)) 71)) (-3680 (($ $) NIL (|has| |#2| (-832)))) (-2022 (($) 15 T CONST)) (-2038 (($) 17 T CONST)) (-3404 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3956 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3889 (((-112) $ $) 46)) (-3944 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#2| (-862)))) (-4013 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4002 (($ $) 50) (($ $ $) 52)) (-3990 (($ $ $) 48)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-884 |#1| |#2|) (-13 (-1011 |#2|) (-10 -8 (-15 -3468 ((-419 (-576)) $ (-576))) (-15 -2601 ((-176 (-419 (-576))) $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $)))) (-576) (-881 |#1|)) (T -884))
+((-3468 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) (-5 *3 (-576)) (-4 *5 (-881 *4)))) (-2601 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))) (-2444 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) (-2444 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))))
+(-13 (-1011 |#2|) (-10 -8 (-15 -3468 ((-419 (-576)) $ (-576))) (-15 -2601 ((-176 (-419 (-576))) $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $))))
+((-2835 (((-112) $ $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-2951 ((|#2| $) 12)) (-4345 (($ |#1| |#2|) 9)) (-2143 (((-1178) $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-3887 (((-1139) $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#1| $) 11)) (-2869 (($ |#1| |#2|) 10)) (-2858 (((-874) $) 18 (-3739 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))))) (-2690 (((-112) $ $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-3889 (((-112) $ $) 23 (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))))
+(((-885 |#1| |#2|) (-13 (-1237) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1119)) (IF (|has| |#2| (-1119)) (-6 (-1119)) |%noBranch|) |%noBranch|) (-15 -4345 ($ |#1| |#2|)) (-15 -2869 ($ |#1| |#2|)) (-15 -1989 (|#1| $)) (-15 -2951 (|#2| $)))) (-1237) (-1237)) (T -885))
+((-4345 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-2869 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-1989 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1237)))) (-2951 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1237)))))
+(-13 (-1237) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1119)) (IF (|has| |#2| (-1119)) (-6 (-1119)) |%noBranch|) |%noBranch|) (-15 -4345 ($ |#1| |#2|)) (-15 -2869 ($ |#1| |#2|)) (-15 -1989 (|#1| $)) (-15 -2951 (|#2| $))))
+((-2835 (((-112) $ $) NIL)) (-3188 (((-576) $) 16)) (-2826 (($ (-158)) 13)) (-1791 (($ (-158)) 14)) (-2143 (((-1178) $) NIL)) (-3702 (((-158) $) 15)) (-3887 (((-1139) $) NIL)) (-2809 (($ (-158)) 11)) (-2347 (($ (-158)) 10)) (-2858 (((-874) $) 24) (($ (-158)) 17)) (-2995 (($ (-158)) 12)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-886) (-13 (-1119) (-10 -8 (-15 -2347 ($ (-158))) (-15 -2809 ($ (-158))) (-15 -2995 ($ (-158))) (-15 -2826 ($ (-158))) (-15 -1791 ($ (-158))) (-15 -3702 ((-158) $)) (-15 -3188 ((-576) $)) (-15 -2858 ($ (-158)))))) (T -886))
+((-2347 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2809 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-1791 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(-13 (-1119) (-10 -8 (-15 -2347 ($ (-158))) (-15 -2809 ($ (-158))) (-15 -2995 ($ (-158))) (-15 -2826 ($ (-158))) (-15 -1791 ($ (-158))) (-15 -3702 ((-158) $)) (-15 -3188 ((-576) $)) (-15 -2858 ($ (-158)))))
+((-2858 (((-326 (-576)) (-419 (-969 (-48)))) 23) (((-326 (-576)) (-969 (-48))) 18)))
+(((-887) (-10 -7 (-15 -2858 ((-326 (-576)) (-969 (-48)))) (-15 -2858 ((-326 (-576)) (-419 (-969 (-48))))))) (T -887))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-969 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))))
+(-10 -7 (-15 -2858 ((-326 (-576)) (-969 (-48)))) (-15 -2858 ((-326 (-576)) (-419 (-969 (-48))))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 18) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2012 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1178))) 13)) (-2690 (((-112) $ $) NIL)) (-3108 (((-518) $) 10) (((-1178) $) 14)) (-3889 (((-112) $ $) 15)))
+(((-888) (-13 (-1102) (-1282) (-10 -8 (-15 -2012 ((-112) $ (|[\|\|]| (-518)))) (-15 -3108 ((-518) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1178)))) (-15 -3108 ((-1178) $))))) (T -888))
+((-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-888)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-888)))))
+(-13 (-1102) (-1282) (-10 -8 (-15 -2012 ((-112) $ (|[\|\|]| (-518)))) (-15 -3108 ((-518) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1178)))) (-15 -3108 ((-1178) $))))
+((-2548 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -2548 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1237) (-1237)) (T -889))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))))
+(-10 -7 (-15 -2548 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|))))
+((-4192 (($ |#1| |#1|) 8)) (-1575 ((|#1| $ (-783)) 15)))
+(((-890 |#1|) (-10 -8 (-15 -4192 ($ |#1| |#1|)) (-15 -1575 (|#1| $ (-783)))) (-1237)) (T -890))
+((-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1237)))) (-4192 (*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1237)))))
+(-10 -8 (-15 -4192 ($ |#1| |#1|)) (-15 -1575 (|#1| $ (-783))))
+((-2548 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15)))
+(((-891 |#1| |#2|) (-10 -7 (-15 -2548 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1237) (-1237)) (T -891))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))))
+(-10 -7 (-15 -2548 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|))))
+((-4192 (($ |#1| |#1| |#1|) 8)) (-1575 ((|#1| $ (-783)) 15)))
+(((-892 |#1|) (-10 -8 (-15 -4192 ($ |#1| |#1| |#1|)) (-15 -1575 (|#1| $ (-783)))) (-1237)) (T -892))
+((-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1237)))) (-4192 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1237)))))
+(-10 -8 (-15 -4192 ($ |#1| |#1| |#1|)) (-15 -1575 (|#1| $ (-783))))
+((-3714 (((-656 (-1201)) (-1178)) 9)))
+(((-893) (-10 -7 (-15 -3714 ((-656 (-1201)) (-1178))))) (T -893))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-893)))))
+(-10 -7 (-15 -3714 ((-656 (-1201)) (-1178))))
+((-2548 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15)))
+(((-894 |#1| |#2|) (-10 -7 (-15 -2548 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1237) (-1237)) (T -894))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))))
+(-10 -7 (-15 -2548 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|))))
+((-2971 (($ |#1| |#1| |#1|) 8)) (-1575 ((|#1| $ (-783)) 15)))
+(((-895 |#1|) (-10 -8 (-15 -2971 ($ |#1| |#1| |#1|)) (-15 -1575 (|#1| $ (-783)))) (-1237)) (T -895))
+((-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1237)))) (-2971 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1237)))))
+(-10 -8 (-15 -2971 ($ |#1| |#1| |#1|)) (-15 -1575 (|#1| $ (-783))))
+((-1934 (((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576)))) 41)) (-2848 (((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-3957 (((-1176 (-656 (-576))) (-656 (-576))) 53) (((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-3620 (((-1176 (-656 (-576))) (-576)) 55)) (-3603 (((-1176 (-656 (-938))) (-1176 (-656 (-938)))) 22)) (-2480 (((-656 (-938)) (-656 (-938))) 18)))
+(((-896) (-10 -7 (-15 -2480 ((-656 (-938)) (-656 (-938)))) (-15 -3603 ((-1176 (-656 (-938))) (-1176 (-656 (-938))))) (-15 -2848 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1934 ((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576))))) (-15 -3957 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3957 ((-1176 (-656 (-576))) (-656 (-576)))) (-15 -3620 ((-1176 (-656 (-576))) (-576))))) (T -896))
+((-3620 (*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3957 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-1934 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-896)))) (-2848 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3603 (*1 *2 *2) (-12 (-5 *2 (-1176 (-656 (-938)))) (-5 *1 (-896)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-896)))))
+(-10 -7 (-15 -2480 ((-656 (-938)) (-656 (-938)))) (-15 -3603 ((-1176 (-656 (-938))) (-1176 (-656 (-938))))) (-15 -2848 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1934 ((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576))))) (-15 -3957 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -3957 ((-1176 (-656 (-576))) (-656 (-576)))) (-15 -3620 ((-1176 (-656 (-576))) (-576))))
+((-2610 (((-905 (-390)) $) 9 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 8 (|has| |#1| (-626 (-905 (-576)))))))
+(((-897 |#1|) (-141) (-1237)) (T -897))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|)))
+(((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))))
+((-2835 (((-112) $ $) NIL)) (-2327 (($) 14)) (-1420 (($ (-902 |#1| |#2|) (-902 |#1| |#3|)) 28)) (-1372 (((-902 |#1| |#3|) $) 16)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1734 (((-112) $) 22)) (-3395 (($) 19)) (-2858 (((-874) $) 31)) (-2690 (((-112) $ $) NIL)) (-1452 (((-902 |#1| |#2|) $) 15)) (-3889 (((-112) $ $) 26)))
+(((-898 |#1| |#2| |#3|) (-13 (-1119) (-10 -8 (-15 -1734 ((-112) $)) (-15 -3395 ($)) (-15 -2327 ($)) (-15 -1420 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1452 ((-902 |#1| |#2|) $)) (-15 -1372 ((-902 |#1| |#3|) $)))) (-1119) (-1119) (-678 |#2|)) (T -898))
+((-1734 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))) (-3395 (*1 *1) (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) (-4 *4 (-678 *3)))) (-2327 (*1 *1) (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) (-4 *4 (-678 *3)))) (-1420 (*1 *1 *2 *3) (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))) (-1452 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))) (-1372 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))))
+(-13 (-1119) (-10 -8 (-15 -1734 ((-112) $)) (-15 -3395 ($)) (-15 -2327 ($)) (-15 -1420 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1452 ((-902 |#1| |#2|) $)) (-15 -1372 ((-902 |#1| |#3|) $))))
+((-2835 (((-112) $ $) 7)) (-1835 (((-902 |#1| $) $ (-905 |#1|) (-902 |#1| $)) 14)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-899 |#1|) (-141) (-1119)) (T -899))
+((-1835 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) (-4 *4 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -1835 ((-902 |t#1| $) $ (-905 |t#1|) (-902 |t#1| $)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2729 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1921 (((-902 |#1| |#2|) |#2| |#3|) 45 (-12 (-3189 (|has| |#2| (-1057 (-1196)))) (-3189 (|has| |#2| (-1068))))) (((-656 (-304 (-969 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1068)) (-3189 (|has| |#2| (-1057 (-1196)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1057 (-1196)))) (((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21)))
+(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -2729 ((-112) |#2| |#3|)) (-15 -2729 ((-112) (-656 |#2|) |#3|)) (-15 -1921 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1196))) (-15 -1921 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -1921 ((-656 (-304 (-969 |#2|))) |#2| |#3|)) (-15 -1921 ((-902 |#1| |#2|) |#2| |#3|))))) (-1119) (-899 |#1|) (-626 (-905 |#1|))) (T -900))
+((-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) (-3189 (-4 *3 (-1057 (-1196)))) (-3189 (-4 *3 (-1068))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 (-969 *3)))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068)) (-3189 (-4 *3 (-1057 (-1196)))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1057 (-1196))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))) (-2729 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))))
+(-10 -7 (-15 -2729 ((-112) |#2| |#3|)) (-15 -2729 ((-112) (-656 |#2|) |#3|)) (-15 -1921 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1196))) (-15 -1921 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -1921 ((-656 (-304 (-969 |#2|))) |#2| |#3|)) (-15 -1921 ((-902 |#1| |#2|) |#2| |#3|)))))
+((-2548 (((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)) 22)))
+(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) (-1119) (-1119) (-1119)) (T -901))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-902 *5 *7)) (-5 *1 (-901 *5 *6 *7)))))
+(-10 -7 (-15 -2548 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|))))
+((-2835 (((-112) $ $) NIL)) (-1675 (($ $ $) 40)) (-3105 (((-3 (-112) "failed") $ (-905 |#1|)) 37)) (-2327 (($) 12)) (-2143 (((-1178) $) NIL)) (-3624 (($ (-905 |#1|) |#2| $) 20)) (-3887 (((-1139) $) NIL)) (-4287 (((-3 |#2| "failed") (-905 |#1|) $) 51)) (-1734 (((-112) $) 15)) (-3395 (($) 13)) (-3817 (((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 |#2|))) $) 25)) (-2869 (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 |#2|)))) 23)) (-2858 (((-874) $) 45)) (-2690 (((-112) $ $) NIL)) (-1351 (($ (-905 |#1|) |#2| $ |#2|) 49)) (-2190 (($ (-905 |#1|) |#2| $) 48)) (-3889 (((-112) $ $) 42)))
+(((-902 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -1734 ((-112) $)) (-15 -3395 ($)) (-15 -2327 ($)) (-15 -1675 ($ $ $)) (-15 -4287 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -2190 ($ (-905 |#1|) |#2| $)) (-15 -3624 ($ (-905 |#1|) |#2| $)) (-15 -1351 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -3817 ((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 |#2|))) $)) (-15 -2869 ($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 |#2|))))) (-15 -3105 ((-3 (-112) "failed") $ (-905 |#1|))))) (-1119) (-1119)) (T -902))
+((-1734 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-3395 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2327 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1675 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-4287 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) (-5 *1 (-902 *4 *2)))) (-2190 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-3624 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-1351 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 *4)))) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 *4)))) (-4 *4 (-1119)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)))) (-3105 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -1734 ((-112) $)) (-15 -3395 ($)) (-15 -2327 ($)) (-15 -1675 ($ $ $)) (-15 -4287 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -2190 ($ (-905 |#1|) |#2| $)) (-15 -3624 ($ (-905 |#1|) |#2| $)) (-15 -1351 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -3817 ((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 |#2|))) $)) (-15 -2869 ($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 |#2|))))) (-15 -3105 ((-3 (-112) "failed") $ (-905 |#1|)))))
+((-1726 (((-905 |#1|) (-905 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|))) 32) (((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|)) 35)) (-3105 (((-112) (-656 |#2|) (-905 |#1|)) 42) (((-112) |#2| (-905 |#1|)) 36)) (-2406 (((-1 (-112) |#2|) (-905 |#1|)) 16)) (-2686 (((-656 |#2|) (-905 |#1|)) 24)) (-2325 (((-905 |#1|) (-905 |#1|) |#2|) 20)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -1726 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -1726 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -1726 ((-905 |#1|) (-905 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|)))) (-15 -2406 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -3105 ((-112) |#2| (-905 |#1|))) (-15 -3105 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -2325 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -2686 ((-656 |#2|) (-905 |#1|)))) (-1119) (-1237)) (T -903))
+((-2686 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-656 *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1237)))) (-2325 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1237)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3)) (-4 *3 (-1237)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1237)))) (-1726 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1196))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *1 (-903 *5 *6)))) (-1726 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1119)) (-4 *5 (-1237)) (-5 *1 (-903 *4 *5)))) (-1726 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1119)) (-4 *5 (-1237)) (-5 *1 (-903 *4 *5)))))
+(-10 -7 (-15 -1726 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -1726 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -1726 ((-905 |#1|) (-905 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|)))) (-15 -2406 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -3105 ((-112) |#2| (-905 |#1|))) (-15 -3105 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -2325 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -2686 ((-656 |#2|) (-905 |#1|))))
+((-2548 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -2548 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1119) (-1119)) (T -904))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6)))))
+(-10 -7 (-15 -2548 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|))))
+((-2835 (((-112) $ $) NIL)) (-4217 (($ $ (-656 (-52))) 74)) (-1634 (((-656 $) $) 139)) (-2313 (((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $) 30)) (-4084 (((-112) $) 35)) (-4061 (($ $ (-656 (-1196)) (-52)) 31)) (-4321 (($ $ (-656 (-52))) 73)) (-2454 (((-3 |#1| "failed") $) 71) (((-3 (-1196) "failed") $) 164)) (-4397 ((|#1| $) 68) (((-1196) $) NIL)) (-2728 (($ $) 126)) (-3656 (((-112) $) 55)) (-1648 (((-656 (-52)) $) 50)) (-2041 (($ (-1196) (-112) (-112) (-112)) 75)) (-2743 (((-3 (-656 $) "failed") (-656 $)) 82)) (-2608 (((-112) $) 58)) (-2602 (((-112) $) 57)) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) 41)) (-3268 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2321 (((-3 (-2 (|:| |val| $) (|:| -2273 $)) "failed") $) 97)) (-1972 (((-3 (-656 $) "failed") $) 40)) (-3896 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1600 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-1393 (((-3 (-656 $) "failed") $) 42)) (-2994 (((-3 (-2 (|:| |val| $) (|:| -2273 (-783))) "failed") $) 45)) (-4059 (((-112) $) 34)) (-3887 (((-1139) $) NIL)) (-1854 (((-112) $) 28)) (-3856 (((-112) $) 52)) (-2968 (((-656 (-52)) $) 130)) (-2053 (((-112) $) 56)) (-2099 (($ (-115) (-656 $)) 104)) (-3297 (((-783) $) 33)) (-3052 (($ $) 72)) (-2610 (($ (-656 $)) 69)) (-2565 (((-112) $) 32)) (-2858 (((-874) $) 63) (($ |#1|) 23) (($ (-1196)) 76)) (-2690 (((-112) $ $) NIL)) (-2325 (($ $ (-52)) 129)) (-2022 (($) 103 T CONST)) (-2038 (($) 83 T CONST)) (-3889 (((-112) $ $) 93)) (-4013 (($ $ $) 117)) (-3990 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-905 |#1|) (-13 (-1119) (-1057 |#1|) (-1057 (-1196)) (-10 -8 (-15 0 ($) -3712) (-15 1 ($) -3712) (-15 -1972 ((-3 (-656 $) "failed") $)) (-15 -2829 ((-3 (-656 $) "failed") $)) (-15 -3896 ((-3 (-656 $) "failed") $ (-115))) (-15 -3896 ((-3 (-2 (|:| -1600 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2994 ((-3 (-2 (|:| |val| $) (|:| -2273 (-783))) "failed") $)) (-15 -3268 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1393 ((-3 (-656 $) "failed") $)) (-15 -2321 ((-3 (-2 (|:| |val| $) (|:| -2273 $)) "failed") $)) (-15 -2099 ($ (-115) (-656 $))) (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4013 ($ $ $)) (-15 -3297 ((-783) $)) (-15 -2610 ($ (-656 $))) (-15 -3052 ($ $)) (-15 -4059 ((-112) $)) (-15 -3656 ((-112) $)) (-15 -4084 ((-112) $)) (-15 -2565 ((-112) $)) (-15 -2053 ((-112) $)) (-15 -2602 ((-112) $)) (-15 -2608 ((-112) $)) (-15 -3856 ((-112) $)) (-15 -1648 ((-656 (-52)) $)) (-15 -4321 ($ $ (-656 (-52)))) (-15 -4217 ($ $ (-656 (-52)))) (-15 -2041 ($ (-1196) (-112) (-112) (-112))) (-15 -4061 ($ $ (-656 (-1196)) (-52))) (-15 -2313 ((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $)) (-15 -1854 ((-112) $)) (-15 -2728 ($ $)) (-15 -2325 ($ $ (-52))) (-15 -2968 ((-656 (-52)) $)) (-15 -1634 ((-656 $) $)) (-15 -2743 ((-3 (-656 $) "failed") (-656 $))))) (-1119)) (T -905))
+((-2022 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-2038 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-1972 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2829 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3896 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-3896 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1600 (-115)) (|:| |arg| (-656 (-905 *3))))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2994 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2273 (-783)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3268 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1393 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2321 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2273 (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2099 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-3990 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-4013 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3052 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4217 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2041 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-112)) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-4061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-52)) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-2325 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2743 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(-13 (-1119) (-1057 |#1|) (-1057 (-1196)) (-10 -8 (-15 (-2022) ($) -3712) (-15 (-2038) ($) -3712) (-15 -1972 ((-3 (-656 $) "failed") $)) (-15 -2829 ((-3 (-656 $) "failed") $)) (-15 -3896 ((-3 (-656 $) "failed") $ (-115))) (-15 -3896 ((-3 (-2 (|:| -1600 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -2994 ((-3 (-2 (|:| |val| $) (|:| -2273 (-783))) "failed") $)) (-15 -3268 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1393 ((-3 (-656 $) "failed") $)) (-15 -2321 ((-3 (-2 (|:| |val| $) (|:| -2273 $)) "failed") $)) (-15 -2099 ($ (-115) (-656 $))) (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4013 ($ $ $)) (-15 -3297 ((-783) $)) (-15 -2610 ($ (-656 $))) (-15 -3052 ($ $)) (-15 -4059 ((-112) $)) (-15 -3656 ((-112) $)) (-15 -4084 ((-112) $)) (-15 -2565 ((-112) $)) (-15 -2053 ((-112) $)) (-15 -2602 ((-112) $)) (-15 -2608 ((-112) $)) (-15 -3856 ((-112) $)) (-15 -1648 ((-656 (-52)) $)) (-15 -4321 ($ $ (-656 (-52)))) (-15 -4217 ($ $ (-656 (-52)))) (-15 -2041 ($ (-1196) (-112) (-112) (-112))) (-15 -4061 ($ $ (-656 (-1196)) (-52))) (-15 -2313 ((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $)) (-15 -1854 ((-112) $)) (-15 -2728 ($ $)) (-15 -2325 ($ $ (-52))) (-15 -2968 ((-656 (-52)) $)) (-15 -1634 ((-656 $) $)) (-15 -2743 ((-3 (-656 $) "failed") (-656 $)))))
+((-2835 (((-112) $ $) NIL)) (-3463 (((-656 |#1|) $) 19)) (-3097 (((-112) $) 49)) (-2454 (((-3 (-684 |#1|) "failed") $) 56)) (-4397 (((-684 |#1|) $) 54)) (-2003 (($ $) 23)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-1873 (((-783) $) 61)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-684 |#1|) $) 21)) (-2858 (((-874) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 9 T CONST)) (-1754 (((-656 (-684 |#1|)) $) 28)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 12)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 67)))
+(((-906 |#1|) (-13 (-862) (-1057 (-684 |#1|)) (-10 -8 (-15 1 ($) -3712) (-15 -2858 ((-831 |#1|) $)) (-15 -2858 ($ |#1|)) (-15 -1989 ((-684 |#1|) $)) (-15 -1873 ((-783) $)) (-15 -1754 ((-656 (-684 |#1|)) $)) (-15 -2003 ($ $)) (-15 -3097 ((-112) $)) (-15 -3463 ((-656 |#1|) $)))) (-862)) (T -906))
+((-2038 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2858 (*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))))
+(-13 (-862) (-1057 (-684 |#1|)) (-10 -8 (-15 (-2038) ($) -3712) (-15 -2858 ((-831 |#1|) $)) (-15 -2858 ($ |#1|)) (-15 -1989 ((-684 |#1|) $)) (-15 -1873 ((-783) $)) (-15 -1754 ((-656 (-684 |#1|)) $)) (-15 -2003 ($ $)) (-15 -3097 ((-112) $)) (-15 -3463 ((-656 |#1|) $))))
+((-4062 ((|#1| |#1| |#1|) 19)))
+(((-907 |#1| |#2|) (-10 -7 (-15 -4062 (|#1| |#1| |#1|))) (-1263 |#2|) (-1068)) (T -907))
+((-4062 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1263 *3)))))
+(-10 -7 (-15 -4062 (|#1| |#1| |#1|)))
+((-3404 ((|#2| $ |#3|) 10)))
+(((-908 |#1| |#2| |#3|) (-10 -8 (-15 -3404 (|#2| |#1| |#3|))) (-909 |#2| |#3|) (-1237) (-1237)) (T -908))
+NIL
+(-10 -8 (-15 -3404 (|#2| |#1| |#3|)))
+((-2399 ((|#1| $ |#2|) 7)) (-3404 ((|#1| $ |#2|) 6)))
+(((-909 |#1| |#2|) (-141) (-1237) (-1237)) (T -909))
+((-2399 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) (-3404 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2399 (|t#1| $ |t#2|)) (-15 -3404 (|t#1| $ |t#2|))))
+(((-1237) . T))
+((-2835 (((-112) $ $) 7)) (-2605 (((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3523 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 14)) (-3889 (((-112) $ $) 6)))
+(((-910) (-141)) (T -910))
+((-2605 (*1 *2 *3 *4) (-12 (-4 *1 (-910)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178)))))) (-3523 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-1054)))))
+(-13 (-1119) (-10 -7 (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -3523 ((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-3820 ((|#1| |#1| (-783)) 27)) (-3324 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2294 (((-3 (-2 (|:| -2425 |#1|) (|:| -2442 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38)))
+(((-911 |#1| |#2|) (-10 -7 (-15 -2294 ((-656 |#1|) |#1|)) (-15 -2294 ((-3 (-2 (|:| -2425 |#1|) (|:| -2442 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3324 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3820 (|#1| |#1| (-783)))) (-1263 |#2|) (-374)) (T -911))
+((-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1263 *4)))) (-3324 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1263 *3)))) (-2294 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2425 *3) (|:| -2442 *3))) (-5 *1 (-911 *3 *5)) (-4 *3 (-1263 *5)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -2294 ((-656 |#1|) |#1|)) (-15 -2294 ((-3 (-2 (|:| -2425 |#1|) (|:| -2442 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3324 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3820 (|#1| |#1| (-783))))
+((-2783 (((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178)) 104) (((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227)) 100) (((-1054) (-913) (-1082)) 92) (((-1054) (-913)) 93)) (-2605 (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913) (-1082)) 62) (((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913)) 64)))
+(((-912) (-10 -7 (-15 -2783 ((-1054) (-913))) (-15 -2783 ((-1054) (-913) (-1082))) (-15 -2783 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227))) (-15 -2783 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913) (-1082))))) (T -912))
+((-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-912)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-912)))) (-2783 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-2783 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912)))))
+(-10 -7 (-15 -2783 ((-1054) (-913))) (-15 -2783 ((-1054) (-913) (-1082))) (-15 -2783 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227))) (-15 -2783 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913))) (-15 -2605 ((-2 (|:| -2605 (-390)) (|:| -1811 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913) (-1082))))
+((-2835 (((-112) $ $) NIL)) (-4397 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $) 19)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 18)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-913) (-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -4397 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $))))) (T -913))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *1 (-913)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *1 (-913)))))
+(-13 (-1119) (-10 -8 (-15 -2858 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -4397 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3404 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-914 |#1| |#2|) (-141) (-1068) (-1119)) (T -914))
+NIL
+(-13 (-111 |t#1| |t#1|) (-917 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-909 $ |#2|) . T) ((-917 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2399 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-915 |#1|) (-141) (-1119)) (T -915))
+NIL
+(-13 (-1068) (-917 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ |#1|) . T) ((-917 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-2399 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-3404 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21)))
+(((-916 |#1| |#2|) (-10 -8 (-15 -3404 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3404 (|#1| |#1| |#2| (-783))) (-15 -3404 (|#1| |#1| (-656 |#2|))) (-15 -2399 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2399 (|#1| |#1| |#2| (-783))) (-15 -2399 (|#1| |#1| (-656 |#2|))) (-15 -3404 (|#1| |#1| |#2|)) (-15 -2399 (|#1| |#1| |#2|))) (-917 |#2|) (-1119)) (T -916))
+NIL
+(-10 -8 (-15 -3404 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3404 (|#1| |#1| |#2| (-783))) (-15 -3404 (|#1| |#1| (-656 |#2|))) (-15 -2399 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2399 (|#1| |#1| |#2| (-783))) (-15 -2399 (|#1| |#1| (-656 |#2|))) (-15 -3404 (|#1| |#1| |#2|)) (-15 -2399 (|#1| |#1| |#2|)))
+((-2399 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-3404 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10)))
+(((-917 |#1|) (-141) (-1119)) (T -917))
+((-2399 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-2399 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-2399 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) (-4 *4 (-1119)))) (-3404 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) (-4 *4 (-1119)))))
+(-13 (-909 $ |t#1|) (-10 -8 (-15 -2399 ($ $ (-656 |t#1|))) (-15 -2399 ($ $ |t#1| (-783))) (-15 -2399 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -3404 ($ $ (-656 |t#1|))) (-15 -3404 ($ $ |t#1| (-783))) (-15 -3404 ($ $ (-656 |t#1|) (-656 (-783))))))
+(((-909 $ |#1|) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) 26)) (-2746 (((-112) $ (-783)) NIL)) (-4338 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2216 (($ $ $) NIL (|has| $ (-6 -4463)))) (-3232 (($ $ $) NIL (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2442 (($ $) 25)) (-3924 (($ |#1|) 12) (($ $ $) 17)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2425 (($ $) 23)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) 20)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3599 (((-576) $ $) NIL)) (-2133 (((-112) $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1223 |#1|) $) 9) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 21 (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-918 |#1|) (-13 (-120 |#1|) (-625 (-1223 |#1|)) (-10 -8 (-15 -3924 ($ |#1|)) (-15 -3924 ($ $ $)))) (-1119)) (T -918))
+((-3924 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))) (-3924 (*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))))
+(-13 (-120 |#1|) (-625 (-1223 |#1|)) (-10 -8 (-15 -3924 ($ |#1|)) (-15 -3924 ($ $ $))))
+((-2937 ((|#2| (-1161 |#1| |#2|)) 48)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -2937 (|#2| (-1161 |#1| |#2|)))) (-938) (-13 (-1068) (-10 -7 (-6 (-4464 "*"))))) (T -919))
+((-2937 (*1 *2 *3) (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-938)) (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4464 "*"))))) (-5 *1 (-919 *4 *2)))))
+(-10 -7 (-15 -2937 (|#2| (-1161 |#1| |#2|))))
+((-2835 (((-112) $ $) 7)) (-2712 (((-1121 |#1|) $) 35)) (-2574 (($) 19 T CONST)) (-4011 (((-3 $ "failed") $) 16)) (-2841 (((-1121 |#1|) $ |#1|) 34)) (-1838 (((-112) $) 18)) (-1950 (($ $ $) 32 (-3739 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-1492 (($ $ $) 31 (-3739 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2143 (((-1178) $) 10)) (-4324 (($ $) 25)) (-3887 (((-1139) $) 11)) (-2099 ((|#1| $ |#1|) 38)) (-3168 (($ (-656 (-656 |#1|))) 36)) (-2351 (($ (-656 |#1|)) 37)) (-2480 (($ $ $) 22)) (-2220 (($ $ $) 21)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2038 (($) 20 T CONST)) (-3956 (((-112) $ $) 29 (-3739 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3930 (((-112) $ $) 28 (-3739 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 30 (-3739 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3916 (((-112) $ $) 33)) (-4013 (($ $ $) 24)) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15)))
+(((-920 |#1|) (-141) (-1119)) (T -920))
+((-2351 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-920 *3)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-4 *1 (-920 *3)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) (-3916 (*1 *2 *1 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2351 ($ (-656 |t#1|))) (-15 -3168 ($ (-656 (-656 |t#1|)))) (-15 -2712 ((-1121 |t#1|) $)) (-15 -2841 ((-1121 |t#1|) $ |t#1|)) (-15 -3916 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|)))
+(((-102) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-862) -3739 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-2887 (((-656 (-656 (-783))) $) 160)) (-1864 (((-656 (-783)) (-922 |#1|) $) 188)) (-4014 (((-656 (-783)) (-922 |#1|) $) 189)) (-2712 (((-1121 |#1|) $) 152)) (-1418 (((-656 (-922 |#1|)) $) 149)) (-2107 (((-922 |#1|) $ (-576)) 154) (((-922 |#1|) $) 155)) (-4442 (($ (-656 (-922 |#1|))) 162)) (-2620 (((-783) $) 156)) (-3231 (((-1121 (-1121 |#1|)) $) 186)) (-2841 (((-1121 |#1|) $ |#1|) 177) (((-1121 (-1121 |#1|)) $ (-1121 |#1|)) 197) (((-1121 (-656 |#1|)) $ (-656 |#1|)) 200)) (-3606 (((-112) (-922 |#1|) $) 137)) (-2143 (((-1178) $) NIL)) (-1589 (((-1292) $) 142) (((-1292) $ (-576) (-576)) 201)) (-3887 (((-1139) $) NIL)) (-3190 (((-656 (-922 |#1|)) $) 143)) (-2099 (((-922 |#1|) $ (-783)) 150)) (-4436 (((-783) $) 157)) (-2858 (((-874) $) 174) (((-656 (-922 |#1|)) $) 28) (($ (-656 (-922 |#1|))) 161)) (-2690 (((-112) $ $) NIL)) (-1572 (((-656 |#1|) $) 159)) (-3889 (((-112) $ $) 194)) (-3944 (((-112) $ $) 192)) (-3916 (((-112) $ $) 191)))
+(((-921 |#1|) (-13 (-1119) (-10 -8 (-15 -2858 ((-656 (-922 |#1|)) $)) (-15 -3190 ((-656 (-922 |#1|)) $)) (-15 -2099 ((-922 |#1|) $ (-783))) (-15 -2107 ((-922 |#1|) $ (-576))) (-15 -2107 ((-922 |#1|) $)) (-15 -2620 ((-783) $)) (-15 -4436 ((-783) $)) (-15 -1572 ((-656 |#1|) $)) (-15 -1418 ((-656 (-922 |#1|)) $)) (-15 -2887 ((-656 (-656 (-783))) $)) (-15 -2858 ($ (-656 (-922 |#1|)))) (-15 -4442 ($ (-656 (-922 |#1|)))) (-15 -2841 ((-1121 |#1|) $ |#1|)) (-15 -3231 ((-1121 (-1121 |#1|)) $)) (-15 -2841 ((-1121 (-1121 |#1|)) $ (-1121 |#1|))) (-15 -2841 ((-1121 (-656 |#1|)) $ (-656 |#1|))) (-15 -3606 ((-112) (-922 |#1|) $)) (-15 -1864 ((-656 (-783)) (-922 |#1|) $)) (-15 -4014 ((-656 (-783)) (-922 |#1|) $)) (-15 -2712 ((-1121 |#1|) $)) (-15 -3916 ((-112) $ $)) (-15 -3944 ((-112) $ $)) (-15 -1589 ((-1292) $)) (-15 -1589 ((-1292) $ (-576) (-576))))) (-1119)) (T -921))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))) (-2107 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))) (-4442 (*1 *1 *2) (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-1121 (-1121 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-1121 *4))) (-5 *1 (-921 *4)) (-5 *3 (-1121 *4)))) (-2841 (*1 *2 *1 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-656 *4))) (-5 *1 (-921 *4)) (-5 *3 (-656 *4)))) (-3606 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-921 *4)))) (-1864 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) (-5 *1 (-921 *4)))) (-4014 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) (-5 *1 (-921 *4)))) (-2712 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3916 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1589 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -2858 ((-656 (-922 |#1|)) $)) (-15 -3190 ((-656 (-922 |#1|)) $)) (-15 -2099 ((-922 |#1|) $ (-783))) (-15 -2107 ((-922 |#1|) $ (-576))) (-15 -2107 ((-922 |#1|) $)) (-15 -2620 ((-783) $)) (-15 -4436 ((-783) $)) (-15 -1572 ((-656 |#1|) $)) (-15 -1418 ((-656 (-922 |#1|)) $)) (-15 -2887 ((-656 (-656 (-783))) $)) (-15 -2858 ($ (-656 (-922 |#1|)))) (-15 -4442 ($ (-656 (-922 |#1|)))) (-15 -2841 ((-1121 |#1|) $ |#1|)) (-15 -3231 ((-1121 (-1121 |#1|)) $)) (-15 -2841 ((-1121 (-1121 |#1|)) $ (-1121 |#1|))) (-15 -2841 ((-1121 (-656 |#1|)) $ (-656 |#1|))) (-15 -3606 ((-112) (-922 |#1|) $)) (-15 -1864 ((-656 (-783)) (-922 |#1|) $)) (-15 -4014 ((-656 (-783)) (-922 |#1|) $)) (-15 -2712 ((-1121 |#1|) $)) (-15 -3916 ((-112) $ $)) (-15 -3944 ((-112) $ $)) (-15 -1589 ((-1292) $)) (-15 -1589 ((-1292) $ (-576) (-576)))))
+((-2835 (((-112) $ $) NIL)) (-2712 (((-1121 |#1|) $) 60)) (-2059 (((-656 $) (-656 $)) 103)) (-1727 (((-576) $) 83)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-2620 (((-783) $) 80)) (-2841 (((-1121 |#1|) $ |#1|) 70)) (-1838 (((-112) $) NIL)) (-2531 (((-112) $) 88)) (-3538 (((-783) $) 84)) (-1950 (($ $ $) NIL (-3739 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-1492 (($ $ $) NIL (-3739 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2084 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 130)) (-3887 (((-1139) $) NIL)) (-3741 (((-1121 |#1|) $) 136 (|has| |#1| (-379)))) (-3945 (((-112) $) 81)) (-2099 ((|#1| $ |#1|) 68)) (-4436 (((-783) $) 62)) (-3168 (($ (-656 (-656 |#1|))) 118)) (-1378 (((-990) $) 74)) (-2351 (($ (-656 |#1|)) 32)) (-2480 (($ $ $) NIL)) (-2220 (($ $ $) NIL)) (-1327 (($ (-656 (-656 |#1|))) 57)) (-3214 (($ (-656 (-656 |#1|))) 123)) (-2102 (($ (-656 |#1|)) 132)) (-2858 (((-874) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-2690 (((-112) $ $) NIL)) (-2038 (($) 24 T CONST)) (-3956 (((-112) $ $) NIL (-3739 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3930 (((-112) $ $) NIL (-3739 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3889 (((-112) $ $) 66)) (-3944 (((-112) $ $) NIL (-3739 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3916 (((-112) $ $) 90)) (-4013 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33)))
+(((-922 |#1|) (-13 (-920 |#1|) (-10 -8 (-15 -2084 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -1327 ($ (-656 (-656 |#1|)))) (-15 -2858 ($ (-656 (-656 |#1|)))) (-15 -2858 ($ (-656 |#1|))) (-15 -3214 ($ (-656 (-656 |#1|)))) (-15 -4436 ((-783) $)) (-15 -1378 ((-990) $)) (-15 -2620 ((-783) $)) (-15 -3538 ((-783) $)) (-15 -1727 ((-576) $)) (-15 -3945 ((-112) $)) (-15 -2531 ((-112) $)) (-15 -2059 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3741 ((-1121 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -2102 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -2102 ($ (-656 |#1|))) |%noBranch|)))) (-1119)) (T -922))
+((-2084 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-3214 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-922 *3)) (-4 *3 (-379)) (-4 *3 (-1119)))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3)))))
+(-13 (-920 |#1|) (-10 -8 (-15 -2084 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -1327 ($ (-656 (-656 |#1|)))) (-15 -2858 ($ (-656 (-656 |#1|)))) (-15 -2858 ($ (-656 |#1|))) (-15 -3214 ($ (-656 (-656 |#1|)))) (-15 -4436 ((-783) $)) (-15 -1378 ((-990) $)) (-15 -2620 ((-783) $)) (-15 -3538 ((-783) $)) (-15 -1727 ((-576) $)) (-15 -3945 ((-112) $)) (-15 -2531 ((-112) $)) (-15 -2059 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -3741 ((-1121 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -2102 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -2102 ($ (-656 |#1|))) |%noBranch|))))
+((-2564 (((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|)) 160)) (-4039 ((|#1|) 97)) (-2823 (((-430 (-1192 |#4|)) (-1192 |#4|)) 169)) (-3875 (((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)) 84)) (-1927 (((-430 (-1192 |#4|)) (-1192 |#4|)) 179)) (-4268 (((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|) 113)))
+(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2564 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|))) (-15 -1927 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -2823 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -4039 (|#1|)) (-15 -4268 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -3875 ((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)))) (-926) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -923))
+((-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-926)) (-4 *6 (-805)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-430 (-1192 *8))) (-5 *1 (-923 *5 *6 *7 *8)) (-5 *4 (-1192 *8)))) (-4268 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-966 *5 *6 *4)) (-4 *5 (-926)) (-4 *6 (-805)) (-4 *4 (-862)) (-5 *1 (-923 *5 *6 *4 *7)))) (-4039 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) (-5 *1 (-923 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2564 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-923 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2564 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|))) (-15 -1927 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -2823 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -4039 (|#1|)) (-15 -4268 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -3875 ((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|))))
+((-2564 (((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)) 39)) (-4039 ((|#1|) 72)) (-2823 (((-430 (-1192 |#2|)) (-1192 |#2|)) 121)) (-3875 (((-430 (-1192 |#2|)) (-1192 |#2|)) 105)) (-1927 (((-430 (-1192 |#2|)) (-1192 |#2|)) 132)))
+(((-924 |#1| |#2|) (-10 -7 (-15 -2564 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))) (-15 -1927 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -2823 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -4039 (|#1|)) (-15 -3875 ((-430 (-1192 |#2|)) (-1192 |#2|)))) (-926) (-1263 |#1|)) (T -924))
+((-3875 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))) (-4039 (*1 *2) (-12 (-4 *2 (-926)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1263 *2)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))) (-2564 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-926)) (-5 *1 (-924 *4 *5)))))
+(-10 -7 (-15 -2564 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))) (-15 -1927 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -2823 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -4039 (|#1|)) (-15 -3875 ((-430 (-1192 |#2|)) (-1192 |#2|))))
+((-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 42)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 18)) (-3689 (((-3 $ "failed") $) 36)))
+(((-925 |#1|) (-10 -8 (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-926)) (T -925))
+NIL
+(-10 -8 (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3389 (((-430 (-1192 $)) (-1192 $)) 66)) (-3179 (($ $) 57)) (-2464 (((-430 $) $) 58)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 63)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-3011 (((-112) $) 59)) (-1838 (((-112) $) 35)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-3642 (((-430 (-1192 $)) (-1192 $)) 64)) (-3068 (((-430 (-1192 $)) (-1192 $)) 65)) (-2367 (((-430 $) $) 56)) (-2825 (((-3 $ "failed") $ $) 48)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3689 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-926) (-141)) (T -926))
+((-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-926)))) (-3389 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3068 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3642 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-1667 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *1))) (-5 *3 (-1192 *1)) (-4 *1 (-926)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-926)) (-5 *2 (-1287 *1)))) (-3689 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-926)))))
+(-13 (-1241) (-10 -8 (-15 -3389 ((-430 (-1192 $)) (-1192 $))) (-15 -3068 ((-430 (-1192 $)) (-1192 $))) (-15 -3642 ((-430 (-1192 $)) (-1192 $))) (-15 -1919 ((-1192 $) (-1192 $) (-1192 $))) (-15 -1667 ((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $))) (IF (|has| $ (-146)) (PROGN (-15 -1874 ((-3 (-1287 $) "failed") (-701 $))) (-15 -3689 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-4029 (((-783)) NIL)) (-1462 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-1398 (((-1209 (-938) (-783)) (-576)) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 $ "failed") $) NIL)) (-4397 (($ $) NIL)) (-2876 (($ (-1287 $)) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3602 (($) NIL)) (-4429 (((-112) $) NIL)) (-2244 (($ $) NIL) (($ $ (-783)) NIL)) (-3011 (((-112) $) NIL)) (-2620 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1838 (((-112) $) NIL)) (-2010 (($) NIL (|has| $ (-379)))) (-3776 (((-112) $) NIL (|has| $ (-379)))) (-3075 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-3397 (((-3 $ "failed") $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2510 (((-1192 $) $ (-938)) NIL (|has| $ (-379))) (((-1192 $) $) NIL)) (-1654 (((-938) $) NIL)) (-2533 (((-1192 $) $) NIL (|has| $ (-379)))) (-4003 (((-3 (-1192 $) "failed") $ $) NIL (|has| $ (-379))) (((-1192 $) $) NIL (|has| $ (-379)))) (-4007 (($ $ (-1192 $)) NIL (|has| $ (-379)))) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL T CONST)) (-4308 (($ (-938)) NIL)) (-2196 (((-112) $) NIL)) (-3887 (((-1139) $) NIL)) (-3633 (($) NIL (|has| $ (-379)))) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL)) (-2367 (((-430 $) $) NIL)) (-1651 (((-938)) NIL) (((-845 (-938))) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-3447 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-4340 (((-135)) NIL)) (-2399 (($ $) NIL) (($ $ (-783)) NIL)) (-4436 (((-938) $) NIL) (((-845 (-938)) $) NIL)) (-1953 (((-1192 $)) NIL)) (-1861 (($) NIL)) (-2496 (($) NIL (|has| $ (-379)))) (-3392 (((-701 $) (-1287 $)) NIL) (((-1287 $) $) NIL)) (-2610 (((-576) $) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3689 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $) (-938)) NIL) (((-1287 $)) NIL)) (-3199 (((-112) $ $) NIL)) (-2576 (((-112) $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-2086 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-927 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-938)) (T -927))
+NIL
+(-13 (-360) (-339 $) (-626 (-576)))
+((-1401 (((-3 (-2 (|:| -2620 (-783)) (|:| -3736 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-3785 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-2620 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15)))
+(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2620 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3785 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1401 ((-3 (-2 (|:| -2620 (-783)) (|:| -3736 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1057 (-576))) (-442 |#1|) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -928))
+((-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-2 (|:| -2620 (-783)) (|:| -3736 *8))) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2620 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3785 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1401 ((-3 (-2 (|:| -2620 (-783)) (|:| -3736 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|))))
+((-1401 (((-3 (-2 (|:| -2620 (-783)) (|:| -3736 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-3785 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-2620 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14)))
+(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -2620 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3785 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1401 ((-3 (-2 (|:| -2620 (-783)) (|:| -3736 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1263 (-419 (-576))) (-1263 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -929))
+((-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -2620 (-783)) (|:| -3736 *6))) (-5 *1 (-929 *4 *5 *6)))) (-3785 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-929 *4 *5 *6)))) (-2620 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-929 *4 *5 *6)))))
+(-10 -7 (-15 -2620 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3785 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1401 ((-3 (-2 (|:| -2620 (-783)) (|:| -3736 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))))
+((-3111 ((|#2| |#2|) 26)) (-2718 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-4365 (((-938) (-576)) 38)) (-1328 (((-576) |#2|) 45)) (-2153 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -4365 ((-938) (-576))) (-15 -2153 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2153 ((-576) |#2|)) (-15 -2718 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -1328 ((-576) |#2|)) (-15 -3111 (|#2| |#2|))) (-1263 (-419 (-576))) (-1263 (-419 |#1|))) (T -930))
+((-3111 (*1 *2 *2) (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *1 (-930 *3 *2)) (-4 *2 (-1263 (-419 *3))))) (-1328 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1263 (-419 *4))))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-2153 (*1 *2 *3) (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-930 *3 *4)) (-4 *4 (-1263 (-419 *3))))) (-4365 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-938)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1263 (-419 *4))))))
+(-10 -7 (-15 -4365 ((-938) (-576))) (-15 -2153 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -2153 ((-576) |#2|)) (-15 -2718 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -1328 ((-576) |#2|)) (-15 -3111 (|#2| |#2|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 ((|#1| $) 100)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-2780 (($ $ $) NIL)) (-4011 (((-3 $ "failed") $) 94)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-3280 (($ |#1| (-430 |#1|)) 92)) (-2077 (((-1192 |#1|) |#1| |#1|) 53)) (-3725 (($ $) 61)) (-1838 (((-112) $) NIL)) (-4116 (((-576) $) 97)) (-2082 (($ $ (-576)) 99)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4086 ((|#1| $) 96)) (-3845 (((-430 |#1|) $) 95)) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) 93)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2135 (($ $) 50)) (-2858 (((-874) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-2981 (((-783)) 71 T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) 26 T CONST)) (-2038 (($) 15 T CONST)) (-3889 (((-112) $ $) 87)) (-4013 (($ $ $) NIL)) (-4002 (($ $) 108) (($ $ $) NIL)) (-3990 (($ $ $) 49)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-931 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -2858 ((-419 |#1|) $)) (-15 -2858 ($ (-419 (-430 |#1|)))) (-15 -2135 ($ $)) (-15 -3845 ((-430 |#1|) $)) (-15 -4086 (|#1| $)) (-15 -2082 ($ $ (-576))) (-15 -4116 ((-576) $)) (-15 -2077 ((-1192 |#1|) |#1| |#1|)) (-15 -3725 ($ $)) (-15 -3280 ($ |#1| (-430 |#1|))) (-15 -1463 (|#1| $)))) (-317)) (T -931))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-931 *3)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-4086 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *2 (-1192 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-3725 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-3280 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-931 *2)))) (-1463 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))))
+(-13 (-374) (-38 |#1|) (-10 -8 (-15 -2858 ((-419 |#1|) $)) (-15 -2858 ($ (-419 (-430 |#1|)))) (-15 -2135 ($ $)) (-15 -3845 ((-430 |#1|) $)) (-15 -4086 (|#1| $)) (-15 -2082 ($ $ (-576))) (-15 -4116 ((-576) $)) (-15 -2077 ((-1192 |#1|) |#1| |#1|)) (-15 -3725 ($ $)) (-15 -3280 ($ |#1| (-430 |#1|))) (-15 -1463 (|#1| $))))
+((-3280 (((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1196)) 17) (((-52) (-419 (-969 |#1|)) (-1196)) 18)))
+(((-932 |#1|) (-10 -7 (-15 -3280 ((-52) (-419 (-969 |#1|)) (-1196))) (-15 -3280 ((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1196)))) (-13 (-317) (-148))) (T -932))
+((-3280 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-969 *6))) (-5 *5 (-1196)) (-5 *3 (-969 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *6)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *5)))))
+(-10 -7 (-15 -3280 ((-52) (-419 (-969 |#1|)) (-1196))) (-15 -3280 ((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1196))))
+((-2754 ((|#4| (-656 |#4|)) 147) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3901 (((-1192 |#4|) (-656 (-1192 |#4|))) 140) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107)))
+(((-933 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3901 (|#4| |#4| |#4|)) (-15 -3901 (|#4| (-656 |#4|))) (-15 -3901 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3901 ((-1192 |#4|) (-656 (-1192 |#4|)))) (-15 -2754 (|#4| |#4| |#4|)) (-15 -2754 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -2754 (|#4| (-656 |#4|)))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -933))
+((-2754 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-2754 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) (-2754 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-656 (-1192 *7))) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1192 *7)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-3901 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3901 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))))
+(-10 -7 (-15 -3901 (|#4| |#4| |#4|)) (-15 -3901 (|#4| (-656 |#4|))) (-15 -3901 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3901 ((-1192 |#4|) (-656 (-1192 |#4|)))) (-15 -2754 (|#4| |#4| |#4|)) (-15 -2754 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -2754 (|#4| (-656 |#4|))))
+((-3596 (((-921 (-576)) (-990)) 38) (((-921 (-576)) (-656 (-576))) 34)) (-1636 (((-921 (-576)) (-656 (-576))) 67) (((-921 (-576)) (-938)) 68)) (-1437 (((-921 (-576))) 39)) (-2472 (((-921 (-576))) 53) (((-921 (-576)) (-656 (-576))) 52)) (-3708 (((-921 (-576))) 51) (((-921 (-576)) (-656 (-576))) 50)) (-1759 (((-921 (-576))) 49) (((-921 (-576)) (-656 (-576))) 48)) (-3084 (((-921 (-576))) 47) (((-921 (-576)) (-656 (-576))) 46)) (-4383 (((-921 (-576))) 45) (((-921 (-576)) (-656 (-576))) 44)) (-2456 (((-921 (-576))) 55) (((-921 (-576)) (-656 (-576))) 54)) (-3960 (((-921 (-576)) (-656 (-576))) 72) (((-921 (-576)) (-938)) 74)) (-1993 (((-921 (-576)) (-656 (-576))) 69) (((-921 (-576)) (-938)) 70)) (-4110 (((-921 (-576)) (-656 (-576))) 65) (((-921 (-576)) (-938)) 66)) (-2938 (((-921 (-576)) (-656 (-938))) 57)))
+(((-934) (-10 -7 (-15 -1636 ((-921 (-576)) (-938))) (-15 -1636 ((-921 (-576)) (-656 (-576)))) (-15 -4110 ((-921 (-576)) (-938))) (-15 -4110 ((-921 (-576)) (-656 (-576)))) (-15 -2938 ((-921 (-576)) (-656 (-938)))) (-15 -1993 ((-921 (-576)) (-938))) (-15 -1993 ((-921 (-576)) (-656 (-576)))) (-15 -3960 ((-921 (-576)) (-938))) (-15 -3960 ((-921 (-576)) (-656 (-576)))) (-15 -4383 ((-921 (-576)) (-656 (-576)))) (-15 -4383 ((-921 (-576)))) (-15 -3084 ((-921 (-576)) (-656 (-576)))) (-15 -3084 ((-921 (-576)))) (-15 -1759 ((-921 (-576)) (-656 (-576)))) (-15 -1759 ((-921 (-576)))) (-15 -3708 ((-921 (-576)) (-656 (-576)))) (-15 -3708 ((-921 (-576)))) (-15 -2472 ((-921 (-576)) (-656 (-576)))) (-15 -2472 ((-921 (-576)))) (-15 -2456 ((-921 (-576)) (-656 (-576)))) (-15 -2456 ((-921 (-576)))) (-15 -1437 ((-921 (-576)))) (-15 -3596 ((-921 (-576)) (-656 (-576)))) (-15 -3596 ((-921 (-576)) (-990))))) (T -934))
+((-3596 (*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1437 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2456 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2472 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3708 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1759 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3084 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4383 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(-10 -7 (-15 -1636 ((-921 (-576)) (-938))) (-15 -1636 ((-921 (-576)) (-656 (-576)))) (-15 -4110 ((-921 (-576)) (-938))) (-15 -4110 ((-921 (-576)) (-656 (-576)))) (-15 -2938 ((-921 (-576)) (-656 (-938)))) (-15 -1993 ((-921 (-576)) (-938))) (-15 -1993 ((-921 (-576)) (-656 (-576)))) (-15 -3960 ((-921 (-576)) (-938))) (-15 -3960 ((-921 (-576)) (-656 (-576)))) (-15 -4383 ((-921 (-576)) (-656 (-576)))) (-15 -4383 ((-921 (-576)))) (-15 -3084 ((-921 (-576)) (-656 (-576)))) (-15 -3084 ((-921 (-576)))) (-15 -1759 ((-921 (-576)) (-656 (-576)))) (-15 -1759 ((-921 (-576)))) (-15 -3708 ((-921 (-576)) (-656 (-576)))) (-15 -3708 ((-921 (-576)))) (-15 -2472 ((-921 (-576)) (-656 (-576)))) (-15 -2472 ((-921 (-576)))) (-15 -2456 ((-921 (-576)) (-656 (-576)))) (-15 -2456 ((-921 (-576)))) (-15 -1437 ((-921 (-576)))) (-15 -3596 ((-921 (-576)) (-656 (-576)))) (-15 -3596 ((-921 (-576)) (-990))))
+((-1891 (((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))) 14)) (-3256 (((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))) 13)))
+(((-935 |#1|) (-10 -7 (-15 -3256 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1891 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))))) (-464)) (T -935))
+((-1891 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-935 *4)))) (-3256 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-935 *4)))))
+(-10 -7 (-15 -3256 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1891 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)))))
+((-2858 (((-326 |#1|) (-489)) 16)))
+(((-936 |#1|) (-10 -7 (-15 -2858 ((-326 |#1|) (-489)))) (-568)) (T -936))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-936 *4)) (-4 *4 (-568)))))
+(-10 -7 (-15 -2858 ((-326 |#1|) (-489))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-1838 (((-112) $) 35)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-937) (-141)) (T -937))
+((-2064 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-2 (|:| -1788 (-656 *1)) (|:| -3633 *1))) (-5 *3 (-656 *1)))) (-2297 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-937)))))
+(-13 (-464) (-10 -8 (-15 -2064 ((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $))) (-15 -2297 ((-3 (-656 $) "failed") (-656 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3901 (($ $ $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2038 (($) NIL T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ $ $) NIL)))
+(((-938) (-13 (-806) (-738) (-10 -8 (-15 -3901 ($ $ $)) (-6 (-4464 "*"))))) (T -938))
+((-3901 (*1 *1 *1 *1) (-5 *1 (-938))))
+(-13 (-806) (-738) (-10 -8 (-15 -3901 ($ $ $)) (-6 (-4464 "*"))))
((|NonNegativeInteger|) (|%igt| |#1| 0))
-((-1728 ((|#2| (-655 |#1|) (-655 |#1|)) 28)))
-(((-937 |#1| |#2|) (-10 -7 (-15 -1728 (|#2| (-655 |#1|) (-655 |#1|)))) (-373) (-1261 |#1|)) (T -937))
-((-1728 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-4 *2 (-1261 *4)) (-5 *1 (-937 *4 *2)))))
-(-10 -7 (-15 -1728 (|#2| (-655 |#1|) (-655 |#1|))))
-((-3974 (((-1190 |#2|) (-655 |#2|) (-655 |#2|)) 17) (((-1258 |#1| |#2|) (-1258 |#1| |#2|) (-655 |#2|) (-655 |#2|)) 13)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -3974 ((-1258 |#1| |#2|) (-1258 |#1| |#2|) (-655 |#2|) (-655 |#2|))) (-15 -3974 ((-1190 |#2|) (-655 |#2|) (-655 |#2|)))) (-1194) (-373)) (T -938))
-((-3974 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *5)) (-4 *5 (-373)) (-5 *2 (-1190 *5)) (-5 *1 (-938 *4 *5)) (-14 *4 (-1194)))) (-3974 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1258 *4 *5)) (-5 *3 (-655 *5)) (-14 *4 (-1194)) (-4 *5 (-373)) (-5 *1 (-938 *4 *5)))))
-(-10 -7 (-15 -3974 ((-1258 |#1| |#2|) (-1258 |#1| |#2|) (-655 |#2|) (-655 |#2|))) (-15 -3974 ((-1190 |#2|) (-655 |#2|) (-655 |#2|))))
-((-2461 (((-575) (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176)) 174)) (-3298 ((|#4| |#4|) 193)) (-1524 (((-655 (-418 (-967 |#1|))) (-655 (-1194))) 146)) (-1523 (((-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-655 (-655 |#4|)) (-782) (-782) (-575)) 88)) (-3635 (((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-655 |#4|)) 69)) (-2852 (((-700 |#4|) (-700 |#4|) (-655 |#4|)) 65)) (-2501 (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176)) 186)) (-3318 (((-575) (-700 |#4|) (-936) (-1176)) 166) (((-575) (-700 |#4|) (-655 (-1194)) (-936) (-1176)) 165) (((-575) (-700 |#4|) (-655 |#4|) (-936) (-1176)) 164) (((-575) (-700 |#4|) (-1176)) 154) (((-575) (-700 |#4|) (-655 (-1194)) (-1176)) 153) (((-575) (-700 |#4|) (-655 |#4|) (-1176)) 152) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-936)) 151) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)) (-936)) 150) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|) (-936)) 149) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|)) 148) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194))) 147) (((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|)) 143)) (-3183 ((|#4| (-967 |#1|)) 80)) (-1620 (((-112) (-655 |#4|) (-655 (-655 |#4|))) 190)) (-4209 (((-655 (-655 (-575))) (-575) (-575)) 159)) (-4208 (((-655 (-655 |#4|)) (-655 (-655 |#4|))) 106)) (-3478 (((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|))))) 100)) (-3280 (((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|))))) 99)) (-4114 (((-112) (-655 (-967 |#1|))) 19) (((-112) (-655 |#4|)) 15)) (-2477 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-655 |#4|)) (|:| |n0| (-655 |#4|))) (-655 |#4|) (-655 |#4|)) 84)) (-4372 (((-655 |#4|) |#4|) 57)) (-3096 (((-655 (-418 (-967 |#1|))) (-655 |#4|)) 142) (((-700 (-418 (-967 |#1|))) (-700 |#4|)) 66) (((-418 (-967 |#1|)) |#4|) 139)) (-4265 (((-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))))))) (|:| |rgsz| (-575))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-782) (-1176) (-575)) 112)) (-1880 (((-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))) (-700 |#4|) (-782)) 98)) (-3632 (((-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-700 |#4|) (-782)) 121)) (-3170 (((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| -3415 (-700 (-418 (-967 |#1|)))) (|:| |vec| (-655 (-418 (-967 |#1|)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) 56)))
-(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|) (-936))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)) (-936))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-936))) (-15 -3318 ((-575) (-700 |#4|) (-655 |#4|) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-655 (-1194)) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-655 |#4|) (-936) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-655 (-1194)) (-936) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-936) (-1176))) (-15 -2461 ((-575) (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -2501 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -4265 ((-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))))))) (|:| |rgsz| (-575))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-782) (-1176) (-575))) (-15 -3096 ((-418 (-967 |#1|)) |#4|)) (-15 -3096 ((-700 (-418 (-967 |#1|))) (-700 |#4|))) (-15 -3096 ((-655 (-418 (-967 |#1|))) (-655 |#4|))) (-15 -1524 ((-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -3183 (|#4| (-967 |#1|))) (-15 -2477 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-655 |#4|)) (|:| |n0| (-655 |#4|))) (-655 |#4|) (-655 |#4|))) (-15 -1880 ((-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))) (-700 |#4|) (-782))) (-15 -3635 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-655 |#4|))) (-15 -3170 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| -3415 (-700 (-418 (-967 |#1|)))) (|:| |vec| (-655 (-418 (-967 |#1|)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (-15 -4372 ((-655 |#4|) |#4|)) (-15 -3280 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -3478 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -4208 ((-655 (-655 |#4|)) (-655 (-655 |#4|)))) (-15 -4209 ((-655 (-655 (-575))) (-575) (-575))) (-15 -1620 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3632 ((-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-700 |#4|) (-782))) (-15 -2852 ((-700 |#4|) (-700 |#4|) (-655 |#4|))) (-15 -1523 ((-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-655 (-655 |#4|)) (-782) (-782) (-575))) (-15 -3298 (|#4| |#4|)) (-15 -4114 ((-112) (-655 |#4|))) (-15 -4114 ((-112) (-655 (-967 |#1|))))) (-13 (-316) (-148)) (-13 (-861) (-625 (-1194))) (-804) (-964 |#1| |#3| |#2|)) (T -939))
-((-4114 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7)))) (-3298 (*1 *2 *2) (-12 (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194)))) (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-964 *3 *5 *4)))) (-1523 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-5 *4 (-700 *12)) (-5 *5 (-655 (-418 (-967 *9)))) (-5 *6 (-655 (-655 *12))) (-5 *7 (-782)) (-5 *8 (-575)) (-4 *9 (-13 (-316) (-148))) (-4 *12 (-964 *9 *11 *10)) (-4 *10 (-13 (-861) (-625 (-1194)))) (-4 *11 (-804)) (-5 *2 (-2 (|:| |eqzro| (-655 *12)) (|:| |neqzro| (-655 *12)) (|:| |wcond| (-655 (-967 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *9)))) (|:| -2098 (-655 (-1285 (-418 (-967 *9))))))))) (-5 *1 (-939 *9 *10 *11 *12)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *7)) (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-782)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |det| *8) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (-5 *1 (-939 *5 *6 *7 *8)))) (-1620 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *5 *6 *7 *8)))) (-4209 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-655 (-575)))) (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *6 *5)))) (-4208 (*1 *2 *2) (-12 (-5 *2 (-655 (-655 *6))) (-4 *6 (-964 *3 *5 *4)) (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194)))) (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *6)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| *7) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 *7))))) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782)) (-5 *1 (-939 *4 *5 *6 *7)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| *7) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 *7))))) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782)) (-5 *1 (-939 *4 *5 *6 *7)))) (-4372 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 *3)) (-5 *1 (-939 *4 *5 *6 *3)) (-4 *3 (-964 *4 *6 *5)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3415 (-700 (-418 (-967 *4)))) (|:| |vec| (-655 (-418 (-967 *4)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -2098 (-655 (-1285 (-418 (-967 *4))))))) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-3635 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -2098 (-655 (-1285 (-418 (-967 *4))))))) (-5 *3 (-655 *7)) (-4 *4 (-13 (-316) (-148))) (-4 *7 (-964 *4 *6 *5)) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| *8) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 *8))))) (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-782)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-4 *7 (-964 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-655 *7)) (|:| |n0| (-655 *7)))) (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-316) (-148))) (-4 *2 (-964 *4 *6 *5)) (-5 *1 (-939 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-700 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7)))) (-3096 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-418 (-967 *4))) (-5 *1 (-939 *4 *5 *6 *3)) (-4 *3 (-964 *4 *6 *5)))) (-4265 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-700 *11)) (-5 *4 (-655 (-418 (-967 *8)))) (-5 *5 (-782)) (-5 *6 (-1176)) (-4 *8 (-13 (-316) (-148))) (-4 *11 (-964 *8 *10 *9)) (-4 *9 (-13 (-861) (-625 (-1194)))) (-4 *10 (-804)) (-5 *2 (-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 *11)) (|:| |neqzro| (-655 *11)) (|:| |wcond| (-655 (-967 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *8)))) (|:| -2098 (-655 (-1285 (-418 (-967 *8)))))))))) (|:| |rgsz| (-575)))) (-5 *1 (-939 *8 *9 *10 *11)) (-5 *7 (-575)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7)) (|:| |wcond| (-655 (-967 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -2098 (-655 (-1285 (-418 (-967 *4)))))))))) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -2098 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *4 (-1176)) (-4 *5 (-13 (-316) (-148))) (-4 *8 (-964 *5 *7 *6)) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *5 *6 *7 *8)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-936)) (-5 *5 (-1176)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *6 *7 *8 *9)))) (-3318 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 (-1194))) (-5 *5 (-936)) (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148))) (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *7 *8 *9 *10)))) (-3318 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 *10)) (-5 *5 (-936)) (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148))) (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *7 *8 *9 *10)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-1176)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *5 *6 *7 *8)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-1176)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *6 *7 *8 *9)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 *9)) (-5 *5 (-1176)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *6 *7 *8 *9)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-936)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -2098 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-936)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9)) (|:| |wcond| (-655 (-967 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *6)))) (|:| -2098 (-655 (-1285 (-418 (-967 *6)))))))))) (-5 *1 (-939 *6 *7 *8 *9)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-700 *9)) (-5 *5 (-936)) (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9)) (|:| |wcond| (-655 (-967 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *6)))) (|:| -2098 (-655 (-1285 (-418 (-967 *6)))))))))) (-5 *1 (-939 *6 *7 *8 *9)) (-5 *4 (-655 *9)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7)) (|:| |wcond| (-655 (-967 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *4)))) (|:| -2098 (-655 (-1285 (-418 (-967 *4)))))))))) (-5 *1 (-939 *4 *5 *6 *7)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-5 *4 (-655 (-1194))) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -2098 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *1 (-939 *5 *6 *7 *8)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-655 (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8)) (|:| |wcond| (-655 (-967 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 *5)))) (|:| -2098 (-655 (-1285 (-418 (-967 *5)))))))))) (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-655 *8)))))
-(-10 -7 (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 |#4|) (-936))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-655 (-1194)) (-936))) (-15 -3318 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-700 |#4|) (-936))) (-15 -3318 ((-575) (-700 |#4|) (-655 |#4|) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-655 (-1194)) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-655 |#4|) (-936) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-655 (-1194)) (-936) (-1176))) (-15 -3318 ((-575) (-700 |#4|) (-936) (-1176))) (-15 -2461 ((-575) (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -2501 ((-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|))))))))) (-1176))) (-15 -4265 ((-2 (|:| |rgl| (-655 (-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))))))) (|:| |rgsz| (-575))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-782) (-1176) (-575))) (-15 -3096 ((-418 (-967 |#1|)) |#4|)) (-15 -3096 ((-700 (-418 (-967 |#1|))) (-700 |#4|))) (-15 -3096 ((-655 (-418 (-967 |#1|))) (-655 |#4|))) (-15 -1524 ((-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -3183 (|#4| (-967 |#1|))) (-15 -2477 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-655 |#4|)) (|:| |n0| (-655 |#4|))) (-655 |#4|) (-655 |#4|))) (-15 -1880 ((-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))) (-700 |#4|) (-782))) (-15 -3635 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-655 |#4|))) (-15 -3170 ((-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))) (-2 (|:| -3415 (-700 (-418 (-967 |#1|)))) (|:| |vec| (-655 (-418 (-967 |#1|)))) (|:| -4422 (-782)) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (-15 -4372 ((-655 |#4|) |#4|)) (-15 -3280 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -3478 ((-782) (-655 (-2 (|:| -4422 (-782)) (|:| |eqns| (-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))) (|:| |fgb| (-655 |#4|)))))) (-15 -4208 ((-655 (-655 |#4|)) (-655 (-655 |#4|)))) (-15 -4209 ((-655 (-655 (-575))) (-575) (-575))) (-15 -1620 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3632 ((-655 (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575))))) (-700 |#4|) (-782))) (-15 -2852 ((-700 |#4|) (-700 |#4|) (-655 |#4|))) (-15 -1523 ((-2 (|:| |eqzro| (-655 |#4|)) (|:| |neqzro| (-655 |#4|)) (|:| |wcond| (-655 (-967 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1285 (-418 (-967 |#1|)))) (|:| -2098 (-655 (-1285 (-418 (-967 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))) (-700 |#4|) (-655 (-418 (-967 |#1|))) (-655 (-655 |#4|)) (-782) (-782) (-575))) (-15 -3298 (|#4| |#4|)) (-15 -4114 ((-112) (-655 |#4|))) (-15 -4114 ((-112) (-655 (-967 |#1|)))))
-((-3485 (((-942) |#1| (-1194)) 17) (((-942) |#1| (-1194) (-1111 (-227))) 21)) (-3115 (((-942) |#1| |#1| (-1194) (-1111 (-227))) 19) (((-942) |#1| (-1194) (-1111 (-227))) 15)))
-(((-940 |#1|) (-10 -7 (-15 -3115 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -3115 ((-942) |#1| |#1| (-1194) (-1111 (-227)))) (-15 -3485 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -3485 ((-942) |#1| (-1194)))) (-625 (-547))) (T -940))
-((-3485 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) (-3485 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) (-3115 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))) (-3115 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942)) (-5 *1 (-940 *3)) (-4 *3 (-625 (-547))))))
-(-10 -7 (-15 -3115 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -3115 ((-942) |#1| |#1| (-1194) (-1111 (-227)))) (-15 -3485 ((-942) |#1| (-1194) (-1111 (-227)))) (-15 -3485 ((-942) |#1| (-1194))))
-((-2774 (($ $ (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 121)) (-2837 (((-1111 (-227)) $) 64)) (-2824 (((-1111 (-227)) $) 63)) (-2812 (((-1111 (-227)) $) 62)) (-3917 (((-655 (-655 (-227))) $) 69)) (-2250 (((-1111 (-227)) $) 65)) (-2672 (((-575) (-575)) 57)) (-3361 (((-575) (-575)) 52)) (-4267 (((-575) (-575)) 55)) (-4017 (((-112) (-112)) 59)) (-1543 (((-575)) 56)) (-2946 (($ $ (-1111 (-227))) 124) (($ $) 125)) (-1762 (($ (-1 (-958 (-227)) (-227)) (-1111 (-227))) 131) (($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 132)) (-3115 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 135) (($ $ (-1111 (-227))) 127)) (-3227 (((-575)) 60)) (-3406 (((-575)) 50)) (-2166 (((-575)) 53)) (-1612 (((-655 (-655 (-958 (-227)))) $) 151)) (-2115 (((-112) (-112)) 61)) (-2882 (((-873) $) 149)) (-1874 (((-112)) 58)))
-(((-941) (-13 (-991) (-10 -8 (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ $ (-1111 (-227)))) (-15 -2774 ($ $ (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2946 ($ $ (-1111 (-227)))) (-15 -2946 ($ $)) (-15 -2250 ((-1111 (-227)) $)) (-15 -3917 ((-655 (-655 (-227))) $)) (-15 -3406 ((-575))) (-15 -3361 ((-575) (-575))) (-15 -2166 ((-575))) (-15 -4267 ((-575) (-575))) (-15 -1543 ((-575))) (-15 -2672 ((-575) (-575))) (-15 -1874 ((-112))) (-15 -4017 ((-112) (-112))) (-15 -3227 ((-575))) (-15 -2115 ((-112) (-112)))))) (T -941))
-((-1762 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-1762 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-3115 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-3115 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-941)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-2774 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-2946 (*1 *1 *1) (-5 *1 (-941))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-941)))) (-3406 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-2166 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-4267 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-1543 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-2672 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-1874 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))) (-3227 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))) (-2115 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(-13 (-991) (-10 -8 (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ $ (-1111 (-227)))) (-15 -2774 ($ $ (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -2946 ($ $ (-1111 (-227)))) (-15 -2946 ($ $)) (-15 -2250 ((-1111 (-227)) $)) (-15 -3917 ((-655 (-655 (-227))) $)) (-15 -3406 ((-575))) (-15 -3361 ((-575) (-575))) (-15 -2166 ((-575))) (-15 -4267 ((-575) (-575))) (-15 -1543 ((-575))) (-15 -2672 ((-575) (-575))) (-15 -1874 ((-112))) (-15 -4017 ((-112) (-112))) (-15 -3227 ((-575))) (-15 -2115 ((-112) (-112)))))
-((-2774 (($ $ (-1111 (-227))) 122) (($ $ (-1111 (-227)) (-1111 (-227))) 123)) (-2824 (((-1111 (-227)) $) 73)) (-2812 (((-1111 (-227)) $) 72)) (-2250 (((-1111 (-227)) $) 74)) (-4173 (((-575) (-575)) 66)) (-2922 (((-575) (-575)) 61)) (-2008 (((-575) (-575)) 64)) (-2616 (((-112) (-112)) 68)) (-2809 (((-575)) 65)) (-2946 (($ $ (-1111 (-227))) 126) (($ $) 127)) (-1762 (($ (-1 (-958 (-227)) (-227)) (-1111 (-227))) 141) (($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 142)) (-3485 (($ (-1 (-227) (-227)) (-1111 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3115 (($ (-1 (-227) (-227)) (-1111 (-227))) 137) (($ (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227))) 138) (($ (-655 (-1 (-227) (-227))) (-1111 (-227))) 146) (($ (-655 (-1 (-227) (-227))) (-1111 (-227)) (-1111 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227))) 140) (($ $ (-1111 (-227))) 128)) (-4150 (((-112) $) 69)) (-2980 (((-575)) 70)) (-1418 (((-575)) 59)) (-2978 (((-575)) 62)) (-1612 (((-655 (-655 (-958 (-227)))) $) 35)) (-3417 (((-112) (-112)) 71)) (-2882 (((-873) $) 167)) (-1712 (((-112)) 67)))
-(((-942) (-13 (-970) (-10 -8 (-15 -3115 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)))) (-15 -3115 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3485 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3485 ($ (-1 (-227) (-227)))) (-15 -3115 ($ $ (-1111 (-227)))) (-15 -4150 ((-112) $)) (-15 -2774 ($ $ (-1111 (-227)))) (-15 -2774 ($ $ (-1111 (-227)) (-1111 (-227)))) (-15 -2946 ($ $ (-1111 (-227)))) (-15 -2946 ($ $)) (-15 -2250 ((-1111 (-227)) $)) (-15 -1418 ((-575))) (-15 -2922 ((-575) (-575))) (-15 -2978 ((-575))) (-15 -2008 ((-575) (-575))) (-15 -2809 ((-575))) (-15 -4173 ((-575) (-575))) (-15 -1712 ((-112))) (-15 -2616 ((-112) (-112))) (-15 -2980 ((-575))) (-15 -3417 ((-112) (-112)))))) (T -942))
-((-3115 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3115 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3115 (*1 *1 *2 *3) (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3115 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3115 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3115 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-1762 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-1762 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227))) (-5 *1 (-942)))) (-3485 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-942)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-2774 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-2946 (*1 *1 *1) (-5 *1 (-942))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))) (-1418 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-2978 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-2809 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-1712 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))) (-2980 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
-(-13 (-970) (-10 -8 (-15 -3115 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)))) (-15 -3115 ($ (-655 (-1 (-227) (-227))) (-1111 (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3115 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)))) (-15 -1762 ($ (-1 (-958 (-227)) (-227)) (-1111 (-227)) (-1111 (-227)) (-1111 (-227)))) (-15 -3485 ($ (-1 (-227) (-227)) (-1111 (-227)))) (-15 -3485 ($ (-1 (-227) (-227)))) (-15 -3115 ($ $ (-1111 (-227)))) (-15 -4150 ((-112) $)) (-15 -2774 ($ $ (-1111 (-227)))) (-15 -2774 ($ $ (-1111 (-227)) (-1111 (-227)))) (-15 -2946 ($ $ (-1111 (-227)))) (-15 -2946 ($ $)) (-15 -2250 ((-1111 (-227)) $)) (-15 -1418 ((-575))) (-15 -2922 ((-575) (-575))) (-15 -2978 ((-575))) (-15 -2008 ((-575) (-575))) (-15 -2809 ((-575))) (-15 -4173 ((-575) (-575))) (-15 -1712 ((-112))) (-15 -2616 ((-112) (-112))) (-15 -2980 ((-575))) (-15 -3417 ((-112) (-112)))))
-((-1453 (((-655 (-1111 (-227))) (-655 (-655 (-958 (-227))))) 34)))
-(((-943) (-10 -7 (-15 -1453 ((-655 (-1111 (-227))) (-655 (-655 (-958 (-227)))))))) (T -943))
-((-1453 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-655 (-1111 (-227)))) (-5 *1 (-943)))))
-(-10 -7 (-15 -1453 ((-655 (-1111 (-227))) (-655 (-655 (-958 (-227)))))))
-((-4194 ((|#2| |#2|) 28)) (-1617 ((|#2| |#2|) 29)) (-3736 ((|#2| |#2|) 27)) (-2604 ((|#2| |#2| (-517)) 26)))
-(((-944 |#1| |#2|) (-10 -7 (-15 -2604 (|#2| |#2| (-517))) (-15 -3736 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -1617 (|#2| |#2|))) (-1117) (-441 |#1|)) (T -944))
-((-1617 (*1 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) (-4194 (*1 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) (-3736 (*1 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3)))) (-2604 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1117)) (-5 *1 (-944 *4 *2)) (-4 *2 (-441 *4)))))
-(-10 -7 (-15 -2604 (|#2| |#2| (-517))) (-15 -3736 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)))
-((-4194 (((-325 (-575)) (-1194)) 16)) (-1617 (((-325 (-575)) (-1194)) 14)) (-3736 (((-325 (-575)) (-1194)) 12)) (-2604 (((-325 (-575)) (-1194) (-517)) 19)))
-(((-945) (-10 -7 (-15 -2604 ((-325 (-575)) (-1194) (-517))) (-15 -3736 ((-325 (-575)) (-1194))) (-15 -4194 ((-325 (-575)) (-1194))) (-15 -1617 ((-325 (-575)) (-1194))))) (T -945))
-((-1617 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))) (-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-517)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))))
-(-10 -7 (-15 -2604 ((-325 (-575)) (-1194) (-517))) (-15 -3736 ((-325 (-575)) (-1194))) (-15 -4194 ((-325 (-575)) (-1194))) (-15 -1617 ((-325 (-575)) (-1194))))
-((-1806 (((-901 |#1| |#3|) |#2| (-904 |#1|) (-901 |#1| |#3|)) 25)) (-3683 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -3683 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1806 ((-901 |#1| |#3|) |#2| (-904 |#1|) (-901 |#1| |#3|)))) (-1117) (-898 |#1|) (-13 (-1117) (-1055 |#2|))) (T -946))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-13 (-1117) (-1055 *3))) (-4 *3 (-898 *5)) (-5 *1 (-946 *5 *3 *6)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1117) (-1055 *5))) (-4 *5 (-898 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-946 *4 *5 *6)))))
-(-10 -7 (-15 -3683 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1806 ((-901 |#1| |#3|) |#2| (-904 |#1|) (-901 |#1| |#3|))))
-((-1806 (((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)) 30)))
-(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-1117) (-13 (-567) (-898 |#1|)) (-13 (-441 |#2|) (-625 (-904 |#1|)) (-898 |#1|) (-1055 (-623 $)))) (T -947))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-13 (-441 *6) (-625 *4) (-898 *5) (-1055 (-623 $)))) (-5 *4 (-904 *5)) (-4 *6 (-13 (-567) (-898 *5))) (-5 *1 (-947 *5 *6 *3)))))
-(-10 -7 (-15 -1806 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))))
-((-1806 (((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|)) 13)))
-(((-948 |#1|) (-10 -7 (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|)))) (-556)) (T -948))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 (-575) *3)) (-5 *4 (-904 (-575))) (-4 *3 (-556)) (-5 *1 (-948 *3)))))
-(-10 -7 (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))))
-((-1806 (((-901 |#1| |#2|) (-623 |#2|) (-904 |#1|) (-901 |#1| |#2|)) 57)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -1806 ((-901 |#1| |#2|) (-623 |#2|) (-904 |#1|) (-901 |#1| |#2|)))) (-1117) (-13 (-1117) (-1055 (-623 $)) (-625 (-904 |#1|)) (-898 |#1|))) (T -949))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6)) (-5 *3 (-623 *6)) (-4 *5 (-1117)) (-4 *6 (-13 (-1117) (-1055 (-623 $)) (-625 *4) (-898 *5))) (-5 *4 (-904 *5)) (-5 *1 (-949 *5 *6)))))
-(-10 -7 (-15 -1806 ((-901 |#1| |#2|) (-623 |#2|) (-904 |#1|) (-901 |#1| |#2|))))
-((-1806 (((-897 |#1| |#2| |#3|) |#3| (-904 |#1|) (-897 |#1| |#2| |#3|)) 17)))
-(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-897 |#1| |#2| |#3|) |#3| (-904 |#1|) (-897 |#1| |#2| |#3|)))) (-1117) (-898 |#1|) (-677 |#2|)) (T -950))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-897 *5 *6 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-4 *6 (-898 *5)) (-4 *3 (-677 *6)) (-5 *1 (-950 *5 *6 *3)))))
-(-10 -7 (-15 -1806 ((-897 |#1| |#2| |#3|) |#3| (-904 |#1|) (-897 |#1| |#2| |#3|))))
-((-1806 (((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|)) 17 (|has| |#3| (-898 |#1|))) (((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-904 |#1|) (-901 |#1| |#5|))) 16)))
-(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1806 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-904 |#1|) (-901 |#1| |#5|)))) (IF (|has| |#3| (-898 |#1|)) (-15 -1806 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|))) |%noBranch|)) (-1117) (-804) (-861) (-13 (-1066) (-898 |#1|)) (-13 (-964 |#4| |#2| |#3|) (-625 (-904 |#1|)))) (T -951))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-13 (-964 *8 *6 *7) (-625 *4))) (-5 *4 (-904 *5)) (-4 *7 (-898 *5)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-13 (-1066) (-898 *5))) (-5 *1 (-951 *5 *6 *7 *8 *3)))) (-1806 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-901 *6 *3) *8 (-904 *6) (-901 *6 *3))) (-4 *8 (-861)) (-5 *2 (-901 *6 *3)) (-5 *4 (-904 *6)) (-4 *6 (-1117)) (-4 *3 (-13 (-964 *9 *7 *8) (-625 *4))) (-4 *7 (-804)) (-4 *9 (-13 (-1066) (-898 *6))) (-5 *1 (-951 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1806 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|) (-1 (-901 |#1| |#5|) |#3| (-904 |#1|) (-901 |#1| |#5|)))) (IF (|has| |#3| (-898 |#1|)) (-15 -1806 ((-901 |#1| |#5|) |#5| (-904 |#1|) (-901 |#1| |#5|))) |%noBranch|))
-((-1692 ((|#2| |#2| (-655 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -1692 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1692 (|#2| |#2| (-655 (-1 (-112) |#3|))))) (-1117) (-441 |#1|) (-1235)) (T -952))
-((-1692 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) (-4 *4 (-1117)) (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4)))) (-1692 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1235)) (-4 *4 (-1117)) (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4)))))
-(-10 -7 (-15 -1692 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1692 (|#2| |#2| (-655 (-1 (-112) |#3|)))))
-((-1692 (((-325 (-575)) (-1194) (-655 (-1 (-112) |#1|))) 18) (((-325 (-575)) (-1194) (-1 (-112) |#1|)) 15)))
-(((-953 |#1|) (-10 -7 (-15 -1692 ((-325 (-575)) (-1194) (-1 (-112) |#1|))) (-15 -1692 ((-325 (-575)) (-1194) (-655 (-1 (-112) |#1|))))) (-1235)) (T -953))
-((-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) (-5 *2 (-325 (-575))) (-5 *1 (-953 *5)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1235)) (-5 *2 (-325 (-575))) (-5 *1 (-953 *5)))))
-(-10 -7 (-15 -1692 ((-325 (-575)) (-1194) (-1 (-112) |#1|))) (-15 -1692 ((-325 (-575)) (-1194) (-655 (-1 (-112) |#1|)))))
-((-1806 (((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)) 25)))
-(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-1117) (-13 (-567) (-898 |#1|) (-625 (-904 |#1|))) (-1009 |#2|)) (T -954))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-1009 *6)) (-4 *6 (-13 (-567) (-898 *5) (-625 *4))) (-5 *4 (-904 *5)) (-5 *1 (-954 *5 *6 *3)))))
-(-10 -7 (-15 -1806 ((-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))))
-((-1806 (((-901 |#1| (-1194)) (-1194) (-904 |#1|) (-901 |#1| (-1194))) 18)))
-(((-955 |#1|) (-10 -7 (-15 -1806 ((-901 |#1| (-1194)) (-1194) (-904 |#1|) (-901 |#1| (-1194))))) (-1117)) (T -955))
-((-1806 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 (-1194))) (-5 *3 (-1194)) (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-5 *1 (-955 *5)))))
-(-10 -7 (-15 -1806 ((-901 |#1| (-1194)) (-1194) (-904 |#1|) (-901 |#1| (-1194)))))
-((-3723 (((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) 34)) (-1806 (((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-1 |#3| (-655 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))) 33)))
-(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -1806 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-1 |#3| (-655 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-15 -3723 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|))))) (-1117) (-1066) (-13 (-1066) (-625 (-904 |#1|)) (-1055 |#2|))) (T -956))
-((-3723 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-904 *6))) (-5 *5 (-1 (-901 *6 *8) *8 (-904 *6) (-901 *6 *8))) (-4 *6 (-1117)) (-4 *8 (-13 (-1066) (-625 (-904 *6)) (-1055 *7))) (-5 *2 (-901 *6 *8)) (-4 *7 (-1066)) (-5 *1 (-956 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-655 (-904 *7))) (-5 *5 (-1 *9 (-655 *9))) (-5 *6 (-1 (-901 *7 *9) *9 (-904 *7) (-901 *7 *9))) (-4 *7 (-1117)) (-4 *9 (-13 (-1066) (-625 (-904 *7)) (-1055 *8))) (-5 *2 (-901 *7 *9)) (-5 *3 (-655 *9)) (-4 *8 (-1066)) (-5 *1 (-956 *7 *8 *9)))))
-(-10 -7 (-15 -1806 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-1 |#3| (-655 |#3|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))) (-15 -3723 ((-901 |#1| |#3|) (-655 |#3|) (-655 (-904 |#1|)) (-901 |#1| |#3|) (-1 (-901 |#1| |#3|) |#3| (-904 |#1|) (-901 |#1| |#3|)))))
-((-2959 (((-1190 (-418 (-575))) (-575)) 79)) (-3539 (((-1190 (-575)) (-575)) 82)) (-2995 (((-1190 (-575)) (-575)) 76)) (-2352 (((-575) (-1190 (-575))) 72)) (-1966 (((-1190 (-418 (-575))) (-575)) 65)) (-2245 (((-1190 (-575)) (-575)) 49)) (-3821 (((-1190 (-575)) (-575)) 84)) (-2955 (((-1190 (-575)) (-575)) 83)) (-1913 (((-1190 (-418 (-575))) (-575)) 67)))
-(((-957) (-10 -7 (-15 -1913 ((-1190 (-418 (-575))) (-575))) (-15 -2955 ((-1190 (-575)) (-575))) (-15 -3821 ((-1190 (-575)) (-575))) (-15 -2245 ((-1190 (-575)) (-575))) (-15 -1966 ((-1190 (-418 (-575))) (-575))) (-15 -2352 ((-575) (-1190 (-575)))) (-15 -2995 ((-1190 (-575)) (-575))) (-15 -3539 ((-1190 (-575)) (-575))) (-15 -2959 ((-1190 (-418 (-575))) (-575))))) (T -957))
-((-2959 (*1 *2 *3) (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))) (-3539 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-2995 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-575)) (-5 *1 (-957)))) (-1966 (*1 *2 *3) (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-3821 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))) (-1913 (*1 *2 *3) (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))))
-(-10 -7 (-15 -1913 ((-1190 (-418 (-575))) (-575))) (-15 -2955 ((-1190 (-575)) (-575))) (-15 -3821 ((-1190 (-575)) (-575))) (-15 -2245 ((-1190 (-575)) (-575))) (-15 -1966 ((-1190 (-418 (-575))) (-575))) (-15 -2352 ((-575) (-1190 (-575)))) (-15 -2995 ((-1190 (-575)) (-575))) (-15 -3539 ((-1190 (-575)) (-575))) (-15 -2959 ((-1190 (-418 (-575))) (-575))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2878 (($ (-782)) NIL (|has| |#1| (-23)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-1838 (($ (-655 |#1|)) 9)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) NIL (|has| |#1| (-1066)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2405 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-3218 (((-112) $ (-782)) NIL)) (-1840 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-1985 (($ $ (-655 |#1|)) 25)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 18) (($ $ (-1252 (-575))) NIL)) (-2988 ((|#1| $ $) NIL (|has| |#1| (-1066)))) (-1605 (((-936) $) 13)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-2969 (($ $ $) 23)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547)))) (($ (-655 |#1|)) 14)) (-2893 (($ (-655 |#1|)) NIL)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4027 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4015 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-575) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-737))) (($ $ |#1|) NIL (|has| |#1| (-737)))) (-2869 (((-782) $) 11 (|has| $ (-6 -4460)))))
-(((-958 |#1|) (-997 |#1|) (-1066)) (T -958))
-NIL
-(-997 |#1|)
-((-3818 (((-492 |#1| |#2|) (-967 |#2|)) 22)) (-4040 (((-252 |#1| |#2|) (-967 |#2|)) 35)) (-3991 (((-967 |#2|) (-492 |#1| |#2|)) 27)) (-3595 (((-252 |#1| |#2|) (-492 |#1| |#2|)) 57)) (-4338 (((-967 |#2|) (-252 |#1| |#2|)) 32)) (-1419 (((-492 |#1| |#2|) (-252 |#1| |#2|)) 48)))
-(((-959 |#1| |#2|) (-10 -7 (-15 -1419 ((-492 |#1| |#2|) (-252 |#1| |#2|))) (-15 -3595 ((-252 |#1| |#2|) (-492 |#1| |#2|))) (-15 -3818 ((-492 |#1| |#2|) (-967 |#2|))) (-15 -3991 ((-967 |#2|) (-492 |#1| |#2|))) (-15 -4338 ((-967 |#2|) (-252 |#1| |#2|))) (-15 -4040 ((-252 |#1| |#2|) (-967 |#2|)))) (-655 (-1194)) (-1066)) (T -959))
-((-4040 (*1 *2 *3) (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-252 *4 *5)) (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194))))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-492 *4 *5)) (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194))))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-252 *4 *5)) (-5 *1 (-959 *4 *5)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066)) (-5 *2 (-492 *4 *5)) (-5 *1 (-959 *4 *5)))))
-(-10 -7 (-15 -1419 ((-492 |#1| |#2|) (-252 |#1| |#2|))) (-15 -3595 ((-252 |#1| |#2|) (-492 |#1| |#2|))) (-15 -3818 ((-492 |#1| |#2|) (-967 |#2|))) (-15 -3991 ((-967 |#2|) (-492 |#1| |#2|))) (-15 -4338 ((-967 |#2|) (-252 |#1| |#2|))) (-15 -4040 ((-252 |#1| |#2|) (-967 |#2|))))
-((-2816 (((-655 |#2|) |#2| |#2|) 10)) (-1508 (((-782) (-655 |#1|)) 48 (|has| |#1| (-859)))) (-2575 (((-655 |#2|) |#2|) 11)) (-2421 (((-782) (-655 |#1|) (-575) (-575)) 52 (|has| |#1| (-859)))) (-1879 ((|#1| |#2|) 38 (|has| |#1| (-859)))))
-(((-960 |#1| |#2|) (-10 -7 (-15 -2816 ((-655 |#2|) |#2| |#2|)) (-15 -2575 ((-655 |#2|) |#2|)) (IF (|has| |#1| (-859)) (PROGN (-15 -1879 (|#1| |#2|)) (-15 -1508 ((-782) (-655 |#1|))) (-15 -2421 ((-782) (-655 |#1|) (-575) (-575)))) |%noBranch|)) (-373) (-1261 |#1|)) (T -960))
-((-2421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-575)) (-4 *5 (-859)) (-4 *5 (-373)) (-5 *2 (-782)) (-5 *1 (-960 *5 *6)) (-4 *6 (-1261 *5)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-859)) (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-960 *4 *5)) (-4 *5 (-1261 *4)))) (-1879 (*1 *2 *3) (-12 (-4 *2 (-373)) (-4 *2 (-859)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1261 *2)))) (-2575 (*1 *2 *3) (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3)) (-4 *3 (-1261 *4)))) (-2816 (*1 *2 *3 *3) (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -2816 ((-655 |#2|) |#2| |#2|)) (-15 -2575 ((-655 |#2|) |#2|)) (IF (|has| |#1| (-859)) (PROGN (-15 -1879 (|#1| |#2|)) (-15 -1508 ((-782) (-655 |#1|))) (-15 -2421 ((-782) (-655 |#1|) (-575) (-575)))) |%noBranch|))
-((-2544 (((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)) 19)))
-(((-961 |#1| |#2|) (-10 -7 (-15 -2544 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|)))) (-1066) (-1066)) (T -961))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-967 *6)) (-5 *1 (-961 *5 *6)))))
-(-10 -7 (-15 -2544 ((-967 |#2|) (-1 |#2| |#1|) (-967 |#1|))))
-((-3462 (((-1258 |#1| (-967 |#2|)) (-967 |#2|) (-1281 |#1|)) 18)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -3462 ((-1258 |#1| (-967 |#2|)) (-967 |#2|) (-1281 |#1|)))) (-1194) (-1066)) (T -962))
-((-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-1281 *5)) (-14 *5 (-1194)) (-4 *6 (-1066)) (-5 *2 (-1258 *5 (-967 *6))) (-5 *1 (-962 *5 *6)) (-5 *3 (-967 *6)))))
-(-10 -7 (-15 -3462 ((-1258 |#1| (-967 |#2|)) (-967 |#2|) (-1281 |#1|))))
-((-3508 (((-782) $) 88) (((-782) $ (-655 |#4|)) 93)) (-3312 (($ $) 203)) (-4281 (((-429 $) $) 195)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 141)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) NIL) (((-575) $) NIL) ((|#4| $) 73)) (-4171 (($ $ $ |#4|) 95)) (-2862 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 131) (((-700 |#2|) (-700 $)) 121) (((-700 |#2|) (-1285 $)) NIL)) (-2379 (($ $) 210) (($ $ |#4|) 213)) (-4393 (((-655 $) $) 77)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 229) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 222)) (-1719 (((-655 $) $) 34)) (-2414 (($ |#2| |#3|) NIL) (($ $ |#4| (-782)) NIL) (($ $ (-655 |#4|) (-655 (-782))) 71)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#4|) 192)) (-1445 (((-3 (-655 $) "failed") $) 52)) (-1512 (((-3 (-655 $) "failed") $) 39)) (-2329 (((-3 (-2 (|:| |var| |#4|) (|:| -1658 (-782))) "failed") $) 57)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 134)) (-1343 (((-429 (-1190 $)) (-1190 $)) 147)) (-3154 (((-429 (-1190 $)) (-1190 $)) 145)) (-2347 (((-429 $) $) 165)) (-3046 (($ $ (-655 (-303 $))) 24) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-655 |#4|) (-655 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-655 |#4|) (-655 $)) NIL)) (-2801 (($ $ |#4|) 97)) (-2613 (((-904 (-389)) $) 243) (((-904 (-575)) $) 236) (((-547) $) 251)) (-3696 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 184)) (-3002 ((|#2| $ |#3|) NIL) (($ $ |#4| (-782)) 62) (($ $ (-655 |#4|) (-655 (-782))) 69)) (-1724 (((-3 $ "failed") $) 186)) (-3685 (((-112) $ $) 216)))
-(((-963 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -3154 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1343 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -1511 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -2379 (|#1| |#1| |#4|)) (-15 -3696 (|#1| |#1| |#4|)) (-15 -2801 (|#1| |#1| |#4|)) (-15 -4171 (|#1| |#1| |#1| |#4|)) (-15 -4393 ((-655 |#1|) |#1|)) (-15 -3508 ((-782) |#1| (-655 |#4|))) (-15 -3508 ((-782) |#1|)) (-15 -2329 ((-3 (-2 (|:| |var| |#4|) (|:| -1658 (-782))) "failed") |#1|)) (-15 -1445 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -1512 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2414 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2414 (|#1| |#1| |#4| (-782))) (-15 -1749 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1| |#4|)) (-15 -1719 ((-655 |#1|) |#1|)) (-15 -3002 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -3002 (|#1| |#1| |#4| (-782))) (-15 -2862 ((-700 |#2|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2443 ((-3 |#4| "failed") |#1|)) (-15 -4400 (|#4| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#4| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#4| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2414 (|#1| |#2| |#3|)) (-15 -3002 (|#2| |#1| |#3|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3685 ((-112) |#1| |#1|))) (-964 |#2| |#3| |#4|) (-1066) (-804) (-861)) (T -963))
-NIL
-(-10 -8 (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -3154 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1343 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -1511 ((-3 (-1285 |#1|) "failed") (-700 |#1|))) (-15 -2379 (|#1| |#1| |#4|)) (-15 -3696 (|#1| |#1| |#4|)) (-15 -2801 (|#1| |#1| |#4|)) (-15 -4171 (|#1| |#1| |#1| |#4|)) (-15 -4393 ((-655 |#1|) |#1|)) (-15 -3508 ((-782) |#1| (-655 |#4|))) (-15 -3508 ((-782) |#1|)) (-15 -2329 ((-3 (-2 (|:| |var| |#4|) (|:| -1658 (-782))) "failed") |#1|)) (-15 -1445 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -1512 ((-3 (-655 |#1|) "failed") |#1|)) (-15 -2414 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -2414 (|#1| |#1| |#4| (-782))) (-15 -1749 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1| |#4|)) (-15 -1719 ((-655 |#1|) |#1|)) (-15 -3002 (|#1| |#1| (-655 |#4|) (-655 (-782)))) (-15 -3002 (|#1| |#1| |#4| (-782))) (-15 -2862 ((-700 |#2|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2443 ((-3 |#4| "failed") |#1|)) (-15 -4400 (|#4| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#4| |#1|)) (-15 -3046 (|#1| |#1| (-655 |#4|) (-655 |#2|))) (-15 -3046 (|#1| |#1| |#4| |#2|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -2414 (|#1| |#2| |#3|)) (-15 -3002 (|#2| |#1| |#3|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3685 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 |#3|) $) 113)) (-3462 (((-1190 $) $ |#3|) 128) (((-1190 |#1|) $) 127)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-2456 (($ $) 91 (|has| |#1| (-567)))) (-3978 (((-112) $) 93 (|has| |#1| (-567)))) (-3508 (((-782) $) 115) (((-782) $ (-655 |#3|)) 114)) (-1708 (((-3 $ "failed") $ $) 20)) (-4005 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-3312 (($ $) 101 (|has| |#1| (-463)))) (-4281 (((-429 $) $) 100 (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) 141)) (-4400 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) ((|#3| $) 142)) (-4171 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4406 (($ $) 159)) (-2862 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-4162 (((-3 $ "failed") $) 37)) (-2379 (($ $) 181 (|has| |#1| (-463))) (($ $ |#3|) 108 (|has| |#1| (-463)))) (-4393 (((-655 $) $) 112)) (-3559 (((-112) $) 99 (|has| |#1| (-924)))) (-4384 (($ $ |#1| |#2| $) 177)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| |#3| (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| |#3| (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3900 (((-112) $) 35)) (-1403 (((-782) $) 174)) (-2430 (($ (-1190 |#1|) |#3|) 120) (($ (-1190 $) |#3|) 119)) (-1719 (((-655 $) $) 129)) (-3135 (((-112) $) 157)) (-2414 (($ |#1| |#2|) 158) (($ $ |#3| (-782)) 122) (($ $ (-655 |#3|) (-655 (-782))) 121)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#3|) 123)) (-3143 ((|#2| $) 175) (((-782) $ |#3|) 125) (((-655 (-782)) $ (-655 |#3|)) 124)) (-1946 (($ (-1 |#2| |#2|) $) 176)) (-2544 (($ (-1 |#1| |#1|) $) 156)) (-2187 (((-3 |#3| "failed") $) 126)) (-4370 (($ $) 154)) (-4383 ((|#1| $) 153)) (-3886 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-4264 (((-1176) $) 10)) (-1445 (((-3 (-655 $) "failed") $) 117)) (-1512 (((-3 (-655 $) "failed") $) 118)) (-2329 (((-3 (-2 (|:| |var| |#3|) (|:| -1658 (-782))) "failed") $) 116)) (-3912 (((-1137) $) 11)) (-4346 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3923 (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2347 (((-429 $) $) 102 (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-655 |#3|) (-655 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-655 |#3|) (-655 $)) 143)) (-2801 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2382 (($ $ (-655 |#3|) (-655 (-782))) 44) (($ $ |#3| (-782)) 43) (($ $ (-655 |#3|)) 42) (($ $ |#3|) 40)) (-1753 ((|#2| $) 155) (((-782) $ |#3|) 133) (((-655 (-782)) $ (-655 |#3|)) 132)) (-2613 (((-904 (-389)) $) 85 (-12 (|has| |#3| (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| |#3| (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| |#3| (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ |#3|) 109 (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3224 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-567))) (($ (-418 (-575))) 81 (-3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))))) (-2212 (((-655 |#1|) $) 173)) (-3002 ((|#1| $ |#2|) 160) (($ $ |#3| (-782)) 131) (($ $ (-655 |#3|) (-655 (-782))) 130)) (-1724 (((-3 $ "failed") $) 82 (-3763 (-3224 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) 32 T CONST)) (-1982 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-655 |#3|) (-655 (-782))) 47) (($ $ |#3| (-782)) 46) (($ $ (-655 |#3|)) 45) (($ $ |#3|) 41)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-964 |#1| |#2| |#3|) (-141) (-1066) (-804) (-861)) (T -964))
-((-2379 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-1753 (*1 *2 *1 *3) (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-782)))) (-1753 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782))))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *2 (-861)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)))) (-1719 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-3462 (*1 *2 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-1190 *1)) (-4 *1 (-964 *4 *5 *3)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-1190 *3)))) (-2187 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-3143 (*1 *2 *1 *3) (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-782)))) (-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782))))) (-1749 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-964 *4 *5 *3)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *2 (-861)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)))) (-2430 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *4)) (-4 *4 (-1066)) (-4 *1 (-964 *4 *5 *3)) (-4 *5 (-804)) (-4 *3 (-861)))) (-2430 (*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)))) (-1512 (*1 *2 *1) (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-1445 (*1 *2 *1) (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-2329 (*1 *2 *1) (|partial| -12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -1658 (-782)))))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-782)))) (-3508 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *5)))) (-4393 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5)))) (-4171 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-174)))) (-2801 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-174)))) (-3696 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-463)))) (-2379 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *3 (-463)))) (-3312 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-4281 (*1 *2 *1) (-12 (-4 *3 (-463)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-429 *1)) (-4 *1 (-964 *3 *4 *5)))))
-(-13 (-913 |t#3|) (-335 |t#1| |t#2|) (-318 $) (-525 |t#3| |t#1|) (-525 |t#3| $) (-1055 |t#3|) (-387 |t#1|) (-10 -8 (-15 -1753 ((-782) $ |t#3|)) (-15 -1753 ((-655 (-782)) $ (-655 |t#3|))) (-15 -3002 ($ $ |t#3| (-782))) (-15 -3002 ($ $ (-655 |t#3|) (-655 (-782)))) (-15 -1719 ((-655 $) $)) (-15 -3462 ((-1190 $) $ |t#3|)) (-15 -3462 ((-1190 |t#1|) $)) (-15 -2187 ((-3 |t#3| "failed") $)) (-15 -3143 ((-782) $ |t#3|)) (-15 -3143 ((-655 (-782)) $ (-655 |t#3|))) (-15 -1749 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |t#3|)) (-15 -2414 ($ $ |t#3| (-782))) (-15 -2414 ($ $ (-655 |t#3|) (-655 (-782)))) (-15 -2430 ($ (-1190 |t#1|) |t#3|)) (-15 -2430 ($ (-1190 $) |t#3|)) (-15 -1512 ((-3 (-655 $) "failed") $)) (-15 -1445 ((-3 (-655 $) "failed") $)) (-15 -2329 ((-3 (-2 (|:| |var| |t#3|) (|:| -1658 (-782))) "failed") $)) (-15 -3508 ((-782) $)) (-15 -3508 ((-782) $ (-655 |t#3|))) (-15 -1606 ((-655 |t#3|) $)) (-15 -4393 ((-655 $) $)) (IF (|has| |t#1| (-625 (-547))) (IF (|has| |t#3| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-625 (-904 (-575)))) (IF (|has| |t#3| (-625 (-904 (-575)))) (-6 (-625 (-904 (-575)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-625 (-904 (-389)))) (IF (|has| |t#3| (-625 (-904 (-389)))) (-6 (-625 (-904 (-389)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-898 (-575))) (IF (|has| |t#3| (-898 (-575))) (-6 (-898 (-575))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-898 (-389))) (IF (|has| |t#3| (-898 (-389))) (-6 (-898 (-389))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -4171 ($ $ $ |t#3|)) (-15 -2801 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-6 (-463)) (-15 -3696 ($ $ |t#3|)) (-15 -2379 ($ $)) (-15 -2379 ($ $ |t#3|)) (-15 -4281 ((-429 $) $)) (-15 -3312 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#1| (-924)) (-6 (-924)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 |#3|) . T) ((-627 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) ((-299) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-318 $) . T) ((-335 |#1| |#2|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3763 (|has| |#1| (-924)) (|has| |#1| (-463))) ((-525 |#3| |#1|) . T) ((-525 |#3| $) . T) ((-525 $ $) . T) ((-567) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-737) . T) ((-908 $ |#3|) . T) ((-913 |#3|) . T) ((-915 |#3|) . T) ((-898 (-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) ((-924) |has| |#1| (-924)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1055 |#3|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-924)))
-((-1606 (((-655 |#2|) |#5|) 40)) (-3462 (((-1190 |#5|) |#5| |#2| (-1190 |#5|)) 23) (((-418 (-1190 |#5|)) |#5| |#2|) 16)) (-2430 ((|#5| (-418 (-1190 |#5|)) |#2|) 30)) (-2187 (((-3 |#2| "failed") |#5|) 71)) (-1445 (((-3 (-655 |#5|) "failed") |#5|) 65)) (-1963 (((-3 (-2 (|:| |val| |#5|) (|:| -1658 (-575))) "failed") |#5|) 53)) (-1512 (((-3 (-655 |#5|) "failed") |#5|) 67)) (-2329 (((-3 (-2 (|:| |var| |#2|) (|:| -1658 (-575))) "failed") |#5|) 57)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1606 ((-655 |#2|) |#5|)) (-15 -2187 ((-3 |#2| "failed") |#5|)) (-15 -3462 ((-418 (-1190 |#5|)) |#5| |#2|)) (-15 -2430 (|#5| (-418 (-1190 |#5|)) |#2|)) (-15 -3462 ((-1190 |#5|) |#5| |#2| (-1190 |#5|))) (-15 -1512 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -1445 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -2329 ((-3 (-2 (|:| |var| |#2|) (|:| -1658 (-575))) "failed") |#5|)) (-15 -1963 ((-3 (-2 (|:| |val| |#5|) (|:| -1658 (-575))) "failed") |#5|))) (-804) (-861) (-1066) (-964 |#3| |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -965))
-((-1963 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1658 (-575)))) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-2329 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1658 (-575)))) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-1445 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3)) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-1512 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3)) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-3462 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) (-4 *7 (-964 *6 *5 *4)) (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) (-5 *1 (-965 *5 *4 *6 *7 *3)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-1190 *2))) (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) (-4 *2 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))) (-5 *1 (-965 *5 *4 *6 *7 *2)) (-4 *7 (-964 *6 *5 *4)))) (-3462 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-418 (-1190 *3))) (-5 *1 (-965 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))) (-2187 (*1 *2 *3) (|partial| -12 (-4 *4 (-804)) (-4 *5 (-1066)) (-4 *6 (-964 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-965 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *6)) (-15 -1595 (*6 $)) (-15 -1608 (*6 $))))))) (-1606 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *5)) (-5 *1 (-965 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))))
-(-10 -7 (-15 -1606 ((-655 |#2|) |#5|)) (-15 -2187 ((-3 |#2| "failed") |#5|)) (-15 -3462 ((-418 (-1190 |#5|)) |#5| |#2|)) (-15 -2430 (|#5| (-418 (-1190 |#5|)) |#2|)) (-15 -3462 ((-1190 |#5|) |#5| |#2| (-1190 |#5|))) (-15 -1512 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -1445 ((-3 (-655 |#5|) "failed") |#5|)) (-15 -2329 ((-3 (-2 (|:| |var| |#2|) (|:| -1658 (-575))) "failed") |#5|)) (-15 -1963 ((-3 (-2 (|:| |val| |#5|) (|:| -1658 (-575))) "failed") |#5|)))
-((-2544 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-966 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2544 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-804) (-861) (-1066) (-964 |#3| |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782)))))) (T -966))
-((-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1066)) (-4 *6 (-804)) (-4 *2 (-13 (-1117) (-10 -8 (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782)))))) (-5 *1 (-966 *6 *7 *8 *5 *2)) (-4 *5 (-964 *8 *6 *7)))))
-(-10 -7 (-15 -2544 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1194)) $) 16)) (-3462 (((-1190 $) $ (-1194)) 21) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1194))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 8) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1194) "failed") $) NIL)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1194) $) NIL)) (-4171 (($ $ $ (-1194)) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1194)) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-542 (-1194)) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1194) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1194) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#1|) (-1194)) NIL) (($ (-1190 $) (-1194)) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1194)) NIL)) (-3143 (((-542 (-1194)) $) NIL) (((-782) $ (-1194)) NIL) (((-655 (-782)) $ (-655 (-1194))) NIL)) (-1946 (($ (-1 (-542 (-1194)) (-542 (-1194))) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (((-3 (-1194) "failed") $) 19)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-1194)) (|:| -1658 (-782))) "failed") $) NIL)) (-4388 (($ $ (-1194)) 29 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1194) |#1|) NIL) (($ $ (-655 (-1194)) (-655 |#1|)) NIL) (($ $ (-1194) $) NIL) (($ $ (-655 (-1194)) (-655 $)) NIL)) (-2801 (($ $ (-1194)) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-1753 (((-542 (-1194)) $) NIL) (((-782) $ (-1194)) NIL) (((-655 (-782)) $ (-655 (-1194))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-1194) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1194) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1194) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1194)) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) 25) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1194)) 27) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-967 |#1|) (-13 (-964 |#1| (-542 (-1194)) (-1194)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1194))) |%noBranch|))) (-1066)) (T -967))
-((-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-967 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)))))
-(-13 (-964 |#1| (-542 (-1194)) (-1194)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1194))) |%noBranch|)))
-((-4318 (((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#3| (-782)) 49)) (-4304 (((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) (-418 (-575)) (-782)) 44)) (-3407 (((-2 (|:| -1658 (-782)) (|:| -1754 |#4|) (|:| |radicand| (-655 |#4|))) |#4| (-782)) 65)) (-1648 (((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#5| (-782)) 74 (|has| |#3| (-463)))))
-(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4318 ((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#3| (-782))) (-15 -4304 ((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) (-418 (-575)) (-782))) (IF (|has| |#3| (-463)) (-15 -1648 ((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#5| (-782))) |%noBranch|) (-15 -3407 ((-2 (|:| -1658 (-782)) (|:| -1754 |#4|) (|:| |radicand| (-655 |#4|))) |#4| (-782)))) (-804) (-861) (-567) (-964 |#3| |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2882 ($ |#4|)) (-15 -1595 (|#4| $)) (-15 -1608 (|#4| $))))) (T -968))
-((-3407 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) (-4 *3 (-964 *7 *5 *6)) (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *3) (|:| |radicand| (-655 *3)))) (-5 *1 (-968 *5 *6 *7 *3 *8)) (-5 *4 (-782)) (-4 *8 (-13 (-373) (-10 -8 (-15 -2882 ($ *3)) (-15 -1595 (*3 $)) (-15 -1608 (*3 $))))))) (-1648 (*1 *2 *3 *4) (-12 (-4 *7 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) (-4 *8 (-964 *7 *5 *6)) (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *3) (|:| |radicand| *3))) (-5 *1 (-968 *5 *6 *7 *8 *3)) (-5 *4 (-782)) (-4 *3 (-13 (-373) (-10 -8 (-15 -2882 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))) (-4304 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-575))) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567)) (-4 *8 (-964 *7 *5 *6)) (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *9) (|:| |radicand| *9))) (-5 *1 (-968 *5 *6 *7 *8 *9)) (-5 *4 (-782)) (-4 *9 (-13 (-373) (-10 -8 (-15 -2882 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))) (-4318 (*1 *2 *3 *4) (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-567)) (-4 *7 (-964 *3 *5 *6)) (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *8) (|:| |radicand| *8))) (-5 *1 (-968 *5 *6 *3 *7 *8)) (-5 *4 (-782)) (-4 *8 (-13 (-373) (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))))
-(-10 -7 (-15 -4318 ((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#3| (-782))) (-15 -4304 ((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) (-418 (-575)) (-782))) (IF (|has| |#3| (-463)) (-15 -1648 ((-2 (|:| -1658 (-782)) (|:| -1754 |#5|) (|:| |radicand| |#5|)) |#5| (-782))) |%noBranch|) (-15 -3407 ((-2 (|:| -1658 (-782)) (|:| -1754 |#4|) (|:| |radicand| (-655 |#4|))) |#4| (-782))))
-((-2859 (((-112) $ $) NIL)) (-1866 (($ (-1137)) 8)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 15) (((-1137) $) 12)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 11)))
-(((-969) (-13 (-1117) (-624 (-1137)) (-10 -8 (-15 -1866 ($ (-1137)))))) (T -969))
-((-1866 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-969)))))
-(-13 (-1117) (-624 (-1137)) (-10 -8 (-15 -1866 ($ (-1137)))))
-((-2824 (((-1111 (-227)) $) 8)) (-2812 (((-1111 (-227)) $) 9)) (-1612 (((-655 (-655 (-958 (-227)))) $) 10)) (-2882 (((-873) $) 6)))
-(((-970) (-141)) (T -970))
-((-1612 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-655 (-655 (-958 (-227))))))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227))))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227))))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1612 ((-655 (-655 (-958 (-227)))) $)) (-15 -2812 ((-1111 (-227)) $)) (-15 -2824 ((-1111 (-227)) $))))
-(((-624 (-873)) . T))
-((-3543 (((-3 (-700 |#1|) "failed") |#2| (-936)) 18)))
-(((-971 |#1| |#2|) (-10 -7 (-15 -3543 ((-3 (-700 |#1|) "failed") |#2| (-936)))) (-567) (-667 |#1|)) (T -971))
-((-3543 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-936)) (-4 *5 (-567)) (-5 *2 (-700 *5)) (-5 *1 (-971 *5 *3)) (-4 *3 (-667 *5)))))
-(-10 -7 (-15 -3543 ((-3 (-700 |#1|) "failed") |#2| (-936))))
-((-3436 (((-973 |#2|) (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|) 16)) (-2302 ((|#2| (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|) 18)) (-2544 (((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)) 13)))
-(((-972 |#1| |#2|) (-10 -7 (-15 -3436 ((-973 |#2|) (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2544 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)))) (-1235) (-1235)) (T -972))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-973 *6)) (-5 *1 (-972 *5 *6)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-973 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-972 *5 *2)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-973 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-973 *5)) (-5 *1 (-972 *6 *5)))))
-(-10 -7 (-15 -3436 ((-973 |#2|) (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-973 |#1|) |#2|)) (-15 -2544 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) |#1|) 19 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 18 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 16)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) |#1|) 15)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) 11 (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) 20 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) 17) (($ $ (-1252 (-575))) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) 21)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 14)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2869 (((-782) $) 8 (|has| $ (-6 -4460)))))
-(((-973 |#1|) (-19 |#1|) (-1235)) (T -973))
+((-4089 ((|#2| (-656 |#1|) (-656 |#1|)) 28)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -4089 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1263 |#1|)) (T -939))
+((-4089 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1263 *4)) (-5 *1 (-939 *4 *2)))))
+(-10 -7 (-15 -4089 (|#2| (-656 |#1|) (-656 |#1|))))
+((-2304 (((-1192 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -2304 ((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -2304 ((-1192 |#2|) (-656 |#2|) (-656 |#2|)))) (-1196) (-374)) (T -940))
+((-2304 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1192 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-1196)))) (-2304 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1260 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1196)) (-4 *5 (-374)) (-5 *1 (-940 *4 *5)))))
+(-10 -7 (-15 -2304 ((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -2304 ((-1192 |#2|) (-656 |#2|) (-656 |#2|))))
+((-1369 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178)) 174)) (-4077 ((|#4| |#4|) 193)) (-1808 (((-656 (-419 (-969 |#1|))) (-656 (-1196))) 146)) (-1714 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-1755 (((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-656 |#4|)) 69)) (-2593 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-2618 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178)) 186)) (-2617 (((-576) (-701 |#4|) (-938) (-1178)) 166) (((-576) (-701 |#4|) (-656 (-1196)) (-938) (-1178)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-938) (-1178)) 164) (((-576) (-701 |#4|) (-1178)) 154) (((-576) (-701 |#4|) (-656 (-1196)) (-1178)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1178)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-938)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-4193 ((|#4| (-969 |#1|)) 80)) (-3047 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-3936 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-3823 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-1557 (((-783) (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-3888 (((-783) (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-3258 (((-112) (-656 (-969 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-1544 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-2816 (((-656 |#4|) |#4|) 57)) (-4012 (((-656 (-419 (-969 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-969 |#1|))) (-701 |#4|)) 66) (((-419 (-969 |#1|)) |#4|) 139)) (-2238 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1178) (-576)) 112)) (-2801 (((-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-2678 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-2247 (((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| -3260 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -4422 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56)))
+(((-941 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-938))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938))) (-15 -2617 ((-576) (-701 |#4|) (-656 |#4|) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-656 (-1196)) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-656 |#4|) (-938) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-656 (-1196)) (-938) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-938) (-1178))) (-15 -1369 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -2618 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -2238 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1178) (-576))) (-15 -4012 ((-419 (-969 |#1|)) |#4|)) (-15 -4012 ((-701 (-419 (-969 |#1|))) (-701 |#4|))) (-15 -4012 ((-656 (-419 (-969 |#1|))) (-656 |#4|))) (-15 -1808 ((-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -4193 (|#4| (-969 |#1|))) (-15 -1544 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2801 ((-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -1755 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-656 |#4|))) (-15 -2247 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| -3260 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -4422 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2816 ((-656 |#4|) |#4|)) (-15 -3888 ((-783) (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -1557 ((-783) (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3823 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3936 ((-656 (-656 (-576))) (-576) (-576))) (-15 -3047 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2678 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2593 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -1714 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -4077 (|#4| |#4|)) (-15 -3258 ((-112) (-656 |#4|))) (-15 -3258 ((-112) (-656 (-969 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1196))) (-805) (-966 |#1| |#3| |#2|)) (T -941))
+((-3258 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196)))) (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-966 *3 *5 *4)))) (-1714 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-969 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-966 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1196)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-969 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *9)))) (|:| -4261 (-656 (-1287 (-419 (-969 *9))))))))) (-5 *1 (-941 *9 *10 *11 *12)))) (-2593 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3936 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *6 *5)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-966 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196)))) (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *6)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-966 *4 *6 *5)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3260 (-701 (-419 (-969 *4)))) (|:| |vec| (-656 (-419 (-969 *4)))) (|:| -4422 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -4261 (-656 (-1287 (-419 (-969 *4))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-1755 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -4261 (-656 (-1287 (-419 (-969 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-966 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-783)))) (-1544 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-4 *7 (-966 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-966 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-419 (-969 *4))) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-966 *4 *6 *5)))) (-2238 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-969 *8)))) (-5 *5 (-783)) (-5 *6 (-1178)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-966 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1196)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-969 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *8)))) (|:| -4261 (-656 (-1287 (-419 (-969 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-576)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-969 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -4261 (-656 (-1287 (-419 (-969 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -4261 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *4 (-1178)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-966 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-938)) (-5 *5 (-1178)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-2617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1196))) (-5 *5 (-938)) (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *7 *8 *9 *10)))) (-2617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-938)) (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *7 *8 *9 *10)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1178)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-1178)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1178)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-938)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -4261 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-969 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *6)))) (|:| -4261 (-656 (-1287 (-419 (-969 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-969 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *6)))) (|:| -4261 (-656 (-1287 (-419 (-969 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-969 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -4261 (-656 (-1287 (-419 (-969 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1196))) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -4261 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -4261 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(-10 -7 (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-938))) (-15 -2617 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938))) (-15 -2617 ((-576) (-701 |#4|) (-656 |#4|) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-656 (-1196)) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-656 |#4|) (-938) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-656 (-1196)) (-938) (-1178))) (-15 -2617 ((-576) (-701 |#4|) (-938) (-1178))) (-15 -1369 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -2618 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -2238 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1178) (-576))) (-15 -4012 ((-419 (-969 |#1|)) |#4|)) (-15 -4012 ((-701 (-419 (-969 |#1|))) (-701 |#4|))) (-15 -4012 ((-656 (-419 (-969 |#1|))) (-656 |#4|))) (-15 -1808 ((-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -4193 (|#4| (-969 |#1|))) (-15 -1544 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2801 ((-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -1755 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-656 |#4|))) (-15 -2247 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| -3260 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -4422 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2816 ((-656 |#4|) |#4|)) (-15 -3888 ((-783) (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -1557 ((-783) (-656 (-2 (|:| -4422 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3823 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3936 ((-656 (-656 (-576))) (-576) (-576))) (-15 -3047 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -2678 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2593 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -1714 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -4261 (-656 (-1287 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -4077 (|#4| |#4|)) (-15 -3258 ((-112) (-656 |#4|))) (-15 -3258 ((-112) (-656 (-969 |#1|)))))
+((-4239 (((-944) |#1| (-1196)) 17) (((-944) |#1| (-1196) (-1113 (-227))) 21)) (-2350 (((-944) |#1| |#1| (-1196) (-1113 (-227))) 19) (((-944) |#1| (-1196) (-1113 (-227))) 15)))
+(((-942 |#1|) (-10 -7 (-15 -2350 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -2350 ((-944) |#1| |#1| (-1196) (-1113 (-227)))) (-15 -4239 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -4239 ((-944) |#1| (-1196)))) (-626 (-548))) (T -942))
+((-4239 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-4239 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-2350 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-2350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))))
+(-10 -7 (-15 -2350 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -2350 ((-944) |#1| |#1| (-1196) (-1113 (-227)))) (-15 -4239 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -4239 ((-944) |#1| (-1196))))
+((-2227 (($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 121)) (-2814 (((-1113 (-227)) $) 64)) (-2802 (((-1113 (-227)) $) 63)) (-2791 (((-1113 (-227)) $) 62)) (-3611 (((-656 (-656 (-227))) $) 69)) (-2054 (((-1113 (-227)) $) 65)) (-2072 (((-576) (-576)) 57)) (-3040 (((-576) (-576)) 52)) (-4262 (((-576) (-576)) 55)) (-2141 (((-112) (-112)) 59)) (-3834 (((-576)) 56)) (-2094 (($ $ (-1113 (-227))) 124) (($ $) 125)) (-3903 (($ (-1 (-960 (-227)) (-227)) (-1113 (-227))) 131) (($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 132)) (-2350 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 135) (($ $ (-1113 (-227))) 127)) (-4329 (((-576)) 60)) (-2215 (((-576)) 50)) (-1499 (((-576)) 53)) (-3657 (((-656 (-656 (-960 (-227)))) $) 151)) (-1790 (((-112) (-112)) 61)) (-2858 (((-874) $) 149)) (-3415 (((-112)) 58)))
+(((-943) (-13 (-993) (-10 -8 (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ $ (-1113 (-227)))) (-15 -2227 ($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2094 ($ $ (-1113 (-227)))) (-15 -2094 ($ $)) (-15 -2054 ((-1113 (-227)) $)) (-15 -3611 ((-656 (-656 (-227))) $)) (-15 -2215 ((-576))) (-15 -3040 ((-576) (-576))) (-15 -1499 ((-576))) (-15 -4262 ((-576) (-576))) (-15 -3834 ((-576))) (-15 -2072 ((-576) (-576))) (-15 -3415 ((-112))) (-15 -2141 ((-112) (-112))) (-15 -4329 ((-576))) (-15 -1790 ((-112) (-112)))))) (T -943))
+((-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-3903 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-2350 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-2350 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-2227 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-2094 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-2094 (*1 *1 *1) (-5 *1 (-943))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-943)))) (-2215 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3040 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-1499 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3834 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3415 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-2141 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-4329 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(-13 (-993) (-10 -8 (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ $ (-1113 (-227)))) (-15 -2227 ($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2094 ($ $ (-1113 (-227)))) (-15 -2094 ($ $)) (-15 -2054 ((-1113 (-227)) $)) (-15 -3611 ((-656 (-656 (-227))) $)) (-15 -2215 ((-576))) (-15 -3040 ((-576) (-576))) (-15 -1499 ((-576))) (-15 -4262 ((-576) (-576))) (-15 -3834 ((-576))) (-15 -2072 ((-576) (-576))) (-15 -3415 ((-112))) (-15 -2141 ((-112) (-112))) (-15 -4329 ((-576))) (-15 -1790 ((-112) (-112)))))
+((-2227 (($ $ (-1113 (-227))) 122) (($ $ (-1113 (-227)) (-1113 (-227))) 123)) (-2802 (((-1113 (-227)) $) 73)) (-2791 (((-1113 (-227)) $) 72)) (-2054 (((-1113 (-227)) $) 74)) (-2692 (((-576) (-576)) 66)) (-1750 (((-576) (-576)) 61)) (-1336 (((-576) (-576)) 64)) (-3183 (((-112) (-112)) 68)) (-3487 (((-576)) 65)) (-2094 (($ $ (-1113 (-227))) 126) (($ $) 127)) (-3903 (($ (-1 (-960 (-227)) (-227)) (-1113 (-227))) 141) (($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 142)) (-4239 (($ (-1 (-227) (-227)) (-1113 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-2350 (($ (-1 (-227) (-227)) (-1113 (-227))) 137) (($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1113 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 140) (($ $ (-1113 (-227))) 128)) (-2004 (((-112) $) 69)) (-2550 (((-576)) 70)) (-3461 (((-576)) 59)) (-2320 (((-576)) 62)) (-3657 (((-656 (-656 (-960 (-227)))) $) 35)) (-3393 (((-112) (-112)) 71)) (-2858 (((-874) $) 167)) (-3524 (((-112)) 67)))
+(((-944) (-13 (-972) (-10 -8 (-15 -2350 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)))) (-15 -2350 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4239 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4239 ($ (-1 (-227) (-227)))) (-15 -2350 ($ $ (-1113 (-227)))) (-15 -2004 ((-112) $)) (-15 -2227 ($ $ (-1113 (-227)))) (-15 -2227 ($ $ (-1113 (-227)) (-1113 (-227)))) (-15 -2094 ($ $ (-1113 (-227)))) (-15 -2094 ($ $)) (-15 -2054 ((-1113 (-227)) $)) (-15 -3461 ((-576))) (-15 -1750 ((-576) (-576))) (-15 -2320 ((-576))) (-15 -1336 ((-576) (-576))) (-15 -3487 ((-576))) (-15 -2692 ((-576) (-576))) (-15 -3524 ((-112))) (-15 -3183 ((-112) (-112))) (-15 -2550 ((-576))) (-15 -3393 ((-112) (-112)))))) (T -944))
+((-2350 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-2350 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-2350 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-2350 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-2350 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3903 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4239 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4239 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-944)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-2227 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2227 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2094 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2094 (*1 *1 *1) (-5 *1 (-944))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-3461 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-1750 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2320 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-1336 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3487 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3524 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-2550 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))))
+(-13 (-972) (-10 -8 (-15 -2350 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)))) (-15 -2350 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -2350 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3903 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4239 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4239 ($ (-1 (-227) (-227)))) (-15 -2350 ($ $ (-1113 (-227)))) (-15 -2004 ((-112) $)) (-15 -2227 ($ $ (-1113 (-227)))) (-15 -2227 ($ $ (-1113 (-227)) (-1113 (-227)))) (-15 -2094 ($ $ (-1113 (-227)))) (-15 -2094 ($ $)) (-15 -2054 ((-1113 (-227)) $)) (-15 -3461 ((-576))) (-15 -1750 ((-576) (-576))) (-15 -2320 ((-576))) (-15 -1336 ((-576) (-576))) (-15 -3487 ((-576))) (-15 -2692 ((-576) (-576))) (-15 -3524 ((-112))) (-15 -3183 ((-112) (-112))) (-15 -2550 ((-576))) (-15 -3393 ((-112) (-112)))))
+((-2211 (((-656 (-1113 (-227))) (-656 (-656 (-960 (-227))))) 34)))
+(((-945) (-10 -7 (-15 -2211 ((-656 (-1113 (-227))) (-656 (-656 (-960 (-227)))))))) (T -945))
+((-2211 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-1113 (-227)))) (-5 *1 (-945)))))
+(-10 -7 (-15 -2211 ((-656 (-1113 (-227))) (-656 (-656 (-960 (-227)))))))
+((-4174 ((|#2| |#2|) 28)) (-1647 ((|#2| |#2|) 29)) (-3712 ((|#2| |#2|) 27)) (-2603 ((|#2| |#2| (-518)) 26)))
+(((-946 |#1| |#2|) (-10 -7 (-15 -2603 (|#2| |#2| (-518))) (-15 -3712 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -1647 (|#2| |#2|))) (-1119) (-442 |#1|)) (T -946))
+((-1647 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1119)) (-5 *1 (-946 *4 *2)) (-4 *2 (-442 *4)))))
+(-10 -7 (-15 -2603 (|#2| |#2| (-518))) (-15 -3712 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)))
+((-4174 (((-326 (-576)) (-1196)) 16)) (-1647 (((-326 (-576)) (-1196)) 14)) (-3712 (((-326 (-576)) (-1196)) 12)) (-2603 (((-326 (-576)) (-1196) (-518)) 19)))
+(((-947) (-10 -7 (-15 -2603 ((-326 (-576)) (-1196) (-518))) (-15 -3712 ((-326 (-576)) (-1196))) (-15 -4174 ((-326 (-576)) (-1196))) (-15 -1647 ((-326 (-576)) (-1196))))) (T -947))
+((-1647 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))))
+(-10 -7 (-15 -2603 ((-326 (-576)) (-1196) (-518))) (-15 -3712 ((-326 (-576)) (-1196))) (-15 -4174 ((-326 (-576)) (-1196))) (-15 -1647 ((-326 (-576)) (-1196))))
+((-1835 (((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)) 25)) (-2445 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -2445 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1835 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-899 |#1|) (-13 (-1119) (-1057 |#2|))) (T -948))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-13 (-1119) (-1057 *3))) (-4 *3 (-899 *5)) (-5 *1 (-948 *5 *3 *6)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1119) (-1057 *5))) (-4 *5 (-899 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-948 *4 *5 *6)))))
+(-10 -7 (-15 -2445 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -1835 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|))))
+((-1835 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 30)))
+(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-13 (-568) (-899 |#1|)) (-13 (-442 |#2|) (-626 (-905 |#1|)) (-899 |#1|) (-1057 (-624 $)))) (T -949))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1057 (-624 $)))) (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-949 *5 *6 *3)))))
+(-10 -7 (-15 -1835 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))
+((-1835 (((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)) 13)))
+(((-950 |#1|) (-10 -7 (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) (-557)) (T -950))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) (-5 *1 (-950 *3)))))
+(-10 -7 (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))))
+((-1835 (((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)) 57)))
+(((-951 |#1| |#2|) (-10 -7 (-15 -1835 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) (-1119) (-13 (-1119) (-1057 (-624 $)) (-626 (-905 |#1|)) (-899 |#1|))) (T -951))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1119)) (-4 *6 (-13 (-1119) (-1057 (-624 $)) (-626 *4) (-899 *5))) (-5 *4 (-905 *5)) (-5 *1 (-951 *5 *6)))))
+(-10 -7 (-15 -1835 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|))))
+((-1835 (((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)) 17)))
+(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) (-1119) (-899 |#1|) (-678 |#2|)) (T -952))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-952 *5 *6 *3)))))
+(-10 -7 (-15 -1835 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|))))
+((-1835 (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|)) 17 (|has| |#3| (-899 |#1|))) (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|))) 16)))
+(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1835 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -1835 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) (-1119) (-805) (-862) (-13 (-1068) (-899 |#1|)) (-13 (-966 |#4| |#2| |#3|) (-626 (-905 |#1|)))) (T -953))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-13 (-966 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3)))) (-1835 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1119)) (-4 *3 (-13 (-966 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1068) (-899 *6))) (-5 *1 (-953 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -1835 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -1835 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|))
+((-1726 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -1726 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1726 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1119) (-442 |#1|) (-1237)) (T -954))
+((-1726 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-4 *4 (-1119)) (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) (-1726 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1237)) (-4 *4 (-1119)) (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))))
+(-10 -7 (-15 -1726 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1726 (|#2| |#2| (-656 (-1 (-112) |#3|)))))
+((-1726 (((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1196) (-1 (-112) |#1|)) 15)))
+(((-955 |#1|) (-10 -7 (-15 -1726 ((-326 (-576)) (-1196) (-1 (-112) |#1|))) (-15 -1726 ((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))))) (-1237)) (T -955))
+((-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1237)) (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))))
+(-10 -7 (-15 -1726 ((-326 (-576)) (-1196) (-1 (-112) |#1|))) (-15 -1726 ((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|)))))
+((-1835 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 25)))
+(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-13 (-568) (-899 |#1|) (-626 (-905 |#1|))) (-1011 |#2|)) (T -956))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-1011 *6)) (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) (-5 *1 (-956 *5 *6 *3)))))
+(-10 -7 (-15 -1835 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))
+((-1835 (((-902 |#1| (-1196)) (-1196) (-905 |#1|) (-902 |#1| (-1196))) 18)))
+(((-957 |#1|) (-10 -7 (-15 -1835 ((-902 |#1| (-1196)) (-1196) (-905 |#1|) (-902 |#1| (-1196))))) (-1119)) (T -957))
+((-1835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *1 (-957 *5)))))
+(-10 -7 (-15 -1835 ((-902 |#1| (-1196)) (-1196) (-905 |#1|) (-902 |#1| (-1196)))))
+((-3283 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 34)) (-1835 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 33)))
+(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -3283 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) (-1119) (-1068) (-13 (-1068) (-626 (-905 |#1|)) (-1057 |#2|))) (T -958))
+((-3283 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1119)) (-4 *8 (-13 (-1068) (-626 (-905 *6)) (-1057 *7))) (-5 *2 (-902 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8)))) (-1835 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1119)) (-4 *9 (-13 (-1068) (-626 (-905 *7)) (-1057 *8))) (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1068)) (-5 *1 (-958 *7 *8 *9)))))
+(-10 -7 (-15 -1835 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -3283 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))))
+((-3095 (((-1192 (-419 (-576))) (-576)) 79)) (-1555 (((-1192 (-576)) (-576)) 82)) (-1817 (((-1192 (-576)) (-576)) 76)) (-2648 (((-576) (-1192 (-576))) 72)) (-2418 (((-1192 (-419 (-576))) (-576)) 65)) (-2716 (((-1192 (-576)) (-576)) 49)) (-4218 (((-1192 (-576)) (-576)) 84)) (-3786 (((-1192 (-576)) (-576)) 83)) (-2021 (((-1192 (-419 (-576))) (-576)) 67)))
+(((-959) (-10 -7 (-15 -2021 ((-1192 (-419 (-576))) (-576))) (-15 -3786 ((-1192 (-576)) (-576))) (-15 -4218 ((-1192 (-576)) (-576))) (-15 -2716 ((-1192 (-576)) (-576))) (-15 -2418 ((-1192 (-419 (-576))) (-576))) (-15 -2648 ((-576) (-1192 (-576)))) (-15 -1817 ((-1192 (-576)) (-576))) (-15 -1555 ((-1192 (-576)) (-576))) (-15 -3095 ((-1192 (-419 (-576))) (-576))))) (T -959))
+((-3095 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))) (-1555 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-1817 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-576)) (-5 *1 (-959)))) (-2418 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2716 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-4218 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-3786 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2021 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(-10 -7 (-15 -2021 ((-1192 (-419 (-576))) (-576))) (-15 -3786 ((-1192 (-576)) (-576))) (-15 -4218 ((-1192 (-576)) (-576))) (-15 -2716 ((-1192 (-576)) (-576))) (-15 -2418 ((-1192 (-419 (-576))) (-576))) (-15 -2648 ((-576) (-1192 (-576)))) (-15 -1817 ((-1192 (-576)) (-576))) (-15 -1555 ((-1192 (-576)) (-576))) (-15 -3095 ((-1192 (-419 (-576))) (-576))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2854 (($ (-783)) NIL (|has| |#1| (-23)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-1872 (($ (-656 |#1|)) 9)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4033 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2229 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-1684 (((-112) $ (-783)) NIL)) (-1873 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3262 (($ $ (-656 |#1|)) 25)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1254 (-576))) NIL)) (-2139 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-4340 (((-938) $) 13)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3021 (($ $ $) 23)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-2869 (($ (-656 |#1|)) NIL)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4002 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3990 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2845 (((-783) $) 11 (|has| $ (-6 -4462)))))
+(((-960 |#1|) (-999 |#1|) (-1068)) (T -960))
+NIL
+(-999 |#1|)
+((-2055 (((-493 |#1| |#2|) (-969 |#2|)) 22)) (-2192 (((-253 |#1| |#2|) (-969 |#2|)) 35)) (-1363 (((-969 |#2|) (-493 |#1| |#2|)) 27)) (-3144 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-2700 (((-969 |#2|) (-253 |#1| |#2|)) 32)) (-2378 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48)))
+(((-961 |#1| |#2|) (-10 -7 (-15 -2378 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3144 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2055 ((-493 |#1| |#2|) (-969 |#2|))) (-15 -1363 ((-969 |#2|) (-493 |#1| |#2|))) (-15 -2700 ((-969 |#2|) (-253 |#1| |#2|))) (-15 -2192 ((-253 |#1| |#2|) (-969 |#2|)))) (-656 (-1196)) (-1068)) (T -961))
+((-2192 (*1 *2 *3) (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196))))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196))))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5)))))
+(-10 -7 (-15 -2378 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3144 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2055 ((-493 |#1| |#2|) (-969 |#2|))) (-15 -1363 ((-969 |#2|) (-493 |#1| |#2|))) (-15 -2700 ((-969 |#2|) (-253 |#1| |#2|))) (-15 -2192 ((-253 |#1| |#2|) (-969 |#2|))))
+((-2679 (((-656 |#2|) |#2| |#2|) 10)) (-1669 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-1766 (((-656 |#2|) |#2|) 11)) (-1978 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2698 ((|#1| |#2|) 38 (|has| |#1| (-860)))))
+(((-962 |#1| |#2|) (-10 -7 (-15 -2679 ((-656 |#2|) |#2| |#2|)) (-15 -1766 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2698 (|#1| |#2|)) (-15 -1669 ((-783) (-656 |#1|))) (-15 -1978 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1263 |#1|)) (T -962))
+((-1978 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1263 *5)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-962 *4 *5)) (-4 *5 (-1263 *4)))) (-2698 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1263 *2)))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1263 *4)))) (-2679 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -2679 ((-656 |#2|) |#2| |#2|)) (-15 -1766 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2698 (|#1| |#2|)) (-15 -1669 ((-783) (-656 |#1|))) (-15 -1978 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|))
+((-2548 (((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)) 19)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -2548 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) (-1068) (-1068)) (T -963))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-969 *6)) (-5 *1 (-963 *5 *6)))))
+(-10 -7 (-15 -2548 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|))))
+((-3440 (((-1260 |#1| (-969 |#2|)) (-969 |#2|) (-1283 |#1|)) 18)))
+(((-964 |#1| |#2|) (-10 -7 (-15 -3440 ((-1260 |#1| (-969 |#2|)) (-969 |#2|) (-1283 |#1|)))) (-1196) (-1068)) (T -964))
+((-3440 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1068)) (-5 *2 (-1260 *5 (-969 *6))) (-5 *1 (-964 *5 *6)) (-5 *3 (-969 *6)))))
+(-10 -7 (-15 -3440 ((-1260 |#1| (-969 |#2|)) (-969 |#2|) (-1283 |#1|))))
+((-3988 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-3179 (($ $) 203)) (-2464 (((-430 $) $) 195)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 141)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-2495 (($ $ $ |#4|) 95)) (-2085 (((-701 (-576)) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 131) (((-701 |#2|) (-701 $)) 121) (((-701 |#2|) (-1287 $)) NIL)) (-3420 (($ $) 210) (($ $ |#4|) 213)) (-4391 (((-656 $) $) 77)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 229) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 222)) (-2936 (((-656 $) $) 34)) (-2428 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#4|) 192)) (-2829 (((-3 (-656 $) "failed") $) 52)) (-1972 (((-3 (-656 $) "failed") $) 39)) (-2994 (((-3 (-2 (|:| |var| |#4|) (|:| -2273 (-783))) "failed") $) 57)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 134)) (-3642 (((-430 (-1192 $)) (-1192 $)) 147)) (-3068 (((-430 (-1192 $)) (-1192 $)) 145)) (-2367 (((-430 $) $) 165)) (-3022 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-3880 (($ $ |#4|) 97)) (-2610 (((-905 (-390)) $) 243) (((-905 (-576)) $) 236) (((-548) $) 251)) (-4325 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 184)) (-4417 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-3689 (((-3 $ "failed") $) 186)) (-2690 (((-112) $ $) 216)))
+(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3068 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3642 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1874 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3420 (|#1| |#1| |#4|)) (-15 -4325 (|#1| |#1| |#4|)) (-15 -3880 (|#1| |#1| |#4|)) (-15 -2495 (|#1| |#1| |#1| |#4|)) (-15 -4391 ((-656 |#1|) |#1|)) (-15 -3988 ((-783) |#1| (-656 |#4|))) (-15 -3988 ((-783) |#1|)) (-15 -2994 ((-3 (-2 (|:| |var| |#4|) (|:| -2273 (-783))) "failed") |#1|)) (-15 -2829 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1972 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2428 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2428 (|#1| |#1| |#4| (-783))) (-15 -2290 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1| |#4|)) (-15 -2936 ((-656 |#1|) |#1|)) (-15 -4417 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4417 (|#1| |#1| |#4| (-783))) (-15 -2085 ((-701 |#2|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2454 ((-3 |#4| "failed") |#1|)) (-15 -4397 (|#4| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#4| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#4| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2428 (|#1| |#2| |#3|)) (-15 -4417 (|#2| |#1| |#3|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -2690 ((-112) |#1| |#1|))) (-966 |#2| |#3| |#4|) (-1068) (-805) (-862)) (T -965))
+NIL
+(-10 -8 (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3689 ((-3 |#1| "failed") |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3068 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3642 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1874 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3420 (|#1| |#1| |#4|)) (-15 -4325 (|#1| |#1| |#4|)) (-15 -3880 (|#1| |#1| |#4|)) (-15 -2495 (|#1| |#1| |#1| |#4|)) (-15 -4391 ((-656 |#1|) |#1|)) (-15 -3988 ((-783) |#1| (-656 |#4|))) (-15 -3988 ((-783) |#1|)) (-15 -2994 ((-3 (-2 (|:| |var| |#4|) (|:| -2273 (-783))) "failed") |#1|)) (-15 -2829 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1972 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2428 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2428 (|#1| |#1| |#4| (-783))) (-15 -2290 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1| |#4|)) (-15 -2936 ((-656 |#1|) |#1|)) (-15 -4417 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4417 (|#1| |#1| |#4| (-783))) (-15 -2085 ((-701 |#2|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2454 ((-3 |#4| "failed") |#1|)) (-15 -4397 (|#4| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#4| |#1|)) (-15 -3022 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3022 (|#1| |#1| |#4| |#2|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2428 (|#1| |#2| |#3|)) (-15 -4417 (|#2| |#1| |#3|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -3420 (|#1| |#1|)) (-15 -2690 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 |#3|) $) 113)) (-3440 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2150 (($ $) 91 (|has| |#1| (-568)))) (-2637 (((-112) $) 93 (|has| |#1| (-568)))) (-3988 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3161 (((-3 $ "failed") $ $) 20)) (-3389 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-3179 (($ $) 101 (|has| |#1| (-464)))) (-2464 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 141)) (-4397 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1057 (-576)))) ((|#3| $) 142)) (-2495 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-4404 (($ $) 159)) (-2085 (((-701 (-576)) (-1287 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1287 $)) 134)) (-4011 (((-3 $ "failed") $) 37)) (-3420 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-4391 (((-656 $) $) 112)) (-3011 (((-112) $) 99 (|has| |#1| (-926)))) (-2611 (($ $ |#1| |#2| $) 177)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1838 (((-112) $) 35)) (-1890 (((-783) $) 174)) (-2441 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-2936 (((-656 $) $) 129)) (-1711 (((-112) $) 157)) (-2428 (($ |#1| |#2|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#3|) 123)) (-4389 ((|#2| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-4149 (($ (-1 |#2| |#2|) $) 176)) (-2548 (($ (-1 |#1| |#1|) $) 156)) (-1848 (((-3 |#3| "failed") $) 126)) (-4366 (($ $) 154)) (-4379 ((|#1| $) 153)) (-3862 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2143 (((-1178) $) 10)) (-2829 (((-3 (-656 $) "failed") $) 117)) (-1972 (((-3 (-656 $) "failed") $) 118)) (-2994 (((-3 (-2 (|:| |var| |#3|) (|:| -2273 (-783))) "failed") $) 116)) (-3887 (((-1139) $) 11)) (-4336 (((-112) $) 171)) (-4347 ((|#1| $) 172)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3901 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-2367 (((-430 $) $) 102 (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143)) (-3880 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2399 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-4436 ((|#2| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-2610 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 107 (-3200 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2461 (((-656 |#1|) $) 173)) (-4417 ((|#1| $ |#2|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3689 (((-3 $ "failed") $) 82 (-3739 (-3200 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) 32 T CONST)) (-2986 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-966 |#1| |#2| |#3|) (-141) (-1068) (-805) (-862)) (T -966))
+((-3420 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4436 (*1 *2 *1 *3) (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-4436 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-4417 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *2 (-862)))) (-4417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) (-2936 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-3440 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1192 *1)) (-4 *1 (-966 *4 *5 *3)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1192 *3)))) (-1848 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4389 (*1 *2 *1 *3) (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-4389 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-2290 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-966 *4 *5 *3)))) (-2428 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *2 (-862)))) (-2428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1068)) (-4 *1 (-966 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-862)))) (-2441 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)))) (-1972 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-2829 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-2994 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -2273 (-783)))))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-3988 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-4391 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-2495 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3880 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-4325 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-3420 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2464 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-966 *3 *4 *5)))))
+(-13 (-915 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1057 |t#3|) (-388 |t#1|) (-10 -8 (-15 -4436 ((-783) $ |t#3|)) (-15 -4436 ((-656 (-783)) $ (-656 |t#3|))) (-15 -4417 ($ $ |t#3| (-783))) (-15 -4417 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2936 ((-656 $) $)) (-15 -3440 ((-1192 $) $ |t#3|)) (-15 -3440 ((-1192 |t#1|) $)) (-15 -1848 ((-3 |t#3| "failed") $)) (-15 -4389 ((-783) $ |t#3|)) (-15 -4389 ((-656 (-783)) $ (-656 |t#3|))) (-15 -2290 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |t#3|)) (-15 -2428 ($ $ |t#3| (-783))) (-15 -2428 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2441 ($ (-1192 |t#1|) |t#3|)) (-15 -2441 ($ (-1192 $) |t#3|)) (-15 -1972 ((-3 (-656 $) "failed") $)) (-15 -2829 ((-3 (-656 $) "failed") $)) (-15 -2994 ((-3 (-2 (|:| |var| |t#3|) (|:| -2273 (-783))) "failed") $)) (-15 -3988 ((-783) $)) (-15 -3988 ((-783) $ (-656 |t#3|))) (-15 -1634 ((-656 |t#3|) $)) (-15 -4391 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-576)))) (IF (|has| |t#3| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (IF (|has| |t#3| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-576))) (IF (|has| |t#3| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (IF (|has| |t#3| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2495 ($ $ $ |t#3|)) (-15 -3880 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -4325 ($ $ |t#3|)) (-15 -3420 ($ $)) (-15 -3420 ($ $ |t#3|)) (-15 -2464 ((-430 $) $)) (-15 -3179 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-300) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3739 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-926)))
+((-1634 (((-656 |#2|) |#5|) 40)) (-3440 (((-1192 |#5|) |#5| |#2| (-1192 |#5|)) 23) (((-419 (-1192 |#5|)) |#5| |#2|) 16)) (-2441 ((|#5| (-419 (-1192 |#5|)) |#2|) 30)) (-1848 (((-3 |#2| "failed") |#5|) 71)) (-2829 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-2321 (((-3 (-2 (|:| |val| |#5|) (|:| -2273 (-576))) "failed") |#5|) 53)) (-1972 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-2994 (((-3 (-2 (|:| |var| |#2|) (|:| -2273 (-576))) "failed") |#5|) 57)))
+(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1634 ((-656 |#2|) |#5|)) (-15 -1848 ((-3 |#2| "failed") |#5|)) (-15 -3440 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -2441 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -3440 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -1972 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2829 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2994 ((-3 (-2 (|:| |var| |#2|) (|:| -2273 (-576))) "failed") |#5|)) (-15 -2321 ((-3 (-2 (|:| |val| |#5|) (|:| -2273 (-576))) "failed") |#5|))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -2858 ($ |#4|)) (-15 -1621 (|#4| $)) (-15 -1635 (|#4| $))))) (T -967))
+((-2321 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2273 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-2994 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2273 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-2829 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-1972 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-3440 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))) (-4 *7 (-966 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-5 *1 (-967 *5 *4 *6 *7 *3)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-4 *2 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))) (-5 *1 (-967 *5 *4 *6 *7 *2)) (-4 *7 (-966 *6 *5 *4)))) (-3440 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-419 (-1192 *3))) (-5 *1 (-967 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-1848 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1068)) (-4 *6 (-966 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-967 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *6)) (-15 -1621 (*6 $)) (-15 -1635 (*6 $))))))) (-1634 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))))
+(-10 -7 (-15 -1634 ((-656 |#2|) |#5|)) (-15 -1848 ((-3 |#2| "failed") |#5|)) (-15 -3440 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -2441 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -3440 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -1972 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2829 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -2994 ((-3 (-2 (|:| |var| |#2|) (|:| -2273 (-576))) "failed") |#5|)) (-15 -2321 ((-3 (-2 (|:| |val| |#5|) (|:| -2273 (-576))) "failed") |#5|)))
+((-2548 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2548 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -968))
+((-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *6 (-805)) (-4 *2 (-13 (-1119) (-10 -8 (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-968 *6 *7 *8 *5 *2)) (-4 *5 (-966 *8 *6 *7)))))
+(-10 -7 (-15 -2548 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1196)) $) 16)) (-3440 (((-1192 $) $ (-1196)) 21) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1196))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1196) "failed") $) NIL)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1196) $) NIL)) (-2495 (($ $ $ (-1196)) NIL (|has| |#1| (-174)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1196)) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-543 (-1196)) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1196) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1196) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#1|) (-1196)) NIL) (($ (-1192 $) (-1196)) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1196)) NIL)) (-4389 (((-543 (-1196)) $) NIL) (((-783) $ (-1196)) NIL) (((-656 (-783)) $ (-656 (-1196))) NIL)) (-4149 (($ (-1 (-543 (-1196)) (-543 (-1196))) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1848 (((-3 (-1196) "failed") $) 19)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-1196)) (|:| -2273 (-783))) "failed") $) NIL)) (-1850 (($ $ (-1196)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1196) |#1|) NIL) (($ $ (-656 (-1196)) (-656 |#1|)) NIL) (($ $ (-1196) $) NIL) (($ $ (-656 (-1196)) (-656 $)) NIL)) (-3880 (($ $ (-1196)) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-4436 (((-543 (-1196)) $) NIL) (((-783) $ (-1196)) NIL) (((-656 (-783)) $ (-656 (-1196))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-1196) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1196) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1196) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1196)) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1196)) 27) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-969 |#1|) (-13 (-966 |#1| (-543 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1196))) |%noBranch|))) (-1068)) (T -969))
+((-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-969 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))))
+(-13 (-966 |#1| (-543 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1196))) |%noBranch|)))
+((-1705 (((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-2920 (((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-2299 (((-2 (|:| -2273 (-783)) (|:| -1788 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-3663 (((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464)))))
+(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1705 ((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -2920 ((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -3663 ((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -2299 ((-2 (|:| -2273 (-783)) (|:| -1788 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -2858 ($ |#4|)) (-15 -1621 (|#4| $)) (-15 -1635 (|#4| $))))) (T -970))
+((-2299 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -2858 ($ *3)) (-15 -1621 (*3 $)) (-15 -1635 (*3 $))))))) (-3663 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *3) (|:| |radicand| *3))) (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -2858 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $))))))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *9) (|:| |radicand| *9))) (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -2858 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $))))))) (-1705 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-966 *3 *5 *6)) (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *8) (|:| |radicand| *8))) (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))))
+(-10 -7 (-15 -1705 ((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -2920 ((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -3663 ((-2 (|:| -2273 (-783)) (|:| -1788 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -2299 ((-2 (|:| -2273 (-783)) (|:| -1788 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783))))
+((-2835 (((-112) $ $) NIL)) (-1900 (($ (-1139)) 8)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 15) (((-1139) $) 12)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 11)))
+(((-971) (-13 (-1119) (-625 (-1139)) (-10 -8 (-15 -1900 ($ (-1139)))))) (T -971))
+((-1900 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971)))))
+(-13 (-1119) (-625 (-1139)) (-10 -8 (-15 -1900 ($ (-1139)))))
+((-2802 (((-1113 (-227)) $) 8)) (-2791 (((-1113 (-227)) $) 9)) (-3657 (((-656 (-656 (-960 (-227)))) $) 10)) (-2858 (((-874) $) 6)))
+(((-972) (-141)) (T -972))
+((-3657 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-656 (-656 (-960 (-227))))))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3657 ((-656 (-656 (-960 (-227)))) $)) (-15 -2791 ((-1113 (-227)) $)) (-15 -2802 ((-1113 (-227)) $))))
+(((-625 (-874)) . T))
+((-3799 (((-3 (-701 |#1|) "failed") |#2| (-938)) 18)))
+(((-973 |#1| |#2|) (-10 -7 (-15 -3799 ((-3 (-701 |#1|) "failed") |#2| (-938)))) (-568) (-668 |#1|)) (T -973))
+((-3799 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-938)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-973 *5 *3)) (-4 *3 (-668 *5)))))
+(-10 -7 (-15 -3799 ((-3 (-701 |#1|) "failed") |#2| (-938))))
+((-4244 (((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 16)) (-2326 ((|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 18)) (-2548 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 13)))
+(((-974 |#1| |#2|) (-10 -7 (-15 -4244 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2548 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1237) (-1237)) (T -974))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-975 *6)) (-5 *1 (-974 *5 *6)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-974 *5 *2)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-975 *5)) (-5 *1 (-974 *6 *5)))))
+(-10 -7 (-15 -4244 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2548 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 16)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) |#1|) 15)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) 11 (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) 20 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1254 (-576))) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) 21)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 14)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2845 (((-783) $) 8 (|has| $ (-6 -4462)))))
+(((-975 |#1|) (-19 |#1|) (-1237)) (T -975))
NIL
(-19 |#1|)
-((-3738 (($ $ (-1109 $)) 7) (($ $ (-1194)) 6)))
-(((-974) (-141)) (T -974))
-((-3738 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-974)))) (-3738 (*1 *1 *1 *2) (-12 (-4 *1 (-974)) (-5 *2 (-1194)))))
-(-13 (-10 -8 (-15 -3738 ($ $ (-1194))) (-15 -3738 ($ $ (-1109 $)))))
-((-1758 (((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)) (-1194)) 26) (((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194))) 27) (((-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 |#1|))) (-967 |#1|) (-1194) (-967 |#1|) (-1194)) 49)))
-(((-975 |#1|) (-10 -7 (-15 -1758 ((-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 |#1|))) (-967 |#1|) (-1194) (-967 |#1|) (-1194))) (-15 -1758 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -1758 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)) (-1194)))) (-13 (-373) (-148))) (T -975))
-((-1758 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-5 *5 (-1194)) (-4 *6 (-13 (-373) (-148))) (-5 *2 (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *6))) (|:| |prim| (-1190 *6)))) (-5 *1 (-975 *6)))) (-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-373) (-148))) (-5 *2 (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *5))) (|:| |prim| (-1190 *5)))) (-5 *1 (-975 *5)))) (-1758 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-967 *5)) (-5 *4 (-1194)) (-4 *5 (-13 (-373) (-148))) (-5 *2 (-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 *5)))) (-5 *1 (-975 *5)))))
-(-10 -7 (-15 -1758 ((-2 (|:| |coef1| (-575)) (|:| |coef2| (-575)) (|:| |prim| (-1190 |#1|))) (-967 |#1|) (-1194) (-967 |#1|) (-1194))) (-15 -1758 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)))) (-15 -1758 ((-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 |#1|))) (|:| |prim| (-1190 |#1|))) (-655 (-967 |#1|)) (-655 (-1194)) (-1194))))
-((-3138 (((-655 |#1|) |#1| |#1|) 47)) (-3559 (((-112) |#1|) 44)) (-2597 ((|#1| |#1|) 79)) (-1381 ((|#1| |#1|) 78)))
-(((-976 |#1|) (-10 -7 (-15 -3559 ((-112) |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -3138 ((-655 |#1|) |#1| |#1|))) (-556)) (T -976))
-((-3138 (*1 *2 *3 *3) (-12 (-5 *2 (-655 *3)) (-5 *1 (-976 *3)) (-4 *3 (-556)))) (-2597 (*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556)))) (-1381 (*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-976 *3)) (-4 *3 (-556)))))
-(-10 -7 (-15 -3559 ((-112) |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -3138 ((-655 |#1|) |#1| |#1|)))
-((-3518 (((-1290) (-873)) 9)))
-(((-977) (-10 -7 (-15 -3518 ((-1290) (-873))))) (T -977))
-((-3518 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-977)))))
-(-10 -7 (-15 -3518 ((-1290) (-873))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 78 (|has| |#1| (-567)))) (-2456 (($ $) 79 (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 34)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) 31)) (-4162 (((-3 $ "failed") $) 42)) (-2379 (($ $) NIL (|has| |#1| (-463)))) (-4384 (($ $ |#1| |#2| $) 62)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) 17)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| |#2|) NIL)) (-3143 ((|#2| $) 24)) (-1946 (($ (-1 |#2| |#2|) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4370 (($ $) 28)) (-4383 ((|#1| $) 26)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) 51)) (-4353 ((|#1| $) NIL)) (-1834 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-567))))) (-2849 (((-3 $ "failed") $ $) 91 (|has| |#1| (-567))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-567)))) (-1753 ((|#2| $) 22)) (-3696 ((|#1| $) NIL (|has| |#1| (-463)))) (-2882 (((-873) $) NIL) (($ (-575)) 46) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 41) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ |#2|) 37)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) 15 T CONST)) (-1982 (($ $ $ (-782)) 74 (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) 84 (|has| |#1| (-567)))) (-1989 (($) 27 T CONST)) (-2005 (($) 12 T CONST)) (-3913 (((-112) $ $) 83)) (-4038 (($ $ |#1|) 92 (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) 69) (($ $ (-782)) 67)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-978 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| |#2| (-132)) (-15 -1834 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) (-1066) (-803)) (T -978))
-((-1834 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-978 *3 *2)) (-4 *2 (-132)) (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *2 (-803)))))
-(-13 (-335 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| |#2| (-132)) (-15 -1834 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))))) (-3081 (($ $ $) 65 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))) (-1708 (((-3 $ "failed") $ $) 52 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))))) (-2409 (((-782)) 36 (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-1722 ((|#2| $) 22)) (-2053 ((|#1| $) 21)) (-3261 (($) NIL (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) CONST)) (-4162 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))) (-2073 (($) NIL (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-3900 (((-112) $) NIL (-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))) (-1914 (($ $ $) NIL (-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3503 (($ $ $) NIL (-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-4016 (($ |#1| |#2|) 20)) (-1894 (((-936) $) NIL (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 39 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-4317 (($ (-936)) NIL (-12 (|has| |#1| (-378)) (|has| |#2| (-378))))) (-3912 (((-1137) $) NIL)) (-3516 (($ $ $) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-4152 (($ $ $) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-2882 (((-873) $) 14)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 42 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))) CONST)) (-2005 (($) 25 (-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))) CONST)) (-3980 (((-112) $ $) NIL (-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3955 (((-112) $ $) NIL (-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3913 (((-112) $ $) 19)) (-3967 (((-112) $ $) NIL (-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-3940 (((-112) $ $) 69 (-3763 (-12 (|has| |#1| (-804)) (|has| |#2| (-804))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))))) (-4038 (($ $ $) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484))))) (-4027 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4015 (($ $ $) 45 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804)))))) (** (($ $ (-575)) NIL (-12 (|has| |#1| (-484)) (|has| |#2| (-484)))) (($ $ (-782)) 32 (-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737))))) (($ $ (-936)) NIL (-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))) (* (($ (-575) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-782) $) 48 (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))) (($ (-936) $) NIL (-3763 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-804)) (|has| |#2| (-804))))) (($ $ $) 28 (-3763 (-12 (|has| |#1| (-484)) (|has| |#2| (-484))) (-12 (|has| |#1| (-737)) (|has| |#2| (-737)))))))
-(((-979 |#1| |#2|) (-13 (-1117) (-10 -8 (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-737)) (IF (|has| |#2| (-737)) (-6 (-737)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-484)) (IF (|has| |#2| (-484)) (-6 (-484)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-804)) (IF (|has| |#2| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -4016 ($ |#1| |#2|)) (-15 -2053 (|#1| $)) (-15 -1722 (|#2| $)))) (-1117) (-1117)) (T -979))
-((-4016 (*1 *1 *2 *3) (-12 (-5 *1 (-979 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2053 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-979 *2 *3)) (-4 *3 (-1117)))) (-1722 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-979 *3 *2)) (-4 *3 (-1117)))))
-(-13 (-1117) (-10 -8 (IF (|has| |#1| (-378)) (IF (|has| |#2| (-378)) (-6 (-378)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-737)) (IF (|has| |#2| (-737)) (-6 (-737)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-484)) (IF (|has| |#2| (-484)) (-6 (-484)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-804)) (IF (|has| |#2| (-804)) (-6 (-804)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -4016 ($ |#1| |#2|)) (-15 -2053 (|#1| $)) (-15 -1722 (|#2| $))))
-((-4181 (((-1121) $) 12)) (-4309 (($ (-517) (-1121)) 14)) (-1777 (((-517) $) 9)) (-2882 (((-873) $) 24)))
-(((-980) (-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -4181 ((-1121) $)) (-15 -4309 ($ (-517) (-1121)))))) (T -980))
-((-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-980)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-980)))) (-4309 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-980)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1777 ((-517) $)) (-15 -4181 ((-1121) $)) (-15 -4309 ($ (-517) (-1121)))))
-((-2859 (((-112) $ $) NIL)) (-1997 (($) NIL T CONST)) (-3236 (($ $ $) 30)) (-3213 (($ $) 24)) (-4264 (((-1176) $) NIL)) (-2944 (((-702 (-884 $ $)) $) 55)) (-3108 (((-702 $) $) 45)) (-3918 (((-702 (-884 $ $)) $) 56)) (-2570 (((-702 (-884 $ $)) $) 57)) (-2953 (((-702 |#1|) $) 36)) (-1348 (((-702 (-884 $ $)) $) 54)) (-2939 (($ $ $) 31)) (-3912 (((-1137) $) NIL)) (-3937 (($) NIL T CONST)) (-3429 (($ $ $) 32)) (-4232 (($ $ $) 29)) (-4292 (($ $ $) 27)) (-2882 (((-873) $) 59) (($ |#1|) 12)) (-3685 (((-112) $ $) NIL)) (-3224 (($ $ $) 28)) (-3913 (((-112) $ $) NIL)))
-(((-981 |#1|) (-13 (-984) (-627 |#1|) (-10 -8 (-15 -2953 ((-702 |#1|) $)) (-15 -3108 ((-702 $) $)) (-15 -1348 ((-702 (-884 $ $)) $)) (-15 -2944 ((-702 (-884 $ $)) $)) (-15 -3918 ((-702 (-884 $ $)) $)) (-15 -2570 ((-702 (-884 $ $)) $)) (-15 -4292 ($ $ $)) (-15 -4232 ($ $ $)))) (-1117)) (T -981))
-((-2953 (*1 *2 *1) (-12 (-5 *2 (-702 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-702 (-981 *3))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))) (-4292 (*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117)))) (-4232 (*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117)))))
-(-13 (-984) (-627 |#1|) (-10 -8 (-15 -2953 ((-702 |#1|) $)) (-15 -3108 ((-702 $) $)) (-15 -1348 ((-702 (-884 $ $)) $)) (-15 -2944 ((-702 (-884 $ $)) $)) (-15 -3918 ((-702 (-884 $ $)) $)) (-15 -2570 ((-702 (-884 $ $)) $)) (-15 -4292 ($ $ $)) (-15 -4232 ($ $ $))))
-((-1557 (((-981 |#1|) (-981 |#1|)) 46)) (-3060 (((-981 |#1|) (-981 |#1|)) 22)) (-2069 (((-1119 |#1|) (-981 |#1|)) 41)))
-(((-982 |#1|) (-13 (-1235) (-10 -7 (-15 -3060 ((-981 |#1|) (-981 |#1|))) (-15 -2069 ((-1119 |#1|) (-981 |#1|))) (-15 -1557 ((-981 |#1|) (-981 |#1|))))) (-1117)) (T -982))
-((-3060 (*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-981 *4)) (-4 *4 (-1117)) (-5 *2 (-1119 *4)) (-5 *1 (-982 *4)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3)))))
-(-13 (-1235) (-10 -7 (-15 -3060 ((-981 |#1|) (-981 |#1|))) (-15 -2069 ((-1119 |#1|) (-981 |#1|))) (-15 -1557 ((-981 |#1|) (-981 |#1|)))))
-((-2544 (((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)) 29)))
-(((-983 |#1| |#2|) (-13 (-1235) (-10 -7 (-15 -2544 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|))))) (-1117) (-1117)) (T -983))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-981 *6)) (-5 *1 (-983 *5 *6)))))
-(-13 (-1235) (-10 -7 (-15 -2544 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))))
-((-2859 (((-112) $ $) 15)) (-1997 (($) 14 T CONST)) (-3236 (($ $ $) 6)) (-3213 (($ $) 8)) (-4264 (((-1176) $) 19)) (-2939 (($ $ $) 12)) (-3912 (((-1137) $) 18)) (-3937 (($) 13 T CONST)) (-3429 (($ $ $) 11)) (-2882 (((-873) $) 17)) (-3685 (((-112) $ $) 20)) (-3224 (($ $ $) 7)) (-3913 (((-112) $ $) 16)))
-(((-984) (-141)) (T -984))
-((-1997 (*1 *1) (-4 *1 (-984))) (-3937 (*1 *1) (-4 *1 (-984))) (-2939 (*1 *1 *1 *1) (-4 *1 (-984))) (-3429 (*1 *1 *1 *1) (-4 *1 (-984))))
-(-13 (-113) (-1117) (-10 -8 (-15 -1997 ($) -3736) (-15 -3937 ($) -3736) (-15 -2939 ($ $ $)) (-15 -3429 ($ $ $))))
-(((-102) . T) ((-113) . T) ((-624 (-873)) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-3167 (($ $ $) 44)) (-4167 (($ $ $) 45)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3503 ((|#1| $) 46)) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-985 |#1|) (-141) (-861)) (T -985))
-((-3503 (*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4460) (-15 -3503 (|t#1| $)) (-15 -4167 ($ $ $)) (-15 -3167 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2173 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3923 |#2|)) |#2| |#2|) 105)) (-1665 ((|#2| |#2| |#2|) 103)) (-3337 (((-2 (|:| |coef2| |#2|) (|:| -3923 |#2|)) |#2| |#2|) 107)) (-2277 (((-2 (|:| |coef1| |#2|) (|:| -3923 |#2|)) |#2| |#2|) 109)) (-4302 (((-2 (|:| |coef2| |#2|) (|:| -1643 |#1|)) |#2| |#2|) 131 (|has| |#1| (-463)))) (-1362 (((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 56)) (-1321 (((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 80)) (-2471 (((-2 (|:| |coef1| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 82)) (-3348 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2423 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 89)) (-3396 (((-2 (|:| |coef2| |#2|) (|:| -2801 |#1|)) |#2|) 121)) (-4330 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 92)) (-2040 (((-655 (-782)) |#2| |#2|) 102)) (-4398 ((|#1| |#2| |#2|) 50)) (-4077 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1643 |#1|)) |#2| |#2|) 129 (|has| |#1| (-463)))) (-1643 ((|#1| |#2| |#2|) 127 (|has| |#1| (-463)))) (-2178 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 54)) (-2401 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|) 79)) (-4171 ((|#1| |#2| |#2|) 76)) (-1568 (((-2 (|:| -1754 |#1|) (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2|) 41)) (-1700 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-4055 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3822 ((|#2| |#2| |#2|) 93)) (-4288 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 87)) (-1409 ((|#2| |#2| |#2| (-782)) 85)) (-3923 ((|#2| |#2| |#2|) 135 (|has| |#1| (-463)))) (-2849 (((-1285 |#2|) (-1285 |#2|) |#1|) 22)) (-4416 (((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2|) 46)) (-4093 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2801 |#1|)) |#2|) 119)) (-2801 ((|#1| |#2|) 116)) (-3432 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782)) 91)) (-3269 ((|#2| |#2| |#2| (-782)) 90)) (-1392 (((-655 |#2|) |#2| |#2|) 99)) (-3730 ((|#2| |#2| |#1| |#1| (-782)) 62)) (-3467 ((|#1| |#1| |#1| (-782)) 61)) (* (((-1285 |#2|) |#1| (-1285 |#2|)) 17)))
-(((-986 |#1| |#2|) (-10 -7 (-15 -4171 (|#1| |#2| |#2|)) (-15 -2401 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -1321 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -2471 ((-2 (|:| |coef1| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -1409 (|#2| |#2| |#2| (-782))) (-15 -4288 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -2423 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3269 (|#2| |#2| |#2| (-782))) (-15 -3432 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -4330 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3822 (|#2| |#2| |#2|)) (-15 -4055 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3348 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1665 (|#2| |#2| |#2|)) (-15 -2173 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3923 |#2|)) |#2| |#2|)) (-15 -3337 ((-2 (|:| |coef2| |#2|) (|:| -3923 |#2|)) |#2| |#2|)) (-15 -2277 ((-2 (|:| |coef1| |#2|) (|:| -3923 |#2|)) |#2| |#2|)) (-15 -2801 (|#1| |#2|)) (-15 -4093 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2801 |#1|)) |#2|)) (-15 -3396 ((-2 (|:| |coef2| |#2|) (|:| -2801 |#1|)) |#2|)) (-15 -1392 ((-655 |#2|) |#2| |#2|)) (-15 -2040 ((-655 (-782)) |#2| |#2|)) (IF (|has| |#1| (-463)) (PROGN (-15 -1643 (|#1| |#2| |#2|)) (-15 -4077 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1643 |#1|)) |#2| |#2|)) (-15 -4302 ((-2 (|:| |coef2| |#2|) (|:| -1643 |#1|)) |#2| |#2|)) (-15 -3923 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1285 |#2|) |#1| (-1285 |#2|))) (-15 -2849 ((-1285 |#2|) (-1285 |#2|) |#1|)) (-15 -1568 ((-2 (|:| -1754 |#1|) (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2|)) (-15 -4416 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2|)) (-15 -3467 (|#1| |#1| |#1| (-782))) (-15 -3730 (|#2| |#2| |#1| |#1| (-782))) (-15 -1700 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4398 (|#1| |#2| |#2|)) (-15 -2178 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -1362 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|))) (-567) (-1261 |#1|)) (T -986))
-((-1362 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4398 (*1 *2 *3 *3) (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) (-1700 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-3730 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-3467 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *2 (-567)) (-5 *1 (-986 *2 *4)) (-4 *4 (-1261 *2)))) (-4416 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1568 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -1754 *4) (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2849 (*1 *2 *2 *3) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567)) (-5 *1 (-986 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567)) (-5 *1 (-986 *3 *4)))) (-3923 (*1 *2 *2 *2) (-12 (-4 *3 (-463)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-4302 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1643 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4077 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1643 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1643 (*1 *2 *3 *3) (-12 (-4 *2 (-567)) (-4 *2 (-463)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) (-2040 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-782))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1392 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3396 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2801 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2801 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2801 (*1 *2 *3) (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))) (-2277 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3923 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3337 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3923 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2173 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3923 *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1665 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-3348 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4055 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-3822 (*1 *2 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))) (-4330 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-3432 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-3269 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2)) (-4 *2 (-1261 *4)))) (-2423 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-4288 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))) (-1409 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2)) (-4 *2 (-1261 *4)))) (-2471 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4171 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-1321 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4))) (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))) (-4171 (*1 *2 *3 *3) (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))))
-(-10 -7 (-15 -4171 (|#1| |#2| |#2|)) (-15 -2401 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -1321 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -2471 ((-2 (|:| |coef1| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -1409 (|#2| |#2| |#2| (-782))) (-15 -4288 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -2423 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3269 (|#2| |#2| |#2| (-782))) (-15 -3432 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -4330 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-782))) (-15 -3822 (|#2| |#2| |#2|)) (-15 -4055 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3348 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1665 (|#2| |#2| |#2|)) (-15 -2173 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3923 |#2|)) |#2| |#2|)) (-15 -3337 ((-2 (|:| |coef2| |#2|) (|:| -3923 |#2|)) |#2| |#2|)) (-15 -2277 ((-2 (|:| |coef1| |#2|) (|:| -3923 |#2|)) |#2| |#2|)) (-15 -2801 (|#1| |#2|)) (-15 -4093 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2801 |#1|)) |#2|)) (-15 -3396 ((-2 (|:| |coef2| |#2|) (|:| -2801 |#1|)) |#2|)) (-15 -1392 ((-655 |#2|) |#2| |#2|)) (-15 -2040 ((-655 (-782)) |#2| |#2|)) (IF (|has| |#1| (-463)) (PROGN (-15 -1643 (|#1| |#2| |#2|)) (-15 -4077 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1643 |#1|)) |#2| |#2|)) (-15 -4302 ((-2 (|:| |coef2| |#2|) (|:| -1643 |#1|)) |#2| |#2|)) (-15 -3923 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1285 |#2|) |#1| (-1285 |#2|))) (-15 -2849 ((-1285 |#2|) (-1285 |#2|) |#1|)) (-15 -1568 ((-2 (|:| -1754 |#1|) (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2|)) (-15 -4416 ((-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) |#2| |#2|)) (-15 -3467 (|#1| |#1| |#1| (-782))) (-15 -3730 (|#2| |#2| |#1| |#1| (-782))) (-15 -1700 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4398 (|#1| |#2| |#2|)) (-15 -2178 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)) (-15 -1362 ((-2 (|:| |coef2| |#2|) (|:| -4171 |#1|)) |#2| |#2|)))
-((-2859 (((-112) $ $) NIL)) (-2937 (((-1234) $) 13)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3827 (((-1152) $) 10)) (-2882 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-987) (-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2937 ((-1234) $))))) (T -987))
-((-3827 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-987)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-987)))))
-(-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2937 ((-1234) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 40)) (-1708 (((-3 $ "failed") $ $) 54)) (-3261 (($) NIL T CONST)) (-2136 (((-655 (-884 (-936) (-936))) $) 67)) (-3356 (((-936) $) 94)) (-3999 (((-655 (-936)) $) 17)) (-3655 (((-1174 $) (-782)) 39)) (-4349 (($ (-655 (-936))) 16)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3516 (($ $) 70)) (-2882 (((-873) $) 90) (((-655 (-936)) $) 11)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 8 T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 44)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 42)) (-4015 (($ $ $) 46)) (* (($ (-936) $) NIL) (($ (-782) $) 49)) (-2869 (((-782) $) 22)))
-(((-988) (-13 (-806) (-624 (-655 (-936))) (-10 -8 (-15 -4349 ($ (-655 (-936)))) (-15 -3999 ((-655 (-936)) $)) (-15 -2869 ((-782) $)) (-15 -3655 ((-1174 $) (-782))) (-15 -2136 ((-655 (-884 (-936) (-936))) $)) (-15 -3356 ((-936) $)) (-15 -3516 ($ $))))) (T -988))
-((-4349 (*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-988)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1174 (-988))) (-5 *1 (-988)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-936) (-936)))) (-5 *1 (-988)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-988)))) (-3516 (*1 *1 *1) (-5 *1 (-988))))
-(-13 (-806) (-624 (-655 (-936))) (-10 -8 (-15 -4349 ($ (-655 (-936)))) (-15 -3999 ((-655 (-936)) $)) (-15 -2869 ((-782) $)) (-15 -3655 ((-1174 $) (-782))) (-15 -2136 ((-655 (-884 (-936) (-936))) $)) (-15 -3356 ((-936) $)) (-15 -3516 ($ $))))
-((-4038 (($ $ |#2|) 31)) (-4027 (($ $) 23) (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-418 (-575)) $) 27) (($ $ (-418 (-575))) 29)))
-(((-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -4038 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|))) (-990 |#2| |#3| |#4|) (-1066) (-803) (-861)) (T -989))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-418 (-575)))) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 -4038 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 * (|#1| (-936) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 |#3|) $) 86)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2333 (((-112) $) 85)) (-3900 (((-112) $) 35)) (-3135 (((-112) $) 74)) (-2414 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-655 |#3|) (-655 |#2|)) 87)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-1753 ((|#2| $) 76)) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3002 ((|#1| $ |#2|) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-990 |#1| |#2| |#3|) (-141) (-1066) (-803) (-861)) (T -990))
-((-4383 (*1 *2 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *3 (-803)) (-4 *4 (-861)) (-4 *2 (-1066)))) (-4370 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *4 (-861)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *2 *4)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *2 (-803)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-990 *4 *3 *2)) (-4 *4 (-1066)) (-4 *3 (-803)) (-4 *2 (-861)))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 *5)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-803)) (-4 *6 (-861)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803)) (-4 *5 (-861)) (-5 *2 (-655 *5)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3575 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803)) (-4 *4 (-861)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2414 ($ $ |t#3| |t#2|)) (-15 -2414 ($ $ (-655 |t#3|) (-655 |t#2|))) (-15 -4370 ($ $)) (-15 -4383 (|t#1| $)) (-15 -1753 (|t#2| $)) (-15 -1606 ((-655 |t#3|) $)) (-15 -2333 ((-112) $)) (-15 -3575 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-299) |has| |#1| (-567)) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2837 (((-1111 (-227)) $) 8)) (-2824 (((-1111 (-227)) $) 9)) (-2812 (((-1111 (-227)) $) 10)) (-1612 (((-655 (-655 (-958 (-227)))) $) 11)) (-2882 (((-873) $) 6)))
-(((-991) (-141)) (T -991))
-((-1612 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-655 (-655 (-958 (-227))))))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))) (-2837 (*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1612 ((-655 (-655 (-958 (-227)))) $)) (-15 -2812 ((-1111 (-227)) $)) (-15 -2824 ((-1111 (-227)) $)) (-15 -2837 ((-1111 (-227)) $))))
-(((-624 (-873)) . T))
-((-1606 (((-655 |#4|) $) 23)) (-4419 (((-112) $) 55)) (-3414 (((-112) $) 54)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#4|) 42)) (-1756 (((-112) $) 56)) (-1600 (((-112) $ $) 62)) (-4415 (((-112) $ $) 65)) (-1759 (((-112) $) 60)) (-2762 (((-655 |#5|) (-655 |#5|) $) 98)) (-2540 (((-655 |#5|) (-655 |#5|) $) 95)) (-4041 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3717 (((-655 |#4|) $) 27)) (-1789 (((-112) |#4| $) 34)) (-3007 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3273 (($ $ |#4|) 39)) (-2078 (($ $ |#4|) 38)) (-4049 (($ $ |#4|) 40)) (-3913 (((-112) $ $) 46)))
-(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3414 ((-112) |#1|)) (-15 -2762 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -2540 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -4041 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3007 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1756 ((-112) |#1|)) (-15 -4415 ((-112) |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|)) (-15 -1759 ((-112) |#1|)) (-15 -4419 ((-112) |#1|)) (-15 -2025 ((-2 (|:| |under| |#1|) (|:| -3920 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3273 (|#1| |#1| |#4|)) (-15 -4049 (|#1| |#1| |#4|)) (-15 -2078 (|#1| |#1| |#4|)) (-15 -1789 ((-112) |#4| |#1|)) (-15 -3717 ((-655 |#4|) |#1|)) (-15 -1606 ((-655 |#4|) |#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-993 |#2| |#3| |#4| |#5|) (-1066) (-804) (-861) (-1082 |#2| |#3| |#4|)) (T -992))
-NIL
-(-10 -8 (-15 -3414 ((-112) |#1|)) (-15 -2762 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -2540 ((-655 |#5|) (-655 |#5|) |#1|)) (-15 -4041 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3007 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1756 ((-112) |#1|)) (-15 -4415 ((-112) |#1| |#1|)) (-15 -1600 ((-112) |#1| |#1|)) (-15 -1759 ((-112) |#1|)) (-15 -4419 ((-112) |#1|)) (-15 -2025 ((-2 (|:| |under| |#1|) (|:| -3920 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3273 (|#1| |#1| |#4|)) (-15 -4049 (|#1| |#1| |#4|)) (-15 -2078 (|#1| |#1| |#4|)) (-15 -1789 ((-112) |#4| |#1|)) (-15 -3717 ((-655 |#4|) |#1|)) (-15 -1606 ((-655 |#4|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-1606 (((-655 |#3|) $) 34)) (-4419 (((-112) $) 27)) (-3414 (((-112) $) 18 (|has| |#1| (-567)))) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) 28)) (-3133 (((-112) $ (-782)) 45)) (-3983 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460)))) (-3261 (($) 46 T CONST)) (-1756 (((-112) $) 23 (|has| |#1| (-567)))) (-1600 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4415 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1759 (((-112) $) 26 (|has| |#1| (-567)))) (-2762 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 37)) (-4400 (($ (-655 |#4|)) 36)) (-4070 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460)))) (-3999 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3757 ((|#3| $) 35)) (-3541 (((-112) $ (-782)) 44)) (-4252 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 48)) (-3717 (((-655 |#3|) $) 33)) (-1789 (((-112) |#3| $) 32)) (-3218 (((-112) $ (-782)) 43)) (-4264 (((-1176) $) 10)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-3912 (((-1137) $) 11)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2718 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) 39)) (-2017 (((-112) $) 42)) (-1393 (($) 41)) (-3922 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3076 (($ $) 40)) (-2613 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 61)) (-3273 (($ $ |#3|) 29)) (-2078 (($ $ |#3|) 31)) (-4049 (($ $ |#3|) 30)) (-2882 (((-873) $) 12) (((-655 |#4|) $) 38)) (-3685 (((-112) $ $) 9)) (-4121 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-993 |#1| |#2| |#3| |#4|) (-141) (-1066) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -993))
-((-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *1 (-993 *3 *4 *5 *6)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *1 (-993 *3 *4 *5 *6)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-1082 *3 *4 *2)) (-4 *2 (-861)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) (-1789 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *5 *3 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112)))) (-2078 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))) (-4049 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))) (-3273 (*1 *1 *1 *2) (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))) (-2025 (*1 *2 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3920 *1) (|:| |upper| *1))) (-4 *1 (-993 *4 *5 *3 *6)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-1600 (*1 *2 *1 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-4415 (*1 *2 *1 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))) (-3007 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4041 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2540 (*1 *2 *2 *1) (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)))) (-2762 (*1 *2 *2 *1) (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-5 *2 (-112)))))
-(-13 (-1117) (-152 |t#4|) (-624 (-655 |t#4|)) (-10 -8 (-6 -4460) (-15 -2443 ((-3 $ "failed") (-655 |t#4|))) (-15 -4400 ($ (-655 |t#4|))) (-15 -3757 (|t#3| $)) (-15 -1606 ((-655 |t#3|) $)) (-15 -3717 ((-655 |t#3|) $)) (-15 -1789 ((-112) |t#3| $)) (-15 -2078 ($ $ |t#3|)) (-15 -4049 ($ $ |t#3|)) (-15 -3273 ($ $ |t#3|)) (-15 -2025 ((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |t#3|)) (-15 -4419 ((-112) $)) (IF (|has| |t#1| (-567)) (PROGN (-15 -1759 ((-112) $)) (-15 -1600 ((-112) $ $)) (-15 -4415 ((-112) $ $)) (-15 -1756 ((-112) $)) (-15 -3007 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4041 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2540 ((-655 |t#4|) (-655 |t#4|) $)) (-15 -2762 ((-655 |t#4|) (-655 |t#4|) $)) (-15 -3414 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-1117) . T) ((-1235) . T))
-((-2319 (((-655 |#4|) |#4| |#4|) 136)) (-4026 (((-655 |#4|) (-655 |#4|) (-112)) 125 (|has| |#1| (-463))) (((-655 |#4|) (-655 |#4|)) 126 (|has| |#1| (-463)))) (-1430 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 44)) (-3389 (((-112) |#4|) 43)) (-4363 (((-655 |#4|) |#4|) 121 (|has| |#1| (-463)))) (-2690 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-1 (-112) |#4|) (-655 |#4|)) 24)) (-4073 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|)) 30)) (-1389 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|)) 31)) (-4074 (((-3 (-2 (|:| |bas| (-487 |#1| |#2| |#3| |#4|)) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|)) 90)) (-1846 (((-655 |#4|) (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2362 (((-655 |#4|) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4423 (((-655 |#4|) (-655 |#4|)) 128)) (-3851 (((-655 |#4|) (-655 |#4|) (-655 |#4|) (-112)) 59) (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 61)) (-1442 ((|#4| |#4| (-655 |#4|)) 60)) (-2472 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 132 (|has| |#1| (-463)))) (-1353 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 135 (|has| |#1| (-463)))) (-3359 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 134 (|has| |#1| (-463)))) (-2366 (((-655 |#4|) (-655 |#4|) (-655 |#4|) (-1 (-655 |#4|) (-655 |#4|))) 105) (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 107) (((-655 |#4|) (-655 |#4|) |#4|) 140) (((-655 |#4|) |#4| |#4|) 137) (((-655 |#4|) (-655 |#4|)) 106)) (-1826 (((-655 |#4|) (-655 |#4|) (-655 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-4314 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 52)) (-3502 (((-112) (-655 |#4|)) 79)) (-4378 (((-112) (-655 |#4|) (-655 (-655 |#4|))) 67)) (-2730 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 37)) (-2971 (((-112) |#4|) 36)) (-2386 (((-655 |#4|) (-655 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-2249 (((-655 |#4|) (-655 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-1435 (((-655 |#4|) (-655 |#4|)) 83)) (-2873 (((-655 |#4|) (-655 |#4|)) 97)) (-1972 (((-112) (-655 |#4|) (-655 |#4|)) 65)) (-3168 (((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|)) 50)) (-1458 (((-112) |#4|) 45)))
-(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2366 ((-655 |#4|) (-655 |#4|))) (-15 -2366 ((-655 |#4|) |#4| |#4|)) (-15 -4423 ((-655 |#4|) (-655 |#4|))) (-15 -2319 ((-655 |#4|) |#4| |#4|)) (-15 -2366 ((-655 |#4|) (-655 |#4|) |#4|)) (-15 -2366 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -2366 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-1 (-655 |#4|) (-655 |#4|)))) (-15 -1972 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -4378 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3502 ((-112) (-655 |#4|))) (-15 -2690 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-1 (-112) |#4|) (-655 |#4|))) (-15 -4073 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -1389 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -4314 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -3389 ((-112) |#4|)) (-15 -1430 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -2971 ((-112) |#4|)) (-15 -2730 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1458 ((-112) |#4|)) (-15 -3168 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -3851 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -3851 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-112))) (-15 -1442 (|#4| |#4| (-655 |#4|))) (-15 -1435 ((-655 |#4|) (-655 |#4|))) (-15 -4074 ((-3 (-2 (|:| |bas| (-487 |#1| |#2| |#3| |#4|)) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|))) (-15 -2873 ((-655 |#4|) (-655 |#4|))) (-15 -1846 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2362 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-463)) (PROGN (-15 -4363 ((-655 |#4|) |#4|)) (-15 -4026 ((-655 |#4|) (-655 |#4|))) (-15 -4026 ((-655 |#4|) (-655 |#4|) (-112))) (-15 -2472 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -3359 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1353 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (PROGN (-15 -2249 ((-655 |#4|) (-655 |#4|))) (-15 -2386 ((-655 |#4|) (-655 |#4|))) (-15 -1826 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) |%noBranch|)) (-567) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -994))
-((-1826 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-1353 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3359 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2472 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-4026 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))) (-4026 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-4363 (*1 *2 *3) (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-2362 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-994 *5 *6 *7 *8)))) (-1846 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-655 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *1 (-994 *6 *7 *8 *9)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-4074 (*1 *2 *3) (|partial| -12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-487 *4 *5 *6 *7)) (|:| -2006 (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *2)))) (-3851 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))) (-3851 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-1458 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-2730 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-2971 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-1430 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-3389 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-4314 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7)))) (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8)))) (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7)))) (-4378 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8)))) (-1972 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *4 *5 *6 *7)))) (-2366 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-655 *7) (-655 *7))) (-5 *2 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))) (-2366 (*1 *2 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2366 (*1 *2 *2 *3) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *3)))) (-2319 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-4423 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))) (-2366 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2366 ((-655 |#4|) (-655 |#4|))) (-15 -2366 ((-655 |#4|) |#4| |#4|)) (-15 -4423 ((-655 |#4|) (-655 |#4|))) (-15 -2319 ((-655 |#4|) |#4| |#4|)) (-15 -2366 ((-655 |#4|) (-655 |#4|) |#4|)) (-15 -2366 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -2366 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-1 (-655 |#4|) (-655 |#4|)))) (-15 -1972 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -4378 ((-112) (-655 |#4|) (-655 (-655 |#4|)))) (-15 -3502 ((-112) (-655 |#4|))) (-15 -2690 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-1 (-112) |#4|) (-655 |#4|))) (-15 -4073 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -1389 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 (-1 (-112) |#4|)) (-655 |#4|))) (-15 -4314 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -3389 ((-112) |#4|)) (-15 -1430 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -2971 ((-112) |#4|)) (-15 -2730 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -1458 ((-112) |#4|)) (-15 -3168 ((-2 (|:| |goodPols| (-655 |#4|)) (|:| |badPols| (-655 |#4|))) (-655 |#4|))) (-15 -3851 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -3851 ((-655 |#4|) (-655 |#4|) (-655 |#4|) (-112))) (-15 -1442 (|#4| |#4| (-655 |#4|))) (-15 -1435 ((-655 |#4|) (-655 |#4|))) (-15 -4074 ((-3 (-2 (|:| |bas| (-487 |#1| |#2| |#3| |#4|)) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|))) (-15 -2873 ((-655 |#4|) (-655 |#4|))) (-15 -1846 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2362 ((-655 |#4|) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-463)) (PROGN (-15 -4363 ((-655 |#4|) |#4|)) (-15 -4026 ((-655 |#4|) (-655 |#4|))) (-15 -4026 ((-655 |#4|) (-655 |#4|) (-112))) (-15 -2472 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -3359 ((-655 |#4|) (-655 |#4|) (-655 |#4|))) (-15 -1353 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (PROGN (-15 -2249 ((-655 |#4|) (-655 |#4|))) (-15 -2386 ((-655 |#4|) (-655 |#4|))) (-15 -1826 ((-655 |#4|) (-655 |#4|) (-655 |#4|)))) |%noBranch|) |%noBranch|))
-((-3375 (((-2 (|:| R (-700 |#1|)) (|:| A (-700 |#1|)) (|:| |Ainv| (-700 |#1|))) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-1457 (((-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)) 46)) (-1723 (((-700 |#1|) (-700 |#1|) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-995 |#1|) (-10 -7 (-15 -3375 ((-2 (|:| R (-700 |#1|)) (|:| A (-700 |#1|)) (|:| |Ainv| (-700 |#1|))) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1723 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1457 ((-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|)))) (-373)) (T -995))
-((-1457 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-5 *2 (-655 (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5))))) (-5 *1 (-995 *5)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)))) (-1723 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-700 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373)) (-5 *1 (-995 *5)))) (-3375 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-373)) (-5 *2 (-2 (|:| R (-700 *6)) (|:| A (-700 *6)) (|:| |Ainv| (-700 *6)))) (-5 *1 (-995 *6)) (-5 *3 (-700 *6)))))
-(-10 -7 (-15 -3375 ((-2 (|:| R (-700 |#1|)) (|:| A (-700 |#1|)) (|:| |Ainv| (-700 |#1|))) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1723 ((-700 |#1|) (-700 |#1|) (-700 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1457 ((-655 (-2 (|:| C (-700 |#1|)) (|:| |g| (-1285 |#1|)))) (-700 |#1|) (-1285 |#1|))))
-((-4281 (((-429 |#4|) |#4|) 56)))
-(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4281 ((-429 |#4|) |#4|))) (-861) (-804) (-463) (-964 |#3| |#2| |#1|)) (T -996))
-((-4281 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-463)) (-5 *2 (-429 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4)))))
-(-10 -7 (-15 -4281 ((-429 |#4|) |#4|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2878 (($ (-782)) 115 (|has| |#1| (-23)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-3086 (($ $) 93 (|has| $ (-6 -4461)))) (-4380 (($ $) 103)) (-4070 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 52)) (-2630 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-1838 (($ (-655 |#1|)) 121)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) 108 (|has| |#1| (-1066)))) (-2303 (($ (-782) |#1|) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 90 (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 89 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2405 ((|#1| $) 105 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-3218 (((-112) $ (-782)) 10)) (-1840 ((|#1| $) 106 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 43 (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1652 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-1985 (($ $ (-655 |#1|)) 119)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-2988 ((|#1| $ $) 109 (|has| |#1| (-1066)))) (-1605 (((-936) $) 120)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-2969 (($ $ $) 107)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| |#1| (-625 (-547)))) (($ (-655 |#1|)) 122)) (-2893 (($ (-655 |#1|)) 72)) (-1513 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3967 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 85 (|has| |#1| (-861)))) (-4027 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4015 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-575) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-737))) (($ $ |#1|) 110 (|has| |#1| (-737)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-997 |#1|) (-141) (-1066)) (T -997))
-((-1838 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-997 *3)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1066)) (-5 *2 (-936)))) (-2969 (*1 *1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1066)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-997 *3)) (-4 *3 (-1066)))))
-(-13 (-1283 |t#1|) (-629 (-655 |t#1|)) (-10 -8 (-15 -1838 ($ (-655 |t#1|))) (-15 -1605 ((-936) $)) (-15 -2969 ($ $ $)) (-15 -1985 ($ $ (-655 |t#1|)))))
-(((-34) . T) ((-102) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-629 (-655 |#1|)) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T) ((-1283 |#1|) . T))
-((-2544 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 17)))
-(((-998 |#1| |#2|) (-10 -7 (-15 -2544 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1066) (-1066)) (T -998))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-958 *6)) (-5 *1 (-998 *5 *6)))))
-(-10 -7 (-15 -2544 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|))))
-((-2764 ((|#1| (-958 |#1|)) 14)) (-3504 ((|#1| (-958 |#1|)) 13)) (-3301 ((|#1| (-958 |#1|)) 12)) (-3145 ((|#1| (-958 |#1|)) 16)) (-3285 ((|#1| (-958 |#1|)) 24)) (-2241 ((|#1| (-958 |#1|)) 15)) (-4379 ((|#1| (-958 |#1|)) 17)) (-3803 ((|#1| (-958 |#1|)) 23)) (-4177 ((|#1| (-958 |#1|)) 22)))
-(((-999 |#1|) (-10 -7 (-15 -3301 (|#1| (-958 |#1|))) (-15 -3504 (|#1| (-958 |#1|))) (-15 -2764 (|#1| (-958 |#1|))) (-15 -2241 (|#1| (-958 |#1|))) (-15 -3145 (|#1| (-958 |#1|))) (-15 -4379 (|#1| (-958 |#1|))) (-15 -4177 (|#1| (-958 |#1|))) (-15 -3803 (|#1| (-958 |#1|))) (-15 -3285 (|#1| (-958 |#1|)))) (-1066)) (T -999))
-((-3285 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-4379 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(-10 -7 (-15 -3301 (|#1| (-958 |#1|))) (-15 -3504 (|#1| (-958 |#1|))) (-15 -2764 (|#1| (-958 |#1|))) (-15 -2241 (|#1| (-958 |#1|))) (-15 -3145 (|#1| (-958 |#1|))) (-15 -4379 (|#1| (-958 |#1|))) (-15 -4177 (|#1| (-958 |#1|))) (-15 -3803 (|#1| (-958 |#1|))) (-15 -3285 (|#1| (-958 |#1|))))
-((-1925 (((-3 |#1| "failed") |#1|) 18)) (-1630 (((-3 |#1| "failed") |#1|) 6)) (-2367 (((-3 |#1| "failed") |#1|) 16)) (-3257 (((-3 |#1| "failed") |#1|) 4)) (-1875 (((-3 |#1| "failed") |#1|) 20)) (-2787 (((-3 |#1| "failed") |#1|) 8)) (-2829 (((-3 |#1| "failed") |#1| (-782)) 1)) (-3787 (((-3 |#1| "failed") |#1|) 3)) (-1581 (((-3 |#1| "failed") |#1|) 2)) (-2863 (((-3 |#1| "failed") |#1|) 21)) (-2890 (((-3 |#1| "failed") |#1|) 9)) (-1337 (((-3 |#1| "failed") |#1|) 19)) (-3555 (((-3 |#1| "failed") |#1|) 7)) (-3547 (((-3 |#1| "failed") |#1|) 17)) (-2240 (((-3 |#1| "failed") |#1|) 5)) (-1999 (((-3 |#1| "failed") |#1|) 24)) (-3263 (((-3 |#1| "failed") |#1|) 12)) (-3973 (((-3 |#1| "failed") |#1|) 22)) (-1628 (((-3 |#1| "failed") |#1|) 10)) (-2696 (((-3 |#1| "failed") |#1|) 26)) (-3553 (((-3 |#1| "failed") |#1|) 14)) (-2555 (((-3 |#1| "failed") |#1|) 27)) (-3707 (((-3 |#1| "failed") |#1|) 15)) (-3546 (((-3 |#1| "failed") |#1|) 25)) (-3254 (((-3 |#1| "failed") |#1|) 13)) (-3058 (((-3 |#1| "failed") |#1|) 23)) (-3206 (((-3 |#1| "failed") |#1|) 11)))
-(((-1000 |#1|) (-141) (-1220)) (T -1000))
-((-2555 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2696 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3546 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1999 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3058 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3973 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2863 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1875 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1337 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1925 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3547 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2367 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3707 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3553 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3254 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3263 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3206 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1628 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2890 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2787 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3555 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1630 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2240 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3257 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-3787 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-1581 (*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))) (-2829 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-782)) (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(-13 (-10 -7 (-15 -2829 ((-3 |t#1| "failed") |t#1| (-782))) (-15 -1581 ((-3 |t#1| "failed") |t#1|)) (-15 -3787 ((-3 |t#1| "failed") |t#1|)) (-15 -3257 ((-3 |t#1| "failed") |t#1|)) (-15 -2240 ((-3 |t#1| "failed") |t#1|)) (-15 -1630 ((-3 |t#1| "failed") |t#1|)) (-15 -3555 ((-3 |t#1| "failed") |t#1|)) (-15 -2787 ((-3 |t#1| "failed") |t#1|)) (-15 -2890 ((-3 |t#1| "failed") |t#1|)) (-15 -1628 ((-3 |t#1| "failed") |t#1|)) (-15 -3206 ((-3 |t#1| "failed") |t#1|)) (-15 -3263 ((-3 |t#1| "failed") |t#1|)) (-15 -3254 ((-3 |t#1| "failed") |t#1|)) (-15 -3553 ((-3 |t#1| "failed") |t#1|)) (-15 -3707 ((-3 |t#1| "failed") |t#1|)) (-15 -2367 ((-3 |t#1| "failed") |t#1|)) (-15 -3547 ((-3 |t#1| "failed") |t#1|)) (-15 -1925 ((-3 |t#1| "failed") |t#1|)) (-15 -1337 ((-3 |t#1| "failed") |t#1|)) (-15 -1875 ((-3 |t#1| "failed") |t#1|)) (-15 -2863 ((-3 |t#1| "failed") |t#1|)) (-15 -3973 ((-3 |t#1| "failed") |t#1|)) (-15 -3058 ((-3 |t#1| "failed") |t#1|)) (-15 -1999 ((-3 |t#1| "failed") |t#1|)) (-15 -3546 ((-3 |t#1| "failed") |t#1|)) (-15 -2696 ((-3 |t#1| "failed") |t#1|)) (-15 -2555 ((-3 |t#1| "failed") |t#1|))))
-((-3965 ((|#4| |#4| (-655 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3245 ((|#4| |#4| (-655 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2544 ((|#4| (-1 |#4| (-967 |#1|)) |#4|) 31)))
-(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3245 (|#4| |#4| |#3|)) (-15 -3245 (|#4| |#4| (-655 |#3|))) (-15 -3965 (|#4| |#4| |#3|)) (-15 -3965 (|#4| |#4| (-655 |#3|))) (-15 -2544 (|#4| (-1 |#4| (-967 |#1|)) |#4|))) (-1066) (-804) (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194))))) (-964 (-967 |#1|) |#2| |#3|)) (T -1001))
-((-2544 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-967 *4))) (-4 *4 (-1066)) (-4 *2 (-964 (-967 *4) *5 *6)) (-4 *5 (-804)) (-4 *6 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-5 *1 (-1001 *4 *5 *6 *2)))) (-3965 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2)) (-4 *2 (-964 (-967 *4) *5 *6)))) (-3965 (*1 *2 *2 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3)))) (-3245 (*1 *2 *2 *3) (-12 (-5 *3 (-655 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2)) (-4 *2 (-964 (-967 *4) *5 *6)))) (-3245 (*1 *2 *2 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)) (-15 -1441 ((-3 $ "failed") (-1194)))))) (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3)))))
-(-10 -7 (-15 -3245 (|#4| |#4| |#3|)) (-15 -3245 (|#4| |#4| (-655 |#3|))) (-15 -3965 (|#4| |#4| |#3|)) (-15 -3965 (|#4| |#4| (-655 |#3|))) (-15 -2544 (|#4| (-1 |#4| (-967 |#1|)) |#4|)))
-((-3792 ((|#2| |#3|) 35)) (-3056 (((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|) 79)) (-3189 (((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) 100)))
-(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3189 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -3056 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|)) (-15 -3792 (|#2| |#3|))) (-359) (-1261 |#1|) (-1261 |#2|) (-735 |#2| |#3|)) (T -1002))
-((-3792 (*1 *2 *3) (-12 (-4 *3 (-1261 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-1002 *4 *2 *3 *5)) (-4 *4 (-359)) (-4 *5 (-735 *2 *3)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3)) (-5 *2 (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-1002 *4 *3 *5 *6)) (-4 *6 (-735 *3 *5)))) (-3189 (*1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -2098 (-700 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-700 *4)))) (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-735 *4 *5)))))
-(-10 -7 (-15 -3189 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -3056 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|)) (-15 -3792 (|#2| |#3|)))
-((-1464 (((-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))) (-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575))))) 82)))
-(((-1003 |#1| |#2|) (-10 -7 (-15 -1464 ((-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))) (-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575))))))) (-655 (-1194)) (-782)) (T -1003))
-((-1464 (*1 *2 *2) (-12 (-5 *2 (-1004 (-418 (-575)) (-875 *3) (-245 *4 (-782)) (-252 *3 (-418 (-575))))) (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-1003 *3 *4)))))
-(-10 -7 (-15 -1464 ((-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))) (-1004 (-418 (-575)) (-875 |#1|) (-245 |#2| (-782)) (-252 |#1| (-418 (-575)))))))
-((-2859 (((-112) $ $) NIL)) (-2214 (((-3 (-112) "failed") $) 71)) (-1557 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-316))))) (-2027 (($ $ (-3 (-112) "failed")) 72)) (-2342 (($ (-655 |#4|) |#4|) 25)) (-4264 (((-1176) $) NIL)) (-2036 (($ $) 69)) (-3912 (((-1137) $) NIL)) (-2017 (((-112) $) 70)) (-1393 (($) 30)) (-4106 ((|#4| $) 74)) (-2982 (((-655 |#4|) $) 73)) (-2882 (((-873) $) 68)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1004 |#1| |#2| |#3| |#4|) (-13 (-1117) (-624 (-873)) (-10 -8 (-15 -1393 ($)) (-15 -2342 ($ (-655 |#4|) |#4|)) (-15 -2214 ((-3 (-112) "failed") $)) (-15 -2027 ($ $ (-3 (-112) "failed"))) (-15 -2017 ((-112) $)) (-15 -2982 ((-655 |#4|) $)) (-15 -4106 (|#4| $)) (-15 -2036 ($ $)) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (-15 -1557 ($ $)) |%noBranch|) |%noBranch|))) (-463) (-861) (-804) (-964 |#1| |#3| |#2|)) (T -1004))
-((-1393 (*1 *1) (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-655 *3)) (-4 *3 (-964 *4 *6 *5)) (-4 *4 (-463)) (-4 *5 (-861)) (-4 *6 (-804)) (-5 *1 (-1004 *4 *5 *6 *3)))) (-2214 (*1 *2 *1) (|partial| -12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-2027 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-2017 (*1 *2 *1) (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-655 *6)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))) (-4106 (*1 *2 *1) (-12 (-4 *2 (-964 *3 *5 *4)) (-5 *1 (-1004 *3 *4 *5 *2)) (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)))) (-2036 (*1 *1 *1) (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))) (-1557 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-316)) (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))))
-(-13 (-1117) (-624 (-873)) (-10 -8 (-15 -1393 ($)) (-15 -2342 ($ (-655 |#4|) |#4|)) (-15 -2214 ((-3 (-112) "failed") $)) (-15 -2027 ($ $ (-3 (-112) "failed"))) (-15 -2017 ((-112) $)) (-15 -2982 ((-655 |#4|) $)) (-15 -4106 (|#4| $)) (-15 -2036 ($ $)) (IF (|has| |#1| (-316)) (IF (|has| |#1| (-148)) (-15 -1557 ($ $)) |%noBranch|) |%noBranch|)))
-((-3556 (((-112) |#5| |#5|) 44)) (-2274 (((-112) |#5| |#5|) 59)) (-2135 (((-112) |#5| (-655 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-4245 (((-112) (-655 |#4|) (-655 |#4|)) 65)) (-3186 (((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 70)) (-3065 (((-1290)) 32)) (-1939 (((-1290) (-1176) (-1176) (-1176)) 28)) (-3941 (((-655 |#5|) (-655 |#5|)) 100)) (-3131 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) 92)) (-4111 (((-655 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112)) 122)) (-3352 (((-112) |#5| |#5|) 53)) (-2278 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1851 (((-112) (-655 |#4|) (-655 |#4|)) 64)) (-1579 (((-112) (-655 |#4|) (-655 |#4|)) 66)) (-2057 (((-112) (-655 |#4|) (-655 |#4|)) 67)) (-3249 (((-3 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3990 (((-655 |#5|) (-655 |#5|)) 49)))
-(((-1005 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1939 ((-1290) (-1176) (-1176) (-1176))) (-15 -3065 ((-1290))) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3990 ((-655 |#5|) (-655 |#5|))) (-15 -3352 ((-112) |#5| |#5|)) (-15 -2274 ((-112) |#5| |#5|)) (-15 -4245 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1851 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1579 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2057 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2278 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2135 ((-112) |#5| |#5|)) (-15 -2135 ((-112) |#5| (-655 |#5|))) (-15 -3941 ((-655 |#5|) (-655 |#5|))) (-15 -3186 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -3131 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -4111 ((-655 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3249 ((-3 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1005))
-((-3249 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| -2566 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9)))) (-5 *1 (-1005 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9)) (-4 *4 (-1088 *6 *7 *8 *9)))) (-4111 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| -2566 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9))))) (-5 *1 (-1005 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7)))) (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) (-3186 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1005 *5 *6 *7 *8 *3)))) (-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-1851 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-4245 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2274 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3352 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1005 *3 *4 *5 *6 *7)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3065 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1005 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-1939 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1939 ((-1290) (-1176) (-1176) (-1176))) (-15 -3065 ((-1290))) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3990 ((-655 |#5|) (-655 |#5|))) (-15 -3352 ((-112) |#5| |#5|)) (-15 -2274 ((-112) |#5| |#5|)) (-15 -4245 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1851 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1579 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2057 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2278 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2135 ((-112) |#5| |#5|)) (-15 -2135 ((-112) |#5| (-655 |#5|))) (-15 -3941 ((-655 |#5|) (-655 |#5|))) (-15 -3186 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -3131 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -4111 ((-655 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3249 ((-3 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-1441 (((-1194) $) 15)) (-4181 (((-1176) $) 16)) (-2674 (($ (-1194) (-1176)) 14)) (-2882 (((-873) $) 13)))
-(((-1006) (-13 (-624 (-873)) (-10 -8 (-15 -2674 ($ (-1194) (-1176))) (-15 -1441 ((-1194) $)) (-15 -4181 ((-1176) $))))) (T -1006))
-((-2674 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-1006)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1006)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1006)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2674 ($ (-1194) (-1176))) (-15 -1441 ((-1194) $)) (-15 -4181 ((-1176) $))))
-((-2544 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#4| (-1 |#2| |#1|) |#3|))) (-567) (-567) (-1009 |#1|) (-1009 |#2|)) (T -1007))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-567)) (-4 *6 (-567)) (-4 *2 (-1009 *6)) (-5 *1 (-1007 *5 *6 *4 *2)) (-4 *4 (-1009 *5)))))
-(-10 -7 (-15 -2544 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-1194) "failed") $) 66) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) 96)) (-4400 ((|#2| $) NIL) (((-1194) $) 61) (((-418 (-575)) $) NIL) (((-575) $) 93)) (-2862 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 115) (((-700 |#2|) (-700 $)) 28) (((-700 |#2|) (-1285 $)) NIL)) (-2073 (($) 99)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 76) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 85)) (-4300 (($ $) 10)) (-2808 (((-3 $ "failed") $) 20)) (-2544 (($ (-1 |#2| |#2|) $) 22)) (-3472 (($) 16)) (-1931 (($ $) 55)) (-2382 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $) NIL) (($ $ (-782)) NIL)) (-2325 (($ $) 12)) (-2613 (((-904 (-575)) $) 71) (((-904 (-389)) $) 80) (((-547) $) 40) (((-389) $) 44) (((-227) $) 48)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 91) (($ |#2|) NIL) (($ (-1194)) 58)) (-4421 (((-782)) 31)) (-3940 (((-112) $ $) 51)))
-(((-1008 |#1| |#2|) (-10 -8 (-15 -3940 ((-112) |#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2613 ((-227) |#1|)) (-15 -2613 ((-389) |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2882 (|#1| (-1194))) (-15 -2443 ((-3 (-1194) "failed") |#1|)) (-15 -4400 ((-1194) |#1|)) (-15 -2073 (|#1|)) (-15 -1931 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2862 ((-700 |#2|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| |#1|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-1009 |#2|) (-567)) (T -1008))
-((-4421 (*1 *2) (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-1008 *3 *4)) (-4 *3 (-1009 *4)))))
-(-10 -8 (-15 -3940 ((-112) |#1| |#1|)) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2613 ((-227) |#1|)) (-15 -2613 ((-389) |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2882 (|#1| (-1194))) (-15 -2443 ((-3 (-1194) "failed") |#1|)) (-15 -4400 ((-1194) |#1|)) (-15 -2073 (|#1|)) (-15 -1931 (|#1| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -1806 ((-901 (-575) |#1|) |#1| (-904 (-575)) (-901 (-575) |#1|))) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2862 ((-700 |#2|) (-1285 |#1|))) (-15 -2862 ((-700 |#2|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| |#1|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3824 ((|#1| $) 162 (|has| |#1| (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-4005 (((-429 (-1190 $)) (-1190 $)) 153 (|has| |#1| (-924)))) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 156 (|has| |#1| (-924)))) (-3599 (((-112) $ $) 65)) (-2326 (((-575) $) 143 (|has| |#1| (-831)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 190) (((-3 (-1194) "failed") $) 151 (|has| |#1| (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) 134 (|has| |#1| (-1055 (-575)))) (((-3 (-575) "failed") $) 132 (|has| |#1| (-1055 (-575))))) (-4400 ((|#1| $) 191) (((-1194) $) 152 (|has| |#1| (-1055 (-1194)))) (((-418 (-575)) $) 135 (|has| |#1| (-1055 (-575)))) (((-575) $) 133 (|has| |#1| (-1055 (-575))))) (-2800 (($ $ $) 61)) (-2862 (((-700 (-575)) (-1285 $)) 177 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 176 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 175 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 174) (((-700 |#1|) (-700 $)) 173) (((-700 |#1|) (-1285 $)) 172)) (-4162 (((-3 $ "failed") $) 37)) (-2073 (($) 160 (|has| |#1| (-556)))) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3559 (((-112) $) 79)) (-2359 (((-112) $) 145 (|has| |#1| (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 169 (|has| |#1| (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 168 (|has| |#1| (-898 (-389))))) (-3900 (((-112) $) 35)) (-4300 (($ $) 164)) (-1595 ((|#1| $) 166)) (-2808 (((-3 $ "failed") $) 131 (|has| |#1| (-1169)))) (-1721 (((-112) $) 144 (|has| |#1| (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1914 (($ $ $) 141 (|has| |#1| (-861)))) (-3503 (($ $ $) 140 (|has| |#1| (-861)))) (-2544 (($ (-1 |#1| |#1|) $) 182)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3472 (($) 130 (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-1931 (($ $) 161 (|has| |#1| (-316)))) (-3920 ((|#1| $) 158 (|has| |#1| (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 155 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 154 (|has| |#1| (-924)))) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) 188 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 187 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 186 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 185 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 184 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 183 (|has| |#1| (-525 (-1194) |#1|)))) (-1720 (((-782) $) 64)) (-2065 (($ $ |#1|) 189 (|has| |#1| (-295 |#1| |#1|)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2382 (($ $ (-1 |#1| |#1|)) 181) (($ $ (-1 |#1| |#1|) (-782)) 180) (($ $) 129 (|has| |#1| (-237))) (($ $ (-782)) 127 (|has| |#1| (-237))) (($ $ (-1194)) 125 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 123 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 122 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 121 (|has| |#1| (-915 (-1194))))) (-2325 (($ $) 163)) (-1608 ((|#1| $) 165)) (-2613 (((-904 (-575)) $) 171 (|has| |#1| (-625 (-904 (-575))))) (((-904 (-389)) $) 170 (|has| |#1| (-625 (-904 (-389))))) (((-547) $) 148 (|has| |#1| (-625 (-547)))) (((-389) $) 147 (|has| |#1| (-1039))) (((-227) $) 146 (|has| |#1| (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 157 (-3224 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ |#1|) 194) (($ (-1194)) 150 (|has| |#1| (-1055 (-1194))))) (-1724 (((-3 $ "failed") $) 149 (-3763 (|has| |#1| (-146)) (-3224 (|has| $ (-146)) (|has| |#1| (-924)))))) (-4421 (((-782)) 32 T CONST)) (-4248 ((|#1| $) 159 (|has| |#1| (-556)))) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-3863 (($ $) 142 (|has| |#1| (-831)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 |#1| |#1|)) 179) (($ $ (-1 |#1| |#1|) (-782)) 178) (($ $) 128 (|has| |#1| (-237))) (($ $ (-782)) 126 (|has| |#1| (-237))) (($ $ (-1194)) 124 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 120 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 119 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 118 (|has| |#1| (-915 (-1194))))) (-3980 (((-112) $ $) 138 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 137 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 139 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 136 (|has| |#1| (-861)))) (-4038 (($ $ $) 73) (($ |#1| |#1|) 167)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ |#1| $) 193) (($ $ |#1|) 192)))
-(((-1009 |#1|) (-141) (-567)) (T -1009))
-((-4038 (*1 *1 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-4300 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316)))) (-2073 (*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-556)) (-4 *2 (-567)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556)))))
-(-13 (-373) (-38 |t#1|) (-1055 |t#1|) (-348 |t#1|) (-232 |t#1|) (-387 |t#1|) (-896 |t#1|) (-411 |t#1|) (-10 -8 (-15 -4038 ($ |t#1| |t#1|)) (-15 -1595 (|t#1| $)) (-15 -1608 (|t#1| $)) (-15 -4300 ($ $)) (-15 -2325 ($ $)) (IF (|has| |t#1| (-1169)) (-6 (-1169)) |%noBranch|) (IF (|has| |t#1| (-1055 (-575))) (PROGN (-6 (-1055 (-575))) (-6 (-1055 (-418 (-575))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |%noBranch|) (IF (|has| |t#1| (-1039)) (-6 (-1039)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1055 (-1194))) (-6 (-1055 (-1194))) |%noBranch|) (IF (|has| |t#1| (-316)) (PROGN (-15 -3824 (|t#1| $)) (-15 -1931 ($ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2073 ($)) (-15 -4248 (|t#1| $)) (-15 -3920 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-924)) (-6 (-924)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 #1=(-1194)) |has| |#1| (-1055 (-1194))) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-227)) |has| |#1| (-1039)) ((-625 (-389)) |has| |#1| (-1039)) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-625 (-904 (-389))) |has| |#1| (-625 (-904 (-389)))) ((-625 (-904 (-575))) |has| |#1| (-625 (-904 (-575)))) ((-234 $) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-248) . T) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-299) . T) ((-316) . T) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-373) . T) ((-348 |#1|) . T) ((-387 |#1|) . T) ((-411 |#1|) . T) ((-463) . T) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 #2=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-650 #2#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) . T) ((-728 |#1|) . T) ((-728 $) . T) ((-737) . T) ((-802) |has| |#1| (-831)) ((-803) |has| |#1| (-831)) ((-805) |has| |#1| (-831)) ((-806) |has| |#1| (-831)) ((-831) |has| |#1| (-831)) ((-859) |has| |#1| (-831)) ((-861) -3763 (|has| |#1| (-861)) (|has| |#1| (-831))) ((-908 $ #3=(-1194)) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #3#) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-898 (-389)) |has| |#1| (-898 (-389))) ((-898 (-575)) |has| |#1| (-898 (-575))) ((-896 |#1|) . T) ((-924) |has| |#1| (-924)) ((-935) . T) ((-1039) |has| |#1| (-1039)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-575))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #1#) |has| |#1| (-1055 (-1194))) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-1169)) ((-1235) . T) ((-1239) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-3180 (($ (-1159 |#1| |#2|)) 11)) (-4316 (((-1159 |#1| |#2|) $) 12)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2065 ((|#2| $ (-245 |#1| |#2|)) 16)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL)))
-(((-1010 |#1| |#2|) (-13 (-21) (-295 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3180 ($ (-1159 |#1| |#2|))) (-15 -4316 ((-1159 |#1| |#2|) $)))) (-936) (-373)) (T -1010))
-((-3180 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4)) (-14 *3 (-936)) (-4 *4 (-373)) (-5 *1 (-1010 *3 *4)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-5 *1 (-1010 *3 *4)) (-14 *3 (-936)) (-4 *4 (-373)))))
-(-13 (-21) (-295 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3180 ($ (-1159 |#1| |#2|))) (-15 -4316 ((-1159 |#1| |#2|) $))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3827 (((-1152) $) 9)) (-2882 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1011) (-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $))))) (T -1011))
-((-3827 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1011)))))
-(-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $))))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-2706 (($ $) 47)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-1840 (((-782) $) 46)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-4225 ((|#1| $) 45)) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3420 ((|#1| |#1| $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2191 ((|#1| $) 48)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-1917 ((|#1| $) 44)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1012 |#1|) (-141) (-1235)) (T -1012))
-((-3420 (*1 *2 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-2191 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-2706 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4460) (-15 -3420 (|t#1| |t#1| $)) (-15 -2191 (|t#1| $)) (-15 -2706 ($ $)) (-15 -1840 ((-782) $)) (-15 -4225 (|t#1| $)) (-15 -1917 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2045 (((-112) $) 43)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4400 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#2| $) 44)) (-2157 (((-3 (-418 (-575)) "failed") $) 78)) (-2188 (((-112) $) 72)) (-1622 (((-418 (-575)) $) 76)) (-3900 (((-112) $) 42)) (-3390 ((|#2| $) 22)) (-2544 (($ (-1 |#2| |#2|) $) 19)) (-4332 (($ $) 58)) (-2382 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $) NIL) (($ $ (-782)) NIL)) (-2613 (((-547) $) 67)) (-3516 (($ $) 17)) (-2882 (((-873) $) 53) (($ (-575)) 39) (($ |#2|) 37) (($ (-418 (-575))) NIL)) (-4421 (((-782)) 10)) (-3863 ((|#2| $) 71)) (-3913 (((-112) $ $) 26)) (-3940 (((-112) $ $) 69)) (-4027 (($ $) 30) (($ $ $) 29)) (-4015 (($ $ $) 27)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL)))
-(((-1013 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| (-418 (-575)))) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -3940 ((-112) |#1| |#1|)) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 -4332 (|#1| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -3863 (|#2| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 -3900 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-1014 |#2|) (-174)) (T -1013))
-((-4421 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-1013 *3 *4)) (-4 *3 (-1014 *4)))))
-(-10 -8 (-15 -2882 (|#1| (-418 (-575)))) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -3940 ((-112) |#1| |#1|)) (-15 * (|#1| (-418 (-575)) |#1|)) (-15 * (|#1| |#1| (-418 (-575)))) (-15 -4332 (|#1| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -3863 (|#2| |#1|)) (-15 -3390 (|#2| |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -2544 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 -3900 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 * (|#1| (-782) |#1|)) (-15 -2045 ((-112) |#1|)) (-15 * (|#1| (-936) |#1|)) (-15 -4015 (|#1| |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-2443 (((-3 (-575) "failed") $) 132 (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 130 (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) 127)) (-4400 (((-575) $) 131 (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) 129 (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) 128)) (-2862 (((-700 (-575)) (-1285 $)) 114 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 113 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 112 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 111) (((-700 |#1|) (-700 $)) 110) (((-700 |#1|) (-1285 $)) 109)) (-4162 (((-3 $ "failed") $) 37)) (-2481 ((|#1| $) 102)) (-2157 (((-3 (-418 (-575)) "failed") $) 98 (|has| |#1| (-556)))) (-2188 (((-112) $) 100 (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) 99 (|has| |#1| (-556)))) (-2649 (($ |#1| |#1| |#1| |#1|) 103)) (-3900 (((-112) $) 35)) (-3390 ((|#1| $) 104)) (-1914 (($ $ $) 91 (|has| |#1| (-861)))) (-3503 (($ $ $) 90 (|has| |#1| (-861)))) (-2544 (($ (-1 |#1| |#1|) $) 115)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 95 (|has| |#1| (-373)))) (-4197 ((|#1| $) 105)) (-3433 ((|#1| $) 106)) (-2682 ((|#1| $) 107)) (-3912 (((-1137) $) 11)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) 121 (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) 120 (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) 119 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) 118 (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) 117 (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) 116 (|has| |#1| (-525 (-1194) |#1|)))) (-2065 (($ $ |#1|) 122 (|has| |#1| (-295 |#1| |#1|)))) (-2382 (($ $ (-1 |#1| |#1|)) 126) (($ $ (-1 |#1| |#1|) (-782)) 125) (($ $) 85 (|has| |#1| (-237))) (($ $ (-782)) 83 (|has| |#1| (-237))) (($ $ (-1194)) 81 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 79 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 78 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 77 (|has| |#1| (-915 (-1194))))) (-2613 (((-547) $) 96 (|has| |#1| (-625 (-547))))) (-3516 (($ $) 108)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 44) (($ (-418 (-575))) 73 (-3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1724 (((-3 $ "failed") $) 97 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3863 ((|#1| $) 101 (|has| |#1| (-1077)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 |#1| |#1|)) 124) (($ $ (-1 |#1| |#1|) (-782)) 123) (($ $) 84 (|has| |#1| (-237))) (($ $ (-782)) 82 (|has| |#1| (-237))) (($ $ (-1194)) 80 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 76 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 75 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 74 (|has| |#1| (-915 (-1194))))) (-3980 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 89 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 86 (|has| |#1| (-861)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 94 (|has| |#1| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-418 (-575))) 93 (|has| |#1| (-373))) (($ (-418 (-575)) $) 92 (|has| |#1| (-373)))))
-(((-1014 |#1|) (-141) (-174)) (T -1014))
-((-3516 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2649 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)) (-4 *2 (-1077)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))) (-2157 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-418 (-575))))))
-(-13 (-38 |t#1|) (-422 |t#1|) (-232 |t#1|) (-348 |t#1|) (-387 |t#1|) (-10 -8 (-15 -3516 ($ $)) (-15 -2682 (|t#1| $)) (-15 -3433 (|t#1| $)) (-15 -4197 (|t#1| $)) (-15 -3390 (|t#1| $)) (-15 -2649 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2481 (|t#1| $)) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1077)) (-15 -3863 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -2188 ((-112) $)) (-15 -1622 ((-418 (-575)) $)) (-15 -2157 ((-3 (-418 (-575)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-373)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-373)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-373))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-234 $) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3763 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-271 |#1|) . T) ((-248) |has| |#1| (-373)) ((-295 |#1| $) |has| |#1| (-295 |#1| |#1|)) ((-299) -3763 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-318 |#1|) |has| |#1| (-318 |#1|)) ((-348 |#1|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-525 (-1194) |#1|) |has| |#1| (-525 (-1194) |#1|)) ((-525 |#1| |#1|) |has| |#1| (-318 |#1|)) ((-657 #0#) |has| |#1| (-373)) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-373)) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-373)) ((-651 |#1|) . T) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-373)) ((-728 |#1|) . T) ((-737) . T) ((-861) |has| |#1| (-861)) ((-908 $ #2=(-1194)) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #2#) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1068 #0#) |has| |#1| (-373)) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-1073 #0#) |has| |#1| (-373)) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-373)) (|has| |#1| (-299))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-2544 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#3| (-1 |#4| |#2|) |#1|))) (-1014 |#2|) (-174) (-1014 |#4|) (-174)) (T -1015))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1014 *6)) (-5 *1 (-1015 *4 *5 *2 *6)) (-4 *4 (-1014 *5)))))
-(-10 -7 (-15 -2544 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2481 ((|#1| $) 12)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-556)))) (-2188 (((-112) $) NIL (|has| |#1| (-556)))) (-1622 (((-418 (-575)) $) NIL (|has| |#1| (-556)))) (-2649 (($ |#1| |#1| |#1| |#1|) 16)) (-3900 (((-112) $) NIL)) (-3390 ((|#1| $) NIL)) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4197 ((|#1| $) 15)) (-3433 ((|#1| $) 14)) (-2682 ((|#1| $) 13)) (-3912 (((-1137) $) NIL)) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-318 |#1|))) (($ $ (-303 |#1|)) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-303 |#1|))) NIL (|has| |#1| (-318 |#1|))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-525 (-1194) |#1|))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-525 (-1194) |#1|)))) (-2065 (($ $ |#1|) NIL (|has| |#1| (-295 |#1| |#1|)))) (-2382 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-3516 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3863 ((|#1| $) NIL (|has| |#1| (-1077)))) (-1989 (($) 8 T CONST)) (-2005 (($) 10 T CONST)) (-3428 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237))) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-373)))))
-(((-1016 |#1|) (-1014 |#1|) (-174)) (T -1016))
-NIL
-(-1014 |#1|)
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3133 (((-112) $ (-782)) NIL)) (-3261 (($) NIL T CONST)) (-2706 (($ $) 23)) (-1339 (($ (-655 |#1|)) 33)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-1840 (((-782) $) 26)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4030 ((|#1| $) 28)) (-4218 (($ |#1| $) 17)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-4225 ((|#1| $) 27)) (-3773 ((|#1| $) 22)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3420 ((|#1| |#1| $) 16)) (-2017 (((-112) $) 18)) (-1393 (($) NIL)) (-2191 ((|#1| $) 21)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) NIL)) (-1917 ((|#1| $) 30)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1017 |#1|) (-13 (-1012 |#1|) (-10 -8 (-15 -1339 ($ (-655 |#1|))))) (-1117)) (T -1017))
-((-1339 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1017 *3)))))
-(-13 (-1012 |#1|) (-10 -8 (-15 -1339 ($ (-655 |#1|)))))
-((-2467 (($ $) 12)) (-2111 (($ $ (-575)) 13)))
-(((-1018 |#1|) (-10 -8 (-15 -2467 (|#1| |#1|)) (-15 -2111 (|#1| |#1| (-575)))) (-1019)) (T -1018))
-NIL
-(-10 -8 (-15 -2467 (|#1| |#1|)) (-15 -2111 (|#1| |#1| (-575))))
-((-2467 (($ $) 6)) (-2111 (($ $ (-575)) 7)) (** (($ $ (-418 (-575))) 8)))
-(((-1019) (-141)) (T -1019))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-418 (-575))))) (-2111 (*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-575)))) (-2467 (*1 *1 *1) (-4 *1 (-1019))))
-(-13 (-10 -8 (-15 -2467 ($ $)) (-15 -2111 ($ $ (-575))) (-15 ** ($ $ (-418 (-575))))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2827 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| (-418 |#2|) (-373)))) (-2456 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-3978 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-3831 (((-700 (-418 |#2|)) (-1285 $)) NIL) (((-700 (-418 |#2|))) NIL)) (-1448 (((-418 |#2|) $) NIL)) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| (-418 |#2|) (-359)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-4281 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3599 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2409 (((-782)) NIL (|has| (-418 |#2|) (-378)))) (-3005 (((-112)) NIL)) (-2528 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-3 (-418 |#2|) "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| (-418 |#2|) (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| (-418 |#2|) (-1055 (-418 (-575))))) (((-418 |#2|) $) NIL)) (-3898 (($ (-1285 (-418 |#2|)) (-1285 $)) NIL) (($ (-1285 (-418 |#2|))) 79) (($ (-1285 |#2|) |#2|) NIL)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-418 |#2|) (-359)))) (-2800 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-3405 (((-700 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-418 |#2|) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-418 |#2|))) (|:| |vec| (-1285 (-418 |#2|)))) (-700 $) (-1285 $)) NIL) (((-700 (-418 |#2|)) (-700 $)) NIL) (((-700 (-418 |#2|)) (-1285 $)) NIL)) (-2275 (((-1285 $) (-1285 $)) NIL)) (-2302 (($ |#3|) 73) (((-3 $ "failed") (-418 |#3|)) NIL (|has| (-418 |#2|) (-373)))) (-4162 (((-3 $ "failed") $) NIL)) (-1395 (((-655 (-655 |#1|))) NIL (|has| |#1| (-378)))) (-3945 (((-112) |#1| |#1|) NIL)) (-4422 (((-936)) NIL)) (-2073 (($) NIL (|has| (-418 |#2|) (-378)))) (-1993 (((-112)) NIL)) (-1356 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2811 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| (-418 |#2|) (-373)))) (-2379 (($ $) NIL)) (-1758 (($) NIL (|has| (-418 |#2|) (-359)))) (-3228 (((-112) $) NIL (|has| (-418 |#2|) (-359)))) (-2457 (($ $ (-782)) NIL (|has| (-418 |#2|) (-359))) (($ $) NIL (|has| (-418 |#2|) (-359)))) (-3559 (((-112) $) NIL (|has| (-418 |#2|) (-373)))) (-3369 (((-936) $) NIL (|has| (-418 |#2|) (-359))) (((-844 (-936)) $) NIL (|has| (-418 |#2|) (-359)))) (-3900 (((-112) $) NIL)) (-1687 (((-782)) NIL)) (-3830 (((-1285 $) (-1285 $)) NIL)) (-3390 (((-418 |#2|) $) NIL)) (-2716 (((-655 (-967 |#1|)) (-1194)) NIL (|has| |#1| (-373)))) (-2808 (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3977 ((|#3| $) NIL (|has| (-418 |#2|) (-373)))) (-1894 (((-936) $) NIL (|has| (-418 |#2|) (-378)))) (-2290 ((|#3| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4264 (((-1176) $) NIL)) (-2020 (((-700 (-418 |#2|))) 57)) (-2194 (((-700 (-418 |#2|))) 56)) (-4332 (($ $) NIL (|has| (-418 |#2|) (-373)))) (-3169 (($ (-1285 |#2|) |#2|) 80)) (-3625 (((-700 (-418 |#2|))) 55)) (-2578 (((-700 (-418 |#2|))) 54)) (-4001 (((-2 (|:| |num| (-700 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-2426 (((-2 (|:| |num| (-1285 |#2|)) (|:| |den| |#2|)) $) 86)) (-3565 (((-1285 $)) 51)) (-3189 (((-1285 $)) 50)) (-2112 (((-112) $) NIL)) (-4159 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3472 (($) NIL (|has| (-418 |#2|) (-359)) CONST)) (-4317 (($ (-936)) NIL (|has| (-418 |#2|) (-378)))) (-2295 (((-3 |#2| "failed")) 70)) (-3912 (((-1137) $) NIL)) (-4002 (((-782)) NIL)) (-3657 (($) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| (-418 |#2|) (-373)))) (-3923 (($ (-655 $)) NIL (|has| (-418 |#2|) (-373))) (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| (-418 |#2|) (-359)))) (-2347 (((-429 $) $) NIL (|has| (-418 |#2|) (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-418 |#2|) (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2849 (((-3 $ "failed") $ $) NIL (|has| (-418 |#2|) (-373)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| (-418 |#2|) (-373)))) (-1720 (((-782) $) NIL (|has| (-418 |#2|) (-373)))) (-2065 ((|#1| $ |#1| |#1|) NIL)) (-1331 (((-3 |#2| "failed")) 68)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2801 (((-418 |#2|) (-1285 $)) NIL) (((-418 |#2|)) 47)) (-2619 (((-782) $) NIL (|has| (-418 |#2|) (-359))) (((-3 (-782) "failed") $ $) NIL (|has| (-418 |#2|) (-359)))) (-2382 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3797 (((-700 (-418 |#2|)) (-1285 $) (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373)))) (-4436 ((|#3|) 58)) (-1847 (($) NIL (|has| (-418 |#2|) (-359)))) (-2209 (((-1285 (-418 |#2|)) $ (-1285 $)) NIL) (((-700 (-418 |#2|)) (-1285 $) (-1285 $)) NIL) (((-1285 (-418 |#2|)) $) 81) (((-700 (-418 |#2|)) (-1285 $)) NIL)) (-2613 (((-1285 (-418 |#2|)) $) NIL) (($ (-1285 (-418 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| (-418 |#2|) (-359)))) (-2695 (((-1285 $) (-1285 $)) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 |#2|)) NIL) (($ (-418 (-575))) NIL (-3763 (|has| (-418 |#2|) (-1055 (-418 (-575)))) (|has| (-418 |#2|) (-373)))) (($ $) NIL (|has| (-418 |#2|) (-373)))) (-1724 (($ $) NIL (|has| (-418 |#2|) (-359))) (((-3 $ "failed") $) NIL (|has| (-418 |#2|) (-146)))) (-2765 ((|#3| $) NIL)) (-4421 (((-782)) NIL T CONST)) (-2903 (((-112)) 65)) (-2652 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) NIL)) (-3930 (((-112) $ $) NIL (|has| (-418 |#2|) (-373)))) (-2339 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3185 (((-112)) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-1 (-418 |#2|) (-418 |#2|))) NIL (|has| (-418 |#2|) (-373))) (($ $ (-1 (-418 |#2|) (-418 |#2|)) (-782)) NIL (|has| (-418 |#2|) (-373))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-913 (-1194)))) (-12 (|has| (-418 |#2|) (-373)) (|has| (-418 |#2|) (-915 (-1194)))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359)))) (($ $) NIL (-3763 (-12 (|has| (-418 |#2|) (-238)) (|has| (-418 |#2|) (-373))) (-12 (|has| (-418 |#2|) (-237)) (|has| (-418 |#2|) (-373))) (|has| (-418 |#2|) (-359))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ $) NIL (|has| (-418 |#2|) (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| (-418 |#2|) (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 |#2|)) NIL) (($ (-418 |#2|) $) NIL) (($ (-418 (-575)) $) NIL (|has| (-418 |#2|) (-373))) (($ $ (-418 (-575))) NIL (|has| (-418 |#2|) (-373)))))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-352 |#1| |#2| |#3|) (-1239) (-1261 |#1|) (-1261 (-418 |#2|)) (-418 |#2|) (-782)) (T -1020))
-NIL
-(-352 |#1| |#2| |#3|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-2822 (((-655 (-575)) $) 73)) (-2606 (($ (-655 (-575))) 81)) (-3824 (((-575) $) 48 (|has| (-575) (-316)))) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL (|has| (-575) (-831)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) 60) (((-3 (-1194) "failed") $) NIL (|has| (-575) (-1055 (-1194)))) (((-3 (-418 (-575)) "failed") $) 57 (|has| (-575) (-1055 (-575)))) (((-3 (-575) "failed") $) 60 (|has| (-575) (-1055 (-575))))) (-4400 (((-575) $) NIL) (((-1194) $) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) NIL (|has| (-575) (-1055 (-575)))) (((-575) $) NIL (|has| (-575) (-1055 (-575))))) (-2800 (($ $ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| (-575) (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2073 (($) NIL (|has| (-575) (-556)))) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-3626 (((-655 (-575)) $) 79)) (-2359 (((-112) $) NIL (|has| (-575) (-831)))) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (|has| (-575) (-898 (-575)))) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (|has| (-575) (-898 (-389))))) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL)) (-1595 (((-575) $) 45)) (-2808 (((-3 $ "failed") $) NIL (|has| (-575) (-1169)))) (-1721 (((-112) $) NIL (|has| (-575) (-831)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-575) (-861)))) (-2544 (($ (-1 (-575) (-575)) $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL)) (-3472 (($) NIL (|has| (-575) (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-1931 (($ $) NIL (|has| (-575) (-316))) (((-418 (-575)) $) 50)) (-2581 (((-1174 (-575)) $) 78)) (-3583 (($ (-655 (-575)) (-655 (-575))) 82)) (-3920 (((-575) $) 64 (|has| (-575) (-556)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| (-575) (-924)))) (-2347 (((-429 $) $) NIL)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3046 (($ $ (-655 (-575)) (-655 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-575) (-575)) NIL (|has| (-575) (-318 (-575)))) (($ $ (-303 (-575))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-303 (-575)))) NIL (|has| (-575) (-318 (-575)))) (($ $ (-655 (-1194)) (-655 (-575))) NIL (|has| (-575) (-525 (-1194) (-575)))) (($ $ (-1194) (-575)) NIL (|has| (-575) (-525 (-1194) (-575))))) (-1720 (((-782) $) NIL)) (-2065 (($ $ (-575)) NIL (|has| (-575) (-295 (-575) (-575))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) 15 (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-2325 (($ $) NIL)) (-1608 (((-575) $) 47)) (-3591 (((-655 (-575)) $) 80)) (-2613 (((-904 (-575)) $) NIL (|has| (-575) (-625 (-904 (-575))))) (((-904 (-389)) $) NIL (|has| (-575) (-625 (-904 (-389))))) (((-547) $) NIL (|has| (-575) (-625 (-547)))) (((-389) $) NIL (|has| (-575) (-1039))) (((-227) $) NIL (|has| (-575) (-1039)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-575) (-924))))) (-2882 (((-873) $) 107) (($ (-575)) 51) (($ $) NIL) (($ (-418 (-575))) 27) (($ (-575)) 51) (($ (-1194)) NIL (|has| (-575) (-1055 (-1194)))) (((-418 (-575)) $) 25)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-575) (-924))) (|has| (-575) (-146))))) (-4421 (((-782)) 13 T CONST)) (-4248 (((-575) $) 62 (|has| (-575) (-556)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3863 (($ $) NIL (|has| (-575) (-831)))) (-1989 (($) 14 T CONST)) (-2005 (($) 17 T CONST)) (-3428 (($ $ (-1 (-575) (-575))) NIL) (($ $ (-1 (-575) (-575)) (-782)) NIL) (($ $ (-1194)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| (-575) (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| (-575) (-915 (-1194)))) (($ $) NIL (|has| (-575) (-237))) (($ $ (-782)) NIL (|has| (-575) (-237)))) (-3980 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3913 (((-112) $ $) 21)) (-3967 (((-112) $ $) NIL (|has| (-575) (-861)))) (-3940 (((-112) $ $) 40 (|has| (-575) (-861)))) (-4038 (($ $ $) 36) (($ (-575) (-575)) 38)) (-4027 (($ $) 23) (($ $ $) 30)) (-4015 (($ $ $) 28)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 32) (($ $ $) 34) (($ $ (-418 (-575))) NIL) (($ (-418 (-575)) $) NIL) (($ (-575) $) 32) (($ $ (-575)) NIL)))
-(((-1021 |#1|) (-13 (-1009 (-575)) (-624 (-418 (-575))) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -2822 ((-655 (-575)) $)) (-15 -2581 ((-1174 (-575)) $)) (-15 -3626 ((-655 (-575)) $)) (-15 -3591 ((-655 (-575)) $)) (-15 -2606 ($ (-655 (-575)))) (-15 -3583 ($ (-655 (-575)) (-655 (-575)))))) (-575)) (T -1021))
-((-1931 (*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))) (-3583 (*1 *1 *2 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
-(-13 (-1009 (-575)) (-624 (-418 (-575))) (-10 -8 (-15 -1931 ((-418 (-575)) $)) (-15 -2822 ((-655 (-575)) $)) (-15 -2581 ((-1174 (-575)) $)) (-15 -3626 ((-655 (-575)) $)) (-15 -3591 ((-655 (-575)) $)) (-15 -2606 ($ (-655 (-575)))) (-15 -3583 ($ (-655 (-575)) (-655 (-575))))))
-((-3381 (((-52) (-418 (-575)) (-575)) 9)))
-(((-1022) (-10 -7 (-15 -3381 ((-52) (-418 (-575)) (-575))))) (T -1022))
-((-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-575))) (-5 *4 (-575)) (-5 *2 (-52)) (-5 *1 (-1022)))))
-(-10 -7 (-15 -3381 ((-52) (-418 (-575)) (-575))))
-((-2409 (((-575)) 23)) (-4228 (((-575)) 28)) (-2227 (((-1290) (-575)) 26)) (-3584 (((-575) (-575)) 29) (((-575)) 22)))
-(((-1023) (-10 -7 (-15 -3584 ((-575))) (-15 -2409 ((-575))) (-15 -3584 ((-575) (-575))) (-15 -2227 ((-1290) (-575))) (-15 -4228 ((-575))))) (T -1023))
-((-4228 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1023)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) (-2409 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))) (-3584 (*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))))
-(-10 -7 (-15 -3584 ((-575))) (-15 -2409 ((-575))) (-15 -3584 ((-575) (-575))) (-15 -2227 ((-1290) (-575))) (-15 -4228 ((-575))))
-((-1326 (((-429 |#1|) |#1|) 43)) (-2347 (((-429 |#1|) |#1|) 41)))
-(((-1024 |#1|) (-10 -7 (-15 -2347 ((-429 |#1|) |#1|)) (-15 -1326 ((-429 |#1|) |#1|))) (-1261 (-418 (-575)))) (T -1024))
-((-1326 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-1261 (-418 (-575)))))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3)) (-4 *3 (-1261 (-418 (-575)))))))
-(-10 -7 (-15 -2347 ((-429 |#1|) |#1|)) (-15 -1326 ((-429 |#1|) |#1|)))
-((-2157 (((-3 (-418 (-575)) "failed") |#1|) 15)) (-2188 (((-112) |#1|) 14)) (-1622 (((-418 (-575)) |#1|) 10)))
-(((-1025 |#1|) (-10 -7 (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|))) (-1055 (-418 (-575)))) (T -1025))
-((-2157 (*1 *2 *3) (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) (-4 *3 (-1055 *2)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1025 *3)) (-4 *3 (-1055 (-418 (-575)))))) (-1622 (*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) (-4 *3 (-1055 *2)))))
-(-10 -7 (-15 -1622 ((-418 (-575)) |#1|)) (-15 -2188 ((-112) |#1|)) (-15 -2157 ((-3 (-418 (-575)) "failed") |#1|)))
-((-3052 ((|#2| $ "value" |#2|) 12)) (-2065 ((|#2| $ "value") 10)) (-2603 (((-112) $ $) 18)))
-(((-1026 |#1| |#2|) (-10 -8 (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -2603 ((-112) |#1| |#1|)) (-15 -2065 (|#2| |#1| "value"))) (-1027 |#2|) (-1235)) (T -1026))
-NIL
-(-10 -8 (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -2603 ((-112) |#1| |#1|)) (-15 -2065 (|#2| |#1| "value")))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3261 (($) 7 T CONST)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48)) (-1816 (((-575) $ $) 45)) (-3482 (((-112) $) 47)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1027 |#1|) (-141) (-1235)) (T -1027))
-((-3620 (*1 *2 *1) (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3)))) (-1893 (*1 *2 *1) (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-2476 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))) (-1816 (*1 *2 *1 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-575)))) (-2603 (*1 *2 *1 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-2510 (*1 *2 *1 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-3001 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *1)) (|has| *1 (-6 -4461)) (-4 *1 (-1027 *3)) (-4 *3 (-1235)))) (-3052 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) (-4 *2 (-1235)))) (-2328 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) (-4 *2 (-1235)))))
-(-13 (-500 |t#1|) (-10 -8 (-15 -3620 ((-655 $) $)) (-15 -1893 ((-655 $) $)) (-15 -1902 ((-112) $)) (-15 -4181 (|t#1| $)) (-15 -2065 (|t#1| $ "value")) (-15 -3482 ((-112) $)) (-15 -2476 ((-655 |t#1|) $)) (-15 -1816 ((-575) $ $)) (IF (|has| |t#1| (-1117)) (PROGN (-15 -2603 ((-112) $ $)) (-15 -2510 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3001 ($ $ (-655 $))) (-15 -3052 (|t#1| $ "value" |t#1|)) (-15 -2328 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2467 (($ $) 9) (($ $ (-936)) 49) (($ (-418 (-575))) 13) (($ (-575)) 15)) (-3151 (((-3 $ "failed") (-1190 $) (-936) (-873)) 24) (((-3 $ "failed") (-1190 $) (-936)) 32)) (-2111 (($ $ (-575)) 58)) (-4421 (((-782)) 18)) (-1625 (((-655 $) (-1190 $)) NIL) (((-655 $) (-1190 (-418 (-575)))) 63) (((-655 $) (-1190 (-575))) 68) (((-655 $) (-967 $)) 72) (((-655 $) (-967 (-418 (-575)))) 76) (((-655 $) (-967 (-575))) 80)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ $ (-418 (-575))) 53)))
-(((-1028 |#1|) (-10 -8 (-15 -2467 (|#1| (-575))) (-15 -2467 (|#1| (-418 (-575)))) (-15 -2467 (|#1| |#1| (-936))) (-15 -1625 ((-655 |#1|) (-967 (-575)))) (-15 -1625 ((-655 |#1|) (-967 (-418 (-575))))) (-15 -1625 ((-655 |#1|) (-967 |#1|))) (-15 -1625 ((-655 |#1|) (-1190 (-575)))) (-15 -1625 ((-655 |#1|) (-1190 (-418 (-575))))) (-15 -1625 ((-655 |#1|) (-1190 |#1|))) (-15 -3151 ((-3 |#1| "failed") (-1190 |#1|) (-936))) (-15 -3151 ((-3 |#1| "failed") (-1190 |#1|) (-936) (-873))) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -2111 (|#1| |#1| (-575))) (-15 -2467 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4421 ((-782))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936)))) (-1029)) (T -1028))
-((-4421 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1028 *3)) (-4 *3 (-1029)))))
-(-10 -8 (-15 -2467 (|#1| (-575))) (-15 -2467 (|#1| (-418 (-575)))) (-15 -2467 (|#1| |#1| (-936))) (-15 -1625 ((-655 |#1|) (-967 (-575)))) (-15 -1625 ((-655 |#1|) (-967 (-418 (-575))))) (-15 -1625 ((-655 |#1|) (-967 |#1|))) (-15 -1625 ((-655 |#1|) (-1190 (-575)))) (-15 -1625 ((-655 |#1|) (-1190 (-418 (-575))))) (-15 -1625 ((-655 |#1|) (-1190 |#1|))) (-15 -3151 ((-3 |#1| "failed") (-1190 |#1|) (-936))) (-15 -3151 ((-3 |#1| "failed") (-1190 |#1|) (-936) (-873))) (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -2111 (|#1| |#1| (-575))) (-15 -2467 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4421 ((-782))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 102)) (-2456 (($ $) 103)) (-3978 (((-112) $) 105)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 122)) (-4281 (((-429 $) $) 123)) (-2467 (($ $) 86) (($ $ (-936)) 72) (($ (-418 (-575))) 71) (($ (-575)) 70)) (-3599 (((-112) $ $) 113)) (-2326 (((-575) $) 139)) (-3261 (($) 18 T CONST)) (-3151 (((-3 $ "failed") (-1190 $) (-936) (-873)) 80) (((-3 $ "failed") (-1190 $) (-936)) 79)) (-2443 (((-3 (-575) "failed") $) 99 (|has| (-418 (-575)) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 97 (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-3 (-418 (-575)) "failed") $) 94)) (-4400 (((-575) $) 98 (|has| (-418 (-575)) (-1055 (-575)))) (((-418 (-575)) $) 96 (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-418 (-575)) $) 95)) (-1363 (($ $ (-873)) 69)) (-2627 (($ $ (-873)) 68)) (-2800 (($ $ $) 117)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 116)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 111)) (-3559 (((-112) $) 124)) (-2359 (((-112) $) 137)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 85)) (-1721 (((-112) $) 138)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 120)) (-1914 (($ $ $) 136)) (-3503 (($ $ $) 135)) (-4319 (((-3 (-1190 $) "failed") $) 81)) (-3377 (((-3 (-873) "failed") $) 83)) (-2736 (((-3 (-1190 $) "failed") $) 82)) (-3886 (($ (-655 $)) 109) (($ $ $) 108)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 125)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 110)) (-3923 (($ (-655 $)) 107) (($ $ $) 106)) (-2347 (((-429 $) $) 121)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 118)) (-2849 (((-3 $ "failed") $ $) 101)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 112)) (-1720 (((-782) $) 114)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 115)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 129) (($ $) 100) (($ (-418 (-575))) 93) (($ (-575)) 92) (($ (-418 (-575))) 89)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 104)) (-3493 (((-418 (-575)) $ $) 67)) (-1625 (((-655 $) (-1190 $)) 78) (((-655 $) (-1190 (-418 (-575)))) 77) (((-655 $) (-1190 (-575))) 76) (((-655 $) (-967 $)) 75) (((-655 $) (-967 (-418 (-575)))) 74) (((-655 $) (-967 (-575))) 73)) (-3863 (($ $) 140)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 133)) (-3955 (((-112) $ $) 132)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 134)) (-3940 (((-112) $ $) 131)) (-4038 (($ $ $) 130)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 126) (($ $ (-418 (-575))) 84)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ (-418 (-575)) $) 128) (($ $ (-418 (-575))) 127) (($ (-575) $) 91) (($ $ (-575)) 90) (($ (-418 (-575)) $) 88) (($ $ (-418 (-575))) 87)))
-(((-1029) (-141)) (T -1029))
-((-2467 (*1 *1 *1) (-4 *1 (-1029))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-1029)) (-5 *2 (-873)))) (-2736 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029)))) (-4319 (*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029)))) (-3151 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-5 *4 (-873)) (-4 *1 (-1029)))) (-3151 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-4 *1 (-1029)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1190 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029)))) (-2467 (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-936)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1029)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1029)))) (-1363 (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873)))) (-2627 (*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873)))) (-3493 (*1 *2 *1 *1) (-12 (-4 *1 (-1029)) (-5 *2 (-418 (-575))))))
-(-13 (-148) (-859) (-174) (-373) (-422 (-418 (-575))) (-38 (-575)) (-38 (-418 (-575))) (-1019) (-10 -8 (-15 -3377 ((-3 (-873) "failed") $)) (-15 -2736 ((-3 (-1190 $) "failed") $)) (-15 -4319 ((-3 (-1190 $) "failed") $)) (-15 -3151 ((-3 $ "failed") (-1190 $) (-936) (-873))) (-15 -3151 ((-3 $ "failed") (-1190 $) (-936))) (-15 -1625 ((-655 $) (-1190 $))) (-15 -1625 ((-655 $) (-1190 (-418 (-575))))) (-15 -1625 ((-655 $) (-1190 (-575)))) (-15 -1625 ((-655 $) (-967 $))) (-15 -1625 ((-655 $) (-967 (-418 (-575))))) (-15 -1625 ((-655 $) (-967 (-575)))) (-15 -2467 ($ $ (-936))) (-15 -2467 ($ $)) (-15 -2467 ($ (-418 (-575)))) (-15 -2467 ($ (-575))) (-15 -1363 ($ $ (-873))) (-15 -2627 ($ $ (-873))) (-15 -3493 ((-418 (-575)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 #1=(-575)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-422 (-418 (-575))) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 #1#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 #1#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 #1#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-935) . T) ((-1019) . T) ((-1055 (-418 (-575))) . T) ((-1055 (-575)) |has| (-418 (-575)) (-1055 (-575))) ((-1068 #0#) . T) ((-1068 #1#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 #1#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-2124 (((-2 (|:| |ans| |#2|) (|:| -2429 |#2|) (|:| |sol?| (-112))) (-575) |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1030 |#1| |#2|) (-10 -7 (-15 -2124 ((-2 (|:| |ans| |#2|) (|:| -2429 |#2|) (|:| |sol?| (-112))) (-575) |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-27) (-441 |#1|))) (T -1030))
-((-2124 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1194)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-655 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2063 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1220) (-27) (-441 *8))) (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2429 *4) (|:| |sol?| (-112)))) (-5 *1 (-1030 *8 *4)))))
-(-10 -7 (-15 -2124 ((-2 (|:| |ans| |#2|) (|:| -2429 |#2|) (|:| |sol?| (-112))) (-575) |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3416 (((-3 (-655 |#2|) "failed") (-575) |#2| |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1031 |#1| |#2|) (-10 -7 (-15 -3416 ((-3 (-655 |#2|) "failed") (-575) |#2| |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))) (-13 (-1220) (-27) (-441 |#1|))) (T -1031))
-((-3416 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1194)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-655 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2063 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1220) (-27) (-441 *8))) (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575)) (-5 *2 (-655 *4)) (-5 *1 (-1031 *8 *4)))))
-(-10 -7 (-15 -3416 ((-3 (-655 |#2|) "failed") (-575) |#2| |#2| |#2| (-1194) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-655 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-655 |#2|)) (-1 (-3 (-2 (|:| -2063 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-4195 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2566 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-575)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-575) (-1 |#2| |#2|)) 38)) (-3349 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |c| (-418 |#2|)) (|:| -1888 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|)) 69)) (-1802 (((-2 (|:| |ans| (-418 |#2|)) (|:| |nosol| (-112))) (-418 |#2|) (-418 |#2|)) 74)))
-(((-1032 |#1| |#2|) (-10 -7 (-15 -3349 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |c| (-418 |#2|)) (|:| -1888 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -1802 ((-2 (|:| |ans| (-418 |#2|)) (|:| |nosol| (-112))) (-418 |#2|) (-418 |#2|))) (-15 -4195 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2566 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-575)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-575) (-1 |#2| |#2|)))) (-13 (-373) (-148) (-1055 (-575))) (-1261 |#1|)) (T -1032))
-((-4195 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1261 *6)) (-4 *6 (-13 (-373) (-148) (-1055 *4))) (-5 *4 (-575)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2566 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1032 *6 *3)))) (-1802 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| |ans| (-418 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1032 *4 *5)) (-5 *3 (-418 *5)))) (-3349 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |c| (-418 *6)) (|:| -1888 *6))) (-5 *1 (-1032 *5 *6)) (-5 *3 (-418 *6)))))
-(-10 -7 (-15 -3349 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |c| (-418 |#2|)) (|:| -1888 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -1802 ((-2 (|:| |ans| (-418 |#2|)) (|:| |nosol| (-112))) (-418 |#2|) (-418 |#2|))) (-15 -4195 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2566 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-575)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-575) (-1 |#2| |#2|))))
-((-4324 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |h| |#2|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| -1888 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|)) 22)) (-2961 (((-3 (-655 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)) 34)))
-(((-1033 |#1| |#2|) (-10 -7 (-15 -4324 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |h| |#2|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| -1888 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2961 ((-3 (-655 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|)))) (-13 (-373) (-148) (-1055 (-575))) (-1261 |#1|)) (T -1033))
-((-2961 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4)) (-5 *2 (-655 (-418 *5))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-418 *5)))) (-4324 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |h| *6) (|:| |c1| (-418 *6)) (|:| |c2| (-418 *6)) (|:| -1888 *6))) (-5 *1 (-1033 *5 *6)) (-5 *3 (-418 *6)))))
-(-10 -7 (-15 -4324 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-418 |#2|)) (|:| |h| |#2|) (|:| |c1| (-418 |#2|)) (|:| |c2| (-418 |#2|)) (|:| -1888 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|) (-1 |#2| |#2|))) (-15 -2961 ((-3 (-655 (-418 |#2|)) "failed") (-418 |#2|) (-418 |#2|) (-418 |#2|))))
-((-4004 (((-1 |#1|) (-655 (-2 (|:| -4181 |#1|) (|:| -2213 (-575))))) 34)) (-2760 (((-1 |#1|) (-1119 |#1|)) 42)) (-4098 (((-1 |#1|) (-1285 |#1|) (-1285 (-575)) (-575)) 31)))
-(((-1034 |#1|) (-10 -7 (-15 -2760 ((-1 |#1|) (-1119 |#1|))) (-15 -4004 ((-1 |#1|) (-655 (-2 (|:| -4181 |#1|) (|:| -2213 (-575)))))) (-15 -4098 ((-1 |#1|) (-1285 |#1|) (-1285 (-575)) (-575)))) (-1117)) (T -1034))
-((-4098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1285 *6)) (-5 *4 (-1285 (-575))) (-5 *5 (-575)) (-4 *6 (-1117)) (-5 *2 (-1 *6)) (-5 *1 (-1034 *6)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -4181 *4) (|:| -2213 (-575))))) (-4 *4 (-1117)) (-5 *2 (-1 *4)) (-5 *1 (-1034 *4)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-1119 *4)) (-4 *4 (-1117)) (-5 *2 (-1 *4)) (-5 *1 (-1034 *4)))))
-(-10 -7 (-15 -2760 ((-1 |#1|) (-1119 |#1|))) (-15 -4004 ((-1 |#1|) (-655 (-2 (|:| -4181 |#1|) (|:| -2213 (-575)))))) (-15 -4098 ((-1 |#1|) (-1285 |#1|) (-1285 (-575)) (-575))))
-((-3369 (((-782) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3369 ((-782) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-373) (-1261 |#1|) (-1261 (-418 |#2|)) (-352 |#1| |#2| |#3|) (-13 (-378) (-373))) (T -1035))
-((-3369 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-373)) (-4 *7 (-1261 *6)) (-4 *4 (-1261 (-418 *7))) (-4 *8 (-352 *6 *7 *4)) (-4 *9 (-13 (-378) (-373))) (-5 *2 (-782)) (-5 *1 (-1035 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3369 ((-782) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2859 (((-112) $ $) NIL)) (-2567 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 11)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1036) (-13 (-1100) (-10 -8 (-15 -2567 ((-1152) $)) (-15 -1788 ((-1152) $))))) (T -1036))
-((-2567 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036)))))
-(-13 (-1100) (-10 -8 (-15 -2567 ((-1152) $)) (-15 -1788 ((-1152) $))))
-((-2946 (((-3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) "failed") |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) 32) (((-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575))) 29)) (-1384 (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575))) 34) (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-418 (-575))) 30) (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) 33) (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1|) 28)) (-2618 (((-655 (-418 (-575))) (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) 20)) (-4327 (((-418 (-575)) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) 17)))
-(((-1037 |#1|) (-10 -7 (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1|)) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) "failed") |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -4327 ((-418 (-575)) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -2618 ((-655 (-418 (-575))) (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))))) (-1261 (-575))) (T -1037))
-((-2618 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *2 (-655 (-418 (-575)))) (-5 *1 (-1037 *4)) (-4 *4 (-1261 (-575))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) (-5 *2 (-418 (-575))) (-5 *1 (-1037 *4)) (-4 *4 (-1261 (-575))))) (-2946 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) (-2946 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) (-5 *4 (-418 (-575))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))) (-1384 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-418 (-575))) (-5 *2 (-655 (-2 (|:| -2412 *5) (|:| -2429 *5)))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-2 (|:| -2412 *5) (|:| -2429 *5))))) (-1384 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-418 (-575))))) (-1384 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))) (-1384 (*1 *2 *3) (-12 (-5 *2 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))))))
-(-10 -7 (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1|)) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) "failed") |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -4327 ((-418 (-575)) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -2618 ((-655 (-418 (-575))) (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))))
-((-2946 (((-3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) "failed") |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) 35) (((-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575))) 32)) (-1384 (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575))) 30) (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-418 (-575))) 26) (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) 28) (((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1|) 24)))
-(((-1038 |#1|) (-10 -7 (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1|)) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) "failed") |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))) (-1261 (-418 (-575)))) (T -1038))
-((-2946 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))))) (-2946 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) (-5 *4 (-418 (-575))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *4)))) (-1384 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-418 (-575))) (-5 *2 (-655 (-2 (|:| -2412 *5) (|:| -2429 *5)))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *5)) (-5 *4 (-2 (|:| -2412 *5) (|:| -2429 *5))))) (-1384 (*1 *2 *3 *4) (-12 (-5 *4 (-418 (-575))) (-5 *2 (-655 (-2 (|:| -2412 *4) (|:| -2429 *4)))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *4)))) (-1384 (*1 *2 *3 *4) (-12 (-5 *2 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))) (-5 *4 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))) (-1384 (*1 *2 *3) (-12 (-5 *2 (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575)))))))
-(-10 -7 (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1|)) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-418 (-575)))) (-15 -1384 ((-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-418 (-575)))) (-15 -2946 ((-3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) "failed") |#1| (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))) (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))))
-((-2613 (((-227) $) 6) (((-389) $) 9)))
-(((-1039) (-141)) (T -1039))
-NIL
-(-13 (-625 (-227)) (-625 (-389)))
-(((-625 (-227)) . T) ((-625 (-389)) . T))
-((-3520 (((-655 (-389)) (-967 (-575)) (-389)) 28) (((-655 (-389)) (-967 (-418 (-575))) (-389)) 27)) (-2195 (((-655 (-655 (-389))) (-655 (-967 (-575))) (-655 (-1194)) (-389)) 37)))
-(((-1040) (-10 -7 (-15 -3520 ((-655 (-389)) (-967 (-418 (-575))) (-389))) (-15 -3520 ((-655 (-389)) (-967 (-575)) (-389))) (-15 -2195 ((-655 (-655 (-389))) (-655 (-967 (-575))) (-655 (-1194)) (-389))))) (T -1040))
-((-2195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 (-389)))) (-5 *1 (-1040)) (-5 *5 (-389)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 (-389))) (-5 *1 (-1040)) (-5 *4 (-389)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 (-389))) (-5 *1 (-1040)) (-5 *4 (-389)))))
-(-10 -7 (-15 -3520 ((-655 (-389)) (-967 (-418 (-575))) (-389))) (-15 -3520 ((-655 (-389)) (-967 (-575)) (-389))) (-15 -2195 ((-655 (-655 (-389))) (-655 (-967 (-575))) (-655 (-1194)) (-389))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 75)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-2467 (($ $) NIL) (($ $ (-936)) NIL) (($ (-418 (-575))) NIL) (($ (-575)) NIL)) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) 70)) (-3261 (($) NIL T CONST)) (-3151 (((-3 $ "failed") (-1190 $) (-936) (-873)) NIL) (((-3 $ "failed") (-1190 $) (-936)) 55)) (-2443 (((-3 (-418 (-575)) "failed") $) NIL (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-575) "failed") $) NIL (-3763 (|has| (-418 (-575)) (-1055 (-575))) (|has| |#1| (-1055 (-575)))))) (-4400 (((-418 (-575)) $) 17 (|has| (-418 (-575)) (-1055 (-418 (-575))))) (((-418 (-575)) $) 17) ((|#1| $) 117) (((-575) $) NIL (-3763 (|has| (-418 (-575)) (-1055 (-575))) (|has| |#1| (-1055 (-575)))))) (-1363 (($ $ (-873)) 47)) (-2627 (($ $ (-873)) 48)) (-2800 (($ $ $) NIL)) (-3749 (((-418 (-575)) $ $) 21)) (-4162 (((-3 $ "failed") $) 88)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-2359 (((-112) $) 66)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL)) (-1721 (((-112) $) 69)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-4319 (((-3 (-1190 $) "failed") $) 83)) (-3377 (((-3 (-873) "failed") $) 82)) (-2736 (((-3 (-1190 $) "failed") $) 80)) (-1782 (((-3 (-1078 $ (-1190 $)) "failed") $) 78)) (-3886 (($ (-655 $)) NIL) (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 89)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ (-655 $)) NIL) (($ $ $) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2882 (((-873) $) 87) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ $) 63) (($ (-418 (-575))) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ |#1|) 119)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3493 (((-418 (-575)) $ $) 27)) (-1625 (((-655 $) (-1190 $)) 61) (((-655 $) (-1190 (-418 (-575)))) NIL) (((-655 $) (-1190 (-575))) NIL) (((-655 $) (-967 $)) NIL) (((-655 $) (-967 (-418 (-575)))) NIL) (((-655 $) (-967 (-575))) NIL)) (-2453 (($ (-1078 $ (-1190 $)) (-873)) 46)) (-3863 (($ $) 22)) (-1989 (($) 32 T CONST)) (-2005 (($) 39 T CONST)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 76)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 24)) (-4038 (($ $ $) 37)) (-4027 (($ $) 38) (($ $ $) 74)) (-4015 (($ $ $) 112)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL) (($ $ (-418 (-575))) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 98) (($ $ $) 104) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ (-575) $) 98) (($ $ (-575)) NIL) (($ (-418 (-575)) $) NIL) (($ $ (-418 (-575))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1041 |#1|) (-13 (-1029) (-422 |#1|) (-38 |#1|) (-10 -8 (-15 -2453 ($ (-1078 $ (-1190 $)) (-873))) (-15 -1782 ((-3 (-1078 $ (-1190 $)) "failed") $)) (-15 -3749 ((-418 (-575)) $ $)))) (-13 (-859) (-373) (-1039))) (T -1041))
-((-2453 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 (-1041 *4) (-1190 (-1041 *4)))) (-5 *3 (-873)) (-5 *1 (-1041 *4)) (-4 *4 (-13 (-859) (-373) (-1039))))) (-1782 (*1 *2 *1) (|partial| -12 (-5 *2 (-1078 (-1041 *3) (-1190 (-1041 *3)))) (-5 *1 (-1041 *3)) (-4 *3 (-13 (-859) (-373) (-1039))))) (-3749 (*1 *2 *1 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1041 *3)) (-4 *3 (-13 (-859) (-373) (-1039))))))
-(-13 (-1029) (-422 |#1|) (-38 |#1|) (-10 -8 (-15 -2453 ($ (-1078 $ (-1190 $)) (-873))) (-15 -1782 ((-3 (-1078 $ (-1190 $)) "failed") $)) (-15 -3749 ((-418 (-575)) $ $))))
-((-1971 (((-2 (|:| -2566 |#2|) (|:| -1575 (-655 |#1|))) |#2| (-655 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1042 |#1| |#2|) (-10 -7 (-15 -1971 (|#2| |#2| |#1|)) (-15 -1971 ((-2 (|:| -2566 |#2|) (|:| -1575 (-655 |#1|))) |#2| (-655 |#1|)))) (-373) (-667 |#1|)) (T -1042))
-((-1971 (*1 *2 *3 *4) (-12 (-4 *5 (-373)) (-5 *2 (-2 (|:| -2566 *3) (|:| -1575 (-655 *5)))) (-5 *1 (-1042 *5 *3)) (-5 *4 (-655 *5)) (-4 *3 (-667 *5)))) (-1971 (*1 *2 *2 *3) (-12 (-4 *3 (-373)) (-5 *1 (-1042 *3 *2)) (-4 *2 (-667 *3)))))
-(-10 -7 (-15 -1971 (|#2| |#2| |#1|)) (-15 -1971 ((-2 (|:| -2566 |#2|) (|:| -1575 (-655 |#1|))) |#2| (-655 |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3855 ((|#1| $ |#1|) 14)) (-3052 ((|#1| $ |#1|) 12)) (-2810 (($ |#1|) 10)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2065 ((|#1| $) 11)) (-2254 ((|#1| $) 13)) (-2882 (((-873) $) 21 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3913 (((-112) $ $) 9)))
-(((-1043 |#1|) (-13 (-1235) (-10 -8 (-15 -2810 ($ |#1|)) (-15 -2065 (|#1| $)) (-15 -3052 (|#1| $ |#1|)) (-15 -2254 (|#1| $)) (-15 -3855 (|#1| $ |#1|)) (-15 -3913 ((-112) $ $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) (-1235)) (T -1043))
-((-2810 (*1 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-2065 (*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-3052 (*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-2254 (*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-3855 (*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))) (-3913 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1043 *3)) (-4 *3 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2810 ($ |#1|)) (-15 -2065 (|#1| $)) (-15 -3052 (|#1| $ |#1|)) (-15 -2254 (|#1| $)) (-15 -3855 (|#1| $ |#1|)) (-15 -3913 ((-112) $ $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) NIL)) (-4014 (((-655 $) (-655 |#4|)) 118) (((-655 $) (-655 |#4|) (-112)) 119) (((-655 $) (-655 |#4|) (-112) (-112)) 117) (((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1606 (((-655 |#3|) $) NIL)) (-4419 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1479 ((|#4| |#4| $) NIL)) (-3312 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 112)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3983 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 66)) (-3261 (($) NIL T CONST)) (-1756 (((-112) $) 29 (|has| |#1| (-567)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4415 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1759 (((-112) $) NIL (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2762 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4400 (($ (-655 |#4|)) NIL)) (-1969 (((-3 $ "failed") $) 45)) (-3355 ((|#4| |#4| $) 69)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3631 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3305 ((|#4| |#4| $) NIL)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) NIL)) (-3209 (((-112) |#4| $) NIL)) (-2546 (((-112) |#4| $) NIL)) (-1486 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4272 (((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112)) 133)) (-3999 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3757 ((|#3| $) 38)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#4|) $) 19 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2844 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 23)) (-3717 (((-655 |#3|) $) NIL)) (-1789 (((-112) |#3| $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3656 (((-3 |#4| (-655 $)) |#4| |#4| $) NIL)) (-3822 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 110)) (-3651 (((-3 |#4| "failed") $) 42)) (-3232 (((-655 $) |#4| $) 93)) (-3533 (((-3 (-112) (-655 $)) |#4| $) NIL)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1872 (((-655 $) |#4| $) 115) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 116) (((-655 $) |#4| (-655 $)) NIL)) (-1952 (((-655 $) (-655 |#4|) (-112) (-112) (-112)) 128)) (-2400 (($ |#4| $) 82) (($ (-655 |#4|) $) 83) (((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4212 (((-655 |#4|) $) NIL)) (-1992 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4068 ((|#4| |#4| $) NIL)) (-2057 (((-112) $ $) NIL)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1986 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-3 |#4| "failed") $) 40)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3629 (((-3 $ "failed") $ |#4|) 59)) (-1985 (($ $ |#4|) NIL) (((-655 $) |#4| $) 95) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 89)) (-2718 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 17)) (-1393 (($) 14)) (-1753 (((-782) $) NIL)) (-3922 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) 13)) (-2613 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 22)) (-3273 (($ $ |#3|) 52)) (-2078 (($ $ |#3|) 54)) (-3663 (($ $) NIL)) (-4049 (($ $ |#3|) NIL)) (-2882 (((-873) $) 35) (((-655 |#4|) $) 46)) (-2936 (((-782) $) NIL (|has| |#3| (-378)))) (-3685 (((-112) $ $) NIL)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-3039 (((-655 $) |#4| $) 92) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) NIL)) (-4121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) NIL)) (-2360 (((-112) |#4| $) NIL)) (-4060 (((-112) |#3| $) 65)) (-3913 (((-112) $ $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1044 |#1| |#2| |#3| |#4|) (-13 (-1088 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2400 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -1952 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -4272 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112))))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -1044))
-((-2400 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-1082 *5 *6 *7)))) (-4014 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-4014 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-4272 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-655 *8)) (|:| |towers| (-655 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-655 *8)))))
-(-13 (-1088 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2400 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -1952 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -4272 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112)))))
-((-3372 (((-655 (-700 |#1|)) (-655 (-700 |#1|))) 70) (((-700 |#1|) (-700 |#1|)) 69) (((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-655 (-700 |#1|))) 68) (((-700 |#1|) (-700 |#1|) (-700 |#1|)) 65)) (-3664 (((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936)) 63) (((-700 |#1|) (-700 |#1|) (-936)) 62)) (-1585 (((-655 (-700 (-575))) (-655 (-655 (-575)))) 81) (((-655 (-700 (-575))) (-655 (-920 (-575))) (-575)) 80) (((-700 (-575)) (-655 (-575))) 77) (((-700 (-575)) (-920 (-575)) (-575)) 75)) (-3064 (((-700 (-967 |#1|)) (-782)) 95)) (-1976 (((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936)) 49 (|has| |#1| (-6 (-4462 "*")))) (((-700 |#1|) (-700 |#1|) (-936)) 47 (|has| |#1| (-6 (-4462 "*"))))))
-(((-1045 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -1976 ((-700 |#1|) (-700 |#1|) (-936))) |%noBranch|) (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -1976 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) |%noBranch|) (-15 -3064 ((-700 (-967 |#1|)) (-782))) (-15 -3664 ((-700 |#1|) (-700 |#1|) (-936))) (-15 -3664 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) (-15 -3372 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3372 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -3372 ((-700 |#1|) (-700 |#1|))) (-15 -3372 ((-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -1585 ((-700 (-575)) (-920 (-575)) (-575))) (-15 -1585 ((-700 (-575)) (-655 (-575)))) (-15 -1585 ((-655 (-700 (-575))) (-655 (-920 (-575))) (-575))) (-15 -1585 ((-655 (-700 (-575))) (-655 (-655 (-575)))))) (-1066)) (T -1045))
-((-1585 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-575)))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-1045 *4)) (-4 *4 (-1066)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-920 (-575)))) (-5 *4 (-575)) (-5 *2 (-655 (-700 *4))) (-5 *1 (-1045 *5)) (-4 *5 (-1066)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1045 *4)) (-4 *4 (-1066)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-575))) (-5 *4 (-575)) (-5 *2 (-700 *4)) (-5 *1 (-1045 *5)) (-4 *5 (-1066)))) (-3372 (*1 *2 *2) (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-3372 (*1 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))) (-3664 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) (-3664 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-700 (-967 *4))) (-5 *1 (-1045 *4)) (-4 *4 (-1066)))) (-1976 (*1 *2 *2 *3) (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) (|has| *4 (-6 (-4462 "*"))) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))) (-1976 (*1 *2 *2 *3) (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (|has| *4 (-6 (-4462 "*"))) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -1976 ((-700 |#1|) (-700 |#1|) (-936))) |%noBranch|) (IF (|has| |#1| (-6 (-4462 "*"))) (-15 -1976 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) |%noBranch|) (-15 -3064 ((-700 (-967 |#1|)) (-782))) (-15 -3664 ((-700 |#1|) (-700 |#1|) (-936))) (-15 -3664 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-936))) (-15 -3372 ((-700 |#1|) (-700 |#1|) (-700 |#1|))) (-15 -3372 ((-655 (-700 |#1|)) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -3372 ((-700 |#1|) (-700 |#1|))) (-15 -3372 ((-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -1585 ((-700 (-575)) (-920 (-575)) (-575))) (-15 -1585 ((-700 (-575)) (-655 (-575)))) (-15 -1585 ((-655 (-700 (-575))) (-655 (-920 (-575))) (-575))) (-15 -1585 ((-655 (-700 (-575))) (-655 (-655 (-575))))))
-((-2593 (((-700 |#1|) (-655 (-700 |#1|)) (-1285 |#1|)) 70 (|has| |#1| (-316)))) (-2432 (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 (-1285 |#1|))) 110 (|has| |#1| (-373))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 |#1|)) 117 (|has| |#1| (-373)))) (-3576 (((-1285 |#1|) (-655 (-1285 |#1|)) (-575)) 135 (-12 (|has| |#1| (-373)) (|has| |#1| (-378))))) (-3343 (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-936)) 123 (-12 (|has| |#1| (-373)) (|has| |#1| (-378)))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112)) 122 (-12 (|has| |#1| (-373)) (|has| |#1| (-378)))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|))) 121 (-12 (|has| |#1| (-373)) (|has| |#1| (-378)))) (((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112) (-575) (-575)) 120 (-12 (|has| |#1| (-373)) (|has| |#1| (-378))))) (-3770 (((-112) (-655 (-700 |#1|))) 103 (|has| |#1| (-373))) (((-112) (-655 (-700 |#1|)) (-575)) 106 (|has| |#1| (-373)))) (-2676 (((-1285 (-1285 |#1|)) (-655 (-700 |#1|)) (-1285 |#1|)) 67 (|has| |#1| (-316)))) (-4052 (((-700 |#1|) (-655 (-700 |#1|)) (-700 |#1|)) 47)) (-1824 (((-700 |#1|) (-1285 (-1285 |#1|))) 40)) (-1354 (((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-575)) 94 (|has| |#1| (-373))) (((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|))) 93 (|has| |#1| (-373))) (((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-112) (-575)) 101 (|has| |#1| (-373)))))
-(((-1046 |#1|) (-10 -7 (-15 -1824 ((-700 |#1|) (-1285 (-1285 |#1|)))) (-15 -4052 ((-700 |#1|) (-655 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-316)) (PROGN (-15 -2676 ((-1285 (-1285 |#1|)) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -2593 ((-700 |#1|) (-655 (-700 |#1|)) (-1285 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -1354 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-112) (-575))) (-15 -1354 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -1354 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-575))) (-15 -3770 ((-112) (-655 (-700 |#1|)) (-575))) (-15 -3770 ((-112) (-655 (-700 |#1|)))) (-15 -2432 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -2432 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 (-1285 |#1|))))) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#1| (-373)) (PROGN (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112) (-575) (-575))) (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)))) (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112))) (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-936))) (-15 -3576 ((-1285 |#1|) (-655 (-1285 |#1|)) (-575)))) |%noBranch|) |%noBranch|)) (-1066)) (T -1046))
-((-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1285 *5))) (-5 *4 (-575)) (-5 *2 (-1285 *5)) (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-3343 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-373)) (-4 *4 (-378)) (-4 *4 (-1066)) (-5 *2 (-655 (-655 (-700 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-655 (-700 *4))))) (-3343 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-575)) (-4 *6 (-373)) (-4 *6 (-378)) (-4 *6 (-1066)) (-5 *2 (-655 (-655 (-700 *6)))) (-5 *1 (-1046 *6)) (-5 *3 (-655 (-700 *6))))) (-2432 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 (-1285 *5))) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-2432 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-655 (-700 *5))))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-1046 *4)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-4 *5 (-373)) (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-1046 *5)))) (-1354 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-5 *2 (-700 *5)) (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-1066)))) (-1354 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-5 *1 (-1046 *4)) (-4 *4 (-373)) (-4 *4 (-1066)))) (-1354 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-655 (-700 *6))) (-5 *4 (-112)) (-5 *5 (-575)) (-5 *2 (-700 *6)) (-5 *1 (-1046 *6)) (-4 *6 (-373)) (-4 *6 (-1066)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-1285 *5)) (-4 *5 (-316)) (-4 *5 (-1066)) (-5 *2 (-700 *5)) (-5 *1 (-1046 *5)))) (-2676 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-700 *5))) (-4 *5 (-316)) (-4 *5 (-1066)) (-5 *2 (-1285 (-1285 *5))) (-5 *1 (-1046 *5)) (-5 *4 (-1285 *5)))) (-4052 (*1 *2 *3 *2) (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-4 *4 (-1066)) (-5 *1 (-1046 *4)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1285 (-1285 *4))) (-4 *4 (-1066)) (-5 *2 (-700 *4)) (-5 *1 (-1046 *4)))))
-(-10 -7 (-15 -1824 ((-700 |#1|) (-1285 (-1285 |#1|)))) (-15 -4052 ((-700 |#1|) (-655 (-700 |#1|)) (-700 |#1|))) (IF (|has| |#1| (-316)) (PROGN (-15 -2676 ((-1285 (-1285 |#1|)) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -2593 ((-700 |#1|) (-655 (-700 |#1|)) (-1285 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -1354 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-112) (-575))) (-15 -1354 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -1354 ((-700 |#1|) (-655 (-700 |#1|)) (-655 (-700 |#1|)) (-575))) (-15 -3770 ((-112) (-655 (-700 |#1|)) (-575))) (-15 -3770 ((-112) (-655 (-700 |#1|)))) (-15 -2432 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 |#1|))) (-15 -2432 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-1285 (-1285 |#1|))))) |%noBranch|) (IF (|has| |#1| (-378)) (IF (|has| |#1| (-373)) (PROGN (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112) (-575) (-575))) (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)))) (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-112))) (-15 -3343 ((-655 (-655 (-700 |#1|))) (-655 (-700 |#1|)) (-936))) (-15 -3576 ((-1285 |#1|) (-655 (-1285 |#1|)) (-575)))) |%noBranch|) |%noBranch|))
-((-3994 ((|#1| (-936) |#1|) 18)))
-(((-1047 |#1|) (-10 -7 (-15 -3994 (|#1| (-936) |#1|))) (-13 (-1117) (-10 -8 (-15 -4015 ($ $ $))))) (T -1047))
-((-3994 (*1 *2 *3 *2) (-12 (-5 *3 (-936)) (-5 *1 (-1047 *2)) (-4 *2 (-13 (-1117) (-10 -8 (-15 -4015 ($ $ $))))))))
-(-10 -7 (-15 -3994 (|#1| (-936) |#1|)))
-((-2287 (((-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575))))))) (-700 (-418 (-967 (-575))))) 67)) (-2780 (((-655 (-700 (-325 (-575)))) (-325 (-575)) (-700 (-418 (-967 (-575))))) 52)) (-2577 (((-655 (-325 (-575))) (-700 (-418 (-967 (-575))))) 45)) (-2738 (((-655 (-700 (-325 (-575)))) (-700 (-418 (-967 (-575))))) 85)) (-1837 (((-700 (-325 (-575))) (-700 (-325 (-575)))) 38)) (-2563 (((-655 (-700 (-325 (-575)))) (-655 (-700 (-325 (-575))))) 74)) (-3633 (((-3 (-700 (-325 (-575))) "failed") (-700 (-418 (-967 (-575))))) 82)))
-(((-1048) (-10 -7 (-15 -2287 ((-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575))))))) (-700 (-418 (-967 (-575)))))) (-15 -2780 ((-655 (-700 (-325 (-575)))) (-325 (-575)) (-700 (-418 (-967 (-575)))))) (-15 -2577 ((-655 (-325 (-575))) (-700 (-418 (-967 (-575)))))) (-15 -3633 ((-3 (-700 (-325 (-575))) "failed") (-700 (-418 (-967 (-575)))))) (-15 -1837 ((-700 (-325 (-575))) (-700 (-325 (-575))))) (-15 -2563 ((-655 (-700 (-325 (-575)))) (-655 (-700 (-325 (-575)))))) (-15 -2738 ((-655 (-700 (-325 (-575)))) (-700 (-418 (-967 (-575)))))))) (T -1048))
-((-2738 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)))) (-2563 (*1 *2 *2) (-12 (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048)))) (-3633 (*1 *2 *3) (|partial| -12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-325 (-575)))) (-5 *1 (-1048)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)) (-5 *3 (-325 (-575))))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575)))))))) (-5 *1 (-1048)))))
-(-10 -7 (-15 -2287 ((-655 (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575)) (|:| |radvect| (-655 (-700 (-325 (-575))))))) (-700 (-418 (-967 (-575)))))) (-15 -2780 ((-655 (-700 (-325 (-575)))) (-325 (-575)) (-700 (-418 (-967 (-575)))))) (-15 -2577 ((-655 (-325 (-575))) (-700 (-418 (-967 (-575)))))) (-15 -3633 ((-3 (-700 (-325 (-575))) "failed") (-700 (-418 (-967 (-575)))))) (-15 -1837 ((-700 (-325 (-575))) (-700 (-325 (-575))))) (-15 -2563 ((-655 (-700 (-325 (-575)))) (-655 (-700 (-325 (-575)))))) (-15 -2738 ((-655 (-700 (-325 (-575)))) (-700 (-418 (-967 (-575)))))))
-((-4310 ((|#1| |#1| (-936)) 18)))
-(((-1049 |#1|) (-10 -7 (-15 -4310 (|#1| |#1| (-936)))) (-13 (-1117) (-10 -8 (-15 * ($ $ $))))) (T -1049))
-((-4310 (*1 *2 *2 *3) (-12 (-5 *3 (-936)) (-5 *1 (-1049 *2)) (-4 *2 (-13 (-1117) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4310 (|#1| |#1| (-936))))
-((-2882 ((|#1| (-321)) 11) (((-1290) |#1|) 9)))
-(((-1050 |#1|) (-10 -7 (-15 -2882 ((-1290) |#1|)) (-15 -2882 (|#1| (-321)))) (-1235)) (T -1050))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-321)) (-5 *1 (-1050 *2)) (-4 *2 (-1235)))) (-2882 (*1 *2 *3) (-12 (-5 *2 (-1290)) (-5 *1 (-1050 *3)) (-4 *3 (-1235)))))
-(-10 -7 (-15 -2882 ((-1290) |#1|)) (-15 -2882 (|#1| (-321))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2302 (($ |#4|) 25)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-2290 ((|#4| $) 27)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 46) (($ (-575)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4421 (((-782)) 43 T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 21 T CONST)) (-2005 (($) 23 T CONST)) (-3913 (((-112) $ $) 40)) (-4027 (($ $) 31) (($ $ $) NIL)) (-4015 (($ $ $) 29)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1051 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2302 ($ |#4|)) (-15 -2882 ($ |#4|)) (-15 -2290 (|#4| $)))) (-373) (-804) (-861) (-964 |#1| |#2| |#3|) (-655 |#4|)) (T -1051))
-((-2302 (*1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5)) (-14 *6 (-655 *2)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5)) (-14 *6 (-655 *2)))) (-2290 (*1 *2 *1) (-12 (-4 *2 (-964 *3 *4 *5)) (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-14 *6 (-655 *2)))))
-(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2302 ($ |#4|)) (-15 -2882 ($ |#4|)) (-15 -2290 (|#4| $))))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4116 (((-1290) $ (-1194) (-1194)) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3722 (((-112) (-112)) 43)) (-3852 (((-112) (-112)) 42)) (-3052 (((-52) $ (-1194) (-52)) NIL)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 (-52) "failed") (-1194) $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2375 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-3 (-52) "failed") (-1194) $) NIL)) (-3631 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2857 (((-52) $ (-1194) (-52)) NIL (|has| $ (-6 -4461)))) (-2786 (((-52) $ (-1194)) NIL)) (-3999 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-1194) $) NIL (|has| (-1194) (-861)))) (-4252 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-2263 (((-1194) $) NIL (|has| (-1194) (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1995 (((-655 (-1194)) $) 37)) (-3766 (((-112) (-1194) $) NIL)) (-4030 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-4218 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-1653 (((-655 (-1194)) $) NIL)) (-1801 (((-112) (-1194) $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1955 (((-52) $) NIL (|has| (-1194) (-861)))) (-1540 (((-3 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL)) (-1652 (($ $ (-52)) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-52)) (-655 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-303 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-655 (-303 (-52)))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-2697 (((-655 (-52)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 (((-52) $ (-1194)) 39) (((-52) $ (-1194) (-52)) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-782) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117)))) (((-782) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-2882 (((-873) $) 41 (-3763 (|has| (-52) (-624 (-873))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1052) (-13 (-1211 (-1194) (-52)) (-10 -7 (-15 -3722 ((-112) (-112))) (-15 -3852 ((-112) (-112))) (-6 -4460)))) (T -1052))
-((-3722 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052)))))
-(-13 (-1211 (-1194) (-52)) (-10 -7 (-15 -3722 ((-112) (-112))) (-15 -3852 ((-112) (-112))) (-6 -4460)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3827 (((-1152) $) 9)) (-2882 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1053) (-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $))))) (T -1053))
-((-3827 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1053)))))
-(-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $))))
-((-4400 ((|#2| $) 10)))
-(((-1054 |#1| |#2|) (-10 -8 (-15 -4400 (|#2| |#1|))) (-1055 |#2|) (-1235)) (T -1054))
-NIL
-(-10 -8 (-15 -4400 (|#2| |#1|)))
-((-2443 (((-3 |#1| "failed") $) 9)) (-4400 ((|#1| $) 8)) (-2882 (($ |#1|) 6)))
-(((-1055 |#1|) (-141) (-1235)) (T -1055))
-((-2443 (*1 *2 *1) (|partial| -12 (-4 *1 (-1055 *2)) (-4 *2 (-1235)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1235)))))
-(-13 (-627 |t#1|) (-10 -8 (-15 -2443 ((-3 |t#1| "failed") $)) (-15 -4400 (|t#1| $))))
-(((-627 |#1|) . T))
-((-4032 (((-655 (-655 (-303 (-418 (-967 |#2|))))) (-655 (-967 |#2|)) (-655 (-1194))) 38)))
-(((-1056 |#1| |#2|) (-10 -7 (-15 -4032 ((-655 (-655 (-303 (-418 (-967 |#2|))))) (-655 (-967 |#2|)) (-655 (-1194))))) (-567) (-13 (-567) (-1055 |#1|))) (T -1056))
-((-4032 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-4 *6 (-13 (-567) (-1055 *5))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *6)))))) (-5 *1 (-1056 *5 *6)))))
-(-10 -7 (-15 -4032 ((-655 (-655 (-303 (-418 (-967 |#2|))))) (-655 (-967 |#2|)) (-655 (-1194)))))
-((-4331 (((-389)) 17)) (-2760 (((-1 (-389)) (-389) (-389)) 22)) (-1888 (((-1 (-389)) (-782)) 48)) (-3258 (((-389)) 37)) (-1501 (((-1 (-389)) (-389) (-389)) 38)) (-3447 (((-389)) 29)) (-2262 (((-1 (-389)) (-389)) 30)) (-3799 (((-389) (-782)) 43)) (-2607 (((-1 (-389)) (-782)) 44)) (-3027 (((-1 (-389)) (-782) (-782)) 47)) (-3550 (((-1 (-389)) (-782) (-782)) 45)))
-(((-1057) (-10 -7 (-15 -4331 ((-389))) (-15 -3258 ((-389))) (-15 -3447 ((-389))) (-15 -3799 ((-389) (-782))) (-15 -2760 ((-1 (-389)) (-389) (-389))) (-15 -1501 ((-1 (-389)) (-389) (-389))) (-15 -2262 ((-1 (-389)) (-389))) (-15 -2607 ((-1 (-389)) (-782))) (-15 -3550 ((-1 (-389)) (-782) (-782))) (-15 -3027 ((-1 (-389)) (-782) (-782))) (-15 -1888 ((-1 (-389)) (-782))))) (T -1057))
-((-1888 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-3027 (*1 *2 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-3550 (*1 *2 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) (-1501 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) (-2760 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-389)) (-5 *1 (-1057)))) (-3447 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))) (-3258 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))) (-4331 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))))
-(-10 -7 (-15 -4331 ((-389))) (-15 -3258 ((-389))) (-15 -3447 ((-389))) (-15 -3799 ((-389) (-782))) (-15 -2760 ((-1 (-389)) (-389) (-389))) (-15 -1501 ((-1 (-389)) (-389) (-389))) (-15 -2262 ((-1 (-389)) (-389))) (-15 -2607 ((-1 (-389)) (-782))) (-15 -3550 ((-1 (-389)) (-782) (-782))) (-15 -3027 ((-1 (-389)) (-782) (-782))) (-15 -1888 ((-1 (-389)) (-782))))
-((-2347 (((-429 |#1|) |#1|) 33)))
-(((-1058 |#1|) (-10 -7 (-15 -2347 ((-429 |#1|) |#1|))) (-1261 (-418 (-967 (-575))))) (T -1058))
-((-2347 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-1261 (-418 (-967 (-575))))))))
-(-10 -7 (-15 -2347 ((-429 |#1|) |#1|)))
-((-2847 (((-418 (-429 (-967 |#1|))) (-418 (-967 |#1|))) 14)))
-(((-1059 |#1|) (-10 -7 (-15 -2847 ((-418 (-429 (-967 |#1|))) (-418 (-967 |#1|))))) (-316)) (T -1059))
-((-2847 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-316)) (-5 *2 (-418 (-429 (-967 *4)))) (-5 *1 (-1059 *4)))))
-(-10 -7 (-15 -2847 ((-418 (-429 (-967 |#1|))) (-418 (-967 |#1|)))))
-((-1606 (((-655 (-1194)) (-418 (-967 |#1|))) 17)) (-3462 (((-418 (-1190 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194)) 24)) (-2430 (((-418 (-967 |#1|)) (-418 (-1190 (-418 (-967 |#1|)))) (-1194)) 26)) (-2187 (((-3 (-1194) "failed") (-418 (-967 |#1|))) 20)) (-3046 (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-303 (-418 (-967 |#1|))))) 32) (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|)))) 33) (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-1194)) (-655 (-418 (-967 |#1|)))) 28) (((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|))) 29)) (-2882 (((-418 (-967 |#1|)) |#1|) 11)))
-(((-1060 |#1|) (-10 -7 (-15 -1606 ((-655 (-1194)) (-418 (-967 |#1|)))) (-15 -2187 ((-3 (-1194) "failed") (-418 (-967 |#1|)))) (-15 -3462 ((-418 (-1190 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -2430 ((-418 (-967 |#1|)) (-418 (-1190 (-418 (-967 |#1|)))) (-1194))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-1194)) (-655 (-418 (-967 |#1|))))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2882 ((-418 (-967 |#1|)) |#1|))) (-567)) (T -1060))
-((-2882 (*1 *2 *3) (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-567)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) (-5 *2 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *1 (-1060 *4)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-5 *2 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *1 (-1060 *4)))) (-3046 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-655 (-1194))) (-5 *4 (-655 (-418 (-967 *5)))) (-5 *2 (-418 (-967 *5))) (-4 *5 (-567)) (-5 *1 (-1060 *5)))) (-3046 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-1060 *4)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-1190 (-418 (-967 *5))))) (-5 *4 (-1194)) (-5 *2 (-418 (-967 *5))) (-5 *1 (-1060 *5)) (-4 *5 (-567)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-567)) (-5 *2 (-418 (-1190 (-418 (-967 *5))))) (-5 *1 (-1060 *5)) (-5 *3 (-418 (-967 *5))))) (-2187 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-1194)) (-5 *1 (-1060 *4)))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-1194))) (-5 *1 (-1060 *4)))))
-(-10 -7 (-15 -1606 ((-655 (-1194)) (-418 (-967 |#1|)))) (-15 -2187 ((-3 (-1194) "failed") (-418 (-967 |#1|)))) (-15 -3462 ((-418 (-1190 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -2430 ((-418 (-967 |#1|)) (-418 (-1190 (-418 (-967 |#1|)))) (-1194))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-1194)) (-655 (-418 (-967 |#1|))))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-303 (-418 (-967 |#1|))))) (-15 -3046 ((-418 (-967 |#1|)) (-418 (-967 |#1|)) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2882 ((-418 (-967 |#1|)) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3261 (($) 18 T CONST)) (-2726 ((|#1| $) 23)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3563 ((|#1| $) 22)) (-3801 ((|#1|) 20 T CONST)) (-2882 (((-873) $) 12)) (-4031 ((|#1| $) 21)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16)))
-(((-1061 |#1|) (-141) (-23)) (T -1061))
-((-2726 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))) (-3801 (*1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -2726 (|t#1| $)) (-15 -3563 (|t#1| $)) (-15 -4031 (|t#1| $)) (-15 -3801 (|t#1|) -3736)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-2963 (($) 25 T CONST)) (-3261 (($) 18 T CONST)) (-2726 ((|#1| $) 23)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3563 ((|#1| $) 22)) (-3801 ((|#1|) 20 T CONST)) (-2882 (((-873) $) 12)) (-4031 ((|#1| $) 21)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16)))
-(((-1062 |#1|) (-141) (-23)) (T -1062))
-((-2963 (*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
-(-13 (-1061 |t#1|) (-10 -8 (-15 -2963 ($) -3736)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-624 (-873)) . T) ((-1061 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 (-791 |#1| (-875 |#2|)))))) (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-4014 (((-655 $) (-655 (-791 |#1| (-875 |#2|)))) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112)) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112) (-112)) NIL)) (-1606 (((-655 (-875 |#2|)) $) NIL)) (-4419 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-567)))) (-3184 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-1479 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-3312 (((-655 (-2 (|:| |val| (-791 |#1| (-875 |#2|))) (|:| -4270 $))) (-791 |#1| (-875 |#2|)) $) NIL)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ (-875 |#2|)) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3983 (($ (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 (-791 |#1| (-875 |#2|)) "failed") $ (-875 |#2|)) NIL)) (-3261 (($) NIL T CONST)) (-1756 (((-112) $) NIL (|has| |#1| (-567)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4415 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1759 (((-112) $) NIL (|has| |#1| (-567)))) (-3116 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))) $ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-2762 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| |#1| (-567)))) (-2540 (((-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-4400 (($ (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-1969 (((-3 $ "failed") $) NIL)) (-3355 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117))))) (-3631 (($ (-791 |#1| (-875 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-791 |#1| (-875 |#2|))) (|:| |den| |#1|)) (-791 |#1| (-875 |#2|)) $) NIL (|has| |#1| (-567)))) (-3073 (((-112) (-791 |#1| (-875 |#2|)) $ (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-3305 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2302 (((-791 |#1| (-875 |#2|)) (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $ (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (((-791 |#1| (-875 |#2|)) (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $ (-791 |#1| (-875 |#2|))) NIL (|has| $ (-6 -4460))) (((-791 |#1| (-875 |#2|)) (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-3240 (((-2 (|:| -2454 (-655 (-791 |#1| (-875 |#2|)))) (|:| -2976 (-655 (-791 |#1| (-875 |#2|))))) $) NIL)) (-3209 (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-2546 (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-1486 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-3999 (((-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3621 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-3757 (((-875 |#2|) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-791 |#1| (-875 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117))))) (-2844 (($ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) $) NIL)) (-3717 (((-655 (-875 |#2|)) $) NIL)) (-1789 (((-112) (-875 |#2|) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3656 (((-3 (-791 |#1| (-875 |#2|)) (-655 $)) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-3822 (((-655 (-2 (|:| |val| (-791 |#1| (-875 |#2|))) (|:| -4270 $))) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-3651 (((-3 (-791 |#1| (-875 |#2|)) "failed") $) NIL)) (-3232 (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL)) (-3533 (((-3 (-112) (-655 $)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-1872 (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-655 $)) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) (-655 $)) NIL)) (-2400 (($ (-791 |#1| (-875 |#2|)) $) NIL) (($ (-655 (-791 |#1| (-875 |#2|))) $) NIL)) (-4212 (((-655 (-791 |#1| (-875 |#2|))) $) NIL)) (-1992 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-4068 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-2057 (((-112) $ $) NIL)) (-3007 (((-2 (|:| |num| (-791 |#1| (-875 |#2|))) (|:| |den| |#1|)) (-791 |#1| (-875 |#2|)) $) NIL (|has| |#1| (-567)))) (-4091 (((-112) (-791 |#1| (-875 |#2|)) $) NIL) (((-112) $) NIL)) (-1986 (((-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-3 (-791 |#1| (-875 |#2|)) "failed") $) NIL)) (-1540 (((-3 (-791 |#1| (-875 |#2|)) "failed") (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL)) (-3629 (((-3 $ "failed") $ (-791 |#1| (-875 |#2|))) NIL)) (-1985 (($ $ (-791 |#1| (-875 |#2|))) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) (-655 $)) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-655 $)) NIL)) (-2718 (((-112) (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-791 |#1| (-875 |#2|))) (-655 (-791 |#1| (-875 |#2|)))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ $ (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ $ (-303 (-791 |#1| (-875 |#2|)))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (($ $ (-655 (-303 (-791 |#1| (-875 |#2|))))) NIL (-12 (|has| (-791 |#1| (-875 |#2|)) (-318 (-791 |#1| (-875 |#2|)))) (|has| (-791 |#1| (-875 |#2|)) (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-1753 (((-782) $) NIL)) (-3922 (((-782) (-791 |#1| (-875 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-791 |#1| (-875 |#2|)) (-1117)))) (((-782) (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-791 |#1| (-875 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-791 |#1| (-875 |#2|)))) NIL)) (-3273 (($ $ (-875 |#2|)) NIL)) (-2078 (($ $ (-875 |#2|)) NIL)) (-3663 (($ $) NIL)) (-4049 (($ $ (-875 |#2|)) NIL)) (-2882 (((-873) $) NIL) (((-655 (-791 |#1| (-875 |#2|))) $) NIL)) (-2936 (((-782) $) NIL (|has| (-875 |#2|) (-378)))) (-3685 (((-112) $ $) NIL)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 (-791 |#1| (-875 |#2|))))) "failed") (-655 (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 (-791 |#1| (-875 |#2|))))) "failed") (-655 (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|))) (-1 (-112) (-791 |#1| (-875 |#2|)) (-791 |#1| (-875 |#2|)))) NIL)) (-1589 (((-112) $ (-1 (-112) (-791 |#1| (-875 |#2|)) (-655 (-791 |#1| (-875 |#2|))))) NIL)) (-3039 (((-655 $) (-791 |#1| (-875 |#2|)) $) NIL) (((-655 $) (-791 |#1| (-875 |#2|)) (-655 $)) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) $) NIL) (((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-655 $)) NIL)) (-4121 (((-112) (-1 (-112) (-791 |#1| (-875 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-4094 (((-655 (-875 |#2|)) $) NIL)) (-2360 (((-112) (-791 |#1| (-875 |#2|)) $) NIL)) (-4060 (((-112) (-875 |#2|) $) NIL)) (-3913 (((-112) $ $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1063 |#1| |#2|) (-13 (-1088 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) (-10 -8 (-15 -4014 ((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112) (-112))))) (-463) (-655 (-1194))) (T -1063))
-((-4014 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463)) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1063 *5 *6)))))
-(-13 (-1088 |#1| (-542 (-875 |#2|)) (-875 |#2|) (-791 |#1| (-875 |#2|))) (-10 -8 (-15 -4014 ((-655 $) (-655 (-791 |#1| (-875 |#2|))) (-112) (-112)))))
-((-2760 (((-1 (-575)) (-1111 (-575))) 32)) (-1551 (((-575) (-575) (-575) (-575) (-575)) 29)) (-3963 (((-1 (-575)) |RationalNumber|) NIL)) (-2280 (((-1 (-575)) |RationalNumber|) NIL)) (-2266 (((-1 (-575)) (-575) |RationalNumber|) NIL)))
-(((-1064) (-10 -7 (-15 -2760 ((-1 (-575)) (-1111 (-575)))) (-15 -2266 ((-1 (-575)) (-575) |RationalNumber|)) (-15 -3963 ((-1 (-575)) |RationalNumber|)) (-15 -2280 ((-1 (-575)) |RationalNumber|)) (-15 -1551 ((-575) (-575) (-575) (-575) (-575))))) (T -1064))
-((-1551 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1064)))) (-2280 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))) (-3963 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)) (-5 *3 (-575)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-1111 (-575))) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))))
-(-10 -7 (-15 -2760 ((-1 (-575)) (-1111 (-575)))) (-15 -2266 ((-1 (-575)) (-575) |RationalNumber|)) (-15 -3963 ((-1 (-575)) |RationalNumber|)) (-15 -2280 ((-1 (-575)) |RationalNumber|)) (-15 -1551 ((-575) (-575) (-575) (-575) (-575))))
-((-2882 (((-873) $) NIL) (($ (-575)) 10)))
-(((-1065 |#1|) (-10 -8 (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-1066)) (T -1065))
-NIL
-(-10 -8 (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-1066) (-141)) (T -1066))
-((-4421 (*1 *2) (-12 (-4 *1 (-1066)) (-5 *2 (-782)))))
-(-13 (-1075) (-737) (-659 $) (-627 (-575)) (-10 -7 (-15 -4421 ((-782)) -3736) (-6 -4457)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-627 (-575)) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-737) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-3974 (((-418 (-967 |#2|)) (-655 |#2|) (-655 |#2|) (-782) (-782)) 54)))
-(((-1067 |#1| |#2|) (-10 -7 (-15 -3974 ((-418 (-967 |#2|)) (-655 |#2|) (-655 |#2|) (-782) (-782)))) (-1194) (-373)) (T -1067))
-((-3974 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-782)) (-4 *6 (-373)) (-5 *2 (-418 (-967 *6))) (-5 *1 (-1067 *5 *6)) (-14 *5 (-1194)))))
-(-10 -7 (-15 -3974 ((-418 (-967 |#2|)) (-655 |#2|) (-655 |#2|) (-782) (-782))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 15)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 16 T CONST)) (-3913 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1068 |#1|) (-141) (-1129)) (T -1068))
-((-1989 (*1 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1129)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129)))))
-(-13 (-1117) (-10 -8 (-15 (-1989) ($) -3736) (-15 -2045 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-3684 (((-112) $) 38)) (-1938 (((-112) $) 17)) (-4243 (((-782) $) 13)) (-4255 (((-782) $) 14)) (-1940 (((-112) $) 30)) (-3229 (((-112) $) 40)))
-(((-1069 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4255 ((-782) |#1|)) (-15 -4243 ((-782) |#1|)) (-15 -3229 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -1938 ((-112) |#1|))) (-1070 |#2| |#3| |#4| |#5| |#6|) (-782) (-782) (-1066) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1069))
-NIL
-(-10 -8 (-15 -4255 ((-782) |#1|)) (-15 -4243 ((-782) |#1|)) (-15 -3229 ((-112) |#1|)) (-15 -3684 ((-112) |#1|)) (-15 -1940 ((-112) |#1|)) (-15 -1938 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3684 (((-112) $) 56)) (-1708 (((-3 $ "failed") $ $) 20)) (-1938 (((-112) $) 58)) (-3133 (((-112) $ (-782)) 66)) (-3261 (($) 18 T CONST)) (-3699 (($ $) 39 (|has| |#3| (-316)))) (-2320 ((|#4| $ (-575)) 44)) (-4422 (((-782) $) 38 (|has| |#3| (-567)))) (-2786 ((|#3| $ (-575) (-575)) 46)) (-3999 (((-655 |#3|) $) 73 (|has| $ (-6 -4460)))) (-3202 (((-782) $) 37 (|has| |#3| (-567)))) (-3216 (((-655 |#5|) $) 36 (|has| |#3| (-567)))) (-4243 (((-782) $) 50)) (-4255 (((-782) $) 49)) (-3541 (((-112) $ (-782)) 65)) (-4274 (((-575) $) 54)) (-1477 (((-575) $) 52)) (-4252 (((-655 |#3|) $) 74 (|has| $ (-6 -4460)))) (-1322 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1117)) (|has| $ (-6 -4460))))) (-3093 (((-575) $) 53)) (-4180 (((-575) $) 51)) (-4316 (($ (-655 (-655 |#3|))) 59)) (-2844 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3194 (((-655 (-655 |#3|)) $) 48)) (-3218 (((-112) $ (-782)) 64)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-567)))) (-2718 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#3|) (-655 |#3|)) 80 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) 78 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 (-303 |#3|))) 77 (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-2391 (((-112) $ $) 60)) (-2017 (((-112) $) 63)) (-1393 (($) 62)) (-2065 ((|#3| $ (-575) (-575)) 47) ((|#3| $ (-575) (-575) |#3|) 45)) (-1940 (((-112) $) 57)) (-3922 (((-782) |#3| $) 75 (-12 (|has| |#3| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4460)))) (-3076 (($ $) 61)) (-2324 ((|#5| $ (-575)) 43)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-4121 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4460)))) (-3229 (((-112) $) 55)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#3|) 40 (|has| |#3| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2869 (((-782) $) 67 (|has| $ (-6 -4460)))))
-(((-1070 |#1| |#2| |#3| |#4| |#5|) (-141) (-782) (-782) (-1066) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1070))
-((-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *5))) (-4 *5 (-1066)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-4180 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782)))) (-4255 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-655 (-655 *5))))) (-2065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066)))) (-2786 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066)))) (-2065 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *2 (-1066)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *2 *7)) (-4 *6 (-1066)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-2324 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *7 *2)) (-4 *6 (-1066)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-2544 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2849 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-567)))) (-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-373)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-316)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) (-5 *2 (-782)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) (-5 *2 (-782)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567)) (-5 *2 (-655 *7)))))
-(-13 (-111 |t#3| |t#3|) (-500 |t#3|) (-10 -8 (-6 -4460) (IF (|has| |t#3| (-174)) (-6 (-728 |t#3|)) |%noBranch|) (-15 -4316 ($ (-655 (-655 |t#3|)))) (-15 -1938 ((-112) $)) (-15 -1940 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3229 ((-112) $)) (-15 -4274 ((-575) $)) (-15 -3093 ((-575) $)) (-15 -1477 ((-575) $)) (-15 -4180 ((-575) $)) (-15 -4243 ((-782) $)) (-15 -4255 ((-782) $)) (-15 -3194 ((-655 (-655 |t#3|)) $)) (-15 -2065 (|t#3| $ (-575) (-575))) (-15 -2786 (|t#3| $ (-575) (-575))) (-15 -2065 (|t#3| $ (-575) (-575) |t#3|)) (-15 -2320 (|t#4| $ (-575))) (-15 -2324 (|t#5| $ (-575))) (-15 -2544 ($ (-1 |t#3| |t#3|) $)) (-15 -2544 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-567)) (-15 -2849 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-373)) (-15 -4038 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-316)) (-15 -3699 ($ $)) |%noBranch|) (IF (|has| |t#3| (-567)) (PROGN (-15 -4422 ((-782) $)) (-15 -3202 ((-782) $)) (-15 -3216 ((-655 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-624 (-873)) . T) ((-318 |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))) ((-500 |#3|) . T) ((-525 |#3| |#3|) -12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))) ((-657 (-575)) . T) ((-657 |#3|) . T) ((-659 |#3|) . T) ((-651 |#3|) |has| |#3| (-174)) ((-728 |#3|) |has| |#3| (-174)) ((-1068 |#3|) . T) ((-1073 |#3|) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3684 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1938 (((-112) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3261 (($) NIL T CONST)) (-3699 (($ $) 47 (|has| |#3| (-316)))) (-2320 (((-245 |#2| |#3|) $ (-575)) 36)) (-1662 (($ (-700 |#3|)) 45)) (-4422 (((-782) $) 49 (|has| |#3| (-567)))) (-2786 ((|#3| $ (-575) (-575)) NIL)) (-3999 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-3202 (((-782) $) 51 (|has| |#3| (-567)))) (-3216 (((-655 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-567)))) (-4243 (((-782) $) NIL)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-4274 (((-575) $) NIL)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3093 (((-575) $) NIL)) (-4180 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#3|))) 31)) (-2844 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3194 (((-655 (-655 |#3|)) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-567)))) (-2718 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#3|) (-655 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 (-303 |#3|))) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#3| $ (-575) (-575)) NIL) ((|#3| $ (-575) (-575) |#3|) NIL)) (-1605 (((-135)) 59 (|has| |#3| (-373)))) (-1940 (((-112) $) NIL)) (-3922 (((-782) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117)))) (((-782) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) 65 (|has| |#3| (-625 (-547))))) (-2324 (((-245 |#1| |#3|) $ (-575)) 40)) (-2882 (((-873) $) 19) (((-700 |#3|) $) 42)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3229 (((-112) $) NIL)) (-1989 (($) 16 T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#3|) NIL (|has| |#3| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1071 |#1| |#2| |#3|) (-13 (-1070 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-624 (-700 |#3|)) (-10 -8 (IF (|has| |#3| (-373)) (-6 (-1292 |#3|)) |%noBranch|) (IF (|has| |#3| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (-15 -1662 ($ (-700 |#3|))))) (-782) (-782) (-1066)) (T -1071))
-((-1662 (*1 *1 *2) (-12 (-5 *2 (-700 *5)) (-4 *5 (-1066)) (-5 *1 (-1071 *3 *4 *5)) (-14 *3 (-782)) (-14 *4 (-782)))))
-(-13 (-1070 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-624 (-700 |#3|)) (-10 -8 (IF (|has| |#3| (-373)) (-6 (-1292 |#3|)) |%noBranch|) (IF (|has| |#3| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|) (-15 -1662 ($ (-700 |#3|)))))
-((-2302 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2544 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1072 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2544 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2302 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-782) (-782) (-1066) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1070 |#1| |#2| |#3| |#4| |#5|) (-1066) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1070 |#1| |#2| |#7| |#8| |#9|)) (T -1072))
-((-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1066)) (-4 *2 (-1066)) (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *12 (-1070 *5 *6 *2 *10 *11)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1066)) (-4 *10 (-1066)) (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1070 *5 *6 *10 *11 *12)) (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10)))))
-(-10 -7 (-15 -2544 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2302 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ |#1|) 27)))
-(((-1073 |#1|) (-141) (-1075)) (T -1073))
-NIL
-(-13 (-21) (-1068 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1068 |#1|) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1441 (((-1194) $) 11)) (-4127 ((|#1| $) 12)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2674 (($ (-1194) |#1|) 10)) (-2882 (((-873) $) 22 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3913 (((-112) $ $) 17 (|has| |#1| (-1117)))))
-(((-1074 |#1| |#2|) (-13 (-1235) (-10 -8 (-15 -2674 ($ (-1194) |#1|)) (-15 -1441 ((-1194) $)) (-15 -4127 (|#1| $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) (-1110 |#2|) (-1235)) (T -1074))
-((-2674 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-4 *4 (-1235)) (-5 *1 (-1074 *3 *4)) (-4 *3 (-1110 *4)))) (-1441 (*1 *2 *1) (-12 (-4 *4 (-1235)) (-5 *2 (-1194)) (-5 *1 (-1074 *3 *4)) (-4 *3 (-1110 *4)))) (-4127 (*1 *2 *1) (-12 (-4 *2 (-1110 *3)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2674 ($ (-1194) |#1|)) (-15 -1441 ((-1194) $)) (-15 -4127 (|#1| $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-1075) (-141)) (T -1075))
-NIL
-(-13 (-21) (-1129))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-1129) . T) ((-1117) . T))
-((-3449 (($ $) 17)) (-3069 (($ $) 25)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 55)) (-3390 (($ $) 27)) (-1931 (($ $) 12)) (-3920 (($ $) 43)) (-2613 (((-389) $) NIL) (((-227) $) NIL) (((-904 (-389)) $) 36)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL) (($ (-418 (-575))) 31) (($ (-575)) NIL) (($ (-418 (-575))) 31)) (-4421 (((-782)) 9)) (-4248 (($ $) 45)))
-(((-1076 |#1|) (-10 -8 (-15 -3069 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -1931 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -4248 (|#1| |#1|)) (-15 -3390 (|#1| |#1|)) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| (-575))) (-15 -2613 ((-227) |#1|)) (-15 -2613 ((-389) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| |#1|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-1077)) (T -1076))
-((-4421 (*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1076 *3)) (-4 *3 (-1077)))))
-(-10 -8 (-15 -3069 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -1931 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -4248 (|#1| |#1|)) (-15 -3390 (|#1| |#1|)) (-15 -1806 ((-901 (-389) |#1|) |#1| (-904 (-389)) (-901 (-389) |#1|))) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| (-575))) (-15 -2613 ((-227) |#1|)) (-15 -2613 ((-389) |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| |#1|)) (-15 -4421 ((-782))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3824 (((-575) $) 97)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-3449 (($ $) 95)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-2467 (($ $) 105)) (-3599 (((-112) $ $) 65)) (-2326 (((-575) $) 122)) (-3261 (($) 18 T CONST)) (-3069 (($ $) 94)) (-2443 (((-3 (-575) "failed") $) 110) (((-3 (-418 (-575)) "failed") $) 107)) (-4400 (((-575) $) 111) (((-418 (-575)) $) 108)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-3559 (((-112) $) 79)) (-2359 (((-112) $) 120)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 101)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 104)) (-3390 (($ $) 100)) (-1721 (((-112) $) 121)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-1914 (($ $ $) 119)) (-3503 (($ $ $) 118)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-1931 (($ $) 96)) (-3920 (($ $) 98)) (-2347 (((-429 $) $) 82)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2613 (((-389) $) 113) (((-227) $) 112) (((-904 (-389)) $) 102)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ (-575)) 109) (($ (-418 (-575))) 106)) (-4421 (((-782)) 32 T CONST)) (-4248 (($ $) 99)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-3863 (($ $) 123)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3980 (((-112) $ $) 116)) (-3955 (((-112) $ $) 115)) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 117)) (-3940 (((-112) $ $) 114)) (-4038 (($ $ $) 73)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77) (($ $ (-418 (-575))) 103)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75)))
+((-2337 (($ $ (-1111 $)) 7) (($ $ (-1196)) 6)))
+(((-976) (-141)) (T -976))
+((-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-976)))) (-2337 (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-1196)))))
+(-13 (-10 -8 (-15 -2337 ($ $ (-1196))) (-15 -2337 ($ $ (-1111 $)))))
+((-3602 (((-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)) (-1196)) 26) (((-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-969 |#1|) (-1196) (-969 |#1|) (-1196)) 49)))
+(((-977 |#1|) (-10 -7 (-15 -3602 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-969 |#1|) (-1196) (-969 |#1|) (-1196))) (-15 -3602 ((-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -3602 ((-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)) (-1196)))) (-13 (-374) (-148))) (T -977))
+((-3602 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-5 *5 (-1196)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 *6))) (|:| |prim| (-1192 *6)))) (-5 *1 (-977 *6)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-977 *5)))) (-3602 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 *5)))) (-5 *1 (-977 *5)))))
+(-10 -7 (-15 -3602 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-969 |#1|) (-1196) (-969 |#1|) (-1196))) (-15 -3602 ((-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -3602 ((-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)) (-1196))))
+((-2057 (((-656 |#1|) |#1| |#1|) 47)) (-3011 (((-112) |#1|) 44)) (-3428 ((|#1| |#1|) 79)) (-2319 ((|#1| |#1|) 78)))
+(((-978 |#1|) (-10 -7 (-15 -3011 ((-112) |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -2057 ((-656 |#1|) |#1| |#1|))) (-557)) (T -978))
+((-2057 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-978 *3)) (-4 *3 (-557)))) (-3428 (*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))) (-2319 (*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-978 *3)) (-4 *3 (-557)))))
+(-10 -7 (-15 -3011 ((-112) |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -2057 ((-656 |#1|) |#1| |#1|)))
+((-3494 (((-1292) (-874)) 9)))
+(((-979) (-10 -7 (-15 -3494 ((-1292) (-874))))) (T -979))
+((-3494 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-979)))))
+(-10 -7 (-15 -3494 ((-1292) (-874))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-2150 (($ $) 79 (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-4404 (($ $) 31)) (-4011 (((-3 $ "failed") $) 42)) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-2611 (($ $ |#1| |#2| $) 62)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) 17)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| |#2|) NIL)) (-4389 ((|#2| $) 24)) (-4149 (($ (-1 |#2| |#2|) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) 28)) (-4379 ((|#1| $) 26)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) 51)) (-4347 ((|#1| $) NIL)) (-1930 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-2825 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-4436 ((|#2| $) 22)) (-4325 ((|#1| $) NIL (|has| |#1| (-464)))) (-2858 (((-874) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ |#2|) 37)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) 15 T CONST)) (-2986 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2022 (($) 27 T CONST)) (-2038 (($) 12 T CONST)) (-3889 (((-112) $ $) 83)) (-4013 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) 69) (($ $ (-783)) 67)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-980 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -1930 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) (-1068) (-804)) (T -980))
+((-1930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-980 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *2 (-804)))))
+(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -1930 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-1869 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-3161 (((-3 $ "failed") $ $) 52 (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2422 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3302 ((|#2| $) 22)) (-2597 ((|#1| $) 21)) (-2574 (($) NIL (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-4011 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2107 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1838 (((-112) $) NIL (-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-1950 (($ $ $) NIL (-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-1492 (($ $ $) NIL (-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2062 (($ |#1| |#2|) 20)) (-1654 (((-938) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4308 (($ (-938)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3887 (((-1139) $) NIL)) (-2480 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2220 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2858 (((-874) $) 14)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 42 (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2038 (($) 25 (-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3956 (((-112) $ $) NIL (-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3930 (((-112) $ $) NIL (-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3889 (((-112) $ $) 19)) (-3944 (((-112) $ $) NIL (-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3916 (((-112) $ $) 69 (-3739 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-4013 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4002 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3990 (($ $ $) 45 (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-938)) NIL (-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-938) $) NIL (-3739 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-3739 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))))
+(((-981 |#1| |#2|) (-13 (-1119) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -2062 ($ |#1| |#2|)) (-15 -2597 (|#1| $)) (-15 -3302 (|#2| $)))) (-1119) (-1119)) (T -981))
+((-2062 (*1 *1 *2 *3) (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2597 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1119)))) (-3302 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1119)))))
+(-13 (-1119) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -2062 ($ |#1| |#2|)) (-15 -2597 (|#1| $)) (-15 -3302 (|#2| $))))
+((-4160 (((-1123) $) 12)) (-3450 (($ (-518) (-1123)) 14)) (-1811 (((-518) $) 9)) (-2858 (((-874) $) 24)))
+(((-982) (-13 (-625 (-874)) (-10 -8 (-15 -1811 ((-518) $)) (-15 -4160 ((-1123) $)) (-15 -3450 ($ (-518) (-1123)))))) (T -982))
+((-1811 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-982)))) (-3450 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-982)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -1811 ((-518) $)) (-15 -4160 ((-1123) $)) (-15 -3450 ($ (-518) (-1123)))))
+((-2835 (((-112) $ $) NIL)) (-2031 (($) NIL T CONST)) (-3212 (($ $ $) 30)) (-3189 (($ $) 24)) (-2143 (((-1178) $) NIL)) (-1849 (((-703 (-885 $ $)) $) 55)) (-2594 (((-703 $) $) 45)) (-3706 (((-703 (-885 $ $)) $) 56)) (-2571 (((-703 (-885 $ $)) $) 57)) (-1680 (((-703 |#1|) $) 36)) (-3005 (((-703 (-885 $ $)) $) 54)) (-2514 (($ $ $) 31)) (-3887 (((-1139) $) NIL)) (-3914 (($) NIL T CONST)) (-1677 (($ $ $) 32)) (-4178 (($ $ $) 29)) (-4100 (($ $ $) 27)) (-2858 (((-874) $) 59) (($ |#1|) 12)) (-2690 (((-112) $ $) NIL)) (-3200 (($ $ $) 28)) (-3889 (((-112) $ $) NIL)))
+(((-983 |#1|) (-13 (-986) (-628 |#1|) (-10 -8 (-15 -1680 ((-703 |#1|) $)) (-15 -2594 ((-703 $) $)) (-15 -3005 ((-703 (-885 $ $)) $)) (-15 -1849 ((-703 (-885 $ $)) $)) (-15 -3706 ((-703 (-885 $ $)) $)) (-15 -2571 ((-703 (-885 $ $)) $)) (-15 -4100 ($ $ $)) (-15 -4178 ($ $ $)))) (-1119)) (T -983))
+((-1680 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-703 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-1849 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-4100 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119)))) (-4178 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119)))))
+(-13 (-986) (-628 |#1|) (-10 -8 (-15 -1680 ((-703 |#1|) $)) (-15 -2594 ((-703 $) $)) (-15 -3005 ((-703 (-885 $ $)) $)) (-15 -1849 ((-703 (-885 $ $)) $)) (-15 -3706 ((-703 (-885 $ $)) $)) (-15 -2571 ((-703 (-885 $ $)) $)) (-15 -4100 ($ $ $)) (-15 -4178 ($ $ $))))
+((-2546 (((-983 |#1|) (-983 |#1|)) 46)) (-3681 (((-983 |#1|) (-983 |#1|)) 22)) (-1452 (((-1121 |#1|) (-983 |#1|)) 41)))
+(((-984 |#1|) (-13 (-1237) (-10 -7 (-15 -3681 ((-983 |#1|) (-983 |#1|))) (-15 -1452 ((-1121 |#1|) (-983 |#1|))) (-15 -2546 ((-983 |#1|) (-983 |#1|))))) (-1119)) (T -984))
+((-3681 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-983 *4)) (-4 *4 (-1119)) (-5 *2 (-1121 *4)) (-5 *1 (-984 *4)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))))
+(-13 (-1237) (-10 -7 (-15 -3681 ((-983 |#1|) (-983 |#1|))) (-15 -1452 ((-1121 |#1|) (-983 |#1|))) (-15 -2546 ((-983 |#1|) (-983 |#1|)))))
+((-2548 (((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|)) 29)))
+(((-985 |#1| |#2|) (-13 (-1237) (-10 -7 (-15 -2548 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|))))) (-1119) (-1119)) (T -985))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6)))))
+(-13 (-1237) (-10 -7 (-15 -2548 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|)))))
+((-2835 (((-112) $ $) 15)) (-2031 (($) 14 T CONST)) (-3212 (($ $ $) 6)) (-3189 (($ $) 8)) (-2143 (((-1178) $) 19)) (-2514 (($ $ $) 12)) (-3887 (((-1139) $) 18)) (-3914 (($) 13 T CONST)) (-1677 (($ $ $) 11)) (-2858 (((-874) $) 17)) (-2690 (((-112) $ $) 20)) (-3200 (($ $ $) 7)) (-3889 (((-112) $ $) 16)))
+(((-986) (-141)) (T -986))
+((-2031 (*1 *1) (-4 *1 (-986))) (-3914 (*1 *1) (-4 *1 (-986))) (-2514 (*1 *1 *1 *1) (-4 *1 (-986))) (-1677 (*1 *1 *1 *1) (-4 *1 (-986))))
+(-13 (-113) (-1119) (-10 -8 (-15 -2031 ($) -3712) (-15 -3914 ($) -3712) (-15 -2514 ($ $ $)) (-15 -1677 ($ $ $))))
+(((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-1932 (($ $ $) 44)) (-3343 (($ $ $) 45)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-1492 ((|#1| $) 46)) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-987 |#1|) (-141) (-862)) (T -987))
+((-1492 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) (-3343 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) (-1932 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4462) (-15 -1492 (|t#1| $)) (-15 -3343 ($ $ $)) (-15 -1932 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-4046 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3901 |#2|)) |#2| |#2|) 105)) (-1546 ((|#2| |#2| |#2|) 103)) (-3928 (((-2 (|:| |coef2| |#2|) (|:| -3901 |#2|)) |#2| |#2|) 107)) (-1929 (((-2 (|:| |coef1| |#2|) (|:| -3901 |#2|)) |#2| |#2|) 109)) (-3886 (((-2 (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-3400 (((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 56)) (-1622 (((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 80)) (-4098 (((-2 (|:| |coef1| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 82)) (-2625 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2199 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-3550 (((-2 (|:| |coef2| |#2|) (|:| -3880 |#1|)) |#2|) 121)) (-1556 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-2577 (((-656 (-783)) |#2| |#2|) 102)) (-3454 ((|#1| |#2| |#2|) 50)) (-2740 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-1451 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-3368 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 54)) (-1570 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|) 79)) (-2495 ((|#1| |#2| |#2|) 76)) (-2260 (((-2 (|:| -1788 |#1|) (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2|) 41)) (-1496 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3194 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-4362 ((|#2| |#2| |#2|) 93)) (-2005 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-2927 ((|#2| |#2| |#2| (-783)) 85)) (-3901 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-2825 (((-1287 |#2|) (-1287 |#2|) |#1|) 22)) (-3684 (((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2|) 46)) (-1792 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3880 |#1|)) |#2|) 119)) (-3880 ((|#1| |#2|) 116)) (-2018 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-2178 ((|#2| |#2| |#2| (-783)) 90)) (-2032 (((-656 |#2|) |#2| |#2|) 99)) (-1577 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-1888 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1287 |#2|) |#1| (-1287 |#2|)) 17)))
+(((-988 |#1| |#2|) (-10 -7 (-15 -2495 (|#1| |#2| |#2|)) (-15 -1570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -1622 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -4098 ((-2 (|:| |coef1| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2927 (|#2| |#2| |#2| (-783))) (-15 -2005 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2199 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2178 (|#2| |#2| |#2| (-783))) (-15 -2018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1556 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4362 (|#2| |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2625 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1546 (|#2| |#2| |#2|)) (-15 -4046 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3901 |#2|)) |#2| |#2|)) (-15 -3928 ((-2 (|:| |coef2| |#2|) (|:| -3901 |#2|)) |#2| |#2|)) (-15 -1929 ((-2 (|:| |coef1| |#2|) (|:| -3901 |#2|)) |#2| |#2|)) (-15 -3880 (|#1| |#2|)) (-15 -1792 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3880 |#1|)) |#2|)) (-15 -3550 ((-2 (|:| |coef2| |#2|) (|:| -3880 |#1|)) |#2|)) (-15 -2032 ((-656 |#2|) |#2| |#2|)) (-15 -2577 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -1451 (|#1| |#2| |#2|)) (-15 -2740 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2| |#2|)) (-15 -3886 ((-2 (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -2825 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -2260 ((-2 (|:| -1788 |#1|) (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2|)) (-15 -3684 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2|)) (-15 -1888 (|#1| |#1| |#1| (-783))) (-15 -1577 (|#2| |#2| |#1| |#1| (-783))) (-15 -1496 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3454 (|#1| |#2| |#2|)) (-15 -3368 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -3400 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|))) (-568) (-1263 |#1|)) (T -988))
+((-3400 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3368 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3454 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) (-1496 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-1577 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-1888 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) (-4 *4 (-1263 *2)))) (-3684 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2260 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1788 *4) (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2825 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (-3901 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-3886 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1451 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2740 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1451 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1451 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) (-2577 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2032 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3550 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3880 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1792 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3880 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3880 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) (-1929 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3901 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3928 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3901 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4046 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3901 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1546 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-2625 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4362 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-1556 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-2018 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-2178 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1263 *4)))) (-2199 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-2005 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-2927 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1263 *4)))) (-4098 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2495 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1622 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1570 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2495 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))))
+(-10 -7 (-15 -2495 (|#1| |#2| |#2|)) (-15 -1570 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -1622 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -4098 ((-2 (|:| |coef1| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -2927 (|#2| |#2| |#2| (-783))) (-15 -2005 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2199 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2178 (|#2| |#2| |#2| (-783))) (-15 -2018 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1556 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -4362 (|#2| |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2625 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1546 (|#2| |#2| |#2|)) (-15 -4046 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3901 |#2|)) |#2| |#2|)) (-15 -3928 ((-2 (|:| |coef2| |#2|) (|:| -3901 |#2|)) |#2| |#2|)) (-15 -1929 ((-2 (|:| |coef1| |#2|) (|:| -3901 |#2|)) |#2| |#2|)) (-15 -3880 (|#1| |#2|)) (-15 -1792 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3880 |#1|)) |#2|)) (-15 -3550 ((-2 (|:| |coef2| |#2|) (|:| -3880 |#1|)) |#2|)) (-15 -2032 ((-656 |#2|) |#2| |#2|)) (-15 -2577 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -1451 (|#1| |#2| |#2|)) (-15 -2740 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2| |#2|)) (-15 -3886 ((-2 (|:| |coef2| |#2|) (|:| -1451 |#1|)) |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -2825 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -2260 ((-2 (|:| -1788 |#1|) (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2|)) (-15 -3684 ((-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) |#2| |#2|)) (-15 -1888 (|#1| |#1| |#1| (-783))) (-15 -1577 (|#2| |#2| |#1| |#1| (-783))) (-15 -1496 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3454 (|#1| |#2| |#2|)) (-15 -3368 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)) (-15 -3400 ((-2 (|:| |coef2| |#2|) (|:| -2495 |#1|)) |#2| |#2|)))
+((-2835 (((-112) $ $) NIL)) (-2913 (((-1236) $) 13)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3803 (((-1154) $) 10)) (-2858 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-989) (-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2913 ((-1236) $))))) (T -989))
+((-3803 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-989)))))
+(-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2913 ((-1236) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 40)) (-3161 (((-3 $ "failed") $ $) 54)) (-2574 (($) NIL T CONST)) (-2285 (((-656 (-885 (-938) (-938))) $) 67)) (-3812 (((-938) $) 94)) (-3975 (((-656 (-938)) $) 17)) (-3242 (((-1176 $) (-783)) 39)) (-1366 (($ (-656 (-938))) 16)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2480 (($ $) 70)) (-2858 (((-874) $) 90) (((-656 (-938)) $) 11)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 8 T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 44)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 42)) (-3990 (($ $ $) 46)) (* (($ (-938) $) NIL) (($ (-783) $) 49)) (-2845 (((-783) $) 22)))
+(((-990) (-13 (-807) (-625 (-656 (-938))) (-10 -8 (-15 -1366 ($ (-656 (-938)))) (-15 -3975 ((-656 (-938)) $)) (-15 -2845 ((-783) $)) (-15 -3242 ((-1176 $) (-783))) (-15 -2285 ((-656 (-885 (-938) (-938))) $)) (-15 -3812 ((-938) $)) (-15 -2480 ($ $))))) (T -990))
+((-1366 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-990)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1176 (-990))) (-5 *1 (-990)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-938) (-938)))) (-5 *1 (-990)))) (-3812 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-990)))) (-2480 (*1 *1 *1) (-5 *1 (-990))))
+(-13 (-807) (-625 (-656 (-938))) (-10 -8 (-15 -1366 ($ (-656 (-938)))) (-15 -3975 ((-656 (-938)) $)) (-15 -2845 ((-783) $)) (-15 -3242 ((-1176 $) (-783))) (-15 -2285 ((-656 (-885 (-938) (-938))) $)) (-15 -3812 ((-938) $)) (-15 -2480 ($ $))))
+((-4013 (($ $ |#2|) 31)) (-4002 (($ $) 23) (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29)))
+(((-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4013 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-992 |#2| |#3| |#4|) (-1068) (-804) (-862)) (T -991))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4013 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 |#3|) $) 86)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-3219 (((-112) $) 85)) (-1838 (((-112) $) 35)) (-1711 (((-112) $) 74)) (-2428 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4436 ((|#2| $) 76)) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4417 ((|#1| $ |#2|) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-992 |#1| |#2| |#3|) (-141) (-1068) (-804) (-862)) (T -992))
+((-4379 (*1 *2 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) (-4 *2 (-1068)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *4 (-862)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *2 (-804)))) (-2428 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-804)) (-4 *2 (-862)))) (-2428 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-992 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-804)) (-4 *6 (-862)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2137 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *4 (-862)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2428 ($ $ |t#3| |t#2|)) (-15 -2428 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -4366 ($ $)) (-15 -4379 (|t#1| $)) (-15 -4436 (|t#2| $)) (-15 -1634 ((-656 |t#3|) $)) (-15 -3219 ((-112) $)) (-15 -2137 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2814 (((-1113 (-227)) $) 8)) (-2802 (((-1113 (-227)) $) 9)) (-2791 (((-1113 (-227)) $) 10)) (-3657 (((-656 (-656 (-960 (-227)))) $) 11)) (-2858 (((-874) $) 6)))
+(((-993) (-141)) (T -993))
+((-3657 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-656 (-656 (-960 (-227))))))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3657 ((-656 (-656 (-960 (-227)))) $)) (-15 -2791 ((-1113 (-227)) $)) (-15 -2802 ((-1113 (-227)) $)) (-15 -2814 ((-1113 (-227)) $))))
+(((-625 (-874)) . T))
+((-1634 (((-656 |#4|) $) 23)) (-4001 (((-112) $) 55)) (-3169 (((-112) $) 54)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#4|) 42)) (-1516 (((-112) $) 56)) (-2097 (((-112) $ $) 62)) (-3593 (((-112) $ $) 65)) (-3695 (((-112) $) 60)) (-3390 (((-656 |#5|) (-656 |#5|) $) 98)) (-1832 (((-656 |#5|) (-656 |#5|) $) 95)) (-2307 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2804 (((-656 |#4|) $) 27)) (-2872 (((-112) |#4| $) 34)) (-3731 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4426 (($ $ |#4|) 39)) (-4127 (($ $ |#4|) 38)) (-3668 (($ $ |#4|) 40)) (-3889 (((-112) $ $) 46)))
+(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3169 ((-112) |#1|)) (-15 -3390 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1832 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2307 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3731 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -3593 ((-112) |#1| |#1|)) (-15 -2097 ((-112) |#1| |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -4001 ((-112) |#1|)) (-15 -2059 ((-2 (|:| |under| |#1|) (|:| -3807 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4426 (|#1| |#1| |#4|)) (-15 -3668 (|#1| |#1| |#4|)) (-15 -4127 (|#1| |#1| |#4|)) (-15 -2872 ((-112) |#4| |#1|)) (-15 -2804 ((-656 |#4|) |#1|)) (-15 -1634 ((-656 |#4|) |#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-995 |#2| |#3| |#4| |#5|) (-1068) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -994))
+NIL
+(-10 -8 (-15 -3169 ((-112) |#1|)) (-15 -3390 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1832 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2307 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3731 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -3593 ((-112) |#1| |#1|)) (-15 -2097 ((-112) |#1| |#1|)) (-15 -3695 ((-112) |#1|)) (-15 -4001 ((-112) |#1|)) (-15 -2059 ((-2 (|:| |under| |#1|) (|:| -3807 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4426 (|#1| |#1| |#4|)) (-15 -3668 (|#1| |#1| |#4|)) (-15 -4127 (|#1| |#1| |#4|)) (-15 -2872 ((-112) |#4| |#1|)) (-15 -2804 ((-656 |#4|) |#1|)) (-15 -1634 ((-656 |#4|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-1634 (((-656 |#3|) $) 34)) (-4001 (((-112) $) 27)) (-3169 (((-112) $) 18 (|has| |#1| (-568)))) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) 28)) (-2746 (((-112) $ (-783)) 45)) (-3959 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462)))) (-2574 (($) 46 T CONST)) (-1516 (((-112) $) 23 (|has| |#1| (-568)))) (-2097 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3593 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3695 (((-112) $) 26 (|has| |#1| (-568)))) (-3390 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 37)) (-4397 (($ (-656 |#4|)) 36)) (-3229 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462)))) (-3975 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-4402 ((|#3| $) 35)) (-3639 (((-112) $ (-783)) 44)) (-3531 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 48)) (-2804 (((-656 |#3|) $) 33)) (-2872 (((-112) |#3| $) 32)) (-1684 (((-112) $ (-783)) 43)) (-2143 (((-1178) $) 10)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3887 (((-1139) $) 11)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1910 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) 39)) (-3001 (((-112) $) 42)) (-3849 (($) 41)) (-3902 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-3052 (($ $) 40)) (-2610 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 61)) (-4426 (($ $ |#3|) 29)) (-4127 (($ $ |#3|) 31)) (-3668 (($ $ |#3|) 30)) (-2858 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2690 (((-112) $ $) 9)) (-2714 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-995 |#1| |#2| |#3| |#4|) (-141) (-1068) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -995))
+((-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-862)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2872 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) (-4127 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-3668 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-4426 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-2059 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3807 *1) (|:| |upper| *1))) (-4 *1 (-995 *4 *5 *3 *6)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2097 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3593 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3731 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2307 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1832 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-3390 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))))
+(-13 (-1119) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4462) (-15 -2454 ((-3 $ "failed") (-656 |t#4|))) (-15 -4397 ($ (-656 |t#4|))) (-15 -4402 (|t#3| $)) (-15 -1634 ((-656 |t#3|) $)) (-15 -2804 ((-656 |t#3|) $)) (-15 -2872 ((-112) |t#3| $)) (-15 -4127 ($ $ |t#3|)) (-15 -3668 ($ $ |t#3|)) (-15 -4426 ($ $ |t#3|)) (-15 -2059 ((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |t#3|)) (-15 -4001 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3695 ((-112) $)) (-15 -2097 ((-112) $ $)) (-15 -3593 ((-112) $ $)) (-15 -1516 ((-112) $)) (-15 -3731 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2307 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1832 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -3390 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -3169 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-1119) . T) ((-1237) . T))
+((-3182 (((-656 |#4|) |#4| |#4|) 136)) (-3331 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-2749 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-2956 (((-112) |#4|) 43)) (-4056 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-2270 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-2332 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-3738 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-2416 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-3534 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-4232 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3101 (((-656 |#4|) (-656 |#4|)) 128)) (-2023 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-4197 ((|#4| |#4| (-656 |#4|)) 60)) (-2985 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-2370 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-4074 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-1539 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-2334 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2713 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-1384 (((-112) (-656 |#4|)) 79)) (-3388 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3616 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-2969 (((-112) |#4|) 36)) (-2786 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1913 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4352 (((-656 |#4|) (-656 |#4|)) 83)) (-2974 (((-656 |#4|) (-656 |#4|)) 97)) (-1599 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2026 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-2724 (((-112) |#4|) 45)))
+(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1539 ((-656 |#4|) (-656 |#4|))) (-15 -1539 ((-656 |#4|) |#4| |#4|)) (-15 -3101 ((-656 |#4|) (-656 |#4|))) (-15 -3182 ((-656 |#4|) |#4| |#4|)) (-15 -1539 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -1539 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1539 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -1599 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3388 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1384 ((-112) (-656 |#4|))) (-15 -2270 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -2332 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3738 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2713 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2956 ((-112) |#4|)) (-15 -2749 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2969 ((-112) |#4|)) (-15 -3616 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2724 ((-112) |#4|)) (-15 -2026 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2023 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2023 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -4197 (|#4| |#4| (-656 |#4|))) (-15 -4352 ((-656 |#4|) (-656 |#4|))) (-15 -2416 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2974 ((-656 |#4|) (-656 |#4|))) (-15 -3534 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4232 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4056 ((-656 |#4|) |#4|)) (-15 -3331 ((-656 |#4|) (-656 |#4|))) (-15 -3331 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2985 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4074 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2370 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1913 ((-656 |#4|) (-656 |#4|))) (-15 -2786 ((-656 |#4|) (-656 |#4|))) (-15 -2334 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -996))
+((-2334 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2370 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-4074 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2985 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3331 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-4232 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-996 *5 *6 *7 *8)))) (-3534 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *1 (-996 *6 *7 *8 *9)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2416 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -2039 (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4352 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-4197 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *2)))) (-2023 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-2023 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2724 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3616 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2969 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8)))) (-1599 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7)))) (-1539 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-1539 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1539 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *3)))) (-3182 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1539 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-1539 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1539 ((-656 |#4|) (-656 |#4|))) (-15 -1539 ((-656 |#4|) |#4| |#4|)) (-15 -3101 ((-656 |#4|) (-656 |#4|))) (-15 -3182 ((-656 |#4|) |#4| |#4|)) (-15 -1539 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -1539 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1539 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -1599 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3388 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1384 ((-112) (-656 |#4|))) (-15 -2270 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -2332 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3738 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -2713 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2956 ((-112) |#4|)) (-15 -2749 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2969 ((-112) |#4|)) (-15 -3616 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2724 ((-112) |#4|)) (-15 -2026 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2023 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2023 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -4197 (|#4| |#4| (-656 |#4|))) (-15 -4352 ((-656 |#4|) (-656 |#4|))) (-15 -2416 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2974 ((-656 |#4|) (-656 |#4|))) (-15 -3534 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4232 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -4056 ((-656 |#4|) |#4|)) (-15 -3331 ((-656 |#4|) (-656 |#4|))) (-15 -3331 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2985 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4074 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2370 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1913 ((-656 |#4|) (-656 |#4|))) (-15 -2786 ((-656 |#4|) (-656 |#4|))) (-15 -2334 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|))
+((-1947 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2636 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)) 46)) (-2204 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-997 |#1|) (-10 -7 (-15 -1947 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2204 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2636 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)))) (-374)) (T -997))
+((-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5))))) (-5 *1 (-997 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)))) (-2204 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-997 *5)))) (-1947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-997 *6)) (-5 *3 (-701 *6)))))
+(-10 -7 (-15 -1947 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2204 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2636 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))))
+((-2464 (((-430 |#4|) |#4|) 56)))
+(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-430 |#4|) |#4|))) (-862) (-805) (-464) (-966 |#3| |#2| |#1|)) (T -998))
+((-2464 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))))
+(-10 -7 (-15 -2464 ((-430 |#4|) |#4|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2854 (($ (-783)) 115 (|has| |#1| (-23)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-2338 (($ $) 93 (|has| $ (-6 -4463)))) (-4374 (($ $) 103)) (-3229 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 52)) (-2627 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-1872 (($ (-656 |#1|)) 121)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4033 (((-701 |#1|) $ $) 108 (|has| |#1| (-1068)))) (-2327 (($ (-783) |#1|) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 90 (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 89 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2229 ((|#1| $) 105 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-1684 (((-112) $ (-783)) 10)) (-1873 ((|#1| $) 106 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 43 (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4040 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-3262 (($ $ (-656 |#1|)) 119)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2139 ((|#1| $ $) 109 (|has| |#1| (-1068)))) (-4340 (((-938) $) 120)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3021 (($ $ $) 107)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-2869 (($ (-656 |#1|)) 72)) (-1534 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3944 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 85 (|has| |#1| (-862)))) (-4002 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3990 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-999 |#1|) (-141) (-1068)) (T -999))
+((-1872 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-938)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068)))))
+(-13 (-1285 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -1872 ($ (-656 |t#1|))) (-15 -4340 ((-938) $)) (-15 -3021 ($ $ $)) (-15 -3262 ($ $ (-656 |t#1|)))))
+(((-34) . T) ((-102) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T) ((-1285 |#1|) . T))
+((-2548 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 17)))
+(((-1000 |#1| |#2|) (-10 -7 (-15 -2548 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1068) (-1068)) (T -1000))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-960 *6)) (-5 *1 (-1000 *5 *6)))))
+(-10 -7 (-15 -2548 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|))))
+((-2447 ((|#1| (-960 |#1|)) 14)) (-3509 ((|#1| (-960 |#1|)) 13)) (-4367 ((|#1| (-960 |#1|)) 12)) (-1465 ((|#1| (-960 |#1|)) 16)) (-3188 ((|#1| (-960 |#1|)) 24)) (-2382 ((|#1| (-960 |#1|)) 15)) (-2292 ((|#1| (-960 |#1|)) 17)) (-3702 ((|#1| (-960 |#1|)) 23)) (-1862 ((|#1| (-960 |#1|)) 22)))
+(((-1001 |#1|) (-10 -7 (-15 -4367 (|#1| (-960 |#1|))) (-15 -3509 (|#1| (-960 |#1|))) (-15 -2447 (|#1| (-960 |#1|))) (-15 -2382 (|#1| (-960 |#1|))) (-15 -1465 (|#1| (-960 |#1|))) (-15 -2292 (|#1| (-960 |#1|))) (-15 -1862 (|#1| (-960 |#1|))) (-15 -3702 (|#1| (-960 |#1|))) (-15 -3188 (|#1| (-960 |#1|)))) (-1068)) (T -1001))
+((-3188 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(-10 -7 (-15 -4367 (|#1| (-960 |#1|))) (-15 -3509 (|#1| (-960 |#1|))) (-15 -2447 (|#1| (-960 |#1|))) (-15 -2382 (|#1| (-960 |#1|))) (-15 -1465 (|#1| (-960 |#1|))) (-15 -2292 (|#1| (-960 |#1|))) (-15 -1862 (|#1| (-960 |#1|))) (-15 -3702 (|#1| (-960 |#1|))) (-15 -3188 (|#1| (-960 |#1|))))
+((-3855 (((-3 |#1| "failed") |#1|) 18)) (-2800 (((-3 |#1| "failed") |#1|) 6)) (-1655 (((-3 |#1| "failed") |#1|) 16)) (-3377 (((-3 |#1| "failed") |#1|) 4)) (-3495 (((-3 |#1| "failed") |#1|) 20)) (-3984 (((-3 |#1| "failed") |#1|) 8)) (-1324 (((-3 |#1| "failed") |#1| (-783)) 1)) (-1731 (((-3 |#1| "failed") |#1|) 3)) (-3864 (((-3 |#1| "failed") |#1|) 2)) (-2186 (((-3 |#1| "failed") |#1|) 21)) (-1943 (((-3 |#1| "failed") |#1|) 9)) (-4166 (((-3 |#1| "failed") |#1|) 19)) (-3800 (((-3 |#1| "failed") |#1|) 7)) (-2998 (((-3 |#1| "failed") |#1|) 17)) (-2278 (((-3 |#1| "failed") |#1|) 5)) (-1881 (((-3 |#1| "failed") |#1|) 24)) (-2747 (((-3 |#1| "failed") |#1|) 12)) (-3405 (((-3 |#1| "failed") |#1|) 22)) (-2606 (((-3 |#1| "failed") |#1|) 10)) (-1605 (((-3 |#1| "failed") |#1|) 26)) (-3625 (((-3 |#1| "failed") |#1|) 14)) (-3878 (((-3 |#1| "failed") |#1|) 27)) (-3250 (((-3 |#1| "failed") |#1|) 15)) (-2915 (((-3 |#1| "failed") |#1|) 25)) (-3060 (((-3 |#1| "failed") |#1|) 13)) (-1613 (((-3 |#1| "failed") |#1|) 23)) (-2946 (((-3 |#1| "failed") |#1|) 11)))
+(((-1002 |#1|) (-141) (-1222)) (T -1002))
+((-3878 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1605 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2915 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1881 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1613 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3405 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2186 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3495 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4166 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3855 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2998 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1655 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3250 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3625 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3060 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2747 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2606 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1943 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3984 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3800 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2800 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2278 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1731 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3864 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1324 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(-13 (-10 -7 (-15 -1324 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -3864 ((-3 |t#1| "failed") |t#1|)) (-15 -1731 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -2278 ((-3 |t#1| "failed") |t#1|)) (-15 -2800 ((-3 |t#1| "failed") |t#1|)) (-15 -3800 ((-3 |t#1| "failed") |t#1|)) (-15 -3984 ((-3 |t#1| "failed") |t#1|)) (-15 -1943 ((-3 |t#1| "failed") |t#1|)) (-15 -2606 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -2747 ((-3 |t#1| "failed") |t#1|)) (-15 -3060 ((-3 |t#1| "failed") |t#1|)) (-15 -3625 ((-3 |t#1| "failed") |t#1|)) (-15 -3250 ((-3 |t#1| "failed") |t#1|)) (-15 -1655 ((-3 |t#1| "failed") |t#1|)) (-15 -2998 ((-3 |t#1| "failed") |t#1|)) (-15 -3855 ((-3 |t#1| "failed") |t#1|)) (-15 -4166 ((-3 |t#1| "failed") |t#1|)) (-15 -3495 ((-3 |t#1| "failed") |t#1|)) (-15 -2186 ((-3 |t#1| "failed") |t#1|)) (-15 -3405 ((-3 |t#1| "failed") |t#1|)) (-15 -1613 ((-3 |t#1| "failed") |t#1|)) (-15 -1881 ((-3 |t#1| "failed") |t#1|)) (-15 -2915 ((-3 |t#1| "failed") |t#1|)) (-15 -1605 ((-3 |t#1| "failed") |t#1|)) (-15 -3878 ((-3 |t#1| "failed") |t#1|))))
+((-2873 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1510 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2548 ((|#4| (-1 |#4| (-969 |#1|)) |#4|) 31)))
+(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1510 (|#4| |#4| |#3|)) (-15 -1510 (|#4| |#4| (-656 |#3|))) (-15 -2873 (|#4| |#4| |#3|)) (-15 -2873 (|#4| |#4| (-656 |#3|))) (-15 -2548 (|#4| (-1 |#4| (-969 |#1|)) |#4|))) (-1068) (-805) (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196))))) (-966 (-969 |#1|) |#2| |#3|)) (T -1003))
+((-2548 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-969 *4))) (-4 *4 (-1068)) (-4 *2 (-966 (-969 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *6 *2)))) (-2873 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6)))) (-2873 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))) (-1510 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6)))) (-1510 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)) (-15 -1455 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))))
+(-10 -7 (-15 -1510 (|#4| |#4| |#3|)) (-15 -1510 (|#4| |#4| (-656 |#3|))) (-15 -2873 (|#4| |#4| |#3|)) (-15 -2873 (|#4| |#4| (-656 |#3|))) (-15 -2548 (|#4| (-1 |#4| (-969 |#1|)) |#4|)))
+((-2174 ((|#2| |#3|) 35)) (-2784 (((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-1666 (((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100)))
+(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1666 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2784 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -2174 (|#2| |#3|))) (-360) (-1263 |#1|) (-1263 |#2|) (-736 |#2| |#3|)) (T -1004))
+((-2174 (*1 *2 *3) (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-2784 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-1666 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -4261 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))))
+(-10 -7 (-15 -1666 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2784 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -2174 (|#2| |#3|)))
+((-1964 (((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82)))
+(((-1005 |#1| |#2|) (-10 -7 (-15 -1964 ((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1196)) (-783)) (T -1005))
+((-1964 (*1 *2 *2) (-12 (-5 *2 (-1006 (-419 (-576)) (-876 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-1005 *3 *4)))))
+(-10 -7 (-15 -1964 ((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))))))
+((-2835 (((-112) $ $) NIL)) (-2654 (((-3 (-112) "failed") $) 71)) (-2546 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3240 (($ $ (-3 (-112) "failed")) 72)) (-1770 (($ (-656 |#4|) |#4|) 25)) (-2143 (((-1178) $) NIL)) (-2262 (($ $) 69)) (-3887 (((-1139) $) NIL)) (-3001 (((-112) $) 70)) (-3849 (($) 30)) (-3728 ((|#4| $) 74)) (-2758 (((-656 |#4|) $) 73)) (-2858 (((-874) $) 68)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1006 |#1| |#2| |#3| |#4|) (-13 (-1119) (-625 (-874)) (-10 -8 (-15 -3849 ($)) (-15 -1770 ($ (-656 |#4|) |#4|)) (-15 -2654 ((-3 (-112) "failed") $)) (-15 -3240 ($ $ (-3 (-112) "failed"))) (-15 -3001 ((-112) $)) (-15 -2758 ((-656 |#4|) $)) (-15 -3728 (|#4| $)) (-15 -2262 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2546 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-805) (-966 |#1| |#3| |#2|)) (T -1006))
+((-3849 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) (-1770 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-966 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1006 *4 *5 *6 *3)))) (-2654 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-3240 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-3001 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-2758 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))) (-2262 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) (-2546 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))))
+(-13 (-1119) (-625 (-874)) (-10 -8 (-15 -3849 ($)) (-15 -1770 ($ (-656 |#4|) |#4|)) (-15 -2654 ((-3 (-112) "failed") $)) (-15 -3240 ($ $ (-3 (-112) "failed"))) (-15 -3001 ((-112) $)) (-15 -2758 ((-656 |#4|) $)) (-15 -3728 (|#4| $)) (-15 -2262 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2546 ($ $)) |%noBranch|) |%noBranch|)))
+((-3923 (((-112) |#5| |#5|) 44)) (-2849 (((-112) |#5| |#5|) 59)) (-3372 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-4060 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-1416 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) 70)) (-4090 (((-1292)) 32)) (-1745 (((-1292) (-1178) (-1178) (-1178)) 28)) (-2665 (((-656 |#5|) (-656 |#5|)) 100)) (-2680 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) 92)) (-4120 (((-656 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-1741 (((-112) |#5| |#5|) 53)) (-2024 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2073 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-3764 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1700 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3745 (((-3 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-4387 (((-656 |#5|) (-656 |#5|)) 49)))
+(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1745 ((-1292) (-1178) (-1178) (-1178))) (-15 -4090 ((-1292))) (-15 -3923 ((-112) |#5| |#5|)) (-15 -4387 ((-656 |#5|) (-656 |#5|))) (-15 -1741 ((-112) |#5| |#5|)) (-15 -2849 ((-112) |#5| |#5|)) (-15 -4060 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2073 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3764 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1700 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2024 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3372 ((-112) |#5| |#5|)) (-15 -3372 ((-112) |#5| (-656 |#5|))) (-15 -2665 ((-656 |#5|) (-656 |#5|))) (-15 -1416 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2680 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-15 -4120 ((-656 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3745 ((-3 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1007))
+((-3745 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -2568 (-656 *9)) (|:| -4256 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-4120 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -2568 (-656 *9)) (|:| -4256 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4256 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-1416 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))) (-2665 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-2024 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1700 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3764 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2073 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-4060 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2849 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1741 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3923 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-4090 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1745 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1745 ((-1292) (-1178) (-1178) (-1178))) (-15 -4090 ((-1292))) (-15 -3923 ((-112) |#5| |#5|)) (-15 -4387 ((-656 |#5|) (-656 |#5|))) (-15 -1741 ((-112) |#5| |#5|)) (-15 -2849 ((-112) |#5| |#5|)) (-15 -4060 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2073 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3764 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1700 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2024 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3372 ((-112) |#5| |#5|)) (-15 -3372 ((-112) |#5| (-656 |#5|))) (-15 -2665 ((-656 |#5|) (-656 |#5|))) (-15 -1416 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2680 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-15 -4120 ((-656 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3745 ((-3 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-1455 (((-1196) $) 15)) (-4160 (((-1178) $) 16)) (-2666 (($ (-1196) (-1178)) 14)) (-2858 (((-874) $) 13)))
+(((-1008) (-13 (-625 (-874)) (-10 -8 (-15 -2666 ($ (-1196) (-1178))) (-15 -1455 ((-1196) $)) (-15 -4160 ((-1178) $))))) (T -1008))
+((-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1008)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1008)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1008)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2666 ($ (-1196) (-1178))) (-15 -1455 ((-1196) $)) (-15 -4160 ((-1178) $))))
+((-2548 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1011 |#1|) (-1011 |#2|)) (T -1009))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1011 *6)) (-5 *1 (-1009 *5 *6 *4 *2)) (-4 *4 (-1011 *5)))))
+(-10 -7 (-15 -2548 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-1196) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-4397 ((|#2| $) NIL) (((-1196) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-2085 (((-701 (-576)) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 115) (((-701 |#2|) (-701 $)) 28) (((-701 |#2|) (-1287 $)) NIL)) (-2107 (($) 99)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 76) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 85)) (-3763 (($ $) 10)) (-3397 (((-3 $ "failed") $) 20)) (-2548 (($ (-1 |#2| |#2|) $) 22)) (-3448 (($) 16)) (-3328 (($ $) 55)) (-2399 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-3560 (($ $) 12)) (-2610 (((-905 (-576)) $) 71) (((-905 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1196)) 58)) (-2981 (((-783)) 31)) (-3916 (((-112) $ $) 51)))
+(((-1010 |#1| |#2|) (-10 -8 (-15 -3916 ((-112) |#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2610 ((-227) |#1|)) (-15 -2610 ((-390) |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2858 (|#1| (-1196))) (-15 -2454 ((-3 (-1196) "failed") |#1|)) (-15 -4397 ((-1196) |#1|)) (-15 -2107 (|#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2085 ((-701 |#2|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| |#1|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-1011 |#2|) (-568)) (T -1010))
+((-2981 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1010 *3 *4)) (-4 *3 (-1011 *4)))))
+(-10 -8 (-15 -3916 ((-112) |#1| |#1|)) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2610 ((-227) |#1|)) (-15 -2610 ((-390) |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2858 (|#1| (-1196))) (-15 -2454 ((-3 (-1196) "failed") |#1|)) (-15 -4397 ((-1196) |#1|)) (-15 -2107 (|#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3763 (|#1| |#1|)) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1835 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2085 ((-701 |#2|) (-1287 |#1|))) (-15 -2085 ((-701 |#2|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| |#1|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1463 ((|#1| $) 162 (|has| |#1| (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3389 (((-430 (-1192 $)) (-1192 $)) 153 (|has| |#1| (-926)))) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 156 (|has| |#1| (-926)))) (-3417 (((-112) $ $) 65)) (-1727 (((-576) $) 143 (|has| |#1| (-832)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 190) (((-3 (-1196) "failed") $) 151 (|has| |#1| (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) 134 (|has| |#1| (-1057 (-576)))) (((-3 (-576) "failed") $) 132 (|has| |#1| (-1057 (-576))))) (-4397 ((|#1| $) 191) (((-1196) $) 152 (|has| |#1| (-1057 (-1196)))) (((-419 (-576)) $) 135 (|has| |#1| (-1057 (-576)))) (((-576) $) 133 (|has| |#1| (-1057 (-576))))) (-2780 (($ $ $) 61)) (-2085 (((-701 (-576)) (-1287 $)) 177 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 175 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 174) (((-701 |#1|) (-701 $)) 173) (((-701 |#1|) (-1287 $)) 172)) (-4011 (((-3 $ "failed") $) 37)) (-2107 (($) 160 (|has| |#1| (-557)))) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3011 (((-112) $) 79)) (-2127 (((-112) $) 145 (|has| |#1| (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 169 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 168 (|has| |#1| (-899 (-390))))) (-1838 (((-112) $) 35)) (-3763 (($ $) 164)) (-1621 ((|#1| $) 166)) (-3397 (((-3 $ "failed") $) 131 (|has| |#1| (-1171)))) (-3196 (((-112) $) 144 (|has| |#1| (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1950 (($ $ $) 141 (|has| |#1| (-862)))) (-1492 (($ $ $) 140 (|has| |#1| (-862)))) (-2548 (($ (-1 |#1| |#1|) $) 182)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3448 (($) 130 (|has| |#1| (-1171)) CONST)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-3328 (($ $) 161 (|has| |#1| (-317)))) (-3807 ((|#1| $) 158 (|has| |#1| (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 155 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 154 (|has| |#1| (-926)))) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) 188 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 187 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 186 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 185 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 184 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 183 (|has| |#1| (-526 (-1196) |#1|)))) (-3076 (((-783) $) 64)) (-2099 (($ $ |#1|) 189 (|has| |#1| (-296 |#1| |#1|)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-2399 (($ $ (-1 |#1| |#1|)) 181) (($ $ (-1 |#1| |#1|) (-783)) 180) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1196)) 125 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 123 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 122 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 121 (|has| |#1| (-917 (-1196))))) (-3560 (($ $) 163)) (-1635 ((|#1| $) 165)) (-2610 (((-905 (-576)) $) 171 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 170 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 148 (|has| |#1| (-626 (-548)))) (((-390) $) 147 (|has| |#1| (-1041))) (((-227) $) 146 (|has| |#1| (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 157 (-3200 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 194) (($ (-1196)) 150 (|has| |#1| (-1057 (-1196))))) (-3689 (((-3 $ "failed") $) 149 (-3739 (|has| |#1| (-146)) (-3200 (|has| $ (-146)) (|has| |#1| (-926)))))) (-2981 (((-783)) 32 T CONST)) (-3156 ((|#1| $) 159 (|has| |#1| (-557)))) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-3680 (($ $) 142 (|has| |#1| (-832)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 |#1| |#1|)) 179) (($ $ (-1 |#1| |#1|) (-783)) 178) (($ $) 128 (|has| |#1| (-237))) (($ $ (-783)) 126 (|has| |#1| (-237))) (($ $ (-1196)) 124 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 120 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 119 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 118 (|has| |#1| (-917 (-1196))))) (-3956 (((-112) $ $) 138 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 137 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 139 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 136 (|has| |#1| (-862)))) (-4013 (($ $ $) 73) (($ |#1| |#1|) 167)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 193) (($ $ |#1|) 192)))
+(((-1011 |#1|) (-141) (-568)) (T -1011))
+((-4013 (*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-3763 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2107 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))))
+(-13 (-374) (-38 |t#1|) (-1057 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-897 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4013 ($ |t#1| |t#1|)) (-15 -1621 (|t#1| $)) (-15 -1635 (|t#1| $)) (-15 -3763 ($ $)) (-15 -3560 ($ $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-1057 (-576))) (PROGN (-6 (-1057 (-576))) (-6 (-1057 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1057 (-1196))) (-6 (-1057 (-1196))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -1463 (|t#1| $)) (-15 -3328 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2107 ($)) (-15 -3156 (|t#1| $)) (-15 -3807 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1196)) |has| |#1| (-1057 (-1196))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1041)) ((-626 (-390)) |has| |#1| (-1041)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-234 $) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-862) -3739 (|has| |#1| (-862)) (|has| |#1| (-832))) ((-909 $ #3=(-1196)) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #3#) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-926) |has| |#1| (-926)) ((-937) . T) ((-1041) |has| |#1| (-1041)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-576))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #1#) |has| |#1| (-1057 (-1196))) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-1171)) ((-1237) . T) ((-1241) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2076 (($ (-1161 |#1| |#2|)) 11)) (-4307 (((-1161 |#1| |#2|) $) 12)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2099 ((|#2| $ (-245 |#1| |#2|)) 16)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL)))
+(((-1012 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2076 ($ (-1161 |#1| |#2|))) (-15 -4307 ((-1161 |#1| |#2|) $)))) (-938) (-374)) (T -1012))
+((-2076 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374)) (-5 *1 (-1012 *3 *4)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374)))))
+(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2076 ($ (-1161 |#1| |#2|))) (-15 -4307 ((-1161 |#1| |#2|) $))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3803 (((-1154) $) 9)) (-2858 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1013) (-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $))))) (T -1013))
+((-3803 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013)))))
+(-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $))))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-3296 (($ $) 47)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-1873 (((-783) $) 46)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2833 ((|#1| $) 45)) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3496 ((|#1| |#1| $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2280 ((|#1| $) 48)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-4170 ((|#1| $) 44)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1014 |#1|) (-141) (-1237)) (T -1014))
+((-3496 (*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4462) (-15 -3496 (|t#1| |t#1| $)) (-15 -2280 (|t#1| $)) (-15 -3296 ($ $)) (-15 -1873 ((-783) $)) (-15 -2833 (|t#1| $)) (-15 -4170 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-3203 (((-112) $) 43)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4397 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-3660 (((-3 (-419 (-576)) "failed") $) 78)) (-1946 (((-112) $) 72)) (-3269 (((-419 (-576)) $) 76)) (-1838 (((-112) $) 42)) (-3075 ((|#2| $) 22)) (-2548 (($ (-1 |#2| |#2|) $) 19)) (-4324 (($ $) 58)) (-2399 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2610 (((-548) $) 67)) (-2480 (($ $) 17)) (-2858 (((-874) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-2981 (((-783)) 10)) (-3680 ((|#2| $) 71)) (-3889 (((-112) $ $) 26)) (-3916 (((-112) $ $) 69)) (-4002 (($ $) 30) (($ $ $) 29)) (-3990 (($ $ $) 27)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL)))
+(((-1015 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| (-419 (-576)))) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -3916 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -4324 (|#1| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3680 (|#2| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 -1838 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3203 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-1016 |#2|) (-174)) (T -1015))
+((-2981 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1015 *3 *4)) (-4 *3 (-1016 *4)))))
+(-10 -8 (-15 -2858 (|#1| (-419 (-576)))) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -3916 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -4324 (|#1| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3680 (|#2| |#1|)) (-15 -3075 (|#2| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2548 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 -1838 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -3203 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2454 (((-3 (-576) "failed") $) 132 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 130 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 127)) (-4397 (((-576) $) 131 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 129 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 128)) (-2085 (((-701 (-576)) (-1287 $)) 114 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 113 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 112 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 111) (((-701 |#1|) (-701 $)) 110) (((-701 |#1|) (-1287 $)) 109)) (-4011 (((-3 $ "failed") $) 37)) (-2490 ((|#1| $) 102)) (-3660 (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-557)))) (-1946 (((-112) $) 100 (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) 99 (|has| |#1| (-557)))) (-3431 (($ |#1| |#1| |#1| |#1|) 103)) (-1838 (((-112) $) 35)) (-3075 ((|#1| $) 104)) (-1950 (($ $ $) 91 (|has| |#1| (-862)))) (-1492 (($ $ $) 90 (|has| |#1| (-862)))) (-2548 (($ (-1 |#1| |#1|) $) 115)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 95 (|has| |#1| (-374)))) (-2925 ((|#1| $) 105)) (-2117 ((|#1| $) 106)) (-2776 ((|#1| $) 107)) (-3887 (((-1139) $) 11)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) 121 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 120 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 119 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 118 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 117 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 116 (|has| |#1| (-526 (-1196) |#1|)))) (-2099 (($ $ |#1|) 122 (|has| |#1| (-296 |#1| |#1|)))) (-2399 (($ $ (-1 |#1| |#1|)) 126) (($ $ (-1 |#1| |#1|) (-783)) 125) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1196)) 81 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 79 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 78 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 77 (|has| |#1| (-917 (-1196))))) (-2610 (((-548) $) 96 (|has| |#1| (-626 (-548))))) (-2480 (($ $) 108)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 73 (-3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3689 (((-3 $ "failed") $) 97 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3680 ((|#1| $) 101 (|has| |#1| (-1079)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 |#1| |#1|)) 124) (($ $ (-1 |#1| |#1|) (-783)) 123) (($ $) 84 (|has| |#1| (-237))) (($ $ (-783)) 82 (|has| |#1| (-237))) (($ $ (-1196)) 80 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 76 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 75 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 74 (|has| |#1| (-917 (-1196))))) (-3956 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 89 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 86 (|has| |#1| (-862)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 94 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 93 (|has| |#1| (-374))) (($ (-419 (-576)) $) 92 (|has| |#1| (-374)))))
+(((-1016 |#1|) (-141) (-174)) (T -1016))
+((-2480 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3431 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3660 (*1 *2 *1) (|partial| -12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))))
+(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2480 ($ $)) (-15 -2776 (|t#1| $)) (-15 -2117 (|t#1| $)) (-15 -2925 (|t#1| $)) (-15 -3075 (|t#1| $)) (-15 -3431 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2490 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3680 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1946 ((-112) $)) (-15 -3269 ((-419 (-576)) $)) (-15 -3660 ((-3 (-419 (-576)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3739 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3739 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-909 $ #2=(-1196)) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #2#) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-374)) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1075 #0#) |has| |#1| (-374)) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-2548 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-1017 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#3| (-1 |#4| |#2|) |#1|))) (-1016 |#2|) (-174) (-1016 |#4|) (-174)) (T -1017))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1016 *6)) (-5 *1 (-1017 *4 *5 *2 *6)) (-4 *4 (-1016 *5)))))
+(-10 -7 (-15 -2548 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2490 ((|#1| $) 12)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-1946 (((-112) $) NIL (|has| |#1| (-557)))) (-3269 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3431 (($ |#1| |#1| |#1| |#1|) 16)) (-1838 (((-112) $) NIL)) (-3075 ((|#1| $) NIL)) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-2925 ((|#1| $) 15)) (-2117 ((|#1| $) 14)) (-2776 ((|#1| $) 13)) (-3887 (((-1139) $) NIL)) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-2099 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2399 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2480 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3680 ((|#1| $) NIL (|has| |#1| (-1079)))) (-2022 (($) 8 T CONST)) (-2038 (($) 10 T CONST)) (-3404 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374)))))
+(((-1018 |#1|) (-1016 |#1|) (-174)) (T -1018))
+NIL
+(-1016 |#1|)
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2746 (((-112) $ (-783)) NIL)) (-2574 (($) NIL T CONST)) (-3296 (($ $) 23)) (-4411 (($ (-656 |#1|)) 33)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-1873 (((-783) $) 26)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2395 ((|#1| $) 28)) (-2329 (($ |#1| $) 17)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2833 ((|#1| $) 27)) (-3079 ((|#1| $) 22)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3496 ((|#1| |#1| $) 16)) (-3001 (((-112) $) 18)) (-3849 (($) NIL)) (-2280 ((|#1| $) 21)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) NIL)) (-4170 ((|#1| $) 30)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1019 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -4411 ($ (-656 |#1|))))) (-1119)) (T -1019))
+((-4411 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1019 *3)))))
+(-13 (-1014 |#1|) (-10 -8 (-15 -4411 ($ (-656 |#1|)))))
+((-2477 (($ $) 12)) (-1404 (($ $ (-576)) 13)))
+(((-1020 |#1|) (-10 -8 (-15 -2477 (|#1| |#1|)) (-15 -1404 (|#1| |#1| (-576)))) (-1021)) (T -1020))
+NIL
+(-10 -8 (-15 -2477 (|#1| |#1|)) (-15 -1404 (|#1| |#1| (-576))))
+((-2477 (($ $) 6)) (-1404 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8)))
+(((-1021) (-141)) (T -1021))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-576))))) (-1404 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-576)))) (-2477 (*1 *1 *1) (-4 *1 (-1021))))
+(-13 (-10 -8 (-15 -2477 ($ $)) (-15 -1404 ($ $ (-576))) (-15 ** ($ $ (-419 (-576))))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-4231 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2150 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2637 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3940 (((-701 (-419 |#2|)) (-1287 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-1462 (((-419 |#2|) $) NIL)) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2464 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3417 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2422 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3515 (((-112)) NIL)) (-3133 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2876 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL) (($ (-1287 (-419 |#2|))) 79) (($ (-1287 |#2|) |#2|) NIL)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-2780 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3313 (((-701 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-1728 (((-1287 $) (-1287 $)) NIL)) (-2326 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-4011 (((-3 $ "failed") $) NIL)) (-2688 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2830 (((-112) |#1| |#1|) NIL)) (-4422 (((-938)) NIL)) (-2107 (($) NIL (|has| (-419 |#2|) (-379)))) (-2768 (((-112)) NIL)) (-3907 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-2790 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-3420 (($ $) NIL)) (-3602 (($) NIL (|has| (-419 |#2|) (-360)))) (-4429 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-2244 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-3011 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-2620 (((-938) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-360)))) (-1838 (((-112) $) NIL)) (-2719 (((-783)) NIL)) (-3814 (((-1287 $) (-1287 $)) NIL)) (-3075 (((-419 |#2|) $) NIL)) (-1716 (((-656 (-969 |#1|)) (-1196)) NIL (|has| |#1| (-374)))) (-3397 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2510 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1654 (((-938) $) NIL (|has| (-419 |#2|) (-379)))) (-2315 ((|#3| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2143 (((-1178) $) NIL)) (-2939 (((-701 (-419 |#2|))) 57)) (-4413 (((-701 (-419 |#2|))) 56)) (-4324 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2132 (($ (-1287 |#2|) |#2|) 80)) (-3235 (((-701 (-419 |#2|))) 55)) (-2115 (((-701 (-419 |#2|))) 54)) (-2959 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-4242 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 86)) (-2383 (((-1287 $)) 51)) (-1666 (((-1287 $)) 50)) (-1524 (((-112) $) NIL)) (-3630 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3448 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-4308 (($ (-938)) NIL (|has| (-419 |#2|) (-379)))) (-2598 (((-3 |#2| "failed")) 70)) (-3887 (((-1139) $) NIL)) (-3088 (((-783)) NIL)) (-3633 (($) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-374)))) (-3901 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-2367 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2825 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3076 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2099 ((|#1| $ |#1| |#1|) NIL)) (-1624 (((-3 |#2| "failed")) 68)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3880 (((-419 |#2|) (-1287 $)) NIL) (((-419 |#2|)) 47)) (-3447 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2399 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4370 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1953 ((|#3|) 58)) (-1861 (($) NIL (|has| (-419 |#2|) (-360)))) (-3392 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-2610 (((-1287 (-419 |#2|)) $) NIL) (($ (-1287 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-1477 (((-1287 $) (-1287 $)) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3739 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3689 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-2528 ((|#3| $) NIL)) (-2981 (((-783)) NIL T CONST)) (-3816 (((-112)) 65)) (-3252 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) NIL)) (-3199 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2632 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4418 (((-112)) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3739 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374)))))
+(((-1022 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1241) (-1263 |#1|) (-1263 (-419 |#2|)) (-419 |#2|) (-783)) (T -1022))
+NIL
+(-353 |#1| |#2| |#3|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1969 (((-656 (-576)) $) 73)) (-1886 (($ (-656 (-576))) 81)) (-1463 (((-576) $) 48 (|has| (-576) (-317)))) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL (|has| (-576) (-832)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) 60) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1057 (-576))))) (-4397 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-2780 (($ $ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2107 (($) NIL (|has| (-576) (-557)))) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-3347 (((-656 (-576)) $) 79)) (-2127 (((-112) $) NIL (|has| (-576) (-832)))) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL)) (-1621 (((-576) $) 45)) (-3397 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3196 (((-112) $) NIL (|has| (-576) (-832)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-576) (-862)))) (-2548 (($ (-1 (-576) (-576)) $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL)) (-3448 (($) NIL (|has| (-576) (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3328 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-4296 (((-1176 (-576)) $) 78)) (-1564 (($ (-656 (-576)) (-656 (-576))) 82)) (-3807 (((-576) $) 64 (|has| (-576) (-557)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-2367 (((-430 $) $) NIL)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3022 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-3076 (((-783) $) NIL)) (-2099 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3560 (($ $) NIL)) (-1635 (((-576) $) 47)) (-4051 (((-656 (-576)) $) 80)) (-2610 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-2858 (((-874) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) 25)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2981 (((-783)) 13 T CONST)) (-3156 (((-576) $) 62 (|has| (-576) (-557)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3680 (($ $) NIL (|has| (-576) (-832)))) (-2022 (($) 14 T CONST)) (-2038 (($) 17 T CONST)) (-3404 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3956 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3889 (((-112) $ $) 21)) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3916 (((-112) $ $) 40 (|has| (-576) (-862)))) (-4013 (($ $ $) 36) (($ (-576) (-576)) 38)) (-4002 (($ $) 23) (($ $ $) 30)) (-3990 (($ $ $) 28)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL)))
+(((-1023 |#1|) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -1969 ((-656 (-576)) $)) (-15 -4296 ((-1176 (-576)) $)) (-15 -3347 ((-656 (-576)) $)) (-15 -4051 ((-656 (-576)) $)) (-15 -1886 ($ (-656 (-576)))) (-15 -1564 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1023))
+((-3328 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-1969 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-1886 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-1564 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
+(-13 (-1011 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -3328 ((-419 (-576)) $)) (-15 -1969 ((-656 (-576)) $)) (-15 -4296 ((-1176 (-576)) $)) (-15 -3347 ((-656 (-576)) $)) (-15 -4051 ((-656 (-576)) $)) (-15 -1886 ($ (-656 (-576)))) (-15 -1564 ($ (-656 (-576)) (-656 (-576))))))
+((-4403 (((-52) (-419 (-576)) (-576)) 9)))
+(((-1024) (-10 -7 (-15 -4403 ((-52) (-419 (-576)) (-576))))) (T -1024))
+((-4403 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1024)))))
+(-10 -7 (-15 -4403 ((-52) (-419 (-576)) (-576))))
+((-2422 (((-576)) 23)) (-1903 (((-576)) 28)) (-3577 (((-1292) (-576)) 26)) (-3545 (((-576) (-576)) 29) (((-576)) 22)))
+(((-1025) (-10 -7 (-15 -3545 ((-576))) (-15 -2422 ((-576))) (-15 -3545 ((-576) (-576))) (-15 -3577 ((-1292) (-576))) (-15 -1903 ((-576))))) (T -1025))
+((-1903 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1025)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-2422 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-3545 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))))
+(-10 -7 (-15 -3545 ((-576))) (-15 -2422 ((-576))) (-15 -3545 ((-576) (-576))) (-15 -3577 ((-1292) (-576))) (-15 -1903 ((-576))))
+((-4384 (((-430 |#1|) |#1|) 43)) (-2367 (((-430 |#1|) |#1|) 41)))
+(((-1026 |#1|) (-10 -7 (-15 -2367 ((-430 |#1|) |#1|)) (-15 -4384 ((-430 |#1|) |#1|))) (-1263 (-419 (-576)))) (T -1026))
+((-4384 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1263 (-419 (-576)))))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1263 (-419 (-576)))))))
+(-10 -7 (-15 -2367 ((-430 |#1|) |#1|)) (-15 -4384 ((-430 |#1|) |#1|)))
+((-3660 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-1946 (((-112) |#1|) 14)) (-3269 (((-419 (-576)) |#1|) 10)))
+(((-1027 |#1|) (-10 -7 (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|))) (-1057 (-419 (-576)))) (T -1027))
+((-3660 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2)))) (-1946 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-576)))))) (-3269 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2)))))
+(-10 -7 (-15 -3269 ((-419 (-576)) |#1|)) (-15 -1946 ((-112) |#1|)) (-15 -3660 ((-3 (-419 (-576)) "failed") |#1|)))
+((-3028 ((|#2| $ "value" |#2|) 12)) (-2099 ((|#2| $ "value") 10)) (-1694 (((-112) $ $) 18)))
+(((-1028 |#1| |#2|) (-10 -8 (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -1694 ((-112) |#1| |#1|)) (-15 -2099 (|#2| |#1| "value"))) (-1029 |#2|) (-1237)) (T -1028))
+NIL
+(-10 -8 (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -1694 ((-112) |#1| |#1|)) (-15 -2099 (|#2| |#1| "value")))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-2574 (($) 7 T CONST)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48)) (-3599 (((-576) $ $) 45)) (-2133 (((-112) $) 47)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1029 |#1|) (-141) (-1237)) (T -1029))
+((-4016 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) (-1550 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3599 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))) (-1694 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-2231 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-4280 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4463)) (-4 *1 (-1029 *3)) (-4 *3 (-1237)))) (-3028 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) (-4338 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) (-4 *2 (-1237)))))
+(-13 (-501 |t#1|) (-10 -8 (-15 -4016 ((-656 $) $)) (-15 -1550 ((-656 $) $)) (-15 -3123 ((-112) $)) (-15 -4160 (|t#1| $)) (-15 -2099 (|t#1| $ "value")) (-15 -2133 ((-112) $)) (-15 -2485 ((-656 |t#1|) $)) (-15 -3599 ((-576) $ $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -1694 ((-112) $ $)) (-15 -2231 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -4280 ($ $ (-656 $))) (-15 -3028 (|t#1| $ "value" |t#1|)) (-15 -4338 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2477 (($ $) 9) (($ $ (-938)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-3968 (((-3 $ "failed") (-1192 $) (-938) (-874)) 24) (((-3 $ "failed") (-1192 $) (-938)) 32)) (-1404 (($ $ (-576)) 58)) (-2981 (((-783)) 18)) (-2364 (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 (-419 (-576)))) 63) (((-656 $) (-1192 (-576))) 68) (((-656 $) (-969 $)) 72) (((-656 $) (-969 (-419 (-576)))) 76) (((-656 $) (-969 (-576))) 80)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53)))
+(((-1030 |#1|) (-10 -8 (-15 -2477 (|#1| (-576))) (-15 -2477 (|#1| (-419 (-576)))) (-15 -2477 (|#1| |#1| (-938))) (-15 -2364 ((-656 |#1|) (-969 (-576)))) (-15 -2364 ((-656 |#1|) (-969 (-419 (-576))))) (-15 -2364 ((-656 |#1|) (-969 |#1|))) (-15 -2364 ((-656 |#1|) (-1192 (-576)))) (-15 -2364 ((-656 |#1|) (-1192 (-419 (-576))))) (-15 -2364 ((-656 |#1|) (-1192 |#1|))) (-15 -3968 ((-3 |#1| "failed") (-1192 |#1|) (-938))) (-15 -3968 ((-3 |#1| "failed") (-1192 |#1|) (-938) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1404 (|#1| |#1| (-576))) (-15 -2477 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2981 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) (-1031)) (T -1030))
+((-2981 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1030 *3)) (-4 *3 (-1031)))))
+(-10 -8 (-15 -2477 (|#1| (-576))) (-15 -2477 (|#1| (-419 (-576)))) (-15 -2477 (|#1| |#1| (-938))) (-15 -2364 ((-656 |#1|) (-969 (-576)))) (-15 -2364 ((-656 |#1|) (-969 (-419 (-576))))) (-15 -2364 ((-656 |#1|) (-969 |#1|))) (-15 -2364 ((-656 |#1|) (-1192 (-576)))) (-15 -2364 ((-656 |#1|) (-1192 (-419 (-576))))) (-15 -2364 ((-656 |#1|) (-1192 |#1|))) (-15 -3968 ((-3 |#1| "failed") (-1192 |#1|) (-938))) (-15 -3968 ((-3 |#1| "failed") (-1192 |#1|) (-938) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1404 (|#1| |#1| (-576))) (-15 -2477 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2981 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 102)) (-2150 (($ $) 103)) (-2637 (((-112) $) 105)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 122)) (-2464 (((-430 $) $) 123)) (-2477 (($ $) 86) (($ $ (-938)) 72) (($ (-419 (-576))) 71) (($ (-576)) 70)) (-3417 (((-112) $ $) 113)) (-1727 (((-576) $) 139)) (-2574 (($) 18 T CONST)) (-3968 (((-3 $ "failed") (-1192 $) (-938) (-874)) 80) (((-3 $ "failed") (-1192 $) (-938)) 79)) (-2454 (((-3 (-576) "failed") $) 99 (|has| (-419 (-576)) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 94)) (-4397 (((-576) $) 98 (|has| (-419 (-576)) (-1057 (-576)))) (((-419 (-576)) $) 96 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-419 (-576)) $) 95)) (-2322 (($ $ (-874)) 69)) (-2900 (($ $ (-874)) 68)) (-2780 (($ $ $) 117)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 116)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 111)) (-3011 (((-112) $) 124)) (-2127 (((-112) $) 137)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 85)) (-3196 (((-112) $) 138)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 120)) (-1950 (($ $ $) 136)) (-1492 (($ $ $) 135)) (-1798 (((-3 (-1192 $) "failed") $) 81)) (-2180 (((-3 (-874) "failed") $) 83)) (-1330 (((-3 (-1192 $) "failed") $) 82)) (-3862 (($ (-656 $)) 109) (($ $ $) 108)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 125)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 110)) (-3901 (($ (-656 $)) 107) (($ $ $) 106)) (-2367 (((-430 $) $) 121)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 118)) (-2825 (((-3 $ "failed") $ $) 101)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 112)) (-3076 (((-783) $) 114)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 115)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 129) (($ $) 100) (($ (-419 (-576))) 93) (($ (-576)) 92) (($ (-419 (-576))) 89)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 104)) (-3468 (((-419 (-576)) $ $) 67)) (-2364 (((-656 $) (-1192 $)) 78) (((-656 $) (-1192 (-419 (-576)))) 77) (((-656 $) (-1192 (-576))) 76) (((-656 $) (-969 $)) 75) (((-656 $) (-969 (-419 (-576)))) 74) (((-656 $) (-969 (-576))) 73)) (-3680 (($ $) 140)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 133)) (-3930 (((-112) $ $) 132)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 134)) (-3916 (((-112) $ $) 131)) (-4013 (($ $ $) 130)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 126) (($ $ (-419 (-576))) 84)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 128) (($ $ (-419 (-576))) 127) (($ (-576) $) 91) (($ $ (-576)) 90) (($ (-419 (-576)) $) 88) (($ $ (-419 (-576))) 87)))
+(((-1031) (-141)) (T -1031))
+((-2477 (*1 *1 *1) (-4 *1 (-1031))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-1330 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031)))) (-1798 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031)))) (-3968 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-5 *4 (-874)) (-4 *1 (-1031)))) (-3968 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-4 *1 (-1031)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-1192 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-2477 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-938)))) (-2477 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1031)))) (-2477 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1031)))) (-2322 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-2900 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-3468 (*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-576))))))
+(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1021) (-10 -8 (-15 -2180 ((-3 (-874) "failed") $)) (-15 -1330 ((-3 (-1192 $) "failed") $)) (-15 -1798 ((-3 (-1192 $) "failed") $)) (-15 -3968 ((-3 $ "failed") (-1192 $) (-938) (-874))) (-15 -3968 ((-3 $ "failed") (-1192 $) (-938))) (-15 -2364 ((-656 $) (-1192 $))) (-15 -2364 ((-656 $) (-1192 (-419 (-576))))) (-15 -2364 ((-656 $) (-1192 (-576)))) (-15 -2364 ((-656 $) (-969 $))) (-15 -2364 ((-656 $) (-969 (-419 (-576))))) (-15 -2364 ((-656 $) (-969 (-576)))) (-15 -2477 ($ $ (-938))) (-15 -2477 ($ $)) (-15 -2477 ($ (-419 (-576)))) (-15 -2477 ($ (-576))) (-15 -2322 ($ $ (-874))) (-15 -2900 ($ $ (-874))) (-15 -3468 ((-419 (-576)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-937) . T) ((-1021) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) |has| (-419 (-576)) (-1057 (-576))) ((-1070 #0#) . T) ((-1070 #1#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 #1#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-1561 (((-2 (|:| |ans| |#2|) (|:| -2442 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1032 |#1| |#2|) (-10 -7 (-15 -1561 ((-2 (|:| |ans| |#2|) (|:| -2442 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-27) (-442 |#1|))) (T -1032))
+((-1561 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4177 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2442 *4) (|:| |sol?| (-112)))) (-5 *1 (-1032 *8 *4)))))
+(-10 -7 (-15 -1561 ((-2 (|:| |ans| |#2|) (|:| -2442 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3349 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1033 |#1| |#2|) (-10 -7 (-15 -3349 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-27) (-442 |#1|))) (T -1033))
+((-3349 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4177 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1033 *8 *4)))))
+(-10 -7 (-15 -3349 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4177 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3962 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2568 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-2742 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -1922 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-1558 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74)))
+(((-1034 |#1| |#2|) (-10 -7 (-15 -2742 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -1922 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1558 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -3962 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2568 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1057 (-576))) (-1263 |#1|)) (T -1034))
+((-3962 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1057 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2568 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1034 *6 *3)))) (-1558 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))) (-2742 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -1922 *6))) (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6)))))
+(-10 -7 (-15 -2742 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -1922 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1558 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -3962 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2568 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|))))
+((-4122 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -1922 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-1576 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34)))
+(((-1035 |#1| |#2|) (-10 -7 (-15 -4122 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -1922 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1576 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1057 (-576))) (-1263 |#1|)) (T -1035))
+((-1576 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5)))) (-4122 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -1922 *6))) (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6)))))
+(-10 -7 (-15 -4122 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -1922 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1576 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))))
+((-3303 (((-1 |#1|) (-656 (-2 (|:| -4160 |#1|) (|:| -2551 (-576))))) 34)) (-3175 (((-1 |#1|) (-1121 |#1|)) 42)) (-4159 (((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)) 31)))
+(((-1036 |#1|) (-10 -7 (-15 -3175 ((-1 |#1|) (-1121 |#1|))) (-15 -3303 ((-1 |#1|) (-656 (-2 (|:| -4160 |#1|) (|:| -2551 (-576)))))) (-15 -4159 ((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)))) (-1119)) (T -1036))
+((-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-576))) (-5 *5 (-576)) (-4 *6 (-1119)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4160 *4) (|:| -2551 (-576))))) (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1121 *4)) (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))))
+(-10 -7 (-15 -3175 ((-1 |#1|) (-1121 |#1|))) (-15 -3303 ((-1 |#1|) (-656 (-2 (|:| -4160 |#1|) (|:| -2551 (-576)))))) (-15 -4159 ((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576))))
+((-2620 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2620 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1037))
+((-2620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1037 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2620 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2835 (((-112) $ $) NIL)) (-2569 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-1154) $) 11)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1038) (-13 (-1102) (-10 -8 (-15 -2569 ((-1154) $)) (-15 -1822 ((-1154) $))))) (T -1038))
+((-2569 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))))
+(-13 (-1102) (-10 -8 (-15 -2569 ((-1154) $)) (-15 -1822 ((-1154) $))))
+((-2094 (((-3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) "failed") |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) 32) (((-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576))) 29)) (-3526 (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) 33) (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1|) 28)) (-3360 (((-656 (-419 (-576))) (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) 20)) (-4394 (((-419 (-576)) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) 17)))
+(((-1039 |#1|) (-10 -7 (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1|)) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) "failed") |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -4394 ((-419 (-576)) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -3360 ((-656 (-419 (-576))) (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))))) (-1263 (-576))) (T -1039))
+((-3360 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1039 *4)) (-4 *4 (-1263 (-576))))) (-4394 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1039 *4)) (-4 *4 (-1263 (-576))))) (-2094 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) (-2094 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2425 *5) (|:| -2442 *5)))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2425 *5) (|:| -2442 *5))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-419 (-576))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))))
+(-10 -7 (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1|)) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) "failed") |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -4394 ((-419 (-576)) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -3360 ((-656 (-419 (-576))) (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))))
+((-2094 (((-3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) "failed") |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) 35) (((-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576))) 32)) (-3526 (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) 28) (((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1|) 24)))
+(((-1040 |#1|) (-10 -7 (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1|)) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) "failed") |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))) (-1263 (-419 (-576)))) (T -1040))
+((-2094 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))))) (-2094 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *4)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2425 *5) (|:| -2442 *5)))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -2425 *5) (|:| -2442 *5))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2425 *4) (|:| -2442 *4)))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *4)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))) (-5 *4 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))))))
+(-10 -7 (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1|)) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3526 ((-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-419 (-576)))) (-15 -2094 ((-3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) "failed") |#1| (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))) (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))))
+((-2610 (((-227) $) 6) (((-390) $) 9)))
+(((-1041) (-141)) (T -1041))
+NIL
+(-13 (-626 (-227)) (-626 (-390)))
+(((-626 (-227)) . T) ((-626 (-390)) . T))
+((-2783 (((-656 (-390)) (-969 (-576)) (-390)) 28) (((-656 (-390)) (-969 (-419 (-576))) (-390)) 27)) (-1397 (((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1196)) (-390)) 37)))
+(((-1042) (-10 -7 (-15 -2783 ((-656 (-390)) (-969 (-419 (-576))) (-390))) (-15 -2783 ((-656 (-390)) (-969 (-576)) (-390))) (-15 -1397 ((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1196)) (-390))))) (T -1042))
+((-1397 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1042)) (-5 *5 (-390)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) (-5 *4 (-390)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) (-5 *4 (-390)))))
+(-10 -7 (-15 -2783 ((-656 (-390)) (-969 (-419 (-576))) (-390))) (-15 -2783 ((-656 (-390)) (-969 (-576)) (-390))) (-15 -1397 ((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1196)) (-390))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 75)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-2477 (($ $) NIL) (($ $ (-938)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) 70)) (-2574 (($) NIL T CONST)) (-3968 (((-3 $ "failed") (-1192 $) (-938) (-874)) NIL) (((-3 $ "failed") (-1192 $) (-938)) 55)) (-2454 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-3739 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))))) (-4397 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-3739 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))))) (-2322 (($ $ (-874)) 47)) (-2900 (($ $ (-874)) 48)) (-2780 (($ $ $) NIL)) (-1958 (((-419 (-576)) $ $) 21)) (-4011 (((-3 $ "failed") $) 88)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-2127 (((-112) $) 66)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL)) (-3196 (((-112) $) 69)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-1798 (((-3 (-1192 $) "failed") $) 83)) (-2180 (((-3 (-874) "failed") $) 82)) (-1330 (((-3 (-1192 $) "failed") $) 80)) (-2088 (((-3 (-1080 $ (-1192 $)) "failed") $) 78)) (-3862 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 89)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2858 (((-874) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-3468 (((-419 (-576)) $ $) 27)) (-2364 (((-656 $) (-1192 $)) 61) (((-656 $) (-1192 (-419 (-576)))) NIL) (((-656 $) (-1192 (-576))) NIL) (((-656 $) (-969 $)) NIL) (((-656 $) (-969 (-419 (-576)))) NIL) (((-656 $) (-969 (-576))) NIL)) (-2063 (($ (-1080 $ (-1192 $)) (-874)) 46)) (-3680 (($ $) 22)) (-2022 (($) 32 T CONST)) (-2038 (($) 39 T CONST)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 76)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 24)) (-4013 (($ $ $) 37)) (-4002 (($ $) 38) (($ $ $) 74)) (-3990 (($ $ $) 112)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1043 |#1|) (-13 (-1031) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2063 ($ (-1080 $ (-1192 $)) (-874))) (-15 -2088 ((-3 (-1080 $ (-1192 $)) "failed") $)) (-15 -1958 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1041))) (T -1043))
+((-2063 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 (-1043 *4) (-1192 (-1043 *4)))) (-5 *3 (-874)) (-5 *1 (-1043 *4)) (-4 *4 (-13 (-860) (-374) (-1041))))) (-2088 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1192 (-1043 *3)))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041))))) (-1958 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041))))))
+(-13 (-1031) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2063 ($ (-1080 $ (-1192 $)) (-874))) (-15 -2088 ((-3 (-1080 $ (-1192 $)) "failed") $)) (-15 -1958 ((-419 (-576)) $ $))))
+((-1670 (((-2 (|:| -2568 |#2|) (|:| -1600 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1044 |#1| |#2|) (-10 -7 (-15 -1670 (|#2| |#2| |#1|)) (-15 -1670 ((-2 (|:| -2568 |#2|) (|:| -1600 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1044))
+((-1670 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -2568 *3) (|:| -1600 (-656 *5)))) (-5 *1 (-1044 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-1670 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-668 *3)))))
+(-10 -7 (-15 -1670 (|#2| |#2| |#1|)) (-15 -1670 ((-2 (|:| -2568 |#2|) (|:| -1600 (-656 |#1|))) |#2| (-656 |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4235 ((|#1| $ |#1|) 14)) (-3028 ((|#1| $ |#1|) 12)) (-2375 (($ |#1|) 10)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2099 ((|#1| $) 11)) (-4229 ((|#1| $) 13)) (-2858 (((-874) $) 21 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3889 (((-112) $ $) 9)))
+(((-1045 |#1|) (-13 (-1237) (-10 -8 (-15 -2375 ($ |#1|)) (-15 -2099 (|#1| $)) (-15 -3028 (|#1| $ |#1|)) (-15 -4229 (|#1| $)) (-15 -4235 (|#1| $ |#1|)) (-15 -3889 ((-112) $ $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1237)) (T -1045))
+((-2375 (*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-2099 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-3028 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-4229 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-4235 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-3889 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1045 *3)) (-4 *3 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2375 ($ |#1|)) (-15 -2099 (|#1| $)) (-15 -3028 (|#1| $ |#1|)) (-15 -4229 (|#1| $)) (-15 -4235 (|#1| $ |#1|)) (-15 -3889 ((-112) $ $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1952 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1634 (((-656 |#3|) $) NIL)) (-4001 (((-112) $) NIL)) (-3169 (((-112) $) NIL (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1778 ((|#4| |#4| $) NIL)) (-3179 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| $) 112)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3959 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 66)) (-2574 (($) NIL T CONST)) (-1516 (((-112) $) 29 (|has| |#1| (-568)))) (-2097 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3593 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3695 (((-112) $) NIL (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3390 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4397 (($ (-656 |#4|)) NIL)) (-2003 (((-3 $ "failed") $) 45)) (-2040 ((|#4| |#4| $) 69)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3607 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3586 ((|#4| |#4| $) NIL)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) NIL)) (-3275 (((-112) |#4| $) NIL)) (-4438 (((-112) |#4| $) NIL)) (-4310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3893 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3975 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4402 ((|#3| $) 38)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#4|) $) 19 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2822 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 23)) (-2804 (((-656 |#3|) $) NIL)) (-2872 (((-112) |#3| $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3342 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4362 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| |#4| $) 110)) (-3627 (((-3 |#4| "failed") $) 42)) (-1611 (((-656 $) |#4| $) 93)) (-4270 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3310 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-3609 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-1501 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3025 (((-656 |#4|) $) NIL)) (-2671 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2978 ((|#4| |#4| $) NIL)) (-1700 (((-112) $ $) NIL)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3350 ((|#4| |#4| $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-3 |#4| "failed") $) 40)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2451 (((-3 $ "failed") $ |#4|) 59)) (-3262 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-1910 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 17)) (-3849 (($) 14)) (-4436 (((-783) $) NIL)) (-3902 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) 13)) (-2610 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 22)) (-4426 (($ $ |#3|) 52)) (-4127 (($ $ |#3|) 54)) (-2693 (($ $) NIL)) (-3668 (($ $ |#3|) NIL)) (-2858 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3506 (((-783) $) NIL (|has| |#3| (-379)))) (-2690 (((-112) $ $) NIL)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3828 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2714 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) NIL)) (-2212 (((-112) |#4| $) NIL)) (-2576 (((-112) |#3| $) 65)) (-3889 (((-112) $ $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1046 |#1| |#2| |#3| |#4|) (-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1501 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3609 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3893 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1046))
+((-1501 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-1952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3609 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3893 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1046 *5 *6 *7 *8))))) (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1501 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3609 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3893 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)))))
+((-2836 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-2807 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938)) 63) (((-701 |#1|) (-701 |#1|) (-938)) 62)) (-2962 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-922 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-922 (-576)) (-576)) 75)) (-4047 (((-701 (-969 |#1|)) (-783)) 95)) (-3759 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938)) 49 (|has| |#1| (-6 (-4464 "*")))) (((-701 |#1|) (-701 |#1|) (-938)) 47 (|has| |#1| (-6 (-4464 "*"))))))
+(((-1047 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -3759 ((-701 |#1|) (-701 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -3759 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) |%noBranch|) (-15 -4047 ((-701 (-969 |#1|)) (-783))) (-15 -2807 ((-701 |#1|) (-701 |#1|) (-938))) (-15 -2807 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) (-15 -2836 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2836 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2836 ((-701 |#1|) (-701 |#1|))) (-15 -2836 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2962 ((-701 (-576)) (-922 (-576)) (-576))) (-15 -2962 ((-701 (-576)) (-656 (-576)))) (-15 -2962 ((-656 (-701 (-576))) (-656 (-922 (-576))) (-576))) (-15 -2962 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1068)) (T -1047))
+((-2962 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-922 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2836 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2836 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2807 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-2807 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-969 *4))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-3759 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (|has| *4 (-6 (-4464 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-3759 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4464 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -3759 ((-701 |#1|) (-701 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -3759 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) |%noBranch|) (-15 -4047 ((-701 (-969 |#1|)) (-783))) (-15 -2807 ((-701 |#1|) (-701 |#1|) (-938))) (-15 -2807 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) (-15 -2836 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2836 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2836 ((-701 |#1|) (-701 |#1|))) (-15 -2836 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2962 ((-701 (-576)) (-922 (-576)) (-576))) (-15 -2962 ((-701 (-576)) (-656 (-576)))) (-15 -2962 ((-656 (-701 (-576))) (-656 (-922 (-576))) (-576))) (-15 -2962 ((-656 (-701 (-576))) (-656 (-656 (-576))))))
+((-3014 (((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)) 70 (|has| |#1| (-317)))) (-3529 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|)) 117 (|has| |#1| (-374)))) (-2241 (((-1287 |#1|) (-656 (-1287 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-3285 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-4069 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-2348 (((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|)) 67 (|has| |#1| (-317)))) (-4035 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-3304 (((-701 |#1|) (-1287 (-1287 |#1|))) 40)) (-2631 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374)))))
+(((-1048 |#1|) (-10 -7 (-15 -3304 ((-701 |#1|) (-1287 (-1287 |#1|)))) (-15 -4035 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2348 ((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -3014 ((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2631 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2631 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2631 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -4069 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -4069 ((-112) (-656 (-701 |#1|)))) (-15 -3529 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -3529 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938))) (-15 -2241 ((-1287 |#1|) (-656 (-1287 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1068)) (T -1048))
+((-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1287 *5))) (-5 *4 (-576)) (-5 *2 (-1287 *5)) (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)))) (-3285 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-3285 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-3285 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1068)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-656 (-701 *4))))) (-3285 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1068)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1048 *6)) (-5 *3 (-656 (-701 *6))))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *5)))) (-2631 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-1068)))) (-2631 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4)) (-4 *4 (-374)) (-4 *4 (-1068)))) (-2631 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1048 *6)) (-4 *6 (-374)) (-4 *6 (-1068)))) (-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-317)) (-4 *5 (-1068)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1068)) (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1048 *5)) (-5 *4 (-1287 *5)))) (-4035 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1068)) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4)))))
+(-10 -7 (-15 -3304 ((-701 |#1|) (-1287 (-1287 |#1|)))) (-15 -4035 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2348 ((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -3014 ((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2631 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -2631 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2631 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -4069 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -4069 ((-112) (-656 (-701 |#1|)))) (-15 -3529 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -3529 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -3285 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938))) (-15 -2241 ((-1287 |#1|) (-656 (-1287 |#1|)) (-576)))) |%noBranch|) |%noBranch|))
+((-3970 ((|#1| (-938) |#1|) 18)))
+(((-1049 |#1|) (-10 -7 (-15 -3970 (|#1| (-938) |#1|))) (-13 (-1119) (-10 -8 (-15 -3990 ($ $ $))))) (T -1049))
+((-3970 (*1 *2 *3 *2) (-12 (-5 *3 (-938)) (-5 *1 (-1049 *2)) (-4 *2 (-13 (-1119) (-10 -8 (-15 -3990 ($ $ $))))))))
+(-10 -7 (-15 -3970 (|#1| (-938) |#1|)))
+((-3228 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576))))) 67)) (-1522 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576))))) 52)) (-1979 (((-656 (-326 (-576))) (-701 (-419 (-969 (-576))))) 45)) (-1545 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576))))) 85)) (-2236 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-2239 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-2778 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576))))) 82)))
+(((-1050) (-10 -7 (-15 -3228 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576)))))) (-15 -1522 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576)))))) (-15 -1979 ((-656 (-326 (-576))) (-701 (-419 (-969 (-576)))))) (-15 -2778 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576)))))) (-15 -2236 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2239 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -1545 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576)))))))) (T -1050))
+((-1545 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))) (-2778 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1050)))) (-1522 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)) (-5 *3 (-326 (-576))))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1050)))))
+(-10 -7 (-15 -3228 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576)))))) (-15 -1522 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576)))))) (-15 -1979 ((-656 (-326 (-576))) (-701 (-419 (-969 (-576)))))) (-15 -2778 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576)))))) (-15 -2236 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -2239 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -1545 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576)))))))
+((-2352 ((|#1| |#1| (-938)) 18)))
+(((-1051 |#1|) (-10 -7 (-15 -2352 (|#1| |#1| (-938)))) (-13 (-1119) (-10 -8 (-15 * ($ $ $))))) (T -1051))
+((-2352 (*1 *2 *2 *3) (-12 (-5 *3 (-938)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1119) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2352 (|#1| |#1| (-938))))
+((-2858 ((|#1| (-322)) 11) (((-1292) |#1|) 9)))
+(((-1052 |#1|) (-10 -7 (-15 -2858 ((-1292) |#1|)) (-15 -2858 (|#1| (-322)))) (-1237)) (T -1052))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1052 *2)) (-4 *2 (-1237)))) (-2858 (*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1052 *3)) (-4 *3 (-1237)))))
+(-10 -7 (-15 -2858 ((-1292) |#1|)) (-15 -2858 (|#1| (-322))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2326 (($ |#4|) 25)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-2315 ((|#4| $) 27)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2981 (((-783)) 43 T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 21 T CONST)) (-2038 (($) 23 T CONST)) (-3889 (((-112) $ $) 40)) (-4002 (($ $) 31) (($ $ $) NIL)) (-3990 (($ $ $) 29)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1053 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2326 ($ |#4|)) (-15 -2858 ($ |#4|)) (-15 -2315 (|#4| $)))) (-374) (-805) (-862) (-966 |#1| |#2| |#3|) (-656 |#4|)) (T -1053))
+((-2326 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2858 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2315 (*1 *2 *1) (-12 (-4 *2 (-966 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2)))))
+(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2326 ($ |#4|)) (-15 -2858 ($ |#4|)) (-15 -2315 (|#4| $))))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-3430 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3174 (((-112) (-112)) 43)) (-2131 (((-112) (-112)) 42)) (-3028 (((-52) $ (-1196) (-52)) NIL)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 (-52) "failed") (-1196) $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-3007 (($ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-3 (-52) "failed") (-1196) $) NIL)) (-3607 (($ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2832 (((-52) $ (-1196) (-52)) NIL (|has| $ (-6 -4463)))) (-2767 (((-52) $ (-1196)) NIL)) (-3975 (((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-1196) $) NIL (|has| (-1196) (-862)))) (-3531 (((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-4048 (((-1196) $) NIL (|has| (-1196) (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-2029 (((-656 (-1196)) $) 37)) (-3762 (((-112) (-1196) $) NIL)) (-2395 (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL)) (-2329 (($ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL)) (-2928 (((-656 (-1196)) $) NIL)) (-1449 (((-112) (-1196) $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-1989 (((-52) $) NIL (|has| (-1196) (-862)))) (-3557 (((-3 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) "failed") (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL)) (-4040 (($ $ (-52)) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-3584 (((-656 (-52)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 (((-52) $ (-1196)) 39) (((-52) $ (-1196) (-52)) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-2858 (((-874) $) 41 (-3739 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1054) (-13 (-1213 (-1196) (-52)) (-10 -7 (-15 -3174 ((-112) (-112))) (-15 -2131 ((-112) (-112))) (-6 -4462)))) (T -1054))
+((-3174 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054)))))
+(-13 (-1213 (-1196) (-52)) (-10 -7 (-15 -3174 ((-112) (-112))) (-15 -2131 ((-112) (-112))) (-6 -4462)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3803 (((-1154) $) 9)) (-2858 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1055) (-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $))))) (T -1055))
+((-3803 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055)))))
+(-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $))))
+((-4397 ((|#2| $) 10)))
+(((-1056 |#1| |#2|) (-10 -8 (-15 -4397 (|#2| |#1|))) (-1057 |#2|) (-1237)) (T -1056))
+NIL
+(-10 -8 (-15 -4397 (|#2| |#1|)))
+((-2454 (((-3 |#1| "failed") $) 9)) (-4397 ((|#1| $) 8)) (-2858 (($ |#1|) 6)))
+(((-1057 |#1|) (-141) (-1237)) (T -1057))
+((-2454 (*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1237)))) (-4397 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1237)))))
+(-13 (-628 |t#1|) (-10 -8 (-15 -2454 ((-3 |t#1| "failed") $)) (-15 -4397 (|t#1| $))))
+(((-628 |#1|) . T))
+((-2640 (((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1196))) 38)))
+(((-1058 |#1| |#2|) (-10 -7 (-15 -2640 ((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1196))))) (-568) (-13 (-568) (-1057 |#1|))) (T -1058))
+((-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *6)))))) (-5 *1 (-1058 *5 *6)))))
+(-10 -7 (-15 -2640 ((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1196)))))
+((-3549 (((-390)) 17)) (-3175 (((-1 (-390)) (-390) (-390)) 22)) (-1922 (((-1 (-390)) (-783)) 48)) (-3469 (((-390)) 37)) (-1519 (((-1 (-390)) (-390) (-390)) 38)) (-4022 (((-390)) 29)) (-3942 (((-1 (-390)) (-390)) 30)) (-1460 (((-390) (-783)) 43)) (-1973 (((-1 (-390)) (-783)) 44)) (-3003 (((-1 (-390)) (-783) (-783)) 47)) (-1458 (((-1 (-390)) (-783) (-783)) 45)))
+(((-1059) (-10 -7 (-15 -3549 ((-390))) (-15 -3469 ((-390))) (-15 -4022 ((-390))) (-15 -1460 ((-390) (-783))) (-15 -3175 ((-1 (-390)) (-390) (-390))) (-15 -1519 ((-1 (-390)) (-390) (-390))) (-15 -3942 ((-1 (-390)) (-390))) (-15 -1973 ((-1 (-390)) (-783))) (-15 -1458 ((-1 (-390)) (-783) (-783))) (-15 -3003 ((-1 (-390)) (-783) (-783))) (-15 -1922 ((-1 (-390)) (-783))))) (T -1059))
+((-1922 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-3003 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-1458 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-1519 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-3175 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1059)))) (-4022 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))) (-3469 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))) (-3549 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))))
+(-10 -7 (-15 -3549 ((-390))) (-15 -3469 ((-390))) (-15 -4022 ((-390))) (-15 -1460 ((-390) (-783))) (-15 -3175 ((-1 (-390)) (-390) (-390))) (-15 -1519 ((-1 (-390)) (-390) (-390))) (-15 -3942 ((-1 (-390)) (-390))) (-15 -1973 ((-1 (-390)) (-783))) (-15 -1458 ((-1 (-390)) (-783) (-783))) (-15 -3003 ((-1 (-390)) (-783) (-783))) (-15 -1922 ((-1 (-390)) (-783))))
+((-2367 (((-430 |#1|) |#1|) 33)))
+(((-1060 |#1|) (-10 -7 (-15 -2367 ((-430 |#1|) |#1|))) (-1263 (-419 (-969 (-576))))) (T -1060))
+((-2367 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-1263 (-419 (-969 (-576))))))))
+(-10 -7 (-15 -2367 ((-430 |#1|) |#1|)))
+((-3399 (((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))) 14)))
+(((-1061 |#1|) (-10 -7 (-15 -3399 ((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))))) (-317)) (T -1061))
+((-3399 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-969 *4)))) (-5 *1 (-1061 *4)))))
+(-10 -7 (-15 -3399 ((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|)))))
+((-1634 (((-656 (-1196)) (-419 (-969 |#1|))) 17)) (-3440 (((-419 (-1192 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196)) 24)) (-2441 (((-419 (-969 |#1|)) (-419 (-1192 (-419 (-969 |#1|)))) (-1196)) 26)) (-1848 (((-3 (-1196) "failed") (-419 (-969 |#1|))) 20)) (-3022 (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|))))) 32) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 33) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1196)) (-656 (-419 (-969 |#1|)))) 28) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))) 29)) (-2858 (((-419 (-969 |#1|)) |#1|) 11)))
+(((-1062 |#1|) (-10 -7 (-15 -1634 ((-656 (-1196)) (-419 (-969 |#1|)))) (-15 -1848 ((-3 (-1196) "failed") (-419 (-969 |#1|)))) (-15 -3440 ((-419 (-1192 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -2441 ((-419 (-969 |#1|)) (-419 (-1192 (-419 (-969 |#1|)))) (-1196))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1196)) (-656 (-419 (-969 |#1|))))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2858 ((-419 (-969 |#1|)) |#1|))) (-568)) (T -1062))
+((-2858 (*1 *2 *3) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-1062 *3)) (-4 *3 (-568)))) (-3022 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-5 *2 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-3022 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-5 *2 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-3022 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-5 *4 (-656 (-419 (-969 *5)))) (-5 *2 (-419 (-969 *5))) (-4 *5 (-568)) (-5 *1 (-1062 *5)))) (-3022 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 (-419 (-969 *5))))) (-5 *4 (-1196)) (-5 *2 (-419 (-969 *5))) (-5 *1 (-1062 *5)) (-4 *5 (-568)))) (-3440 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-419 (-1192 (-419 (-969 *5))))) (-5 *1 (-1062 *5)) (-5 *3 (-419 (-969 *5))))) (-1848 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-1196)) (-5 *1 (-1062 *4)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1196))) (-5 *1 (-1062 *4)))))
+(-10 -7 (-15 -1634 ((-656 (-1196)) (-419 (-969 |#1|)))) (-15 -1848 ((-3 (-1196) "failed") (-419 (-969 |#1|)))) (-15 -3440 ((-419 (-1192 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -2441 ((-419 (-969 |#1|)) (-419 (-1192 (-419 (-969 |#1|)))) (-1196))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1196)) (-656 (-419 (-969 |#1|))))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3022 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2858 ((-419 (-969 |#1|)) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2574 (($) 18 T CONST)) (-1361 ((|#1| $) 23)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-3425 ((|#1| $) 22)) (-1650 ((|#1|) 20 T CONST)) (-2858 (((-874) $) 12)) (-2525 ((|#1| $) 21)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16)))
+(((-1063 |#1|) (-141) (-23)) (T -1063))
+((-1361 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-1650 (*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -1361 (|t#1| $)) (-15 -3425 (|t#1| $)) (-15 -2525 (|t#1| $)) (-15 -1650 (|t#1|) -3712)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-4332 (($) 25 T CONST)) (-2574 (($) 18 T CONST)) (-1361 ((|#1| $) 23)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-3425 ((|#1| $) 22)) (-1650 ((|#1|) 20 T CONST)) (-2858 (((-874) $) 12)) (-2525 ((|#1| $) 21)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16)))
+(((-1064 |#1|) (-141) (-23)) (T -1064))
+((-4332 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))))
+(-13 (-1063 |t#1|) (-10 -8 (-15 -4332 ($) -3712)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1063 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 (-792 |#1| (-876 |#2|)))))) (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-1952 (((-656 $) (-656 (-792 |#1| (-876 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)) NIL)) (-1634 (((-656 (-876 |#2|)) $) NIL)) (-4001 (((-112) $) NIL)) (-3169 (((-112) $) NIL (|has| |#1| (-568)))) (-4295 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-1778 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3179 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4256 $))) (-792 |#1| (-876 |#2|)) $) NIL)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ (-876 |#2|)) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3959 (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 (-792 |#1| (-876 |#2|)) "failed") $ (-876 |#2|)) NIL)) (-2574 (($) NIL T CONST)) (-1516 (((-112) $) NIL (|has| |#1| (-568)))) (-2097 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3593 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3695 (((-112) $) NIL (|has| |#1| (-568)))) (-2457 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-3390 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1832 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-4397 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-2003 (((-3 $ "failed") $) NIL)) (-2040 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-3607 (($ (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-3527 (((-112) (-792 |#1| (-876 |#2|)) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-3586 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2326 (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|))) NIL (|has| $ (-6 -4462))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-4145 (((-2 (|:| -2463 (-656 (-792 |#1| (-876 |#2|)))) (|:| -2952 (-656 (-792 |#1| (-876 |#2|))))) $) NIL)) (-3275 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-4438 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-4310 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3975 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2914 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-4402 (((-876 |#2|) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-2822 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL)) (-2804 (((-656 (-876 |#2|)) $) NIL)) (-2872 (((-112) (-876 |#2|) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3342 (((-3 (-792 |#1| (-876 |#2|)) (-656 $)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-4362 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4256 $))) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3627 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-1611 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL)) (-4270 (((-3 (-112) (-656 $)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3310 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL)) (-1501 (($ (-792 |#1| (-876 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3025 (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-2671 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-2978 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3731 (((-2 (|:| |num| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-1690 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3350 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-3557 (((-3 (-792 |#1| (-876 |#2|)) "failed") (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL)) (-2451 (((-3 $ "failed") $ (-792 |#1| (-876 |#2|))) NIL)) (-3262 (($ $ (-792 |#1| (-876 |#2|))) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-1910 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-304 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-656 (-304 (-792 |#1| (-876 |#2|))))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-4436 (((-783) $) NIL)) (-3902 (((-783) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (((-783) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-792 |#1| (-876 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-4426 (($ $ (-876 |#2|)) NIL)) (-4127 (($ $ (-876 |#2|)) NIL)) (-2693 (($ $) NIL)) (-3668 (($ $ (-876 |#2|)) NIL)) (-2858 (((-874) $) NIL) (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3506 (((-783) $) NIL (|has| (-876 |#2|) (-379)))) (-2690 (((-112) $ $) NIL)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-3374 (((-112) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-656 (-792 |#1| (-876 |#2|))))) NIL)) (-3828 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-2714 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1914 (((-656 (-876 |#2|)) $) NIL)) (-2212 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-2576 (((-112) (-876 |#2|) $) NIL)) (-3889 (((-112) $ $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1065 |#1| |#2|) (-13 (-1090 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -1952 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) (-464) (-656 (-1196))) (T -1065))
+((-1952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1065 *5 *6)))))
+(-13 (-1090 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -1952 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)))))
+((-3175 (((-1 (-576)) (-1113 (-576))) 32)) (-3261 (((-576) (-576) (-576) (-576) (-576)) 29)) (-3821 (((-1 (-576)) |RationalNumber|) NIL)) (-3909 (((-1 (-576)) |RationalNumber|) NIL)) (-3176 (((-1 (-576)) (-576) |RationalNumber|) NIL)))
+(((-1066) (-10 -7 (-15 -3175 ((-1 (-576)) (-1113 (-576)))) (-15 -3176 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -3821 ((-1 (-576)) |RationalNumber|)) (-15 -3909 ((-1 (-576)) |RationalNumber|)) (-15 -3261 ((-576) (-576) (-576) (-576) (-576))))) (T -1066))
+((-3261 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1066)))) (-3909 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))) (-3821 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)) (-5 *3 (-576)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-1113 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))))
+(-10 -7 (-15 -3175 ((-1 (-576)) (-1113 (-576)))) (-15 -3176 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -3821 ((-1 (-576)) |RationalNumber|)) (-15 -3909 ((-1 (-576)) |RationalNumber|)) (-15 -3261 ((-576) (-576) (-576) (-576) (-576))))
+((-2858 (((-874) $) NIL) (($ (-576)) 10)))
+(((-1067 |#1|) (-10 -8 (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-1068)) (T -1067))
+NIL
+(-10 -8 (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-1068) (-141)) (T -1068))
+((-2981 (*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-783)))))
+(-13 (-1077) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -2981 ((-783)) -3712) (-6 -4459)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2304 (((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54)))
+(((-1069 |#1| |#2|) (-10 -7 (-15 -2304 ((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1196) (-374)) (T -1069))
+((-2304 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-969 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1196)))))
+(-10 -7 (-15 -2304 ((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 15)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 16 T CONST)) (-3889 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1070 |#1|) (-141) (-1131)) (T -1070))
+((-2022 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131)))))
+(-13 (-1119) (-10 -8 (-15 (-2022) ($) -3712) (-15 -3203 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2561 (((-112) $) 38)) (-1625 (((-112) $) 17)) (-4227 (((-783) $) 13)) (-4240 (((-783) $) 14)) (-1856 (((-112) $) 30)) (-1402 (((-112) $) 40)))
+(((-1071 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4240 ((-783) |#1|)) (-15 -4227 ((-783) |#1|)) (-15 -1402 ((-112) |#1|)) (-15 -2561 ((-112) |#1|)) (-15 -1856 ((-112) |#1|)) (-15 -1625 ((-112) |#1|))) (-1072 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1068) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1071))
+NIL
+(-10 -8 (-15 -4240 ((-783) |#1|)) (-15 -4227 ((-783) |#1|)) (-15 -1402 ((-112) |#1|)) (-15 -2561 ((-112) |#1|)) (-15 -1856 ((-112) |#1|)) (-15 -1625 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-2561 (((-112) $) 56)) (-3161 (((-3 $ "failed") $ $) 20)) (-1625 (((-112) $) 58)) (-2746 (((-112) $ (-783)) 66)) (-2574 (($) 18 T CONST)) (-1607 (($ $) 39 (|has| |#3| (-317)))) (-3475 ((|#4| $ (-576)) 44)) (-4422 (((-783) $) 38 (|has| |#3| (-568)))) (-2767 ((|#3| $ (-576) (-576)) 46)) (-3975 (((-656 |#3|) $) 73 (|has| $ (-6 -4462)))) (-3664 (((-783) $) 37 (|has| |#3| (-568)))) (-2732 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-4227 (((-783) $) 50)) (-4240 (((-783) $) 49)) (-3639 (((-112) $ (-783)) 65)) (-2923 (((-576) $) 54)) (-1637 (((-576) $) 52)) (-3531 (((-656 |#3|) $) 74 (|has| $ (-6 -4462)))) (-3606 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1119)) (|has| $ (-6 -4462))))) (-3698 (((-576) $) 53)) (-2171 (((-576) $) 51)) (-4307 (($ (-656 (-656 |#3|))) 59)) (-2822 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4101 (((-656 (-656 |#3|)) $) 48)) (-1684 (((-112) $ (-783)) 64)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-1910 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1974 (((-112) $ $) 60)) (-3001 (((-112) $) 63)) (-3849 (($) 62)) (-2099 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-1856 (((-112) $) 57)) (-3902 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4462)))) (-3052 (($ $) 61)) (-3146 ((|#5| $ (-576)) 43)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2714 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4462)))) (-1402 (((-112) $) 55)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2845 (((-783) $) 67 (|has| $ (-6 -4462)))))
+(((-1072 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1068) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1072))
+((-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-4307 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1068)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-4240 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2099 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) (-2767 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) (-2099 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-3146 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-2548 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2825 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-1607 (*1 *1 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7)))))
+(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4462) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -4307 ($ (-656 (-656 |t#3|)))) (-15 -1625 ((-112) $)) (-15 -1856 ((-112) $)) (-15 -2561 ((-112) $)) (-15 -1402 ((-112) $)) (-15 -2923 ((-576) $)) (-15 -3698 ((-576) $)) (-15 -1637 ((-576) $)) (-15 -2171 ((-576) $)) (-15 -4227 ((-783) $)) (-15 -4240 ((-783) $)) (-15 -4101 ((-656 (-656 |t#3|)) $)) (-15 -2099 (|t#3| $ (-576) (-576))) (-15 -2767 (|t#3| $ (-576) (-576))) (-15 -2099 (|t#3| $ (-576) (-576) |t#3|)) (-15 -3475 (|t#4| $ (-576))) (-15 -3146 (|t#5| $ (-576))) (-15 -2548 ($ (-1 |t#3| |t#3|) $)) (-15 -2548 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -2825 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -4013 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -1607 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -4422 ((-783) $)) (-15 -3664 ((-783) $)) (-15 -2732 ((-656 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-874)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1070 |#3|) . T) ((-1075 |#3|) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2561 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1625 (((-112) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-2574 (($) NIL T CONST)) (-1607 (($ $) 47 (|has| |#3| (-317)))) (-3475 (((-245 |#2| |#3|) $ (-576)) 36)) (-4396 (($ (-701 |#3|)) 45)) (-4422 (((-783) $) 49 (|has| |#3| (-568)))) (-2767 ((|#3| $ (-576) (-576)) NIL)) (-3975 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3664 (((-783) $) 51 (|has| |#3| (-568)))) (-2732 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-4227 (((-783) $) NIL)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2923 (((-576) $) NIL)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3698 (((-576) $) NIL)) (-2171 (((-576) $) NIL)) (-4307 (($ (-656 (-656 |#3|))) 31)) (-2822 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4101 (((-656 (-656 |#3|)) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-1910 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-4340 (((-135)) 59 (|has| |#3| (-374)))) (-1856 (((-112) $) NIL)) (-3902 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-3146 (((-245 |#1| |#3|) $ (-576)) 40)) (-2858 (((-874) $) 19) (((-701 |#3|) $) 42)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-1402 (((-112) $) NIL)) (-2022 (($) 16 T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1073 |#1| |#2| |#3|) (-13 (-1072 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -4396 ($ (-701 |#3|))))) (-783) (-783) (-1068)) (T -1073))
+((-4396 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)))))
+(-13 (-1072 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -4396 ($ (-701 |#3|)))))
+((-2326 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2548 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1074 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2548 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2326 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1068) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1072 |#1| |#2| |#3| |#4| |#5|) (-1068) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1072 |#1| |#2| |#7| |#8| |#9|)) (T -1074))
+((-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1068)) (-4 *10 (-1068)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1072 *5 *6 *10 *11 *12)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10)))))
+(-10 -7 (-15 -2548 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2326 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27)))
+(((-1075 |#1|) (-141) (-1077)) (T -1075))
+NIL
+(-13 (-21) (-1070 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1070 |#1|) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1455 (((-1196) $) 11)) (-4105 ((|#1| $) 12)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2666 (($ (-1196) |#1|) 10)) (-2858 (((-874) $) 22 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3889 (((-112) $ $) 17 (|has| |#1| (-1119)))))
+(((-1076 |#1| |#2|) (-13 (-1237) (-10 -8 (-15 -2666 ($ (-1196) |#1|)) (-15 -1455 ((-1196) $)) (-15 -4105 (|#1| $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1112 |#2|) (-1237)) (T -1076))
+((-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-4 *4 (-1237)) (-5 *1 (-1076 *3 *4)) (-4 *3 (-1112 *4)))) (-1455 (*1 *2 *1) (-12 (-4 *4 (-1237)) (-5 *2 (-1196)) (-5 *1 (-1076 *3 *4)) (-4 *3 (-1112 *4)))) (-4105 (*1 *2 *1) (-12 (-4 *2 (-1112 *3)) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2666 ($ (-1196) |#1|)) (-15 -1455 ((-1196) $)) (-15 -4105 (|#1| $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
(((-1077) (-141)) (T -1077))
-((-3863 (*1 *1 *1) (-4 *1 (-1077))) (-3390 (*1 *1 *1) (-4 *1 (-1077))) (-4248 (*1 *1 *1) (-4 *1 (-1077))) (-3920 (*1 *1 *1) (-4 *1 (-1077))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-575)))) (-1931 (*1 *1 *1) (-4 *1 (-1077))) (-3449 (*1 *1 *1) (-4 *1 (-1077))) (-3069 (*1 *1 *1) (-4 *1 (-1077))))
-(-13 (-373) (-859) (-1039) (-1055 (-575)) (-1055 (-418 (-575))) (-1019) (-625 (-904 (-389))) (-898 (-389)) (-148) (-10 -8 (-15 -3390 ($ $)) (-15 -4248 ($ $)) (-15 -3920 ($ $)) (-15 -3824 ((-575) $)) (-15 -1931 ($ $)) (-15 -3449 ($ $)) (-15 -3069 ($ $)) (-15 -3863 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-625 (-227)) . T) ((-625 (-389)) . T) ((-625 (-904 (-389))) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 $) . T) ((-737) . T) ((-802) . T) ((-803) . T) ((-805) . T) ((-806) . T) ((-859) . T) ((-861) . T) ((-898 (-389)) . T) ((-935) . T) ((-1019) . T) ((-1039) . T) ((-1055 (-418 (-575))) . T) ((-1055 (-575)) . T) ((-1068 #0#) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) |#2| $) 26)) (-2409 ((|#1| $) 10)) (-2326 (((-575) |#2| $) 116)) (-3151 (((-3 $ "failed") |#2| (-936)) 75)) (-2429 ((|#1| $) 31)) (-3749 ((|#1| |#2| $ |#1|) 40)) (-2946 (($ $) 28)) (-4162 (((-3 |#2| "failed") |#2| $) 111)) (-2359 (((-112) |#2| $) NIL)) (-1721 (((-112) |#2| $) NIL)) (-3705 (((-112) |#2| $) 27)) (-2206 ((|#1| $) 117)) (-2412 ((|#1| $) 30)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4436 ((|#2| $) 102)) (-2882 (((-873) $) 92)) (-3685 (((-112) $ $) NIL)) (-3493 ((|#1| |#2| $ |#1|) 41)) (-1625 (((-655 $) |#2|) 77)) (-3913 (((-112) $ $) 97)))
-(((-1078 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -8 (-15 -2412 (|#1| $)) (-15 -2429 (|#1| $)) (-15 -2409 (|#1| $)) (-15 -2206 (|#1| $)) (-15 -2946 ($ $)) (-15 -3705 ((-112) |#2| $)) (-15 -3749 (|#1| |#2| $ |#1|)))) (-13 (-859) (-373)) (-1261 |#1|)) (T -1078))
-((-3749 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2412 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2429 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2409 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2206 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-2946 (*1 *1 *1) (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1261 *2)))) (-3705 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-859) (-373))) (-5 *2 (-112)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1261 *4)))))
-(-13 (-1085 |#1| |#2|) (-10 -8 (-15 -2412 (|#1| $)) (-15 -2429 (|#1| $)) (-15 -2409 (|#1| $)) (-15 -2206 (|#1| $)) (-15 -2946 ($ $)) (-15 -3705 ((-112) |#2| $)) (-15 -3749 (|#1| |#2| $ |#1|))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2803 (($ $ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ $ $) NIL)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2326 (((-575) $) NIL)) (-3624 (($ $ $) NIL)) (-3261 (($) NIL T CONST)) (-2048 (($ (-1194)) 10) (($ (-575)) 7)) (-2443 (((-3 (-575) "failed") $) NIL)) (-4400 (((-575) $) NIL)) (-2800 (($ $ $) NIL)) (-2862 (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL)) (-2188 (((-112) $) NIL)) (-1622 (((-418 (-575)) $) NIL)) (-2073 (($) NIL) (($ $) NIL)) (-2811 (($ $ $) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-3623 (($ $ $ $) NIL)) (-3509 (($ $ $) NIL)) (-2359 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-3900 (((-112) $) NIL)) (-4254 (((-112) $) NIL)) (-2808 (((-3 $ "failed") $) NIL)) (-1721 (((-112) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3899 (($ $ $ $) NIL)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-3535 (($ $) NIL)) (-1840 (($ $) NIL)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-3121 (($ $ $) NIL)) (-3472 (($) NIL T CONST)) (-3044 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) NIL) (($ (-655 $)) NIL)) (-2031 (($ $) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-2382 (($ $) NIL) (($ $ (-782)) NIL)) (-3351 (($ $) NIL)) (-3076 (($ $) NIL)) (-2613 (((-575) $) 16) (((-547) $) NIL) (((-904 (-575)) $) NIL) (((-389) $) NIL) (((-227) $) NIL) (($ (-1194)) 9)) (-2882 (((-873) $) 23) (($ (-575)) 6) (($ $) NIL) (($ (-575)) 6)) (-4421 (((-782)) NIL T CONST)) (-2646 (((-112) $ $) NIL)) (-2266 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-1548 (($) NIL)) (-3930 (((-112) $ $) NIL)) (-1598 (($ $ $ $) NIL)) (-3863 (($ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)) (-4027 (($ $) 22) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ (-575) $) NIL)))
-(((-1079) (-13 (-556) (-629 (-1194)) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -2048 ($ (-1194))) (-15 -2048 ($ (-575)))))) (T -1079))
-((-2048 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1079)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1079)))))
-(-13 (-556) (-629 (-1194)) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -2048 ($ (-1194))) (-15 -2048 ($ (-575)))))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4116 (((-1290) $ (-1194) (-1194)) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3123 (($) 9)) (-3052 (((-52) $ (-1194) (-52)) NIL)) (-2886 (($ $) 32)) (-2914 (($ $) 30)) (-1804 (($ $) 29)) (-4078 (($ $) 31)) (-3101 (($ $) 35)) (-3564 (($ $) 36)) (-2807 (($ $) 28)) (-4071 (($ $) 33)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) 27 (|has| $ (-6 -4460)))) (-1398 (((-3 (-52) "failed") (-1194) $) 43)) (-3261 (($) NIL T CONST)) (-4275 (($) 7)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2375 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) 53 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-3 (-52) "failed") (-1194) $) NIL)) (-3631 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460)))) (-1856 (((-3 (-1176) "failed") $ (-1176) (-575)) 72)) (-2857 (((-52) $ (-1194) (-52)) NIL (|has| $ (-6 -4461)))) (-2786 (((-52) $ (-1194)) NIL)) (-3999 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-1194) $) NIL (|has| (-1194) (-861)))) (-4252 (((-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) 38 (|has| $ (-6 -4460))) (((-655 (-52)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-2263 (((-1194) $) NIL (|has| (-1194) (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1995 (((-655 (-1194)) $) NIL)) (-3766 (((-112) (-1194) $) NIL)) (-4030 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-4218 (($ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) 46)) (-1653 (((-655 (-1194)) $) NIL)) (-1801 (((-112) (-1194) $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-1818 (((-389) $ (-1194)) 52)) (-3718 (((-655 (-1176)) $ (-1176)) 74)) (-1955 (((-52) $) NIL (|has| (-1194) (-861)))) (-1540 (((-3 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) "failed") (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL)) (-1652 (($ $ (-52)) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL (-12 (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-318 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (($ $ (-655 (-52)) (-655 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-303 (-52))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117)))) (($ $ (-655 (-303 (-52)))) NIL (-12 (|has| (-52) (-318 (-52))) (|has| (-52) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117))))) (-2697 (((-655 (-52)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 (((-52) $ (-1194)) NIL) (((-52) $ (-1194) (-52)) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4322 (($ $ (-1194)) 54)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117)))) (((-782) (-52) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-52) (-1117)))) (((-782) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) 40)) (-1513 (($ $ $) 41)) (-2882 (((-873) $) NIL (-3763 (|has| (-52) (-624 (-873))) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-624 (-873)))))) (-2688 (($ $ (-1194) (-389)) 50)) (-1842 (($ $ (-1194) (-389)) 51)) (-3685 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 (-1194)) (|:| -3179 (-52)))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-52) (-1117)) (|has| (-2 (|:| -4169 (-1194)) (|:| -3179 (-52))) (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1080) (-13 (-1211 (-1194) (-52)) (-10 -8 (-15 -1513 ($ $ $)) (-15 -4275 ($)) (-15 -2807 ($ $)) (-15 -1804 ($ $)) (-15 -2914 ($ $)) (-15 -4078 ($ $)) (-15 -4071 ($ $)) (-15 -2886 ($ $)) (-15 -3101 ($ $)) (-15 -3564 ($ $)) (-15 -2688 ($ $ (-1194) (-389))) (-15 -1842 ($ $ (-1194) (-389))) (-15 -1818 ((-389) $ (-1194))) (-15 -3718 ((-655 (-1176)) $ (-1176))) (-15 -4322 ($ $ (-1194))) (-15 -3123 ($)) (-15 -1856 ((-3 (-1176) "failed") $ (-1176) (-575))) (-6 -4460)))) (T -1080))
-((-1513 (*1 *1 *1 *1) (-5 *1 (-1080))) (-4275 (*1 *1) (-5 *1 (-1080))) (-2807 (*1 *1 *1) (-5 *1 (-1080))) (-1804 (*1 *1 *1) (-5 *1 (-1080))) (-2914 (*1 *1 *1) (-5 *1 (-1080))) (-4078 (*1 *1 *1) (-5 *1 (-1080))) (-4071 (*1 *1 *1) (-5 *1 (-1080))) (-2886 (*1 *1 *1) (-5 *1 (-1080))) (-3101 (*1 *1 *1) (-5 *1 (-1080))) (-3564 (*1 *1 *1) (-5 *1 (-1080))) (-2688 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080)))) (-1842 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-389)) (-5 *1 (-1080)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1080)) (-5 *3 (-1176)))) (-4322 (*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1080)))) (-3123 (*1 *1) (-5 *1 (-1080))) (-1856 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-1080)))))
-(-13 (-1211 (-1194) (-52)) (-10 -8 (-15 -1513 ($ $ $)) (-15 -4275 ($)) (-15 -2807 ($ $)) (-15 -1804 ($ $)) (-15 -2914 ($ $)) (-15 -4078 ($ $)) (-15 -4071 ($ $)) (-15 -2886 ($ $)) (-15 -3101 ($ $)) (-15 -3564 ($ $)) (-15 -2688 ($ $ (-1194) (-389))) (-15 -1842 ($ $ (-1194) (-389))) (-15 -1818 ((-389) $ (-1194))) (-15 -3718 ((-655 (-1176)) $ (-1176))) (-15 -4322 ($ $ (-1194))) (-15 -3123 ($)) (-15 -1856 ((-3 (-1176) "failed") $ (-1176) (-575))) (-6 -4460)))
-((-3460 (($ $) 46)) (-1388 (((-112) $ $) 82)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-967 (-418 (-575)))) 251) (((-3 $ "failed") (-967 (-575))) 250) (((-3 $ "failed") (-967 |#2|)) 253)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) NIL) (((-575) $) NIL) ((|#4| $) NIL) (($ (-967 (-418 (-575)))) 239) (($ (-967 (-575))) 235) (($ (-967 |#2|)) 255)) (-4406 (($ $) NIL) (($ $ |#4|) 44)) (-3073 (((-112) $ $) 131) (((-112) $ (-655 $)) 135)) (-2784 (((-112) $) 60)) (-1568 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 125)) (-1886 (($ $) 160)) (-4430 (($ $) 156)) (-4371 (($ $) 155)) (-1533 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1734 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3621 (((-112) $ $) 143) (((-112) $ (-655 $)) 144)) (-3757 ((|#4| $) 32)) (-2172 (($ $ $) 128)) (-3311 (((-112) $) 59)) (-1333 (((-782) $) 35)) (-2126 (($ $) 174)) (-4369 (($ $) 171)) (-1682 (((-655 $) $) 72)) (-4299 (($ $) 62)) (-2019 (($ $) 167)) (-1603 (((-655 $) $) 69)) (-4131 (($ $) 64)) (-4383 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2491 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2515 (-782))) $ $) 130)) (-2897 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $) 126) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $ |#4|) 127)) (-2947 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $) 121) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $ |#4|) 123)) (-3211 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2237 (($ $ $) 98) (($ $ $ |#4|) 107)) (-2902 (((-655 $) $) 54)) (-1992 (((-112) $ $) 140) (((-112) $ (-655 $)) 141)) (-4068 (($ $ $) 116)) (-3472 (($ $) 37)) (-2057 (((-112) $ $) 80)) (-4091 (((-112) $ $) 136) (((-112) $ (-655 $)) 138)) (-1986 (($ $ $) 112)) (-1327 (($ $) 41)) (-3923 ((|#2| |#2| $) 164) (($ (-655 $)) NIL) (($ $ $) NIL)) (-3992 (($ $ |#2|) NIL) (($ $ $) 153)) (-3033 (($ $ |#2|) 148) (($ $ $) 151)) (-3700 (($ $) 49)) (-3790 (($ $) 55)) (-2613 (((-904 (-389)) $) NIL) (((-904 (-575)) $) NIL) (((-547) $) NIL) (($ (-967 (-418 (-575)))) 241) (($ (-967 (-575))) 237) (($ (-967 |#2|)) 252) (((-1176) $) 279) (((-967 |#2|) $) 184)) (-2882 (((-873) $) 29) (($ (-575)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-967 |#2|) $) 185) (($ (-418 (-575))) NIL) (($ $) NIL)) (-1483 (((-3 (-112) "failed") $ $) 79)))
-(((-1081 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2882 (|#1| |#1|)) (-15 -3923 (|#1| |#1| |#1|)) (-15 -3923 (|#1| (-655 |#1|))) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 ((-967 |#2|) |#1|)) (-15 -2613 ((-967 |#2|) |#1|)) (-15 -2613 ((-1176) |#1|)) (-15 -2126 (|#1| |#1|)) (-15 -4369 (|#1| |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3923 (|#2| |#2| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#2|)) (-15 -3033 (|#1| |#1| |#2|)) (-15 -4430 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -2613 (|#1| (-967 |#2|))) (-15 -4400 (|#1| (-967 |#2|))) (-15 -2443 ((-3 |#1| "failed") (-967 |#2|))) (-15 -2613 (|#1| (-967 (-575)))) (-15 -4400 (|#1| (-967 (-575)))) (-15 -2443 ((-3 |#1| "failed") (-967 (-575)))) (-15 -2613 (|#1| (-967 (-418 (-575))))) (-15 -4400 (|#1| (-967 (-418 (-575))))) (-15 -2443 ((-3 |#1| "failed") (-967 (-418 (-575))))) (-15 -4068 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -2491 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2515 (-782))) |#1| |#1|)) (-15 -2172 (|#1| |#1| |#1|)) (-15 -1568 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2897 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1| |#4|)) (-15 -2897 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2947 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -4041 |#1|)) |#1| |#1| |#4|)) (-15 -2947 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1| |#4|)) (-15 -3211 (|#1| |#1| |#1| |#4|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3211 (|#1| |#1| |#1|)) (-15 -1734 (|#1| |#1| |#1| |#4|)) (-15 -1533 (|#1| |#1| |#1| |#4|)) (-15 -1734 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#1|)) (-15 -3621 ((-112) |#1| (-655 |#1|))) (-15 -3621 ((-112) |#1| |#1|)) (-15 -1992 ((-112) |#1| (-655 |#1|))) (-15 -1992 ((-112) |#1| |#1|)) (-15 -4091 ((-112) |#1| (-655 |#1|))) (-15 -4091 ((-112) |#1| |#1|)) (-15 -3073 ((-112) |#1| (-655 |#1|))) (-15 -3073 ((-112) |#1| |#1|)) (-15 -1388 ((-112) |#1| |#1|)) (-15 -2057 ((-112) |#1| |#1|)) (-15 -1483 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1682 ((-655 |#1|) |#1|)) (-15 -1603 ((-655 |#1|) |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4299 (|#1| |#1|)) (-15 -2784 ((-112) |#1|)) (-15 -3311 ((-112) |#1|)) (-15 -4406 (|#1| |#1| |#4|)) (-15 -4383 (|#1| |#1| |#4|)) (-15 -3790 (|#1| |#1|)) (-15 -2902 ((-655 |#1|) |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1333 ((-782) |#1|)) (-15 -3757 (|#4| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2882 (|#1| |#4|)) (-15 -2443 ((-3 |#4| "failed") |#1|)) (-15 -4400 (|#4| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -4406 (|#1| |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-1082 |#2| |#3| |#4|) (-1066) (-804) (-861)) (T -1081))
-NIL
-(-10 -8 (-15 -2882 (|#1| |#1|)) (-15 -3923 (|#1| |#1| |#1|)) (-15 -3923 (|#1| (-655 |#1|))) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 ((-967 |#2|) |#1|)) (-15 -2613 ((-967 |#2|) |#1|)) (-15 -2613 ((-1176) |#1|)) (-15 -2126 (|#1| |#1|)) (-15 -4369 (|#1| |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -1886 (|#1| |#1|)) (-15 -3923 (|#2| |#2| |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -3033 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#2|)) (-15 -3033 (|#1| |#1| |#2|)) (-15 -4430 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -2613 (|#1| (-967 |#2|))) (-15 -4400 (|#1| (-967 |#2|))) (-15 -2443 ((-3 |#1| "failed") (-967 |#2|))) (-15 -2613 (|#1| (-967 (-575)))) (-15 -4400 (|#1| (-967 (-575)))) (-15 -2443 ((-3 |#1| "failed") (-967 (-575)))) (-15 -2613 (|#1| (-967 (-418 (-575))))) (-15 -4400 (|#1| (-967 (-418 (-575))))) (-15 -2443 ((-3 |#1| "failed") (-967 (-418 (-575))))) (-15 -4068 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -2491 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2515 (-782))) |#1| |#1|)) (-15 -2172 (|#1| |#1| |#1|)) (-15 -1568 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2897 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1| |#4|)) (-15 -2897 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2947 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -4041 |#1|)) |#1| |#1| |#4|)) (-15 -2947 ((-2 (|:| -1754 |#1|) (|:| |gap| (-782)) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1| |#4|)) (-15 -3211 (|#1| |#1| |#1| |#4|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3211 (|#1| |#1| |#1|)) (-15 -1734 (|#1| |#1| |#1| |#4|)) (-15 -1533 (|#1| |#1| |#1| |#4|)) (-15 -1734 (|#1| |#1| |#1|)) (-15 -1533 (|#1| |#1| |#1|)) (-15 -3621 ((-112) |#1| (-655 |#1|))) (-15 -3621 ((-112) |#1| |#1|)) (-15 -1992 ((-112) |#1| (-655 |#1|))) (-15 -1992 ((-112) |#1| |#1|)) (-15 -4091 ((-112) |#1| (-655 |#1|))) (-15 -4091 ((-112) |#1| |#1|)) (-15 -3073 ((-112) |#1| (-655 |#1|))) (-15 -3073 ((-112) |#1| |#1|)) (-15 -1388 ((-112) |#1| |#1|)) (-15 -2057 ((-112) |#1| |#1|)) (-15 -1483 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1682 ((-655 |#1|) |#1|)) (-15 -1603 ((-655 |#1|) |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4299 (|#1| |#1|)) (-15 -2784 ((-112) |#1|)) (-15 -3311 ((-112) |#1|)) (-15 -4406 (|#1| |#1| |#4|)) (-15 -4383 (|#1| |#1| |#4|)) (-15 -3790 (|#1| |#1|)) (-15 -2902 ((-655 |#1|) |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -1327 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -1333 ((-782) |#1|)) (-15 -3757 (|#4| |#1|)) (-15 -2613 ((-547) |#1|)) (-15 -2613 ((-904 (-575)) |#1|)) (-15 -2613 ((-904 (-389)) |#1|)) (-15 -2882 (|#1| |#4|)) (-15 -2443 ((-3 |#4| "failed") |#1|)) (-15 -4400 (|#4| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -4406 (|#1| |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 |#3|) $) 113)) (-3462 (((-1190 $) $ |#3|) 128) (((-1190 |#1|) $) 127)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-2456 (($ $) 91 (|has| |#1| (-567)))) (-3978 (((-112) $) 93 (|has| |#1| (-567)))) (-3508 (((-782) $) 115) (((-782) $ (-655 |#3|)) 114)) (-3460 (($ $) 276)) (-1388 (((-112) $ $) 262)) (-1708 (((-3 $ "failed") $ $) 20)) (-1665 (($ $ $) 221 (|has| |#1| (-567)))) (-2671 (((-655 $) $ $) 216 (|has| |#1| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-3312 (($ $) 101 (|has| |#1| (-463)))) (-4281 (((-429 $) $) 100 (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-967 (-418 (-575)))) 236 (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))) (((-3 $ "failed") (-967 (-575))) 233 (-3763 (-12 (-3213 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194)))))) (((-3 $ "failed") (-967 |#1|)) 230 (-3763 (-12 (-3213 (|has| |#1| (-38 (-418 (-575))))) (-3213 (|has| |#1| (-38 (-575)))) (|has| |#3| (-625 (-1194)))) (-12 (-3213 (|has| |#1| (-556))) (-3213 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (-3213 (|has| |#1| (-1009 (-575)))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))))) (-4400 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) ((|#3| $) 142) (($ (-967 (-418 (-575)))) 235 (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))) (($ (-967 (-575))) 232 (-3763 (-12 (-3213 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194)))))) (($ (-967 |#1|)) 229 (-3763 (-12 (-3213 (|has| |#1| (-38 (-418 (-575))))) (-3213 (|has| |#1| (-38 (-575)))) (|has| |#3| (-625 (-1194)))) (-12 (-3213 (|has| |#1| (-556))) (-3213 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (-3213 (|has| |#1| (-1009 (-575)))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))))) (-4171 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-567)))) (-4406 (($ $) 159) (($ $ |#3|) 271)) (-2862 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-3073 (((-112) $ $) 261) (((-112) $ (-655 $)) 260)) (-4162 (((-3 $ "failed") $) 37)) (-2784 (((-112) $) 269)) (-1568 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 241)) (-1886 (($ $) 210 (|has| |#1| (-463)))) (-2379 (($ $) 181 (|has| |#1| (-463))) (($ $ |#3|) 108 (|has| |#1| (-463)))) (-4393 (((-655 $) $) 112)) (-3559 (((-112) $) 99 (|has| |#1| (-924)))) (-4430 (($ $) 226 (|has| |#1| (-567)))) (-4371 (($ $) 227 (|has| |#1| (-567)))) (-1533 (($ $ $) 253) (($ $ $ |#3|) 251)) (-1734 (($ $ $) 252) (($ $ $ |#3|) 250)) (-4384 (($ $ |#1| |#2| $) 177)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| |#3| (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| |#3| (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3900 (((-112) $) 35)) (-1403 (((-782) $) 174)) (-3621 (((-112) $ $) 255) (((-112) $ (-655 $)) 254)) (-1795 (($ $ $ $ $) 212 (|has| |#1| (-567)))) (-3757 ((|#3| $) 280)) (-2430 (($ (-1190 |#1|) |#3|) 120) (($ (-1190 $) |#3|) 119)) (-1719 (((-655 $) $) 129)) (-3135 (((-112) $) 157)) (-2414 (($ |#1| |#2|) 158) (($ $ |#3| (-782)) 122) (($ $ (-655 |#3|) (-655 (-782))) 121)) (-2172 (($ $ $) 240)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#3|) 123)) (-3311 (((-112) $) 270)) (-3143 ((|#2| $) 175) (((-782) $ |#3|) 125) (((-655 (-782)) $ (-655 |#3|)) 124)) (-1333 (((-782) $) 279)) (-1946 (($ (-1 |#2| |#2|) $) 176)) (-2544 (($ (-1 |#1| |#1|) $) 156)) (-2187 (((-3 |#3| "failed") $) 126)) (-2126 (($ $) 207 (|has| |#1| (-463)))) (-4369 (($ $) 208 (|has| |#1| (-463)))) (-1682 (((-655 $) $) 265)) (-4299 (($ $) 268)) (-2019 (($ $) 209 (|has| |#1| (-463)))) (-1603 (((-655 $) $) 266)) (-4131 (($ $) 267)) (-4370 (($ $) 154)) (-4383 ((|#1| $) 153) (($ $ |#3|) 272)) (-3886 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-2491 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2515 (-782))) $ $) 239)) (-2897 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $) 243) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $ |#3|) 242)) (-2947 (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $) 245) (((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $ |#3|) 244)) (-3211 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2237 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4264 (((-1176) $) 10)) (-3822 (($ $ $) 215 (|has| |#1| (-567)))) (-2902 (((-655 $) $) 274)) (-1445 (((-3 (-655 $) "failed") $) 117)) (-1512 (((-3 (-655 $) "failed") $) 118)) (-2329 (((-3 (-2 (|:| |var| |#3|) (|:| -1658 (-782))) "failed") $) 116)) (-1992 (((-112) $ $) 257) (((-112) $ (-655 $)) 256)) (-4068 (($ $ $) 237)) (-3472 (($ $) 278)) (-2057 (((-112) $ $) 263)) (-4091 (((-112) $ $) 259) (((-112) $ (-655 $)) 258)) (-1986 (($ $ $) 238)) (-1327 (($ $) 277)) (-3912 (((-1137) $) 11)) (-4100 (((-2 (|:| -3923 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-567)))) (-3637 (((-2 (|:| -3923 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-567)))) (-4346 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3923 ((|#1| |#1| $) 211 (|has| |#1| (-463))) (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2347 (((-429 $) $) 102 (|has| |#1| (-924)))) (-1410 (((-2 (|:| -3923 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-567)))) (-2849 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-3992 (($ $ |#1|) 224 (|has| |#1| (-567))) (($ $ $) 222 (|has| |#1| (-567)))) (-3033 (($ $ |#1|) 225 (|has| |#1| (-567))) (($ $ $) 223 (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-655 |#3|) (-655 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-655 |#3|) (-655 $)) 143)) (-2801 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2382 (($ $ (-655 |#3|) (-655 (-782))) 44) (($ $ |#3| (-782)) 43) (($ $ (-655 |#3|)) 42) (($ $ |#3|) 40)) (-1753 ((|#2| $) 155) (((-782) $ |#3|) 133) (((-655 (-782)) $ (-655 |#3|)) 132)) (-3700 (($ $) 275)) (-3790 (($ $) 273)) (-2613 (((-904 (-389)) $) 85 (-12 (|has| |#3| (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| |#3| (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| |#3| (-625 (-547))) (|has| |#1| (-625 (-547))))) (($ (-967 (-418 (-575)))) 234 (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194))))) (($ (-967 (-575))) 231 (-3763 (-12 (-3213 (|has| |#1| (-38 (-418 (-575))))) (|has| |#1| (-38 (-575))) (|has| |#3| (-625 (-1194)))) (-12 (|has| |#1| (-38 (-418 (-575)))) (|has| |#3| (-625 (-1194)))))) (($ (-967 |#1|)) 228 (|has| |#3| (-625 (-1194)))) (((-1176) $) 206 (-12 (|has| |#1| (-1055 (-575))) (|has| |#3| (-625 (-1194))))) (((-967 |#1|) $) 205 (|has| |#3| (-625 (-1194))))) (-3696 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ |#3|) 109 (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3224 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-967 |#1|) $) 204 (|has| |#3| (-625 (-1194)))) (($ (-418 (-575))) 81 (-3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575)))))) (($ $) 88 (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) 173)) (-3002 ((|#1| $ |#2|) 160) (($ $ |#3| (-782)) 131) (($ $ (-655 |#3|) (-655 (-782))) 130)) (-1724 (((-3 $ "failed") $) 82 (-3763 (-3224 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) 32 T CONST)) (-1982 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-1483 (((-3 (-112) "failed") $ $) 264)) (-2005 (($) 34 T CONST)) (-3233 (($ $ $ $ (-782)) 213 (|has| |#1| (-567)))) (-3470 (($ $ $ (-782)) 214 (|has| |#1| (-567)))) (-3428 (($ $ (-655 |#3|) (-655 (-782))) 47) (($ $ |#3| (-782)) 46) (($ $ (-655 |#3|)) 45) (($ $ |#3|) 41)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-1082 |#1| |#2| |#3|) (-141) (-1066) (-804) (-861)) (T -1082))
-((-3757 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-782)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1327 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3700 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2902 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-3790 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4383 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-4406 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4299 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1603 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-1682 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-1483 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-2057 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1388 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3073 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3073 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-4091 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-4091 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1992 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-1992 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-3621 (*1 *2 *1 *1) (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))) (-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)))) (-1533 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1734 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-1533 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-1734 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-3211 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-3211 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-2237 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *2 (-861)))) (-2947 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -4041 *1))) (-4 *1 (-1082 *3 *4 *5)))) (-2947 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -4041 *1))) (-4 *1 (-1082 *4 *5 *3)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1082 *3 *4 *5)))) (-2897 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1082 *4 *5 *3)))) (-1568 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1082 *3 *4 *5)))) (-2172 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2491 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2515 (-782)))) (-4 *1 (-1082 *3 *4 *5)))) (-1986 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-4068 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)))) (-2443 (*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))) (-4400 (*1 *1 *2) (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))) (-2443 (*1 *1 *2) (|partial| -3763 (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) (-4400 (*1 *1 *2) (-3763 (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) (-2613 (*1 *1 *2) (-3763 (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5)) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))))) (-2443 (*1 *1 *2) (|partial| -3763 (-12 (-5 *2 (-967 *3)) (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-3213 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3213 (-4 *3 (-556))) (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3213 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))))) (-4400 (*1 *1 *2) (-3763 (-12 (-5 *2 (-967 *3)) (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-3213 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3213 (-4 *3 (-556))) (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))) (-12 (-5 *2 (-967 *3)) (-12 (-3213 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804)) (-4 *5 (-861))))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *5 (-625 (-1194))) (-4 *4 (-804)) (-4 *5 (-861)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-4430 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3992 (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3033 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3992 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-1665 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-1410 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3923 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1082 *3 *4 *5)))) (-3637 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3923 *1) (|:| |coef1| *1))) (-4 *1 (-1082 *3 *4 *5)))) (-4100 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3923 *1) (|:| |coef2| *1))) (-4 *1 (-1082 *3 *4 *5)))) (-4171 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-2671 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))) (-3822 (*1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3470 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567)))) (-3233 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567)))) (-1795 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-567)))) (-3923 (*1 *2 *2 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-1886 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-2019 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-4369 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))) (-2126 (*1 *1 *1) (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-463)))))
-(-13 (-964 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3757 (|t#3| $)) (-15 -1333 ((-782) $)) (-15 -3472 ($ $)) (-15 -1327 ($ $)) (-15 -3460 ($ $)) (-15 -3700 ($ $)) (-15 -2902 ((-655 $) $)) (-15 -3790 ($ $)) (-15 -4383 ($ $ |t#3|)) (-15 -4406 ($ $ |t#3|)) (-15 -3311 ((-112) $)) (-15 -2784 ((-112) $)) (-15 -4299 ($ $)) (-15 -4131 ($ $)) (-15 -1603 ((-655 $) $)) (-15 -1682 ((-655 $) $)) (-15 -1483 ((-3 (-112) "failed") $ $)) (-15 -2057 ((-112) $ $)) (-15 -1388 ((-112) $ $)) (-15 -3073 ((-112) $ $)) (-15 -3073 ((-112) $ (-655 $))) (-15 -4091 ((-112) $ $)) (-15 -4091 ((-112) $ (-655 $))) (-15 -1992 ((-112) $ $)) (-15 -1992 ((-112) $ (-655 $))) (-15 -3621 ((-112) $ $)) (-15 -3621 ((-112) $ (-655 $))) (-15 -1533 ($ $ $)) (-15 -1734 ($ $ $)) (-15 -1533 ($ $ $ |t#3|)) (-15 -1734 ($ $ $ |t#3|)) (-15 -3211 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -3211 ($ $ $ |t#3|)) (-15 -2237 ($ $ $ |t#3|)) (-15 -2947 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $)) (-15 -2947 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -4041 $)) $ $ |t#3|)) (-15 -2897 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -2897 ((-2 (|:| -1754 $) (|:| |gap| (-782)) (|:| -3262 $) (|:| -4041 $)) $ $ |t#3|)) (-15 -1568 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -2172 ($ $ $)) (-15 -2491 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2515 (-782))) $ $)) (-15 -1986 ($ $ $)) (-15 -4068 ($ $ $)) (IF (|has| |t#3| (-625 (-1194))) (PROGN (-6 (-624 (-967 |t#1|))) (-6 (-625 (-967 |t#1|))) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -2443 ((-3 $ "failed") (-967 (-418 (-575))))) (-15 -4400 ($ (-967 (-418 (-575))))) (-15 -2613 ($ (-967 (-418 (-575))))) (-15 -2443 ((-3 $ "failed") (-967 (-575)))) (-15 -4400 ($ (-967 (-575)))) (-15 -2613 ($ (-967 (-575)))) (IF (|has| |t#1| (-1009 (-575))) |%noBranch| (PROGN (-15 -2443 ((-3 $ "failed") (-967 |t#1|))) (-15 -4400 ($ (-967 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-575))) (IF (|has| |t#1| (-38 (-418 (-575)))) |%noBranch| (PROGN (-15 -2443 ((-3 $ "failed") (-967 (-575)))) (-15 -4400 ($ (-967 (-575)))) (-15 -2613 ($ (-967 (-575)))) (IF (|has| |t#1| (-556)) |%noBranch| (PROGN (-15 -2443 ((-3 $ "failed") (-967 |t#1|))) (-15 -4400 ($ (-967 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-575))) |%noBranch| (IF (|has| |t#1| (-38 (-418 (-575)))) |%noBranch| (PROGN (-15 -2443 ((-3 $ "failed") (-967 |t#1|))) (-15 -4400 ($ (-967 |t#1|)))))) (-15 -2613 ($ (-967 |t#1|))) (IF (|has| |t#1| (-1055 (-575))) (-6 (-625 (-1176))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-15 -4371 ($ $)) (-15 -4430 ($ $)) (-15 -3033 ($ $ |t#1|)) (-15 -3992 ($ $ |t#1|)) (-15 -3033 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -1665 ($ $ $)) (-15 -1410 ((-2 (|:| -3923 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3637 ((-2 (|:| -3923 $) (|:| |coef1| $)) $ $)) (-15 -4100 ((-2 (|:| -3923 $) (|:| |coef2| $)) $ $)) (-15 -4171 ($ $ $)) (-15 -2671 ((-655 $) $ $)) (-15 -3822 ($ $ $)) (-15 -3470 ($ $ $ (-782))) (-15 -3233 ($ $ $ $ (-782))) (-15 -1795 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-463)) (PROGN (-15 -3923 (|t#1| |t#1| $)) (-15 -1886 ($ $)) (-15 -2019 ($ $)) (-15 -4369 ($ $)) (-15 -2126 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 |#3|) . T) ((-627 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-624 (-873)) . T) ((-624 (-967 |#1|)) |has| |#3| (-625 (-1194))) ((-174) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| |#1| (-625 (-547))) (|has| |#3| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#3| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#3| (-625 (-904 (-575))))) ((-625 (-967 |#1|)) |has| |#3| (-625 (-1194))) ((-625 (-1176)) -12 (|has| |#1| (-1055 (-575))) (|has| |#3| (-625 (-1194)))) ((-299) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-318 $) . T) ((-335 |#1| |#2|) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3763 (|has| |#1| (-924)) (|has| |#1| (-463))) ((-525 |#3| |#1|) . T) ((-525 |#3| $) . T) ((-525 $ $) . T) ((-567) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 #1=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-650 #1#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463))) ((-737) . T) ((-908 $ |#3|) . T) ((-913 |#3|) . T) ((-915 |#3|) . T) ((-898 (-389)) -12 (|has| |#1| (-898 (-389))) (|has| |#3| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-898 (-575))) (|has| |#3| (-898 (-575)))) ((-964 |#1| |#2| |#3|) . T) ((-924) |has| |#1| (-924)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 |#1|) . T) ((-1055 |#3|) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T) ((-1239) |has| |#1| (-924)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-1452 (((-655 (-1152)) $) 18)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 27) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-1152) $) 20)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1083) (-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $))))) (T -1083))
-((-1452 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1083)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1083)))))
-(-13 (-1100) (-10 -8 (-15 -1452 ((-655 (-1152)) $)) (-15 -1788 ((-1152) $))))
-((-2045 (((-112) |#3| $) 15)) (-3151 (((-3 $ "failed") |#3| (-936)) 29)) (-4162 (((-3 |#3| "failed") |#3| $) 45)) (-2359 (((-112) |#3| $) 19)) (-1721 (((-112) |#3| $) 17)))
-(((-1084 |#1| |#2| |#3|) (-10 -8 (-15 -3151 ((-3 |#1| "failed") |#3| (-936))) (-15 -4162 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2359 ((-112) |#3| |#1|)) (-15 -1721 ((-112) |#3| |#1|)) (-15 -2045 ((-112) |#3| |#1|))) (-1085 |#2| |#3|) (-13 (-859) (-373)) (-1261 |#2|)) (T -1084))
-NIL
-(-10 -8 (-15 -3151 ((-3 |#1| "failed") |#3| (-936))) (-15 -4162 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2359 ((-112) |#3| |#1|)) (-15 -1721 ((-112) |#3| |#1|)) (-15 -2045 ((-112) |#3| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) |#2| $) 22)) (-2326 (((-575) |#2| $) 23)) (-3151 (((-3 $ "failed") |#2| (-936)) 16)) (-3749 ((|#1| |#2| $ |#1|) 14)) (-4162 (((-3 |#2| "failed") |#2| $) 19)) (-2359 (((-112) |#2| $) 20)) (-1721 (((-112) |#2| $) 21)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-4436 ((|#2| $) 18)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3493 ((|#1| |#2| $ |#1|) 15)) (-1625 (((-655 $) |#2|) 17)) (-3913 (((-112) $ $) 6)))
-(((-1085 |#1| |#2|) (-141) (-13 (-859) (-373)) (-1261 |t#1|)) (T -1085))
-((-2326 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-575)))) (-2045 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-112)))) (-1721 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-112)))) (-2359 (*1 *2 *3 *1) (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-112)))) (-4162 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373))) (-4 *2 (-1261 *3)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373))) (-4 *2 (-1261 *3)))) (-1625 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-655 *1)) (-4 *1 (-1085 *4 *3)))) (-3151 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-936)) (-4 *4 (-13 (-859) (-373))) (-4 *1 (-1085 *4 *2)) (-4 *2 (-1261 *4)))) (-3493 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373))) (-4 *3 (-1261 *2)))) (-3749 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373))) (-4 *3 (-1261 *2)))))
-(-13 (-1117) (-10 -8 (-15 -2326 ((-575) |t#2| $)) (-15 -2045 ((-112) |t#2| $)) (-15 -1721 ((-112) |t#2| $)) (-15 -2359 ((-112) |t#2| $)) (-15 -4162 ((-3 |t#2| "failed") |t#2| $)) (-15 -4436 (|t#2| $)) (-15 -1625 ((-655 $) |t#2|)) (-15 -3151 ((-3 $ "failed") |t#2| (-936))) (-15 -3493 (|t#1| |t#2| $ |t#1|)) (-15 -3749 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2161 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782)) 114)) (-3672 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 63)) (-2719 (((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)) 99)) (-3324 (((-782) (-655 |#4|) (-655 |#5|)) 30)) (-1857 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 65) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112)) 67)) (-3345 (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112)) 87)) (-2613 (((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 92)) (-3662 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-112)) 62)) (-3812 (((-782) (-655 |#4|) (-655 |#5|)) 21)))
-(((-1086 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3812 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3324 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3662 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-112))) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2161 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2613 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2719 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1086))
-((-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176)) (-5 *1 (-1086 *4 *5 *6 *7 *8)))) (-2161 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-655 *11)) (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11)))))) (-5 *6 (-782)) (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11)))) (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9)) (-4 *11 (-1088 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-5 *1 (-1086 *7 *8 *9 *10 *11)))) (-3345 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-3345 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-1857 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1857 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-1857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *7 *8 *9 *3 *4)) (-4 *4 (-1088 *7 *8 *9 *3)))) (-3672 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-3662 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3812 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3324 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3662 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-112))) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2161 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2613 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2719 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782))))
-((-3209 (((-112) |#5| $) 26)) (-2546 (((-112) |#5| $) 29)) (-1486 (((-112) |#5| $) 18) (((-112) $) 52)) (-1872 (((-655 $) |#5| $) NIL) (((-655 $) (-655 |#5|) $) 94) (((-655 $) (-655 |#5|) (-655 $)) 92) (((-655 $) |#5| (-655 $)) 95)) (-1985 (($ $ |#5|) NIL) (((-655 $) |#5| $) NIL) (((-655 $) |#5| (-655 $)) 73) (((-655 $) (-655 |#5|) $) 75) (((-655 $) (-655 |#5|) (-655 $)) 77)) (-3039 (((-655 $) |#5| $) NIL) (((-655 $) |#5| (-655 $)) 64) (((-655 $) (-655 |#5|) $) 69) (((-655 $) (-655 |#5|) (-655 $)) 71)) (-2360 (((-112) |#5| $) 32)))
-(((-1087 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1985 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -1985 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -1985 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -1985 ((-655 |#1|) |#5| |#1|)) (-15 -3039 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -3039 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -3039 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -3039 ((-655 |#1|) |#5| |#1|)) (-15 -1872 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -1872 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -1872 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -1872 ((-655 |#1|) |#5| |#1|)) (-15 -2546 ((-112) |#5| |#1|)) (-15 -1486 ((-112) |#1|)) (-15 -2360 ((-112) |#5| |#1|)) (-15 -3209 ((-112) |#5| |#1|)) (-15 -1486 ((-112) |#5| |#1|)) (-15 -1985 (|#1| |#1| |#5|))) (-1088 |#2| |#3| |#4| |#5|) (-463) (-804) (-861) (-1082 |#2| |#3| |#4|)) (T -1087))
-NIL
-(-10 -8 (-15 -1985 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -1985 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -1985 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -1985 ((-655 |#1|) |#5| |#1|)) (-15 -3039 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -3039 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -3039 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -3039 ((-655 |#1|) |#5| |#1|)) (-15 -1872 ((-655 |#1|) |#5| (-655 |#1|))) (-15 -1872 ((-655 |#1|) (-655 |#5|) (-655 |#1|))) (-15 -1872 ((-655 |#1|) (-655 |#5|) |#1|)) (-15 -1872 ((-655 |#1|) |#5| |#1|)) (-15 -2546 ((-112) |#5| |#1|)) (-15 -1486 ((-112) |#1|)) (-15 -2360 ((-112) |#5| |#1|)) (-15 -3209 ((-112) |#5| |#1|)) (-15 -1486 ((-112) |#5| |#1|)) (-15 -1985 (|#1| |#1| |#5|)))
-((-2859 (((-112) $ $) 7)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) 86)) (-4014 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-4419 (((-112) $) 27)) (-3414 (((-112) $) 18 (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) 102) (((-112) $) 98)) (-1479 ((|#4| |#4| $) 93)) (-3312 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) 28)) (-3133 (((-112) $ (-782)) 45)) (-3983 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3261 (($) 46 T CONST)) (-1756 (((-112) $) 23 (|has| |#1| (-567)))) (-1600 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4415 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1759 (((-112) $) 26 (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2762 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 37)) (-4400 (($ (-655 |#4|)) 36)) (-1969 (((-3 $ "failed") $) 83)) (-3355 ((|#4| |#4| $) 90)) (-4070 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3305 ((|#4| |#4| $) 88)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) 106)) (-3209 (((-112) |#4| $) 137)) (-2546 (((-112) |#4| $) 134)) (-1486 (((-112) |#4| $) 138) (((-112) $) 135)) (-3999 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) 105) (((-112) $) 104)) (-3757 ((|#3| $) 35)) (-3541 (((-112) $ (-782)) 44)) (-4252 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 48)) (-3717 (((-655 |#3|) $) 33)) (-1789 (((-112) |#3| $) 32)) (-3218 (((-112) $ (-782)) 43)) (-4264 (((-1176) $) 10)) (-3656 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-3822 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3651 (((-3 |#4| "failed") $) 84)) (-3232 (((-655 $) |#4| $) 130)) (-3533 (((-3 (-112) (-655 $)) |#4| $) 133)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1872 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2400 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-4212 (((-655 |#4|) $) 108)) (-1992 (((-112) |#4| $) 100) (((-112) $) 96)) (-4068 ((|#4| |#4| $) 91)) (-2057 (((-112) $ $) 111)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) 101) (((-112) $) 97)) (-1986 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1955 (((-3 |#4| "failed") $) 85)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3629 (((-3 $ "failed") $ |#4|) 79)) (-1985 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-2718 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) 39)) (-2017 (((-112) $) 42)) (-1393 (($) 41)) (-1753 (((-782) $) 107)) (-3922 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3076 (($ $) 40)) (-2613 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 61)) (-3273 (($ $ |#3|) 29)) (-2078 (($ $ |#3|) 31)) (-3663 (($ $) 89)) (-4049 (($ $ |#3|) 30)) (-2882 (((-873) $) 12) (((-655 |#4|) $) 38)) (-2936 (((-782) $) 77 (|has| |#3| (-378)))) (-3685 (((-112) $ $) 9)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3039 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-4121 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) 82)) (-2360 (((-112) |#4| $) 136)) (-4060 (((-112) |#3| $) 81)) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-1088 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1088))
-((-1486 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3209 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-2360 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-2546 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3533 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 (-112) (-655 *1))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-2054 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *1)))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-2054 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3232 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-3656 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 *3 (-655 *1))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-3822 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1)))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-3312 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1)))) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1872 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1872 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *7)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) (-3039 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-3039 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) (-3039 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *7)))) (-3039 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)))) (-2400 (*1 *1 *2 *1) (-12 (-4 *1 (-1088 *3 *4 *5 *2)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-2400 (*1 *1 *2 *1) (-12 (-5 *2 (-655 *6)) (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)))) (-1985 (*1 *2 *3 *1) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)))) (-1985 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)))) (-1985 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *7)))) (-1985 (*1 *2 *3 *2) (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1088 *5 *6 *7 *8)))))
-(-13 (-1228 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1486 ((-112) |t#4| $)) (-15 -3209 ((-112) |t#4| $)) (-15 -2360 ((-112) |t#4| $)) (-15 -1486 ((-112) $)) (-15 -2546 ((-112) |t#4| $)) (-15 -3533 ((-3 (-112) (-655 $)) |t#4| $)) (-15 -2054 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |t#4| $)) (-15 -2054 ((-112) |t#4| $)) (-15 -3232 ((-655 $) |t#4| $)) (-15 -3656 ((-3 |t#4| (-655 $)) |t#4| |t#4| $)) (-15 -3822 ((-655 (-2 (|:| |val| |t#4|) (|:| -4270 $))) |t#4| |t#4| $)) (-15 -3312 ((-655 (-2 (|:| |val| |t#4|) (|:| -4270 $))) |t#4| $)) (-15 -1872 ((-655 $) |t#4| $)) (-15 -1872 ((-655 $) (-655 |t#4|) $)) (-15 -1872 ((-655 $) (-655 |t#4|) (-655 $))) (-15 -1872 ((-655 $) |t#4| (-655 $))) (-15 -3039 ((-655 $) |t#4| $)) (-15 -3039 ((-655 $) |t#4| (-655 $))) (-15 -3039 ((-655 $) (-655 |t#4|) $)) (-15 -3039 ((-655 $) (-655 |t#4|) (-655 $))) (-15 -2400 ($ |t#4| $)) (-15 -2400 ($ (-655 |t#4|) $)) (-15 -1985 ((-655 $) |t#4| $)) (-15 -1985 ((-655 $) |t#4| (-655 $))) (-15 -1985 ((-655 $) (-655 |t#4|) $)) (-15 -1985 ((-655 $) (-655 |t#4|) (-655 $))) (-15 -4014 ((-655 $) (-655 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T))
-((-3497 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|) 86)) (-3013 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 127)) (-1768 (((-655 |#5|) |#4| |#5|) 74)) (-2960 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4427 (((-1290)) 36)) (-2056 (((-1290)) 25)) (-1361 (((-1290) (-1176) (-1176) (-1176)) 32)) (-3259 (((-1290) (-1176) (-1176) (-1176)) 21)) (-3464 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|) 107)) (-1478 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112)) 118) (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1916 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 113)))
-(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3259 ((-1290) (-1176) (-1176) (-1176))) (-15 -2056 ((-1290))) (-15 -1361 ((-1290) (-1176) (-1176) (-1176))) (-15 -4427 ((-1290))) (-15 -3464 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -1478 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1478 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -1916 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -3013 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2960 ((-112) |#4| |#5|)) (-15 -2960 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -1768 ((-655 |#5|) |#4| |#5|)) (-15 -3497 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1089))
-((-3497 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1768 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3013 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1916 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861)) (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9)))) (-5 *1 (-1089 *6 *7 *4 *8 *9)))) (-1478 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-3464 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4427 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-1361 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2056 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-3259 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3259 ((-1290) (-1176) (-1176) (-1176))) (-15 -2056 ((-1290))) (-15 -1361 ((-1290) (-1176) (-1176) (-1176))) (-15 -4427 ((-1290))) (-15 -3464 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -1478 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1478 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -1916 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -3013 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2960 ((-112) |#4| |#5|)) (-15 -2960 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -1768 ((-655 |#5|) |#4| |#5|)) (-15 -3497 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|)))
-((-2859 (((-112) $ $) NIL)) (-2937 (((-1234) $) 13)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3827 (((-1152) $) 10)) (-2882 (((-873) $) 20) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1090) (-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2937 ((-1234) $))))) (T -1090))
-((-3827 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1090)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-1090)))))
-(-13 (-1100) (-10 -8 (-15 -3827 ((-1152) $)) (-15 -2937 ((-1234) $))))
-((-2566 (((-112) $ $) 7)))
-(((-1091) (-13 (-1235) (-10 -8 (-15 -2566 ((-112) $ $))))) (T -1091))
-((-2566 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1091)))))
-(-13 (-1235) (-10 -8 (-15 -2566 ((-112) $ $))))
-((-2859 (((-112) $ $) NIL)) (-1777 (((-1194) $) 8)) (-4264 (((-1176) $) 17)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 11)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 14)))
-(((-1092 |#1|) (-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $)))) (-1194)) (T -1092))
-((-1777 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1092 *3)) (-14 *3 *2))))
-(-13 (-1117) (-10 -8 (-15 -1777 ((-1194) $))))
-((-2859 (((-112) $ $) NIL)) (-1692 (($ $ (-655 (-1194)) (-1 (-112) (-655 |#3|))) 34)) (-4042 (($ |#3| |#3|) 23) (($ |#3| |#3| (-655 (-1194))) 21)) (-3890 ((|#3| $) 13)) (-2443 (((-3 (-303 |#3|) "failed") $) 60)) (-4400 (((-303 |#3|) $) NIL)) (-4129 (((-655 (-1194)) $) 16)) (-3919 (((-904 |#1|) $) 11)) (-3878 ((|#3| $) 12)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2065 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-936)) 41)) (-2882 (((-873) $) 89) (($ (-303 |#3|)) 22)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 38)))
-(((-1093 |#1| |#2| |#3|) (-13 (-1117) (-295 |#3| |#3|) (-1055 (-303 |#3|)) (-10 -8 (-15 -4042 ($ |#3| |#3|)) (-15 -4042 ($ |#3| |#3| (-655 (-1194)))) (-15 -1692 ($ $ (-655 (-1194)) (-1 (-112) (-655 |#3|)))) (-15 -3919 ((-904 |#1|) $)) (-15 -3878 (|#3| $)) (-15 -3890 (|#3| $)) (-15 -2065 (|#3| $ |#3| (-936))) (-15 -4129 ((-655 (-1194)) $)))) (-1117) (-13 (-1066) (-898 |#1|) (-625 (-904 |#1|))) (-13 (-441 |#2|) (-898 |#1|) (-625 (-904 |#1|)))) (T -1093))
-((-4042 (*1 *1 *2 *2) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1093 *3 *4 *2)) (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))) (-4042 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) (-1692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1 (-112) (-655 *6))) (-4 *6 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1093 *4 *5 *6)))) (-3919 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 *2))) (-5 *2 (-904 *3)) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 *2))))) (-3878 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1093 *3 *4 *2)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))))) (-3890 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1093 *3 *4 *2)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))))) (-2065 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1093 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))) (-4129 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-5 *2 (-655 (-1194))) (-5 *1 (-1093 *3 *4 *5)) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))))
-(-13 (-1117) (-295 |#3| |#3|) (-1055 (-303 |#3|)) (-10 -8 (-15 -4042 ($ |#3| |#3|)) (-15 -4042 ($ |#3| |#3| (-655 (-1194)))) (-15 -1692 ($ $ (-655 (-1194)) (-1 (-112) (-655 |#3|)))) (-15 -3919 ((-904 |#1|) $)) (-15 -3878 (|#3| $)) (-15 -3890 (|#3| $)) (-15 -2065 (|#3| $ |#3| (-936))) (-15 -4129 ((-655 (-1194)) $))))
-((-2859 (((-112) $ $) NIL)) (-1660 (($ (-655 (-1093 |#1| |#2| |#3|))) 14)) (-4092 (((-655 (-1093 |#1| |#2| |#3|)) $) 21)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2065 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-936)) 27)) (-2882 (((-873) $) 17)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 20)))
-(((-1094 |#1| |#2| |#3|) (-13 (-1117) (-295 |#3| |#3|) (-10 -8 (-15 -1660 ($ (-655 (-1093 |#1| |#2| |#3|)))) (-15 -4092 ((-655 (-1093 |#1| |#2| |#3|)) $)) (-15 -2065 (|#3| $ |#3| (-936))))) (-1117) (-13 (-1066) (-898 |#1|) (-625 (-904 |#1|))) (-13 (-441 |#2|) (-898 |#1|) (-625 (-904 |#1|)))) (T -1094))
-((-1660 (*1 *1 *2) (-12 (-5 *2 (-655 (-1093 *3 *4 *5))) (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))) (-5 *1 (-1094 *3 *4 *5)))) (-4092 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3)))) (-5 *2 (-655 (-1093 *3 *4 *5))) (-5 *1 (-1094 *3 *4 *5)) (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))) (-2065 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-936)) (-4 *4 (-1117)) (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4)))) (-5 *1 (-1094 *4 *5 *2)) (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))))
-(-13 (-1117) (-295 |#3| |#3|) (-10 -8 (-15 -1660 ($ (-655 (-1093 |#1| |#2| |#3|)))) (-15 -4092 ((-655 (-1093 |#1| |#2| |#3|)) $)) (-15 -2065 (|#3| $ |#3| (-936)))))
-((-1386 (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)) 88) (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|))) 92) (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112)) 90)))
-(((-1095 |#1| |#2|) (-10 -7 (-15 -1386 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -1386 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -1386 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)))) (-13 (-316) (-148)) (-655 (-1194))) (T -1095))
-((-1386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5)))))) (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))))) (-1386 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *4)) (|:| -2209 (-655 (-967 *4)))))) (-5 *1 (-1095 *4 *5)) (-5 *3 (-655 (-967 *4))) (-14 *5 (-655 (-1194))))) (-1386 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5)))))) (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))))))
-(-10 -7 (-15 -1386 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -1386 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -1386 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112))))
-((-2347 (((-429 |#3|) |#3|) 18)))
-(((-1096 |#1| |#2| |#3|) (-10 -7 (-15 -2347 ((-429 |#3|) |#3|))) (-1261 (-418 (-575))) (-13 (-373) (-148) (-735 (-418 (-575)) |#1|)) (-1261 |#2|)) (T -1096))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-13 (-373) (-148) (-735 (-418 (-575)) *4))) (-5 *2 (-429 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1261 *5)))))
-(-10 -7 (-15 -2347 ((-429 |#3|) |#3|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 136)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-373)))) (-2456 (($ $) NIL (|has| |#1| (-373)))) (-3978 (((-112) $) NIL (|has| |#1| (-373)))) (-3831 (((-700 |#1|) (-1285 $)) NIL) (((-700 |#1|)) 121)) (-1448 ((|#1| $) 125)) (-2309 (((-1207 (-936) (-782)) (-575)) NIL (|has| |#1| (-359)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-2409 (((-782)) 43 (|has| |#1| (-378)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-3898 (($ (-1285 |#1|) (-1285 $)) NIL) (($ (-1285 |#1|)) 46)) (-3297 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-359)))) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-3405 (((-700 |#1|) $ (-1285 $)) NIL) (((-700 |#1|) $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 113) (((-700 |#1|) (-700 $)) 108) (((-700 |#1|) (-1285 $)) NIL)) (-2302 (($ |#2|) 65) (((-3 $ "failed") (-418 |#2|)) NIL (|has| |#1| (-373)))) (-4162 (((-3 $ "failed") $) NIL)) (-4422 (((-936)) 84)) (-2073 (($) 47 (|has| |#1| (-378)))) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-1758 (($) NIL (|has| |#1| (-359)))) (-3228 (((-112) $) NIL (|has| |#1| (-359)))) (-2457 (($ $ (-782)) NIL (|has| |#1| (-359))) (($ $) NIL (|has| |#1| (-359)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-3369 (((-936) $) NIL (|has| |#1| (-359))) (((-844 (-936)) $) NIL (|has| |#1| (-359)))) (-3900 (((-112) $) NIL)) (-3390 ((|#1| $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-359)))) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3977 ((|#2| $) 91 (|has| |#1| (-373)))) (-1894 (((-936) $) 145 (|has| |#1| (-378)))) (-2290 ((|#2| $) 62)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-3472 (($) NIL (|has| |#1| (-359)) CONST)) (-4317 (($ (-936)) 135 (|has| |#1| (-378)))) (-3912 (((-1137) $) NIL)) (-3657 (($) 127)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3397 (((-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))) NIL (|has| |#1| (-359)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2801 ((|#1| (-1285 $)) NIL) ((|#1|) 117)) (-2619 (((-782) $) NIL (|has| |#1| (-359))) (((-3 (-782) "failed") $ $) NIL (|has| |#1| (-359)))) (-2382 (($ $ (-782)) NIL (-3763 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) NIL (-3763 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) NIL (|has| |#1| (-373)))) (-3797 (((-700 |#1|) (-1285 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-373)))) (-4436 ((|#2|) 81)) (-1847 (($) NIL (|has| |#1| (-359)))) (-2209 (((-1285 |#1|) $ (-1285 $)) 96) (((-700 |#1|) (-1285 $) (-1285 $)) NIL) (((-1285 |#1|) $) 75) (((-700 |#1|) (-1285 $)) 92)) (-2613 (((-1285 |#1|) $) NIL) (($ (-1285 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (|has| |#1| (-359)))) (-2882 (((-873) $) 61) (($ (-575)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-373))) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-373)) (|has| |#1| (-1055 (-418 (-575))))))) (-1724 (($ $) NIL (|has| |#1| (-359))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2765 ((|#2| $) 89)) (-4421 (((-782)) 83 T CONST)) (-3685 (((-112) $ $) NIL)) (-2098 (((-1285 $)) 88)) (-3930 (((-112) $ $) NIL (|has| |#1| (-373)))) (-1989 (($) 32 T CONST)) (-2005 (($) 19 T CONST)) (-3428 (($ $ (-782)) NIL (-3763 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $) NIL (-3763 (-12 (|has| |#1| (-237)) (|has| |#1| (-373))) (|has| |#1| (-359)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1194)) NIL (-12 (|has| |#1| (-373)) (|has| |#1| (-915 (-1194))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-373))) (($ $ (-1 |#1| |#1|) (-782)) NIL (|has| |#1| (-373)))) (-3913 (((-112) $ $) 67)) (-4038 (($ $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) 71) (($ $ $) NIL)) (-4015 (($ $ $) 69)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-418 (-575)) $) NIL (|has| |#1| (-373))) (($ $ (-418 (-575))) NIL (|has| |#1| (-373)))))
-(((-1097 |#1| |#2| |#3|) (-735 |#1| |#2|) (-174) (-1261 |#1|) |#2|) (T -1097))
-NIL
-(-735 |#1| |#2|)
-((-2347 (((-429 |#3|) |#3|) 19)))
-(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -2347 ((-429 |#3|) |#3|))) (-1261 (-418 (-967 (-575)))) (-13 (-373) (-148) (-735 (-418 (-967 (-575))) |#1|)) (-1261 |#2|)) (T -1098))
-((-2347 (*1 *2 *3) (-12 (-4 *4 (-1261 (-418 (-967 (-575))))) (-4 *5 (-13 (-373) (-148) (-735 (-418 (-967 (-575))) *4))) (-5 *2 (-429 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1261 *5)))))
-(-10 -7 (-15 -2347 ((-429 |#3|) |#3|)))
-((-2859 (((-112) $ $) NIL)) (-1914 (($ $ $) 16)) (-3503 (($ $ $) 17)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3751 (($) 6)) (-2613 (((-1194) $) 20)) (-2882 (((-873) $) 13)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 15)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 9)))
-(((-1099) (-13 (-861) (-625 (-1194)) (-10 -8 (-15 -3751 ($))))) (T -1099))
-((-3751 (*1 *1) (-5 *1 (-1099))))
-(-13 (-861) (-625 (-1194)) (-10 -8 (-15 -3751 ($))))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-1199)) 17) (((-1199) $) 16)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-1100) (-141)) (T -1100))
+NIL
+(-13 (-21) (-1131))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1131) . T) ((-1119) . T))
+((-3019 (($ $) 17)) (-3251 (($ $) 25)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 55)) (-3075 (($ $) 27)) (-3328 (($ $) 12)) (-3807 (($ $) 43)) (-2610 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) 36)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-2981 (((-783)) 9)) (-3156 (($ $) 45)))
+(((-1078 |#1|) (-10 -8 (-15 -3251 (|#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3075 (|#1| |#1|)) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| (-576))) (-15 -2610 ((-227) |#1|)) (-15 -2610 ((-390) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| |#1|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-1079)) (T -1078))
+((-2981 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1078 *3)) (-4 *3 (-1079)))))
+(-10 -8 (-15 -3251 (|#1| |#1|)) (-15 -3019 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3075 (|#1| |#1|)) (-15 -1835 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| (-576))) (-15 -2610 ((-227) |#1|)) (-15 -2610 ((-390) |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| |#1|)) (-15 -2981 ((-783))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1463 (((-576) $) 97)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3019 (($ $) 95)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-2477 (($ $) 105)) (-3417 (((-112) $ $) 65)) (-1727 (((-576) $) 122)) (-2574 (($) 18 T CONST)) (-3251 (($ $) 94)) (-2454 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-4397 (((-576) $) 111) (((-419 (-576)) $) 108)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-3011 (((-112) $) 79)) (-2127 (((-112) $) 120)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 104)) (-3075 (($ $) 100)) (-3196 (((-112) $) 121)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1950 (($ $ $) 119)) (-1492 (($ $ $) 118)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-3328 (($ $) 96)) (-3807 (($ $) 98)) (-2367 (((-430 $) $) 82)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-2610 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-2981 (((-783)) 32 T CONST)) (-3156 (($ $) 99)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-3680 (($ $) 123)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3956 (((-112) $ $) 116)) (-3930 (((-112) $ $) 115)) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 117)) (-3916 (((-112) $ $) 114)) (-4013 (($ $ $) 73)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75)))
+(((-1079) (-141)) (T -1079))
+((-3680 (*1 *1 *1) (-4 *1 (-1079))) (-3075 (*1 *1 *1) (-4 *1 (-1079))) (-3156 (*1 *1 *1) (-4 *1 (-1079))) (-3807 (*1 *1 *1) (-4 *1 (-1079))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-576)))) (-3328 (*1 *1 *1) (-4 *1 (-1079))) (-3019 (*1 *1 *1) (-4 *1 (-1079))) (-3251 (*1 *1 *1) (-4 *1 (-1079))))
+(-13 (-374) (-860) (-1041) (-1057 (-576)) (-1057 (-419 (-576))) (-1021) (-626 (-905 (-390))) (-899 (-390)) (-148) (-10 -8 (-15 -3075 ($ $)) (-15 -3156 ($ $)) (-15 -3807 ($ $)) (-15 -1463 ((-576) $)) (-15 -3328 ($ $)) (-15 -3019 ($ $)) (-15 -3251 ($ $)) (-15 -3680 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-937) . T) ((-1021) . T) ((-1041) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) |#2| $) 26)) (-2422 ((|#1| $) 10)) (-1727 (((-576) |#2| $) 116)) (-3968 (((-3 $ "failed") |#2| (-938)) 75)) (-2442 ((|#1| $) 31)) (-1958 ((|#1| |#2| $ |#1|) 40)) (-2094 (($ $) 28)) (-4011 (((-3 |#2| "failed") |#2| $) 111)) (-2127 (((-112) |#2| $) NIL)) (-3196 (((-112) |#2| $) NIL)) (-3027 (((-112) |#2| $) 27)) (-3091 ((|#1| $) 117)) (-2425 ((|#1| $) 30)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-1953 ((|#2| $) 102)) (-2858 (((-874) $) 92)) (-2690 (((-112) $ $) NIL)) (-3468 ((|#1| |#2| $ |#1|) 41)) (-2364 (((-656 $) |#2|) 77)) (-3889 (((-112) $ $) 97)))
+(((-1080 |#1| |#2|) (-13 (-1087 |#1| |#2|) (-10 -8 (-15 -2425 (|#1| $)) (-15 -2442 (|#1| $)) (-15 -2422 (|#1| $)) (-15 -3091 (|#1| $)) (-15 -2094 ($ $)) (-15 -3027 ((-112) |#2| $)) (-15 -1958 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1263 |#1|)) (T -1080))
+((-1958 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2425 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2442 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2422 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-3091 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2094 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-3027 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1263 *4)))))
+(-13 (-1087 |#1| |#2|) (-10 -8 (-15 -2425 (|#1| $)) (-15 -2442 (|#1| $)) (-15 -2422 (|#1| $)) (-15 -3091 (|#1| $)) (-15 -2094 ($ $)) (-15 -3027 ((-112) |#2| $)) (-15 -1958 (|#1| |#2| $ |#1|))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-4078 (($ $ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1901 (($ $ $ $) NIL)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-1727 (((-576) $) NIL)) (-3598 (($ $ $) NIL)) (-2574 (($) NIL T CONST)) (-3435 (($ (-1196)) 10) (($ (-576)) 7)) (-2454 (((-3 (-576) "failed") $) NIL)) (-4397 (((-576) $) NIL)) (-2780 (($ $ $) NIL)) (-2085 (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL)) (-1946 (((-112) $) NIL)) (-3269 (((-419 (-576)) $) NIL)) (-2107 (($) NIL) (($ $) NIL)) (-2790 (($ $ $) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-3135 (($ $ $ $) NIL)) (-2880 (($ $ $) NIL)) (-2127 (((-112) $) NIL)) (-1840 (($ $ $) NIL)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1838 (((-112) $) NIL)) (-2531 (((-112) $) NIL)) (-3397 (((-3 $ "failed") $) NIL)) (-3196 (((-112) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1735 (($ $ $ $) NIL)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-3511 (($ $) NIL)) (-1873 (($ $) NIL)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-3094 (($ $ $) NIL)) (-3448 (($) NIL T CONST)) (-3020 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2878 (($ $) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3945 (((-112) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-2399 (($ $) NIL) (($ $ (-783)) NIL)) (-3327 (($ $) NIL)) (-3052 (($ $) NIL)) (-2610 (((-576) $) 16) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1196)) 9)) (-2858 (((-874) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-2981 (((-783)) NIL T CONST)) (-3238 (((-112) $ $) NIL)) (-3176 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-1572 (($) NIL)) (-3199 (((-112) $ $) NIL)) (-1860 (($ $ $ $) NIL)) (-3680 (($ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)) (-4002 (($ $) 22) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL)))
+(((-1081) (-13 (-557) (-630 (-1196)) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -3435 ($ (-1196))) (-15 -3435 ($ (-576)))))) (T -1081))
+((-3435 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1081)))) (-3435 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1081)))))
+(-13 (-557) (-630 (-1196)) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -3435 ($ (-1196))) (-15 -3435 ($ (-576)))))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-3430 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3299 (($) 9)) (-3028 (((-52) $ (-1196) (-52)) NIL)) (-1586 (($ $) 32)) (-2301 (($ $) 30)) (-1697 (($ $) 29)) (-1658 (($ $) 31)) (-3835 (($ $) 35)) (-2306 (($ $) 36)) (-3290 (($ $) 28)) (-3341 (($ $) 33)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) 27 (|has| $ (-6 -4462)))) (-1405 (((-3 (-52) "failed") (-1196) $) 43)) (-2574 (($) NIL T CONST)) (-3036 (($) 7)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-3007 (($ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) 53 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-3 (-52) "failed") (-1196) $) NIL)) (-3607 (($ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-4355 (((-3 (-1178) "failed") $ (-1178) (-576)) 72)) (-2832 (((-52) $ (-1196) (-52)) NIL (|has| $ (-6 -4463)))) (-2767 (((-52) $ (-1196)) NIL)) (-3975 (((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-1196) $) NIL (|has| (-1196) (-862)))) (-3531 (((-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) 38 (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-4048 (((-1196) $) NIL (|has| (-1196) (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-2029 (((-656 (-1196)) $) NIL)) (-3762 (((-112) (-1196) $) NIL)) (-2395 (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL)) (-2329 (($ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) 46)) (-2928 (((-656 (-1196)) $) NIL)) (-1449 (((-112) (-1196) $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-3838 (((-390) $ (-1196)) 52)) (-2908 (((-656 (-1178)) $ (-1178)) 74)) (-1989 (((-52) $) NIL (|has| (-1196) (-862)))) (-3557 (((-3 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) "failed") (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL)) (-4040 (($ $ (-52)) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL (-12 (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-319 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-3584 (((-656 (-52)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 (((-52) $ (-1196)) NIL) (((-52) $ (-1196) (-52)) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-2110 (($ $ (-1196)) 54)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) 40)) (-1534 (($ $ $) 41)) (-2858 (((-874) $) NIL (-3739 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-625 (-874)))))) (-2069 (($ $ (-1196) (-390)) 50)) (-4369 (($ $ (-1196) (-390)) 51)) (-2690 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 (-1196)) (|:| -3153 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-52) (-1119)) (|has| (-2 (|:| -4147 (-1196)) (|:| -3153 (-52))) (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1082) (-13 (-1213 (-1196) (-52)) (-10 -8 (-15 -1534 ($ $ $)) (-15 -3036 ($)) (-15 -3290 ($ $)) (-15 -1697 ($ $)) (-15 -2301 ($ $)) (-15 -1658 ($ $)) (-15 -3341 ($ $)) (-15 -1586 ($ $)) (-15 -3835 ($ $)) (-15 -2306 ($ $)) (-15 -2069 ($ $ (-1196) (-390))) (-15 -4369 ($ $ (-1196) (-390))) (-15 -3838 ((-390) $ (-1196))) (-15 -2908 ((-656 (-1178)) $ (-1178))) (-15 -2110 ($ $ (-1196))) (-15 -3299 ($)) (-15 -4355 ((-3 (-1178) "failed") $ (-1178) (-576))) (-6 -4462)))) (T -1082))
+((-1534 (*1 *1 *1 *1) (-5 *1 (-1082))) (-3036 (*1 *1) (-5 *1 (-1082))) (-3290 (*1 *1 *1) (-5 *1 (-1082))) (-1697 (*1 *1 *1) (-5 *1 (-1082))) (-2301 (*1 *1 *1) (-5 *1 (-1082))) (-1658 (*1 *1 *1) (-5 *1 (-1082))) (-3341 (*1 *1 *1) (-5 *1 (-1082))) (-1586 (*1 *1 *1) (-5 *1 (-1082))) (-3835 (*1 *1 *1) (-5 *1 (-1082))) (-2306 (*1 *1 *1) (-5 *1 (-1082))) (-2069 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082)))) (-4369 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-390)) (-5 *1 (-1082)))) (-2908 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1082)) (-5 *3 (-1178)))) (-2110 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082)))) (-3299 (*1 *1) (-5 *1 (-1082))) (-4355 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-1082)))))
+(-13 (-1213 (-1196) (-52)) (-10 -8 (-15 -1534 ($ $ $)) (-15 -3036 ($)) (-15 -3290 ($ $)) (-15 -1697 ($ $)) (-15 -2301 ($ $)) (-15 -1658 ($ $)) (-15 -3341 ($ $)) (-15 -1586 ($ $)) (-15 -3835 ($ $)) (-15 -2306 ($ $)) (-15 -2069 ($ $ (-1196) (-390))) (-15 -4369 ($ $ (-1196) (-390))) (-15 -3838 ((-390) $ (-1196))) (-15 -2908 ((-656 (-1178)) $ (-1178))) (-15 -2110 ($ $ (-1196))) (-15 -3299 ($)) (-15 -4355 ((-3 (-1178) "failed") $ (-1178) (-576))) (-6 -4462)))
+((-3436 (($ $) 46)) (-3520 (((-112) $ $) 82)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-969 (-419 (-576)))) 251) (((-3 $ "failed") (-969 (-576))) 250) (((-3 $ "failed") (-969 |#2|)) 253)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-969 (-419 (-576)))) 239) (($ (-969 (-576))) 235) (($ (-969 |#2|)) 255)) (-4404 (($ $) NIL) (($ $ |#4|) 44)) (-3527 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-3769 (((-112) $) 60)) (-2260 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 125)) (-2222 (($ $) 160)) (-2581 (($ $) 156)) (-1995 (($ $) 155)) (-4293 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3386 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2914 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-4402 ((|#4| $) 32)) (-3973 (($ $ $) 128)) (-3071 (((-112) $) 59)) (-1878 (((-783) $) 35)) (-3674 (($ $) 174)) (-3254 (($ $) 171)) (-3561 (((-656 $) $) 72)) (-3653 (($ $) 62)) (-3218 (($ $) 167)) (-4129 (((-656 $) $) 69)) (-4251 (($ $) 64)) (-4379 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2916 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1355 (-783))) $ $) 130)) (-1374 (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $) 126) (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $ |#4|) 127)) (-2203 (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $) 121) (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $ |#4|) 123)) (-2293 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3288 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3704 (((-656 $) $) 54)) (-2671 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-2978 (($ $ $) 116)) (-3448 (($ $) 37)) (-1700 (((-112) $ $) 80)) (-1690 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3350 (($ $ $) 112)) (-1371 (($ $) 41)) (-3901 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-1493 (($ $ |#2|) NIL) (($ $ $) 153)) (-4412 (($ $ |#2|) 148) (($ $ $) 151)) (-1737 (($ $) 49)) (-1942 (($ $) 55)) (-2610 (((-905 (-390)) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (($ (-969 (-419 (-576)))) 241) (($ (-969 (-576))) 237) (($ (-969 |#2|)) 252) (((-1178) $) 279) (((-969 |#2|) $) 184)) (-2858 (((-874) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-969 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4091 (((-3 (-112) "failed") $ $) 79)))
+(((-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2858 (|#1| |#1|)) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3901 (|#1| (-656 |#1|))) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 ((-969 |#2|) |#1|)) (-15 -2610 ((-969 |#2|) |#1|)) (-15 -2610 ((-1178) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -3901 (|#2| |#2| |#1|)) (-15 -1493 (|#1| |#1| |#1|)) (-15 -4412 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1| |#2|)) (-15 -4412 (|#1| |#1| |#2|)) (-15 -2581 (|#1| |#1|)) (-15 -1995 (|#1| |#1|)) (-15 -2610 (|#1| (-969 |#2|))) (-15 -4397 (|#1| (-969 |#2|))) (-15 -2454 ((-3 |#1| "failed") (-969 |#2|))) (-15 -2610 (|#1| (-969 (-576)))) (-15 -4397 (|#1| (-969 (-576)))) (-15 -2454 ((-3 |#1| "failed") (-969 (-576)))) (-15 -2610 (|#1| (-969 (-419 (-576))))) (-15 -4397 (|#1| (-969 (-419 (-576))))) (-15 -2454 ((-3 |#1| "failed") (-969 (-419 (-576))))) (-15 -2978 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1| |#1|)) (-15 -2916 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1355 (-783))) |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -2260 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -1374 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1| |#4|)) (-15 -1374 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -2203 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2307 |#1|)) |#1| |#1| |#4|)) (-15 -2203 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1| |#4|)) (-15 -2293 (|#1| |#1| |#1| |#4|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -2293 (|#1| |#1| |#1|)) (-15 -3386 (|#1| |#1| |#1| |#4|)) (-15 -4293 (|#1| |#1| |#1| |#4|)) (-15 -3386 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -2914 ((-112) |#1| (-656 |#1|))) (-15 -2914 ((-112) |#1| |#1|)) (-15 -2671 ((-112) |#1| (-656 |#1|))) (-15 -2671 ((-112) |#1| |#1|)) (-15 -1690 ((-112) |#1| (-656 |#1|))) (-15 -1690 ((-112) |#1| |#1|)) (-15 -3527 ((-112) |#1| (-656 |#1|))) (-15 -3527 ((-112) |#1| |#1|)) (-15 -3520 ((-112) |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -4091 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3561 ((-656 |#1|) |#1|)) (-15 -4129 ((-656 |#1|) |#1|)) (-15 -4251 (|#1| |#1|)) (-15 -3653 (|#1| |#1|)) (-15 -3769 ((-112) |#1|)) (-15 -3071 ((-112) |#1|)) (-15 -4404 (|#1| |#1| |#4|)) (-15 -4379 (|#1| |#1| |#4|)) (-15 -1942 (|#1| |#1|)) (-15 -3704 ((-656 |#1|) |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -1878 ((-783) |#1|)) (-15 -4402 (|#4| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2858 (|#1| |#4|)) (-15 -2454 ((-3 |#4| "failed") |#1|)) (-15 -4397 (|#4| |#1|)) (-15 -4379 (|#2| |#1|)) (-15 -4404 (|#1| |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-1084 |#2| |#3| |#4|) (-1068) (-805) (-862)) (T -1083))
+NIL
+(-10 -8 (-15 -2858 (|#1| |#1|)) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3901 (|#1| (-656 |#1|))) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 ((-969 |#2|) |#1|)) (-15 -2610 ((-969 |#2|) |#1|)) (-15 -2610 ((-1178) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3254 (|#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -3901 (|#2| |#2| |#1|)) (-15 -1493 (|#1| |#1| |#1|)) (-15 -4412 (|#1| |#1| |#1|)) (-15 -1493 (|#1| |#1| |#2|)) (-15 -4412 (|#1| |#1| |#2|)) (-15 -2581 (|#1| |#1|)) (-15 -1995 (|#1| |#1|)) (-15 -2610 (|#1| (-969 |#2|))) (-15 -4397 (|#1| (-969 |#2|))) (-15 -2454 ((-3 |#1| "failed") (-969 |#2|))) (-15 -2610 (|#1| (-969 (-576)))) (-15 -4397 (|#1| (-969 (-576)))) (-15 -2454 ((-3 |#1| "failed") (-969 (-576)))) (-15 -2610 (|#1| (-969 (-419 (-576))))) (-15 -4397 (|#1| (-969 (-419 (-576))))) (-15 -2454 ((-3 |#1| "failed") (-969 (-419 (-576))))) (-15 -2978 (|#1| |#1| |#1|)) (-15 -3350 (|#1| |#1| |#1|)) (-15 -2916 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1355 (-783))) |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -2260 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -1374 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1| |#4|)) (-15 -1374 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -2203 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2307 |#1|)) |#1| |#1| |#4|)) (-15 -2203 ((-2 (|:| -1788 |#1|) (|:| |gap| (-783)) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -3288 (|#1| |#1| |#1| |#4|)) (-15 -2293 (|#1| |#1| |#1| |#4|)) (-15 -3288 (|#1| |#1| |#1|)) (-15 -2293 (|#1| |#1| |#1|)) (-15 -3386 (|#1| |#1| |#1| |#4|)) (-15 -4293 (|#1| |#1| |#1| |#4|)) (-15 -3386 (|#1| |#1| |#1|)) (-15 -4293 (|#1| |#1| |#1|)) (-15 -2914 ((-112) |#1| (-656 |#1|))) (-15 -2914 ((-112) |#1| |#1|)) (-15 -2671 ((-112) |#1| (-656 |#1|))) (-15 -2671 ((-112) |#1| |#1|)) (-15 -1690 ((-112) |#1| (-656 |#1|))) (-15 -1690 ((-112) |#1| |#1|)) (-15 -3527 ((-112) |#1| (-656 |#1|))) (-15 -3527 ((-112) |#1| |#1|)) (-15 -3520 ((-112) |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -4091 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3561 ((-656 |#1|) |#1|)) (-15 -4129 ((-656 |#1|) |#1|)) (-15 -4251 (|#1| |#1|)) (-15 -3653 (|#1| |#1|)) (-15 -3769 ((-112) |#1|)) (-15 -3071 ((-112) |#1|)) (-15 -4404 (|#1| |#1| |#4|)) (-15 -4379 (|#1| |#1| |#4|)) (-15 -1942 (|#1| |#1|)) (-15 -3704 ((-656 |#1|) |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -1878 ((-783) |#1|)) (-15 -4402 (|#4| |#1|)) (-15 -2610 ((-548) |#1|)) (-15 -2610 ((-905 (-576)) |#1|)) (-15 -2610 ((-905 (-390)) |#1|)) (-15 -2858 (|#1| |#4|)) (-15 -2454 ((-3 |#4| "failed") |#1|)) (-15 -4397 (|#4| |#1|)) (-15 -4379 (|#2| |#1|)) (-15 -4404 (|#1| |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 |#3|) $) 113)) (-3440 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2150 (($ $) 91 (|has| |#1| (-568)))) (-2637 (((-112) $) 93 (|has| |#1| (-568)))) (-3988 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3436 (($ $) 276)) (-3520 (((-112) $ $) 262)) (-3161 (((-3 $ "failed") $ $) 20)) (-1546 (($ $ $) 221 (|has| |#1| (-568)))) (-1938 (((-656 $) $ $) 216 (|has| |#1| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-3179 (($ $) 101 (|has| |#1| (-464)))) (-2464 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 141) (((-3 $ "failed") (-969 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (((-3 $ "failed") (-969 (-576))) 233 (-3739 (-12 (-3189 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (((-3 $ "failed") (-969 |#1|)) 230 (-3739 (-12 (-3189 (|has| |#1| (-38 (-419 (-576))))) (-3189 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1196)))) (-12 (-3189 (|has| |#1| (-557))) (-3189 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (-3189 (|has| |#1| (-1011 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))))) (-4397 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1057 (-576)))) ((|#3| $) 142) (($ (-969 (-419 (-576)))) 235 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (($ (-969 (-576))) 232 (-3739 (-12 (-3189 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (($ (-969 |#1|)) 229 (-3739 (-12 (-3189 (|has| |#1| (-38 (-419 (-576))))) (-3189 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1196)))) (-12 (-3189 (|has| |#1| (-557))) (-3189 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (-3189 (|has| |#1| (-1011 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))))) (-2495 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 217 (|has| |#1| (-568)))) (-4404 (($ $) 159) (($ $ |#3|) 271)) (-2085 (((-701 (-576)) (-1287 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1287 $)) 134)) (-3527 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-4011 (((-3 $ "failed") $) 37)) (-3769 (((-112) $) 269)) (-2260 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 241)) (-2222 (($ $) 210 (|has| |#1| (-464)))) (-3420 (($ $) 181 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-4391 (((-656 $) $) 112)) (-3011 (((-112) $) 99 (|has| |#1| (-926)))) (-2581 (($ $) 226 (|has| |#1| (-568)))) (-1995 (($ $) 227 (|has| |#1| (-568)))) (-4293 (($ $ $) 253) (($ $ $ |#3|) 251)) (-3386 (($ $ $) 252) (($ $ $ |#3|) 250)) (-2611 (($ $ |#1| |#2| $) 177)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1838 (((-112) $) 35)) (-1890 (((-783) $) 174)) (-2914 (((-112) $ $) 255) (((-112) $ (-656 $)) 254)) (-2208 (($ $ $ $ $) 212 (|has| |#1| (-568)))) (-4402 ((|#3| $) 280)) (-2441 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-2936 (((-656 $) $) 129)) (-1711 (((-112) $) 157)) (-2428 (($ |#1| |#2|) 158) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3973 (($ $ $) 240)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#3|) 123)) (-3071 (((-112) $) 270)) (-4389 ((|#2| $) 175) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-1878 (((-783) $) 279)) (-4149 (($ (-1 |#2| |#2|) $) 176)) (-2548 (($ (-1 |#1| |#1|) $) 156)) (-1848 (((-3 |#3| "failed") $) 126)) (-3674 (($ $) 207 (|has| |#1| (-464)))) (-3254 (($ $) 208 (|has| |#1| (-464)))) (-3561 (((-656 $) $) 265)) (-3653 (($ $) 268)) (-3218 (($ $) 209 (|has| |#1| (-464)))) (-4129 (((-656 $) $) 266)) (-4251 (($ $) 267)) (-4366 (($ $) 154)) (-4379 ((|#1| $) 153) (($ $ |#3|) 272)) (-3862 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2916 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1355 (-783))) $ $) 239)) (-1374 (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $) 243) (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $ |#3|) 242)) (-2203 (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $) 245) (((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $ |#3|) 244)) (-2293 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3288 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2143 (((-1178) $) 10)) (-4362 (($ $ $) 215 (|has| |#1| (-568)))) (-3704 (((-656 $) $) 274)) (-2829 (((-3 (-656 $) "failed") $) 117)) (-1972 (((-3 (-656 $) "failed") $) 118)) (-2994 (((-3 (-2 (|:| |var| |#3|) (|:| -2273 (-783))) "failed") $) 116)) (-2671 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-2978 (($ $ $) 237)) (-3448 (($ $) 278)) (-1700 (((-112) $ $) 263)) (-1690 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-3350 (($ $ $) 238)) (-1371 (($ $) 277)) (-3887 (((-1139) $) 11)) (-4364 (((-2 (|:| -3901 $) (|:| |coef2| $)) $ $) 218 (|has| |#1| (-568)))) (-1991 (((-2 (|:| -3901 $) (|:| |coef1| $)) $ $) 219 (|has| |#1| (-568)))) (-4336 (((-112) $) 171)) (-4347 ((|#1| $) 172)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3901 ((|#1| |#1| $) 211 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-2367 (((-430 $) $) 102 (|has| |#1| (-926)))) (-3065 (((-2 (|:| -3901 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-2825 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-1493 (($ $ |#1|) 224 (|has| |#1| (-568))) (($ $ $) 222 (|has| |#1| (-568)))) (-4412 (($ $ |#1|) 225 (|has| |#1| (-568))) (($ $ $) 223 (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ |#3| |#1|) 146) (($ $ (-656 |#3|) (-656 |#1|)) 145) (($ $ |#3| $) 144) (($ $ (-656 |#3|) (-656 $)) 143)) (-3880 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2399 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-4436 ((|#2| $) 155) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-1737 (($ $) 275)) (-1942 (($ $) 273)) (-2610 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-969 (-419 (-576)))) 234 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (($ (-969 (-576))) 231 (-3739 (-12 (-3189 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (($ (-969 |#1|)) 228 (|has| |#3| (-626 (-1196)))) (((-1178) $) 206 (-12 (|has| |#1| (-1057 (-576))) (|has| |#3| (-626 (-1196))))) (((-969 |#1|) $) 205 (|has| |#3| (-626 (-1196))))) (-4325 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 107 (-3200 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ |#3|) 140) (((-969 |#1|) $) 204 (|has| |#3| (-626 (-1196)))) (($ (-419 (-576))) 81 (-3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) 173)) (-4417 ((|#1| $ |#2|) 160) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3689 (((-3 $ "failed") $) 82 (-3739 (-3200 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) 32 T CONST)) (-2986 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-4091 (((-3 (-112) "failed") $ $) 264)) (-2038 (($) 34 T CONST)) (-3578 (($ $ $ $ (-783)) 213 (|has| |#1| (-568)))) (-2219 (($ $ $ (-783)) 214 (|has| |#1| (-568)))) (-3404 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-1084 |#1| |#2| |#3|) (-141) (-1068) (-805) (-862)) (T -1084))
+((-4402 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1371 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1737 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3704 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-1942 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-4404 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3653 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4251 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4129 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3561 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-4091 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3520 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3527 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3527 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1690 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1690 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-2671 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2671 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-2914 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4293 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3386 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4293 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3386 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2293 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2293 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3288 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2203 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2307 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2203 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2307 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-1374 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-1374 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-2260 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3973 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2916 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1355 (-783)))) (-4 *1 (-1084 *3 *4 *5)))) (-3350 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2978 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2454 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2454 (*1 *1 *2) (|partial| -3739 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4397 (*1 *1 *2) (-3739 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2610 (*1 *1 *2) (-3739 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2454 (*1 *1 *2) (|partial| -3739 (-12 (-5 *2 (-969 *3)) (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-3189 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-3189 (-4 *3 (-557))) (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-3189 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4397 (*1 *1 *2) (-3739 (-12 (-5 *2 (-969 *3)) (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-3189 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-3189 (-4 *3 (-557))) (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-3189 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *5 (-626 (-1196))) (-4 *4 (-805)) (-4 *5 (-862)))) (-1995 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4412 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1493 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4412 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1493 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1546 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3065 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3901 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-1991 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3901 *1) (|:| |coef1| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-4364 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3901 *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2495 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-4362 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2219 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-3578 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-2208 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3901 (*1 *2 *2 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2222 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3674 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))))
+(-13 (-966 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4402 (|t#3| $)) (-15 -1878 ((-783) $)) (-15 -3448 ($ $)) (-15 -1371 ($ $)) (-15 -3436 ($ $)) (-15 -1737 ($ $)) (-15 -3704 ((-656 $) $)) (-15 -1942 ($ $)) (-15 -4379 ($ $ |t#3|)) (-15 -4404 ($ $ |t#3|)) (-15 -3071 ((-112) $)) (-15 -3769 ((-112) $)) (-15 -3653 ($ $)) (-15 -4251 ($ $)) (-15 -4129 ((-656 $) $)) (-15 -3561 ((-656 $) $)) (-15 -4091 ((-3 (-112) "failed") $ $)) (-15 -1700 ((-112) $ $)) (-15 -3520 ((-112) $ $)) (-15 -3527 ((-112) $ $)) (-15 -3527 ((-112) $ (-656 $))) (-15 -1690 ((-112) $ $)) (-15 -1690 ((-112) $ (-656 $))) (-15 -2671 ((-112) $ $)) (-15 -2671 ((-112) $ (-656 $))) (-15 -2914 ((-112) $ $)) (-15 -2914 ((-112) $ (-656 $))) (-15 -4293 ($ $ $)) (-15 -3386 ($ $ $)) (-15 -4293 ($ $ $ |t#3|)) (-15 -3386 ($ $ $ |t#3|)) (-15 -2293 ($ $ $)) (-15 -3288 ($ $ $)) (-15 -2293 ($ $ $ |t#3|)) (-15 -3288 ($ $ $ |t#3|)) (-15 -2203 ((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $)) (-15 -2203 ((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2307 $)) $ $ |t#3|)) (-15 -1374 ((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -1374 ((-2 (|:| -1788 $) (|:| |gap| (-783)) (|:| -2647 $) (|:| -2307 $)) $ $ |t#3|)) (-15 -2260 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -3973 ($ $ $)) (-15 -2916 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1355 (-783))) $ $)) (-15 -3350 ($ $ $)) (-15 -2978 ($ $ $)) (IF (|has| |t#3| (-626 (-1196))) (PROGN (-6 (-625 (-969 |t#1|))) (-6 (-626 (-969 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2454 ((-3 $ "failed") (-969 (-419 (-576))))) (-15 -4397 ($ (-969 (-419 (-576))))) (-15 -2610 ($ (-969 (-419 (-576))))) (-15 -2454 ((-3 $ "failed") (-969 (-576)))) (-15 -4397 ($ (-969 (-576)))) (-15 -2610 ($ (-969 (-576)))) (IF (|has| |t#1| (-1011 (-576))) |%noBranch| (PROGN (-15 -2454 ((-3 $ "failed") (-969 |t#1|))) (-15 -4397 ($ (-969 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2454 ((-3 $ "failed") (-969 (-576)))) (-15 -4397 ($ (-969 (-576)))) (-15 -2610 ($ (-969 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -2454 ((-3 $ "failed") (-969 |t#1|))) (-15 -4397 ($ (-969 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2454 ((-3 $ "failed") (-969 |t#1|))) (-15 -4397 ($ (-969 |t#1|)))))) (-15 -2610 ($ (-969 |t#1|))) (IF (|has| |t#1| (-1057 (-576))) (-6 (-626 (-1178))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -1995 ($ $)) (-15 -2581 ($ $)) (-15 -4412 ($ $ |t#1|)) (-15 -1493 ($ $ |t#1|)) (-15 -4412 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -3065 ((-2 (|:| -3901 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1991 ((-2 (|:| -3901 $) (|:| |coef1| $)) $ $)) (-15 -4364 ((-2 (|:| -3901 $) (|:| |coef2| $)) $ $)) (-15 -2495 ($ $ $)) (-15 -1938 ((-656 $) $ $)) (-15 -4362 ($ $ $)) (-15 -2219 ($ $ $ (-783))) (-15 -3578 ($ $ $ $ (-783))) (-15 -2208 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3901 (|t#1| |t#1| $)) (-15 -2222 ($ $)) (-15 -3218 ($ $)) (-15 -3254 ($ $)) (-15 -3674 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-625 (-969 |#1|)) |has| |#3| (-626 (-1196))) ((-174) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-626 (-969 |#1|)) |has| |#3| (-626 (-1196))) ((-626 (-1178)) -12 (|has| |#1| (-1057 (-576))) (|has| |#3| (-626 (-1196)))) ((-300) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3739 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-966 |#1| |#2| |#3|) . T) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-926)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-1466 (((-656 (-1154)) $) 18)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 27) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-1154) $) 20)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1085) (-13 (-1102) (-10 -8 (-15 -1466 ((-656 (-1154)) $)) (-15 -1822 ((-1154) $))))) (T -1085))
+((-1466 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1085)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085)))))
+(-13 (-1102) (-10 -8 (-15 -1466 ((-656 (-1154)) $)) (-15 -1822 ((-1154) $))))
+((-3203 (((-112) |#3| $) 15)) (-3968 (((-3 $ "failed") |#3| (-938)) 29)) (-4011 (((-3 |#3| "failed") |#3| $) 45)) (-2127 (((-112) |#3| $) 19)) (-3196 (((-112) |#3| $) 17)))
+(((-1086 |#1| |#2| |#3|) (-10 -8 (-15 -3968 ((-3 |#1| "failed") |#3| (-938))) (-15 -4011 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2127 ((-112) |#3| |#1|)) (-15 -3196 ((-112) |#3| |#1|)) (-15 -3203 ((-112) |#3| |#1|))) (-1087 |#2| |#3|) (-13 (-860) (-374)) (-1263 |#2|)) (T -1086))
+NIL
+(-10 -8 (-15 -3968 ((-3 |#1| "failed") |#3| (-938))) (-15 -4011 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2127 ((-112) |#3| |#1|)) (-15 -3196 ((-112) |#3| |#1|)) (-15 -3203 ((-112) |#3| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) |#2| $) 22)) (-1727 (((-576) |#2| $) 23)) (-3968 (((-3 $ "failed") |#2| (-938)) 16)) (-1958 ((|#1| |#2| $ |#1|) 14)) (-4011 (((-3 |#2| "failed") |#2| $) 19)) (-2127 (((-112) |#2| $) 20)) (-3196 (((-112) |#2| $) 21)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1953 ((|#2| $) 18)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3468 ((|#1| |#2| $ |#1|) 15)) (-2364 (((-656 $) |#2|) 17)) (-3889 (((-112) $ $) 6)))
+(((-1087 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1263 |t#1|)) (T -1087))
+((-1727 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-576)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-2127 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-4011 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1263 *3)))) (-1953 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1263 *3)))) (-2364 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1087 *4 *3)))) (-3968 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1087 *4 *2)) (-4 *2 (-1263 *4)))) (-3468 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1263 *2)))) (-1958 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1263 *2)))))
+(-13 (-1119) (-10 -8 (-15 -1727 ((-576) |t#2| $)) (-15 -3203 ((-112) |t#2| $)) (-15 -3196 ((-112) |t#2| $)) (-15 -2127 ((-112) |t#2| $)) (-15 -4011 ((-3 |t#2| "failed") |t#2| $)) (-15 -1953 (|t#2| $)) (-15 -2364 ((-656 $) |t#2|)) (-15 -3968 ((-3 $ "failed") |t#2| (-938))) (-15 -3468 (|t#1| |t#2| $ |t#1|)) (-15 -1958 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-4136 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-783)) 114)) (-4113 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783)) 63)) (-2707 (((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-783)) 99)) (-1924 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-1339 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-2294 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-2610 (((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) 92)) (-2592 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-112)) 62)) (-1673 (((-783) (-656 |#4|) (-656 |#5|)) 21)))
+(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1673 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1924 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-112))) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4136 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-783))) (-15 -2610 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2707 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-783)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1088))
+((-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9)))) (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178)) (-5 *1 (-1088 *4 *5 *6 *7 *8)))) (-4136 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4256 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4256 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1088 *7 *8 *9 *10 *11)))) (-2294 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-2294 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-1339 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1339 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-1339 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) (-4113 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-2592 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1673 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1924 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-112))) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4136 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-783))) (-15 -2610 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2707 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-783))))
+((-3275 (((-112) |#5| $) 26)) (-4438 (((-112) |#5| $) 29)) (-4310 (((-112) |#5| $) 18) (((-112) $) 52)) (-3310 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-3262 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-3828 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-2212 (((-112) |#5| $) 32)))
+(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3262 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3262 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3262 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3262 ((-656 |#1|) |#5| |#1|)) (-15 -3828 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3828 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3828 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3828 ((-656 |#1|) |#5| |#1|)) (-15 -3310 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3310 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3310 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3310 ((-656 |#1|) |#5| |#1|)) (-15 -4438 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#1|)) (-15 -2212 ((-112) |#5| |#1|)) (-15 -3275 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#5| |#1|)) (-15 -3262 (|#1| |#1| |#5|))) (-1090 |#2| |#3| |#4| |#5|) (-464) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -1089))
+NIL
+(-10 -8 (-15 -3262 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3262 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3262 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3262 ((-656 |#1|) |#5| |#1|)) (-15 -3828 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3828 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3828 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3828 ((-656 |#1|) |#5| |#1|)) (-15 -3310 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3310 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3310 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3310 ((-656 |#1|) |#5| |#1|)) (-15 -4438 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#1|)) (-15 -2212 ((-112) |#5| |#1|)) (-15 -3275 ((-112) |#5| |#1|)) (-15 -4310 ((-112) |#5| |#1|)) (-15 -3262 (|#1| |#1| |#5|)))
+((-2835 (((-112) $ $) 7)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) 86)) (-1952 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1634 (((-656 |#3|) $) 34)) (-4001 (((-112) $) 27)) (-3169 (((-112) $) 18 (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) 102) (((-112) $) 98)) (-1778 ((|#4| |#4| $) 93)) (-3179 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| $) 127)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) 28)) (-2746 (((-112) $ (-783)) 45)) (-3959 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-2574 (($) 46 T CONST)) (-1516 (((-112) $) 23 (|has| |#1| (-568)))) (-2097 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3593 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3695 (((-112) $) 26 (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3390 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 37)) (-4397 (($ (-656 |#4|)) 36)) (-2003 (((-3 $ "failed") $) 83)) (-2040 ((|#4| |#4| $) 90)) (-3229 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3586 ((|#4| |#4| $) 88)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) 106)) (-3275 (((-112) |#4| $) 137)) (-4438 (((-112) |#4| $) 134)) (-4310 (((-112) |#4| $) 138) (((-112) $) 135)) (-3975 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) 105) (((-112) $) 104)) (-4402 ((|#3| $) 35)) (-3639 (((-112) $ (-783)) 44)) (-3531 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 48)) (-2804 (((-656 |#3|) $) 33)) (-2872 (((-112) |#3| $) 32)) (-1684 (((-112) $ (-783)) 43)) (-2143 (((-1178) $) 10)) (-3342 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4362 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| |#4| $) 128)) (-3627 (((-3 |#4| "failed") $) 84)) (-1611 (((-656 $) |#4| $) 130)) (-4270 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3310 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1501 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3025 (((-656 |#4|) $) 108)) (-2671 (((-112) |#4| $) 100) (((-112) $) 96)) (-2978 ((|#4| |#4| $) 91)) (-1700 (((-112) $ $) 111)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) 101) (((-112) $) 97)) (-3350 ((|#4| |#4| $) 92)) (-3887 (((-1139) $) 11)) (-1989 (((-3 |#4| "failed") $) 85)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2451 (((-3 $ "failed") $ |#4|) 79)) (-3262 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1910 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) 39)) (-3001 (((-112) $) 42)) (-3849 (($) 41)) (-4436 (((-783) $) 107)) (-3902 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-3052 (($ $) 40)) (-2610 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 61)) (-4426 (($ $ |#3|) 29)) (-4127 (($ $ |#3|) 31)) (-2693 (($ $) 89)) (-3668 (($ $ |#3|) 30)) (-2858 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3506 (((-783) $) 77 (|has| |#3| (-379)))) (-2690 (((-112) $ $) 9)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3828 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2714 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) 82)) (-2212 (((-112) |#4| $) 136)) (-2576 (((-112) |#3| $) 81)) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-1090 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1090))
+((-4310 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3275 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2212 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-4438 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-4270 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-2670 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-2670 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1611 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3342 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-4362 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3179 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3310 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3310 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-3310 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-3310 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-3828 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3828 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-3828 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-3828 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-1501 (*1 *1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-1501 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)))) (-3262 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-3262 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *5 *6 *7 *8)))))
+(-13 (-1230 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -4310 ((-112) |t#4| $)) (-15 -3275 ((-112) |t#4| $)) (-15 -2212 ((-112) |t#4| $)) (-15 -4310 ((-112) $)) (-15 -4438 ((-112) |t#4| $)) (-15 -4270 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -2670 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |t#4| $)) (-15 -2670 ((-112) |t#4| $)) (-15 -1611 ((-656 $) |t#4| $)) (-15 -3342 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -4362 ((-656 (-2 (|:| |val| |t#4|) (|:| -4256 $))) |t#4| |t#4| $)) (-15 -3179 ((-656 (-2 (|:| |val| |t#4|) (|:| -4256 $))) |t#4| $)) (-15 -3310 ((-656 $) |t#4| $)) (-15 -3310 ((-656 $) (-656 |t#4|) $)) (-15 -3310 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3310 ((-656 $) |t#4| (-656 $))) (-15 -3828 ((-656 $) |t#4| $)) (-15 -3828 ((-656 $) |t#4| (-656 $))) (-15 -3828 ((-656 $) (-656 |t#4|) $)) (-15 -3828 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1501 ($ |t#4| $)) (-15 -1501 ($ (-656 |t#4|) $)) (-15 -3262 ((-656 $) |t#4| $)) (-15 -3262 ((-656 $) |t#4| (-656 $))) (-15 -3262 ((-656 $) (-656 |t#4|) $)) (-15 -3262 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1952 ((-656 $) (-656 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T))
+((-2210 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|) 86)) (-3224 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|) 127)) (-3223 (((-656 |#5|) |#4| |#5|) 74)) (-3205 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3484 (((-1292)) 36)) (-2834 (((-1292)) 25)) (-4331 (((-1292) (-1178) (-1178) (-1178)) 32)) (-2357 (((-1292) (-1178) (-1178) (-1178)) 21)) (-2796 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#4| |#4| |#5|) 107)) (-1639 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4112 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|) 113)))
+(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2357 ((-1292) (-1178) (-1178) (-1178))) (-15 -2834 ((-1292))) (-15 -4331 ((-1292) (-1178) (-1178) (-1178))) (-15 -3484 ((-1292))) (-15 -2796 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -1639 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1639 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#3| (-112))) (-15 -4112 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -3224 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-112) |#4| |#5|)) (-15 -3205 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -3223 ((-656 |#5|) |#4| |#5|)) (-15 -2210 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1091))
+((-2210 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3223 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3224 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4112 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4256 *9)))) (-5 *1 (-1091 *6 *7 *4 *8 *9)))) (-1639 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-2796 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3484 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-4331 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2834 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-2357 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2357 ((-1292) (-1178) (-1178) (-1178))) (-15 -2834 ((-1292))) (-15 -4331 ((-1292) (-1178) (-1178) (-1178))) (-15 -3484 ((-1292))) (-15 -2796 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -1639 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1639 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#3| (-112))) (-15 -4112 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -3224 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-112) |#4| |#5|)) (-15 -3205 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -3223 ((-656 |#5|) |#4| |#5|)) (-15 -2210 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|)))
+((-2835 (((-112) $ $) NIL)) (-2913 (((-1236) $) 13)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3803 (((-1154) $) 10)) (-2858 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1092) (-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2913 ((-1236) $))))) (T -1092))
+((-3803 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-1092)))))
+(-13 (-1102) (-10 -8 (-15 -3803 ((-1154) $)) (-15 -2913 ((-1236) $))))
+((-2568 (((-112) $ $) 7)))
+(((-1093) (-13 (-1237) (-10 -8 (-15 -2568 ((-112) $ $))))) (T -1093))
+((-2568 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1093)))))
+(-13 (-1237) (-10 -8 (-15 -2568 ((-112) $ $))))
+((-2835 (((-112) $ $) NIL)) (-1811 (((-1196) $) 8)) (-2143 (((-1178) $) 17)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 11)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 14)))
+(((-1094 |#1|) (-13 (-1119) (-10 -8 (-15 -1811 ((-1196) $)))) (-1196)) (T -1094))
+((-1811 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1094 *3)) (-14 *3 *2))))
+(-13 (-1119) (-10 -8 (-15 -1811 ((-1196) $))))
+((-2835 (((-112) $ $) NIL)) (-1726 (($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|))) 34)) (-4018 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1196))) 21)) (-3866 ((|#3| $) 13)) (-2454 (((-3 (-304 |#3|) "failed") $) 60)) (-4397 (((-304 |#3|) $) NIL)) (-2228 (((-656 (-1196)) $) 16)) (-3895 (((-905 |#1|) $) 11)) (-3854 ((|#3| $) 12)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2099 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-938)) 41)) (-2858 (((-874) $) 89) (($ (-304 |#3|)) 22)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 38)))
+(((-1095 |#1| |#2| |#3|) (-13 (-1119) (-296 |#3| |#3|) (-1057 (-304 |#3|)) (-10 -8 (-15 -4018 ($ |#3| |#3|)) (-15 -4018 ($ |#3| |#3| (-656 (-1196)))) (-15 -1726 ($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|)))) (-15 -3895 ((-905 |#1|) $)) (-15 -3854 (|#3| $)) (-15 -3866 (|#3| $)) (-15 -2099 (|#3| $ |#3| (-938))) (-15 -2228 ((-656 (-1196)) $)))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1095))
+((-4018 (*1 *1 *2 *2) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-4018 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-1726 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *6)))) (-3895 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 *2))) (-5 *2 (-905 *3)) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))) (-3854 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) (-3866 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) (-2099 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2228 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1196))) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(-13 (-1119) (-296 |#3| |#3|) (-1057 (-304 |#3|)) (-10 -8 (-15 -4018 ($ |#3| |#3|)) (-15 -4018 ($ |#3| |#3| (-656 (-1196)))) (-15 -1726 ($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|)))) (-15 -3895 ((-905 |#1|) $)) (-15 -3854 (|#3| $)) (-15 -3866 (|#3| $)) (-15 -2099 (|#3| $ |#3| (-938))) (-15 -2228 ((-656 (-1196)) $))))
+((-2835 (((-112) $ $) NIL)) (-1693 (($ (-656 (-1095 |#1| |#2| |#3|))) 14)) (-4070 (((-656 (-1095 |#1| |#2| |#3|)) $) 21)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2099 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-938)) 27)) (-2858 (((-874) $) 17)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 20)))
+(((-1096 |#1| |#2| |#3|) (-13 (-1119) (-296 |#3| |#3|) (-10 -8 (-15 -1693 ($ (-656 (-1095 |#1| |#2| |#3|)))) (-15 -4070 ((-656 (-1095 |#1| |#2| |#3|)) $)) (-15 -2099 (|#3| $ |#3| (-938))))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1096))
+((-1693 (*1 *1 *2) (-12 (-5 *2 (-656 (-1095 *3 *4 *5))) (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1096 *3 *4 *5)))) (-4070 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1095 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-2099 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))))
+(-13 (-1119) (-296 |#3| |#3|) (-10 -8 (-15 -1693 ($ (-656 (-1095 |#1| |#2| |#3|)))) (-15 -4070 ((-656 (-1095 |#1| |#2| |#3|)) $)) (-15 -2099 (|#3| $ |#3| (-938)))))
+((-3147 (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|))) 92) (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112)) 90)))
+(((-1097 |#1| |#2|) (-10 -7 (-15 -3147 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -3147 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -3147 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1196))) (T -1097))
+((-3147 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))))) (-3147 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *4)) (|:| -3392 (-656 (-969 *4)))))) (-5 *1 (-1097 *4 *5)) (-5 *3 (-656 (-969 *4))) (-14 *5 (-656 (-1196))))) (-3147 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))))))
+(-10 -7 (-15 -3147 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -3147 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -3147 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))))
+((-2367 (((-430 |#3|) |#3|) 18)))
+(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -2367 ((-430 |#3|) |#3|))) (-1263 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1263 |#2|)) (T -1098))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1263 *5)))))
+(-10 -7 (-15 -2367 ((-430 |#3|) |#3|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 136)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-2150 (($ $) NIL (|has| |#1| (-374)))) (-2637 (((-112) $) NIL (|has| |#1| (-374)))) (-3940 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) 121)) (-1462 ((|#1| $) 125)) (-1398 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2422 (((-783)) 43 (|has| |#1| (-379)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2876 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) 46)) (-2108 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-3313 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 113) (((-701 |#1|) (-701 $)) 108) (((-701 |#1|) (-1287 $)) NIL)) (-2326 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-4011 (((-3 $ "failed") $) NIL)) (-4422 (((-938)) 84)) (-2107 (($) 47 (|has| |#1| (-379)))) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3602 (($) NIL (|has| |#1| (-360)))) (-4429 (((-112) $) NIL (|has| |#1| (-360)))) (-2244 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-2620 (((-938) $) NIL (|has| |#1| (-360))) (((-845 (-938)) $) NIL (|has| |#1| (-360)))) (-1838 (((-112) $) NIL)) (-3075 ((|#1| $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2510 ((|#2| $) 91 (|has| |#1| (-374)))) (-1654 (((-938) $) 145 (|has| |#1| (-379)))) (-2315 ((|#2| $) 62)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-3448 (($) NIL (|has| |#1| (-360)) CONST)) (-4308 (($ (-938)) 135 (|has| |#1| (-379)))) (-3887 (((-1139) $) NIL)) (-3633 (($) 127)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1481 (((-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))) NIL (|has| |#1| (-360)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-3880 ((|#1| (-1287 $)) NIL) ((|#1|) 117)) (-3447 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2399 (($ $ (-783)) NIL (-3739 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3739 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-4370 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1953 ((|#2|) 81)) (-1861 (($) NIL (|has| |#1| (-360)))) (-3392 (((-1287 |#1|) $ (-1287 $)) 96) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) 75) (((-701 |#1|) (-1287 $)) 92)) (-2610 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-2858 (((-874) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3689 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2528 ((|#2| $) 89)) (-2981 (((-783)) 83 T CONST)) (-2690 (((-112) $ $) NIL)) (-4261 (((-1287 $)) 88)) (-3199 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2022 (($) 32 T CONST)) (-2038 (($) 19 T CONST)) (-3404 (($ $ (-783)) NIL (-3739 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3739 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-3889 (((-112) $ $) 67)) (-4013 (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) 71) (($ $ $) NIL)) (-3990 (($ $ $) 69)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374)))))
+(((-1099 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1263 |#1|) |#2|) (T -1099))
+NIL
+(-736 |#1| |#2|)
+((-2367 (((-430 |#3|) |#3|) 19)))
+(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -2367 ((-430 |#3|) |#3|))) (-1263 (-419 (-969 (-576)))) (-13 (-374) (-148) (-736 (-419 (-969 (-576))) |#1|)) (-1263 |#2|)) (T -1100))
+((-2367 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-969 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-969 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1263 *5)))))
+(-10 -7 (-15 -2367 ((-430 |#3|) |#3|)))
+((-2835 (((-112) $ $) NIL)) (-1950 (($ $ $) 16)) (-1492 (($ $ $) 17)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2080 (($) 6)) (-2610 (((-1196) $) 20)) (-2858 (((-874) $) 13)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 15)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 9)))
+(((-1101) (-13 (-862) (-626 (-1196)) (-10 -8 (-15 -2080 ($))))) (T -1101))
+((-2080 (*1 *1) (-5 *1 (-1101))))
+(-13 (-862) (-626 (-1196)) (-10 -8 (-15 -2080 ($))))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-1102) (-141)) (T -1102))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-627 #0=(-1199)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T))
-((-2169 ((|#1| |#1| (-1 (-575) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2285 (((-1290)) 21)) (-2318 (((-655 |#1|)) 13)))
-(((-1101 |#1|) (-10 -7 (-15 -2285 ((-1290))) (-15 -2318 ((-655 |#1|))) (-15 -2169 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2169 (|#1| |#1| (-1 (-575) |#1| |#1|)))) (-133)) (T -1101))
-((-2169 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-575) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2)))) (-2169 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2)))) (-2318 (*1 *2) (-12 (-5 *2 (-655 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-133)))) (-2285 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1101 *3)) (-4 *3 (-133)))))
-(-10 -7 (-15 -2285 ((-1290))) (-15 -2318 ((-655 |#1|))) (-15 -2169 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2169 (|#1| |#1| (-1 (-575) |#1| |#1|))))
-((-4164 (($ (-109) $) 20)) (-2256 (((-702 (-109)) (-517) $) 19)) (-1393 (($) 7)) (-1517 (($) 21)) (-3490 (($) 22)) (-3453 (((-655 (-177)) $) 10)) (-2882 (((-873) $) 25)))
-(((-1102) (-13 (-624 (-873)) (-10 -8 (-15 -1393 ($)) (-15 -3453 ((-655 (-177)) $)) (-15 -2256 ((-702 (-109)) (-517) $)) (-15 -4164 ($ (-109) $)) (-15 -1517 ($)) (-15 -3490 ($))))) (T -1102))
-((-1393 (*1 *1) (-5 *1 (-1102))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-655 (-177))) (-5 *1 (-1102)))) (-2256 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-1102)))) (-4164 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1102)))) (-1517 (*1 *1) (-5 *1 (-1102))) (-3490 (*1 *1) (-5 *1 (-1102))))
-(-13 (-624 (-873)) (-10 -8 (-15 -1393 ($)) (-15 -3453 ((-655 (-177)) $)) (-15 -2256 ((-702 (-109)) (-517) $)) (-15 -4164 ($ (-109) $)) (-15 -1517 ($)) (-15 -3490 ($))))
-((-2199 (((-1285 (-700 |#1|)) (-655 (-700 |#1|))) 45) (((-1285 (-700 (-967 |#1|))) (-655 (-1194)) (-700 (-967 |#1|))) 75) (((-1285 (-700 (-418 (-967 |#1|)))) (-655 (-1194)) (-700 (-418 (-967 |#1|)))) 92)) (-2209 (((-1285 |#1|) (-700 |#1|) (-655 (-700 |#1|))) 39)))
-(((-1103 |#1|) (-10 -7 (-15 -2199 ((-1285 (-700 (-418 (-967 |#1|)))) (-655 (-1194)) (-700 (-418 (-967 |#1|))))) (-15 -2199 ((-1285 (-700 (-967 |#1|))) (-655 (-1194)) (-700 (-967 |#1|)))) (-15 -2199 ((-1285 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -2209 ((-1285 |#1|) (-700 |#1|) (-655 (-700 |#1|))))) (-373)) (T -1103))
-((-2209 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-700 *5))) (-5 *3 (-700 *5)) (-4 *5 (-373)) (-5 *2 (-1285 *5)) (-5 *1 (-1103 *5)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-1103 *4)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373)) (-5 *2 (-1285 (-700 (-967 *5)))) (-5 *1 (-1103 *5)) (-5 *4 (-700 (-967 *5))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373)) (-5 *2 (-1285 (-700 (-418 (-967 *5))))) (-5 *1 (-1103 *5)) (-5 *4 (-700 (-418 (-967 *5)))))))
-(-10 -7 (-15 -2199 ((-1285 (-700 (-418 (-967 |#1|)))) (-655 (-1194)) (-700 (-418 (-967 |#1|))))) (-15 -2199 ((-1285 (-700 (-967 |#1|))) (-655 (-1194)) (-700 (-967 |#1|)))) (-15 -2199 ((-1285 (-700 |#1|)) (-655 (-700 |#1|)))) (-15 -2209 ((-1285 |#1|) (-700 |#1|) (-655 (-700 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3552 (((-655 (-782)) $) NIL) (((-655 (-782)) $ (-1194)) NIL)) (-2213 (((-782) $) NIL) (((-782) $ (-1194)) NIL)) (-1606 (((-655 (-1105 (-1194))) $) NIL)) (-3462 (((-1190 $) $ (-1105 (-1194))) NIL) (((-1190 |#1|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1105 (-1194)))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3783 (($ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1105 (-1194)) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL) (((-3 (-1142 |#1| (-1194)) "failed") $) NIL)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1105 (-1194)) $) NIL) (((-1194) $) NIL) (((-1142 |#1| (-1194)) $) NIL)) (-4171 (($ $ $ (-1105 (-1194))) NIL (|has| |#1| (-174)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ (-1105 (-1194))) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-542 (-1105 (-1194))) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1105 (-1194)) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1105 (-1194)) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3369 (((-782) $ (-1194)) NIL) (((-782) $) NIL)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2430 (($ (-1190 |#1|) (-1105 (-1194))) NIL) (($ (-1190 $) (-1105 (-1194))) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-542 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1105 (-1194))) NIL)) (-3143 (((-542 (-1105 (-1194))) $) NIL) (((-782) $ (-1105 (-1194))) NIL) (((-655 (-782)) $ (-655 (-1105 (-1194)))) NIL)) (-1946 (($ (-1 (-542 (-1105 (-1194))) (-542 (-1105 (-1194)))) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-1470 (((-1 $ (-782)) (-1194)) NIL) (((-1 $ (-782)) $) NIL (|has| |#1| (-238)))) (-2187 (((-3 (-1105 (-1194)) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-2141 (((-1105 (-1194)) $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-3187 (((-112) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-1105 (-1194))) (|:| -1658 (-782))) "failed") $) NIL)) (-2814 (($ $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1105 (-1194)) |#1|) NIL) (($ $ (-655 (-1105 (-1194))) (-655 |#1|)) NIL) (($ $ (-1105 (-1194)) $) NIL) (($ $ (-655 (-1105 (-1194))) (-655 $)) NIL) (($ $ (-1194) $) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 $)) NIL (|has| |#1| (-238))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-238))) (($ $ (-655 (-1194)) (-655 |#1|)) NIL (|has| |#1| (-238)))) (-2801 (($ $ (-1105 (-1194))) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-2425 (((-655 (-1194)) $) NIL)) (-1753 (((-542 (-1105 (-1194))) $) NIL) (((-782) $ (-1105 (-1194))) NIL) (((-655 (-782)) $ (-655 (-1105 (-1194)))) NIL) (((-782) $ (-1194)) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-1105 (-1194)) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1105 (-1194)) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1105 (-1194)) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) NIL (|has| |#1| (-463))) (($ $ (-1105 (-1194))) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-1105 (-1194))) NIL) (($ (-1194)) NIL) (($ (-1142 |#1| (-1194))) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-542 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-1105 (-1194))) (-655 (-782))) NIL) (($ $ (-1105 (-1194)) (-782)) NIL) (($ $ (-655 (-1105 (-1194)))) NIL) (($ $ (-1105 (-1194))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-782)) NIL (|has| |#1| (-237)))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1104 |#1|) (-13 (-259 |#1| (-1194) (-1105 (-1194)) (-542 (-1105 (-1194)))) (-1055 (-1142 |#1| (-1194)))) (-1066)) (T -1104))
-NIL
-(-13 (-259 |#1| (-1194) (-1105 (-1194)) (-542 (-1105 (-1194)))) (-1055 (-1142 |#1| (-1194))))
-((-2859 (((-112) $ $) NIL)) (-2213 (((-782) $) NIL)) (-1441 ((|#1| $) 10)) (-2443 (((-3 |#1| "failed") $) NIL)) (-4400 ((|#1| $) NIL)) (-3369 (((-782) $) 11)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-1470 (($ |#1| (-782)) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2382 (($ $ (-782)) NIL) (($ $) NIL)) (-2882 (((-873) $) NIL) (($ |#1|) NIL)) (-3685 (((-112) $ $) NIL)) (-3428 (($ $ (-782)) NIL) (($ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 16)))
-(((-1105 |#1|) (-274 |#1|) (-861)) (T -1105))
-NIL
-(-274 |#1|)
-((-2544 (((-655 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 29 (|has| |#1| (-859))) (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 14)))
-(((-1106 |#1| |#2|) (-10 -7 (-15 -2544 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) (IF (|has| |#1| (-859)) (-15 -2544 ((-655 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) |%noBranch|)) (-1235) (-1235)) (T -1106))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-859)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-655 *6)) (-5 *1 (-1106 *5 *6)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1111 *6)) (-5 *1 (-1106 *5 *6)))))
-(-10 -7 (-15 -2544 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) (IF (|has| |#1| (-859)) (-15 -2544 ((-655 |#2|) (-1 |#2| |#1|) (-1111 |#1|))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 16) (($ (-1199)) NIL) (((-1199) $) NIL)) (-4065 (((-655 (-1152)) $) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1107) (-13 (-1100) (-10 -8 (-15 -4065 ((-655 (-1152)) $))))) (T -1107))
-((-4065 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1107)))))
-(-13 (-1100) (-10 -8 (-15 -4065 ((-655 (-1152)) $))))
-((-2544 (((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 19)))
-(((-1108 |#1| |#2|) (-10 -7 (-15 -2544 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)))) (-1235) (-1235)) (T -1108))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1109 *6)) (-5 *1 (-1108 *5 *6)))))
-(-10 -7 (-15 -2544 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|))))
-((-2859 (((-112) $ $) NIL (|has| (-1111 |#1|) (-1117)))) (-1441 (((-1194) $) NIL)) (-4127 (((-1111 |#1|) $) NIL)) (-4264 (((-1176) $) NIL (|has| (-1111 |#1|) (-1117)))) (-3912 (((-1137) $) NIL (|has| (-1111 |#1|) (-1117)))) (-2674 (($ (-1194) (-1111 |#1|)) NIL)) (-2882 (((-873) $) NIL (|has| (-1111 |#1|) (-1117)))) (-3685 (((-112) $ $) NIL (|has| (-1111 |#1|) (-1117)))) (-3913 (((-112) $ $) NIL (|has| (-1111 |#1|) (-1117)))))
-(((-1109 |#1|) (-13 (-1235) (-10 -8 (-15 -2674 ($ (-1194) (-1111 |#1|))) (-15 -1441 ((-1194) $)) (-15 -4127 ((-1111 |#1|) $)) (IF (|has| (-1111 |#1|) (-1117)) (-6 (-1117)) |%noBranch|))) (-1235)) (T -1109))
-((-2674 (*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1111 *4)) (-4 *4 (-1235)) (-5 *1 (-1109 *4)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1109 *3)) (-4 *3 (-1235)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-1235)))))
-(-13 (-1235) (-10 -8 (-15 -2674 ($ (-1194) (-1111 |#1|))) (-15 -1441 ((-1194) $)) (-15 -4127 ((-1111 |#1|) $)) (IF (|has| (-1111 |#1|) (-1117)) (-6 (-1117)) |%noBranch|)))
-((-4127 (($ |#1| |#1|) 8)) (-3897 ((|#1| $) 11)) (-2067 ((|#1| $) 13)) (-3754 (((-575) $) 9)) (-2480 ((|#1| $) 10)) (-3767 ((|#1| $) 12)) (-2613 (($ |#1|) 6)) (-1859 (($ |#1| |#1|) 15)) (-3682 (($ $ (-575)) 14)))
-(((-1110 |#1|) (-141) (-1235)) (T -1110))
-((-1859 (*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1110 *3)) (-4 *3 (-1235)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1235)) (-5 *2 (-575)))) (-4127 (*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))))
-(-13 (-629 |t#1|) (-10 -8 (-15 -1859 ($ |t#1| |t#1|)) (-15 -3682 ($ $ (-575))) (-15 -2067 (|t#1| $)) (-15 -3767 (|t#1| $)) (-15 -3897 (|t#1| $)) (-15 -2480 (|t#1| $)) (-15 -3754 ((-575) $)) (-15 -4127 ($ |t#1| |t#1|))))
-(((-629 |#1|) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4127 (($ |#1| |#1|) 16)) (-2544 (((-655 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-859)))) (-3897 ((|#1| $) 12)) (-2067 ((|#1| $) 11)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3754 (((-575) $) 15)) (-2480 ((|#1| $) 14)) (-3767 ((|#1| $) 13)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3943 (((-655 |#1|) $) 44 (|has| |#1| (-859))) (((-655 |#1|) (-655 $)) 43 (|has| |#1| (-859)))) (-2613 (($ |#1|) 29)) (-2882 (((-873) $) 28 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1859 (($ |#1| |#1|) 10)) (-3682 (($ $ (-575)) 17)) (-3913 (((-112) $ $) 22 (|has| |#1| (-1117)))))
-(((-1111 |#1|) (-13 (-1110 |#1|) (-10 -7 (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-655 |#1|))) |%noBranch|))) (-1235)) (T -1111))
-NIL
-(-13 (-1110 |#1|) (-10 -7 (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-655 |#1|))) |%noBranch|)))
-((-4127 (($ |#1| |#1|) 8)) (-2544 ((|#2| (-1 |#1| |#1|) $) 16)) (-3897 ((|#1| $) 11)) (-2067 ((|#1| $) 13)) (-3754 (((-575) $) 9)) (-2480 ((|#1| $) 10)) (-3767 ((|#1| $) 12)) (-3943 ((|#2| (-655 $)) 18) ((|#2| $) 17)) (-2613 (($ |#1|) 6)) (-1859 (($ |#1| |#1|) 15)) (-3682 (($ $ (-575)) 14)))
-(((-1112 |#1| |#2|) (-141) (-859) (-1166 |t#1|)) (T -1112))
-((-3943 (*1 *2 *3) (-12 (-5 *3 (-655 *1)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1166 *4)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1166 *3)))) (-2544 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1166 *4)))))
-(-13 (-1110 |t#1|) (-10 -8 (-15 -3943 (|t#2| (-655 $))) (-15 -3943 (|t#2| $)) (-15 -2544 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-629 |#1|) . T) ((-1110 |#1|) . T))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3651 (((-1152) $) 12)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 18) (($ (-1199)) NIL) (((-1199) $) NIL)) (-1788 (((-655 (-1152)) $) 10)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1113) (-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $)) (-15 -3651 ((-1152) $))))) (T -1113))
-((-1788 (*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1113)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1113)))))
-(-13 (-1100) (-10 -8 (-15 -1788 ((-655 (-1152)) $)) (-15 -3651 ((-1152) $))))
-((-1644 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2081 (($ $ $) 10)) (-4050 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1114 |#1| |#2|) (-10 -8 (-15 -1644 (|#1| |#2| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#2|)) (-15 -4050 (|#1| |#1| |#1|))) (-1115 |#2|) (-1117)) (T -1114))
-NIL
-(-10 -8 (-15 -1644 (|#1| |#2| |#1|)) (-15 -1644 (|#1| |#1| |#2|)) (-15 -1644 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#2|)) (-15 -4050 (|#1| |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-1644 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2081 (($ $ $) 21)) (-2210 (((-112) $ $) 20)) (-3133 (((-112) $ (-782)) 36)) (-1330 (($) 26) (($ (-655 |#1|)) 25)) (-3983 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4460)))) (-3261 (($) 37 T CONST)) (-4070 (($ $) 60 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 59 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4460)))) (-3999 (((-655 |#1|) $) 44 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) 29)) (-3541 (((-112) $ (-782)) 35)) (-4252 (((-655 |#1|) $) 45 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 39)) (-3218 (((-112) $ (-782)) 34)) (-4264 (((-1176) $) 10)) (-1872 (($ $ $) 24)) (-3912 (((-1137) $) 11)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2718 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#1|) (-655 |#1|)) 51 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 49 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 (-303 |#1|))) 48 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 30)) (-2017 (((-112) $) 33)) (-1393 (($) 32)) (-4050 (($ $ $) 23) (($ $ |#1|) 22)) (-3922 (((-782) |#1| $) 46 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4460)))) (-3076 (($ $) 31)) (-2613 (((-547) $) 61 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 52)) (-2882 (((-873) $) 12)) (-2550 (($) 28) (($ (-655 |#1|)) 27)) (-3685 (((-112) $ $) 9)) (-4121 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 38 (|has| $ (-6 -4460)))))
-(((-1115 |#1|) (-141) (-1117)) (T -1115))
-((-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-2550 (*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3)))) (-1330 (*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3)))) (-1872 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-4050 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-4050 (*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-2081 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-2210 (*1 *2 *1 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))) (-1644 (*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1644 (*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))) (-1644 (*1 *1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
-(-13 (-1117) (-152 |t#1|) (-10 -8 (-6 -4450) (-15 -3688 ((-112) $ $)) (-15 -2550 ($)) (-15 -2550 ($ (-655 |t#1|))) (-15 -1330 ($)) (-15 -1330 ($ (-655 |t#1|))) (-15 -1872 ($ $ $)) (-15 -4050 ($ $ $)) (-15 -4050 ($ $ |t#1|)) (-15 -2081 ($ $ $)) (-15 -2210 ((-112) $ $)) (-15 -1644 ($ $ $)) (-15 -1644 ($ $ |t#1|)) (-15 -1644 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) . T) ((-1235) . T))
-((-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 8)) (-3685 (((-112) $ $) 12)))
-(((-1116 |#1|) (-10 -8 (-15 -3685 ((-112) |#1| |#1|)) (-15 -4264 ((-1176) |#1|)) (-15 -3912 ((-1137) |#1|))) (-1117)) (T -1116))
-NIL
-(-10 -8 (-15 -3685 ((-112) |#1| |#1|)) (-15 -4264 ((-1176) |#1|)) (-15 -3912 ((-1137) |#1|)))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-1117) (-141)) (T -1117))
-((-3912 (*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1137)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1176)))) (-3685 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))))
-(-13 (-102) (-624 (-873)) (-10 -8 (-15 -3912 ((-1137) $)) (-15 -4264 ((-1176) $)) (-15 -3685 ((-112) $ $))))
-(((-102) . T) ((-624 (-873)) . T))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) 36)) (-3360 (($ (-655 (-936))) 70)) (-2588 (((-3 $ "failed") $ (-936) (-936)) 81)) (-2073 (($) 40)) (-1322 (((-112) (-936) $) 42)) (-1894 (((-936) $) 64)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) 39)) (-1978 (((-3 $ "failed") $ (-936)) 77)) (-3912 (((-1137) $) NIL)) (-2728 (((-1285 $)) 47)) (-4329 (((-655 (-936)) $) 27)) (-3592 (((-782) $ (-936) (-936)) 78)) (-2882 (((-873) $) 32)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 24)))
-(((-1118 |#1| |#2|) (-13 (-378) (-10 -8 (-15 -1978 ((-3 $ "failed") $ (-936))) (-15 -2588 ((-3 $ "failed") $ (-936) (-936))) (-15 -4329 ((-655 (-936)) $)) (-15 -3360 ($ (-655 (-936)))) (-15 -2728 ((-1285 $))) (-15 -1322 ((-112) (-936) $)) (-15 -3592 ((-782) $ (-936) (-936))))) (-936) (-936)) (T -1118))
-((-1978 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2588 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-3360 (*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-2728 (*1 *2) (-12 (-5 *2 (-1285 (-1118 *3 *4))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936)))) (-1322 (*1 *2 *3 *1) (-12 (-5 *3 (-936)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3592 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-782)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-378) (-10 -8 (-15 -1978 ((-3 $ "failed") $ (-936))) (-15 -2588 ((-3 $ "failed") $ (-936) (-936))) (-15 -4329 ((-655 (-936)) $)) (-15 -3360 ($ (-655 (-936)))) (-15 -2728 ((-1285 $))) (-15 -1322 ((-112) (-936) $)) (-15 -3592 ((-782) $ (-936) (-936)))))
-((-2859 (((-112) $ $) NIL)) (-4258 (($) NIL (|has| |#1| (-378)))) (-1644 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2081 (($ $ $) 81)) (-2210 (((-112) $ $) 82)) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#1| (-378)))) (-1330 (($ (-655 |#1|)) NIL) (($) 13)) (-1932 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2375 (($ |#1| $) 74 (|has| $ (-6 -4460))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4460)))) (-2073 (($) NIL (|has| |#1| (-378)))) (-3999 (((-655 |#1|) $) 19 (|has| $ (-6 -4460)))) (-3688 (((-112) $ $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-1914 ((|#1| $) 55 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3503 ((|#1| $) 53 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 34)) (-1894 (((-936) $) NIL (|has| |#1| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1872 (($ $ $) 79)) (-4030 ((|#1| $) 25)) (-4218 (($ |#1| $) 69)) (-4317 (($ (-936)) NIL (|has| |#1| (-378)))) (-3912 (((-1137) $) NIL)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3773 ((|#1| $) 27)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 21)) (-1393 (($) 11)) (-4050 (($ $ |#1|) NIL) (($ $ $) 80)) (-3323 (($) NIL) (($ (-655 |#1|)) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 16)) (-2613 (((-547) $) 50 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 62)) (-2127 (($ $) NIL (|has| |#1| (-378)))) (-2882 (((-873) $) NIL)) (-1833 (((-782) $) NIL)) (-2550 (($ (-655 |#1|)) NIL) (($) 12)) (-3685 (((-112) $ $) NIL)) (-2908 (($ (-655 |#1|)) NIL)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 52)) (-2869 (((-782) $) 10 (|has| $ (-6 -4460)))))
-(((-1119 |#1|) (-436 |#1|) (-1117)) (T -1119))
-NIL
-(-436 |#1|)
-((-2859 (((-112) $ $) 7)) (-3704 (((-112) $) 33)) (-3816 ((|#2| $) 28)) (-2437 (((-112) $) 34)) (-1650 ((|#1| $) 29)) (-3049 (((-112) $) 36)) (-1618 (((-112) $) 38)) (-1503 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3255 (((-112) $) 32)) (-3839 ((|#3| $) 27)) (-3912 (((-1137) $) 11)) (-4344 (((-112) $) 31)) (-1539 ((|#4| $) 26)) (-1401 ((|#5| $) 25)) (-2566 (((-112) $ $) 39)) (-2065 (($ $ (-575)) 41) (($ $ (-655 (-575))) 40)) (-3841 (((-655 $) $) 30)) (-2613 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-655 $)) 42)) (-2882 (((-873) $) 12)) (-1450 (($ $) 23)) (-4207 (($ $) 24)) (-3685 (((-112) $ $) 9)) (-4154 (((-112) $) 37)) (-3913 (((-112) $ $) 6)) (-2869 (((-575) $) 22)))
-(((-1120 |#1| |#2| |#3| |#4| |#5|) (-141) (-1117) (-1117) (-1117) (-1117) (-1117)) (T -1120))
-((-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-3049 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))) (-3841 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-1120 *3 *4 *5 *6 *7)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *2 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2 *6)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *2)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))) (-4207 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)))) (-1450 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-575)))))
-(-13 (-1117) (-629 |t#1|) (-629 |t#2|) (-629 |t#3|) (-629 |t#4|) (-629 |t#4|) (-629 |t#5|) (-629 (-655 $)) (-295 (-575) $) (-295 (-655 (-575)) $) (-10 -8 (-15 -2566 ((-112) $ $)) (-15 -1618 ((-112) $)) (-15 -4154 ((-112) $)) (-15 -3049 ((-112) $)) (-15 -1503 ((-112) $)) (-15 -2437 ((-112) $)) (-15 -3704 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -4344 ((-112) $)) (-15 -3841 ((-655 $) $)) (-15 -1650 (|t#1| $)) (-15 -3816 (|t#2| $)) (-15 -3839 (|t#3| $)) (-15 -1539 (|t#4| $)) (-15 -1401 (|t#5| $)) (-15 -4207 ($ $)) (-15 -1450 ($ $)) (-15 -2869 ((-575) $))))
-(((-102) . T) ((-624 (-873)) . T) ((-629 (-655 $)) . T) ((-629 |#1|) . T) ((-629 |#2|) . T) ((-629 |#3|) . T) ((-629 |#4|) . T) ((-629 |#5|) . T) ((-295 (-575) $) . T) ((-295 (-655 (-575)) $) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-3704 (((-112) $) NIL)) (-3816 (((-1194) $) NIL)) (-2437 (((-112) $) NIL)) (-1650 (((-1176) $) NIL)) (-3049 (((-112) $) NIL)) (-1618 (((-112) $) NIL)) (-1503 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-3255 (((-112) $) NIL)) (-3839 (((-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-4344 (((-112) $) NIL)) (-1539 (((-227) $) NIL)) (-1401 (((-873) $) NIL)) (-2566 (((-112) $ $) NIL)) (-2065 (($ $ (-575)) NIL) (($ $ (-655 (-575))) NIL)) (-3841 (((-655 $) $) NIL)) (-2613 (($ (-1176)) NIL) (($ (-1194)) NIL) (($ (-575)) NIL) (($ (-227)) NIL) (($ (-873)) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL)) (-1450 (($ $) NIL)) (-4207 (($ $) NIL)) (-3685 (((-112) $ $) NIL)) (-4154 (((-112) $) NIL)) (-3913 (((-112) $ $) NIL)) (-2869 (((-575) $) NIL)))
-(((-1121) (-1120 (-1176) (-1194) (-575) (-227) (-873))) (T -1121))
-NIL
-(-1120 (-1176) (-1194) (-575) (-227) (-873))
-((-2859 (((-112) $ $) NIL)) (-3704 (((-112) $) 45)) (-3816 ((|#2| $) 48)) (-2437 (((-112) $) 20)) (-1650 ((|#1| $) 21)) (-3049 (((-112) $) 42)) (-1618 (((-112) $) 14)) (-1503 (((-112) $) 44)) (-4264 (((-1176) $) NIL)) (-3255 (((-112) $) 46)) (-3839 ((|#3| $) 50)) (-3912 (((-1137) $) NIL)) (-4344 (((-112) $) 47)) (-1539 ((|#4| $) 49)) (-1401 ((|#5| $) 51)) (-2566 (((-112) $ $) 41)) (-2065 (($ $ (-575)) 62) (($ $ (-655 (-575))) 64)) (-3841 (((-655 $) $) 27)) (-2613 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-655 $)) 52)) (-2882 (((-873) $) 28)) (-1450 (($ $) 26)) (-4207 (($ $) 58)) (-3685 (((-112) $ $) NIL)) (-4154 (((-112) $) 23)) (-3913 (((-112) $ $) 40)) (-2869 (((-575) $) 60)))
-(((-1122 |#1| |#2| |#3| |#4| |#5|) (-1120 |#1| |#2| |#3| |#4| |#5|) (-1117) (-1117) (-1117) (-1117) (-1117)) (T -1122))
-NIL
-(-1120 |#1| |#2| |#3| |#4| |#5|)
-((-2244 (((-1290) $) 22)) (-2571 (($ (-1194) (-445) |#2|) 11)) (-2882 (((-873) $) 16)))
-(((-1123 |#1| |#2|) (-13 (-406) (-10 -8 (-15 -2571 ($ (-1194) (-445) |#2|)))) (-1117) (-441 |#1|)) (T -1123))
-((-2571 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1194)) (-5 *3 (-445)) (-4 *5 (-1117)) (-5 *1 (-1123 *5 *4)) (-4 *4 (-441 *5)))))
-(-13 (-406) (-10 -8 (-15 -2571 ($ (-1194) (-445) |#2|))))
-((-3556 (((-112) |#5| |#5|) 44)) (-2274 (((-112) |#5| |#5|) 59)) (-2135 (((-112) |#5| (-655 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-4245 (((-112) (-655 |#4|) (-655 |#4|)) 65)) (-3186 (((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 70)) (-3065 (((-1290)) 32)) (-1939 (((-1290) (-1176) (-1176) (-1176)) 28)) (-3941 (((-655 |#5|) (-655 |#5|)) 101)) (-3131 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) 93)) (-4111 (((-655 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112)) 123)) (-3352 (((-112) |#5| |#5|) 53)) (-2278 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1851 (((-112) (-655 |#4|) (-655 |#4|)) 64)) (-1579 (((-112) (-655 |#4|) (-655 |#4|)) 66)) (-2057 (((-112) (-655 |#4|) (-655 |#4|)) 67)) (-3249 (((-3 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3990 (((-655 |#5|) (-655 |#5|)) 49)))
-(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1939 ((-1290) (-1176) (-1176) (-1176))) (-15 -3065 ((-1290))) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3990 ((-655 |#5|) (-655 |#5|))) (-15 -3352 ((-112) |#5| |#5|)) (-15 -2274 ((-112) |#5| |#5|)) (-15 -4245 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1851 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1579 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2057 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2278 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2135 ((-112) |#5| |#5|)) (-15 -2135 ((-112) |#5| (-655 |#5|))) (-15 -3941 ((-655 |#5|) (-655 |#5|))) (-15 -3186 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -3131 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -4111 ((-655 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3249 ((-3 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1124))
-((-3249 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| -2566 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9)))) (-5 *1 (-1124 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9)) (-4 *4 (-1088 *6 *7 *8 *9)))) (-4111 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| -2566 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9))))) (-5 *1 (-1124 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9)))) (-3131 (*1 *2 *2) (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7)))) (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))) (-3186 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1124 *5 *6 *7 *8 *3)))) (-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-1851 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-4245 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2274 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3352 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3990 (*1 *2 *2) (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))) (-3065 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-1939 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1939 ((-1290) (-1176) (-1176) (-1176))) (-15 -3065 ((-1290))) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3990 ((-655 |#5|) (-655 |#5|))) (-15 -3352 ((-112) |#5| |#5|)) (-15 -2274 ((-112) |#5| |#5|)) (-15 -4245 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1851 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -1579 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2057 ((-112) (-655 |#4|) (-655 |#4|))) (-15 -2278 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2135 ((-112) |#5| |#5|)) (-15 -2135 ((-112) |#5| (-655 |#5|))) (-15 -3941 ((-655 |#5|) (-655 |#5|))) (-15 -3186 ((-112) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -3131 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-15 -4111 ((-655 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|)))) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3249 ((-3 (-2 (|:| -2566 (-655 |#4|)) (|:| -4270 |#5|) (|:| |ineq| (-655 |#4|))) "failed") (-655 |#4|) |#5| (-655 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-4123 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|) 108)) (-3448 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|) 80)) (-2598 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 102)) (-3242 (((-655 |#5|) |#4| |#5|) 124)) (-1683 (((-655 |#5|) |#4| |#5|) 131)) (-3235 (((-655 |#5|) |#4| |#5|) 132)) (-3521 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 109)) (-2086 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 130)) (-2104 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2404 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112)) 92) (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4251 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|) 87)) (-4427 (((-1290)) 36)) (-2056 (((-1290)) 25)) (-1361 (((-1290) (-1176) (-1176) (-1176)) 32)) (-3259 (((-1290) (-1176) (-1176) (-1176)) 21)))
-(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3259 ((-1290) (-1176) (-1176) (-1176))) (-15 -2056 ((-1290))) (-15 -1361 ((-1290) (-1176) (-1176) (-1176))) (-15 -4427 ((-1290))) (-15 -3448 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2404 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2404 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -4251 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2598 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2104 ((-112) |#4| |#5|)) (-15 -3521 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -3242 ((-655 |#5|) |#4| |#5|)) (-15 -2086 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -1683 ((-655 |#5|) |#4| |#5|)) (-15 -2104 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -3235 ((-655 |#5|) |#4| |#5|)) (-15 -4123 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3| |#4|)) (T -1125))
-((-4123 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3235 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2104 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-1683 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2086 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3242 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-3521 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2104 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2598 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4251 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-2404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861)) (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9)))) (-5 *1 (-1125 *6 *7 *4 *8 *9)))) (-2404 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1125 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3)))) (-3448 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))) (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))) (-4427 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-1361 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))) (-2056 (*1 *2) (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290)) (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))) (-3259 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290)) (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3259 ((-1290) (-1176) (-1176) (-1176))) (-15 -2056 ((-1290))) (-15 -1361 ((-1290) (-1176) (-1176) (-1176))) (-15 -4427 ((-1290))) (-15 -3448 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2404 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2404 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) |#3| (-112))) (-15 -4251 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2598 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#4| |#5|)) (-15 -2104 ((-112) |#4| |#5|)) (-15 -3521 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -3242 ((-655 |#5|) |#4| |#5|)) (-15 -2086 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -1683 ((-655 |#5|) |#4| |#5|)) (-15 -2104 ((-655 (-2 (|:| |val| (-112)) (|:| -4270 |#5|))) |#4| |#5|)) (-15 -3235 ((-655 |#5|) |#4| |#5|)) (-15 -4123 ((-655 (-2 (|:| |val| |#4|) (|:| -4270 |#5|))) |#4| |#5|)))
-((-2859 (((-112) $ $) 7)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) 86)) (-4014 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-4419 (((-112) $) 27)) (-3414 (((-112) $) 18 (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) 102) (((-112) $) 98)) (-1479 ((|#4| |#4| $) 93)) (-3312 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) 28)) (-3133 (((-112) $ (-782)) 45)) (-3983 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3261 (($) 46 T CONST)) (-1756 (((-112) $) 23 (|has| |#1| (-567)))) (-1600 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4415 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1759 (((-112) $) 26 (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2762 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 37)) (-4400 (($ (-655 |#4|)) 36)) (-1969 (((-3 $ "failed") $) 83)) (-3355 ((|#4| |#4| $) 90)) (-4070 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3305 ((|#4| |#4| $) 88)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) 106)) (-3209 (((-112) |#4| $) 137)) (-2546 (((-112) |#4| $) 134)) (-1486 (((-112) |#4| $) 138) (((-112) $) 135)) (-3999 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) 105) (((-112) $) 104)) (-3757 ((|#3| $) 35)) (-3541 (((-112) $ (-782)) 44)) (-4252 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 48)) (-3717 (((-655 |#3|) $) 33)) (-1789 (((-112) |#3| $) 32)) (-3218 (((-112) $ (-782)) 43)) (-4264 (((-1176) $) 10)) (-3656 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-3822 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3651 (((-3 |#4| "failed") $) 84)) (-3232 (((-655 $) |#4| $) 130)) (-3533 (((-3 (-112) (-655 $)) |#4| $) 133)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1872 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2400 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-4212 (((-655 |#4|) $) 108)) (-1992 (((-112) |#4| $) 100) (((-112) $) 96)) (-4068 ((|#4| |#4| $) 91)) (-2057 (((-112) $ $) 111)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) 101) (((-112) $) 97)) (-1986 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1955 (((-3 |#4| "failed") $) 85)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3629 (((-3 $ "failed") $ |#4|) 79)) (-1985 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-2718 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) 39)) (-2017 (((-112) $) 42)) (-1393 (($) 41)) (-1753 (((-782) $) 107)) (-3922 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3076 (($ $) 40)) (-2613 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 61)) (-3273 (($ $ |#3|) 29)) (-2078 (($ $ |#3|) 31)) (-3663 (($ $) 89)) (-4049 (($ $ |#3|) 30)) (-2882 (((-873) $) 12) (((-655 |#4|) $) 38)) (-2936 (((-782) $) 77 (|has| |#3| (-378)))) (-3685 (((-112) $ $) 9)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3039 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-4121 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) 82)) (-2360 (((-112) |#4| $) 136)) (-4060 (((-112) |#3| $) 81)) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-1126 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1126))
-NIL
-(-13 (-1088 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T))
-((-3648 (((-655 (-575)) (-575) (-575) (-575)) 38)) (-1518 (((-655 (-575)) (-575) (-575) (-575)) 28)) (-3326 (((-655 (-575)) (-575) (-575) (-575)) 33)) (-2493 (((-575) (-575) (-575)) 21)) (-2723 (((-1285 (-575)) (-655 (-575)) (-1285 (-575)) (-575)) 76) (((-1285 (-575)) (-1285 (-575)) (-1285 (-575)) (-575)) 71)) (-4216 (((-655 (-575)) (-655 (-936)) (-655 (-575)) (-112)) 54)) (-3489 (((-700 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575))) 75)) (-3437 (((-700 (-575)) (-655 (-936)) (-655 (-575))) 59)) (-3640 (((-655 (-700 (-575))) (-655 (-936))) 64)) (-2989 (((-655 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575))) 79)) (-3444 (((-700 (-575)) (-655 (-575)) (-655 (-575)) (-655 (-575))) 89)))
-(((-1127) (-10 -7 (-15 -3444 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-655 (-575)))) (-15 -2989 ((-655 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -3640 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -3437 ((-700 (-575)) (-655 (-936)) (-655 (-575)))) (-15 -3489 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -4216 ((-655 (-575)) (-655 (-936)) (-655 (-575)) (-112))) (-15 -2723 ((-1285 (-575)) (-1285 (-575)) (-1285 (-575)) (-575))) (-15 -2723 ((-1285 (-575)) (-655 (-575)) (-1285 (-575)) (-575))) (-15 -2493 ((-575) (-575) (-575))) (-15 -3326 ((-655 (-575)) (-575) (-575) (-575))) (-15 -1518 ((-655 (-575)) (-575) (-575) (-575))) (-15 -3648 ((-655 (-575)) (-575) (-575) (-575))))) (T -1127))
-((-3648 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))) (-1518 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))) (-3326 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))) (-2493 (*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1127)))) (-2723 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-655 (-575))) (-5 *4 (-575)) (-5 *1 (-1127)))) (-2723 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-575)) (-5 *1 (-1127)))) (-4216 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-655 (-575))) (-5 *3 (-655 (-936))) (-5 *4 (-112)) (-5 *1 (-1127)))) (-3489 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-700 (-575))) (-5 *3 (-655 (-575))) (-5 *1 (-1127)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1127)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-1127)))) (-2989 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *3 (-700 (-575))) (-5 *1 (-1127)))) (-3444 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1127)))))
-(-10 -7 (-15 -3444 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-655 (-575)))) (-15 -2989 ((-655 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -3640 ((-655 (-700 (-575))) (-655 (-936)))) (-15 -3437 ((-700 (-575)) (-655 (-936)) (-655 (-575)))) (-15 -3489 ((-700 (-575)) (-655 (-575)) (-655 (-575)) (-700 (-575)))) (-15 -4216 ((-655 (-575)) (-655 (-936)) (-655 (-575)) (-112))) (-15 -2723 ((-1285 (-575)) (-1285 (-575)) (-1285 (-575)) (-575))) (-15 -2723 ((-1285 (-575)) (-655 (-575)) (-1285 (-575)) (-575))) (-15 -2493 ((-575) (-575) (-575))) (-15 -3326 ((-655 (-575)) (-575) (-575) (-575))) (-15 -1518 ((-655 (-575)) (-575) (-575) (-575))) (-15 -3648 ((-655 (-575)) (-575) (-575) (-575))))
-((** (($ $ (-936)) 10)))
-(((-1128 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-936)))) (-1129)) (T -1128))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-936))))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)) (** (($ $ (-936)) 14)) (* (($ $ $) 15)))
-(((-1129) (-141)) (T -1129))
-((* (*1 *1 *1 *1) (-4 *1 (-1129))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-936)))))
-(-13 (-1117) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-936)))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL (|has| |#3| (-1117)))) (-2045 (((-112) $) NIL (-3763 (|has| |#3| (-23)) (|has| |#3| (-737))))) (-4126 (($ (-936)) NIL (|has| |#3| (-1066)))) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3081 (($ $ $) NIL (|has| |#3| (-804)))) (-1708 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3133 (((-112) $ (-782)) NIL)) (-2409 (((-782)) NIL (|has| |#3| (-378)))) (-3052 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1117)))) (-4400 (((-575) $) NIL (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117)))) (((-418 (-575)) $) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) ((|#3| $) NIL (|has| |#3| (-1117)))) (-2862 (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#3| (-650 (-575))) (|has| |#3| (-1066)))) (((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-700 $)) NIL (|has| |#3| (-1066))) (((-700 |#3|) (-1285 $)) NIL (|has| |#3| (-1066)))) (-4162 (((-3 $ "failed") $) NIL (|has| |#3| (-1066)))) (-2073 (($) NIL (|has| |#3| (-378)))) (-2857 ((|#3| $ (-575) |#3|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#3| $ (-575)) 12)) (-3999 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL (|has| |#3| (-1066)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#3| (-861)))) (-4252 (((-655 |#3|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#3| (-861)))) (-2844 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#3| |#3|) $) NIL)) (-1894 (((-936) $) NIL (|has| |#3| (-378)))) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#3| (-1117)))) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-4317 (($ (-936)) NIL (|has| |#3| (-378)))) (-3912 (((-1137) $) NIL (|has| |#3| (-1117)))) (-1955 ((|#3| $) NIL (|has| (-575) (-861)))) (-1652 (($ $ |#3|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#3|))) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-303 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117)))) (($ $ (-655 |#3|) (-655 |#3|)) NIL (-12 (|has| |#3| (-318 |#3|)) (|has| |#3| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-2697 (((-655 |#3|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#3| $ (-575) |#3|) NIL) ((|#3| $ (-575)) NIL)) (-2988 ((|#3| $ $) NIL (|has| |#3| (-1066)))) (-1975 (($ (-1285 |#3|)) NIL)) (-1605 (((-135)) NIL (|has| |#3| (-373)))) (-2382 (($ $ (-782)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066)))) (-3922 (((-782) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460))) (((-782) |#3| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#3| (-1117))))) (-3076 (($ $) NIL)) (-2882 (((-1285 |#3|) $) NIL) (($ (-575)) NIL (-3763 (-12 (|has| |#3| (-1055 (-575))) (|has| |#3| (-1117))) (|has| |#3| (-1066)))) (($ (-418 (-575))) NIL (-12 (|has| |#3| (-1055 (-418 (-575)))) (|has| |#3| (-1117)))) (($ |#3|) NIL (|has| |#3| (-1117))) (((-873) $) NIL (|has| |#3| (-624 (-873))))) (-4421 (((-782)) NIL (|has| |#3| (-1066)) CONST)) (-3685 (((-112) $ $) NIL (|has| |#3| (-1117)))) (-4121 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4460)))) (-1989 (($) NIL (-3763 (|has| |#3| (-23)) (|has| |#3| (-737))) CONST)) (-2005 (($) NIL (|has| |#3| (-1066)) CONST)) (-3428 (($ $ (-782)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1066)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1194)) NIL (-12 (|has| |#3| (-915 (-1194))) (|has| |#3| (-1066)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1066))) (($ $ (-1 |#3| |#3|) (-782)) NIL (|has| |#3| (-1066)))) (-3980 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#3| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#3| (-861)))) (-3940 (((-112) $ $) 24 (|has| |#3| (-861)))) (-4038 (($ $ |#3|) NIL (|has| |#3| (-373)))) (-4027 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-4015 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-782)) NIL (|has| |#3| (-1066))) (($ $ (-936)) NIL (|has| |#3| (-1066)))) (* (($ $ $) NIL (|has| |#3| (-1066))) (($ $ |#3|) NIL (|has| |#3| (-737))) (($ |#3| $) NIL (|has| |#3| (-737))) (($ (-575) $) NIL (|has| |#3| (-21))) (($ (-782) $) NIL (|has| |#3| (-23))) (($ (-936) $) NIL (|has| |#3| (-25)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1130 |#1| |#2| |#3|) (-243 |#1| |#3|) (-782) (-782) (-804)) (T -1130))
+(((-93) . T) ((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T))
+((-3670 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2311 (((-1292)) 21)) (-2341 (((-656 |#1|)) 13)))
+(((-1103 |#1|) (-10 -7 (-15 -2311 ((-1292))) (-15 -2341 ((-656 |#1|))) (-15 -3670 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3670 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1103))
+((-3670 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) (-3670 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) (-2341 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-133)))) (-2311 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1103 *3)) (-4 *3 (-133)))))
+(-10 -7 (-15 -2311 ((-1292))) (-15 -2341 ((-656 |#1|))) (-15 -3670 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3670 (|#1| |#1| (-1 (-576) |#1| |#1|))))
+((-3016 (($ (-109) $) 20)) (-1353 (((-703 (-109)) (-518) $) 19)) (-3849 (($) 7)) (-4201 (($) 21)) (-1571 (($) 22)) (-3411 (((-656 (-177)) $) 10)) (-2858 (((-874) $) 25)))
+(((-1104) (-13 (-625 (-874)) (-10 -8 (-15 -3849 ($)) (-15 -3411 ((-656 (-177)) $)) (-15 -1353 ((-703 (-109)) (-518) $)) (-15 -3016 ($ (-109) $)) (-15 -4201 ($)) (-15 -1571 ($))))) (T -1104))
+((-3849 (*1 *1) (-5 *1 (-1104))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1104)))) (-1353 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1104)))) (-3016 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104)))) (-4201 (*1 *1) (-5 *1 (-1104))) (-1571 (*1 *1) (-5 *1 (-1104))))
+(-13 (-625 (-874)) (-10 -8 (-15 -3849 ($)) (-15 -3411 ((-656 (-177)) $)) (-15 -1353 ((-703 (-109)) (-518) $)) (-15 -3016 ($ (-109) $)) (-15 -4201 ($)) (-15 -1571 ($))))
+((-3685 (((-1287 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1287 (-701 (-969 |#1|))) (-656 (-1196)) (-701 (-969 |#1|))) 75) (((-1287 (-701 (-419 (-969 |#1|)))) (-656 (-1196)) (-701 (-419 (-969 |#1|)))) 92)) (-3392 (((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39)))
+(((-1105 |#1|) (-10 -7 (-15 -3685 ((-1287 (-701 (-419 (-969 |#1|)))) (-656 (-1196)) (-701 (-419 (-969 |#1|))))) (-15 -3685 ((-1287 (-701 (-969 |#1|))) (-656 (-1196)) (-701 (-969 |#1|)))) (-15 -3685 ((-1287 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3392 ((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1105))
+((-3392 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1287 *5)) (-5 *1 (-1105 *5)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-1105 *4)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) (-5 *2 (-1287 (-701 (-969 *5)))) (-5 *1 (-1105 *5)) (-5 *4 (-701 (-969 *5))))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) (-5 *2 (-1287 (-701 (-419 (-969 *5))))) (-5 *1 (-1105 *5)) (-5 *4 (-701 (-419 (-969 *5)))))))
+(-10 -7 (-15 -3685 ((-1287 (-701 (-419 (-969 |#1|)))) (-656 (-1196)) (-701 (-419 (-969 |#1|))))) (-15 -3685 ((-1287 (-701 (-969 |#1|))) (-656 (-1196)) (-701 (-969 |#1|)))) (-15 -3685 ((-1287 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3392 ((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3525 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1196)) NIL)) (-2551 (((-783) $) NIL) (((-783) $ (-1196)) NIL)) (-1634 (((-656 (-1107 (-1196))) $) NIL)) (-3440 (((-1192 $) $ (-1107 (-1196))) NIL) (((-1192 |#1|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1107 (-1196)))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2635 (($ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1107 (-1196)) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL) (((-3 (-1144 |#1| (-1196)) "failed") $) NIL)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1107 (-1196)) $) NIL) (((-1196) $) NIL) (((-1144 |#1| (-1196)) $) NIL)) (-2495 (($ $ $ (-1107 (-1196))) NIL (|has| |#1| (-174)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1107 (-1196))) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-543 (-1107 (-1196))) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1107 (-1196)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1107 (-1196)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2620 (((-783) $ (-1196)) NIL) (((-783) $) NIL)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2441 (($ (-1192 |#1|) (-1107 (-1196))) NIL) (($ (-1192 $) (-1107 (-1196))) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-543 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1107 (-1196))) NIL)) (-4389 (((-543 (-1107 (-1196))) $) NIL) (((-783) $ (-1107 (-1196))) NIL) (((-656 (-783)) $ (-656 (-1107 (-1196)))) NIL)) (-4149 (($ (-1 (-543 (-1107 (-1196))) (-543 (-1107 (-1196)))) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-4271 (((-1 $ (-783)) (-1196)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-1848 (((-3 (-1107 (-1196)) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2175 (((-1107 (-1196)) $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-1511 (((-112) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-1107 (-1196))) (|:| -2273 (-783))) "failed") $) NIL)) (-2793 (($ $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1107 (-1196)) |#1|) NIL) (($ $ (-656 (-1107 (-1196))) (-656 |#1|)) NIL) (($ $ (-1107 (-1196)) $) NIL) (($ $ (-656 (-1107 (-1196))) (-656 $)) NIL) (($ $ (-1196) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-3880 (($ $ (-1107 (-1196))) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4133 (((-656 (-1196)) $) NIL)) (-4436 (((-543 (-1107 (-1196))) $) NIL) (((-783) $ (-1107 (-1196))) NIL) (((-656 (-783)) $ (-656 (-1107 (-1196)))) NIL) (((-783) $ (-1196)) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-1107 (-1196)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1107 (-1196)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1107 (-1196)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1107 (-1196))) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1107 (-1196))) NIL) (($ (-1196)) NIL) (($ (-1144 |#1| (-1196))) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-543 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1106 |#1|) (-13 (-260 |#1| (-1196) (-1107 (-1196)) (-543 (-1107 (-1196)))) (-1057 (-1144 |#1| (-1196)))) (-1068)) (T -1106))
+NIL
+(-13 (-260 |#1| (-1196) (-1107 (-1196)) (-543 (-1107 (-1196)))) (-1057 (-1144 |#1| (-1196))))
+((-2835 (((-112) $ $) NIL)) (-2551 (((-783) $) NIL)) (-1455 ((|#1| $) 10)) (-2454 (((-3 |#1| "failed") $) NIL)) (-4397 ((|#1| $) NIL)) (-2620 (((-783) $) 11)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-4271 (($ |#1| (-783)) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2399 (($ $ (-783)) NIL) (($ $) NIL)) (-2858 (((-874) $) NIL) (($ |#1|) NIL)) (-2690 (((-112) $ $) NIL)) (-3404 (($ $ (-783)) NIL) (($ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 16)))
+(((-1107 |#1|) (-275 |#1|) (-862)) (T -1107))
+NIL
+(-275 |#1|)
+((-2548 (((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 29 (|has| |#1| (-860))) (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 14)))
+(((-1108 |#1| |#2|) (-10 -7 (-15 -2548 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) (IF (|has| |#1| (-860)) (-15 -2548 ((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1108))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-860)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-1108 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1113 *6)) (-5 *1 (-1108 *5 *6)))))
+(-10 -7 (-15 -2548 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) (IF (|has| |#1| (-860)) (-15 -2548 ((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-3008 (((-656 (-1154)) $) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1109) (-13 (-1102) (-10 -8 (-15 -3008 ((-656 (-1154)) $))))) (T -1109))
+((-3008 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1109)))))
+(-13 (-1102) (-10 -8 (-15 -3008 ((-656 (-1154)) $))))
+((-2548 (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 19)))
+(((-1110 |#1| |#2|) (-10 -7 (-15 -2548 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) (-1237) (-1237)) (T -1110))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1111 *6)) (-5 *1 (-1110 *5 *6)))))
+(-10 -7 (-15 -2548 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|))))
+((-2835 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))) (-1455 (((-1196) $) NIL)) (-4105 (((-1113 |#1|) $) NIL)) (-2143 (((-1178) $) NIL (|has| (-1113 |#1|) (-1119)))) (-3887 (((-1139) $) NIL (|has| (-1113 |#1|) (-1119)))) (-2666 (($ (-1196) (-1113 |#1|)) NIL)) (-2858 (((-874) $) NIL (|has| (-1113 |#1|) (-1119)))) (-2690 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))) (-3889 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))))
+(((-1111 |#1|) (-13 (-1237) (-10 -8 (-15 -2666 ($ (-1196) (-1113 |#1|))) (-15 -1455 ((-1196) $)) (-15 -4105 ((-1113 |#1|) $)) (IF (|has| (-1113 |#1|) (-1119)) (-6 (-1119)) |%noBranch|))) (-1237)) (T -1111))
+((-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1113 *4)) (-4 *4 (-1237)) (-5 *1 (-1111 *4)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1111 *3)) (-4 *3 (-1237)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1237)))))
+(-13 (-1237) (-10 -8 (-15 -2666 ($ (-1196) (-1113 |#1|))) (-15 -1455 ((-1196) $)) (-15 -4105 ((-1113 |#1|) $)) (IF (|has| (-1113 |#1|) (-1119)) (-6 (-1119)) |%noBranch|)))
+((-4105 (($ |#1| |#1|) 8)) (-2779 ((|#1| $) 11)) (-2101 ((|#1| $) 13)) (-3729 (((-576) $) 9)) (-3540 ((|#1| $) 10)) (-3743 ((|#1| $) 12)) (-2610 (($ |#1|) 6)) (-1892 (($ |#1| |#1|) 15)) (-3658 (($ $ (-576)) 14)))
+(((-1112 |#1|) (-141) (-1237)) (T -1112))
+((-1892 (*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-3658 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1112 *3)) (-4 *3 (-1237)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-2779 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))) (-4105 (*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))))
+(-13 (-630 |t#1|) (-10 -8 (-15 -1892 ($ |t#1| |t#1|)) (-15 -3658 ($ $ (-576))) (-15 -2101 (|t#1| $)) (-15 -3743 (|t#1| $)) (-15 -2779 (|t#1| $)) (-15 -3540 (|t#1| $)) (-15 -3729 ((-576) $)) (-15 -4105 ($ |t#1| |t#1|))))
+(((-630 |#1|) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4105 (($ |#1| |#1|) 16)) (-2548 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-2779 ((|#1| $) 12)) (-2101 ((|#1| $) 11)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3729 (((-576) $) 15)) (-3540 ((|#1| $) 14)) (-3743 ((|#1| $) 13)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3918 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-2610 (($ |#1|) 29)) (-2858 (((-874) $) 28 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1892 (($ |#1| |#1|) 10)) (-3658 (($ $ (-576)) 17)) (-3889 (((-112) $ $) 22 (|has| |#1| (-1119)))))
+(((-1113 |#1|) (-13 (-1112 |#1|) (-10 -7 (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-656 |#1|))) |%noBranch|))) (-1237)) (T -1113))
+NIL
+(-13 (-1112 |#1|) (-10 -7 (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-656 |#1|))) |%noBranch|)))
+((-4105 (($ |#1| |#1|) 8)) (-2548 ((|#2| (-1 |#1| |#1|) $) 16)) (-2779 ((|#1| $) 11)) (-2101 ((|#1| $) 13)) (-3729 (((-576) $) 9)) (-3540 ((|#1| $) 10)) (-3743 ((|#1| $) 12)) (-3918 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-2610 (($ |#1|) 6)) (-1892 (($ |#1| |#1|) 15)) (-3658 (($ $ (-576)) 14)))
+(((-1114 |#1| |#2|) (-141) (-860) (-1168 |t#1|)) (T -1114))
+((-3918 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1168 *3)))) (-2548 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4)))))
+(-13 (-1112 |t#1|) (-10 -8 (-15 -3918 (|t#2| (-656 $))) (-15 -3918 (|t#2| $)) (-15 -2548 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-630 |#1|) . T) ((-1112 |#1|) . T))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3627 (((-1154) $) 12)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 18) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1822 (((-656 (-1154)) $) 10)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1115) (-13 (-1102) (-10 -8 (-15 -1822 ((-656 (-1154)) $)) (-15 -3627 ((-1154) $))))) (T -1115))
+((-1822 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1115)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115)))))
+(-13 (-1102) (-10 -8 (-15 -1822 ((-656 (-1154)) $)) (-15 -3627 ((-1154) $))))
+((-1675 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3178 (($ $ $) 10)) (-3797 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1116 |#1| |#2|) (-10 -8 (-15 -1675 (|#1| |#2| |#1|)) (-15 -1675 (|#1| |#1| |#2|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -3178 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#2|)) (-15 -3797 (|#1| |#1| |#1|))) (-1117 |#2|) (-1119)) (T -1116))
+NIL
+(-10 -8 (-15 -1675 (|#1| |#2| |#1|)) (-15 -1675 (|#1| |#1| |#2|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -3178 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#2|)) (-15 -3797 (|#1| |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-1675 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3178 (($ $ $) 21)) (-3483 (((-112) $ $) 20)) (-2746 (((-112) $ (-783)) 36)) (-1333 (($) 26) (($ (-656 |#1|)) 25)) (-3959 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4462)))) (-2574 (($) 37 T CONST)) (-3229 (($ $) 60 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4462)))) (-3975 (((-656 |#1|) $) 44 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) 29)) (-3639 (((-112) $ (-783)) 35)) (-3531 (((-656 |#1|) $) 45 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 39)) (-1684 (((-112) $ (-783)) 34)) (-2143 (((-1178) $) 10)) (-3310 (($ $ $) 24)) (-3887 (((-1139) $) 11)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1910 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 30)) (-3001 (((-112) $) 33)) (-3849 (($) 32)) (-3797 (($ $ $) 23) (($ $ |#1|) 22)) (-3902 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4462)))) (-3052 (($ $) 31)) (-2610 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 52)) (-2858 (((-874) $) 12)) (-2554 (($) 28) (($ (-656 |#1|)) 27)) (-2690 (((-112) $ $) 9)) (-2714 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 38 (|has| $ (-6 -4462)))))
+(((-1117 |#1|) (-141) (-1119)) (T -1117))
+((-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-2554 (*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) (-1333 (*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1333 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) (-3310 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3797 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3178 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3483 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-1675 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1675 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1675 (*1 *1 *2 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(-13 (-1119) (-152 |t#1|) (-10 -8 (-6 -4452) (-15 -2907 ((-112) $ $)) (-15 -2554 ($)) (-15 -2554 ($ (-656 |t#1|))) (-15 -1333 ($)) (-15 -1333 ($ (-656 |t#1|))) (-15 -3310 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $ |t#1|)) (-15 -3178 ($ $ $)) (-15 -3483 ((-112) $ $)) (-15 -1675 ($ $ $)) (-15 -1675 ($ $ |t#1|)) (-15 -1675 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) . T) ((-1237) . T))
+((-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 8)) (-2690 (((-112) $ $) 12)))
+(((-1118 |#1|) (-10 -8 (-15 -2690 ((-112) |#1| |#1|)) (-15 -2143 ((-1178) |#1|)) (-15 -3887 ((-1139) |#1|))) (-1119)) (T -1118))
+NIL
+(-10 -8 (-15 -2690 ((-112) |#1| |#1|)) (-15 -2143 ((-1178) |#1|)) (-15 -3887 ((-1139) |#1|)))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-1119) (-141)) (T -1119))
+((-3887 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1139)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1178)))) (-2690 (*1 *2 *1 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-112)))))
+(-13 (-102) (-625 (-874)) (-10 -8 (-15 -3887 ((-1139) $)) (-15 -2143 ((-1178) $)) (-15 -2690 ((-112) $ $))))
+(((-102) . T) ((-625 (-874)) . T))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) 36)) (-4138 (($ (-656 (-938))) 70)) (-3643 (((-3 $ "failed") $ (-938) (-938)) 81)) (-2107 (($) 40)) (-3606 (((-112) (-938) $) 42)) (-1654 (((-938) $) 64)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) 39)) (-3858 (((-3 $ "failed") $ (-938)) 77)) (-3887 (((-1139) $) NIL)) (-1535 (((-1287 $)) 47)) (-1471 (((-656 (-938)) $) 27)) (-3568 (((-783) $ (-938) (-938)) 78)) (-2858 (((-874) $) 32)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 24)))
+(((-1120 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -3858 ((-3 $ "failed") $ (-938))) (-15 -3643 ((-3 $ "failed") $ (-938) (-938))) (-15 -1471 ((-656 (-938)) $)) (-15 -4138 ($ (-656 (-938)))) (-15 -1535 ((-1287 $))) (-15 -3606 ((-112) (-938) $)) (-15 -3568 ((-783) $ (-938) (-938))))) (-938) (-938)) (T -1120))
+((-3858 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3643 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-1535 (*1 *2) (-12 (-5 *2 (-1287 (-1120 *3 *4))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3606 (*1 *2 *3 *1) (-12 (-5 *3 (-938)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3568 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-783)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-379) (-10 -8 (-15 -3858 ((-3 $ "failed") $ (-938))) (-15 -3643 ((-3 $ "failed") $ (-938) (-938))) (-15 -1471 ((-656 (-938)) $)) (-15 -4138 ($ (-656 (-938)))) (-15 -1535 ((-1287 $))) (-15 -3606 ((-112) (-938) $)) (-15 -3568 ((-783) $ (-938) (-938)))))
+((-2835 (((-112) $ $) NIL)) (-2808 (($) NIL (|has| |#1| (-379)))) (-1675 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3178 (($ $ $) 81)) (-3483 (((-112) $ $) 82)) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#1| (-379)))) (-1333 (($ (-656 |#1|)) NIL) (($) 13)) (-3423 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3007 (($ |#1| $) 74 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4462)))) (-2107 (($) NIL (|has| |#1| (-379)))) (-3975 (((-656 |#1|) $) 19 (|has| $ (-6 -4462)))) (-2907 (((-112) $ $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-1950 ((|#1| $) 55 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1492 ((|#1| $) 53 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 34)) (-1654 (((-938) $) NIL (|has| |#1| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3310 (($ $ $) 79)) (-2395 ((|#1| $) 25)) (-2329 (($ |#1| $) 69)) (-4308 (($ (-938)) NIL (|has| |#1| (-379)))) (-3887 (((-1139) $) NIL)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3079 ((|#1| $) 27)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 21)) (-3849 (($) 11)) (-3797 (($ $ |#1|) NIL) (($ $ $) 80)) (-1801 (($) NIL) (($ (-656 |#1|)) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 16)) (-2610 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 62)) (-3805 (($ $) NIL (|has| |#1| (-379)))) (-2858 (((-874) $) NIL)) (-1830 (((-783) $) NIL)) (-2554 (($ (-656 |#1|)) NIL) (($) 12)) (-2690 (((-112) $ $) NIL)) (-3195 (($ (-656 |#1|)) NIL)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 52)) (-2845 (((-783) $) 10 (|has| $ (-6 -4462)))))
+(((-1121 |#1|) (-437 |#1|) (-1119)) (T -1121))
+NIL
+(-437 |#1|)
+((-2835 (((-112) $ $) 7)) (-4084 (((-112) $) 33)) (-3792 ((|#2| $) 28)) (-2892 (((-112) $) 34)) (-1682 ((|#1| $) 29)) (-3419 (((-112) $) 36)) (-2842 (((-112) $) 38)) (-2398 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3148 (((-112) $) 32)) (-3815 ((|#3| $) 27)) (-3887 (((-1139) $) 11)) (-2148 (((-112) $) 31)) (-1562 ((|#4| $) 26)) (-1411 ((|#5| $) 25)) (-2568 (((-112) $ $) 39)) (-2099 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-3817 (((-656 $) $) 30)) (-2610 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-2858 (((-874) $) 12)) (-1944 (($ $) 23)) (-2394 (($ $) 24)) (-2690 (((-112) $ $) 9)) (-4286 (((-112) $) 37)) (-3889 (((-112) $ $) 6)) (-2845 (((-576) $) 22)))
+(((-1122 |#1| |#2| |#3| |#4| |#5|) (-141) (-1119) (-1119) (-1119) (-1119) (-1119)) (T -1122))
+((-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3817 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-1122 *3 *4 *5 *6 *7)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *2)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2394 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-1944 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-576)))))
+(-13 (-1119) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -2568 ((-112) $ $)) (-15 -2842 ((-112) $)) (-15 -4286 ((-112) $)) (-15 -3419 ((-112) $)) (-15 -2398 ((-112) $)) (-15 -2892 ((-112) $)) (-15 -4084 ((-112) $)) (-15 -3148 ((-112) $)) (-15 -2148 ((-112) $)) (-15 -3817 ((-656 $) $)) (-15 -1682 (|t#1| $)) (-15 -3792 (|t#2| $)) (-15 -3815 (|t#3| $)) (-15 -1562 (|t#4| $)) (-15 -1411 (|t#5| $)) (-15 -2394 ($ $)) (-15 -1944 ($ $)) (-15 -2845 ((-576) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-4084 (((-112) $) NIL)) (-3792 (((-1196) $) NIL)) (-2892 (((-112) $) NIL)) (-1682 (((-1178) $) NIL)) (-3419 (((-112) $) NIL)) (-2842 (((-112) $) NIL)) (-2398 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-3148 (((-112) $) NIL)) (-3815 (((-576) $) NIL)) (-3887 (((-1139) $) NIL)) (-2148 (((-112) $) NIL)) (-1562 (((-227) $) NIL)) (-1411 (((-874) $) NIL)) (-2568 (((-112) $ $) NIL)) (-2099 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-3817 (((-656 $) $) NIL)) (-2610 (($ (-1178)) NIL) (($ (-1196)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-874)) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL)) (-1944 (($ $) NIL)) (-2394 (($ $) NIL)) (-2690 (((-112) $ $) NIL)) (-4286 (((-112) $) NIL)) (-3889 (((-112) $ $) NIL)) (-2845 (((-576) $) NIL)))
+(((-1123) (-1122 (-1178) (-1196) (-576) (-227) (-874))) (T -1123))
+NIL
+(-1122 (-1178) (-1196) (-576) (-227) (-874))
+((-2835 (((-112) $ $) NIL)) (-4084 (((-112) $) 45)) (-3792 ((|#2| $) 48)) (-2892 (((-112) $) 20)) (-1682 ((|#1| $) 21)) (-3419 (((-112) $) 42)) (-2842 (((-112) $) 14)) (-2398 (((-112) $) 44)) (-2143 (((-1178) $) NIL)) (-3148 (((-112) $) 46)) (-3815 ((|#3| $) 50)) (-3887 (((-1139) $) NIL)) (-2148 (((-112) $) 47)) (-1562 ((|#4| $) 49)) (-1411 ((|#5| $) 51)) (-2568 (((-112) $ $) 41)) (-2099 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-3817 (((-656 $) $) 27)) (-2610 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-2858 (((-874) $) 28)) (-1944 (($ $) 26)) (-2394 (($ $) 58)) (-2690 (((-112) $ $) NIL)) (-4286 (((-112) $) 23)) (-3889 (((-112) $ $) 40)) (-2845 (((-576) $) 60)))
+(((-1124 |#1| |#2| |#3| |#4| |#5|) (-1122 |#1| |#2| |#3| |#4| |#5|) (-1119) (-1119) (-1119) (-1119) (-1119)) (T -1124))
+NIL
+(-1122 |#1| |#2| |#3| |#4| |#5|)
+((-2275 (((-1292) $) 22)) (-2572 (($ (-1196) (-446) |#2|) 11)) (-2858 (((-874) $) 16)))
+(((-1125 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2572 ($ (-1196) (-446) |#2|)))) (-1119) (-442 |#1|)) (T -1125))
+((-2572 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1119)) (-5 *1 (-1125 *5 *4)) (-4 *4 (-442 *5)))))
+(-13 (-407) (-10 -8 (-15 -2572 ($ (-1196) (-446) |#2|))))
+((-3923 (((-112) |#5| |#5|) 44)) (-2849 (((-112) |#5| |#5|) 59)) (-3372 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-4060 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-1416 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) 70)) (-4090 (((-1292)) 32)) (-1745 (((-1292) (-1178) (-1178) (-1178)) 28)) (-2665 (((-656 |#5|) (-656 |#5|)) 101)) (-2680 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) 93)) (-4120 (((-656 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-1741 (((-112) |#5| |#5|) 53)) (-2024 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2073 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-3764 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-1700 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3745 (((-3 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-4387 (((-656 |#5|) (-656 |#5|)) 49)))
+(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1745 ((-1292) (-1178) (-1178) (-1178))) (-15 -4090 ((-1292))) (-15 -3923 ((-112) |#5| |#5|)) (-15 -4387 ((-656 |#5|) (-656 |#5|))) (-15 -1741 ((-112) |#5| |#5|)) (-15 -2849 ((-112) |#5| |#5|)) (-15 -4060 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2073 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3764 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1700 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2024 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3372 ((-112) |#5| |#5|)) (-15 -3372 ((-112) |#5| (-656 |#5|))) (-15 -2665 ((-656 |#5|) (-656 |#5|))) (-15 -1416 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2680 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-15 -4120 ((-656 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3745 ((-3 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1126))
+((-3745 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -2568 (-656 *9)) (|:| -4256 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-4120 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -2568 (-656 *9)) (|:| -4256 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4256 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-1416 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)))) (-2665 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *8 *3)))) (-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-2024 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1700 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3764 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2073 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-4060 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2849 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1741 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3923 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-4090 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1745 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1745 ((-1292) (-1178) (-1178) (-1178))) (-15 -4090 ((-1292))) (-15 -3923 ((-112) |#5| |#5|)) (-15 -4387 ((-656 |#5|) (-656 |#5|))) (-15 -1741 ((-112) |#5| |#5|)) (-15 -2849 ((-112) |#5| |#5|)) (-15 -4060 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2073 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3764 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1700 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2024 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3372 ((-112) |#5| |#5|)) (-15 -3372 ((-112) |#5| (-656 |#5|))) (-15 -2665 ((-656 |#5|) (-656 |#5|))) (-15 -1416 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2680 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-15 -4120 ((-656 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3745 ((-3 (-2 (|:| -2568 (-656 |#4|)) (|:| -4256 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-2905 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|) 108)) (-4111 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#4| |#4| |#5|) 80)) (-2342 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|) 102)) (-4316 (((-656 |#5|) |#4| |#5|) 124)) (-2476 (((-656 |#5|) |#4| |#5|) 131)) (-3746 (((-656 |#5|) |#4| |#5|) 132)) (-1633 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|) 109)) (-2437 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|) 130)) (-1988 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2122 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3452 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|) 87)) (-3484 (((-1292)) 36)) (-2834 (((-1292)) 25)) (-4331 (((-1292) (-1178) (-1178) (-1178)) 32)) (-2357 (((-1292) (-1178) (-1178) (-1178)) 21)))
+(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2357 ((-1292) (-1178) (-1178) (-1178))) (-15 -2834 ((-1292))) (-15 -4331 ((-1292) (-1178) (-1178) (-1178))) (-15 -3484 ((-1292))) (-15 -4111 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -2122 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2122 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#3| (-112))) (-15 -3452 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -2342 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -1988 ((-112) |#4| |#5|)) (-15 -1633 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -4316 ((-656 |#5|) |#4| |#5|)) (-15 -2437 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -2476 ((-656 |#5|) |#4| |#5|)) (-15 -1988 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -3746 ((-656 |#5|) |#4| |#5|)) (-15 -2905 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1127))
+((-2905 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3746 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1988 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2476 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2437 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4316 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1633 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1988 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2342 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3452 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2122 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4256 *9)))) (-5 *1 (-1127 *6 *7 *4 *8 *9)))) (-2122 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-4111 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3484 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-4331 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2834 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-2357 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2357 ((-1292) (-1178) (-1178) (-1178))) (-15 -2834 ((-1292))) (-15 -4331 ((-1292) (-1178) (-1178) (-1178))) (-15 -3484 ((-1292))) (-15 -4111 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -2122 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2122 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) |#3| (-112))) (-15 -3452 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -2342 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#4| |#5|)) (-15 -1988 ((-112) |#4| |#5|)) (-15 -1633 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -4316 ((-656 |#5|) |#4| |#5|)) (-15 -2437 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -2476 ((-656 |#5|) |#4| |#5|)) (-15 -1988 ((-656 (-2 (|:| |val| (-112)) (|:| -4256 |#5|))) |#4| |#5|)) (-15 -3746 ((-656 |#5|) |#4| |#5|)) (-15 -2905 ((-656 (-2 (|:| |val| |#4|) (|:| -4256 |#5|))) |#4| |#5|)))
+((-2835 (((-112) $ $) 7)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) 86)) (-1952 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1634 (((-656 |#3|) $) 34)) (-4001 (((-112) $) 27)) (-3169 (((-112) $) 18 (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) 102) (((-112) $) 98)) (-1778 ((|#4| |#4| $) 93)) (-3179 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| $) 127)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) 28)) (-2746 (((-112) $ (-783)) 45)) (-3959 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-2574 (($) 46 T CONST)) (-1516 (((-112) $) 23 (|has| |#1| (-568)))) (-2097 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3593 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3695 (((-112) $) 26 (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3390 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 37)) (-4397 (($ (-656 |#4|)) 36)) (-2003 (((-3 $ "failed") $) 83)) (-2040 ((|#4| |#4| $) 90)) (-3229 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3586 ((|#4| |#4| $) 88)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) 106)) (-3275 (((-112) |#4| $) 137)) (-4438 (((-112) |#4| $) 134)) (-4310 (((-112) |#4| $) 138) (((-112) $) 135)) (-3975 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) 105) (((-112) $) 104)) (-4402 ((|#3| $) 35)) (-3639 (((-112) $ (-783)) 44)) (-3531 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 48)) (-2804 (((-656 |#3|) $) 33)) (-2872 (((-112) |#3| $) 32)) (-1684 (((-112) $ (-783)) 43)) (-2143 (((-1178) $) 10)) (-3342 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4362 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| |#4| $) 128)) (-3627 (((-3 |#4| "failed") $) 84)) (-1611 (((-656 $) |#4| $) 130)) (-4270 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3310 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1501 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3025 (((-656 |#4|) $) 108)) (-2671 (((-112) |#4| $) 100) (((-112) $) 96)) (-2978 ((|#4| |#4| $) 91)) (-1700 (((-112) $ $) 111)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) 101) (((-112) $) 97)) (-3350 ((|#4| |#4| $) 92)) (-3887 (((-1139) $) 11)) (-1989 (((-3 |#4| "failed") $) 85)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2451 (((-3 $ "failed") $ |#4|) 79)) (-3262 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1910 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) 39)) (-3001 (((-112) $) 42)) (-3849 (($) 41)) (-4436 (((-783) $) 107)) (-3902 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-3052 (($ $) 40)) (-2610 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 61)) (-4426 (($ $ |#3|) 29)) (-4127 (($ $ |#3|) 31)) (-2693 (($ $) 89)) (-3668 (($ $ |#3|) 30)) (-2858 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3506 (((-783) $) 77 (|has| |#3| (-379)))) (-2690 (((-112) $ $) 9)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3828 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2714 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) 82)) (-2212 (((-112) |#4| $) 136)) (-2576 (((-112) |#3| $) 81)) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-1128 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1128))
+NIL
+(-13 (-1090 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T))
+((-3751 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-4305 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-2166 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-3116 (((-576) (-576) (-576)) 21)) (-4194 (((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576)) 76) (((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576)) 71)) (-3339 (((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112)) 54)) (-1473 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 75)) (-4350 (((-701 (-576)) (-656 (-938)) (-656 (-576))) 59)) (-4176 (((-656 (-701 (-576))) (-656 (-938))) 64)) (-4096 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 79)) (-3819 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 89)))
+(((-1129) (-10 -7 (-15 -3819 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4096 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -4176 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -4350 ((-701 (-576)) (-656 (-938)) (-656 (-576)))) (-15 -1473 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3339 ((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112))) (-15 -4194 ((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576))) (-15 -4194 ((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576))) (-15 -3116 ((-576) (-576) (-576))) (-15 -2166 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4305 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3751 ((-656 (-576)) (-576) (-576) (-576))))) (T -1129))
+((-3751 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-4305 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-2166 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-3116 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1129)))) (-4194 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1129)))) (-4194 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-576)) (-5 *1 (-1129)))) (-3339 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-938))) (-5 *4 (-112)) (-5 *1 (-1129)))) (-1473 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1129)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1129)))) (-4096 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1129)))) (-3819 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129)))))
+(-10 -7 (-15 -3819 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4096 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -4176 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -4350 ((-701 (-576)) (-656 (-938)) (-656 (-576)))) (-15 -1473 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3339 ((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112))) (-15 -4194 ((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576))) (-15 -4194 ((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576))) (-15 -3116 ((-576) (-576) (-576))) (-15 -2166 ((-656 (-576)) (-576) (-576) (-576))) (-15 -4305 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3751 ((-656 (-576)) (-576) (-576) (-576))))
+((** (($ $ (-938)) 10)))
+(((-1130 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-938)))) (-1131)) (T -1130))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-938))))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)) (** (($ $ (-938)) 14)) (* (($ $ $) 15)))
+(((-1131) (-141)) (T -1131))
+((* (*1 *1 *1 *1) (-4 *1 (-1131))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-938)))))
+(-13 (-1119) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-938)))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-3203 (((-112) $) NIL (-3739 (|has| |#3| (-23)) (|has| |#3| (-738))))) (-2002 (($ (-938)) NIL (|has| |#3| (-1068)))) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-1869 (($ $ $) NIL (|has| |#3| (-805)))) (-3161 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2746 (((-112) $ (-783)) NIL)) (-2422 (((-783)) NIL (|has| |#3| (-379)))) (-3028 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1119)))) (-4397 (((-576) $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) ((|#3| $) NIL (|has| |#3| (-1119)))) (-2085 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-1287 $)) NIL (|has| |#3| (-1068)))) (-4011 (((-3 $ "failed") $) NIL (|has| |#3| (-1068)))) (-2107 (($) NIL (|has| |#3| (-379)))) (-2832 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#3| $ (-576)) 12)) (-3975 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL (|has| |#3| (-1068)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#3| (-862)))) (-3531 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#3| (-862)))) (-2822 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#3| |#3|) $) NIL)) (-1654 (((-938) $) NIL (|has| |#3| (-379)))) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#3| (-1119)))) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-4308 (($ (-938)) NIL (|has| |#3| (-379)))) (-3887 (((-1139) $) NIL (|has| |#3| (-1119)))) (-1989 ((|#3| $) NIL (|has| (-576) (-862)))) (-4040 (($ $ |#3|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3584 (((-656 |#3|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-2139 ((|#3| $ $) NIL (|has| |#3| (-1068)))) (-2009 (($ (-1287 |#3|)) NIL)) (-4340 (((-135)) NIL (|has| |#3| (-374)))) (-2399 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068)))) (-3902 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3052 (($ $) NIL)) (-2858 (((-1287 |#3|) $) NIL) (($ (-576)) NIL (-3739 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (($ |#3|) NIL (|has| |#3| (-1119))) (((-874) $) NIL (|has| |#3| (-625 (-874))))) (-2981 (((-783)) NIL (|has| |#3| (-1068)) CONST)) (-2690 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-2714 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-2022 (($) NIL (-3739 (|has| |#3| (-23)) (|has| |#3| (-738))) CONST)) (-2038 (($) NIL (|has| |#3| (-1068)) CONST)) (-3404 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068)))) (-3956 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3916 (((-112) $ $) 24 (|has| |#3| (-862)))) (-4013 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4002 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3990 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1068))) (($ $ (-938)) NIL (|has| |#3| (-1068)))) (* (($ $ $) NIL (|has| |#3| (-1068))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-938) $) NIL (|has| |#3| (-25)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1132 |#1| |#2| |#3|) (-243 |#1| |#3|) (-783) (-783) (-805)) (T -1132))
NIL
(-243 |#1| |#3|)
-((-1561 (((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 50)) (-2990 (((-575) (-1258 |#2| |#1|)) 94 (|has| |#1| (-463)))) (-2724 (((-575) (-1258 |#2| |#1|)) 76)) (-2778 (((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 58)) (-3422 (((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 93 (|has| |#1| (-463)))) (-4253 (((-655 |#1|) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 61)) (-2264 (((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|)) 75)))
-(((-1131 |#1| |#2|) (-10 -7 (-15 -1561 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2778 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -4253 ((-655 |#1|) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2264 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2724 ((-575) (-1258 |#2| |#1|))) (IF (|has| |#1| (-463)) (PROGN (-15 -3422 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2990 ((-575) (-1258 |#2| |#1|)))) |%noBranch|)) (-831) (-1194)) (T -1131))
-((-2990 (*1 *2 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-3422 (*1 *2 *3 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-2264 (*1 *2 *3 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))) (-4253 (*1 *2 *3 *3) (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 *4)) (-5 *1 (-1131 *4 *5)))) (-2778 (*1 *2 *3 *3) (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4))) (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4)))) (-1561 (*1 *2 *3 *3) (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4))) (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4)))))
-(-10 -7 (-15 -1561 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2778 ((-655 (-1258 |#2| |#1|)) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -4253 ((-655 |#1|) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2264 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2724 ((-575) (-1258 |#2| |#1|))) (IF (|has| |#1| (-463)) (PROGN (-15 -3422 ((-575) (-1258 |#2| |#1|) (-1258 |#2| |#1|))) (-15 -2990 ((-575) (-1258 |#2| |#1|)))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-3603 (($ (-517) (-1135)) 13)) (-1380 (((-1135) $) 19)) (-1777 (((-517) $) 16)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 26) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1132) (-13 (-1100) (-10 -8 (-15 -3603 ($ (-517) (-1135))) (-15 -1777 ((-517) $)) (-15 -1380 ((-1135) $))))) (T -1132))
-((-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-1132)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1132)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1132)))))
-(-13 (-1100) (-10 -8 (-15 -3603 ($ (-517) (-1135))) (-15 -1777 ((-517) $)) (-15 -1380 ((-1135) $))))
-((-2326 (((-3 (-575) "failed") |#2| (-1194) |#2| (-1176)) 19) (((-3 (-575) "failed") |#2| (-1194) (-854 |#2|)) 17) (((-3 (-575) "failed") |#2|) 60)))
-(((-1133 |#1| |#2|) (-10 -7 (-15 -2326 ((-3 (-575) "failed") |#2|)) (-15 -2326 ((-3 (-575) "failed") |#2| (-1194) (-854 |#2|))) (-15 -2326 ((-3 (-575) "failed") |#2| (-1194) |#2| (-1176)))) (-13 (-567) (-1055 (-575)) (-650 (-575)) (-463)) (-13 (-27) (-1220) (-441 |#1|))) (T -1133))
-((-2326 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-1176)) (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) (-5 *1 (-1133 *6 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))))) (-2326 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6))) (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) (-5 *1 (-1133 *6 *3)))) (-2326 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))))
-(-10 -7 (-15 -2326 ((-3 (-575) "failed") |#2|)) (-15 -2326 ((-3 (-575) "failed") |#2| (-1194) (-854 |#2|))) (-15 -2326 ((-3 (-575) "failed") |#2| (-1194) |#2| (-1176))))
-((-2326 (((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)) (-1176)) 38) (((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-854 (-418 (-967 |#1|)))) 33) (((-3 (-575) "failed") (-418 (-967 |#1|))) 14)))
-(((-1134 |#1|) (-10 -7 (-15 -2326 ((-3 (-575) "failed") (-418 (-967 |#1|)))) (-15 -2326 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-854 (-418 (-967 |#1|))))) (-15 -2326 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)) (-1176)))) (-463)) (T -1134))
-((-2326 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1194)) (-5 *5 (-1176)) (-4 *6 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *6)))) (-2326 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 (-418 (-967 *6)))) (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *6)))) (-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *4)))))
-(-10 -7 (-15 -2326 ((-3 (-575) "failed") (-418 (-967 |#1|)))) (-15 -2326 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-854 (-418 (-967 |#1|))))) (-15 -2326 ((-3 (-575) "failed") (-418 (-967 |#1|)) (-1194) (-418 (-967 |#1|)) (-1176))))
-((-2859 (((-112) $ $) NIL)) (-2937 (((-1199) $) 12)) (-2888 (((-655 (-1199)) $) 14)) (-1380 (($ (-655 (-1199)) (-1199)) 10)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 29)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 17)))
-(((-1135) (-13 (-1117) (-10 -8 (-15 -1380 ($ (-655 (-1199)) (-1199))) (-15 -2937 ((-1199) $)) (-15 -2888 ((-655 (-1199)) $))))) (T -1135))
-((-1380 (*1 *1 *2 *3) (-12 (-5 *2 (-655 (-1199))) (-5 *3 (-1199)) (-5 *1 (-1135)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1135)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1135)))))
-(-13 (-1117) (-10 -8 (-15 -1380 ($ (-655 (-1199)) (-1199))) (-15 -2937 ((-1199) $)) (-15 -2888 ((-655 (-1199)) $))))
-((-1557 (((-325 (-575)) (-48)) 12)))
-(((-1136) (-10 -7 (-15 -1557 ((-325 (-575)) (-48))))) (T -1136))
-((-1557 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-325 (-575))) (-5 *1 (-1136)))))
-(-10 -7 (-15 -1557 ((-325 (-575)) (-48))))
-((-2859 (((-112) $ $) NIL)) (-2877 (($ $) 44)) (-2045 (((-112) $) 70)) (-1964 (($ $ $) 53)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 98)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-2803 (($ $ $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1635 (($ $ $ $) 81)) (-3312 (($ $) NIL)) (-4281 (((-429 $) $) NIL)) (-3599 (((-112) $ $) NIL)) (-2409 (((-782)) 83)) (-2326 (((-575) $) NIL)) (-3624 (($ $ $) 78)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL)) (-4400 (((-575) $) NIL)) (-2800 (($ $ $) 64)) (-2862 (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 92) (((-700 (-575)) (-700 $)) 32) (((-700 (-575)) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2157 (((-3 (-418 (-575)) "failed") $) NIL)) (-2188 (((-112) $) NIL)) (-1622 (((-418 (-575)) $) NIL)) (-2073 (($) 95) (($ $) 96)) (-2811 (($ $ $) 63)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL)) (-3559 (((-112) $) NIL)) (-3623 (($ $ $ $) NIL)) (-3509 (($ $ $) 93)) (-2359 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL)) (-3236 (($ $ $) 52)) (-3900 (((-112) $) 72)) (-4254 (((-112) $) 69)) (-3213 (($ $) 45)) (-2808 (((-3 $ "failed") $) NIL)) (-1721 (((-112) $) 82)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3899 (($ $ $ $) 79)) (-1914 (($ $ $) 74) (($) 42 T CONST)) (-3503 (($ $ $) 73) (($) 41 T CONST)) (-3535 (($ $) NIL)) (-1894 (((-936) $) 88)) (-1840 (($ $) 77)) (-3886 (($ $ $) NIL) (($ (-655 $)) NIL)) (-4264 (((-1176) $) NIL)) (-3121 (($ $ $) NIL)) (-3472 (($) NIL T CONST)) (-4317 (($ (-936)) 87)) (-3044 (($ $) 57)) (-3912 (((-1137) $) 76)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL)) (-3923 (($ $ $) 67) (($ (-655 $)) NIL)) (-2031 (($ $) NIL)) (-2347 (((-429 $) $) NIL)) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL)) (-2849 (((-3 $ "failed") $ $) NIL)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL)) (-3095 (((-112) $) NIL)) (-1720 (((-782) $) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 66)) (-2382 (($ $) NIL) (($ $ (-782)) NIL)) (-3351 (($ $) 58)) (-3076 (($ $) NIL)) (-2613 (((-575) $) 17) (((-547) $) NIL) (((-904 (-575)) $) NIL) (((-389) $) NIL) (((-227) $) NIL)) (-2882 (((-873) $) 35) (($ (-575)) 94) (($ $) NIL) (($ (-575)) 94)) (-4421 (((-782)) NIL T CONST)) (-2646 (((-112) $ $) NIL)) (-2266 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-1548 (($) 40)) (-3930 (((-112) $ $) NIL)) (-3224 (($ $ $) 50)) (-1598 (($ $ $ $) 80)) (-3863 (($ $) 68)) (-2920 (($ $ $) 47)) (-1989 (($) 7 T CONST)) (-2910 (($ $ $) 51)) (-2005 (($) 39 T CONST)) (-2225 (((-1176) $) 26) (((-1176) $ (-112)) 27) (((-1290) (-833) $) 28) (((-1290) (-833) $ (-112)) 29)) (-2921 (($ $) 48)) (-3428 (($ $) NIL) (($ $ (-782)) NIL)) (-2898 (($ $ $) 49)) (-3980 (((-112) $ $) 56)) (-3955 (((-112) $ $) 54)) (-3913 (((-112) $ $) 43)) (-3967 (((-112) $ $) 55)) (-3940 (((-112) $ $) 10)) (-2909 (($ $ $) 46)) (-4027 (($ $) 16) (($ $ $) 60)) (-4015 (($ $ $) 59)) (** (($ $ (-936)) NIL) (($ $ (-782)) 62)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 38) (($ $ $) 37) (($ (-575) $) 38)))
-(((-1137) (-13 (-556) (-855) (-113) (-672) (-839) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -1964 ($ $ $)) (-15 -2921 ($ $)) (-15 -2898 ($ $ $)) (-15 -2910 ($ $ $))))) (T -1137))
-((-1964 (*1 *1 *1 *1) (-5 *1 (-1137))) (-2921 (*1 *1 *1) (-5 *1 (-1137))) (-2898 (*1 *1 *1 *1) (-5 *1 (-1137))) (-2910 (*1 *1 *1 *1) (-5 *1 (-1137))))
-(-13 (-556) (-855) (-113) (-672) (-839) (-10 -8 (-6 -4447) (-6 -4452) (-6 -4448) (-15 -1964 ($ $ $)) (-15 -2921 ($ $)) (-15 -2898 ($ $ $)) (-15 -2910 ($ $ $))))
+((-2843 (((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 50)) (-4161 (((-576) (-1260 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-4294 (((-576) (-1260 |#2| |#1|)) 76)) (-1338 (((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 58)) (-2465 (((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-2420 (((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 61)) (-2947 (((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 75)))
+(((-1133 |#1| |#2|) (-10 -7 (-15 -2843 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1338 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2420 ((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2947 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -4294 ((-576) (-1260 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2465 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -4161 ((-576) (-1260 |#2| |#1|)))) |%noBranch|)) (-832) (-1196)) (T -1133))
+((-4161 (*1 *2 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-2465 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-2947 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-2420 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 *4)) (-5 *1 (-1133 *4 *5)))) (-1338 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4)))))
+(-10 -7 (-15 -2843 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1338 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2420 ((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2947 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -4294 ((-576) (-1260 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2465 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -4161 ((-576) (-1260 |#2| |#1|)))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-2615 (($ (-518) (-1137)) 13)) (-1389 (((-1137) $) 19)) (-1811 (((-518) $) 16)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 26) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1134) (-13 (-1102) (-10 -8 (-15 -2615 ($ (-518) (-1137))) (-15 -1811 ((-518) $)) (-15 -1389 ((-1137) $))))) (T -1134))
+((-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-1134)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1134)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1134)))))
+(-13 (-1102) (-10 -8 (-15 -2615 ($ (-518) (-1137))) (-15 -1811 ((-518) $)) (-15 -1389 ((-1137) $))))
+((-1727 (((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)) 19) (((-3 (-576) "failed") |#2| (-1196) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60)))
+(((-1135 |#1| |#2|) (-10 -7 (-15 -1727 ((-3 (-576) "failed") |#2|)) (-15 -1727 ((-3 (-576) "failed") |#2| (-1196) (-855 |#2|))) (-15 -1727 ((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)))) (-13 (-568) (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|))) (T -1135))
+((-1727 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))))) (-1727 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *6 *3)))) (-1727 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))))
+(-10 -7 (-15 -1727 ((-3 (-576) "failed") |#2|)) (-15 -1727 ((-3 (-576) "failed") |#2| (-1196) (-855 |#2|))) (-15 -1727 ((-3 (-576) "failed") |#2| (-1196) |#2| (-1178))))
+((-1727 (((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)) (-1178)) 38) (((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-855 (-419 (-969 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-969 |#1|))) 14)))
+(((-1136 |#1|) (-10 -7 (-15 -1727 ((-3 (-576) "failed") (-419 (-969 |#1|)))) (-15 -1727 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-855 (-419 (-969 |#1|))))) (-15 -1727 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)) (-1178)))) (-464)) (T -1136))
+((-1727 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) (-1727 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) (-1727 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *4)))))
+(-10 -7 (-15 -1727 ((-3 (-576) "failed") (-419 (-969 |#1|)))) (-15 -1727 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-855 (-419 (-969 |#1|))))) (-15 -1727 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)) (-1178))))
+((-2835 (((-112) $ $) NIL)) (-2913 (((-1201) $) 12)) (-2864 (((-656 (-1201)) $) 14)) (-1389 (($ (-656 (-1201)) (-1201)) 10)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 29)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 17)))
+(((-1137) (-13 (-1119) (-10 -8 (-15 -1389 ($ (-656 (-1201)) (-1201))) (-15 -2913 ((-1201) $)) (-15 -2864 ((-656 (-1201)) $))))) (T -1137))
+((-1389 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1137)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1137)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1137)))))
+(-13 (-1119) (-10 -8 (-15 -1389 ($ (-656 (-1201)) (-1201))) (-15 -2913 ((-1201) $)) (-15 -2864 ((-656 (-1201)) $))))
+((-2546 (((-326 (-576)) (-48)) 12)))
+(((-1138) (-10 -7 (-15 -2546 ((-326 (-576)) (-48))))) (T -1138))
+((-2546 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1138)))))
+(-10 -7 (-15 -2546 ((-326 (-576)) (-48))))
+((-2835 (((-112) $ $) NIL)) (-2856 (($ $) 44)) (-3203 (((-112) $) 70)) (-1998 (($ $ $) 53)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 98)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-4078 (($ $ $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1901 (($ $ $ $) 81)) (-3179 (($ $) NIL)) (-2464 (((-430 $) $) NIL)) (-3417 (((-112) $ $) NIL)) (-2422 (((-783)) 83)) (-1727 (((-576) $) NIL)) (-3598 (($ $ $) 78)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL)) (-4397 (((-576) $) NIL)) (-2780 (($ $ $) 64)) (-2085 (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 92) (((-701 (-576)) (-701 $)) 32) (((-701 (-576)) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3660 (((-3 (-419 (-576)) "failed") $) NIL)) (-1946 (((-112) $) NIL)) (-3269 (((-419 (-576)) $) NIL)) (-2107 (($) 95) (($ $) 96)) (-2790 (($ $ $) 63)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL)) (-3011 (((-112) $) NIL)) (-3135 (($ $ $ $) NIL)) (-2880 (($ $ $) 93)) (-2127 (((-112) $) NIL)) (-1840 (($ $ $) NIL)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-3212 (($ $ $) 52)) (-1838 (((-112) $) 72)) (-2531 (((-112) $) 69)) (-3189 (($ $) 45)) (-3397 (((-3 $ "failed") $) NIL)) (-3196 (((-112) $) 82)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1735 (($ $ $ $) 79)) (-1950 (($ $ $) 74) (($) 42 T CONST)) (-1492 (($ $ $) 73) (($) 41 T CONST)) (-3511 (($ $) NIL)) (-1654 (((-938) $) 88)) (-1873 (($ $) 77)) (-3862 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2143 (((-1178) $) NIL)) (-3094 (($ $ $) NIL)) (-3448 (($) NIL T CONST)) (-4308 (($ (-938)) 87)) (-3020 (($ $) 57)) (-3887 (((-1139) $) 76)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3901 (($ $ $) 67) (($ (-656 $)) NIL)) (-2878 (($ $) NIL)) (-2367 (((-430 $) $) NIL)) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL)) (-2825 (((-3 $ "failed") $ $) NIL)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3945 (((-112) $) NIL)) (-3076 (((-783) $) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 66)) (-2399 (($ $) NIL) (($ $ (-783)) NIL)) (-3327 (($ $) 58)) (-3052 (($ $) NIL)) (-2610 (((-576) $) 17) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-2858 (((-874) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-2981 (((-783)) NIL T CONST)) (-3238 (((-112) $ $) NIL)) (-3176 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-1572 (($) 40)) (-3199 (((-112) $ $) NIL)) (-3200 (($ $ $) 50)) (-1860 (($ $ $ $) 80)) (-3680 (($ $) 68)) (-2899 (($ $ $) 47)) (-2022 (($) 7 T CONST)) (-2886 (($ $ $) 51)) (-2038 (($) 39 T CONST)) (-1445 (((-1178) $) 26) (((-1178) $ (-112)) 27) (((-1292) (-834) $) 28) (((-1292) (-834) $ (-112)) 29)) (-2897 (($ $) 48)) (-3404 (($ $) NIL) (($ $ (-783)) NIL)) (-2874 (($ $ $) 49)) (-3956 (((-112) $ $) 56)) (-3930 (((-112) $ $) 54)) (-3889 (((-112) $ $) 43)) (-3944 (((-112) $ $) 55)) (-3916 (((-112) $ $) 10)) (-2885 (($ $ $) 46)) (-4002 (($ $) 16) (($ $ $) 60)) (-3990 (($ $ $) 59)) (** (($ $ (-938)) NIL) (($ $ (-783)) 62)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38)))
+(((-1139) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -1998 ($ $ $)) (-15 -2897 ($ $)) (-15 -2874 ($ $ $)) (-15 -2886 ($ $ $))))) (T -1139))
+((-1998 (*1 *1 *1 *1) (-5 *1 (-1139))) (-2897 (*1 *1 *1) (-5 *1 (-1139))) (-2874 (*1 *1 *1 *1) (-5 *1 (-1139))) (-2886 (*1 *1 *1 *1) (-5 *1 (-1139))))
+(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -1998 ($ $ $)) (-15 -2897 ($ $)) (-15 -2874 ($ $ $)) (-15 -2886 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2006 ((|#1| $) 45)) (-3133 (((-112) $ (-782)) 8)) (-3261 (($) 7 T CONST)) (-3107 ((|#1| |#1| $) 47)) (-1597 ((|#1| $) 46)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-4030 ((|#1| $) 40)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-3773 ((|#1| $) 42)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-3321 (((-782) $) 44)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) 43)) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1138 |#1|) (-141) (-1235)) (T -1138))
-((-3107 (*1 *2 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4460) (-15 -3107 (|t#1| |t#1| $)) (-15 -1597 (|t#1| $)) (-15 -2006 (|t#1| $)) (-15 -3321 ((-782) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-1448 ((|#3| $) 87)) (-2443 (((-3 (-575) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4400 (((-575) $) NIL) (((-418 (-575)) $) NIL) ((|#3| $) 47)) (-2862 (((-700 (-575)) (-1285 $)) NIL) (((-700 (-575)) (-700 $)) NIL) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL) (((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 $) (-1285 $)) 84) (((-700 |#3|) (-700 $)) 76) (((-700 |#3|) (-1285 $)) NIL)) (-2382 (($ $ (-1 |#3| |#3|) (-782)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-4128 ((|#3| $) 89)) (-3961 ((|#4| $) 43)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ |#3|) 25)) (** (($ $ (-936)) NIL) (($ $ (-782)) 24) (($ $ (-575)) 95)))
-(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4128 (|#3| |#1|)) (-15 -1448 (|#3| |#1|)) (-15 -3961 (|#4| |#1|)) (-15 -2862 ((-700 |#3|) (-1285 |#1|))) (-15 -2862 ((-700 |#3|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2882 (|#1| |#3|)) (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2882 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -2882 ((-873) |#1|))) (-1140 |#2| |#3| |#4| |#5|) (-782) (-1066) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1139))
-NIL
-(-10 -8 (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 ** (|#1| |#1| (-575))) (-15 -4128 (|#3| |#1|)) (-15 -1448 (|#3| |#1|)) (-15 -3961 (|#4| |#1|)) (-15 -2862 ((-700 |#3|) (-1285 |#1|))) (-15 -2862 ((-700 |#3|) (-700 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 |#3|)) (|:| |vec| (-1285 |#3|))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 |#1|) (-1285 |#1|))) (-15 -2862 ((-700 (-575)) (-700 |#1|))) (-15 -2862 ((-700 (-575)) (-1285 |#1|))) (-15 -2882 (|#1| |#3|)) (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2382 (|#1| |#1| (-1 |#3| |#3|) (-782))) (-15 -2882 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1448 ((|#2| $) 80)) (-3684 (((-112) $) 122)) (-1708 (((-3 $ "failed") $ $) 20)) (-1938 (((-112) $) 120)) (-3133 (((-112) $ (-782)) 112)) (-1890 (($ |#2|) 83)) (-3261 (($) 18 T CONST)) (-3699 (($ $) 139 (|has| |#2| (-316)))) (-2320 ((|#3| $ (-575)) 134)) (-2443 (((-3 (-575) "failed") $) 97 (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) 94 (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) 91)) (-4400 (((-575) $) 96 (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) 93 (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) 92)) (-2862 (((-700 (-575)) (-1285 $)) 89 (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) 88 (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 87 (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 86) (((-700 |#2|) (-700 $)) 85) (((-700 |#2|) (-1285 $)) 84)) (-4162 (((-3 $ "failed") $) 37)) (-4422 (((-782) $) 140 (|has| |#2| (-567)))) (-2786 ((|#2| $ (-575) (-575)) 132)) (-3999 (((-655 |#2|) $) 105 (|has| $ (-6 -4460)))) (-3900 (((-112) $) 35)) (-3202 (((-782) $) 141 (|has| |#2| (-567)))) (-3216 (((-655 |#4|) $) 142 (|has| |#2| (-567)))) (-4243 (((-782) $) 128)) (-4255 (((-782) $) 129)) (-3541 (((-112) $ (-782)) 113)) (-2314 ((|#2| $) 75 (|has| |#2| (-6 (-4462 "*"))))) (-4274 (((-575) $) 124)) (-1477 (((-575) $) 126)) (-4252 (((-655 |#2|) $) 104 (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) 102 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3093 (((-575) $) 125)) (-4180 (((-575) $) 127)) (-4316 (($ (-655 (-655 |#2|))) 119)) (-2844 (($ (-1 |#2| |#2|) $) 109 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2| |#2|) $ $) 136) (($ (-1 |#2| |#2|) $) 110)) (-3194 (((-655 (-655 |#2|)) $) 130)) (-3218 (((-112) $ (-782)) 114)) (-4264 (((-1176) $) 10)) (-1729 (((-3 $ "failed") $) 74 (|has| |#2| (-373)))) (-3912 (((-1137) $) 11)) (-2849 (((-3 $ "failed") $ |#2|) 137 (|has| |#2| (-567)))) (-2718 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) 101 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 100 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 99 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 98 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) 118)) (-2017 (((-112) $) 115)) (-1393 (($) 116)) (-2065 ((|#2| $ (-575) (-575) |#2|) 133) ((|#2| $ (-575) (-575)) 131)) (-2382 (($ $ (-1 |#2| |#2|) (-782)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-782)) 45 (|has| |#2| (-237))) (($ $ (-1194)) 55 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) 53 (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) 52 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 51 (|has| |#2| (-915 (-1194))))) (-4128 ((|#2| $) 79)) (-2377 (($ (-655 |#2|)) 82)) (-1940 (((-112) $) 121)) (-3961 ((|#3| $) 81)) (-4029 ((|#2| $) 76 (|has| |#2| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4460))) (((-782) |#2| $) 103 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 117)) (-2324 ((|#4| $ (-575)) 135)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 95 (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) 90)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-4121 (((-112) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4460)))) (-3229 (((-112) $) 123)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 |#2| |#2|) (-782)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-782)) 44 (|has| |#2| (-237))) (($ $ (-1194)) 54 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) 50 (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) 49 (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 48 (|has| |#2| (-915 (-1194))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#2|) 138 (|has| |#2| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 73 (|has| |#2| (-373)))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#2|) 144) (($ |#2| $) 143) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-2869 (((-782) $) 111 (|has| $ (-6 -4460)))))
-(((-1140 |#1| |#2| |#3| |#4|) (-141) (-782) (-1066) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1140))
-((-1890 (*1 *1 *2) (-12 (-4 *2 (-1066)) (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-655 *4)) (-4 *4 (-1066)) (-4 *1 (-1140 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1066)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1066)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1140 *3 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))) (-1729 (*1 *1 *1) (|partial| -12 (-4 *1 (-1140 *2 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-373)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-373)))))
-(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1070 |t#1| |t#1| |t#2| |t#3| |t#4|) (-422 |t#2|) (-387 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-728 |t#2|)) |%noBranch|) (-15 -1890 ($ |t#2|)) (-15 -2377 ($ (-655 |t#2|))) (-15 -3961 (|t#3| $)) (-15 -1448 (|t#2| $)) (-15 -4128 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4462 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4029 (|t#2| $)) (-15 -2314 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-373)) (PROGN (-15 -1729 ((-3 $ "failed") $)) (-15 ** ($ $ (-575)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4462 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-627 #0=(-418 (-575))) |has| |#2| (-1055 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-234 $) -3763 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -3763 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-271 |#2|) . T) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-387 |#2|) . T) ((-422 |#2|) . T) ((-500 |#2|) . T) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-659 #1=(-575)) |has| |#2| (-650 (-575))) ((-659 |#2|) . T) ((-659 $) . T) ((-651 |#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-6 (-4462 "*")))) ((-650 #1#) |has| |#2| (-650 (-575))) ((-650 |#2|) . T) ((-728 |#2|) -3763 (|has| |#2| (-174)) (|has| |#2| (-6 (-4462 "*")))) ((-737) . T) ((-908 $ #2=(-1194)) -3763 (|has| |#2| (-915 (-1194))) (|has| |#2| (-913 (-1194)))) ((-913 (-1194)) |has| |#2| (-913 (-1194))) ((-915 #2#) -3763 (|has| |#2| (-915 (-1194))) (|has| |#2| (-913 (-1194)))) ((-1070 |#1| |#1| |#2| |#3| |#4|) . T) ((-1055 #0#) |has| |#2| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#2| (-1055 (-575))) ((-1055 |#2|) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-3134 ((|#4| |#4|) 81)) (-2995 ((|#4| |#4|) 76)) (-3430 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|))) |#4| |#3|) 91)) (-4036 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2497 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1141 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2995 (|#4| |#4|)) (-15 -2497 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3134 (|#4| |#4|)) (-15 -4036 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3430 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|))) |#4| |#3|))) (-316) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -1141))
-((-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-316)) (-4 *6 (-383 *5)) (-4 *4 (-383 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4)))) (-5 *1 (-1141 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))) (-4036 (*1 *2 *3) (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-3134 (*1 *2 *2) (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(-10 -7 (-15 -2995 (|#4| |#4|)) (-15 -2497 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3134 (|#4| |#4|)) (-15 -4036 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3430 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2098 (-655 |#3|))) |#4| |#3|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 18)) (-1606 (((-655 |#2|) $) 174)) (-3462 (((-1190 $) $ |#2|) 60) (((-1190 |#1|) $) 49)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 116 (|has| |#1| (-567)))) (-2456 (($ $) 118 (|has| |#1| (-567)))) (-3978 (((-112) $) 120 (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 |#2|)) 213)) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) 167) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 |#2| "failed") $) NIL)) (-4400 ((|#1| $) 165) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) ((|#2| $) NIL)) (-4171 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-4406 (($ $) 217)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) 90)) (-2379 (($ $) NIL (|has| |#1| (-463))) (($ $ |#2|) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-542 |#2|) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#1| (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#1| (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3900 (((-112) $) 20)) (-1403 (((-782) $) 30)) (-2430 (($ (-1190 |#1|) |#2|) 54) (($ (-1190 $) |#2|) 71)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) 38)) (-2414 (($ |#1| (-542 |#2|)) 78) (($ $ |#2| (-782)) 58) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ |#2|) NIL)) (-3143 (((-542 |#2|) $) 205) (((-782) $ |#2|) 206) (((-655 (-782)) $ (-655 |#2|)) 207)) (-1946 (($ (-1 (-542 |#2|) (-542 |#2|)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) 128)) (-2187 (((-3 |#2| "failed") $) 177)) (-4370 (($ $) 216)) (-4383 ((|#1| $) 43)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| |#2|) (|:| -1658 (-782))) "failed") $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) 39)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 148 (|has| |#1| (-463)))) (-3923 (($ (-655 $)) 153 (|has| |#1| (-463))) (($ $ $) 138 (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#1| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-924)))) (-2849 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-567)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-655 |#2|) (-655 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-655 |#2|) (-655 $)) 194)) (-2801 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2382 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) 215)) (-1753 (((-542 |#2|) $) 201) (((-782) $ |#2|) 196) (((-655 (-782)) $ (-655 |#2|)) 199)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| |#1| (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| |#1| (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| |#1| (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-3696 ((|#1| $) 134 (|has| |#1| (-463))) (($ $ |#2|) 137 (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-2882 (((-873) $) 159) (($ (-575)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-567))) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2212 (((-655 |#1|) $) 162)) (-3002 ((|#1| $ (-542 |#2|)) 80) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) 87 T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) 123 (|has| |#1| (-567)))) (-1989 (($) 12 T CONST)) (-2005 (($) 14 T CONST)) (-3428 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-3913 (((-112) $ $) 106)) (-4038 (($ $ |#1|) 132 (|has| |#1| (-373)))) (-4027 (($ $) 93) (($ $ $) 104)) (-4015 (($ $ $) 55)) (** (($ $ (-936)) 110) (($ $ (-782)) 109)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 96) (($ $ $) 72) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
-(((-1142 |#1| |#2|) (-964 |#1| (-542 |#2|) |#2|) (-1066) (-861)) (T -1142))
-NIL
-(-964 |#1| (-542 |#2|) |#2|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 |#2|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3921 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 128 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3895 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 124 (|has| |#1| (-38 (-418 (-575)))))) (-1521 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2479 (((-967 |#1|) $ (-782)) NIL) (((-967 |#1|) $ (-782) (-782)) NIL)) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-782) $ |#2|) NIL) (((-782) $ |#2| (-782)) NIL)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3135 (((-112) $) NIL)) (-2414 (($ $ (-655 |#2|) (-655 (-542 |#2|))) NIL) (($ $ |#2| (-542 |#2|)) NIL) (($ |#1| (-542 |#2|)) NIL) (($ $ |#2| (-782)) 63) (($ $ (-655 |#2|) (-655 (-782))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3461 (($ $) 122 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-4388 (($ $ |#2|) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-2087 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-418 (-575)))))) (-1985 (($ $ (-782)) 16)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2663 (($ $) 120 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (($ $ |#2| $) 106) (($ $ (-655 |#2|) (-655 $)) 99) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL)) (-2382 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) 109)) (-1753 (((-542 |#2|) $) NIL)) (-1764 (((-1 (-1174 |#3|) |#3|) (-655 |#2|) (-655 (-1174 |#3|))) 87)) (-1531 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 130 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 126 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 18)) (-2882 (((-873) $) 198) (($ (-575)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-567))) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#2|) 70) (($ |#3|) 68)) (-3002 ((|#1| $ (-542 |#2|)) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|) (-655 (-782))) NIL) ((|#3| $ (-782)) 43)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) 164 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 168 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-2912 (($ $) 170 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 166 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 162 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 52 T CONST)) (-2005 (($) 62 T CONST)) (-3428 (($ $ (-655 |#2|) (-655 (-782))) NIL) (($ $ |#2| (-782)) NIL) (($ $ (-655 |#2|)) NIL) (($ $ |#2|) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) 200 (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 66)) (** (($ $ (-936)) NIL) (($ $ (-782)) 77) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 112 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 65) (($ $ (-418 (-575))) 117 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 115 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1143 |#1| |#2| |#3|) (-13 (-751 |#1| |#2|) (-10 -8 (-15 -3002 (|#3| $ (-782))) (-15 -2882 ($ |#2|)) (-15 -2882 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1764 ((-1 (-1174 |#3|) |#3|) (-655 |#2|) (-655 (-1174 |#3|)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $ |#2| |#1|)) (-15 -2087 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1066) (-861) (-964 |#1| (-542 |#2|) |#2|)) (T -1143))
-((-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *2 (-964 *4 (-542 *5) *5)) (-5 *1 (-1143 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-861)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *2 (-861)) (-5 *1 (-1143 *3 *2 *4)) (-4 *4 (-964 *3 (-542 *2) *2)))) (-2882 (*1 *1 *2) (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2)) (-4 *2 (-964 *3 (-542 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2)) (-4 *2 (-964 *3 (-542 *4) *4)))) (-1764 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1174 *7))) (-4 *6 (-861)) (-4 *7 (-964 *5 (-542 *6) *6)) (-4 *5 (-1066)) (-5 *2 (-1 (-1174 *7) *7)) (-5 *1 (-1143 *5 *6 *7)))) (-4388 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-4 *2 (-861)) (-5 *1 (-1143 *3 *2 *4)) (-4 *4 (-964 *3 (-542 *2) *2)))) (-2087 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1143 *4 *3 *5))) (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)) (-4 *3 (-861)) (-5 *1 (-1143 *4 *3 *5)) (-4 *5 (-964 *4 (-542 *3) *3)))))
-(-13 (-751 |#1| |#2|) (-10 -8 (-15 -3002 (|#3| $ (-782))) (-15 -2882 ($ |#2|)) (-15 -2882 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1764 ((-1 (-1174 |#3|) |#3|) (-655 |#2|) (-655 (-1174 |#3|)))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $ |#2| |#1|)) (-15 -2087 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2859 (((-112) $ $) 7)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) 86)) (-4014 (((-655 $) (-655 |#4|)) 87) (((-655 $) (-655 |#4|) (-112)) 112)) (-1606 (((-655 |#3|) $) 34)) (-4419 (((-112) $) 27)) (-3414 (((-112) $) 18 (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) 102) (((-112) $) 98)) (-1479 ((|#4| |#4| $) 93)) (-3312 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 127)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) 28)) (-3133 (((-112) $ (-782)) 45)) (-3983 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3261 (($) 46 T CONST)) (-1756 (((-112) $) 23 (|has| |#1| (-567)))) (-1600 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4415 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1759 (((-112) $) 26 (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2762 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 37)) (-4400 (($ (-655 |#4|)) 36)) (-1969 (((-3 $ "failed") $) 83)) (-3355 ((|#4| |#4| $) 90)) (-4070 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3305 ((|#4| |#4| $) 88)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) 106)) (-3209 (((-112) |#4| $) 137)) (-2546 (((-112) |#4| $) 134)) (-1486 (((-112) |#4| $) 138) (((-112) $) 135)) (-3999 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) 105) (((-112) $) 104)) (-3757 ((|#3| $) 35)) (-3541 (((-112) $ (-782)) 44)) (-4252 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 48)) (-3717 (((-655 |#3|) $) 33)) (-1789 (((-112) |#3| $) 32)) (-3218 (((-112) $ (-782)) 43)) (-4264 (((-1176) $) 10)) (-3656 (((-3 |#4| (-655 $)) |#4| |#4| $) 129)) (-3822 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 128)) (-3651 (((-3 |#4| "failed") $) 84)) (-3232 (((-655 $) |#4| $) 130)) (-3533 (((-3 (-112) (-655 $)) |#4| $) 133)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1872 (((-655 $) |#4| $) 126) (((-655 $) (-655 |#4|) $) 125) (((-655 $) (-655 |#4|) (-655 $)) 124) (((-655 $) |#4| (-655 $)) 123)) (-2400 (($ |#4| $) 118) (($ (-655 |#4|) $) 117)) (-4212 (((-655 |#4|) $) 108)) (-1992 (((-112) |#4| $) 100) (((-112) $) 96)) (-4068 ((|#4| |#4| $) 91)) (-2057 (((-112) $ $) 111)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) 101) (((-112) $) 97)) (-1986 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1955 (((-3 |#4| "failed") $) 85)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3629 (((-3 $ "failed") $ |#4|) 79)) (-1985 (($ $ |#4|) 78) (((-655 $) |#4| $) 116) (((-655 $) |#4| (-655 $)) 115) (((-655 $) (-655 |#4|) $) 114) (((-655 $) (-655 |#4|) (-655 $)) 113)) (-2718 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) 39)) (-2017 (((-112) $) 42)) (-1393 (($) 41)) (-1753 (((-782) $) 107)) (-3922 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3076 (($ $) 40)) (-2613 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 61)) (-3273 (($ $ |#3|) 29)) (-2078 (($ $ |#3|) 31)) (-3663 (($ $) 89)) (-4049 (($ $ |#3|) 30)) (-2882 (((-873) $) 12) (((-655 |#4|) $) 38)) (-2936 (((-782) $) 77 (|has| |#3| (-378)))) (-3685 (((-112) $ $) 9)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-3039 (((-655 $) |#4| $) 122) (((-655 $) |#4| (-655 $)) 121) (((-655 $) (-655 |#4|) $) 120) (((-655 $) (-655 |#4|) (-655 $)) 119)) (-4121 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) 82)) (-2360 (((-112) |#4| $) 136)) (-4060 (((-112) |#3| $) 81)) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-1144 |#1| |#2| |#3| |#4|) (-141) (-463) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1144))
-NIL
-(-13 (-1126 |t#1| |t#2| |t#3| |t#4|) (-795 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-795 |#1| |#2| |#3| |#4|) . T) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1088 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1126 |#1| |#2| |#3| |#4|) . T) ((-1228 |#1| |#2| |#3| |#4|) . T) ((-1235) . T))
-((-3520 (((-655 |#2|) |#1|) 15)) (-2977 (((-655 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-655 |#2|) |#1|) 61)) (-1781 (((-655 |#2|) |#2| |#2| |#2|) 45) (((-655 |#2|) |#1|) 59)) (-2883 ((|#2| |#1|) 54)) (-4269 (((-2 (|:| |solns| (-655 |#2|)) (|:| |maps| (-655 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2455 (((-655 |#2|) |#2| |#2|) 42) (((-655 |#2|) |#1|) 58)) (-1552 (((-655 |#2|) |#2| |#2| |#2| |#2|) 46) (((-655 |#2|) |#1|) 60)) (-1854 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3658 ((|#2| |#2| |#2| |#2|) 51)) (-1954 ((|#2| |#2| |#2|) 50)) (-4333 ((|#2| |#2| |#2| |#2| |#2|) 52)))
-(((-1145 |#1| |#2|) (-10 -7 (-15 -3520 ((-655 |#2|) |#1|)) (-15 -2883 (|#2| |#1|)) (-15 -4269 ((-2 (|:| |solns| (-655 |#2|)) (|:| |maps| (-655 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2455 ((-655 |#2|) |#1|)) (-15 -1781 ((-655 |#2|) |#1|)) (-15 -1552 ((-655 |#2|) |#1|)) (-15 -2977 ((-655 |#2|) |#1|)) (-15 -2455 ((-655 |#2|) |#2| |#2|)) (-15 -1781 ((-655 |#2|) |#2| |#2| |#2|)) (-15 -1552 ((-655 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2977 ((-655 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1954 (|#2| |#2| |#2|)) (-15 -3658 (|#2| |#2| |#2| |#2|)) (-15 -4333 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1854 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1261 |#2|) (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (T -1145))
-((-1854 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-4333 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-3658 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-1954 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-2977 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-1552 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-1781 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-2455 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))) (-2977 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-1552 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-1781 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))) (-4269 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-2 (|:| |solns| (-655 *5)) (|:| |maps| (-655 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1145 *3 *5)) (-4 *3 (-1261 *5)))) (-2883 (*1 *2 *3) (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))) (-3520 (*1 *2 *3) (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575))))))) (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -3520 ((-655 |#2|) |#1|)) (-15 -2883 (|#2| |#1|)) (-15 -4269 ((-2 (|:| |solns| (-655 |#2|)) (|:| |maps| (-655 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2455 ((-655 |#2|) |#1|)) (-15 -1781 ((-655 |#2|) |#1|)) (-15 -1552 ((-655 |#2|) |#1|)) (-15 -2977 ((-655 |#2|) |#1|)) (-15 -2455 ((-655 |#2|) |#2| |#2|)) (-15 -1781 ((-655 |#2|) |#2| |#2| |#2|)) (-15 -1552 ((-655 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2977 ((-655 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1954 (|#2| |#2| |#2|)) (-15 -3658 (|#2| |#2| |#2| |#2|)) (-15 -4333 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1854 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2340 (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|))))) 118) (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194))) 117) (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|)))) 115) (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 113) (((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|)))) 97) (((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))) (-1194)) 98) (((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|))) 92) (((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)) (-1194)) 82)) (-2683 (((-655 (-655 (-325 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 111) (((-655 (-325 |#1|)) (-418 (-967 |#1|)) (-1194)) 54)) (-3283 (((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-418 (-967 |#1|)) (-1194)) 122) (((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194)) 121)))
-(((-1146 |#1|) (-10 -7 (-15 -2340 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -2340 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)))) (-15 -2340 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -2340 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2683 ((-655 (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -2683 ((-655 (-655 (-325 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -3283 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -3283 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-418 (-967 |#1|)) (-1194)))) (-13 (-316) (-148))) (T -1146))
-((-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-325 *5)))) (-5 *1 (-1146 *5)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-325 *5))) (-5 *1 (-1146 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *4))))) (-5 *1 (-1146 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-303 (-418 (-967 *5))))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *4))))) (-5 *1 (-1146 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1146 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1146 *5)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1146 *5)))))
-(-10 -7 (-15 -2340 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)) (-1194))) (-15 -2340 ((-655 (-303 (-325 |#1|))) (-418 (-967 |#1|)))) (-15 -2340 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -2340 ((-655 (-303 (-325 |#1|))) (-303 (-418 (-967 |#1|))))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-418 (-967 |#1|))))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -2340 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -2683 ((-655 (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -2683 ((-655 (-655 (-325 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -3283 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -3283 ((-1183 (-655 (-325 |#1|)) (-655 (-303 (-325 |#1|)))) (-418 (-967 |#1|)) (-1194))))
-((-2398 (((-418 (-1190 (-325 |#1|))) (-1285 (-325 |#1|)) (-418 (-1190 (-325 |#1|))) (-575)) 36)) (-3942 (((-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|)))) 48)))
-(((-1147 |#1|) (-10 -7 (-15 -3942 ((-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))))) (-15 -2398 ((-418 (-1190 (-325 |#1|))) (-1285 (-325 |#1|)) (-418 (-1190 (-325 |#1|))) (-575)))) (-567)) (T -1147))
-((-2398 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-418 (-1190 (-325 *5)))) (-5 *3 (-1285 (-325 *5))) (-5 *4 (-575)) (-4 *5 (-567)) (-5 *1 (-1147 *5)))) (-3942 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-418 (-1190 (-325 *3)))) (-4 *3 (-567)) (-5 *1 (-1147 *3)))))
-(-10 -7 (-15 -3942 ((-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))) (-418 (-1190 (-325 |#1|))))) (-15 -2398 ((-418 (-1190 (-325 |#1|))) (-1285 (-325 |#1|)) (-418 (-1190 (-325 |#1|))) (-575))))
-((-3520 (((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-325 |#1|))) (-655 (-1194))) 244) (((-655 (-303 (-325 |#1|))) (-325 |#1|) (-1194)) 23) (((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)) (-1194)) 29) (((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|))) 28) (((-655 (-303 (-325 |#1|))) (-325 |#1|)) 24)))
-(((-1148 |#1|) (-10 -7 (-15 -3520 ((-655 (-303 (-325 |#1|))) (-325 |#1|))) (-15 -3520 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)))) (-15 -3520 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)) (-1194))) (-15 -3520 ((-655 (-303 (-325 |#1|))) (-325 |#1|) (-1194))) (-15 -3520 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-325 |#1|))) (-655 (-1194))))) (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (T -1148))
-((-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1194))) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1148 *5)) (-5 *3 (-655 (-303 (-325 *5)))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5)) (-5 *3 (-325 *5)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5)) (-5 *3 (-303 (-325 *5))))) (-3520 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4)) (-5 *3 (-303 (-325 *4))))) (-3520 (*1 *2 *3) (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148))) (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4)) (-5 *3 (-325 *4)))))
-(-10 -7 (-15 -3520 ((-655 (-303 (-325 |#1|))) (-325 |#1|))) (-15 -3520 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)))) (-15 -3520 ((-655 (-303 (-325 |#1|))) (-303 (-325 |#1|)) (-1194))) (-15 -3520 ((-655 (-303 (-325 |#1|))) (-325 |#1|) (-1194))) (-15 -3520 ((-655 (-655 (-303 (-325 |#1|)))) (-655 (-303 (-325 |#1|))) (-655 (-1194)))))
-((-2492 ((|#2| |#2|) 28 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1623 ((|#2| |#2|) 27 (|has| |#1| (-861))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1149 |#1| |#2|) (-10 -7 (-15 -1623 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2492 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -1623 (|#2| |#2|)) (-15 -2492 (|#2| |#2|))) |%noBranch|)) (-1235) (-13 (-615 (-575) |#1|) (-10 -7 (-6 -4460) (-6 -4461)))) (T -1149))
-((-2492 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461)))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461)))))) (-2492 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461)))))) (-1623 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2)) (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461)))))))
-(-10 -7 (-15 -1623 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2492 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -1623 (|#2| |#2|)) (-15 -2492 (|#2| |#2|))) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-2621 (((-1182 3 |#1|) $) 141)) (-3307 (((-112) $) 101)) (-3474 (($ $ (-655 (-958 |#1|))) 44) (($ $ (-655 (-655 |#1|))) 104) (($ (-655 (-958 |#1|))) 103) (((-655 (-958 |#1|)) $) 102)) (-3758 (((-112) $) 72)) (-1838 (($ $ (-958 |#1|)) 76) (($ $ (-655 |#1|)) 81) (($ $ (-782)) 83) (($ (-958 |#1|)) 77) (((-958 |#1|) $) 75)) (-1538 (((-2 (|:| -2499 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782))) $) 139)) (-1336 (((-782) $) 53)) (-1687 (((-782) $) 52)) (-1707 (($ $ (-782) (-958 |#1|)) 67)) (-4361 (((-112) $) 111)) (-3649 (($ $ (-655 (-655 (-958 |#1|))) (-655 (-173)) (-173)) 118) (($ $ (-655 (-655 (-655 |#1|))) (-655 (-173)) (-173)) 120) (($ $ (-655 (-655 (-958 |#1|))) (-112) (-112)) 115) (($ $ (-655 (-655 (-655 |#1|))) (-112) (-112)) 127) (($ (-655 (-655 (-958 |#1|)))) 116) (($ (-655 (-655 (-958 |#1|))) (-112) (-112)) 117) (((-655 (-655 (-958 |#1|))) $) 114)) (-4167 (($ (-655 $)) 56) (($ $ $) 57)) (-3299 (((-655 (-173)) $) 133)) (-3938 (((-655 (-958 |#1|)) $) 130)) (-3455 (((-655 (-655 (-173))) $) 132)) (-2711 (((-655 (-655 (-655 (-958 |#1|)))) $) NIL)) (-4082 (((-655 (-655 (-655 (-782)))) $) 131)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2776 (((-782) $ (-655 (-958 |#1|))) 65)) (-3102 (((-112) $) 84)) (-2611 (($ $ (-655 (-958 |#1|))) 86) (($ $ (-655 (-655 |#1|))) 92) (($ (-655 (-958 |#1|))) 87) (((-655 (-958 |#1|)) $) 85)) (-2537 (($) 48) (($ (-1182 3 |#1|)) 49)) (-3076 (($ $) 63)) (-1350 (((-655 $) $) 62)) (-4095 (($ (-655 $)) 59)) (-3588 (((-655 $) $) 61)) (-2882 (((-873) $) 146)) (-4190 (((-112) $) 94)) (-2468 (($ $ (-655 (-958 |#1|))) 96) (($ $ (-655 (-655 |#1|))) 99) (($ (-655 (-958 |#1|))) 97) (((-655 (-958 |#1|)) $) 95)) (-2085 (($ $) 140)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1150 |#1|) (-1151 |#1|) (-1066)) (T -1150))
-NIL
-(-1151 |#1|)
-((-2859 (((-112) $ $) 7)) (-2621 (((-1182 3 |#1|) $) 14)) (-3307 (((-112) $) 30)) (-3474 (($ $ (-655 (-958 |#1|))) 34) (($ $ (-655 (-655 |#1|))) 33) (($ (-655 (-958 |#1|))) 32) (((-655 (-958 |#1|)) $) 31)) (-3758 (((-112) $) 45)) (-1838 (($ $ (-958 |#1|)) 50) (($ $ (-655 |#1|)) 49) (($ $ (-782)) 48) (($ (-958 |#1|)) 47) (((-958 |#1|) $) 46)) (-1538 (((-2 (|:| -2499 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782))) $) 16)) (-1336 (((-782) $) 59)) (-1687 (((-782) $) 60)) (-1707 (($ $ (-782) (-958 |#1|)) 51)) (-4361 (((-112) $) 22)) (-3649 (($ $ (-655 (-655 (-958 |#1|))) (-655 (-173)) (-173)) 29) (($ $ (-655 (-655 (-655 |#1|))) (-655 (-173)) (-173)) 28) (($ $ (-655 (-655 (-958 |#1|))) (-112) (-112)) 27) (($ $ (-655 (-655 (-655 |#1|))) (-112) (-112)) 26) (($ (-655 (-655 (-958 |#1|)))) 25) (($ (-655 (-655 (-958 |#1|))) (-112) (-112)) 24) (((-655 (-655 (-958 |#1|))) $) 23)) (-4167 (($ (-655 $)) 58) (($ $ $) 57)) (-3299 (((-655 (-173)) $) 17)) (-3938 (((-655 (-958 |#1|)) $) 21)) (-3455 (((-655 (-655 (-173))) $) 18)) (-2711 (((-655 (-655 (-655 (-958 |#1|)))) $) 19)) (-4082 (((-655 (-655 (-655 (-782)))) $) 20)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2776 (((-782) $ (-655 (-958 |#1|))) 52)) (-3102 (((-112) $) 40)) (-2611 (($ $ (-655 (-958 |#1|))) 44) (($ $ (-655 (-655 |#1|))) 43) (($ (-655 (-958 |#1|))) 42) (((-655 (-958 |#1|)) $) 41)) (-2537 (($) 62) (($ (-1182 3 |#1|)) 61)) (-3076 (($ $) 53)) (-1350 (((-655 $) $) 54)) (-4095 (($ (-655 $)) 56)) (-3588 (((-655 $) $) 55)) (-2882 (((-873) $) 12)) (-4190 (((-112) $) 35)) (-2468 (($ $ (-655 (-958 |#1|))) 39) (($ $ (-655 (-655 |#1|))) 38) (($ (-655 (-958 |#1|))) 37) (((-655 (-958 |#1|)) $) 36)) (-2085 (($ $) 15)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-1151 |#1|) (-141) (-1066)) (T -1151))
-((-2882 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-873)))) (-2537 (*1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-2537 (*1 *1 *2) (-12 (-5 *2 (-1182 3 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)))) (-1350 (*1 *2 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)))) (-3076 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-2776 (*1 *2 *1 *3) (-12 (-5 *3 (-655 (-958 *4))) (-4 *1 (-1151 *4)) (-4 *4 (-1066)) (-5 *2 (-782)))) (-1707 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-958 *4)) (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-958 *3)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-2611 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-2611 (*1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-2468 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-4190 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-3474 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3474 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-3649 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-655 (-958 *5)))) (-5 *3 (-655 (-173))) (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066)))) (-3649 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-655 (-173))) (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066)))) (-3649 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) (-3649 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-112)) (-4 *1 (-1151 *4)) (-4 *4 (-1066)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 *3)))) (-4 *3 (-1066)) (-4 *1 (-1151 *3)))) (-3649 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) (-4 *4 (-1066)) (-4 *1 (-1151 *4)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-958 *3)))))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))) (-4082 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-655 (-782))))))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-655 (-958 *3))))))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-173)))))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-173))))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -2499 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782)))))) (-2085 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-1182 3 *3)))))
-(-13 (-1117) (-10 -8 (-15 -2537 ($)) (-15 -2537 ($ (-1182 3 |t#1|))) (-15 -1687 ((-782) $)) (-15 -1336 ((-782) $)) (-15 -4167 ($ (-655 $))) (-15 -4167 ($ $ $)) (-15 -4095 ($ (-655 $))) (-15 -3588 ((-655 $) $)) (-15 -1350 ((-655 $) $)) (-15 -3076 ($ $)) (-15 -2776 ((-782) $ (-655 (-958 |t#1|)))) (-15 -1707 ($ $ (-782) (-958 |t#1|))) (-15 -1838 ($ $ (-958 |t#1|))) (-15 -1838 ($ $ (-655 |t#1|))) (-15 -1838 ($ $ (-782))) (-15 -1838 ($ (-958 |t#1|))) (-15 -1838 ((-958 |t#1|) $)) (-15 -3758 ((-112) $)) (-15 -2611 ($ $ (-655 (-958 |t#1|)))) (-15 -2611 ($ $ (-655 (-655 |t#1|)))) (-15 -2611 ($ (-655 (-958 |t#1|)))) (-15 -2611 ((-655 (-958 |t#1|)) $)) (-15 -3102 ((-112) $)) (-15 -2468 ($ $ (-655 (-958 |t#1|)))) (-15 -2468 ($ $ (-655 (-655 |t#1|)))) (-15 -2468 ($ (-655 (-958 |t#1|)))) (-15 -2468 ((-655 (-958 |t#1|)) $)) (-15 -4190 ((-112) $)) (-15 -3474 ($ $ (-655 (-958 |t#1|)))) (-15 -3474 ($ $ (-655 (-655 |t#1|)))) (-15 -3474 ($ (-655 (-958 |t#1|)))) (-15 -3474 ((-655 (-958 |t#1|)) $)) (-15 -3307 ((-112) $)) (-15 -3649 ($ $ (-655 (-655 (-958 |t#1|))) (-655 (-173)) (-173))) (-15 -3649 ($ $ (-655 (-655 (-655 |t#1|))) (-655 (-173)) (-173))) (-15 -3649 ($ $ (-655 (-655 (-958 |t#1|))) (-112) (-112))) (-15 -3649 ($ $ (-655 (-655 (-655 |t#1|))) (-112) (-112))) (-15 -3649 ($ (-655 (-655 (-958 |t#1|))))) (-15 -3649 ($ (-655 (-655 (-958 |t#1|))) (-112) (-112))) (-15 -3649 ((-655 (-655 (-958 |t#1|))) $)) (-15 -4361 ((-112) $)) (-15 -3938 ((-655 (-958 |t#1|)) $)) (-15 -4082 ((-655 (-655 (-655 (-782)))) $)) (-15 -2711 ((-655 (-655 (-655 (-958 |t#1|)))) $)) (-15 -3455 ((-655 (-655 (-173))) $)) (-15 -3299 ((-655 (-173)) $)) (-15 -1538 ((-2 (|:| -2499 (-782)) (|:| |curves| (-782)) (|:| |polygons| (-782)) (|:| |constructs| (-782))) $)) (-15 -2085 ($ $)) (-15 -2621 ((-1182 3 |t#1|) $)) (-15 -2882 ((-873) $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 184) (($ (-1199)) NIL) (((-1199) $) 7)) (-1977 (((-112) $ (|[\|\|]| (-535))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-687))) 27) (((-112) $ (|[\|\|]| (-1295))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-617))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1132))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-692))) 55) (((-112) $ (|[\|\|]| (-528))) 59) (((-112) $ (|[\|\|]| (-1083))) 63) (((-112) $ (|[\|\|]| (-1296))) 67) (((-112) $ (|[\|\|]| (-536))) 71) (((-112) $ (|[\|\|]| (-1168))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-682))) 83) (((-112) $ (|[\|\|]| (-320))) 87) (((-112) $ (|[\|\|]| (-1053))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-987))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-1107))) 107) (((-112) $ (|[\|\|]| (-1113))) 111) (((-112) $ (|[\|\|]| (-637))) 115) (((-112) $ (|[\|\|]| (-1184))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-489))) 131) (((-112) $ (|[\|\|]| (-603))) 135) (((-112) $ (|[\|\|]| (-517))) 139) (((-112) $ (|[\|\|]| (-1176))) 143) (((-112) $ (|[\|\|]| (-575))) 147)) (-3685 (((-112) $ $) NIL)) (-3132 (((-535) $) 20) (((-220) $) 24) (((-687) $) 28) (((-1295) $) 32) (((-139) $) 36) (((-617) $) 40) (((-134) $) 44) (((-1132) $) 48) (((-96) $) 52) (((-692) $) 56) (((-528) $) 60) (((-1083) $) 64) (((-1296) $) 68) (((-536) $) 72) (((-1168) $) 76) (((-155) $) 80) (((-682) $) 84) (((-320) $) 88) (((-1053) $) 92) (((-182) $) 96) (((-987) $) 100) (((-1090) $) 104) (((-1107) $) 108) (((-1113) $) 112) (((-637) $) 116) (((-1184) $) 120) (((-157) $) 124) (((-138) $) 128) (((-489) $) 132) (((-603) $) 136) (((-517) $) 140) (((-1176) $) 144) (((-575) $) 148)) (-3913 (((-112) $ $) NIL)))
-(((-1152) (-1154)) (T -1152))
-NIL
-(-1154)
-((-4205 (((-655 (-1199)) (-1176)) 9)))
-(((-1153) (-10 -7 (-15 -4205 ((-655 (-1199)) (-1176))))) (T -1153))
-((-4205 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-1153)))))
-(-10 -7 (-15 -4205 ((-655 (-1199)) (-1176))))
-((-2859 (((-112) $ $) 7)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-1199)) 17) (((-1199) $) 16)) (-1977 (((-112) $ (|[\|\|]| (-535))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-687))) 81) (((-112) $ (|[\|\|]| (-1295))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-617))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1132))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-692))) 67) (((-112) $ (|[\|\|]| (-528))) 65) (((-112) $ (|[\|\|]| (-1083))) 63) (((-112) $ (|[\|\|]| (-1296))) 61) (((-112) $ (|[\|\|]| (-536))) 59) (((-112) $ (|[\|\|]| (-1168))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-682))) 53) (((-112) $ (|[\|\|]| (-320))) 51) (((-112) $ (|[\|\|]| (-1053))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-987))) 45) (((-112) $ (|[\|\|]| (-1090))) 43) (((-112) $ (|[\|\|]| (-1107))) 41) (((-112) $ (|[\|\|]| (-1113))) 39) (((-112) $ (|[\|\|]| (-637))) 37) (((-112) $ (|[\|\|]| (-1184))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-489))) 29) (((-112) $ (|[\|\|]| (-603))) 27) (((-112) $ (|[\|\|]| (-517))) 25) (((-112) $ (|[\|\|]| (-1176))) 23) (((-112) $ (|[\|\|]| (-575))) 21)) (-3685 (((-112) $ $) 9)) (-3132 (((-535) $) 84) (((-220) $) 82) (((-687) $) 80) (((-1295) $) 78) (((-139) $) 76) (((-617) $) 74) (((-134) $) 72) (((-1132) $) 70) (((-96) $) 68) (((-692) $) 66) (((-528) $) 64) (((-1083) $) 62) (((-1296) $) 60) (((-536) $) 58) (((-1168) $) 56) (((-155) $) 54) (((-682) $) 52) (((-320) $) 50) (((-1053) $) 48) (((-182) $) 46) (((-987) $) 44) (((-1090) $) 42) (((-1107) $) 40) (((-1113) $) 38) (((-637) $) 36) (((-1184) $) 34) (((-157) $) 32) (((-138) $) 30) (((-489) $) 28) (((-603) $) 26) (((-517) $) 24) (((-1176) $) 22) (((-575) $) 20)) (-3913 (((-112) $ $) 6)))
-(((-1154) (-141)) (T -1154))
-((-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-535)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-220)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-687)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1295)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-139)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-617)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-134)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1132)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-96)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-692)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-528)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1083)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1296)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-536)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1168)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-155)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-682)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-320))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-320)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1053)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-182)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-987)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1090)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1107)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1113))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1113)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-637))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-637)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1184))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1184)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-157)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-138)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-489))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-489)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-603))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-603)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-517)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1176)))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-575)))))
-(-13 (-1100) (-1280) (-10 -8 (-15 -1977 ((-112) $ (|[\|\|]| (-535)))) (-15 -3132 ((-535) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-220)))) (-15 -3132 ((-220) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-687)))) (-15 -3132 ((-687) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1295)))) (-15 -3132 ((-1295) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-139)))) (-15 -3132 ((-139) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-617)))) (-15 -3132 ((-617) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-134)))) (-15 -3132 ((-134) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1132)))) (-15 -3132 ((-1132) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-96)))) (-15 -3132 ((-96) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-692)))) (-15 -3132 ((-692) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-528)))) (-15 -3132 ((-528) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1083)))) (-15 -3132 ((-1083) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1296)))) (-15 -3132 ((-1296) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-536)))) (-15 -3132 ((-536) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3132 ((-1168) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-155)))) (-15 -3132 ((-155) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-682)))) (-15 -3132 ((-682) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-320)))) (-15 -3132 ((-320) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1053)))) (-15 -3132 ((-1053) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-182)))) (-15 -3132 ((-182) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-987)))) (-15 -3132 ((-987) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3132 ((-1090) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1107)))) (-15 -3132 ((-1107) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1113)))) (-15 -3132 ((-1113) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-637)))) (-15 -3132 ((-637) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1184)))) (-15 -3132 ((-1184) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-157)))) (-15 -3132 ((-157) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-138)))) (-15 -3132 ((-138) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-489)))) (-15 -3132 ((-489) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-603)))) (-15 -3132 ((-603) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-517)))) (-15 -3132 ((-517) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3132 ((-1176) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-575)))) (-15 -3132 ((-575) $))))
-(((-93) . T) ((-102) . T) ((-627 #0=(-1199)) . T) ((-624 (-873)) . T) ((-624 #0#) . T) ((-501 #0#) . T) ((-1117) . T) ((-1100) . T) ((-1280) . T))
-((-3788 (((-1290) (-655 (-873))) 22) (((-1290) (-873)) 21)) (-3618 (((-1290) (-655 (-873))) 20) (((-1290) (-873)) 19)) (-2244 (((-1290) (-655 (-873))) 18) (((-1290) (-873)) 10) (((-1290) (-1176) (-873)) 16)))
-(((-1155) (-10 -7 (-15 -2244 ((-1290) (-1176) (-873))) (-15 -2244 ((-1290) (-873))) (-15 -3618 ((-1290) (-873))) (-15 -3788 ((-1290) (-873))) (-15 -2244 ((-1290) (-655 (-873)))) (-15 -3618 ((-1290) (-655 (-873)))) (-15 -3788 ((-1290) (-655 (-873)))))) (T -1155))
-((-3788 (*1 *2 *3) (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))) (-2244 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155)))))
-(-10 -7 (-15 -2244 ((-1290) (-1176) (-873))) (-15 -2244 ((-1290) (-873))) (-15 -3618 ((-1290) (-873))) (-15 -3788 ((-1290) (-873))) (-15 -2244 ((-1290) (-655 (-873)))) (-15 -3618 ((-1290) (-655 (-873)))) (-15 -3788 ((-1290) (-655 (-873)))))
-((-3306 (($ $ $) 10)) (-2605 (($ $) 9)) (-1610 (($ $ $) 13)) (-2416 (($ $ $) 15)) (-3477 (($ $ $) 12)) (-2986 (($ $ $) 14)) (-4118 (($ $) 17)) (-3579 (($ $) 16)) (-3863 (($ $) 6)) (-2023 (($ $ $) 11) (($ $) 7)) (-3550 (($ $ $) 8)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2039 ((|#1| $) 45)) (-2746 (((-112) $ (-783)) 8)) (-2574 (($) 7 T CONST)) (-4398 ((|#1| |#1| $) 47)) (-1748 ((|#1| $) 46)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2395 ((|#1| $) 40)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3079 ((|#1| $) 42)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-3297 (((-783) $) 44)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) 43)) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1140 |#1|) (-141) (-1237)) (T -1140))
+((-4398 (*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4462) (-15 -4398 (|t#1| |t#1| $)) (-15 -1748 (|t#1| $)) (-15 -2039 (|t#1| $)) (-15 -3297 ((-783) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-1462 ((|#3| $) 87)) (-2454 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4397 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-2085 (((-701 (-576)) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) 84) (((-701 |#3|) (-701 $)) 76) (((-701 |#3|) (-1287 $)) NIL)) (-2399 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2123 ((|#3| $) 89)) (-3699 ((|#4| $) 43)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-938)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95)))
+(((-1141 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2123 (|#3| |#1|)) (-15 -1462 (|#3| |#1|)) (-15 -3699 (|#4| |#1|)) (-15 -2085 ((-701 |#3|) (-1287 |#1|))) (-15 -2085 ((-701 |#3|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2858 (|#1| |#3|)) (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -4397 (|#3| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2858 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -2858 ((-874) |#1|))) (-1142 |#2| |#3| |#4| |#5|) (-783) (-1068) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1141))
+NIL
+(-10 -8 (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2123 (|#3| |#1|)) (-15 -1462 (|#3| |#1|)) (-15 -3699 (|#4| |#1|)) (-15 -2085 ((-701 |#3|) (-1287 |#1|))) (-15 -2085 ((-701 |#3|) (-701 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -2085 ((-701 (-576)) (-701 |#1|))) (-15 -2085 ((-701 (-576)) (-1287 |#1|))) (-15 -2858 (|#1| |#3|)) (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -4397 (|#3| |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2399 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2858 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1462 ((|#2| $) 80)) (-2561 (((-112) $) 122)) (-3161 (((-3 $ "failed") $ $) 20)) (-1625 (((-112) $) 120)) (-2746 (((-112) $ (-783)) 112)) (-4351 (($ |#2|) 83)) (-2574 (($) 18 T CONST)) (-1607 (($ $) 139 (|has| |#2| (-317)))) (-3475 ((|#3| $ (-576)) 134)) (-2454 (((-3 (-576) "failed") $) 97 (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 94 (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) 91)) (-4397 (((-576) $) 96 (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) 93 (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) 92)) (-2085 (((-701 (-576)) (-1287 $)) 89 (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 87 (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 86) (((-701 |#2|) (-701 $)) 85) (((-701 |#2|) (-1287 $)) 84)) (-4011 (((-3 $ "failed") $) 37)) (-4422 (((-783) $) 140 (|has| |#2| (-568)))) (-2767 ((|#2| $ (-576) (-576)) 132)) (-3975 (((-656 |#2|) $) 105 (|has| $ (-6 -4462)))) (-1838 (((-112) $) 35)) (-3664 (((-783) $) 141 (|has| |#2| (-568)))) (-2732 (((-656 |#4|) $) 142 (|has| |#2| (-568)))) (-4227 (((-783) $) 128)) (-4240 (((-783) $) 129)) (-3639 (((-112) $ (-783)) 113)) (-3891 ((|#2| $) 75 (|has| |#2| (-6 (-4464 "*"))))) (-2923 (((-576) $) 124)) (-1637 (((-576) $) 126)) (-3531 (((-656 |#2|) $) 104 (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) 102 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-3698 (((-576) $) 125)) (-2171 (((-576) $) 127)) (-4307 (($ (-656 (-656 |#2|))) 119)) (-2822 (($ (-1 |#2| |#2|) $) 109 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2| |#2|) $ $) 136) (($ (-1 |#2| |#2|) $) 110)) (-4101 (((-656 (-656 |#2|)) $) 130)) (-1684 (((-112) $ (-783)) 114)) (-2143 (((-1178) $) 10)) (-2975 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-3887 (((-1139) $) 11)) (-2825 (((-3 $ "failed") $ |#2|) 137 (|has| |#2| (-568)))) (-1910 (((-112) (-1 (-112) |#2|) $) 107 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 99 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 98 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) 118)) (-3001 (((-112) $) 115)) (-3849 (($) 116)) (-2099 ((|#2| $ (-576) (-576) |#2|) 133) ((|#2| $ (-576) (-576)) 131)) (-2399 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1196)) 55 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) 53 (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) 52 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 51 (|has| |#2| (-917 (-1196))))) (-2123 ((|#2| $) 79)) (-3245 (($ (-656 |#2|)) 82)) (-1856 (((-112) $) 121)) (-3699 ((|#3| $) 81)) (-3497 ((|#2| $) 76 (|has| |#2| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#2|) $) 106 (|has| $ (-6 -4462))) (((-783) |#2| $) 103 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 117)) (-3146 ((|#4| $ (-576)) 135)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 95 (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) 90)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2714 (((-112) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4462)))) (-1402 (((-112) $) 123)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1196)) 54 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) 50 (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) 49 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 48 (|has| |#2| (-917 (-1196))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#2|) 138 (|has| |#2| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 144) (($ |#2| $) 143) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-2845 (((-783) $) 111 (|has| $ (-6 -4462)))))
+(((-1142 |#1| |#2| |#3| |#4|) (-141) (-783) (-1068) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1142))
+((-4351 (*1 *1 *2) (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1142 *3 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-3497 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-3891 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-2975 (*1 *1 *1) (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))))
+(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1072 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -4351 ($ |t#2|)) (-15 -3245 ($ (-656 |t#2|))) (-15 -3699 (|t#3| $)) (-15 -1462 (|t#2| $)) (-15 -2123 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4464 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3497 (|t#2| $)) (-15 -3891 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -2975 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4464 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-234 $) -3739 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -3739 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-6 (-4464 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -3739 (|has| |#2| (-174)) (|has| |#2| (-6 (-4464 "*")))) ((-738) . T) ((-909 $ #2=(-1196)) -3739 (|has| |#2| (-917 (-1196))) (|has| |#2| (-915 (-1196)))) ((-915 (-1196)) |has| |#2| (-915 (-1196))) ((-917 #2#) -3739 (|has| |#2| (-917 (-1196))) (|has| |#2| (-915 (-1196)))) ((-1072 |#1| |#1| |#2| |#3| |#4|) . T) ((-1057 #0#) |has| |#2| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#2| (-1057 (-576))) ((-1057 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-2844 ((|#4| |#4|) 81)) (-1817 ((|#4| |#4|) 76)) (-1779 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|))) |#4| |#3|) 91)) (-1859 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2318 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1817 (|#4| |#4|)) (-15 -2318 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2844 (|#4| |#4|)) (-15 -1859 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1779 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1143))
+((-1779 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4)))) (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-1859 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(-10 -7 (-15 -1817 (|#4| |#4|)) (-15 -2318 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2844 (|#4| |#4|)) (-15 -1859 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1779 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4261 (-656 |#3|))) |#4| |#3|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 18)) (-1634 (((-656 |#2|) $) 174)) (-3440 (((-1192 $) $ |#2|) 60) (((-1192 |#1|) $) 49)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-2150 (($ $) 118 (|has| |#1| (-568)))) (-2637 (((-112) $) 120 (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#2| "failed") $) NIL)) (-4397 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#2| $) NIL)) (-2495 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-4404 (($ $) 217)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) 90)) (-3420 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-543 |#2|) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1838 (((-112) $) 20)) (-1890 (((-783) $) 30)) (-2441 (($ (-1192 |#1|) |#2|) 54) (($ (-1192 $) |#2|) 71)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) 38)) (-2428 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ |#2|) NIL)) (-4389 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-4149 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) 128)) (-1848 (((-3 |#2| "failed") $) 177)) (-4366 (($ $) 216)) (-4379 ((|#1| $) 43)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| |#2|) (|:| -2273 (-783))) "failed") $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) 39)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 148 (|has| |#1| (-464)))) (-3901 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2825 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-3880 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2399 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-4436 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4325 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2858 (((-874) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2461 (((-656 |#1|) $) 162)) (-4417 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) 87 T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2022 (($) 12 T CONST)) (-2038 (($) 14 T CONST)) (-3404 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3889 (((-112) $ $) 106)) (-4013 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-4002 (($ $) 93) (($ $ $) 104)) (-3990 (($ $ $) 55)) (** (($ $ (-938)) 110) (($ $ (-783)) 109)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL)))
+(((-1144 |#1| |#2|) (-966 |#1| (-543 |#2|) |#2|) (-1068) (-862)) (T -1144))
+NIL
+(-966 |#1| (-543 |#2|) |#2|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 |#2|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3897 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3871 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-1542 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2488 (((-969 |#1|) $ (-783)) NIL) (((-969 |#1|) $ (-783) (-783)) NIL)) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1711 (((-112) $) NIL)) (-2428 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3437 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-1850 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-2553 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3262 (($ $ (-783)) 16)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2656 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2399 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-4436 (((-543 |#2|) $) NIL)) (-4095 (((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|))) 87)) (-1553 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 18)) (-2858 (((-874) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-4417 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2888 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 52 T CONST)) (-2038 (($) 62 T CONST)) (-3404 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 66)) (** (($ $ (-938)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1145 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -4417 (|#3| $ (-783))) (-15 -2858 ($ |#2|)) (-15 -2858 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4095 ((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $ |#2| |#1|)) (-15 -2553 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1068) (-862) (-966 |#1| (-543 |#2|) |#2|)) (T -1145))
+((-4417 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-966 *4 (-543 *5) *5)) (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-2858 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) (-2858 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1176 *7))) (-4 *6 (-862)) (-4 *7 (-966 *5 (-543 *6) *6)) (-4 *5 (-1068)) (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1145 *5 *6 *7)))) (-1850 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *1 (-1145 *4 *3 *5)) (-4 *5 (-966 *4 (-543 *3) *3)))))
+(-13 (-752 |#1| |#2|) (-10 -8 (-15 -4417 (|#3| $ (-783))) (-15 -2858 ($ |#2|)) (-15 -2858 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4095 ((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $ |#2| |#1|)) (-15 -2553 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2835 (((-112) $ $) 7)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) 86)) (-1952 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1634 (((-656 |#3|) $) 34)) (-4001 (((-112) $) 27)) (-3169 (((-112) $) 18 (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) 102) (((-112) $) 98)) (-1778 ((|#4| |#4| $) 93)) (-3179 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| $) 127)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) 28)) (-2746 (((-112) $ (-783)) 45)) (-3959 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-2574 (($) 46 T CONST)) (-1516 (((-112) $) 23 (|has| |#1| (-568)))) (-2097 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3593 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3695 (((-112) $) 26 (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3390 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 37)) (-4397 (($ (-656 |#4|)) 36)) (-2003 (((-3 $ "failed") $) 83)) (-2040 ((|#4| |#4| $) 90)) (-3229 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3586 ((|#4| |#4| $) 88)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) 106)) (-3275 (((-112) |#4| $) 137)) (-4438 (((-112) |#4| $) 134)) (-4310 (((-112) |#4| $) 138) (((-112) $) 135)) (-3975 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) 105) (((-112) $) 104)) (-4402 ((|#3| $) 35)) (-3639 (((-112) $ (-783)) 44)) (-3531 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 48)) (-2804 (((-656 |#3|) $) 33)) (-2872 (((-112) |#3| $) 32)) (-1684 (((-112) $ (-783)) 43)) (-2143 (((-1178) $) 10)) (-3342 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-4362 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| |#4| $) 128)) (-3627 (((-3 |#4| "failed") $) 84)) (-1611 (((-656 $) |#4| $) 130)) (-4270 (((-3 (-112) (-656 $)) |#4| $) 133)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3310 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-1501 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-3025 (((-656 |#4|) $) 108)) (-2671 (((-112) |#4| $) 100) (((-112) $) 96)) (-2978 ((|#4| |#4| $) 91)) (-1700 (((-112) $ $) 111)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) 101) (((-112) $) 97)) (-3350 ((|#4| |#4| $) 92)) (-3887 (((-1139) $) 11)) (-1989 (((-3 |#4| "failed") $) 85)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2451 (((-3 $ "failed") $ |#4|) 79)) (-3262 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-1910 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) 39)) (-3001 (((-112) $) 42)) (-3849 (($) 41)) (-4436 (((-783) $) 107)) (-3902 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-3052 (($ $) 40)) (-2610 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 61)) (-4426 (($ $ |#3|) 29)) (-4127 (($ $ |#3|) 31)) (-2693 (($ $) 89)) (-3668 (($ $ |#3|) 30)) (-2858 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3506 (((-783) $) 77 (|has| |#3| (-379)))) (-2690 (((-112) $ $) 9)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-3828 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2714 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) 82)) (-2212 (((-112) |#4| $) 136)) (-2576 (((-112) |#3| $) 81)) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-1146 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1146))
+NIL
+(-13 (-1128 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T))
+((-2783 (((-656 |#2|) |#1|) 15)) (-2243 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-1965 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-2521 ((|#2| |#1|) 54)) (-1382 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2466 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-3358 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-4172 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-3441 ((|#2| |#2| |#2| |#2|) 51)) (-3839 ((|#2| |#2| |#2|) 50)) (-3638 ((|#2| |#2| |#2| |#2| |#2|) 52)))
+(((-1147 |#1| |#2|) (-10 -7 (-15 -2783 ((-656 |#2|) |#1|)) (-15 -2521 (|#2| |#1|)) (-15 -1382 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2466 ((-656 |#2|) |#1|)) (-15 -1965 ((-656 |#2|) |#1|)) (-15 -3358 ((-656 |#2|) |#1|)) (-15 -2243 ((-656 |#2|) |#1|)) (-15 -2466 ((-656 |#2|) |#2| |#2|)) (-15 -1965 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3358 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2243 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3839 (|#2| |#2| |#2|)) (-15 -3441 (|#2| |#2| |#2| |#2|)) (-15 -3638 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4172 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1263 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1147))
+((-4172 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-3638 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-3441 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-3839 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-2243 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-3358 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-1965 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-2466 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-2243 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-1382 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1147 *3 *5)) (-4 *3 (-1263 *5)))) (-2521 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -2783 ((-656 |#2|) |#1|)) (-15 -2521 (|#2| |#1|)) (-15 -1382 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2466 ((-656 |#2|) |#1|)) (-15 -1965 ((-656 |#2|) |#1|)) (-15 -3358 ((-656 |#2|) |#1|)) (-15 -2243 ((-656 |#2|) |#1|)) (-15 -2466 ((-656 |#2|) |#2| |#2|)) (-15 -1965 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3358 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2243 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3839 (|#2| |#2| |#2|)) (-15 -3441 (|#2| |#2| |#2| |#2|)) (-15 -3638 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4172 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2730 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1196)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1196)) 82)) (-2866 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 111) (((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1196)) 54)) (-2982 (((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1196)) 122) (((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196)) 121)))
+(((-1148 |#1|) (-10 -7 (-15 -2730 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -2730 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)))) (-15 -2730 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -2730 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2866 ((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -2866 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2982 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -2982 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1196)))) (-13 (-317) (-148))) (T -1148))
+((-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1148 *5)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1148 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 *5))))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1148 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1148 *5)))))
+(-10 -7 (-15 -2730 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -2730 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)))) (-15 -2730 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -2730 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -2730 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2866 ((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -2866 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2982 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -2982 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1196))))
+((-4420 (((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)) 36)) (-2762 (((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|)))) 48)))
+(((-1149 |#1|) (-10 -7 (-15 -2762 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -4420 ((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)))) (-568)) (T -1149))
+((-4420 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1149 *5)))) (-2762 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1149 *3)))))
+(-10 -7 (-15 -2762 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -4420 ((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576))))
+((-2783 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24)))
+(((-1150 |#1|) (-10 -7 (-15 -2783 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2783 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2783 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196))) (-15 -2783 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -2783 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (T -1150))
+((-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-326 *5)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-304 (-326 *5))))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-304 (-326 *4))))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-326 *4)))))
+(-10 -7 (-15 -2783 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2783 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2783 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196))) (-15 -2783 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -2783 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196)))))
+((-2999 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-3366 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -3366 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2999 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -3366 (|#2| |#2|)) (-15 -2999 (|#2| |#2|))) |%noBranch|)) (-1237) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4462) (-6 -4463)))) (T -1151))
+((-2999 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463)))))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463)))))) (-2999 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463)))))) (-3366 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463)))))))
+(-10 -7 (-15 -3366 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2999 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -3366 (|#2| |#2|)) (-15 -2999 (|#2| |#2|))) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-2455 (((-1184 3 |#1|) $) 141)) (-3798 (((-112) $) 101)) (-4318 (($ $ (-656 (-960 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-960 |#1|))) 103) (((-656 (-960 |#1|)) $) 102)) (-1376 (((-112) $) 72)) (-1872 (($ $ (-960 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-960 |#1|)) 77) (((-960 |#1|) $) 75)) (-1560 (((-2 (|:| -2512 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-4081 (((-783) $) 53)) (-2719 (((-783) $) 52)) (-3050 (($ $ (-783) (-960 |#1|)) 67)) (-4237 (((-112) $) 111)) (-3873 (($ $ (-656 (-656 (-960 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-960 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-960 |#1|)))) 116) (($ (-656 (-656 (-960 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-960 |#1|))) $) 114)) (-3343 (($ (-656 $)) 56) (($ $ $) 57)) (-4143 (((-656 (-173)) $) 133)) (-3915 (((-656 (-960 |#1|)) $) 130)) (-2391 (((-656 (-656 (-173))) $) 132)) (-2460 (((-656 (-656 (-656 (-960 |#1|)))) $) NIL)) (-2129 (((-656 (-656 (-656 (-783)))) $) 131)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4249 (((-783) $ (-656 (-960 |#1|))) 65)) (-1780 (((-112) $) 84)) (-4192 (($ $ (-656 (-960 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-960 |#1|))) 87) (((-656 (-960 |#1|)) $) 85)) (-2797 (($) 48) (($ (-1184 3 |#1|)) 49)) (-3052 (($ $) 63)) (-3243 (((-656 $) $) 62)) (-2033 (($ (-656 $)) 59)) (-3841 (((-656 $) $) 61)) (-2858 (((-874) $) 146)) (-3559 (((-112) $) 94)) (-3810 (($ $ (-656 (-960 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-960 |#1|))) 97) (((-656 (-960 |#1|)) $) 95)) (-2363 (($ $) 140)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1152 |#1|) (-1153 |#1|) (-1068)) (T -1152))
+NIL
+(-1153 |#1|)
+((-2835 (((-112) $ $) 7)) (-2455 (((-1184 3 |#1|) $) 14)) (-3798 (((-112) $) 30)) (-4318 (($ $ (-656 (-960 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-960 |#1|))) 32) (((-656 (-960 |#1|)) $) 31)) (-1376 (((-112) $) 45)) (-1872 (($ $ (-960 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-960 |#1|)) 47) (((-960 |#1|) $) 46)) (-1560 (((-2 (|:| -2512 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-4081 (((-783) $) 59)) (-2719 (((-783) $) 60)) (-3050 (($ $ (-783) (-960 |#1|)) 51)) (-4237 (((-112) $) 22)) (-3873 (($ $ (-656 (-656 (-960 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-960 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-960 |#1|)))) 25) (($ (-656 (-656 (-960 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-960 |#1|))) $) 23)) (-3343 (($ (-656 $)) 58) (($ $ $) 57)) (-4143 (((-656 (-173)) $) 17)) (-3915 (((-656 (-960 |#1|)) $) 21)) (-2391 (((-656 (-656 (-173))) $) 18)) (-2460 (((-656 (-656 (-656 (-960 |#1|)))) $) 19)) (-2129 (((-656 (-656 (-656 (-783)))) $) 20)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4249 (((-783) $ (-656 (-960 |#1|))) 52)) (-1780 (((-112) $) 40)) (-4192 (($ $ (-656 (-960 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-960 |#1|))) 42) (((-656 (-960 |#1|)) $) 41)) (-2797 (($) 62) (($ (-1184 3 |#1|)) 61)) (-3052 (($ $) 53)) (-3243 (((-656 $) $) 54)) (-2033 (($ (-656 $)) 56)) (-3841 (((-656 $) $) 55)) (-2858 (((-874) $) 12)) (-3559 (((-112) $) 35)) (-3810 (($ $ (-656 (-960 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-960 |#1|))) 37) (((-656 (-960 |#1|)) $) 36)) (-2363 (($ $) 15)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-1153 |#1|) (-141) (-1068)) (T -1153))
+((-2858 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-874)))) (-2797 (*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-2797 (*1 *1 *2) (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3343 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3841 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))) (-3243 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))) (-3052 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) (-5 *2 (-783)))) (-3050 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1872 (*1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-1872 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-960 *3)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4192 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3810 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3810 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-3559 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4318 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3873 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-960 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3873 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3873 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3873 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 *3)))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3873 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *4 (-1068)) (-4 *1 (-1153 *4)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-960 *3)))))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-656 (-960 *3))))))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-173)))))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-173))))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2512 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-2363 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1184 3 *3)))))
+(-13 (-1119) (-10 -8 (-15 -2797 ($)) (-15 -2797 ($ (-1184 3 |t#1|))) (-15 -2719 ((-783) $)) (-15 -4081 ((-783) $)) (-15 -3343 ($ (-656 $))) (-15 -3343 ($ $ $)) (-15 -2033 ($ (-656 $))) (-15 -3841 ((-656 $) $)) (-15 -3243 ((-656 $) $)) (-15 -3052 ($ $)) (-15 -4249 ((-783) $ (-656 (-960 |t#1|)))) (-15 -3050 ($ $ (-783) (-960 |t#1|))) (-15 -1872 ($ $ (-960 |t#1|))) (-15 -1872 ($ $ (-656 |t#1|))) (-15 -1872 ($ $ (-783))) (-15 -1872 ($ (-960 |t#1|))) (-15 -1872 ((-960 |t#1|) $)) (-15 -1376 ((-112) $)) (-15 -4192 ($ $ (-656 (-960 |t#1|)))) (-15 -4192 ($ $ (-656 (-656 |t#1|)))) (-15 -4192 ($ (-656 (-960 |t#1|)))) (-15 -4192 ((-656 (-960 |t#1|)) $)) (-15 -1780 ((-112) $)) (-15 -3810 ($ $ (-656 (-960 |t#1|)))) (-15 -3810 ($ $ (-656 (-656 |t#1|)))) (-15 -3810 ($ (-656 (-960 |t#1|)))) (-15 -3810 ((-656 (-960 |t#1|)) $)) (-15 -3559 ((-112) $)) (-15 -4318 ($ $ (-656 (-960 |t#1|)))) (-15 -4318 ($ $ (-656 (-656 |t#1|)))) (-15 -4318 ($ (-656 (-960 |t#1|)))) (-15 -4318 ((-656 (-960 |t#1|)) $)) (-15 -3798 ((-112) $)) (-15 -3873 ($ $ (-656 (-656 (-960 |t#1|))) (-656 (-173)) (-173))) (-15 -3873 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -3873 ($ $ (-656 (-656 (-960 |t#1|))) (-112) (-112))) (-15 -3873 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -3873 ($ (-656 (-656 (-960 |t#1|))))) (-15 -3873 ($ (-656 (-656 (-960 |t#1|))) (-112) (-112))) (-15 -3873 ((-656 (-656 (-960 |t#1|))) $)) (-15 -4237 ((-112) $)) (-15 -3915 ((-656 (-960 |t#1|)) $)) (-15 -2129 ((-656 (-656 (-656 (-783)))) $)) (-15 -2460 ((-656 (-656 (-656 (-960 |t#1|)))) $)) (-15 -2391 ((-656 (-656 (-173))) $)) (-15 -4143 ((-656 (-173)) $)) (-15 -1560 ((-2 (|:| -2512 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -2363 ($ $)) (-15 -2455 ((-1184 3 |t#1|) $)) (-15 -2858 ((-874) $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 184) (($ (-1201)) NIL) (((-1201) $) 7)) (-2012 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1297))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1134))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1085))) 63) (((-112) $ (|[\|\|]| (-1298))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1170))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1055))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-989))) 99) (((-112) $ (|[\|\|]| (-1092))) 103) (((-112) $ (|[\|\|]| (-1109))) 107) (((-112) $ (|[\|\|]| (-1115))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1186))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1178))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-2690 (((-112) $ $) NIL)) (-3108 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1297) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1134) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1085) $) 64) (((-1298) $) 68) (((-537) $) 72) (((-1170) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1055) $) 92) (((-182) $) 96) (((-989) $) 100) (((-1092) $) 104) (((-1109) $) 108) (((-1115) $) 112) (((-638) $) 116) (((-1186) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1178) $) 144) (((-576) $) 148)) (-3889 (((-112) $ $) NIL)))
+(((-1154) (-1156)) (T -1154))
+NIL
+(-1156)
+((-4185 (((-656 (-1201)) (-1178)) 9)))
+(((-1155) (-10 -7 (-15 -4185 ((-656 (-1201)) (-1178))))) (T -1155))
+((-4185 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-1155)))))
+(-10 -7 (-15 -4185 ((-656 (-1201)) (-1178))))
+((-2835 (((-112) $ $) 7)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-2012 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1297))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1134))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1085))) 63) (((-112) $ (|[\|\|]| (-1298))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1170))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1055))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-989))) 45) (((-112) $ (|[\|\|]| (-1092))) 43) (((-112) $ (|[\|\|]| (-1109))) 41) (((-112) $ (|[\|\|]| (-1115))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1186))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1178))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-2690 (((-112) $ $) 9)) (-3108 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1297) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1134) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1085) $) 62) (((-1298) $) 60) (((-537) $) 58) (((-1170) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1055) $) 48) (((-182) $) 46) (((-989) $) 44) (((-1092) $) 42) (((-1109) $) 40) (((-1115) $) 38) (((-638) $) 36) (((-1186) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1178) $) 22) (((-576) $) 20)) (-3889 (((-112) $ $) 6)))
(((-1156) (-141)) (T -1156))
-((-4118 (*1 *1 *1) (-4 *1 (-1156))) (-3579 (*1 *1 *1) (-4 *1 (-1156))) (-2416 (*1 *1 *1 *1) (-4 *1 (-1156))) (-2986 (*1 *1 *1 *1) (-4 *1 (-1156))) (-1610 (*1 *1 *1 *1) (-4 *1 (-1156))) (-3477 (*1 *1 *1 *1) (-4 *1 (-1156))) (-2023 (*1 *1 *1 *1) (-4 *1 (-1156))) (-3306 (*1 *1 *1 *1) (-4 *1 (-1156))) (-2605 (*1 *1 *1) (-4 *1 (-1156))) (-3550 (*1 *1 *1 *1) (-4 *1 (-1156))) (-2023 (*1 *1 *1) (-4 *1 (-1156))) (-3863 (*1 *1 *1) (-4 *1 (-1156))))
-(-13 (-10 -8 (-15 -3863 ($ $)) (-15 -2023 ($ $)) (-15 -3550 ($ $ $)) (-15 -2605 ($ $)) (-15 -3306 ($ $ $)) (-15 -2023 ($ $ $)) (-15 -3477 ($ $ $)) (-15 -1610 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2416 ($ $ $)) (-15 -3579 ($ $)) (-15 -4118 ($ $))))
-((-2859 (((-112) $ $) 44)) (-4181 ((|#1| $) 17)) (-2183 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2214 (((-112) $) 19)) (-2997 (($ $ |#1|) 30)) (-3804 (($ $ (-112)) 32)) (-2170 (($ $) 33)) (-4057 (($ $ |#2|) 31)) (-4264 (((-1176) $) NIL)) (-4241 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3912 (((-1137) $) NIL)) (-2017 (((-112) $) 16)) (-1393 (($) 13)) (-3076 (($ $) 29)) (-2893 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) 23) (((-655 $) (-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|)))) 26) (((-655 $) |#1| (-655 |#2|)) 28)) (-3686 ((|#2| $) 18)) (-2882 (((-873) $) 53)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 42)))
-(((-1157 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -1393 ($)) (-15 -2017 ((-112) $)) (-15 -4181 (|#1| $)) (-15 -3686 (|#2| $)) (-15 -2214 ((-112) $)) (-15 -2893 ($ |#1| |#2| (-112))) (-15 -2893 ($ |#1| |#2|)) (-15 -2893 ($ (-2 (|:| |val| |#1|) (|:| -4270 |#2|)))) (-15 -2893 ((-655 $) (-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))))) (-15 -2893 ((-655 $) |#1| (-655 |#2|))) (-15 -3076 ($ $)) (-15 -2997 ($ $ |#1|)) (-15 -4057 ($ $ |#2|)) (-15 -3804 ($ $ (-112))) (-15 -2170 ($ $)) (-15 -4241 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2183 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1117) (-34)) (-13 (-1117) (-34))) (T -1157))
-((-1393 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-4181 (*1 *2 *1) (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *2 *3)) (-4 *3 (-13 (-1117) (-34))))) (-3686 (*1 *2 *1) (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *3 *2)) (-4 *3 (-13 (-1117) (-34))))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4270 *4))) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1157 *3 *4)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-655 (-2 (|:| |val| *4) (|:| -4270 *5)))) (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-655 (-1157 *4 *5))) (-5 *1 (-1157 *4 *5)))) (-2893 (*1 *2 *3 *4) (-12 (-5 *4 (-655 *5)) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-655 (-1157 *3 *5))) (-5 *1 (-1157 *3 *5)) (-4 *3 (-13 (-1117) (-34))))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2997 (*1 *1 *1 *2) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-4057 (*1 *1 *1 *2) (-12 (-5 *1 (-1157 *3 *2)) (-4 *3 (-13 (-1117) (-34))) (-4 *2 (-13 (-1117) (-34))))) (-3804 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-4241 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *5 *6)))) (-2183 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34))))))
-(-13 (-1117) (-10 -8 (-15 -1393 ($)) (-15 -2017 ((-112) $)) (-15 -4181 (|#1| $)) (-15 -3686 (|#2| $)) (-15 -2214 ((-112) $)) (-15 -2893 ($ |#1| |#2| (-112))) (-15 -2893 ($ |#1| |#2|)) (-15 -2893 ($ (-2 (|:| |val| |#1|) (|:| -4270 |#2|)))) (-15 -2893 ((-655 $) (-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))))) (-15 -2893 ((-655 $) |#1| (-655 |#2|))) (-15 -3076 ($ $)) (-15 -2997 ($ $ |#1|)) (-15 -4057 ($ $ |#2|)) (-15 -3804 ($ $ (-112))) (-15 -2170 ($ $)) (-15 -4241 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2183 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-2859 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-4181 (((-1157 |#1| |#2|) $) 27)) (-2306 (($ $) 91)) (-4262 (((-112) (-1157 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3810 (($ $ $ (-655 (-1157 |#1| |#2|))) 108) (($ $ $ (-655 (-1157 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3133 (((-112) $ (-782)) NIL)) (-2328 (((-1157 |#1| |#2|) $ (-1157 |#1| |#2|)) 46 (|has| $ (-6 -4461)))) (-3052 (((-1157 |#1| |#2|) $ "value" (-1157 |#1| |#2|)) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 44 (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-4244 (((-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) $) 95)) (-2375 (($ (-1157 |#1| |#2|) $) 42)) (-3631 (($ (-1157 |#1| |#2|) $) 34)) (-3999 (((-655 (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 54)) (-3274 (((-112) (-1157 |#1| |#2|) $) 97)) (-2510 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 (-1157 |#1| |#2|)) $) 58 (|has| $ (-6 -4460)))) (-1322 (((-112) (-1157 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-1157 |#1| |#2|) (-1117))))) (-2844 (($ (-1 (-1157 |#1| |#2|) (-1157 |#1| |#2|)) $) 50 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-1157 |#1| |#2|) (-1157 |#1| |#2|)) $) 49)) (-3218 (((-112) $ (-782)) NIL)) (-2476 (((-655 (-1157 |#1| |#2|)) $) 56)) (-1902 (((-112) $) 45)) (-4264 (((-1176) $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3912 (((-1137) $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-2599 (((-3 $ "failed") $) 89)) (-2718 (((-112) (-1 (-112) (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-1157 |#1| |#2|)))) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117)))) (($ $ (-303 (-1157 |#1| |#2|))) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117)))) (($ $ (-1157 |#1| |#2|) (-1157 |#1| |#2|)) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117)))) (($ $ (-655 (-1157 |#1| |#2|)) (-655 (-1157 |#1| |#2|))) NIL (-12 (|has| (-1157 |#1| |#2|) (-318 (-1157 |#1| |#2|))) (|has| (-1157 |#1| |#2|) (-1117))))) (-2391 (((-112) $ $) 53)) (-2017 (((-112) $) 24)) (-1393 (($) 26)) (-2065 (((-1157 |#1| |#2|) $ "value") NIL)) (-1816 (((-575) $ $) NIL)) (-3482 (((-112) $) 47)) (-3922 (((-782) (-1 (-112) (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460))) (((-782) (-1157 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-1157 |#1| |#2|) (-1117))))) (-3076 (($ $) 52)) (-2893 (($ (-1157 |#1| |#2|)) 10) (($ |#1| |#2| (-655 $)) 13) (($ |#1| |#2| (-655 (-1157 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-655 |#2|)) 18)) (-1601 (((-655 |#2|) $) 96)) (-2882 (((-873) $) 87 (|has| (-1157 |#1| |#2|) (-624 (-873))))) (-3620 (((-655 $) $) 31)) (-2603 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-3685 (((-112) $ $) NIL (|has| (-1157 |#1| |#2|) (-1117)))) (-4121 (((-112) (-1 (-112) (-1157 |#1| |#2|)) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 70 (|has| (-1157 |#1| |#2|) (-1117)))) (-2869 (((-782) $) 64 (|has| $ (-6 -4460)))))
-(((-1158 |#1| |#2|) (-13 (-1027 (-1157 |#1| |#2|)) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2599 ((-3 $ "failed") $)) (-15 -2306 ($ $)) (-15 -2893 ($ (-1157 |#1| |#2|))) (-15 -2893 ($ |#1| |#2| (-655 $))) (-15 -2893 ($ |#1| |#2| (-655 (-1157 |#1| |#2|)))) (-15 -2893 ($ |#1| |#2| |#1| (-655 |#2|))) (-15 -1601 ((-655 |#2|) $)) (-15 -4244 ((-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) $)) (-15 -3274 ((-112) (-1157 |#1| |#2|) $)) (-15 -4262 ((-112) (-1157 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3631 ($ (-1157 |#1| |#2|) $)) (-15 -2375 ($ (-1157 |#1| |#2|) $)) (-15 -3810 ($ $ $ (-655 (-1157 |#1| |#2|)))) (-15 -3810 ($ $ $ (-655 (-1157 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1117) (-34)) (-13 (-1117) (-34))) (T -1158))
-((-2599 (*1 *1 *1) (|partial| -12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-655 (-1158 *2 *3))) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-655 (-1157 *2 *3))) (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34))) (-5 *1 (-1158 *2 *3)))) (-2893 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-655 *3)) (-4 *3 (-13 (-1117) (-34))) (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34))))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-655 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-4244 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4)))) (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))) (-3274 (*1 *2 *3 *1) (-12 (-5 *3 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)))) (-4262 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1157 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *5 *6)))) (-3631 (*1 *1 *2 *1) (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-3810 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-655 (-1157 *3 *4))) (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))) (-3810 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-1157 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34))) (-5 *1 (-1158 *4 *5)))))
-(-13 (-1027 (-1157 |#1| |#2|)) (-10 -8 (-6 -4461) (-6 -4460) (-15 -2599 ((-3 $ "failed") $)) (-15 -2306 ($ $)) (-15 -2893 ($ (-1157 |#1| |#2|))) (-15 -2893 ($ |#1| |#2| (-655 $))) (-15 -2893 ($ |#1| |#2| (-655 (-1157 |#1| |#2|)))) (-15 -2893 ($ |#1| |#2| |#1| (-655 |#2|))) (-15 -1601 ((-655 |#2|) $)) (-15 -4244 ((-655 (-2 (|:| |val| |#1|) (|:| -4270 |#2|))) $)) (-15 -3274 ((-112) (-1157 |#1| |#2|) $)) (-15 -4262 ((-112) (-1157 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3631 ($ (-1157 |#1| |#2|) $)) (-15 -2375 ($ (-1157 |#1| |#2|) $)) (-15 -3810 ($ $ $ (-655 (-1157 |#1| |#2|)))) (-15 -3810 ($ $ $ (-655 (-1157 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3153 (($ $) NIL)) (-1448 ((|#2| $) NIL)) (-3684 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2525 (($ (-700 |#2|)) 56)) (-1938 (((-112) $) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-1890 (($ |#2|) 14)) (-3261 (($) NIL T CONST)) (-3699 (($ $) 69 (|has| |#2| (-316)))) (-2320 (((-245 |#1| |#2|) $ (-575)) 42)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 |#2| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) ((|#2| $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) 83)) (-4422 (((-782) $) 71 (|has| |#2| (-567)))) (-2786 ((|#2| $ (-575) (-575)) NIL)) (-3999 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3900 (((-112) $) NIL)) (-3202 (((-782) $) 73 (|has| |#2| (-567)))) (-3216 (((-655 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-567)))) (-4243 (((-782) $) NIL)) (-2303 (($ |#2|) 25)) (-4255 (((-782) $) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2314 ((|#2| $) 67 (|has| |#2| (-6 (-4462 "*"))))) (-4274 (((-575) $) NIL)) (-1477 (((-575) $) NIL)) (-4252 (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3093 (((-575) $) NIL)) (-4180 (((-575) $) NIL)) (-4316 (($ (-655 (-655 |#2|))) 37)) (-2844 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3194 (((-655 (-655 |#2|)) $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-1729 (((-3 $ "failed") $) 80 (|has| |#2| (-373)))) (-3912 (((-1137) $) NIL)) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567)))) (-2718 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ (-575) (-575) |#2|) NIL) ((|#2| $ (-575) (-575)) NIL)) (-2382 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-4128 ((|#2| $) NIL)) (-2377 (($ (-655 |#2|)) 50)) (-1940 (((-112) $) NIL)) (-3961 (((-245 |#1| |#2|) $) NIL)) (-4029 ((|#2| $) 65 (|has| |#2| (-6 (-4462 "*"))))) (-3922 (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-3076 (($ $) NIL)) (-2613 (((-547) $) 89 (|has| |#2| (-625 (-547))))) (-2324 (((-245 |#1| |#2|) $ (-575)) 44)) (-2882 (((-873) $) 47) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#2| (-1055 (-418 (-575))))) (($ |#2|) NIL) (((-700 |#2|) $) 52)) (-4421 (((-782)) 23 T CONST)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3229 (((-112) $) NIL)) (-1989 (($) 16 T CONST)) (-2005 (($) 21 T CONST)) (-3428 (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-782)) NIL (|has| |#2| (-237))) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) 63) (($ $ (-575)) 82 (|has| |#2| (-373)))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1159 |#1| |#2|) (-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-10 -8 (-15 -2303 ($ |#2|)) (-15 -3153 ($ $)) (-15 -2525 ($ (-700 |#2|))) (IF (|has| |#2| (-6 (-4462 "*"))) (-6 -4449) |%noBranch|) (IF (|has| |#2| (-6 (-4462 "*"))) (IF (|has| |#2| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|))) (-782) (-1066)) (T -1159))
-((-2303 (*1 *1 *2) (-12 (-5 *1 (-1159 *3 *2)) (-14 *3 (-782)) (-4 *2 (-1066)))) (-3153 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-14 *2 (-782)) (-4 *3 (-1066)))) (-2525 (*1 *1 *2) (-12 (-5 *2 (-700 *4)) (-4 *4 (-1066)) (-5 *1 (-1159 *3 *4)) (-14 *3 (-782)))))
-(-13 (-1140 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-624 (-700 |#2|)) (-10 -8 (-15 -2303 ($ |#2|)) (-15 -3153 ($ $)) (-15 -2525 ($ (-700 |#2|))) (IF (|has| |#2| (-6 (-4462 "*"))) (-6 -4449) |%noBranch|) (IF (|has| |#2| (-6 (-4462 "*"))) (IF (|has| |#2| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-625 (-547))) (-6 (-625 (-547))) |%noBranch|)))
-((-2722 (($ $) 19)) (-2107 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3463 (((-112) $ $) 24)) (-2167 (($ $) 17)) (-2065 (((-145) $ (-575) (-145)) NIL) (((-145) $ (-575)) NIL) (($ $ (-1252 (-575))) NIL) (($ $ $) 31)) (-2882 (($ (-145)) 29) (((-873) $) NIL)))
-(((-1160 |#1|) (-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -2065 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| (-142))) (-15 -2107 (|#1| |#1| (-145))) (-15 -2882 (|#1| (-145))) (-15 -3463 ((-112) |#1| |#1|)) (-15 -2722 (|#1| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -2065 ((-145) |#1| (-575))) (-15 -2065 ((-145) |#1| (-575) (-145)))) (-1161)) (T -1160))
-NIL
-(-10 -8 (-15 -2882 ((-873) |#1|)) (-15 -2065 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| (-142))) (-15 -2107 (|#1| |#1| (-145))) (-15 -2882 (|#1| (-145))) (-15 -3463 ((-112) |#1| |#1|)) (-15 -2722 (|#1| |#1|)) (-15 -2167 (|#1| |#1|)) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -2065 ((-145) |#1| (-575))) (-15 -2065 ((-145) |#1| (-575) (-145))))
-((-2859 (((-112) $ $) 19 (|has| (-145) (-1117)))) (-3127 (($ $) 123)) (-2722 (($ $) 124)) (-2107 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3445 (((-112) $ $) 121)) (-3427 (((-112) $ $ (-575)) 120)) (-2432 (((-655 $) $ (-145)) 113) (((-655 $) $ (-142)) 112)) (-1905 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-3175 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-3133 (((-112) $ (-782)) 8)) (-3052 (((-145) $ (-575) (-145)) 53 (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-3777 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3086 (($ $) 93 (|has| $ (-6 -4461)))) (-4380 (($ $) 103)) (-3171 (($ $ (-1252 (-575)) $) 117)) (-4070 (($ $) 80 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ (-145) $) 79 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4460)))) (-2302 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4460)))) (-2857 (((-145) $ (-575) (-145)) 54 (|has| $ (-6 -4461)))) (-2786 (((-145) $ (-575)) 52)) (-3463 (((-112) $ $) 122)) (-2630 (((-575) (-1 (-112) (-145)) $) 100) (((-575) (-145) $) 99 (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) 98 (|has| (-145) (-1117))) (((-575) $ $ (-575)) 116) (((-575) (-142) $ (-575)) 115)) (-3999 (((-655 (-145)) $) 31 (|has| $ (-6 -4460)))) (-2303 (($ (-782) (-145)) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 90 (|has| (-145) (-861)))) (-4167 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-4252 (((-655 (-145)) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 89 (|has| (-145) (-861)))) (-3126 (((-112) $ $ (-145)) 118)) (-1613 (((-782) $ $ (-145)) 119)) (-2844 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1990 (($ $) 125)) (-2167 (($ $) 126)) (-3218 (((-112) $ (-782)) 10)) (-3789 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4264 (((-1176) $) 22 (|has| (-145) (-1117)))) (-2129 (($ (-145) $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| (-145) (-1117)))) (-1955 (((-145) $) 43 (|has| (-575) (-861)))) (-1540 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1652 (($ $ (-145)) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-145)))) 27 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) 26 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) 24 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2697 (((-655 (-145)) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 (((-145) $ (-575) (-145)) 51) (((-145) $ (-575)) 50) (($ $ (-1252 (-575))) 71) (($ $ $) 105)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3922 (((-782) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4460))) (((-782) (-145) $) 29 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| (-145) (-625 (-547))))) (-2893 (($ (-655 (-145))) 72)) (-1513 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (($ (-145)) 114) (((-873) $) 18 (|has| (-145) (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| (-145) (-1117)))) (-4121 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 87 (|has| (-145) (-861)))) (-3955 (((-112) $ $) 86 (|has| (-145) (-861)))) (-3913 (((-112) $ $) 20 (|has| (-145) (-1117)))) (-3967 (((-112) $ $) 88 (|has| (-145) (-861)))) (-3940 (((-112) $ $) 85 (|has| (-145) (-861)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1161) (-141)) (T -1161))
-((-2167 (*1 *1 *1) (-4 *1 (-1161))) (-1990 (*1 *1 *1) (-4 *1 (-1161))) (-2722 (*1 *1 *1) (-4 *1 (-1161))) (-3127 (*1 *1 *1) (-4 *1 (-1161))) (-3463 (*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112)))) (-3445 (*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112)))) (-3427 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-575)) (-5 *2 (-112)))) (-1613 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-782)))) (-3126 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3171 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-1252 (-575))))) (-2630 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)))) (-2630 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)) (-5 *3 (-142)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1161)))) (-2432 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-655 *1)) (-4 *1 (-1161)))) (-2432 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-655 *1)) (-4 *1 (-1161)))) (-2107 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))) (-2107 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) (-3789 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))) (-3789 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) (-3777 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))) (-3777 (*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142)))) (-2065 (*1 *1 *1 *1) (-4 *1 (-1161))))
-(-13 (-19 (-145)) (-10 -8 (-15 -2167 ($ $)) (-15 -1990 ($ $)) (-15 -2722 ($ $)) (-15 -3127 ($ $)) (-15 -3463 ((-112) $ $)) (-15 -3445 ((-112) $ $)) (-15 -3427 ((-112) $ $ (-575))) (-15 -1613 ((-782) $ $ (-145))) (-15 -3126 ((-112) $ $ (-145))) (-15 -3171 ($ $ (-1252 (-575)) $)) (-15 -2630 ((-575) $ $ (-575))) (-15 -2630 ((-575) (-142) $ (-575))) (-15 -2882 ($ (-145))) (-15 -2432 ((-655 $) $ (-145))) (-15 -2432 ((-655 $) $ (-142))) (-15 -2107 ($ $ (-145))) (-15 -2107 ($ $ (-142))) (-15 -3789 ($ $ (-145))) (-15 -3789 ($ $ (-142))) (-15 -3777 ($ $ (-145))) (-15 -3777 ($ $ (-142))) (-15 -2065 ($ $ $))))
-(((-34) . T) ((-102) -3763 (|has| (-145) (-1117)) (|has| (-145) (-861))) ((-624 (-873)) -3763 (|has| (-145) (-1117)) (|has| (-145) (-861)) (|has| (-145) (-624 (-873)))) ((-152 #0=(-145)) . T) ((-625 (-547)) |has| (-145) (-625 (-547))) ((-295 #1=(-575) #0#) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #1# #0#) . T) ((-318 #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-383 #0#) . T) ((-500 #0#) . T) ((-615 #1# #0#) . T) ((-525 #0# #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-662 #0#) . T) ((-19 #0#) . T) ((-861) |has| (-145) (-861)) ((-1117) -3763 (|has| (-145) (-1117)) (|has| (-145) (-861))) ((-1235) . T))
-((-2161 (((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782)) 112)) (-3672 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 61)) (-2719 (((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)) 97)) (-3324 (((-782) (-655 |#4|) (-655 |#5|)) 30)) (-1857 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782)) 63) (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112)) 65)) (-3345 (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112)) 85)) (-2613 (((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) 90)) (-3662 (((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|) 60)) (-3812 (((-782) (-655 |#4|) (-655 |#5|)) 21)))
-(((-1162 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3812 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3324 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3662 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2161 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2613 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2719 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782)))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|) (-1126 |#1| |#2| |#3| |#4|)) (T -1162))
-((-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9)))) (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8))) (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1126 *4 *5 *6 *7)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176)) (-5 *1 (-1162 *4 *5 *6 *7 *8)))) (-2161 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-655 *11)) (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11)))))) (-5 *6 (-782)) (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11)))) (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9)) (-4 *11 (-1126 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-5 *1 (-1162 *7 *8 *9 *10 *11)))) (-3345 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-3345 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-1857 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))) (-1857 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3)))) (-1857 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804)) (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *7 *8 *9 *3 *4)) (-4 *4 (-1126 *7 *8 *9 *3)))) (-3672 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *3 (-1082 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3)))) (-3662 (*1 *2 *3 *4) (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-655 *4)) (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4)))))) (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3812 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3324 ((-782) (-655 |#4|) (-655 |#5|))) (-15 -3662 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -3672 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782) (-112))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5| (-782))) (-15 -1857 ((-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) |#4| |#5|)) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112))) (-15 -3345 ((-655 |#5|) (-655 |#4|) (-655 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2161 ((-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-655 |#4|) (-655 |#5|) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-2 (|:| |done| (-655 |#5|)) (|:| |todo| (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))))) (-782))) (-15 -2613 ((-1176) (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|)))) (-15 -2719 ((-1290) (-655 (-2 (|:| |val| (-655 |#4|)) (|:| -4270 |#5|))) (-782))))
-((-2859 (((-112) $ $) NIL)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) NIL)) (-4014 (((-655 $) (-655 |#4|)) 124) (((-655 $) (-655 |#4|) (-112)) 125) (((-655 $) (-655 |#4|) (-112) (-112)) 123) (((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1606 (((-655 |#3|) $) NIL)) (-4419 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1479 ((|#4| |#4| $) NIL)) (-3312 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| $) 97)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3983 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 75)) (-3261 (($) NIL T CONST)) (-1756 (((-112) $) 29 (|has| |#1| (-567)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4415 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1759 (((-112) $) NIL (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2762 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4400 (($ (-655 |#4|)) NIL)) (-1969 (((-3 $ "failed") $) 45)) (-3355 ((|#4| |#4| $) 78)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3631 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3305 ((|#4| |#4| $) NIL)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) NIL)) (-3209 (((-112) |#4| $) NIL)) (-2546 (((-112) |#4| $) NIL)) (-1486 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4272 (((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112)) 139)) (-3999 (((-655 |#4|) $) 18 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3757 ((|#3| $) 38)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#4|) $) 19 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-2844 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 23)) (-3717 (((-655 |#3|) $) NIL)) (-1789 (((-112) |#3| $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3656 (((-3 |#4| (-655 $)) |#4| |#4| $) NIL)) (-3822 (((-655 (-2 (|:| |val| |#4|) (|:| -4270 $))) |#4| |#4| $) 117)) (-3651 (((-3 |#4| "failed") $) 42)) (-3232 (((-655 $) |#4| $) 102)) (-3533 (((-3 (-112) (-655 $)) |#4| $) NIL)) (-2054 (((-655 (-2 (|:| |val| (-112)) (|:| -4270 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1872 (((-655 $) |#4| $) 121) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 122) (((-655 $) |#4| (-655 $)) NIL)) (-1952 (((-655 $) (-655 |#4|) (-112) (-112) (-112)) 134)) (-2400 (($ |#4| $) 88) (($ (-655 |#4|) $) 89) (((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4212 (((-655 |#4|) $) NIL)) (-1992 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4068 ((|#4| |#4| $) NIL)) (-2057 (((-112) $ $) NIL)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1986 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-3 |#4| "failed") $) 40)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3629 (((-3 $ "failed") $ |#4|) 59)) (-1985 (($ $ |#4|) NIL) (((-655 $) |#4| $) 104) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) 99)) (-2718 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 17)) (-1393 (($) 14)) (-1753 (((-782) $) NIL)) (-3922 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) 13)) (-2613 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 22)) (-3273 (($ $ |#3|) 52)) (-2078 (($ $ |#3|) 54)) (-3663 (($ $) NIL)) (-4049 (($ $ |#3|) NIL)) (-2882 (((-873) $) 35) (((-655 |#4|) $) 46)) (-2936 (((-782) $) NIL (|has| |#3| (-378)))) (-3685 (((-112) $ $) NIL)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-3039 (((-655 $) |#4| $) 66) (((-655 $) |#4| (-655 $)) NIL) (((-655 $) (-655 |#4|) $) NIL) (((-655 $) (-655 |#4|) (-655 $)) NIL)) (-4121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) NIL)) (-2360 (((-112) |#4| $) NIL)) (-4060 (((-112) |#3| $) 74)) (-3913 (((-112) $ $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1163 |#1| |#2| |#3| |#4|) (-13 (-1126 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2400 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -1952 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -4272 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112))))) (-463) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -1163))
-((-2400 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *3))) (-5 *1 (-1163 *5 *6 *7 *3)) (-4 *3 (-1082 *5 *6 *7)))) (-4014 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) (-4014 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))) (-4272 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-655 *8)) (|:| |towers| (-655 (-1163 *5 *6 *7 *8))))) (-5 *1 (-1163 *5 *6 *7 *8)) (-5 *3 (-655 *8)))))
-(-13 (-1126 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2400 ((-655 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112))) (-15 -4014 ((-655 $) (-655 |#4|) (-112) (-112) (-112) (-112))) (-15 -1952 ((-655 $) (-655 |#4|) (-112) (-112) (-112))) (-15 -4272 ((-2 (|:| |val| (-655 |#4|)) (|:| |towers| (-655 $))) (-655 |#4|) (-112) (-112)))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2006 ((|#1| $) 37)) (-1760 (($ (-655 |#1|)) 45)) (-3133 (((-112) $ (-782)) NIL)) (-3261 (($) NIL T CONST)) (-3107 ((|#1| |#1| $) 40)) (-1597 ((|#1| $) 35)) (-3999 (((-655 |#1|) $) 18 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 22)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-4030 ((|#1| $) 38)) (-4218 (($ |#1| $) 41)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3773 ((|#1| $) 36)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 32)) (-1393 (($) 43)) (-3321 (((-782) $) 30)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 27)) (-2882 (((-873) $) 14 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2908 (($ (-655 |#1|)) NIL)) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 17 (|has| |#1| (-1117)))) (-2869 (((-782) $) 31 (|has| $ (-6 -4460)))))
-(((-1164 |#1|) (-13 (-1138 |#1|) (-10 -8 (-15 -1760 ($ (-655 |#1|))))) (-1235)) (T -1164))
-((-1760 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1164 *3)))))
-(-13 (-1138 |#1|) (-10 -8 (-15 -1760 ($ (-655 |#1|)))))
-((-3052 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1252 (-575)) |#2|) 53) ((|#2| $ (-575) |#2|) 50)) (-2335 (((-112) $) 12)) (-2844 (($ (-1 |#2| |#2|) $) 48)) (-1955 ((|#2| $) NIL) (($ $ (-782)) 17)) (-1652 (($ $ |#2|) 49)) (-4213 (((-112) $) 11)) (-2065 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1252 (-575))) 36) ((|#2| $ (-575)) 26) ((|#2| $ (-575) |#2|) NIL)) (-3357 (($ $ $) 56) (($ $ |#2|) NIL)) (-1513 (($ $ $) 38) (($ |#2| $) NIL) (($ (-655 $)) 45) (($ $ |#2|) NIL)))
-(((-1165 |#1| |#2|) (-10 -8 (-15 -2335 ((-112) |#1|)) (-15 -4213 ((-112) |#1|)) (-15 -3052 (|#2| |#1| (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575))) (-15 -1652 (|#1| |#1| |#2|)) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -1513 (|#1| |#1| |#2|)) (-15 -1513 (|#1| (-655 |#1|))) (-15 -3052 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -3052 (|#2| |#1| "last" |#2|)) (-15 -3052 (|#1| |#1| "rest" |#1|)) (-15 -3052 (|#2| |#1| "first" |#2|)) (-15 -3357 (|#1| |#1| |#2|)) (-15 -3357 (|#1| |#1| |#1|)) (-15 -2065 (|#2| |#1| "last")) (-15 -2065 (|#1| |#1| "rest")) (-15 -1955 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "first")) (-15 -1955 (|#2| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -2065 (|#2| |#1| "value")) (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|))) (-1166 |#2|) (-1235)) (T -1165))
-NIL
-(-10 -8 (-15 -2335 ((-112) |#1|)) (-15 -4213 ((-112) |#1|)) (-15 -3052 (|#2| |#1| (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575) |#2|)) (-15 -2065 (|#2| |#1| (-575))) (-15 -1652 (|#1| |#1| |#2|)) (-15 -2065 (|#1| |#1| (-1252 (-575)))) (-15 -1513 (|#1| |#1| |#2|)) (-15 -1513 (|#1| (-655 |#1|))) (-15 -3052 (|#2| |#1| (-1252 (-575)) |#2|)) (-15 -3052 (|#2| |#1| "last" |#2|)) (-15 -3052 (|#1| |#1| "rest" |#1|)) (-15 -3052 (|#2| |#1| "first" |#2|)) (-15 -3357 (|#1| |#1| |#2|)) (-15 -3357 (|#1| |#1| |#1|)) (-15 -2065 (|#2| |#1| "last")) (-15 -2065 (|#1| |#1| "rest")) (-15 -1955 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "first")) (-15 -1955 (|#2| |#1|)) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -2065 (|#2| |#1| "value")) (-15 -2844 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-2987 ((|#1| $) 66)) (-3460 (($ $) 68)) (-4116 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-2089 (($ $ $) 57 (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 119 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 88 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4460)))) (-2975 ((|#1| $) 67)) (-3261 (($) 7 T CONST)) (-1969 (($ $) 74) (($ $ (-782)) 72)) (-4070 (($ $) 101 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4460))) (($ |#1| $) 102 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2857 ((|#1| $ (-575) |#1|) 87 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 89)) (-2335 (((-112) $) 85)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-2303 (($ (-782) |#1|) 111)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 97 (|has| (-575) (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 96 (|has| (-575) (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3651 ((|#1| $) 71) (($ $ (-782)) 69)) (-2129 (($ $ $ (-575)) 118) (($ |#1| $ (-575)) 117)) (-1653 (((-655 (-575)) $) 94)) (-1801 (((-112) (-575) $) 93)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 77) (($ $ (-782)) 75)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1652 (($ $ |#1|) 98 (|has| $ (-6 -4461)))) (-4213 (((-112) $) 86)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 92)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1252 (-575))) 110) ((|#1| $ (-575)) 91) ((|#1| $ (-575) |#1|) 90)) (-1816 (((-575) $ $) 45)) (-3237 (($ $ (-1252 (-575))) 116) (($ $ (-575)) 115)) (-3482 (((-112) $) 47)) (-3247 (($ $) 63)) (-1774 (($ $) 60 (|has| $ (-6 -4461)))) (-3984 (((-782) $) 64)) (-1431 (($ $) 65)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-2613 (((-547) $) 100 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 109)) (-3357 (($ $ $) 62 (|has| $ (-6 -4461))) (($ $ |#1|) 61 (|has| $ (-6 -4461)))) (-1513 (($ $ $) 79) (($ |#1| $) 78) (($ (-655 $)) 113) (($ $ |#1|) 112)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1166 |#1|) (-141) (-1235)) (T -1166))
-((-4213 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))))
-(-13 (-1273 |t#1|) (-662 |t#1|) (-10 -8 (-15 -4213 ((-112) $)) (-15 -2335 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T) ((-1273 |#1|) . T))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#2| $ |#1| |#2|) NIL)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1995 (((-655 |#1|) $) NIL)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1653 (((-655 |#1|) $) NIL)) (-1801 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1167 |#1| |#2| |#3|) (-1211 |#1| |#2|) (-1117) (-1117) |#2|) (T -1167))
-NIL
-(-1211 |#1| |#2|)
-((-2859 (((-112) $ $) NIL)) (-4182 (((-702 (-1152)) $) 27)) (-4107 (((-1152) $) 15)) (-2336 (((-1152) $) 17)) (-4264 (((-1176) $) NIL)) (-1785 (((-517) $) 13)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 37) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1168) (-13 (-1100) (-10 -8 (-15 -1785 ((-517) $)) (-15 -2336 ((-1152) $)) (-15 -4182 ((-702 (-1152)) $)) (-15 -4107 ((-1152) $))))) (T -1168))
-((-1785 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1168)))) (-2336 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-702 (-1152))) (-5 *1 (-1168)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168)))))
-(-13 (-1100) (-10 -8 (-15 -1785 ((-517) $)) (-15 -2336 ((-1152) $)) (-15 -4182 ((-702 (-1152)) $)) (-15 -4107 ((-1152) $))))
-((-2859 (((-112) $ $) 7)) (-2808 (((-3 $ "failed") $) 14)) (-4264 (((-1176) $) 10)) (-3472 (($) 15 T CONST)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-3913 (((-112) $ $) 6)))
-(((-1169) (-141)) (T -1169))
-((-3472 (*1 *1) (-4 *1 (-1169))) (-2808 (*1 *1 *1) (|partial| -4 *1 (-1169))))
-(-13 (-1117) (-10 -8 (-15 -3472 ($) -3736) (-15 -2808 ((-3 $ "failed") $))))
-(((-102) . T) ((-624 (-873)) . T) ((-1117) . T))
-((-1787 (((-1174 |#1|) (-1174 |#1|)) 17)) (-2415 (((-1174 |#1|) (-1174 |#1|)) 13)) (-2270 (((-1174 |#1|) (-1174 |#1|) (-575) (-575)) 20)) (-3814 (((-1174 |#1|) (-1174 |#1|)) 15)))
-(((-1170 |#1|) (-10 -7 (-15 -2415 ((-1174 |#1|) (-1174 |#1|))) (-15 -3814 ((-1174 |#1|) (-1174 |#1|))) (-15 -1787 ((-1174 |#1|) (-1174 |#1|))) (-15 -2270 ((-1174 |#1|) (-1174 |#1|) (-575) (-575)))) (-13 (-567) (-148))) (T -1170))
-((-2270 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-1170 *4)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1170 *3)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1170 *3)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1170 *3)))))
-(-10 -7 (-15 -2415 ((-1174 |#1|) (-1174 |#1|))) (-15 -3814 ((-1174 |#1|) (-1174 |#1|))) (-15 -1787 ((-1174 |#1|) (-1174 |#1|))) (-15 -2270 ((-1174 |#1|) (-1174 |#1|) (-575) (-575))))
-((-1513 (((-1174 |#1|) (-1174 (-1174 |#1|))) 15)))
-(((-1171 |#1|) (-10 -7 (-15 -1513 ((-1174 |#1|) (-1174 (-1174 |#1|))))) (-1235)) (T -1171))
-((-1513 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1171 *4)) (-4 *4 (-1235)))))
-(-10 -7 (-15 -1513 ((-1174 |#1|) (-1174 (-1174 |#1|)))))
-((-3436 (((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)) 25)) (-2302 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)) 26)) (-2544 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 16)))
-(((-1172 |#1| |#2|) (-10 -7 (-15 -2544 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -3436 ((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|))) (-15 -2302 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|)))) (-1235) (-1235)) (T -1172))
-((-2302 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-1172 *5 *2)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1174 *6)) (-4 *6 (-1235)) (-4 *3 (-1235)) (-5 *2 (-1174 *3)) (-5 *1 (-1172 *6 *3)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6)))))
-(-10 -7 (-15 -2544 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|))) (-15 -3436 ((-1174 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|))) (-15 -2302 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1174 |#1|))))
-((-2544 (((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)) 21)))
-(((-1173 |#1| |#2| |#3|) (-10 -7 (-15 -2544 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|)))) (-1235) (-1235) (-1235)) (T -1173))
-((-2544 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-1174 *7)) (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8)) (-5 *1 (-1173 *6 *7 *8)))))
-(-10 -7 (-15 -2544 ((-1174 |#3|) (-1 |#3| |#1| |#2|) (-1174 |#1|) (-1174 |#2|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) NIL)) (-2987 ((|#1| $) NIL)) (-3460 (($ $) 67)) (-4116 (((-1290) $ (-575) (-575)) 99 (|has| $ (-6 -4461)))) (-3742 (($ $ (-575)) 128 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-4101 (((-873) $) 56 (|has| |#1| (-1117)))) (-3650 (((-112)) 55 (|has| |#1| (-1117)))) (-2328 ((|#1| $ |#1|) NIL (|has| $ (-6 -4461)))) (-2089 (($ $ $) 115 (|has| $ (-6 -4461))) (($ $ (-575) $) 141)) (-2940 ((|#1| $ |#1|) 125 (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) 120 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4461))) (($ $ "rest" $) 124 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 112 (|has| $ (-6 -4461))) ((|#1| $ (-575) |#1|) 77 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 80)) (-2975 ((|#1| $) NIL)) (-3261 (($) NIL T CONST)) (-3165 (($ $) 14)) (-1969 (($ $) 40) (($ $ (-782)) 111)) (-3341 (((-112) (-655 |#1|) $) 134 (|has| |#1| (-1117)))) (-3832 (($ (-655 |#1|)) 130)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) 79)) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2335 (((-112) $) NIL)) (-3999 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3720 (((-1290) (-575) $) 140 (|has| |#1| (-1117)))) (-3078 (((-782) $) 137)) (-1893 (((-655 $) $) NIL)) (-2510 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3218 (((-112) $ (-782)) NIL)) (-2476 (((-655 |#1|) $) NIL)) (-1902 (((-112) $) NIL)) (-1747 (($ $) 113)) (-2234 (((-112) $) 13)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3651 ((|#1| $) NIL) (($ $ (-782)) NIL)) (-2129 (($ $ $ (-575)) NIL) (($ |#1| $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) 96)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-3901 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3036 ((|#1| $) 10)) (-1955 ((|#1| $) 39) (($ $ (-782)) 65)) (-3858 (((-2 (|:| |cycle?| (-112)) (|:| -2489 (-782)) (|:| |period| (-782))) (-782) $) 34)) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3957 (($ (-1 (-112) |#1|) $) 145)) (-3970 (($ (-1 (-112) |#1|) $) 146)) (-1652 (($ $ |#1|) 90 (|has| $ (-6 -4461)))) (-1985 (($ $ (-575)) 45)) (-4213 (((-112) $) 94)) (-4271 (((-112) $) 12)) (-2950 (((-112) $) 136)) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 30)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) 20)) (-1393 (($) 60)) (-2065 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1252 (-575))) NIL) ((|#1| $ (-575)) 75) ((|#1| $ (-575) |#1|) NIL)) (-1816 (((-575) $ $) 64)) (-3237 (($ $ (-1252 (-575))) NIL) (($ $ (-575)) NIL)) (-1915 (($ (-1 $)) 63)) (-3482 (((-112) $) 91)) (-3247 (($ $) 92)) (-1774 (($ $) 116 (|has| $ (-6 -4461)))) (-3984 (((-782) $) NIL)) (-1431 (($ $) NIL)) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 59)) (-2613 (((-547) $) NIL (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 73)) (-2819 (($ |#1| $) 114)) (-3357 (($ $ $) 118 (|has| $ (-6 -4461))) (($ $ |#1|) 119 (|has| $ (-6 -4461)))) (-1513 (($ $ $) 101) (($ |#1| $) 61) (($ (-655 $)) 106) (($ $ |#1|) 100)) (-3575 (($ $) 66)) (-2882 (($ (-655 |#1|)) 129) (((-873) $) 57 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) NIL)) (-2603 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 132 (|has| |#1| (-1117)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1174 |#1|) (-13 (-685 |#1|) (-627 (-655 |#1|)) (-10 -8 (-6 -4461) (-15 -3832 ($ (-655 |#1|))) (IF (|has| |#1| (-1117)) (-15 -3341 ((-112) (-655 |#1|) $)) |%noBranch|) (-15 -3858 ((-2 (|:| |cycle?| (-112)) (|:| -2489 (-782)) (|:| |period| (-782))) (-782) $)) (-15 -1915 ($ (-1 $))) (-15 -2819 ($ |#1| $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -3720 ((-1290) (-575) $)) (-15 -4101 ((-873) $)) (-15 -3650 ((-112)))) |%noBranch|) (-15 -2089 ($ $ (-575) $)) (-15 -3901 ($ (-1 |#1|))) (-15 -3901 ($ (-1 |#1| |#1|) |#1|)) (-15 -3957 ($ (-1 (-112) |#1|) $)) (-15 -3970 ($ (-1 (-112) |#1|) $)))) (-1235)) (T -1174))
-((-3832 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3341 (*1 *2 *3 *1) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-4 *4 (-1235)) (-5 *2 (-112)) (-5 *1 (-1174 *4)))) (-3858 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2489 (-782)) (|:| |period| (-782)))) (-5 *1 (-1174 *4)) (-4 *4 (-1235)) (-5 *3 (-782)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-1 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1235)))) (-2819 (*1 *1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1235)))) (-3720 (*1 *2 *3 *1) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1174 *4)) (-4 *4 (-1117)) (-4 *4 (-1235)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1174 *3)) (-4 *3 (-1117)) (-4 *3 (-1235)))) (-3650 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1117)) (-4 *3 (-1235)))) (-2089 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1174 *3)) (-4 *3 (-1235)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3901 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))) (-3970 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))))
-(-13 (-685 |#1|) (-627 (-655 |#1|)) (-10 -8 (-6 -4461) (-15 -3832 ($ (-655 |#1|))) (IF (|has| |#1| (-1117)) (-15 -3341 ((-112) (-655 |#1|) $)) |%noBranch|) (-15 -3858 ((-2 (|:| |cycle?| (-112)) (|:| -2489 (-782)) (|:| |period| (-782))) (-782) $)) (-15 -1915 ($ (-1 $))) (-15 -2819 ($ |#1| $)) (IF (|has| |#1| (-1117)) (PROGN (-15 -3720 ((-1290) (-575) $)) (-15 -4101 ((-873) $)) (-15 -3650 ((-112)))) |%noBranch|) (-15 -2089 ($ $ (-575) $)) (-15 -3901 ($ (-1 |#1|))) (-15 -3901 ($ (-1 |#1| |#1|) |#1|)) (-15 -3957 ($ (-1 (-112) |#1|) $)) (-15 -3970 ($ (-1 (-112) |#1|) $))))
-((-2859 (((-112) $ $) 19)) (-3127 (($ $) 123)) (-2722 (($ $) 124)) (-2107 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-3445 (((-112) $ $) 121)) (-3427 (((-112) $ $ (-575)) 120)) (-1650 (($ (-575)) 130)) (-2432 (((-655 $) $ (-145)) 113) (((-655 $) $ (-142)) 112)) (-1905 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-861)))) (-3175 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| (-145) (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-861)))) (-3133 (((-112) $ (-782)) 8)) (-3052 (((-145) $ (-575) (-145)) 53 (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-3777 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3086 (($ $) 93 (|has| $ (-6 -4461)))) (-4380 (($ $) 103)) (-3171 (($ $ (-1252 (-575)) $) 117)) (-4070 (($ $) 80 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ (-145) $) 79 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4460)))) (-2302 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4460)))) (-2857 (((-145) $ (-575) (-145)) 54 (|has| $ (-6 -4461)))) (-2786 (((-145) $ (-575)) 52)) (-3463 (((-112) $ $) 122)) (-2630 (((-575) (-1 (-112) (-145)) $) 100) (((-575) (-145) $) 99 (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) 98 (|has| (-145) (-1117))) (((-575) $ $ (-575)) 116) (((-575) (-142) $ (-575)) 115)) (-3999 (((-655 (-145)) $) 31 (|has| $ (-6 -4460)))) (-2303 (($ (-782) (-145)) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 90 (|has| (-145) (-861)))) (-4167 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-861)))) (-4252 (((-655 (-145)) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 89 (|has| (-145) (-861)))) (-3126 (((-112) $ $ (-145)) 118)) (-1613 (((-782) $ $ (-145)) 119)) (-2844 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1990 (($ $) 125)) (-2167 (($ $) 126)) (-3218 (((-112) $ (-782)) 10)) (-3789 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-4264 (((-1176) $) 22)) (-2129 (($ (-145) $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21)) (-1955 (((-145) $) 43 (|has| (-575) (-861)))) (-1540 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1652 (($ $ (-145)) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-145)))) 27 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) 26 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) 24 (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2697 (((-655 (-145)) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 (((-145) $ (-575) (-145)) 51) (((-145) $ (-575)) 50) (($ $ (-1252 (-575))) 71) (($ $ $) 105)) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-3922 (((-782) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4460))) (((-782) (-145) $) 29 (-12 (|has| (-145) (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| (-145) (-625 (-547))))) (-2893 (($ (-655 (-145))) 72)) (-1513 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (($ (-145)) 114) (((-873) $) 18)) (-3685 (((-112) $ $) 23)) (-4121 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4460)))) (-2225 (((-1176) $) 134) (((-1176) $ (-112)) 133) (((-1290) (-833) $) 132) (((-1290) (-833) $ (-112)) 131)) (-3980 (((-112) $ $) 87 (|has| (-145) (-861)))) (-3955 (((-112) $ $) 86 (|has| (-145) (-861)))) (-3913 (((-112) $ $) 20)) (-3967 (((-112) $ $) 88 (|has| (-145) (-861)))) (-3940 (((-112) $ $) 85 (|has| (-145) (-861)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1175) (-141)) (T -1175))
-((-1650 (*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1175)))))
-(-13 (-1161) (-1117) (-839) (-10 -8 (-15 -1650 ($ (-575)))))
-(((-34) . T) ((-102) . T) ((-624 (-873)) . T) ((-152 #0=(-145)) . T) ((-625 (-547)) |has| (-145) (-625 (-547))) ((-295 #1=(-575) #0#) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #1# #0#) . T) ((-318 #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-383 #0#) . T) ((-500 #0#) . T) ((-615 #1# #0#) . T) ((-525 #0# #0#) -12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))) ((-662 #0#) . T) ((-19 #0#) . T) ((-839) . T) ((-861) |has| (-145) (-861)) ((-1117) . T) ((-1161) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-3127 (($ $) NIL)) (-2722 (($ $) NIL)) (-2107 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-3445 (((-112) $ $) NIL)) (-3427 (((-112) $ $ (-575)) NIL)) (-1650 (($ (-575)) 8)) (-2432 (((-655 $) $ (-145)) NIL) (((-655 $) $ (-142)) NIL)) (-1905 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-861)))) (-3175 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-861))))) (-2025 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 (((-145) $ (-575) (-145)) NIL (|has| $ (-6 -4461))) (((-145) $ (-1252 (-575)) (-145)) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3777 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-3171 (($ $ (-1252 (-575)) $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-3631 (($ (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4460))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2857 (((-145) $ (-575) (-145)) NIL (|has| $ (-6 -4461)))) (-2786 (((-145) $ (-575)) NIL)) (-3463 (((-112) $ $) NIL)) (-2630 (((-575) (-1 (-112) (-145)) $) NIL) (((-575) (-145) $) NIL (|has| (-145) (-1117))) (((-575) (-145) $ (-575)) NIL (|has| (-145) (-1117))) (((-575) $ $ (-575)) NIL) (((-575) (-142) $ (-575)) NIL)) (-3999 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-2303 (($ (-782) (-145)) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| (-145) (-861)))) (-4167 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-861)))) (-4252 (((-655 (-145)) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2263 (((-575) $) NIL (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| (-145) (-861)))) (-3126 (((-112) $ $ (-145)) NIL)) (-1613 (((-782) $ $ (-145)) NIL)) (-2844 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1990 (($ $) NIL)) (-2167 (($ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-3789 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4264 (((-1176) $) NIL)) (-2129 (($ (-145) $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-145) $) NIL (|has| (-575) (-861)))) (-1540 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1652 (($ $ (-145)) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-145)))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-303 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117)))) (($ $ (-655 (-145)) (-655 (-145))) NIL (-12 (|has| (-145) (-318 (-145))) (|has| (-145) (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2697 (((-655 (-145)) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 (((-145) $ (-575) (-145)) NIL) (((-145) $ (-575)) NIL) (($ $ (-1252 (-575))) NIL) (($ $ $) NIL)) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-3922 (((-782) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460))) (((-782) (-145) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-145) (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-145) (-625 (-547))))) (-2893 (($ (-655 (-145))) NIL)) (-1513 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (($ (-145)) NIL) (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-4121 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4460)))) (-2225 (((-1176) $) 19) (((-1176) $ (-112)) 21) (((-1290) (-833) $) 22) (((-1290) (-833) $ (-112)) 23)) (-3980 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3955 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (|has| (-145) (-861)))) (-3940 (((-112) $ $) NIL (|has| (-145) (-861)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1176) (-1175)) (T -1176))
-NIL
-(-1175)
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-4116 (((-1290) $ (-1176) (-1176)) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-1176) |#1|) NIL)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#1| "failed") (-1176) $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#1| "failed") (-1176) $) NIL)) (-3631 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-1176) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-1176)) NIL)) (-3999 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-1176) $) NIL (|has| (-1176) (-861)))) (-4252 (((-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-1176) $) NIL (|has| (-1176) (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-1995 (((-655 (-1176)) $) NIL)) (-3766 (((-112) (-1176) $) NIL)) (-4030 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-1653 (((-655 (-1176)) $) NIL)) (-1801 (((-112) (-1176) $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-1955 ((|#1| $) NIL (|has| (-1176) (-861)))) (-1540 (((-3 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) "failed") (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL (-12 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-318 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-1176)) NIL) ((|#1| $ (-1176) |#1|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-624 (-873))) (|has| |#1| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 (-1176)) (|:| -3179 |#1|)) (-1117)) (|has| |#1| (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1177 |#1|) (-13 (-1211 (-1176) |#1|) (-10 -7 (-6 -4460))) (-1117)) (T -1177))
-NIL
-(-13 (-1211 (-1176) |#1|) (-10 -7 (-6 -4460)))
-((-2330 (((-1174 |#1|) (-1174 |#1|)) 83)) (-4162 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 39)) (-2979 (((-1174 |#1|) (-418 (-575)) (-1174 |#1|)) 133 (|has| |#1| (-38 (-418 (-575)))))) (-2515 (((-1174 |#1|) |#1| (-1174 |#1|)) 139 (|has| |#1| (-373)))) (-2875 (((-1174 |#1|) (-1174 |#1|)) 97)) (-1714 (((-1174 (-575)) (-575)) 63)) (-3077 (((-1174 |#1|) (-1174 (-1174 |#1|))) 116 (|has| |#1| (-38 (-418 (-575)))))) (-3367 (((-1174 |#1|) (-575) (-575) (-1174 |#1|)) 102)) (-3692 (((-1174 |#1|) |#1| (-575)) 51)) (-3725 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 66)) (-3409 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 136 (|has| |#1| (-373)))) (-2866 (((-1174 |#1|) |#1| (-1 (-1174 |#1|))) 115 (|has| |#1| (-38 (-418 (-575)))))) (-4202 (((-1174 |#1|) (-1 |#1| (-575)) |#1| (-1 (-1174 |#1|))) 137 (|has| |#1| (-373)))) (-1391 (((-1174 |#1|) (-1174 |#1|)) 96)) (-2143 (((-1174 |#1|) (-1174 |#1|)) 82)) (-3530 (((-1174 |#1|) (-575) (-575) (-1174 |#1|)) 103)) (-4388 (((-1174 |#1|) |#1| (-1174 |#1|)) 112 (|has| |#1| (-38 (-418 (-575)))))) (-2174 (((-1174 (-575)) (-575)) 62)) (-2514 (((-1174 |#1|) |#1|) 65)) (-3379 (((-1174 |#1|) (-1174 |#1|) (-575) (-575)) 99)) (-3421 (((-1174 |#1|) (-1 |#1| (-575)) (-1174 |#1|)) 72)) (-2849 (((-3 (-1174 |#1|) "failed") (-1174 |#1|) (-1174 |#1|)) 37)) (-4221 (((-1174 |#1|) (-1174 |#1|)) 98)) (-3046 (((-1174 |#1|) (-1174 |#1|) |#1|) 77)) (-3037 (((-1174 |#1|) (-1174 |#1|)) 68)) (-3252 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 78)) (-2882 (((-1174 |#1|) |#1|) 73)) (-2184 (((-1174 |#1|) (-1174 (-1174 |#1|))) 88)) (-4038 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 38)) (-4027 (((-1174 |#1|) (-1174 |#1|)) 21) (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 23)) (-4015 (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 17)) (* (((-1174 |#1|) (-1174 |#1|) |#1|) 29) (((-1174 |#1|) |#1| (-1174 |#1|)) 26) (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 27)))
-(((-1178 |#1|) (-10 -7 (-15 -4015 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4027 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4027 ((-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -2849 ((-3 (-1174 |#1|) "failed") (-1174 |#1|) (-1174 |#1|))) (-15 -4038 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4162 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3692 ((-1174 |#1|) |#1| (-575))) (-15 -2174 ((-1174 (-575)) (-575))) (-15 -1714 ((-1174 (-575)) (-575))) (-15 -2514 ((-1174 |#1|) |#1|)) (-15 -3725 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3037 ((-1174 |#1|) (-1174 |#1|))) (-15 -3421 ((-1174 |#1|) (-1 |#1| (-575)) (-1174 |#1|))) (-15 -2882 ((-1174 |#1|) |#1|)) (-15 -3046 ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -3252 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2143 ((-1174 |#1|) (-1174 |#1|))) (-15 -2330 ((-1174 |#1|) (-1174 |#1|))) (-15 -2184 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -1391 ((-1174 |#1|) (-1174 |#1|))) (-15 -2875 ((-1174 |#1|) (-1174 |#1|))) (-15 -4221 ((-1174 |#1|) (-1174 |#1|))) (-15 -3379 ((-1174 |#1|) (-1174 |#1|) (-575) (-575))) (-15 -3367 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (-15 -3530 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 -2866 ((-1174 |#1|) |#1| (-1 (-1174 |#1|)))) (-15 -3077 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -2979 ((-1174 |#1|) (-418 (-575)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -3409 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4202 ((-1174 |#1|) (-1 |#1| (-575)) |#1| (-1 (-1174 |#1|)))) (-15 -2515 ((-1174 |#1|) |#1| (-1174 |#1|)))) |%noBranch|)) (-1066)) (T -1178))
-((-2515 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-575))) (-5 *5 (-1 (-1174 *4))) (-4 *4 (-373)) (-4 *4 (-1066)) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)))) (-3409 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2979 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1066)) (-5 *3 (-418 (-575))) (-5 *1 (-1178 *4)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)))) (-2866 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1174 *3))) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)))) (-4388 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3530 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-3367 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-3379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-1066)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2143 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3252 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3046 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2882 (*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) (-3421 (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1 *4 (-575))) (-4 *4 (-1066)) (-5 *1 (-1178 *4)))) (-3037 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-3725 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2514 (*1 *2 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) (-1714 (*1 *2 *3) (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066)) (-5 *3 (-575)))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066)) (-5 *3 (-575)))) (-3692 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))) (-4162 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4038 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-2849 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4027 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))) (-4015 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))))
-(-10 -7 (-15 -4015 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4027 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4027 ((-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 * ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 * ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -2849 ((-3 (-1174 |#1|) "failed") (-1174 |#1|) (-1174 |#1|))) (-15 -4038 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4162 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3692 ((-1174 |#1|) |#1| (-575))) (-15 -2174 ((-1174 (-575)) (-575))) (-15 -1714 ((-1174 (-575)) (-575))) (-15 -2514 ((-1174 |#1|) |#1|)) (-15 -3725 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3037 ((-1174 |#1|) (-1174 |#1|))) (-15 -3421 ((-1174 |#1|) (-1 |#1| (-575)) (-1174 |#1|))) (-15 -2882 ((-1174 |#1|) |#1|)) (-15 -3046 ((-1174 |#1|) (-1174 |#1|) |#1|)) (-15 -3252 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2143 ((-1174 |#1|) (-1174 |#1|))) (-15 -2330 ((-1174 |#1|) (-1174 |#1|))) (-15 -2184 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -1391 ((-1174 |#1|) (-1174 |#1|))) (-15 -2875 ((-1174 |#1|) (-1174 |#1|))) (-15 -4221 ((-1174 |#1|) (-1174 |#1|))) (-15 -3379 ((-1174 |#1|) (-1174 |#1|) (-575) (-575))) (-15 -3367 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (-15 -3530 ((-1174 |#1|) (-575) (-575) (-1174 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ((-1174 |#1|) |#1| (-1174 |#1|))) (-15 -2866 ((-1174 |#1|) |#1| (-1 (-1174 |#1|)))) (-15 -3077 ((-1174 |#1|) (-1174 (-1174 |#1|)))) (-15 -2979 ((-1174 |#1|) (-418 (-575)) (-1174 |#1|)))) |%noBranch|) (IF (|has| |#1| (-373)) (PROGN (-15 -3409 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4202 ((-1174 |#1|) (-1 |#1| (-575)) |#1| (-1 (-1174 |#1|)))) (-15 -2515 ((-1174 |#1|) |#1| (-1174 |#1|)))) |%noBranch|))
-((-3921 (((-1174 |#1|) (-1174 |#1|)) 60)) (-3784 (((-1174 |#1|) (-1174 |#1|)) 42)) (-3895 (((-1174 |#1|) (-1174 |#1|)) 56)) (-3759 (((-1174 |#1|) (-1174 |#1|)) 38)) (-1521 (((-1174 |#1|) (-1174 |#1|)) 63)) (-3805 (((-1174 |#1|) (-1174 |#1|)) 45)) (-3461 (((-1174 |#1|) (-1174 |#1|)) 34)) (-2663 (((-1174 |#1|) (-1174 |#1|)) 29)) (-1531 (((-1174 |#1|) (-1174 |#1|)) 64)) (-3815 (((-1174 |#1|) (-1174 |#1|)) 46)) (-3935 (((-1174 |#1|) (-1174 |#1|)) 61)) (-3795 (((-1174 |#1|) (-1174 |#1|)) 43)) (-3907 (((-1174 |#1|) (-1174 |#1|)) 58)) (-3772 (((-1174 |#1|) (-1174 |#1|)) 40)) (-1569 (((-1174 |#1|) (-1174 |#1|)) 68)) (-3850 (((-1174 |#1|) (-1174 |#1|)) 50)) (-1544 (((-1174 |#1|) (-1174 |#1|)) 66)) (-3826 (((-1174 |#1|) (-1174 |#1|)) 48)) (-1593 (((-1174 |#1|) (-1174 |#1|)) 71)) (-3871 (((-1174 |#1|) (-1174 |#1|)) 53)) (-2912 (((-1174 |#1|) (-1174 |#1|)) 72)) (-3883 (((-1174 |#1|) (-1174 |#1|)) 54)) (-1583 (((-1174 |#1|) (-1174 |#1|)) 70)) (-3861 (((-1174 |#1|) (-1174 |#1|)) 52)) (-1554 (((-1174 |#1|) (-1174 |#1|)) 69)) (-3837 (((-1174 |#1|) (-1174 |#1|)) 51)) (** (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 36)))
-(((-1179 |#1|) (-10 -7 (-15 -2663 ((-1174 |#1|) (-1174 |#1|))) (-15 -3461 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3759 ((-1174 |#1|) (-1174 |#1|))) (-15 -3772 ((-1174 |#1|) (-1174 |#1|))) (-15 -3784 ((-1174 |#1|) (-1174 |#1|))) (-15 -3795 ((-1174 |#1|) (-1174 |#1|))) (-15 -3805 ((-1174 |#1|) (-1174 |#1|))) (-15 -3815 ((-1174 |#1|) (-1174 |#1|))) (-15 -3826 ((-1174 |#1|) (-1174 |#1|))) (-15 -3837 ((-1174 |#1|) (-1174 |#1|))) (-15 -3850 ((-1174 |#1|) (-1174 |#1|))) (-15 -3861 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3883 ((-1174 |#1|) (-1174 |#1|))) (-15 -3895 ((-1174 |#1|) (-1174 |#1|))) (-15 -3907 ((-1174 |#1|) (-1174 |#1|))) (-15 -3921 ((-1174 |#1|) (-1174 |#1|))) (-15 -3935 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1531 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1569 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1593 ((-1174 |#1|) (-1174 |#1|))) (-15 -2912 ((-1174 |#1|) (-1174 |#1|)))) (-38 (-418 (-575)))) (T -1179))
-((-2912 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3935 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3815 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1179 *3)))))
-(-10 -7 (-15 -2663 ((-1174 |#1|) (-1174 |#1|))) (-15 -3461 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -3759 ((-1174 |#1|) (-1174 |#1|))) (-15 -3772 ((-1174 |#1|) (-1174 |#1|))) (-15 -3784 ((-1174 |#1|) (-1174 |#1|))) (-15 -3795 ((-1174 |#1|) (-1174 |#1|))) (-15 -3805 ((-1174 |#1|) (-1174 |#1|))) (-15 -3815 ((-1174 |#1|) (-1174 |#1|))) (-15 -3826 ((-1174 |#1|) (-1174 |#1|))) (-15 -3837 ((-1174 |#1|) (-1174 |#1|))) (-15 -3850 ((-1174 |#1|) (-1174 |#1|))) (-15 -3861 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3883 ((-1174 |#1|) (-1174 |#1|))) (-15 -3895 ((-1174 |#1|) (-1174 |#1|))) (-15 -3907 ((-1174 |#1|) (-1174 |#1|))) (-15 -3921 ((-1174 |#1|) (-1174 |#1|))) (-15 -3935 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1531 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1569 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1593 ((-1174 |#1|) (-1174 |#1|))) (-15 -2912 ((-1174 |#1|) (-1174 |#1|))))
-((-3921 (((-1174 |#1|) (-1174 |#1|)) 102)) (-3784 (((-1174 |#1|) (-1174 |#1|)) 61)) (-3104 (((-2 (|:| -3895 (-1174 |#1|)) (|:| -3907 (-1174 |#1|))) (-1174 |#1|)) 98)) (-3895 (((-1174 |#1|) (-1174 |#1|)) 99)) (-4424 (((-2 (|:| -3759 (-1174 |#1|)) (|:| -3772 (-1174 |#1|))) (-1174 |#1|)) 54)) (-3759 (((-1174 |#1|) (-1174 |#1|)) 55)) (-1521 (((-1174 |#1|) (-1174 |#1|)) 104)) (-3805 (((-1174 |#1|) (-1174 |#1|)) 68)) (-3461 (((-1174 |#1|) (-1174 |#1|)) 40)) (-2663 (((-1174 |#1|) (-1174 |#1|)) 37)) (-1531 (((-1174 |#1|) (-1174 |#1|)) 105)) (-3815 (((-1174 |#1|) (-1174 |#1|)) 69)) (-3935 (((-1174 |#1|) (-1174 |#1|)) 103)) (-3795 (((-1174 |#1|) (-1174 |#1|)) 64)) (-3907 (((-1174 |#1|) (-1174 |#1|)) 100)) (-3772 (((-1174 |#1|) (-1174 |#1|)) 56)) (-1569 (((-1174 |#1|) (-1174 |#1|)) 113)) (-3850 (((-1174 |#1|) (-1174 |#1|)) 88)) (-1544 (((-1174 |#1|) (-1174 |#1|)) 107)) (-3826 (((-1174 |#1|) (-1174 |#1|)) 84)) (-1593 (((-1174 |#1|) (-1174 |#1|)) 117)) (-3871 (((-1174 |#1|) (-1174 |#1|)) 92)) (-2912 (((-1174 |#1|) (-1174 |#1|)) 119)) (-3883 (((-1174 |#1|) (-1174 |#1|)) 94)) (-1583 (((-1174 |#1|) (-1174 |#1|)) 115)) (-3861 (((-1174 |#1|) (-1174 |#1|)) 90)) (-1554 (((-1174 |#1|) (-1174 |#1|)) 109)) (-3837 (((-1174 |#1|) (-1174 |#1|)) 86)) (** (((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) 41)))
-(((-1180 |#1|) (-10 -7 (-15 -2663 ((-1174 |#1|) (-1174 |#1|))) (-15 -3461 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4424 ((-2 (|:| -3759 (-1174 |#1|)) (|:| -3772 (-1174 |#1|))) (-1174 |#1|))) (-15 -3759 ((-1174 |#1|) (-1174 |#1|))) (-15 -3772 ((-1174 |#1|) (-1174 |#1|))) (-15 -3784 ((-1174 |#1|) (-1174 |#1|))) (-15 -3795 ((-1174 |#1|) (-1174 |#1|))) (-15 -3805 ((-1174 |#1|) (-1174 |#1|))) (-15 -3815 ((-1174 |#1|) (-1174 |#1|))) (-15 -3826 ((-1174 |#1|) (-1174 |#1|))) (-15 -3837 ((-1174 |#1|) (-1174 |#1|))) (-15 -3850 ((-1174 |#1|) (-1174 |#1|))) (-15 -3861 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3883 ((-1174 |#1|) (-1174 |#1|))) (-15 -3104 ((-2 (|:| -3895 (-1174 |#1|)) (|:| -3907 (-1174 |#1|))) (-1174 |#1|))) (-15 -3895 ((-1174 |#1|) (-1174 |#1|))) (-15 -3907 ((-1174 |#1|) (-1174 |#1|))) (-15 -3921 ((-1174 |#1|) (-1174 |#1|))) (-15 -3935 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1531 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1569 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1593 ((-1174 |#1|) (-1174 |#1|))) (-15 -2912 ((-1174 |#1|) (-1174 |#1|)))) (-38 (-418 (-575)))) (T -1180))
-((-2912 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1531 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3935 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-2 (|:| -3895 (-1174 *4)) (|:| -3907 (-1174 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3861 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3815 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3795 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-2 (|:| -3759 (-1174 *4)) (|:| -3772 (-1174 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1180 *3)))))
-(-10 -7 (-15 -2663 ((-1174 |#1|) (-1174 |#1|))) (-15 -3461 ((-1174 |#1|) (-1174 |#1|))) (-15 ** ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4424 ((-2 (|:| -3759 (-1174 |#1|)) (|:| -3772 (-1174 |#1|))) (-1174 |#1|))) (-15 -3759 ((-1174 |#1|) (-1174 |#1|))) (-15 -3772 ((-1174 |#1|) (-1174 |#1|))) (-15 -3784 ((-1174 |#1|) (-1174 |#1|))) (-15 -3795 ((-1174 |#1|) (-1174 |#1|))) (-15 -3805 ((-1174 |#1|) (-1174 |#1|))) (-15 -3815 ((-1174 |#1|) (-1174 |#1|))) (-15 -3826 ((-1174 |#1|) (-1174 |#1|))) (-15 -3837 ((-1174 |#1|) (-1174 |#1|))) (-15 -3850 ((-1174 |#1|) (-1174 |#1|))) (-15 -3861 ((-1174 |#1|) (-1174 |#1|))) (-15 -3871 ((-1174 |#1|) (-1174 |#1|))) (-15 -3883 ((-1174 |#1|) (-1174 |#1|))) (-15 -3104 ((-2 (|:| -3895 (-1174 |#1|)) (|:| -3907 (-1174 |#1|))) (-1174 |#1|))) (-15 -3895 ((-1174 |#1|) (-1174 |#1|))) (-15 -3907 ((-1174 |#1|) (-1174 |#1|))) (-15 -3921 ((-1174 |#1|) (-1174 |#1|))) (-15 -3935 ((-1174 |#1|) (-1174 |#1|))) (-15 -1521 ((-1174 |#1|) (-1174 |#1|))) (-15 -1531 ((-1174 |#1|) (-1174 |#1|))) (-15 -1544 ((-1174 |#1|) (-1174 |#1|))) (-15 -1554 ((-1174 |#1|) (-1174 |#1|))) (-15 -1569 ((-1174 |#1|) (-1174 |#1|))) (-15 -1583 ((-1174 |#1|) (-1174 |#1|))) (-15 -1593 ((-1174 |#1|) (-1174 |#1|))) (-15 -2912 ((-1174 |#1|) (-1174 |#1|))))
-((-2310 (((-973 |#2|) |#2| |#2|) 50)) (-2379 ((|#2| |#2| |#1|) 19 (|has| |#1| (-316)))))
-(((-1181 |#1| |#2|) (-10 -7 (-15 -2310 ((-973 |#2|) |#2| |#2|)) (IF (|has| |#1| (-316)) (-15 -2379 (|#2| |#2| |#1|)) |%noBranch|)) (-567) (-1261 |#1|)) (T -1181))
-((-2379 (*1 *2 *2 *3) (-12 (-4 *3 (-316)) (-4 *3 (-567)) (-5 *1 (-1181 *3 *2)) (-4 *2 (-1261 *3)))) (-2310 (*1 *2 *3 *3) (-12 (-4 *4 (-567)) (-5 *2 (-973 *3)) (-5 *1 (-1181 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -2310 ((-973 |#2|) |#2| |#2|)) (IF (|has| |#1| (-316)) (-15 -2379 (|#2| |#2| |#1|)) |%noBranch|))
-((-2859 (((-112) $ $) NIL)) (-2964 (($ $ (-655 (-782))) 79)) (-2621 (($) 33)) (-2579 (($ $) 51)) (-2486 (((-655 $) $) 60)) (-2459 (((-112) $) 19)) (-1411 (((-655 (-958 |#2|)) $) 86)) (-3968 (($ $) 80)) (-2516 (((-782) $) 47)) (-2303 (($) 32)) (-2094 (($ $ (-655 (-782)) (-958 |#2|)) 72) (($ $ (-655 (-782)) (-782)) 73) (($ $ (-782) (-958 |#2|)) 75)) (-4167 (($ $ $) 57) (($ (-655 $)) 59)) (-2625 (((-782) $) 87)) (-1902 (((-112) $) 15)) (-4264 (((-1176) $) NIL)) (-3608 (((-112) $) 22)) (-3912 (((-1137) $) NIL)) (-2230 (((-173) $) 85)) (-2853 (((-958 |#2|) $) 81)) (-2717 (((-782) $) 82)) (-3752 (((-112) $) 84)) (-3986 (($ $ (-655 (-782)) (-173)) 78)) (-3302 (($ $) 52)) (-2882 (((-873) $) 99)) (-4176 (($ $ (-655 (-782)) (-112)) 77)) (-3620 (((-655 $) $) 11)) (-1320 (($ $ (-782)) 46)) (-4045 (($ $) 43)) (-3685 (((-112) $ $) NIL)) (-1547 (($ $ $ (-958 |#2|) (-782)) 68)) (-2128 (($ $ (-958 |#2|)) 67)) (-4362 (($ $ (-655 (-782)) (-958 |#2|)) 66) (($ $ (-655 (-782)) (-782)) 70) (((-782) $ (-958 |#2|)) 71)) (-3913 (((-112) $ $) 92)))
-(((-1182 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -1902 ((-112) $)) (-15 -2459 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -2303 ($)) (-15 -2621 ($)) (-15 -4045 ($ $)) (-15 -1320 ($ $ (-782))) (-15 -3620 ((-655 $) $)) (-15 -2516 ((-782) $)) (-15 -2579 ($ $)) (-15 -3302 ($ $)) (-15 -4167 ($ $ $)) (-15 -4167 ($ (-655 $))) (-15 -2486 ((-655 $) $)) (-15 -4362 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -2128 ($ $ (-958 |#2|))) (-15 -1547 ($ $ $ (-958 |#2|) (-782))) (-15 -2094 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -4362 ($ $ (-655 (-782)) (-782))) (-15 -2094 ($ $ (-655 (-782)) (-782))) (-15 -4362 ((-782) $ (-958 |#2|))) (-15 -2094 ($ $ (-782) (-958 |#2|))) (-15 -4176 ($ $ (-655 (-782)) (-112))) (-15 -3986 ($ $ (-655 (-782)) (-173))) (-15 -2964 ($ $ (-655 (-782)))) (-15 -2853 ((-958 |#2|) $)) (-15 -2717 ((-782) $)) (-15 -3752 ((-112) $)) (-15 -2230 ((-173) $)) (-15 -2625 ((-782) $)) (-15 -3968 ($ $)) (-15 -1411 ((-655 (-958 |#2|)) $)))) (-936) (-1066)) (T -1182))
-((-1902 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2459 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2303 (*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-2621 (*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-4167 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-4362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-958 *4)) (-4 *4 (-1066)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)))) (-1547 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-958 *5)) (-5 *3 (-782)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-2094 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-4362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-2094 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-4362 (*1 *2 *1 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *2 (-782)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-2094 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))) (-4176 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-112)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-3986 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-655 (-782))) (-5 *3 (-173)) (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)) (-4 *5 (-1066)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-958 *4)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))) (-3968 (*1 *1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-655 (-958 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936)) (-4 *4 (-1066)))))
-(-13 (-1117) (-10 -8 (-15 -1902 ((-112) $)) (-15 -2459 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -2303 ($)) (-15 -2621 ($)) (-15 -4045 ($ $)) (-15 -1320 ($ $ (-782))) (-15 -3620 ((-655 $) $)) (-15 -2516 ((-782) $)) (-15 -2579 ($ $)) (-15 -3302 ($ $)) (-15 -4167 ($ $ $)) (-15 -4167 ($ (-655 $))) (-15 -2486 ((-655 $) $)) (-15 -4362 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -2128 ($ $ (-958 |#2|))) (-15 -1547 ($ $ $ (-958 |#2|) (-782))) (-15 -2094 ($ $ (-655 (-782)) (-958 |#2|))) (-15 -4362 ($ $ (-655 (-782)) (-782))) (-15 -2094 ($ $ (-655 (-782)) (-782))) (-15 -4362 ((-782) $ (-958 |#2|))) (-15 -2094 ($ $ (-782) (-958 |#2|))) (-15 -4176 ($ $ (-655 (-782)) (-112))) (-15 -3986 ($ $ (-655 (-782)) (-173))) (-15 -2964 ($ $ (-655 (-782)))) (-15 -2853 ((-958 |#2|) $)) (-15 -2717 ((-782) $)) (-15 -3752 ((-112) $)) (-15 -2230 ((-173) $)) (-15 -2625 ((-782) $)) (-15 -3968 ($ $)) (-15 -1411 ((-655 (-958 |#2|)) $))))
-((-2859 (((-112) $ $) NIL)) (-3890 ((|#2| $) 11)) (-3878 ((|#1| $) 10)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2893 (($ |#1| |#2|) 9)) (-2882 (((-873) $) 16)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1183 |#1| |#2|) (-13 (-1117) (-10 -8 (-15 -2893 ($ |#1| |#2|)) (-15 -3878 (|#1| $)) (-15 -3890 (|#2| $)))) (-1117) (-1117)) (T -1183))
-((-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-1183 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *2 *3)) (-4 *3 (-1117)))) (-3890 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *3 *2)) (-4 *3 (-1117)))))
-(-13 (-1117) (-10 -8 (-15 -2893 ($ |#1| |#2|)) (-15 -3878 (|#1| $)) (-15 -3890 (|#2| $))))
-((-2859 (((-112) $ $) NIL)) (-2390 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1184) (-13 (-1100) (-10 -8 (-15 -2390 ((-1152) $))))) (T -1184))
-((-2390 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1184)))))
-(-13 (-1100) (-10 -8 (-15 -2390 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 11)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-2456 (($ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3978 (((-112) $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3449 (($ $ (-575)) NIL) (($ $ (-575) (-575)) 75)) (-3149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) NIL)) (-2913 (((-1192 |#1| |#2| |#3|) $) 42)) (-4108 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 32)) (-4290 (((-1192 |#1| |#2| |#3|) $) 33)) (-3921 (($ $) 116 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 92 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) 112 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 88 (|has| |#1| (-38 (-418 (-575)))))) (-2326 (((-575) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) 120 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 96 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1194) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-575) "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-4400 (((-1192 |#1| |#2| |#3|) $) 140) (((-1194) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-418 (-575)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-575) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-3709 (($ $) 37) (($ (-575) $) 38)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-1192 |#1| |#2| |#3|)) (-1285 $)) NIL (|has| |#1| (-373))) (((-700 (-1192 |#1| |#2| |#3|)) (-700 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 (-1192 |#1| |#2| |#3|))) (|:| |vec| (-1285 (-1192 |#1| |#2| |#3|)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373))))) (-4162 (((-3 $ "failed") $) 54)) (-2494 (((-418 (-967 |#1|)) $ (-575)) 74 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 76 (|has| |#1| (-567)))) (-2073 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2359 (((-112) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-2333 (((-112) $) 28)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-898 (-575))) (|has| |#1| (-373))))) (-3369 (((-575) $) NIL) (((-575) $ (-575)) 26)) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL (|has| |#1| (-373)))) (-1595 (((-1192 |#1| |#2| |#3|) $) 44 (|has| |#1| (-373)))) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2808 (((-3 $ "failed") $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))))) (-1721 (((-112) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1752 (($ $ (-936)) NIL)) (-2691 (($ (-1 |#1| (-575)) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-575)) 19) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-1914 (($ $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3503 (($ $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-373)))) (-3461 (($ $) 81 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4301 (($ (-575) (-1192 |#1| |#2| |#3|)) 36)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4388 (($ $) 79 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 80 (|has| |#1| (-38 (-418 (-575)))))) (-3472 (($) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-1931 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-3920 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-575)) 158)) (-2849 (((-3 $ "failed") $ $) 55 (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) 82 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-525 (-1194) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-525 (-1194) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-303 (-1192 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-303 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1192 |#1| |#2| |#3|)) (-655 (-1192 |#1| |#2| |#3|))) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-318 (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-575)) NIL) (($ $ $) 61 (|has| (-575) (-1129))) (($ $ (-1192 |#1| |#2| |#3|)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-295 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $ (-1281 |#2|)) 57) (($ $) 56 (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-2325 (($ $) NIL (|has| |#1| (-373)))) (-1608 (((-1192 |#1| |#2| |#3|) $) 46 (|has| |#1| (-373)))) (-1753 (((-575) $) 43)) (-1531 (($ $) 122 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 98 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 118 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 94 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 114 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 90 (|has| |#1| (-38 (-418 (-575)))))) (-2613 (((-547) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-625 (-547))) (|has| |#1| (-373)))) (((-389) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-227) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-904 (-389)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) 162) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1192 |#1| |#2| |#3|)) 30) (($ (-1281 |#2|)) 25) (($ (-1194)) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (($ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567)))) (($ (-418 (-575))) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))) (|has| |#1| (-38 (-418 (-575))))))) (-3002 ((|#1| $ (-575)) 77)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 12)) (-4248 (((-1192 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) 128 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 104 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-1544 (($ $) 124 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 100 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 108 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-575)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 110 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 130 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 106 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 126 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 102 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1989 (($) 21 T CONST)) (-2005 (($) 16 T CONST)) (-3428 (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $ (-1281 |#2|)) NIL) (($ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-3980 (((-112) $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3955 (((-112) $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3940 (((-112) $ $) NIL (-3763 (-12 (|has| (-1192 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1192 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 49 (|has| |#1| (-373))) (($ (-1192 |#1| |#2| |#3|) (-1192 |#1| |#2| |#3|)) 50 (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 23)) (** (($ $ (-936)) NIL) (($ $ (-782)) 60) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) 83 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 137 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1192 |#1| |#2| |#3|)) 48 (|has| |#1| (-373))) (($ (-1192 |#1| |#2| |#3|) $) 47 (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1185 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1192 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1185))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1247 |#1| (-1192 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-4376 ((|#2| |#2| (-1109 |#2|)) 26) ((|#2| |#2| (-1194)) 28)))
-(((-1186 |#1| |#2|) (-10 -7 (-15 -4376 (|#2| |#2| (-1194))) (-15 -4376 (|#2| |#2| (-1109 |#2|)))) (-13 (-567) (-1055 (-575)) (-650 (-575))) (-13 (-441 |#1|) (-161) (-27) (-1220))) (T -1186))
-((-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220))) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1186 *4 *2)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1186 *4 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220))))))
-(-10 -7 (-15 -4376 (|#2| |#2| (-1194))) (-15 -4376 (|#2| |#2| (-1109 |#2|))))
-((-4376 (((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1109 (-418 (-967 |#1|)))) 31) (((-418 (-967 |#1|)) (-967 |#1|) (-1109 (-967 |#1|))) 44) (((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1194)) 33) (((-418 (-967 |#1|)) (-967 |#1|) (-1194)) 36)))
-(((-1187 |#1|) (-10 -7 (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1194))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1109 (-967 |#1|)))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1109 (-418 (-967 |#1|)))))) (-13 (-567) (-1055 (-575)))) (T -1187))
-((-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5))) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-3 *3 (-325 *5))) (-5 *1 (-1187 *5)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-967 *5))) (-5 *3 (-967 *5)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 *3)) (-5 *1 (-1187 *5)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-3 (-418 (-967 *5)) (-325 *5))) (-5 *1 (-1187 *5)) (-5 *3 (-418 (-967 *5))))) (-4376 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 (-967 *5))) (-5 *1 (-1187 *5)) (-5 *3 (-967 *5)))))
-(-10 -7 (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1194))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1194))) (-15 -4376 ((-418 (-967 |#1|)) (-967 |#1|) (-1109 (-967 |#1|)))) (-15 -4376 ((-3 (-418 (-967 |#1|)) (-325 |#1|)) (-418 (-967 |#1|)) (-1109 (-418 (-967 |#1|))))))
-((-2544 (((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)) 13)))
-(((-1188 |#1| |#2|) (-10 -7 (-15 -2544 ((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|)))) (-1066) (-1066)) (T -1188))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-5 *2 (-1190 *6)) (-5 *1 (-1188 *5 *6)))))
-(-10 -7 (-15 -2544 ((-1190 |#2|) (-1 |#2| |#1|) (-1190 |#1|))))
-((-4281 (((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))) 51)) (-2347 (((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))) 52)))
-(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2347 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|)))) (-15 -4281 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|))))) (-804) (-861) (-463) (-964 |#3| |#1| |#2|)) (T -1189))
-((-4281 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7)))) (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7))))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463)) (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7)))) (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7))))))
-(-10 -7 (-15 -2347 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|)))) (-15 -4281 ((-429 (-1190 (-418 |#4|))) (-1190 (-418 |#4|)))))
-((-2859 (((-112) $ $) 171)) (-2045 (((-112) $) 43)) (-1770 (((-1285 |#1|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-2132 (($ (-1190 |#1|)) NIL)) (-3462 (((-1190 $) $ (-1099)) 82) (((-1190 |#1|) $) 71)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) 164 (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ $) 158 (|has| |#1| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) 95 (|has| |#1| (-924)))) (-3312 (($ $) NIL (|has| |#1| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 115 (|has| |#1| (-924)))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-4246 (($ $ (-782)) 61)) (-2681 (($ $ (-782)) 63)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-463)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#1| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL)) (-4400 ((|#1| $) NIL) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-1099) $) NIL)) (-4171 (($ $ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) 80)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) NIL) (((-700 |#1|) (-700 $)) NIL) (((-700 |#1|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2804 (($ $ $) 131)) (-2284 (($ $ $) NIL (|has| |#1| (-567)))) (-1568 (((-2 (|:| -1754 |#1|) (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-2379 (($ $) 165 (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-782) $) 69)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-2830 (((-873) $ (-873)) 148)) (-3369 (((-782) $ $) NIL (|has| |#1| (-567)))) (-3900 (((-112) $) 48)) (-1403 (((-782) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#1| (-1169)))) (-2430 (($ (-1190 |#1|) (-1099)) 73) (($ (-1190 $) (-1099)) 89)) (-1752 (($ $ (-782)) 51)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) 87) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1099)) NIL) (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 153)) (-3143 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-1946 (($ (-1 (-782) (-782)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2918 (((-1190 |#1|) $) NIL)) (-2187 (((-3 (-1099) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) 76)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) NIL (|has| |#1| (-463)))) (-4264 (((-1176) $) NIL)) (-3888 (((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782)) 60)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-1099)) (|:| -1658 (-782))) "failed") $) NIL)) (-4388 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3472 (($) NIL (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) 50)) (-4353 ((|#1| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 103 (|has| |#1| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-463))) (($ $ $) 167 (|has| |#1| (-463)))) (-1834 (($ $ (-782) |#1| $) 123)) (-1343 (((-429 (-1190 $)) (-1190 $)) 101 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 100 (|has| |#1| (-924)))) (-2347 (((-429 $) $) 108 (|has| |#1| (-924)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-655 (-1099)) (-655 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) NIL (|has| |#1| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#1| (-567)))) (-2720 (((-3 $ "failed") $ (-782)) 54)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 172 (|has| |#1| (-373)))) (-2801 (($ $ (-1099)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-1753 (((-782) $) 78) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) 162 (|has| |#1| (-463))) (($ $ (-1099)) NIL (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-924))))) (-4095 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#1| (-567)))) (-2882 (((-873) $) 149) (($ (-575)) NIL) (($ |#1|) 77) (($ (-1099)) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) 41 (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) 17 T CONST)) (-2005 (($) 19 T CONST)) (-3428 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#1| (-915 (-1194))))) (-3913 (((-112) $ $) 120)) (-4038 (($ $ |#1|) 173 (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 90)) (** (($ $ (-936)) 14) (($ $ (-782)) 12)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 39) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1190 |#1|) (-13 (-1261 |#1|) (-10 -8 (-15 -2830 ((-873) $ (-873))) (-15 -1834 ($ $ (-782) |#1| $)))) (-1066)) (T -1190))
-((-2830 (*1 *2 *1 *2) (-12 (-5 *2 (-873)) (-5 *1 (-1190 *3)) (-4 *3 (-1066)))) (-1834 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1190 *3)) (-4 *3 (-1066)))))
-(-13 (-1261 |#1|) (-10 -8 (-15 -2830 ((-873) $ (-873))) (-15 -1834 ($ $ (-782) |#1| $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 11)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-1185 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 36)) (-4400 (((-1185 |#1| |#2| |#3|) $) NIL) (((-1192 |#1| |#2| |#3|) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-3344 (((-418 (-575)) $) 59)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) (-1185 |#1| |#2| |#3|)) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) NIL)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-418 (-575))) 20) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3074 (((-1185 |#1| |#2| |#3|) $) 41)) (-2531 (((-3 (-1185 |#1| |#2| |#3|) "failed") $) NIL)) (-4301 (((-1185 |#1| |#2| |#3|) $) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4388 (($ $) 39 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 40 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) NIL)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) 38)) (-1753 (((-418 (-575)) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) 62) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1185 |#1| |#2| |#3|)) 30) (($ (-1192 |#1| |#2| |#3|)) 31) (($ (-1281 |#2|)) 26) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 12)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 22 T CONST)) (-2005 (($) 16 T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 24)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1191 |#1| |#2| |#3|) (-13 (-1268 |#1| (-1185 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-1055 (-1192 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1191))
-((-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1268 |#1| (-1185 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-1055 (-1192 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 129)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 119)) (-2891 (((-1258 |#2| |#1|) $ (-782)) 69)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-782)) 85) (($ $ (-782) (-782)) 82)) (-3149 (((-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|))) $) 105)) (-3921 (($ $) 173 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3895 (($ $) 169 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|)))) 118) (($ (-1174 |#1|)) 113)) (-1521 (($ $) 177 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) 25)) (-3548 (($ $) 28)) (-2479 (((-967 |#1|) $ (-782)) 81) (((-967 |#1|) $ (-782) (-782)) 83)) (-2333 (((-112) $) 124)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-782) $) 126) (((-782) $ (-782)) 128)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) NIL)) (-2691 (($ (-1 |#1| (-575)) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) 13) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3461 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-4388 (($ $) 133 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 134 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-1985 (($ $ (-782)) 15)) (-2849 (((-3 $ "failed") $ $) 26 (|has| |#1| (-567)))) (-2663 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-782)))))) (-2065 ((|#1| $ (-782)) 122) (($ $ $) 132 (|has| (-782) (-1129)))) (-2382 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-1281 |#2|)) 31)) (-1753 (((-782) $) NIL)) (-1531 (($ $) 179 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 175 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 171 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) 206) (($ (-575)) NIL) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1258 |#2| |#1|)) 55) (($ (-1281 |#2|)) 36)) (-2212 (((-1174 |#1|) $) 101)) (-3002 ((|#1| $ (-782)) 121)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 58)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) 185 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 161 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 181 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 189 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 165 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-782)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-782)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 191 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 167 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 187 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 163 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 183 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 159 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 17 T CONST)) (-2005 (($) 20 T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-1281 |#2|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) 198)) (-4015 (($ $ $) 35)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ |#1|) 203 (|has| |#1| (-373))) (($ $ $) 138 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 141 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1192 |#1| |#2| |#3|) (-13 (-1276 |#1|) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1258 |#2| |#1|))) (-15 -2891 ((-1258 |#2| |#1|) $ (-782))) (-15 -2882 ($ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1192))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5)))) (-2891 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1192 *4 *5 *6)) (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1276 |#1|) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1258 |#2| |#1|))) (-15 -2891 ((-1258 |#2| |#1|) $ (-782))) (-15 -2882 ($ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-2882 (((-873) $) 33) (($ (-1194)) 35)) (-3763 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 46)) (-3750 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 39) (($ $) 40)) (-3598 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 41)) (-3589 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 43)) (-3577 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 42)) (-3568 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 44)) (-3091 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $))) 45)))
-(((-1193) (-13 (-624 (-873)) (-10 -8 (-15 -2882 ($ (-1194))) (-15 -3598 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3577 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3589 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3568 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3763 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3091 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3750 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3750 ($ $))))) (T -1193))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1193)))) (-3598 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3577 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3589 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3568 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3763 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3091 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193)))) (-5 *1 (-1193)))) (-3750 (*1 *1 *1) (-5 *1 (-1193))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2882 ($ (-1194))) (-15 -3598 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3577 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3589 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3568 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3763 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3091 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)) (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3750 ($ (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389))) (|:| CF (-325 (-171 (-389)))) (|:| |switch| $)))) (-15 -3750 ($ $))))
-((-2859 (((-112) $ $) NIL)) (-3243 (($ $ (-655 (-873))) 62)) (-1480 (($ $ (-655 (-873))) 60)) (-1650 (((-1176) $) 101)) (-1850 (((-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873)))) $) 108)) (-4156 (((-112) $) 23)) (-2709 (($ $ (-655 (-655 (-873)))) 59) (($ $ (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873))))) 99)) (-3261 (($) 163 T CONST)) (-1896 (((-1290)) 135)) (-1806 (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 69) (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 76)) (-2303 (($) 122) (($ $) 131)) (-1777 (($ $) 100)) (-1914 (($ $ $) NIL)) (-3503 (($ $ $) NIL)) (-1684 (((-655 $) $) 136)) (-4264 (((-1176) $) 114)) (-3912 (((-1137) $) NIL)) (-2065 (($ $ (-655 (-873))) 61)) (-2613 (((-547) $) 48) (((-1194) $) 49) (((-904 (-575)) $) 80) (((-904 (-389)) $) 78)) (-2882 (((-873) $) 55) (($ (-1176)) 50)) (-3685 (((-112) $ $) NIL)) (-1586 (($ $ (-655 (-873))) 63)) (-2225 (((-1176) $) 34) (((-1176) $ (-112)) 35) (((-1290) (-833) $) 36) (((-1290) (-833) $ (-112)) 37)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 51)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) 52)))
-(((-1194) (-13 (-861) (-625 (-547)) (-839) (-625 (-1194)) (-627 (-1176)) (-625 (-904 (-575))) (-625 (-904 (-389))) (-898 (-575)) (-898 (-389)) (-10 -8 (-15 -2303 ($)) (-15 -2303 ($ $)) (-15 -1896 ((-1290))) (-15 -1777 ($ $)) (-15 -4156 ((-112) $)) (-15 -1850 ((-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873)))) $)) (-15 -2709 ($ $ (-655 (-655 (-873))))) (-15 -2709 ($ $ (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873)))))) (-15 -1480 ($ $ (-655 (-873)))) (-15 -3243 ($ $ (-655 (-873)))) (-15 -1586 ($ $ (-655 (-873)))) (-15 -2065 ($ $ (-655 (-873)))) (-15 -1650 ((-1176) $)) (-15 -1684 ((-655 $) $)) (-15 -3261 ($) -3736)))) (T -1194))
-((-2303 (*1 *1) (-5 *1 (-1194))) (-2303 (*1 *1 *1) (-5 *1 (-1194))) (-1896 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1194)))) (-1777 (*1 *1 *1) (-5 *1 (-1194))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873))))) (-5 *1 (-1194)))) (-2709 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-1194)))) (-2709 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873))))) (-5 *1 (-1194)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-3243 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-1586 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1194)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1194)))) (-3261 (*1 *1) (-5 *1 (-1194))))
-(-13 (-861) (-625 (-547)) (-839) (-625 (-1194)) (-627 (-1176)) (-625 (-904 (-575))) (-625 (-904 (-389))) (-898 (-575)) (-898 (-389)) (-10 -8 (-15 -2303 ($)) (-15 -2303 ($ $)) (-15 -1896 ((-1290))) (-15 -1777 ($ $)) (-15 -4156 ((-112) $)) (-15 -1850 ((-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873)))) $)) (-15 -2709 ($ $ (-655 (-655 (-873))))) (-15 -2709 ($ $ (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873))) (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873))) (|:| |args| (-655 (-873)))))) (-15 -1480 ($ $ (-655 (-873)))) (-15 -3243 ($ $ (-655 (-873)))) (-15 -1586 ($ $ (-655 (-873)))) (-15 -2065 ($ $ (-655 (-873)))) (-15 -1650 ((-1176) $)) (-15 -1684 ((-655 $) $)) (-15 -3261 ($) -3736)))
-((-2631 (((-1285 |#1|) |#1| (-936)) 18) (((-1285 |#1|) (-655 |#1|)) 25)))
-(((-1195 |#1|) (-10 -7 (-15 -2631 ((-1285 |#1|) (-655 |#1|))) (-15 -2631 ((-1285 |#1|) |#1| (-936)))) (-1066)) (T -1195))
-((-2631 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-1285 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1066)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1066)) (-5 *2 (-1285 *4)) (-5 *1 (-1195 *4)))))
-(-10 -7 (-15 -2631 ((-1285 |#1|) (-655 |#1|))) (-15 -2631 ((-1285 |#1|) |#1| (-936))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| |#1| (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#1| (-1055 (-418 (-575))))) (((-3 |#1| "failed") $) NIL)) (-4400 (((-575) $) NIL (|has| |#1| (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| |#1| (-1055 (-418 (-575))))) ((|#1| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-463)))) (-4384 (($ $ |#1| (-988) $) NIL)) (-3900 (((-112) $) 17)) (-1403 (((-782) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-988)) NIL)) (-3143 (((-988) $) NIL)) (-1946 (($ (-1 (-988) (-988)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#1| $) NIL)) (-1834 (($ $ (-988) |#1| $) NIL (-12 (|has| (-988) (-132)) (|has| |#1| (-567))))) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-567)))) (-1753 (((-988) $) NIL)) (-3696 ((|#1| $) NIL (|has| |#1| (-463)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) NIL) (($ (-418 (-575))) NIL (-3763 (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-1055 (-418 (-575))))))) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ (-988)) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#1| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1989 (($) 10 T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 21)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1196 |#1|) (-13 (-335 |#1| (-988)) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| (-988) (-132)) (-15 -1834 ($ $ (-988) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) (-1066)) (T -1196))
-((-1834 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-988)) (-4 *2 (-132)) (-5 *1 (-1196 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))))
-(-13 (-335 |#1| (-988)) (-10 -8 (IF (|has| |#1| (-567)) (IF (|has| (-988) (-132)) (-15 -1834 ($ $ (-988) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|)))
-((-3924 (((-1198) (-1194) $) 25)) (-3843 (($) 29)) (-4124 (((-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-1194) $) 22)) (-1341 (((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void")) $) 41) (((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) 42) (((-1290) (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) 43)) (-2924 (((-1290) (-1194)) 58)) (-3698 (((-1290) (-1194) $) 55) (((-1290) (-1194)) 56) (((-1290)) 57)) (-2271 (((-1290) (-1194)) 37)) (-1772 (((-1194)) 36)) (-1393 (($) 34)) (-4066 (((-448) (-1194) (-448) (-1194) $) 45) (((-448) (-655 (-1194)) (-448) (-1194) $) 49) (((-448) (-1194) (-448)) 46) (((-448) (-1194) (-448) (-1194)) 50)) (-2894 (((-1194)) 35)) (-2882 (((-873) $) 28)) (-3373 (((-1290)) 30) (((-1290) (-1194)) 33)) (-2623 (((-655 (-1194)) (-1194) $) 24)) (-4439 (((-1290) (-1194) (-655 (-1194)) $) 38) (((-1290) (-1194) (-655 (-1194))) 39) (((-1290) (-655 (-1194))) 40)))
-(((-1197) (-13 (-624 (-873)) (-10 -8 (-15 -3843 ($)) (-15 -3373 ((-1290))) (-15 -3373 ((-1290) (-1194))) (-15 -4066 ((-448) (-1194) (-448) (-1194) $)) (-15 -4066 ((-448) (-655 (-1194)) (-448) (-1194) $)) (-15 -4066 ((-448) (-1194) (-448))) (-15 -4066 ((-448) (-1194) (-448) (-1194))) (-15 -2271 ((-1290) (-1194))) (-15 -2894 ((-1194))) (-15 -1772 ((-1194))) (-15 -4439 ((-1290) (-1194) (-655 (-1194)) $)) (-15 -4439 ((-1290) (-1194) (-655 (-1194)))) (-15 -4439 ((-1290) (-655 (-1194)))) (-15 -1341 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void")) $)) (-15 -1341 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void")))) (-15 -1341 ((-1290) (-3 (|:| |fst| (-445)) (|:| -2001 "void")))) (-15 -3698 ((-1290) (-1194) $)) (-15 -3698 ((-1290) (-1194))) (-15 -3698 ((-1290))) (-15 -2924 ((-1290) (-1194))) (-15 -1393 ($)) (-15 -4124 ((-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-1194) $)) (-15 -2623 ((-655 (-1194)) (-1194) $)) (-15 -3924 ((-1198) (-1194) $))))) (T -1197))
-((-3843 (*1 *1) (-5 *1 (-1197))) (-3373 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *4 (-1194)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) (-4066 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2894 (*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197)))) (-1772 (*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197)))) (-4439 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-4439 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-4439 (*1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-1341 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1194)) (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-1341 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-3698 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-3698 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))) (-1393 (*1 *1) (-5 *1 (-1197))) (-4124 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *1 (-1197)))) (-2623 (*1 *2 *3 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1197)) (-5 *3 (-1194)))) (-3924 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1198)) (-5 *1 (-1197)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -3843 ($)) (-15 -3373 ((-1290))) (-15 -3373 ((-1290) (-1194))) (-15 -4066 ((-448) (-1194) (-448) (-1194) $)) (-15 -4066 ((-448) (-655 (-1194)) (-448) (-1194) $)) (-15 -4066 ((-448) (-1194) (-448))) (-15 -4066 ((-448) (-1194) (-448) (-1194))) (-15 -2271 ((-1290) (-1194))) (-15 -2894 ((-1194))) (-15 -1772 ((-1194))) (-15 -4439 ((-1290) (-1194) (-655 (-1194)) $)) (-15 -4439 ((-1290) (-1194) (-655 (-1194)))) (-15 -4439 ((-1290) (-655 (-1194)))) (-15 -1341 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void")) $)) (-15 -1341 ((-1290) (-1194) (-3 (|:| |fst| (-445)) (|:| -2001 "void")))) (-15 -1341 ((-1290) (-3 (|:| |fst| (-445)) (|:| -2001 "void")))) (-15 -3698 ((-1290) (-1194) $)) (-15 -3698 ((-1290) (-1194))) (-15 -3698 ((-1290))) (-15 -2924 ((-1290) (-1194))) (-15 -1393 ($)) (-15 -4124 ((-3 (|:| |fst| (-445)) (|:| -2001 "void")) (-1194) $)) (-15 -2623 ((-655 (-1194)) (-1194) $)) (-15 -3924 ((-1198) (-1194) $))))
-((-2904 (((-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) $) 66)) (-3099 (((-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))) (-445) $) 47)) (-2200 (($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))) 17)) (-2924 (((-1290) $) 73)) (-2176 (((-655 (-1194)) $) 22)) (-1656 (((-1121) $) 60)) (-3350 (((-448) (-1194) $) 27)) (-3981 (((-655 (-1194)) $) 30)) (-1393 (($) 19)) (-4066 (((-448) (-655 (-1194)) (-448) $) 25) (((-448) (-1194) (-448) $) 24)) (-2882 (((-873) $) 9) (((-1207 (-1194) (-448)) $) 13)))
-(((-1198) (-13 (-624 (-873)) (-10 -8 (-15 -2882 ((-1207 (-1194) (-448)) $)) (-15 -1393 ($)) (-15 -4066 ((-448) (-655 (-1194)) (-448) $)) (-15 -4066 ((-448) (-1194) (-448) $)) (-15 -3350 ((-448) (-1194) $)) (-15 -2176 ((-655 (-1194)) $)) (-15 -3099 ((-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))) (-445) $)) (-15 -3981 ((-655 (-1194)) $)) (-15 -2904 ((-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) $)) (-15 -1656 ((-1121) $)) (-15 -2924 ((-1290) $)) (-15 -2200 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))))))) (T -1198))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-1207 (-1194) (-448))) (-5 *1 (-1198)))) (-1393 (*1 *1) (-5 *1 (-1198))) (-4066 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *1 (-1198)))) (-4066 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1198)))) (-3350 (*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-448)) (-5 *1 (-1198)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198)))) (-3099 (*1 *2 *3 *1) (-12 (-5 *3 (-445)) (-5 *2 (-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) (-5 *1 (-1198)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))))) (-5 *1 (-1198)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1198)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1198)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))) (-5 *1 (-1198)))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2882 ((-1207 (-1194) (-448)) $)) (-15 -1393 ($)) (-15 -4066 ((-448) (-655 (-1194)) (-448) $)) (-15 -4066 ((-448) (-1194) (-448) $)) (-15 -3350 ((-448) (-1194) $)) (-15 -2176 ((-655 (-1194)) $)) (-15 -3099 ((-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))) (-445) $)) (-15 -3981 ((-655 (-1194)) $)) (-15 -2904 ((-655 (-655 (-3 (|:| -1777 (-1194)) (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))) $)) (-15 -1656 ((-1121) $)) (-15 -2924 ((-1290) $)) (-15 -2200 ($ (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448))))))))
-((-2859 (((-112) $ $) NIL)) (-2443 (((-3 (-575) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-517) "failed") $) 43) (((-3 (-1176) "failed") $) 47)) (-4400 (((-575) $) 30) (((-227) $) 36) (((-517) $) 40) (((-1176) $) 48)) (-3840 (((-112) $) 53)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3578 (((-3 (-575) (-227) (-517) (-1176) $) $) 55)) (-2754 (((-655 $) $) 57)) (-2613 (((-1121) $) 24) (($ (-1121)) 25)) (-1535 (((-112) $) 56)) (-2882 (((-873) $) 23) (($ (-575)) 26) (($ (-227)) 32) (($ (-517)) 38) (($ (-1176)) 44) (((-547) $) 59) (((-575) $) 31) (((-227) $) 37) (((-517) $) 41) (((-1176) $) 49)) (-1977 (((-112) $ (|[\|\|]| (-575))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-517))) 19) (((-112) $ (|[\|\|]| (-1176))) 16)) (-2848 (($ (-517) (-655 $)) 51) (($ $ (-655 $)) 52)) (-3685 (((-112) $ $) NIL)) (-3132 (((-575) $) 27) (((-227) $) 33) (((-517) $) 39) (((-1176) $) 45)) (-3913 (((-112) $ $) 7)))
-(((-1199) (-13 (-1280) (-1117) (-1055 (-575)) (-1055 (-227)) (-1055 (-517)) (-1055 (-1176)) (-624 (-547)) (-10 -8 (-15 -2613 ((-1121) $)) (-15 -2613 ($ (-1121))) (-15 -2882 ((-575) $)) (-15 -3132 ((-575) $)) (-15 -2882 ((-227) $)) (-15 -3132 ((-227) $)) (-15 -2882 ((-517) $)) (-15 -3132 ((-517) $)) (-15 -2882 ((-1176) $)) (-15 -3132 ((-1176) $)) (-15 -2848 ($ (-517) (-655 $))) (-15 -2848 ($ $ (-655 $))) (-15 -3840 ((-112) $)) (-15 -3578 ((-3 (-575) (-227) (-517) (-1176) $) $)) (-15 -2754 ((-655 $) $)) (-15 -1535 ((-112) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-575)))) (-15 -1977 ((-112) $ (|[\|\|]| (-227)))) (-15 -1977 ((-112) $ (|[\|\|]| (-517)))) (-15 -1977 ((-112) $ (|[\|\|]| (-1176))))))) (T -1199))
-((-2613 (*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1199)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-1199)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199)))) (-2848 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-655 (-1199))) (-5 *1 (-1199)))) (-2848 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-3 (-575) (-227) (-517) (-1176) (-1199))) (-5 *1 (-1199)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)) (-5 *1 (-1199)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1199)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-1199)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-1199)))))
-(-13 (-1280) (-1117) (-1055 (-575)) (-1055 (-227)) (-1055 (-517)) (-1055 (-1176)) (-624 (-547)) (-10 -8 (-15 -2613 ((-1121) $)) (-15 -2613 ($ (-1121))) (-15 -2882 ((-575) $)) (-15 -3132 ((-575) $)) (-15 -2882 ((-227) $)) (-15 -3132 ((-227) $)) (-15 -2882 ((-517) $)) (-15 -3132 ((-517) $)) (-15 -2882 ((-1176) $)) (-15 -3132 ((-1176) $)) (-15 -2848 ($ (-517) (-655 $))) (-15 -2848 ($ $ (-655 $))) (-15 -3840 ((-112) $)) (-15 -3578 ((-3 (-575) (-227) (-517) (-1176) $) $)) (-15 -2754 ((-655 $) $)) (-15 -1535 ((-112) $)) (-15 -1977 ((-112) $ (|[\|\|]| (-575)))) (-15 -1977 ((-112) $ (|[\|\|]| (-227)))) (-15 -1977 ((-112) $ (|[\|\|]| (-517)))) (-15 -1977 ((-112) $ (|[\|\|]| (-1176))))))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) 22)) (-3261 (($) 12 T CONST)) (-2073 (($) 26)) (-1914 (($ $ $) NIL) (($) 19 T CONST)) (-3503 (($ $ $) NIL) (($) 20 T CONST)) (-1894 (((-936) $) 24)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) 23)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-1200 |#1|) (-13 (-855) (-10 -8 (-15 -3261 ($) -3736))) (-936)) (T -1200))
-((-3261 (*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-936)))))
-(-13 (-855) (-10 -8 (-15 -3261 ($) -3736)))
+((-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-220)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-688)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-618)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-134)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1134)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-693)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1298)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-537)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1170)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-155)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-683)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-321)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-182)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1109)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-638)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1186)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-157)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-138)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-604)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1178)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-576)))))
+(-13 (-1102) (-1282) (-10 -8 (-15 -2012 ((-112) $ (|[\|\|]| (-536)))) (-15 -3108 ((-536) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-220)))) (-15 -3108 ((-220) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-688)))) (-15 -3108 ((-688) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1297)))) (-15 -3108 ((-1297) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-139)))) (-15 -3108 ((-139) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-618)))) (-15 -3108 ((-618) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-134)))) (-15 -3108 ((-134) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1134)))) (-15 -3108 ((-1134) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-96)))) (-15 -3108 ((-96) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-693)))) (-15 -3108 ((-693) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-529)))) (-15 -3108 ((-529) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1085)))) (-15 -3108 ((-1085) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1298)))) (-15 -3108 ((-1298) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-537)))) (-15 -3108 ((-537) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1170)))) (-15 -3108 ((-1170) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-155)))) (-15 -3108 ((-155) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-683)))) (-15 -3108 ((-683) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-321)))) (-15 -3108 ((-321) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1055)))) (-15 -3108 ((-1055) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-182)))) (-15 -3108 ((-182) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-989)))) (-15 -3108 ((-989) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1092)))) (-15 -3108 ((-1092) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3108 ((-1109) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1115)))) (-15 -3108 ((-1115) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-638)))) (-15 -3108 ((-638) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1186)))) (-15 -3108 ((-1186) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-157)))) (-15 -3108 ((-157) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-138)))) (-15 -3108 ((-138) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-490)))) (-15 -3108 ((-490) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-604)))) (-15 -3108 ((-604) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-518)))) (-15 -3108 ((-518) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-1178)))) (-15 -3108 ((-1178) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-576)))) (-15 -3108 ((-576) $))))
+(((-93) . T) ((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T) ((-1102) . T) ((-1282) . T))
+((-1833 (((-1292) (-656 (-874))) 22) (((-1292) (-874)) 21)) (-3756 (((-1292) (-656 (-874))) 20) (((-1292) (-874)) 19)) (-2275 (((-1292) (-656 (-874))) 18) (((-1292) (-874)) 10) (((-1292) (-1178) (-874)) 16)))
+(((-1157) (-10 -7 (-15 -2275 ((-1292) (-1178) (-874))) (-15 -2275 ((-1292) (-874))) (-15 -3756 ((-1292) (-874))) (-15 -1833 ((-1292) (-874))) (-15 -2275 ((-1292) (-656 (-874)))) (-15 -3756 ((-1292) (-656 (-874)))) (-15 -1833 ((-1292) (-656 (-874)))))) (T -1157))
+((-1833 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))))
+(-10 -7 (-15 -2275 ((-1292) (-1178) (-874))) (-15 -2275 ((-1292) (-874))) (-15 -3756 ((-1292) (-874))) (-15 -1833 ((-1292) (-874))) (-15 -2275 ((-1292) (-656 (-874)))) (-15 -3756 ((-1292) (-656 (-874)))) (-15 -1833 ((-1292) (-656 (-874)))))
+((-3678 (($ $ $) 10)) (-1784 (($ $) 9)) (-3466 (($ $ $) 13)) (-1601 (($ $ $) 15)) (-1487 (($ $ $) 12)) (-2011 (($ $ $) 14)) (-2411 (($ $) 17)) (-4266 (($ $) 16)) (-3680 (($ $) 6)) (-2079 (($ $ $) 11) (($ $) 7)) (-1458 (($ $ $) 8)))
+(((-1158) (-141)) (T -1158))
+((-2411 (*1 *1 *1) (-4 *1 (-1158))) (-4266 (*1 *1 *1) (-4 *1 (-1158))) (-1601 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2011 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3466 (*1 *1 *1 *1) (-4 *1 (-1158))) (-1487 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2079 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3678 (*1 *1 *1 *1) (-4 *1 (-1158))) (-1784 (*1 *1 *1) (-4 *1 (-1158))) (-1458 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2079 (*1 *1 *1) (-4 *1 (-1158))) (-3680 (*1 *1 *1) (-4 *1 (-1158))))
+(-13 (-10 -8 (-15 -3680 ($ $)) (-15 -2079 ($ $)) (-15 -1458 ($ $ $)) (-15 -1784 ($ $)) (-15 -3678 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -1487 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -2011 ($ $ $)) (-15 -1601 ($ $ $)) (-15 -4266 ($ $)) (-15 -2411 ($ $))))
+((-2835 (((-112) $ $) 44)) (-4160 ((|#1| $) 17)) (-2659 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2654 (((-112) $) 19)) (-2037 (($ $ |#1|) 30)) (-3780 (($ $ (-112)) 32)) (-3758 (($ $) 33)) (-1592 (($ $ |#2|) 31)) (-2143 (((-1178) $) NIL)) (-3852 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3887 (((-1139) $) NIL)) (-3001 (((-112) $) 16)) (-3849 (($) 13)) (-3052 (($ $) 29)) (-2869 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4256 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4256 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3662 ((|#2| $) 18)) (-2858 (((-874) $) 53)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 42)))
+(((-1159 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3849 ($)) (-15 -3001 ((-112) $)) (-15 -4160 (|#1| $)) (-15 -3662 (|#2| $)) (-15 -2654 ((-112) $)) (-15 -2869 ($ |#1| |#2| (-112))) (-15 -2869 ($ |#1| |#2|)) (-15 -2869 ($ (-2 (|:| |val| |#1|) (|:| -4256 |#2|)))) (-15 -2869 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4256 |#2|))))) (-15 -2869 ((-656 $) |#1| (-656 |#2|))) (-15 -3052 ($ $)) (-15 -2037 ($ $ |#1|)) (-15 -1592 ($ $ |#2|)) (-15 -3780 ($ $ (-112))) (-15 -3758 ($ $)) (-15 -3852 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2659 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1119) (-34)) (-13 (-1119) (-34))) (T -1159))
+((-3849 (*1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-4160 (*1 *2 *1) (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *2 *3)) (-4 *3 (-13 (-1119) (-34))))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-2869 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2869 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4256 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *4)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4256 *5)))) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-13 (-1119) (-34))))) (-3052 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2037 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-1592 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))) (-4 *2 (-13 (-1119) (-34))))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-3758 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3852 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))) (-2659 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))))))
+(-13 (-1119) (-10 -8 (-15 -3849 ($)) (-15 -3001 ((-112) $)) (-15 -4160 (|#1| $)) (-15 -3662 (|#2| $)) (-15 -2654 ((-112) $)) (-15 -2869 ($ |#1| |#2| (-112))) (-15 -2869 ($ |#1| |#2|)) (-15 -2869 ($ (-2 (|:| |val| |#1|) (|:| -4256 |#2|)))) (-15 -2869 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4256 |#2|))))) (-15 -2869 ((-656 $) |#1| (-656 |#2|))) (-15 -3052 ($ $)) (-15 -2037 ($ $ |#1|)) (-15 -1592 ($ $ |#2|)) (-15 -3780 ($ $ (-112))) (-15 -3758 ($ $)) (-15 -3852 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2659 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2835 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-4160 (((-1159 |#1| |#2|) $) 27)) (-4245 (($ $) 91)) (-1954 (((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1438 (($ $ $ (-656 (-1159 |#1| |#2|))) 108) (($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2746 (((-112) $ (-783)) NIL)) (-4338 (((-1159 |#1| |#2|) $ (-1159 |#1| |#2|)) 46 (|has| $ (-6 -4463)))) (-3028 (((-1159 |#1| |#2|) $ "value" (-1159 |#1| |#2|)) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 44 (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-4228 (((-656 (-2 (|:| |val| |#1|) (|:| -4256 |#2|))) $) 95)) (-3007 (($ (-1159 |#1| |#2|) $) 42)) (-3607 (($ (-1159 |#1| |#2|) $) 34)) (-3975 (((-656 (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 54)) (-1385 (((-112) (-1159 |#1| |#2|) $) 97)) (-2231 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 (-1159 |#1| |#2|)) $) 58 (|has| $ (-6 -4462)))) (-3606 (((-112) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-1159 |#1| |#2|) (-1119))))) (-2822 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 50 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 49)) (-1684 (((-112) $ (-783)) NIL)) (-2485 (((-656 (-1159 |#1| |#2|)) $) 56)) (-3123 (((-112) $) 45)) (-2143 (((-1178) $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3887 (((-1139) $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-2448 (((-3 $ "failed") $) 89)) (-1910 (((-112) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-1159 |#1| |#2|)))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-304 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-1159 |#1| |#2|) (-1159 |#1| |#2|)) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-656 (-1159 |#1| |#2|)) (-656 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119))))) (-1974 (((-112) $ $) 53)) (-3001 (((-112) $) 24)) (-3849 (($) 26)) (-2099 (((-1159 |#1| |#2|) $ "value") NIL)) (-3599 (((-576) $ $) NIL)) (-2133 (((-112) $) 47)) (-3902 (((-783) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462))) (((-783) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-1159 |#1| |#2|) (-1119))))) (-3052 (($ $) 52)) (-2869 (($ (-1159 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1159 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1632 (((-656 |#2|) $) 96)) (-2858 (((-874) $) 87 (|has| (-1159 |#1| |#2|) (-625 (-874))))) (-4016 (((-656 $) $) 31)) (-1694 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-2690 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-2714 (((-112) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 70 (|has| (-1159 |#1| |#2|) (-1119)))) (-2845 (((-783) $) 64 (|has| $ (-6 -4462)))))
+(((-1160 |#1| |#2|) (-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2448 ((-3 $ "failed") $)) (-15 -4245 ($ $)) (-15 -2869 ($ (-1159 |#1| |#2|))) (-15 -2869 ($ |#1| |#2| (-656 $))) (-15 -2869 ($ |#1| |#2| (-656 (-1159 |#1| |#2|)))) (-15 -2869 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1632 ((-656 |#2|) $)) (-15 -4228 ((-656 (-2 (|:| |val| |#1|) (|:| -4256 |#2|))) $)) (-15 -1385 ((-112) (-1159 |#1| |#2|) $)) (-15 -1954 ((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3607 ($ (-1159 |#1| |#2|) $)) (-15 -3007 ($ (-1159 |#1| |#2|) $)) (-15 -1438 ($ $ $ (-656 (-1159 |#1| |#2|)))) (-15 -1438 ($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1119) (-34)) (-13 (-1119) (-34))) (T -1160))
+((-2448 (*1 *1 *1) (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4245 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-2869 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1160 *2 *3))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2869 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1159 *2 *3))) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3)))) (-2869 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4)))) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-1385 (*1 *2 *3 *1) (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5)))) (-1954 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *5 *6)))) (-3607 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-3007 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-1438 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1159 *3 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-1438 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1159 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *1 (-1160 *4 *5)))))
+(-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2448 ((-3 $ "failed") $)) (-15 -4245 ($ $)) (-15 -2869 ($ (-1159 |#1| |#2|))) (-15 -2869 ($ |#1| |#2| (-656 $))) (-15 -2869 ($ |#1| |#2| (-656 (-1159 |#1| |#2|)))) (-15 -2869 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1632 ((-656 |#2|) $)) (-15 -4228 ((-656 (-2 (|:| |val| |#1|) (|:| -4256 |#2|))) $)) (-15 -1385 ((-112) (-1159 |#1| |#2|) $)) (-15 -1954 ((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3607 ($ (-1159 |#1| |#2|) $)) (-15 -3007 ($ (-1159 |#1| |#2|) $)) (-15 -1438 ($ $ $ (-656 (-1159 |#1| |#2|)))) (-15 -1438 ($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-2948 (($ $) NIL)) (-1462 ((|#2| $) NIL)) (-2561 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-4128 (($ (-701 |#2|)) 56)) (-1625 (((-112) $) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-4351 (($ |#2|) 14)) (-2574 (($) NIL T CONST)) (-1607 (($ $) 69 (|has| |#2| (-317)))) (-3475 (((-245 |#1| |#2|) $ (-576)) 42)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) 83)) (-4422 (((-783) $) 71 (|has| |#2| (-568)))) (-2767 ((|#2| $ (-576) (-576)) NIL)) (-3975 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1838 (((-112) $) NIL)) (-3664 (((-783) $) 73 (|has| |#2| (-568)))) (-2732 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-4227 (((-783) $) NIL)) (-2327 (($ |#2|) 25)) (-4240 (((-783) $) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-3891 ((|#2| $) 67 (|has| |#2| (-6 (-4464 "*"))))) (-2923 (((-576) $) NIL)) (-1637 (((-576) $) NIL)) (-3531 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3698 (((-576) $) NIL)) (-2171 (((-576) $) NIL)) (-4307 (($ (-656 (-656 |#2|))) 37)) (-2822 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4101 (((-656 (-656 |#2|)) $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-2975 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-3887 (((-1139) $) NIL)) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1910 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2399 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-2123 ((|#2| $) NIL)) (-3245 (($ (-656 |#2|)) 50)) (-1856 (((-112) $) NIL)) (-3699 (((-245 |#1| |#2|) $) NIL)) (-3497 ((|#2| $) 65 (|has| |#2| (-6 (-4464 "*"))))) (-3902 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3052 (($ $) NIL)) (-2610 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-3146 (((-245 |#1| |#2|) $ (-576)) 44)) (-2858 (((-874) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-2981 (((-783)) 23 T CONST)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-1402 (((-112) $) NIL)) (-2022 (($) 16 T CONST)) (-2038 (($) 21 T CONST)) (-3404 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1161 |#1| |#2|) (-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -2327 ($ |#2|)) (-15 -2948 ($ $)) (-15 -4128 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4464 "*"))) (-6 -4451) |%noBranch|) (IF (|has| |#2| (-6 (-4464 "*"))) (IF (|has| |#2| (-6 -4459)) (-6 -4459) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1068)) (T -1161))
+((-2327 (*1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1068)))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1068)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-783)))))
+(-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -2327 ($ |#2|)) (-15 -2948 ($ $)) (-15 -4128 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4464 "*"))) (-6 -4451) |%noBranch|) (IF (|has| |#2| (-6 (-4464 "*"))) (IF (|has| |#2| (-6 -4459)) (-6 -4459) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|)))
+((-2257 (($ $) 19)) (-2265 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-3442 (((-112) $ $) 24)) (-1597 (($ $) 17)) (-2099 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (($ $ $) 31)) (-2858 (($ (-145)) 29) (((-874) $) NIL)))
+(((-1162 |#1|) (-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -2099 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#1| (-142))) (-15 -2265 (|#1| |#1| (-145))) (-15 -2858 (|#1| (-145))) (-15 -3442 ((-112) |#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -2099 ((-145) |#1| (-576))) (-15 -2099 ((-145) |#1| (-576) (-145)))) (-1163)) (T -1162))
+NIL
+(-10 -8 (-15 -2858 ((-874) |#1|)) (-15 -2099 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#1| (-142))) (-15 -2265 (|#1| |#1| (-145))) (-15 -2858 (|#1| (-145))) (-15 -3442 ((-112) |#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -2099 ((-145) |#1| (-576))) (-15 -2099 ((-145) |#1| (-576) (-145))))
+((-2835 (((-112) $ $) 19 (|has| (-145) (-1119)))) (-2328 (($ $) 123)) (-2257 (($ $) 124)) (-2265 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-3421 (((-112) $ $) 121)) (-3403 (((-112) $ $ (-576)) 120)) (-3529 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-3429 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-1426 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-2746 (((-112) $ (-783)) 8)) (-3028 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3753 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2338 (($ $) 93 (|has| $ (-6 -4463)))) (-4374 (($ $) 103)) (-4183 (($ $ (-1254 (-576)) $) 117)) (-3229 (($ $) 80 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ (-145) $) 79 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4462)))) (-2326 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4462)))) (-2832 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4463)))) (-2767 (((-145) $ (-576)) 52)) (-3442 (((-112) $ $) 122)) (-2627 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3975 (((-656 (-145)) $) 31 (|has| $ (-6 -4462)))) (-2327 (($ (-783) (-145)) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 90 (|has| (-145) (-862)))) (-3343 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-3531 (((-656 (-145)) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 89 (|has| (-145) (-862)))) (-3102 (((-112) $ $ (-145)) 118)) (-1643 (((-783) $ $ (-145)) 119)) (-2822 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2415 (($ $) 125)) (-1597 (($ $) 126)) (-1684 (((-112) $ (-783)) 10)) (-3765 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2143 (((-1178) $) 22 (|has| (-145) (-1119)))) (-2163 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| (-145) (-1119)))) (-1989 (((-145) $) 43 (|has| (-576) (-862)))) (-3557 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4040 (($ $ (-145)) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3584 (((-656 (-145)) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1254 (-576))) 71) (($ $ $) 105)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3902 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4462))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-2869 (($ (-656 (-145))) 72)) (-1534 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (($ (-145)) 114) (((-874) $) 18 (|has| (-145) (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| (-145) (-1119)))) (-2714 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3930 (((-112) $ $) 86 (|has| (-145) (-862)))) (-3889 (((-112) $ $) 20 (|has| (-145) (-1119)))) (-3944 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3916 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1163) (-141)) (T -1163))
+((-1597 (*1 *1 *1) (-4 *1 (-1163))) (-2415 (*1 *1 *1) (-4 *1 (-1163))) (-2257 (*1 *1 *1) (-4 *1 (-1163))) (-2328 (*1 *1 *1) (-4 *1 (-1163))) (-3442 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))) (-3421 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))) (-3403 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1643 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-783)))) (-3102 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-112)))) (-4183 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1254 (-576))))) (-2627 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)))) (-2627 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)) (-5 *3 (-142)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1163)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) (-2265 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-2265 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-2099 (*1 *1 *1 *1) (-4 *1 (-1163))))
+(-13 (-19 (-145)) (-10 -8 (-15 -1597 ($ $)) (-15 -2415 ($ $)) (-15 -2257 ($ $)) (-15 -2328 ($ $)) (-15 -3442 ((-112) $ $)) (-15 -3421 ((-112) $ $)) (-15 -3403 ((-112) $ $ (-576))) (-15 -1643 ((-783) $ $ (-145))) (-15 -3102 ((-112) $ $ (-145))) (-15 -4183 ($ $ (-1254 (-576)) $)) (-15 -2627 ((-576) $ $ (-576))) (-15 -2627 ((-576) (-142) $ (-576))) (-15 -2858 ($ (-145))) (-15 -3529 ((-656 $) $ (-145))) (-15 -3529 ((-656 $) $ (-142))) (-15 -2265 ($ $ (-145))) (-15 -2265 ($ $ (-142))) (-15 -3765 ($ $ (-145))) (-15 -3765 ($ $ (-142))) (-15 -3753 ($ $ (-145))) (-15 -3753 ($ $ (-142))) (-15 -2099 ($ $ $))))
+(((-34) . T) ((-102) -3739 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-625 (-874)) -3739 (|has| (-145) (-1119)) (|has| (-145) (-862)) (|has| (-145) (-625 (-874)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-663 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-1119) -3739 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-1237) . T))
+((-4136 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-783)) 112)) (-4113 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783)) 61)) (-2707 (((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-783)) 97)) (-1924 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-1339 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-2294 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-2610 (((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) 90)) (-2592 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|) 60)) (-1673 (((-783) (-656 |#4|) (-656 |#5|)) 21)))
+(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1673 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1924 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4136 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-783))) (-15 -2610 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2707 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-783)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -1164))
+((-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9)))) (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178)) (-5 *1 (-1164 *4 *5 *6 *7 *8)))) (-4136 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4256 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4256 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1164 *7 *8 *9 *10 *11)))) (-2294 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-2294 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-1339 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-1339 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-1339 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) (-4113 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-4113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-2592 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1673 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1924 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2592 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -4113 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5| (-783))) (-15 -1339 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) |#4| |#5|)) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2294 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4136 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))))) (-783))) (-15 -2610 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|)))) (-15 -2707 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4256 |#5|))) (-783))))
+((-2835 (((-112) $ $) NIL)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1952 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1634 (((-656 |#3|) $) NIL)) (-4001 (((-112) $) NIL)) (-3169 (((-112) $) NIL (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1778 ((|#4| |#4| $) NIL)) (-3179 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| $) 97)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3959 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 75)) (-2574 (($) NIL T CONST)) (-1516 (((-112) $) 29 (|has| |#1| (-568)))) (-2097 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3593 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3695 (((-112) $) NIL (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3390 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4397 (($ (-656 |#4|)) NIL)) (-2003 (((-3 $ "failed") $) 45)) (-2040 ((|#4| |#4| $) 78)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3607 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3586 ((|#4| |#4| $) NIL)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) NIL)) (-3275 (((-112) |#4| $) NIL)) (-4438 (((-112) |#4| $) NIL)) (-4310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3893 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3975 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4402 ((|#3| $) 38)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#4|) $) 19 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2822 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 23)) (-2804 (((-656 |#3|) $) NIL)) (-2872 (((-112) |#3| $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3342 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-4362 (((-656 (-2 (|:| |val| |#4|) (|:| -4256 $))) |#4| |#4| $) 117)) (-3627 (((-3 |#4| "failed") $) 42)) (-1611 (((-656 $) |#4| $) 102)) (-4270 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-2670 (((-656 (-2 (|:| |val| (-112)) (|:| -4256 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3310 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-3609 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-1501 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3025 (((-656 |#4|) $) NIL)) (-2671 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2978 ((|#4| |#4| $) NIL)) (-1700 (((-112) $ $) NIL)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3350 ((|#4| |#4| $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-3 |#4| "failed") $) 40)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2451 (((-3 $ "failed") $ |#4|) 59)) (-3262 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-1910 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 17)) (-3849 (($) 14)) (-4436 (((-783) $) NIL)) (-3902 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) 13)) (-2610 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 22)) (-4426 (($ $ |#3|) 52)) (-4127 (($ $ |#3|) 54)) (-2693 (($ $) NIL)) (-3668 (($ $ |#3|) NIL)) (-2858 (((-874) $) 35) (((-656 |#4|) $) 46)) (-3506 (((-783) $) NIL (|has| |#3| (-379)))) (-2690 (((-112) $ $) NIL)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-3828 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2714 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) NIL)) (-2212 (((-112) |#4| $) NIL)) (-2576 (((-112) |#3| $) 74)) (-3889 (((-112) $ $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1165 |#1| |#2| |#3| |#4|) (-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1501 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3609 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3893 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1165))
+((-1501 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-1952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-3609 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-3893 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1165 *5 *6 *7 *8))))) (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1501 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1952 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -3609 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3893 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2039 ((|#1| $) 37)) (-1794 (($ (-656 |#1|)) 45)) (-2746 (((-112) $ (-783)) NIL)) (-2574 (($) NIL T CONST)) (-4398 ((|#1| |#1| $) 40)) (-1748 ((|#1| $) 35)) (-3975 (((-656 |#1|) $) 18 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 22)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2395 ((|#1| $) 38)) (-2329 (($ |#1| $) 41)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3079 ((|#1| $) 36)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 32)) (-3849 (($) 43)) (-3297 (((-783) $) 30)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 27)) (-2858 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3195 (($ (-656 |#1|)) NIL)) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 17 (|has| |#1| (-1119)))) (-2845 (((-783) $) 31 (|has| $ (-6 -4462)))))
+(((-1166 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -1794 ($ (-656 |#1|))))) (-1237)) (T -1166))
+((-1794 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1166 *3)))))
+(-13 (-1140 |#1|) (-10 -8 (-15 -1794 ($ (-656 |#1|)))))
+((-3028 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1254 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-2225 (((-112) $) 12)) (-2822 (($ (-1 |#2| |#2|) $) 48)) (-1989 ((|#2| $) NIL) (($ $ (-783)) 17)) (-4040 (($ $ |#2|) 49)) (-3137 (((-112) $) 11)) (-2099 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1254 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-3925 (($ $ $) 56) (($ $ |#2|) NIL)) (-1534 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL)))
+(((-1167 |#1| |#2|) (-10 -8 (-15 -2225 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3028 (|#2| |#1| (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576))) (-15 -4040 (|#1| |#1| |#2|)) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -1534 (|#1| |#1| |#2|)) (-15 -1534 (|#1| (-656 |#1|))) (-15 -3028 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -3028 (|#2| |#1| "last" |#2|)) (-15 -3028 (|#1| |#1| "rest" |#1|)) (-15 -3028 (|#2| |#1| "first" |#2|)) (-15 -3925 (|#1| |#1| |#2|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -2099 (|#2| |#1| "last")) (-15 -2099 (|#1| |#1| "rest")) (-15 -1989 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "first")) (-15 -1989 (|#2| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#1|)) (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -2099 (|#2| |#1| "value")) (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|))) (-1168 |#2|) (-1237)) (T -1167))
+NIL
+(-10 -8 (-15 -2225 ((-112) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3028 (|#2| |#1| (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576) |#2|)) (-15 -2099 (|#2| |#1| (-576))) (-15 -4040 (|#1| |#1| |#2|)) (-15 -2099 (|#1| |#1| (-1254 (-576)))) (-15 -1534 (|#1| |#1| |#2|)) (-15 -1534 (|#1| (-656 |#1|))) (-15 -3028 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -3028 (|#2| |#1| "last" |#2|)) (-15 -3028 (|#1| |#1| "rest" |#1|)) (-15 -3028 (|#2| |#1| "first" |#2|)) (-15 -3925 (|#1| |#1| |#2|)) (-15 -3925 (|#1| |#1| |#1|)) (-15 -2099 (|#2| |#1| "last")) (-15 -2099 (|#1| |#1| "rest")) (-15 -1989 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "first")) (-15 -1989 (|#2| |#1|)) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#1|)) (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -2099 (|#2| |#1| "value")) (-15 -2822 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2963 ((|#1| $) 66)) (-3436 (($ $) 68)) (-3430 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4462)))) (-2951 ((|#1| $) 67)) (-2574 (($) 7 T CONST)) (-2003 (($ $) 74) (($ $ (-783)) 72)) (-3229 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4462))) (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2832 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 89)) (-2225 (((-112) $) 85)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2327 (($ (-783) |#1|) 111)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 97 (|has| (-576) (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 96 (|has| (-576) (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3627 ((|#1| $) 71) (($ $ (-783)) 69)) (-2163 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-2928 (((-656 (-576)) $) 94)) (-1449 (((-112) (-576) $) 93)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 77) (($ $ (-783)) 75)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-4040 (($ $ |#1|) 98 (|has| $ (-6 -4463)))) (-3137 (((-112) $) 86)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 92)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3599 (((-576) $ $) 45)) (-3213 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2133 (((-112) $) 47)) (-3579 (($ $) 63)) (-2604 (($ $) 60 (|has| $ (-6 -4463)))) (-1836 (((-783) $) 64)) (-1668 (($ $) 65)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-2610 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 109)) (-3925 (($ $ $) 62 (|has| $ (-6 -4463))) (($ $ |#1|) 61 (|has| $ (-6 -4463)))) (-1534 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1168 |#1|) (-141) (-1237)) (T -1168))
+((-3137 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))))
+(-13 (-1275 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3137 ((-112) $)) (-15 -2225 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T) ((-1275 |#1|) . T))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#2| $ |#1| |#2|) NIL)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2029 (((-656 |#1|) $) NIL)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2928 (((-656 |#1|) $) NIL)) (-1449 (((-112) |#1| $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1169 |#1| |#2| |#3|) (-1213 |#1| |#2|) (-1119) (-1119) |#2|) (T -1169))
+NIL
+(-1213 |#1| |#2|)
+((-2835 (((-112) $ $) NIL)) (-4114 (((-703 (-1154)) $) 27)) (-4085 (((-1154) $) 15)) (-2308 (((-1154) $) 17)) (-2143 (((-1178) $) NIL)) (-4216 (((-518) $) 13)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 37) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1170) (-13 (-1102) (-10 -8 (-15 -4216 ((-518) $)) (-15 -2308 ((-1154) $)) (-15 -4114 ((-703 (-1154)) $)) (-15 -4085 ((-1154) $))))) (T -1170))
+((-4216 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1170)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-703 (-1154))) (-5 *1 (-1170)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170)))))
+(-13 (-1102) (-10 -8 (-15 -4216 ((-518) $)) (-15 -2308 ((-1154) $)) (-15 -4114 ((-703 (-1154)) $)) (-15 -4085 ((-1154) $))))
+((-2835 (((-112) $ $) 7)) (-3397 (((-3 $ "failed") $) 14)) (-2143 (((-1178) $) 10)) (-3448 (($) 15 T CONST)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-3889 (((-112) $ $) 6)))
+(((-1171) (-141)) (T -1171))
+((-3448 (*1 *1) (-4 *1 (-1171))) (-3397 (*1 *1 *1) (|partial| -4 *1 (-1171))))
+(-13 (-1119) (-10 -8 (-15 -3448 ($) -3712) (-15 -3397 ((-3 $ "failed") $))))
+(((-102) . T) ((-625 (-874)) . T) ((-1119) . T))
+((-2773 (((-1176 |#1|) (-1176 |#1|)) 17)) (-1582 (((-1176 |#1|) (-1176 |#1|)) 13)) (-2379 (((-1176 |#1|) (-1176 |#1|) (-576) (-576)) 20)) (-1813 (((-1176 |#1|) (-1176 |#1|)) 15)))
+(((-1172 |#1|) (-10 -7 (-15 -1582 ((-1176 |#1|) (-1176 |#1|))) (-15 -1813 ((-1176 |#1|) (-1176 |#1|))) (-15 -2773 ((-1176 |#1|) (-1176 |#1|))) (-15 -2379 ((-1176 |#1|) (-1176 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1172))
+((-2379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1172 *4)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))))
+(-10 -7 (-15 -1582 ((-1176 |#1|) (-1176 |#1|))) (-15 -1813 ((-1176 |#1|) (-1176 |#1|))) (-15 -2773 ((-1176 |#1|) (-1176 |#1|))) (-15 -2379 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))))
+((-1534 (((-1176 |#1|) (-1176 (-1176 |#1|))) 15)))
+(((-1173 |#1|) (-10 -7 (-15 -1534 ((-1176 |#1|) (-1176 (-1176 |#1|))))) (-1237)) (T -1173))
+((-1534 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-1237)))))
+(-10 -7 (-15 -1534 ((-1176 |#1|) (-1176 (-1176 |#1|)))))
+((-4244 (((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 25)) (-2326 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 26)) (-2548 (((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|)) 16)))
+(((-1174 |#1| |#2|) (-10 -7 (-15 -2548 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -4244 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -2326 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)))) (-1237) (-1237)) (T -1174))
+((-2326 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1174 *5 *2)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1237)) (-4 *3 (-1237)) (-5 *2 (-1176 *3)) (-5 *1 (-1174 *6 *3)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6)))))
+(-10 -7 (-15 -2548 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -4244 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -2326 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))))
+((-2548 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)) 21)))
+(((-1175 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)))) (-1237) (-1237) (-1237)) (T -1175))
+((-2548 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) (-5 *1 (-1175 *6 *7 *8)))))
+(-10 -7 (-15 -2548 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) NIL)) (-2963 ((|#1| $) NIL)) (-3436 (($ $) 67)) (-3430 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2619 (($ $ (-576)) 128 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-1345 (((-874) $) 56 (|has| |#1| (-1119)))) (-4010 (((-112)) 55 (|has| |#1| (-1119)))) (-4338 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2744 (($ $ $) 115 (|has| $ (-6 -4463))) (($ $ (-576) $) 141)) (-2649 ((|#1| $ |#1|) 125 (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) 120 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4463))) (($ $ "rest" $) 124 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 112 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 80)) (-2951 ((|#1| $) NIL)) (-2574 (($) NIL T CONST)) (-2922 (($ $) 14)) (-2003 (($ $) 40) (($ $ (-783)) 111)) (-3064 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1119)))) (-4058 (($ (-656 |#1|)) 130)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) 79)) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2225 (((-112) $) NIL)) (-3975 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3696 (((-1292) (-576) $) 140 (|has| |#1| (-1119)))) (-2781 (((-783) $) 137)) (-1550 (((-656 $) $) NIL)) (-2231 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1684 (((-112) $ (-783)) NIL)) (-2485 (((-656 |#1|) $) NIL)) (-3123 (((-112) $) NIL)) (-2104 (($ $) 113)) (-3059 (((-112) $) 13)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3627 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2163 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) 96)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3877 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3528 ((|#1| $) 10)) (-1989 ((|#1| $) 39) (($ $ (-783)) 65)) (-1424 (((-2 (|:| |cycle?| (-112)) (|:| -2501 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3933 (($ (-1 (-112) |#1|) $) 145)) (-3946 (($ (-1 (-112) |#1|) $) 146)) (-4040 (($ $ |#1|) 90 (|has| $ (-6 -4463)))) (-3262 (($ $ (-576)) 45)) (-3137 (((-112) $) 94)) (-3767 (((-112) $) 12)) (-4427 (((-112) $) 136)) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 30)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) 20)) (-3849 (($) 60)) (-2099 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3599 (((-576) $ $) 64)) (-3213 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2160 (($ (-1 $)) 63)) (-2133 (((-112) $) 91)) (-3579 (($ $) 92)) (-2604 (($ $) 116 (|has| $ (-6 -4463)))) (-1836 (((-783) $) NIL)) (-1668 (($ $) NIL)) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 59)) (-2610 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 73)) (-2798 (($ |#1| $) 114)) (-3925 (($ $ $) 118 (|has| $ (-6 -4463))) (($ $ |#1|) 119 (|has| $ (-6 -4463)))) (-1534 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-2137 (($ $) 66)) (-2858 (($ (-656 |#1|)) 129) (((-874) $) 57 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) NIL)) (-1694 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 132 (|has| |#1| (-1119)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1176 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4463) (-15 -4058 ($ (-656 |#1|))) (IF (|has| |#1| (-1119)) (-15 -3064 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -1424 ((-2 (|:| |cycle?| (-112)) (|:| -2501 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2160 ($ (-1 $))) (-15 -2798 ($ |#1| $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3696 ((-1292) (-576) $)) (-15 -1345 ((-874) $)) (-15 -4010 ((-112)))) |%noBranch|) (-15 -2744 ($ $ (-576) $)) (-15 -3877 ($ (-1 |#1|))) (-15 -3877 ($ (-1 |#1| |#1|) |#1|)) (-15 -3933 ($ (-1 (-112) |#1|) $)) (-15 -3946 ($ (-1 (-112) |#1|) $)))) (-1237)) (T -1176))
+((-4058 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-3064 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-4 *4 (-1237)) (-5 *2 (-112)) (-5 *1 (-1176 *4)))) (-1424 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2501 (-783)) (|:| |period| (-783)))) (-5 *1 (-1176 *4)) (-4 *4 (-1237)) (-5 *3 (-783)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1237)))) (-2798 (*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1237)))) (-3696 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1176 *4)) (-4 *4 (-1119)) (-4 *4 (-1237)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) (-4 *3 (-1237)))) (-4010 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) (-4 *3 (-1237)))) (-2744 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1176 *3)) (-4 *3 (-1237)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-3877 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-3933 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-3946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))))
+(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4463) (-15 -4058 ($ (-656 |#1|))) (IF (|has| |#1| (-1119)) (-15 -3064 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -1424 ((-2 (|:| |cycle?| (-112)) (|:| -2501 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2160 ($ (-1 $))) (-15 -2798 ($ |#1| $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3696 ((-1292) (-576) $)) (-15 -1345 ((-874) $)) (-15 -4010 ((-112)))) |%noBranch|) (-15 -2744 ($ $ (-576) $)) (-15 -3877 ($ (-1 |#1|))) (-15 -3877 ($ (-1 |#1| |#1|) |#1|)) (-15 -3933 ($ (-1 (-112) |#1|) $)) (-15 -3946 ($ (-1 (-112) |#1|) $))))
+((-2835 (((-112) $ $) 19)) (-2328 (($ $) 123)) (-2257 (($ $) 124)) (-2265 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-3421 (((-112) $ $) 121)) (-3403 (((-112) $ $ (-576)) 120)) (-1682 (($ (-576)) 130)) (-3529 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-3429 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-1426 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-2746 (((-112) $ (-783)) 8)) (-3028 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-3753 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-2338 (($ $) 93 (|has| $ (-6 -4463)))) (-4374 (($ $) 103)) (-4183 (($ $ (-1254 (-576)) $) 117)) (-3229 (($ $) 80 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ (-145) $) 79 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4462)))) (-2326 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4462)))) (-2832 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4463)))) (-2767 (((-145) $ (-576)) 52)) (-3442 (((-112) $ $) 122)) (-2627 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3975 (((-656 (-145)) $) 31 (|has| $ (-6 -4462)))) (-2327 (($ (-783) (-145)) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 90 (|has| (-145) (-862)))) (-3343 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-3531 (((-656 (-145)) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 89 (|has| (-145) (-862)))) (-3102 (((-112) $ $ (-145)) 118)) (-1643 (((-783) $ $ (-145)) 119)) (-2822 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2415 (($ $) 125)) (-1597 (($ $) 126)) (-1684 (((-112) $ (-783)) 10)) (-3765 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2143 (((-1178) $) 22)) (-2163 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21)) (-1989 (((-145) $) 43 (|has| (-576) (-862)))) (-3557 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-4040 (($ $ (-145)) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3584 (((-656 (-145)) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1254 (-576))) 71) (($ $ $) 105)) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3902 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4462))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-2869 (($ (-656 (-145))) 72)) (-1534 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (($ (-145)) 114) (((-874) $) 18)) (-2690 (((-112) $ $) 23)) (-2714 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4462)))) (-1445 (((-1178) $) 134) (((-1178) $ (-112)) 133) (((-1292) (-834) $) 132) (((-1292) (-834) $ (-112)) 131)) (-3956 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3930 (((-112) $ $) 86 (|has| (-145) (-862)))) (-3889 (((-112) $ $) 20)) (-3944 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3916 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1177) (-141)) (T -1177))
+((-1682 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1177)))))
+(-13 (-1163) (-1119) (-840) (-10 -8 (-15 -1682 ($ (-576)))))
+(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-663 #0#) . T) ((-19 #0#) . T) ((-840) . T) ((-862) |has| (-145) (-862)) ((-1119) . T) ((-1163) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-2328 (($ $) NIL)) (-2257 (($ $) NIL)) (-2265 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3421 (((-112) $ $) NIL)) (-3403 (((-112) $ $ (-576)) NIL)) (-1682 (($ (-576)) 8)) (-3529 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-3429 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-1426 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-862))))) (-2059 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-3753 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-4183 (($ $ (-1254 (-576)) $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3607 (($ (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2832 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4463)))) (-2767 (((-145) $ (-576)) NIL)) (-3442 (((-112) $ $) NIL)) (-2627 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1119))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3975 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-2327 (($ (-783) (-145)) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| (-145) (-862)))) (-3343 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-3531 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-4048 (((-576) $) NIL (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| (-145) (-862)))) (-3102 (((-112) $ $ (-145)) NIL)) (-1643 (((-783) $ $ (-145)) NIL)) (-2822 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2415 (($ $) NIL)) (-1597 (($ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-3765 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2143 (((-1178) $) NIL)) (-2163 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-145) $) NIL (|has| (-576) (-862)))) (-3557 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4040 (($ $ (-145)) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3584 (((-656 (-145)) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (($ $ $) NIL)) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3902 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-2869 (($ (-656 (-145))) NIL)) (-1534 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (($ (-145)) NIL) (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2714 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-1445 (((-1178) $) 19) (((-1178) $ (-112)) 21) (((-1292) (-834) $) 22) (((-1292) (-834) $ (-112)) 23)) (-3956 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3930 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3916 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1178) (-1177)) (T -1178))
+NIL
+(-1177)
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL)) (-3430 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-1178) |#1|) NIL)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#1| "failed") (-1178) $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#1| "failed") (-1178) $) NIL)) (-3607 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-1178)) NIL)) (-3975 (((-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-1178) $) NIL (|has| (-1178) (-862)))) (-3531 (((-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-1178) $) NIL (|has| (-1178) (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-2029 (((-656 (-1178)) $) NIL)) (-3762 (((-112) (-1178) $) NIL)) (-2395 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL)) (-2928 (((-656 (-1178)) $) NIL)) (-1449 (((-112) (-1178) $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-1989 ((|#1| $) NIL (|has| (-1178) (-862)))) (-3557 (((-3 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) "failed") (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL (-12 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-319 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-1178)) NIL) ((|#1| $ (-1178) |#1|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-625 (-874))) (|has| |#1| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 (-1178)) (|:| -3153 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1179 |#1|) (-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4462))) (-1119)) (T -1179))
+NIL
+(-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4462)))
+((-2847 (((-1176 |#1|) (-1176 |#1|)) 83)) (-4011 (((-3 (-1176 |#1|) "failed") (-1176 |#1|)) 39)) (-2433 (((-1176 |#1|) (-419 (-576)) (-1176 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1355 (((-1176 |#1|) |#1| (-1176 |#1|)) 139 (|has| |#1| (-374)))) (-3201 (((-1176 |#1|) (-1176 |#1|)) 97)) (-1591 (((-1176 (-576)) (-576)) 63)) (-2660 (((-1176 |#1|) (-1176 (-1176 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2385 (((-1176 |#1|) (-576) (-576) (-1176 |#1|)) 102)) (-3667 (((-1176 |#1|) |#1| (-576)) 51)) (-2283 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 66)) (-2527 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 136 (|has| |#1| (-374)))) (-3505 (((-1176 |#1|) |#1| (-1 (-1176 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-3359 (((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|))) 137 (|has| |#1| (-374)))) (-1915 (((-1176 |#1|) (-1176 |#1|)) 96)) (-1695 (((-1176 |#1|) (-1176 |#1|)) 82)) (-2255 (((-1176 |#1|) (-576) (-576) (-1176 |#1|)) 103)) (-1850 (((-1176 |#1|) |#1| (-1176 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2955 (((-1176 (-576)) (-576)) 62)) (-2522 (((-1176 |#1|) |#1|) 65)) (-4257 (((-1176 |#1|) (-1176 |#1|) (-576) (-576)) 99)) (-2384 (((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|)) 72)) (-2825 (((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|)) 37)) (-2630 (((-1176 |#1|) (-1176 |#1|)) 98)) (-3022 (((-1176 |#1|) (-1176 |#1|) |#1|) 77)) (-3618 (((-1176 |#1|) (-1176 |#1|)) 68)) (-4062 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 78)) (-2858 (((-1176 |#1|) |#1|) 73)) (-2756 (((-1176 |#1|) (-1176 (-1176 |#1|))) 88)) (-4013 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 38)) (-4002 (((-1176 |#1|) (-1176 |#1|)) 21) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 23)) (-3990 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 17)) (* (((-1176 |#1|) (-1176 |#1|) |#1|) 29) (((-1176 |#1|) |#1| (-1176 |#1|)) 26) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 27)))
+(((-1180 |#1|) (-10 -7 (-15 -3990 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4002 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4002 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -2825 ((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|))) (-15 -4013 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4011 ((-3 (-1176 |#1|) "failed") (-1176 |#1|))) (-15 -3667 ((-1176 |#1|) |#1| (-576))) (-15 -2955 ((-1176 (-576)) (-576))) (-15 -1591 ((-1176 (-576)) (-576))) (-15 -2522 ((-1176 |#1|) |#1|)) (-15 -2283 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3618 ((-1176 |#1|) (-1176 |#1|))) (-15 -2384 ((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|))) (-15 -2858 ((-1176 |#1|) |#1|)) (-15 -3022 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -4062 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1695 ((-1176 |#1|) (-1176 |#1|))) (-15 -2847 ((-1176 |#1|) (-1176 |#1|))) (-15 -2756 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -1915 ((-1176 |#1|) (-1176 |#1|))) (-15 -3201 ((-1176 |#1|) (-1176 |#1|))) (-15 -2630 ((-1176 |#1|) (-1176 |#1|))) (-15 -4257 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))) (-15 -2385 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (-15 -2255 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -3505 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -2660 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -2433 ((-1176 |#1|) (-419 (-576)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2527 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3359 ((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|)))) (-15 -1355 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|)) (-1068)) (T -1180))
+((-1355 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3359 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)))) (-2527 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2433 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) (-5 *3 (-419 (-576))) (-5 *1 (-1180 *4)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))) (-1850 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2255 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-2385 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4257 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-2630 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3201 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-1915 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1068)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4062 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3022 (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2858 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-2384 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2522 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-1591 (*1 *2 *3) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) (-5 *3 (-576)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) (-5 *3 (-576)))) (-3667 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-4011 (*1 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4013 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2825 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4002 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3990 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))))
+(-10 -7 (-15 -3990 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4002 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4002 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -2825 ((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|))) (-15 -4013 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4011 ((-3 (-1176 |#1|) "failed") (-1176 |#1|))) (-15 -3667 ((-1176 |#1|) |#1| (-576))) (-15 -2955 ((-1176 (-576)) (-576))) (-15 -1591 ((-1176 (-576)) (-576))) (-15 -2522 ((-1176 |#1|) |#1|)) (-15 -2283 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3618 ((-1176 |#1|) (-1176 |#1|))) (-15 -2384 ((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|))) (-15 -2858 ((-1176 |#1|) |#1|)) (-15 -3022 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -4062 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1695 ((-1176 |#1|) (-1176 |#1|))) (-15 -2847 ((-1176 |#1|) (-1176 |#1|))) (-15 -2756 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -1915 ((-1176 |#1|) (-1176 |#1|))) (-15 -3201 ((-1176 |#1|) (-1176 |#1|))) (-15 -2630 ((-1176 |#1|) (-1176 |#1|))) (-15 -4257 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))) (-15 -2385 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (-15 -2255 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -3505 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -2660 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -2433 ((-1176 |#1|) (-419 (-576)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2527 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3359 ((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|)))) (-15 -1355 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|))
+((-3897 (((-1176 |#1|) (-1176 |#1|)) 60)) (-3760 (((-1176 |#1|) (-1176 |#1|)) 42)) (-3871 (((-1176 |#1|) (-1176 |#1|)) 56)) (-3735 (((-1176 |#1|) (-1176 |#1|)) 38)) (-1542 (((-1176 |#1|) (-1176 |#1|)) 63)) (-3781 (((-1176 |#1|) (-1176 |#1|)) 45)) (-3437 (((-1176 |#1|) (-1176 |#1|)) 34)) (-2656 (((-1176 |#1|) (-1176 |#1|)) 29)) (-1553 (((-1176 |#1|) (-1176 |#1|)) 64)) (-3791 (((-1176 |#1|) (-1176 |#1|)) 46)) (-3911 (((-1176 |#1|) (-1176 |#1|)) 61)) (-3771 (((-1176 |#1|) (-1176 |#1|)) 43)) (-3883 (((-1176 |#1|) (-1176 |#1|)) 58)) (-3748 (((-1176 |#1|) (-1176 |#1|)) 40)) (-1593 (((-1176 |#1|) (-1176 |#1|)) 68)) (-3826 (((-1176 |#1|) (-1176 |#1|)) 50)) (-1567 (((-1176 |#1|) (-1176 |#1|)) 66)) (-3802 (((-1176 |#1|) (-1176 |#1|)) 48)) (-1620 (((-1176 |#1|) (-1176 |#1|)) 71)) (-3847 (((-1176 |#1|) (-1176 |#1|)) 53)) (-2888 (((-1176 |#1|) (-1176 |#1|)) 72)) (-3859 (((-1176 |#1|) (-1176 |#1|)) 54)) (-1609 (((-1176 |#1|) (-1176 |#1|)) 70)) (-3837 (((-1176 |#1|) (-1176 |#1|)) 52)) (-1578 (((-1176 |#1|) (-1176 |#1|)) 69)) (-3813 (((-1176 |#1|) (-1176 |#1|)) 51)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 36)))
+(((-1181 |#1|) (-10 -7 (-15 -2656 ((-1176 |#1|) (-1176 |#1|))) (-15 -3437 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3735 ((-1176 |#1|) (-1176 |#1|))) (-15 -3748 ((-1176 |#1|) (-1176 |#1|))) (-15 -3760 ((-1176 |#1|) (-1176 |#1|))) (-15 -3771 ((-1176 |#1|) (-1176 |#1|))) (-15 -3781 ((-1176 |#1|) (-1176 |#1|))) (-15 -3791 ((-1176 |#1|) (-1176 |#1|))) (-15 -3802 ((-1176 |#1|) (-1176 |#1|))) (-15 -3813 ((-1176 |#1|) (-1176 |#1|))) (-15 -3826 ((-1176 |#1|) (-1176 |#1|))) (-15 -3837 ((-1176 |#1|) (-1176 |#1|))) (-15 -3847 ((-1176 |#1|) (-1176 |#1|))) (-15 -3859 ((-1176 |#1|) (-1176 |#1|))) (-15 -3871 ((-1176 |#1|) (-1176 |#1|))) (-15 -3883 ((-1176 |#1|) (-1176 |#1|))) (-15 -3897 ((-1176 |#1|) (-1176 |#1|))) (-15 -3911 ((-1176 |#1|) (-1176 |#1|))) (-15 -1542 ((-1176 |#1|) (-1176 |#1|))) (-15 -1553 ((-1176 |#1|) (-1176 |#1|))) (-15 -1567 ((-1176 |#1|) (-1176 |#1|))) (-15 -1578 ((-1176 |#1|) (-1176 |#1|))) (-15 -1593 ((-1176 |#1|) (-1176 |#1|))) (-15 -1609 ((-1176 |#1|) (-1176 |#1|))) (-15 -1620 ((-1176 |#1|) (-1176 |#1|))) (-15 -2888 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-576)))) (T -1181))
+((-2888 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1553 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))))
+(-10 -7 (-15 -2656 ((-1176 |#1|) (-1176 |#1|))) (-15 -3437 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3735 ((-1176 |#1|) (-1176 |#1|))) (-15 -3748 ((-1176 |#1|) (-1176 |#1|))) (-15 -3760 ((-1176 |#1|) (-1176 |#1|))) (-15 -3771 ((-1176 |#1|) (-1176 |#1|))) (-15 -3781 ((-1176 |#1|) (-1176 |#1|))) (-15 -3791 ((-1176 |#1|) (-1176 |#1|))) (-15 -3802 ((-1176 |#1|) (-1176 |#1|))) (-15 -3813 ((-1176 |#1|) (-1176 |#1|))) (-15 -3826 ((-1176 |#1|) (-1176 |#1|))) (-15 -3837 ((-1176 |#1|) (-1176 |#1|))) (-15 -3847 ((-1176 |#1|) (-1176 |#1|))) (-15 -3859 ((-1176 |#1|) (-1176 |#1|))) (-15 -3871 ((-1176 |#1|) (-1176 |#1|))) (-15 -3883 ((-1176 |#1|) (-1176 |#1|))) (-15 -3897 ((-1176 |#1|) (-1176 |#1|))) (-15 -3911 ((-1176 |#1|) (-1176 |#1|))) (-15 -1542 ((-1176 |#1|) (-1176 |#1|))) (-15 -1553 ((-1176 |#1|) (-1176 |#1|))) (-15 -1567 ((-1176 |#1|) (-1176 |#1|))) (-15 -1578 ((-1176 |#1|) (-1176 |#1|))) (-15 -1593 ((-1176 |#1|) (-1176 |#1|))) (-15 -1609 ((-1176 |#1|) (-1176 |#1|))) (-15 -1620 ((-1176 |#1|) (-1176 |#1|))) (-15 -2888 ((-1176 |#1|) (-1176 |#1|))))
+((-3897 (((-1176 |#1|) (-1176 |#1|)) 102)) (-3760 (((-1176 |#1|) (-1176 |#1|)) 61)) (-2187 (((-2 (|:| -3871 (-1176 |#1|)) (|:| -3883 (-1176 |#1|))) (-1176 |#1|)) 98)) (-3871 (((-1176 |#1|) (-1176 |#1|)) 99)) (-3211 (((-2 (|:| -3735 (-1176 |#1|)) (|:| -3748 (-1176 |#1|))) (-1176 |#1|)) 54)) (-3735 (((-1176 |#1|) (-1176 |#1|)) 55)) (-1542 (((-1176 |#1|) (-1176 |#1|)) 104)) (-3781 (((-1176 |#1|) (-1176 |#1|)) 68)) (-3437 (((-1176 |#1|) (-1176 |#1|)) 40)) (-2656 (((-1176 |#1|) (-1176 |#1|)) 37)) (-1553 (((-1176 |#1|) (-1176 |#1|)) 105)) (-3791 (((-1176 |#1|) (-1176 |#1|)) 69)) (-3911 (((-1176 |#1|) (-1176 |#1|)) 103)) (-3771 (((-1176 |#1|) (-1176 |#1|)) 64)) (-3883 (((-1176 |#1|) (-1176 |#1|)) 100)) (-3748 (((-1176 |#1|) (-1176 |#1|)) 56)) (-1593 (((-1176 |#1|) (-1176 |#1|)) 113)) (-3826 (((-1176 |#1|) (-1176 |#1|)) 88)) (-1567 (((-1176 |#1|) (-1176 |#1|)) 107)) (-3802 (((-1176 |#1|) (-1176 |#1|)) 84)) (-1620 (((-1176 |#1|) (-1176 |#1|)) 117)) (-3847 (((-1176 |#1|) (-1176 |#1|)) 92)) (-2888 (((-1176 |#1|) (-1176 |#1|)) 119)) (-3859 (((-1176 |#1|) (-1176 |#1|)) 94)) (-1609 (((-1176 |#1|) (-1176 |#1|)) 115)) (-3837 (((-1176 |#1|) (-1176 |#1|)) 90)) (-1578 (((-1176 |#1|) (-1176 |#1|)) 109)) (-3813 (((-1176 |#1|) (-1176 |#1|)) 86)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 41)))
+(((-1182 |#1|) (-10 -7 (-15 -2656 ((-1176 |#1|) (-1176 |#1|))) (-15 -3437 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3211 ((-2 (|:| -3735 (-1176 |#1|)) (|:| -3748 (-1176 |#1|))) (-1176 |#1|))) (-15 -3735 ((-1176 |#1|) (-1176 |#1|))) (-15 -3748 ((-1176 |#1|) (-1176 |#1|))) (-15 -3760 ((-1176 |#1|) (-1176 |#1|))) (-15 -3771 ((-1176 |#1|) (-1176 |#1|))) (-15 -3781 ((-1176 |#1|) (-1176 |#1|))) (-15 -3791 ((-1176 |#1|) (-1176 |#1|))) (-15 -3802 ((-1176 |#1|) (-1176 |#1|))) (-15 -3813 ((-1176 |#1|) (-1176 |#1|))) (-15 -3826 ((-1176 |#1|) (-1176 |#1|))) (-15 -3837 ((-1176 |#1|) (-1176 |#1|))) (-15 -3847 ((-1176 |#1|) (-1176 |#1|))) (-15 -3859 ((-1176 |#1|) (-1176 |#1|))) (-15 -2187 ((-2 (|:| -3871 (-1176 |#1|)) (|:| -3883 (-1176 |#1|))) (-1176 |#1|))) (-15 -3871 ((-1176 |#1|) (-1176 |#1|))) (-15 -3883 ((-1176 |#1|) (-1176 |#1|))) (-15 -3897 ((-1176 |#1|) (-1176 |#1|))) (-15 -3911 ((-1176 |#1|) (-1176 |#1|))) (-15 -1542 ((-1176 |#1|) (-1176 |#1|))) (-15 -1553 ((-1176 |#1|) (-1176 |#1|))) (-15 -1567 ((-1176 |#1|) (-1176 |#1|))) (-15 -1578 ((-1176 |#1|) (-1176 |#1|))) (-15 -1593 ((-1176 |#1|) (-1176 |#1|))) (-15 -1609 ((-1176 |#1|) (-1176 |#1|))) (-15 -1620 ((-1176 |#1|) (-1176 |#1|))) (-15 -2888 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-576)))) (T -1182))
+((-2888 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1593 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1553 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2187 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3871 (-1176 *4)) (|:| -3883 (-1176 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4)))) (-3859 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3760 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3211 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3735 (-1176 *4)) (|:| -3748 (-1176 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))))
+(-10 -7 (-15 -2656 ((-1176 |#1|) (-1176 |#1|))) (-15 -3437 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3211 ((-2 (|:| -3735 (-1176 |#1|)) (|:| -3748 (-1176 |#1|))) (-1176 |#1|))) (-15 -3735 ((-1176 |#1|) (-1176 |#1|))) (-15 -3748 ((-1176 |#1|) (-1176 |#1|))) (-15 -3760 ((-1176 |#1|) (-1176 |#1|))) (-15 -3771 ((-1176 |#1|) (-1176 |#1|))) (-15 -3781 ((-1176 |#1|) (-1176 |#1|))) (-15 -3791 ((-1176 |#1|) (-1176 |#1|))) (-15 -3802 ((-1176 |#1|) (-1176 |#1|))) (-15 -3813 ((-1176 |#1|) (-1176 |#1|))) (-15 -3826 ((-1176 |#1|) (-1176 |#1|))) (-15 -3837 ((-1176 |#1|) (-1176 |#1|))) (-15 -3847 ((-1176 |#1|) (-1176 |#1|))) (-15 -3859 ((-1176 |#1|) (-1176 |#1|))) (-15 -2187 ((-2 (|:| -3871 (-1176 |#1|)) (|:| -3883 (-1176 |#1|))) (-1176 |#1|))) (-15 -3871 ((-1176 |#1|) (-1176 |#1|))) (-15 -3883 ((-1176 |#1|) (-1176 |#1|))) (-15 -3897 ((-1176 |#1|) (-1176 |#1|))) (-15 -3911 ((-1176 |#1|) (-1176 |#1|))) (-15 -1542 ((-1176 |#1|) (-1176 |#1|))) (-15 -1553 ((-1176 |#1|) (-1176 |#1|))) (-15 -1567 ((-1176 |#1|) (-1176 |#1|))) (-15 -1578 ((-1176 |#1|) (-1176 |#1|))) (-15 -1593 ((-1176 |#1|) (-1176 |#1|))) (-15 -1609 ((-1176 |#1|) (-1176 |#1|))) (-15 -1620 ((-1176 |#1|) (-1176 |#1|))) (-15 -2888 ((-1176 |#1|) (-1176 |#1|))))
+((-1517 (((-975 |#2|) |#2| |#2|) 50)) (-3420 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317)))))
+(((-1183 |#1| |#2|) (-10 -7 (-15 -1517 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3420 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1263 |#1|)) (T -1183))
+((-3420 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) (-4 *2 (-1263 *3)))) (-1517 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1183 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -1517 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3420 (|#2| |#2| |#1|)) |%noBranch|))
+((-2835 (((-112) $ $) NIL)) (-3160 (($ $ (-656 (-783))) 79)) (-2455 (($) 33)) (-4082 (($ $) 51)) (-3811 (((-656 $) $) 60)) (-4282 (((-112) $) 19)) (-1594 (((-656 (-960 |#2|)) $) 86)) (-3092 (($ $) 80)) (-1453 (((-783) $) 47)) (-2327 (($) 32)) (-2042 (($ $ (-656 (-783)) (-960 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-960 |#2|)) 75)) (-3343 (($ $ $) 57) (($ (-656 $)) 59)) (-2621 (((-783) $) 87)) (-3123 (((-112) $) 15)) (-2143 (((-1178) $) NIL)) (-1844 (((-112) $) 22)) (-3887 (((-1139) $) NIL)) (-3935 (((-173) $) 85)) (-2676 (((-960 |#2|) $) 81)) (-1843 (((-783) $) 82)) (-2179 (((-112) $) 84)) (-2066 (($ $ (-656 (-783)) (-173)) 78)) (-1357 (($ $) 52)) (-2858 (((-874) $) 99)) (-1760 (($ $ (-656 (-783)) (-112)) 77)) (-4016 (((-656 $) $) 11)) (-2164 (($ $ (-783)) 46)) (-1422 (($ $) 43)) (-2690 (((-112) $ $) NIL)) (-2934 (($ $ $ (-960 |#2|) (-783)) 68)) (-3929 (($ $ (-960 |#2|)) 67)) (-1399 (($ $ (-656 (-783)) (-960 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-960 |#2|)) 71)) (-3889 (((-112) $ $) 92)))
+(((-1184 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3123 ((-112) $)) (-15 -4282 ((-112) $)) (-15 -1844 ((-112) $)) (-15 -2327 ($)) (-15 -2455 ($)) (-15 -1422 ($ $)) (-15 -2164 ($ $ (-783))) (-15 -4016 ((-656 $) $)) (-15 -1453 ((-783) $)) (-15 -4082 ($ $)) (-15 -1357 ($ $)) (-15 -3343 ($ $ $)) (-15 -3343 ($ (-656 $))) (-15 -3811 ((-656 $) $)) (-15 -1399 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -3929 ($ $ (-960 |#2|))) (-15 -2934 ($ $ $ (-960 |#2|) (-783))) (-15 -2042 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -1399 ($ $ (-656 (-783)) (-783))) (-15 -2042 ($ $ (-656 (-783)) (-783))) (-15 -1399 ((-783) $ (-960 |#2|))) (-15 -2042 ($ $ (-783) (-960 |#2|))) (-15 -1760 ($ $ (-656 (-783)) (-112))) (-15 -2066 ($ $ (-656 (-783)) (-173))) (-15 -3160 ($ $ (-656 (-783)))) (-15 -2676 ((-960 |#2|) $)) (-15 -1843 ((-783) $)) (-15 -2179 ((-112) $)) (-15 -3935 ((-173) $)) (-15 -2621 ((-783) $)) (-15 -3092 ($ $)) (-15 -1594 ((-656 (-960 |#2|)) $)))) (-938) (-1068)) (T -1184))
+((-3123 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2327 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-2455 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1422 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-2164 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4082 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1357 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-3343 (*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1399 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)))) (-2934 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-960 *5)) (-5 *3 (-783)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-1399 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-1399 (*1 *2 *1 *3) (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-1760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-2066 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-960 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3092 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-656 (-960 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))))
+(-13 (-1119) (-10 -8 (-15 -3123 ((-112) $)) (-15 -4282 ((-112) $)) (-15 -1844 ((-112) $)) (-15 -2327 ($)) (-15 -2455 ($)) (-15 -1422 ($ $)) (-15 -2164 ($ $ (-783))) (-15 -4016 ((-656 $) $)) (-15 -1453 ((-783) $)) (-15 -4082 ($ $)) (-15 -1357 ($ $)) (-15 -3343 ($ $ $)) (-15 -3343 ($ (-656 $))) (-15 -3811 ((-656 $) $)) (-15 -1399 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -3929 ($ $ (-960 |#2|))) (-15 -2934 ($ $ $ (-960 |#2|) (-783))) (-15 -2042 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -1399 ($ $ (-656 (-783)) (-783))) (-15 -2042 ($ $ (-656 (-783)) (-783))) (-15 -1399 ((-783) $ (-960 |#2|))) (-15 -2042 ($ $ (-783) (-960 |#2|))) (-15 -1760 ($ $ (-656 (-783)) (-112))) (-15 -2066 ($ $ (-656 (-783)) (-173))) (-15 -3160 ($ $ (-656 (-783)))) (-15 -2676 ((-960 |#2|) $)) (-15 -1843 ((-783) $)) (-15 -2179 ((-112) $)) (-15 -3935 ((-173) $)) (-15 -2621 ((-783) $)) (-15 -3092 ($ $)) (-15 -1594 ((-656 (-960 |#2|)) $))))
+((-2835 (((-112) $ $) NIL)) (-3866 ((|#2| $) 11)) (-3854 ((|#1| $) 10)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2869 (($ |#1| |#2|) 9)) (-2858 (((-874) $) 16)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1185 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -2869 ($ |#1| |#2|)) (-15 -3854 (|#1| $)) (-15 -3866 (|#2| $)))) (-1119) (-1119)) (T -1185))
+((-2869 (*1 *1 *2 *3) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-3854 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1119)))) (-3866 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -2869 ($ |#1| |#2|)) (-15 -3854 (|#1| $)) (-15 -3866 (|#2| $))))
+((-2835 (((-112) $ $) NIL)) (-2406 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1186) (-13 (-1102) (-10 -8 (-15 -2406 ((-1154) $))))) (T -1186))
+((-2406 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1186)))))
+(-13 (-1102) (-10 -8 (-15 -2406 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 11)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2150 (($ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2637 (((-112) $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3019 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-3754 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3401 (((-1194 |#1| |#2| |#3|) $) 42)) (-3830 (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 32)) (-4278 (((-1194 |#1| |#2| |#3|) $) 33)) (-3897 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-576) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1907 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-1542 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1196) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-4397 (((-1194 |#1| |#2| |#3|) $) 140) (((-1196) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-2444 (($ $) 37) (($ (-576) $) 38)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-1194 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-374))) (((-701 (-1194 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1194 |#1| |#2| |#3|)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-4011 (((-3 $ "failed") $) 54)) (-3237 (((-419 (-969 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-2107 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-2127 (((-112) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3219 (((-112) $) 28)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-2620 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL (|has| |#1| (-374)))) (-1621 (((-1194 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3397 (((-3 $ "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))))) (-3196 (((-112) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4323 (($ $ (-938)) NIL)) (-4199 (($ (-1 |#1| (-576)) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-576)) 19) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-1950 (($ $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1492 (($ $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3437 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4290 (($ (-576) (-1194 |#1| |#2| |#3|)) 36)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-1850 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3328 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3807 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-576)) 158)) (-2825 (((-3 $ "failed") $ $) 55 (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1194 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1194 |#1| |#2| |#3|)) (-656 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1131))) (($ $ (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-296 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) 57) (($ $) 56 (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3560 (($ $) NIL (|has| |#1| (-374)))) (-1635 (((-1194 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-4436 (((-576) $) 43)) (-1553 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-2610 (((-548) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1194 |#1| |#2| |#3|)) 30) (($ (-1283 |#2|)) 25) (($ (-1196)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (($ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4417 ((|#1| $ (-576)) 77)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 12)) (-3156 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1567 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3680 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2022 (($) 21 T CONST)) (-2038 (($) 16 T CONST)) (-3404 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) NIL) (($ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3956 (((-112) $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3930 (((-112) $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3916 (((-112) $ $) NIL (-3739 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 23)) (** (($ $ (-938)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1194 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1194 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1187 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1194 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1187))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1249 |#1| (-1194 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-4372 ((|#2| |#2| (-1111 |#2|)) 26) ((|#2| |#2| (-1196)) 28)))
+(((-1188 |#1| |#2|) (-10 -7 (-15 -4372 (|#2| |#2| (-1196))) (-15 -4372 (|#2| |#2| (-1111 |#2|)))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1222))) (T -1188))
+((-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1188 *4 *2)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))))))
+(-10 -7 (-15 -4372 (|#2| |#2| (-1196))) (-15 -4372 (|#2| |#2| (-1111 |#2|))))
+((-4372 (((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))) 31) (((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|))) 44) (((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1196)) 33) (((-419 (-969 |#1|)) (-969 |#1|) (-1196)) 36)))
+(((-1189 |#1|) (-10 -7 (-15 -4372 ((-419 (-969 |#1|)) (-969 |#1|) (-1196))) (-15 -4372 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -4372 ((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|)))) (-15 -4372 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))))) (-13 (-568) (-1057 (-576)))) (T -1189))
+((-4372 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1189 *5)))) (-4372 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-969 *5))) (-5 *3 (-969 *5)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1189 *5)))) (-4372 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 (-419 (-969 *5)) (-326 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-419 (-969 *5))))) (-4372 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-969 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-969 *5)))))
+(-10 -7 (-15 -4372 ((-419 (-969 |#1|)) (-969 |#1|) (-1196))) (-15 -4372 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -4372 ((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|)))) (-15 -4372 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|))))))
+((-2548 (((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)) 13)))
+(((-1190 |#1| |#2|) (-10 -7 (-15 -2548 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)))) (-1068) (-1068)) (T -1190))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1192 *6)) (-5 *1 (-1190 *5 *6)))))
+(-10 -7 (-15 -2548 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|))))
+((-2464 (((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 51)) (-2367 (((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 52)))
+(((-1191 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -2464 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))))) (-805) (-862) (-464) (-966 |#3| |#1| |#2|)) (T -1191))
+((-2464 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))))
+(-10 -7 (-15 -2367 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -2464 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))))
+((-2835 (((-112) $ $) 171)) (-3203 (((-112) $) 43)) (-3402 (((-1287 |#1|) $ (-783)) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-3067 (($ (-1192 |#1|)) NIL)) (-3440 (((-1192 $) $ (-1101)) 82) (((-1192 |#1|) $) 71)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) 164 (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1546 (($ $ $) 158 (|has| |#1| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) 95 (|has| |#1| (-926)))) (-3179 (($ $) NIL (|has| |#1| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 115 (|has| |#1| (-926)))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2949 (($ $ (-783)) 61)) (-2689 (($ $ (-783)) 63)) (-3811 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-4397 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL)) (-2495 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) 80)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2976 (($ $ $) 131)) (-3051 (($ $ $) NIL (|has| |#1| (-568)))) (-2260 (((-2 (|:| -1788 |#1|) (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3420 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-783) $) 69)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1421 (((-874) $ (-874)) 148)) (-2620 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1838 (((-112) $) 48)) (-1890 (((-783) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-2441 (($ (-1192 |#1|) (-1101)) 73) (($ (-1192 $) (-1101)) 89)) (-4323 (($ $ (-783)) 51)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) 87) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1101)) NIL) (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 153)) (-4389 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4149 (($ (-1 (-783) (-783)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-2760 (((-1192 |#1|) $) NIL)) (-1848 (((-3 (-1101) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) 76)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2143 (((-1178) $) NIL)) (-3300 (((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783)) 60)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-1101)) (|:| -2273 (-783))) "failed") $) NIL)) (-1850 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($) NIL (|has| |#1| (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) 50)) (-4347 ((|#1| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 103 (|has| |#1| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-1930 (($ $ (-783) |#1| $) 123)) (-3642 (((-430 (-1192 $)) (-1192 $)) 101 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 100 (|has| |#1| (-926)))) (-2367 (((-430 $) $) 108 (|has| |#1| (-926)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2065 (((-3 $ "failed") $ (-783)) 54)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 172 (|has| |#1| (-374)))) (-3880 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-4436 (((-783) $) 78) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-2033 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-2858 (((-874) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1101)) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) 17 T CONST)) (-2038 (($) 19 T CONST)) (-3404 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3889 (((-112) $ $) 120)) (-4013 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 90)) (** (($ $ (-938)) 14) (($ $ (-783)) 12)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1192 |#1|) (-13 (-1263 |#1|) (-10 -8 (-15 -1421 ((-874) $ (-874))) (-15 -1930 ($ $ (-783) |#1| $)))) (-1068)) (T -1192))
+((-1421 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1192 *3)) (-4 *3 (-1068)))) (-1930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1192 *3)) (-4 *3 (-1068)))))
+(-13 (-1263 |#1|) (-10 -8 (-15 -1421 ((-874) $ (-874))) (-15 -1930 ($ $ (-783) |#1| $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 11)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 36)) (-4397 (((-1187 |#1| |#2| |#3|) $) NIL) (((-1194 |#1| |#2| |#3|) $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3381 (((-419 (-576)) $) 59)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-4301 (($ (-419 (-576)) (-1187 |#1| |#2| |#3|)) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-419 (-576))) 20) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2429 (((-1187 |#1| |#2| |#3|) $) 41)) (-3443 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) NIL)) (-4290 (((-1187 |#1| |#2| |#3|) $) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-1850 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) NIL)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 38)) (-4436 (((-419 (-576)) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1187 |#1| |#2| |#3|)) 30) (($ (-1194 |#1| |#2| |#3|)) 31) (($ (-1283 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 12)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 22 T CONST)) (-2038 (($) 16 T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 24)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1193 |#1| |#2| |#3|) (-13 (-1270 |#1| (-1187 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1194 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1193))
+((-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1270 |#1| (-1187 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1194 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 129)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 119)) (-2078 (((-1260 |#2| |#1|) $ (-783)) 69)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-3754 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-3897 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3871 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1176 |#1|)) 113)) (-1542 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) 25)) (-4382 (($ $) 28)) (-2488 (((-969 |#1|) $ (-783)) 81) (((-969 |#1|) $ (-783) (-783)) 83)) (-3219 (((-112) $) 124)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-783) $) 126) (((-783) $ (-783)) 128)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) NIL)) (-4199 (($ (-1 |#1| (-576)) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) 13) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3437 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-1850 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-3262 (($ $ (-783)) 15)) (-2825 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-2656 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2099 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1131)))) (-2399 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) 31)) (-4436 (((-783) $) NIL)) (-1553 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1260 |#2| |#1|)) 55) (($ (-1283 |#2|)) 36)) (-2461 (((-1176 |#1|) $) 101)) (-4417 ((|#1| $ (-783)) 121)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 58)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 17 T CONST)) (-2038 (($) 20 T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) 198)) (-3990 (($ $ $) 35)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1194 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1260 |#2| |#1|))) (-15 -2078 ((-1260 |#2| |#1|) $ (-783))) (-15 -2858 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1194))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5)))) (-2078 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1260 |#2| |#1|))) (-15 -2078 ((-1260 |#2| |#1|) $ (-783))) (-15 -2858 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-2858 (((-874) $) 33) (($ (-1196)) 35)) (-3739 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-3726 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3574 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3565 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3554 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3542 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-3066 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45)))
+(((-1195) (-13 (-625 (-874)) (-10 -8 (-15 -2858 ($ (-1196))) (-15 -3574 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3554 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3565 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3542 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3739 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3066 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3726 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3726 ($ $))))) (T -1195))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) (-3574 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3554 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3565 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3542 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3739 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3066 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3726 (*1 *1 *1) (-5 *1 (-1195))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2858 ($ (-1196))) (-15 -3574 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3554 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3565 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3542 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3739 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3066 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3726 ($ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3726 ($ $))))
+((-2835 (((-112) $ $) NIL)) (-4430 (($ $ (-656 (-874))) 62)) (-1902 (($ $ (-656 (-874))) 60)) (-1682 (((-1178) $) 101)) (-1885 (((-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874)))) $) 108)) (-1407 (((-112) $) 23)) (-2697 (($ $ (-656 (-656 (-874)))) 59) (($ $ (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874))))) 99)) (-2574 (($) 163 T CONST)) (-3716 (((-1292)) 135)) (-1835 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 69) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 76)) (-2327 (($) 122) (($ $) 131)) (-1811 (($ $) 100)) (-1950 (($ $ $) NIL)) (-1492 (($ $ $) NIL)) (-1718 (((-656 $) $) 136)) (-2143 (((-1178) $) 114)) (-3887 (((-1139) $) NIL)) (-2099 (($ $ (-656 (-874))) 61)) (-2610 (((-548) $) 48) (((-1196) $) 49) (((-905 (-576)) $) 80) (((-905 (-390)) $) 78)) (-2858 (((-874) $) 55) (($ (-1178)) 50)) (-2690 (((-112) $ $) NIL)) (-3069 (($ $ (-656 (-874))) 63)) (-1445 (((-1178) $) 34) (((-1178) $ (-112)) 35) (((-1292) (-834) $) 36) (((-1292) (-834) $ (-112)) 37)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 51)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) 52)))
+(((-1196) (-13 (-862) (-626 (-548)) (-840) (-626 (-1196)) (-628 (-1178)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -2327 ($)) (-15 -2327 ($ $)) (-15 -3716 ((-1292))) (-15 -1811 ($ $)) (-15 -1407 ((-112) $)) (-15 -1885 ((-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2697 ($ $ (-656 (-656 (-874))))) (-15 -2697 ($ $ (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -1902 ($ $ (-656 (-874)))) (-15 -4430 ($ $ (-656 (-874)))) (-15 -3069 ($ $ (-656 (-874)))) (-15 -2099 ($ $ (-656 (-874)))) (-15 -1682 ((-1178) $)) (-15 -1718 ((-656 $) $)) (-15 -2574 ($) -3712)))) (T -1196))
+((-2327 (*1 *1) (-5 *1 (-1196))) (-2327 (*1 *1 *1) (-5 *1 (-1196))) (-3716 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196)))) (-1811 (*1 *1 *1) (-5 *1 (-1196))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1196)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1196)))) (-2697 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1196)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-4430 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-1682 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1196)))) (-2574 (*1 *1) (-5 *1 (-1196))))
+(-13 (-862) (-626 (-548)) (-840) (-626 (-1196)) (-628 (-1178)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -2327 ($)) (-15 -2327 ($ $)) (-15 -3716 ((-1292))) (-15 -1811 ($ $)) (-15 -1407 ((-112) $)) (-15 -1885 ((-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2697 ($ $ (-656 (-656 (-874))))) (-15 -2697 ($ $ (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -1902 ($ $ (-656 (-874)))) (-15 -4430 ($ $ (-656 (-874)))) (-15 -3069 ($ $ (-656 (-874)))) (-15 -2099 ($ $ (-656 (-874)))) (-15 -1682 ((-1178) $)) (-15 -1718 ((-656 $) $)) (-15 -2574 ($) -3712)))
+((-2020 (((-1287 |#1|) |#1| (-938)) 18) (((-1287 |#1|) (-656 |#1|)) 25)))
+(((-1197 |#1|) (-10 -7 (-15 -2020 ((-1287 |#1|) (-656 |#1|))) (-15 -2020 ((-1287 |#1|) |#1| (-938)))) (-1068)) (T -1197))
+((-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1287 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1068)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-1287 *4)) (-5 *1 (-1197 *4)))))
+(-10 -7 (-15 -2020 ((-1287 |#1|) (-656 |#1|))) (-15 -2020 ((-1287 |#1|) |#1| (-938))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4397 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3420 (($ $) NIL (|has| |#1| (-464)))) (-2611 (($ $ |#1| (-990) $) NIL)) (-1838 (((-112) $) 17)) (-1890 (((-783) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-990)) NIL)) (-4389 (((-990) $) NIL)) (-4149 (($ (-1 (-990) (-990)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#1| $) NIL)) (-1930 (($ $ (-990) |#1| $) NIL (-12 (|has| (-990) (-132)) (|has| |#1| (-568))))) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4436 (((-990) $) NIL)) (-4325 ((|#1| $) NIL (|has| |#1| (-464)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3739 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ (-990)) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2022 (($) 10 T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 21)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1198 |#1|) (-13 (-336 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-132)) (-15 -1930 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) (-1068)) (T -1198))
+((-1930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-990)) (-4 *2 (-132)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))))
+(-13 (-336 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-132)) (-15 -1930 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|)))
+((-3917 (((-1200) (-1196) $) 25)) (-2552 (($) 29)) (-1787 (((-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-1196) $) 22)) (-1526 (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void")) $) 41) (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) 42) (((-1292) (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) 43)) (-1940 (((-1292) (-1196)) 58)) (-1467 (((-1292) (-1196) $) 55) (((-1292) (-1196)) 56) (((-1292)) 57)) (-2507 (((-1292) (-1196)) 37)) (-2381 (((-1196)) 36)) (-3849 (($) 34)) (-4044 (((-449) (-1196) (-449) (-1196) $) 45) (((-449) (-656 (-1196)) (-449) (-1196) $) 49) (((-449) (-1196) (-449)) 46) (((-449) (-1196) (-449) (-1196)) 50)) (-4140 (((-1196)) 35)) (-2858 (((-874) $) 28)) (-2944 (((-1292)) 30) (((-1292) (-1196)) 33)) (-2575 (((-656 (-1196)) (-1196) $) 24)) (-2277 (((-1292) (-1196) (-656 (-1196)) $) 38) (((-1292) (-1196) (-656 (-1196))) 39) (((-1292) (-656 (-1196))) 40)))
+(((-1199) (-13 (-625 (-874)) (-10 -8 (-15 -2552 ($)) (-15 -2944 ((-1292))) (-15 -2944 ((-1292) (-1196))) (-15 -4044 ((-449) (-1196) (-449) (-1196) $)) (-15 -4044 ((-449) (-656 (-1196)) (-449) (-1196) $)) (-15 -4044 ((-449) (-1196) (-449))) (-15 -4044 ((-449) (-1196) (-449) (-1196))) (-15 -2507 ((-1292) (-1196))) (-15 -4140 ((-1196))) (-15 -2381 ((-1196))) (-15 -2277 ((-1292) (-1196) (-656 (-1196)) $)) (-15 -2277 ((-1292) (-1196) (-656 (-1196)))) (-15 -2277 ((-1292) (-656 (-1196)))) (-15 -1526 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void")) $)) (-15 -1526 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void")))) (-15 -1526 ((-1292) (-3 (|:| |fst| (-446)) (|:| -2035 "void")))) (-15 -1467 ((-1292) (-1196) $)) (-15 -1467 ((-1292) (-1196))) (-15 -1467 ((-1292))) (-15 -1940 ((-1292) (-1196))) (-15 -3849 ($)) (-15 -1787 ((-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-1196) $)) (-15 -2575 ((-656 (-1196)) (-1196) $)) (-15 -3917 ((-1200) (-1196) $))))) (T -1199))
+((-2552 (*1 *1) (-5 *1 (-1199))) (-2944 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-4044 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-4044 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *4 (-1196)) (-5 *1 (-1199)))) (-4044 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-4044 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-4140 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-2381 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-2277 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1526 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1467 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1467 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3849 (*1 *1) (-5 *1 (-1199))) (-1787 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *1 (-1199)))) (-2575 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196)))) (-3917 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2552 ($)) (-15 -2944 ((-1292))) (-15 -2944 ((-1292) (-1196))) (-15 -4044 ((-449) (-1196) (-449) (-1196) $)) (-15 -4044 ((-449) (-656 (-1196)) (-449) (-1196) $)) (-15 -4044 ((-449) (-1196) (-449))) (-15 -4044 ((-449) (-1196) (-449) (-1196))) (-15 -2507 ((-1292) (-1196))) (-15 -4140 ((-1196))) (-15 -2381 ((-1196))) (-15 -2277 ((-1292) (-1196) (-656 (-1196)) $)) (-15 -2277 ((-1292) (-1196) (-656 (-1196)))) (-15 -2277 ((-1292) (-656 (-1196)))) (-15 -1526 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void")) $)) (-15 -1526 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2035 "void")))) (-15 -1526 ((-1292) (-3 (|:| |fst| (-446)) (|:| -2035 "void")))) (-15 -1467 ((-1292) (-1196) $)) (-15 -1467 ((-1292) (-1196))) (-15 -1467 ((-1292))) (-15 -1940 ((-1292) (-1196))) (-15 -3849 ($)) (-15 -1787 ((-3 (|:| |fst| (-446)) (|:| -2035 "void")) (-1196) $)) (-15 -2575 ((-656 (-1196)) (-1196) $)) (-15 -3917 ((-1200) (-1196) $))))
+((-3954 (((-656 (-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) $) 66)) (-3227 (((-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))) (-446) $) 47)) (-2234 (($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-449))))) 17)) (-1940 (((-1292) $) 73)) (-3170 (((-656 (-1196)) $) 22)) (-3266 (((-1123) $) 60)) (-2862 (((-449) (-1196) $) 27)) (-1602 (((-656 (-1196)) $) 30)) (-3849 (($) 19)) (-4044 (((-449) (-656 (-1196)) (-449) $) 25) (((-449) (-1196) (-449) $) 24)) (-2858 (((-874) $) 9) (((-1209 (-1196) (-449)) $) 13)))
+(((-1200) (-13 (-625 (-874)) (-10 -8 (-15 -2858 ((-1209 (-1196) (-449)) $)) (-15 -3849 ($)) (-15 -4044 ((-449) (-656 (-1196)) (-449) $)) (-15 -4044 ((-449) (-1196) (-449) $)) (-15 -2862 ((-449) (-1196) $)) (-15 -3170 ((-656 (-1196)) $)) (-15 -3227 ((-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))) (-446) $)) (-15 -1602 ((-656 (-1196)) $)) (-15 -3954 ((-656 (-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) $)) (-15 -3266 ((-1123) $)) (-15 -1940 ((-1292) $)) (-15 -2234 ($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-449))))))))) (T -1200))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-1209 (-1196) (-449))) (-5 *1 (-1200)))) (-3849 (*1 *1) (-5 *1 (-1200))) (-4044 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *1 (-1200)))) (-4044 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1200)))) (-2862 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-449)) (-5 *1 (-1200)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))) (-3227 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) (-5 *1 (-1200)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))))) (-5 *1 (-1200)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))) (-1940 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-449))))) (-5 *1 (-1200)))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2858 ((-1209 (-1196) (-449)) $)) (-15 -3849 ($)) (-15 -4044 ((-449) (-656 (-1196)) (-449) $)) (-15 -4044 ((-449) (-1196) (-449) $)) (-15 -2862 ((-449) (-1196) $)) (-15 -3170 ((-656 (-1196)) $)) (-15 -3227 ((-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))) (-446) $)) (-15 -1602 ((-656 (-1196)) $)) (-15 -3954 ((-656 (-656 (-3 (|:| -1811 (-1196)) (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) $)) (-15 -3266 ((-1123) $)) (-15 -1940 ((-1292) $)) (-15 -2234 ($ (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-449))))))))
+((-2835 (((-112) $ $) NIL)) (-2454 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1178) "failed") $) 47)) (-4397 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1178) $) 48)) (-2310 (((-112) $) 53)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4168 (((-3 (-576) (-227) (-518) (-1178) $) $) 55)) (-3682 (((-656 $) $) 57)) (-2610 (((-1123) $) 24) (($ (-1123)) 25)) (-1380 (((-112) $) 56)) (-2858 (((-874) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1178)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1178) $) 49)) (-2012 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1178))) 16)) (-3492 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-2690 (((-112) $ $) NIL)) (-3108 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1178) $) 45)) (-3889 (((-112) $ $) 7)))
+(((-1201) (-13 (-1282) (-1119) (-1057 (-576)) (-1057 (-227)) (-1057 (-518)) (-1057 (-1178)) (-625 (-548)) (-10 -8 (-15 -2610 ((-1123) $)) (-15 -2610 ($ (-1123))) (-15 -2858 ((-576) $)) (-15 -3108 ((-576) $)) (-15 -2858 ((-227) $)) (-15 -3108 ((-227) $)) (-15 -2858 ((-518) $)) (-15 -3108 ((-518) $)) (-15 -2858 ((-1178) $)) (-15 -3108 ((-1178) $)) (-15 -3492 ($ (-518) (-656 $))) (-15 -3492 ($ $ (-656 $))) (-15 -2310 ((-112) $)) (-15 -4168 ((-3 (-576) (-227) (-518) (-1178) $) $)) (-15 -3682 ((-656 $) $)) (-15 -1380 ((-112) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-576)))) (-15 -2012 ((-112) $ (|[\|\|]| (-227)))) (-15 -2012 ((-112) $ (|[\|\|]| (-518)))) (-15 -2012 ((-112) $ (|[\|\|]| (-1178))))))) (T -1201))
+((-2610 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) (-2610 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-3492 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1201))) (-5 *1 (-1201)))) (-3492 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1178) (-1201))) (-5 *1 (-1201)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-1201)))))
+(-13 (-1282) (-1119) (-1057 (-576)) (-1057 (-227)) (-1057 (-518)) (-1057 (-1178)) (-625 (-548)) (-10 -8 (-15 -2610 ((-1123) $)) (-15 -2610 ($ (-1123))) (-15 -2858 ((-576) $)) (-15 -3108 ((-576) $)) (-15 -2858 ((-227) $)) (-15 -3108 ((-227) $)) (-15 -2858 ((-518) $)) (-15 -3108 ((-518) $)) (-15 -2858 ((-1178) $)) (-15 -3108 ((-1178) $)) (-15 -3492 ($ (-518) (-656 $))) (-15 -3492 ($ $ (-656 $))) (-15 -2310 ((-112) $)) (-15 -4168 ((-3 (-576) (-227) (-518) (-1178) $) $)) (-15 -3682 ((-656 $) $)) (-15 -1380 ((-112) $)) (-15 -2012 ((-112) $ (|[\|\|]| (-576)))) (-15 -2012 ((-112) $ (|[\|\|]| (-227)))) (-15 -2012 ((-112) $ (|[\|\|]| (-518)))) (-15 -2012 ((-112) $ (|[\|\|]| (-1178))))))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) 22)) (-2574 (($) 12 T CONST)) (-2107 (($) 26)) (-1950 (($ $ $) NIL) (($) 19 T CONST)) (-1492 (($ $ $) NIL) (($) 20 T CONST)) (-1654 (((-938) $) 24)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) 23)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-1202 |#1|) (-13 (-856) (-10 -8 (-15 -2574 ($) -3712))) (-938)) (T -1202))
+((-2574 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))))
+(-13 (-856) (-10 -8 (-15 -2574 ($) -3712)))
((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) 19 T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) 12 T CONST)) (-3503 (($ $ $) NIL) (($) 18 T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-1484 (($ $ $) 21)) (-3380 (($ $ $) 20)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-1201 |#1|) (-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736))) (-936)) (T -1201))
-((-3380 (*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) (-1484 (*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))) (-3261 (*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936)))))
-(-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) 19 T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) 12 T CONST)) (-1492 (($ $ $) NIL) (($) 18 T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-1502 (($ $ $) 21)) (-3356 (($ $ $) 20)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712))) (-938)) (T -1203))
+((-3356 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) (-1502 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) (-2574 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))))
+(-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1)))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 9)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 7)))
-(((-1202) (-1117)) (T -1202))
-NIL
-(-1117)
-((-2350 (((-655 (-655 (-967 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 69)) (-3520 (((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|)))) 80) (((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|))) 76) (((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194)) 81) (((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194)) 75) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|))))) 106) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|)))) 105) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194))) 107) (((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))) (-655 (-1194))) 104)))
-(((-1203 |#1|) (-10 -7 (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))))) (-15 -2350 ((-655 (-655 (-967 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194))))) (-567)) (T -1203))
-((-2350 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-967 *5)))) (-5 *1 (-1203 *5)))) (-3520 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4))))) (-5 *1 (-1203 *4)) (-5 *3 (-303 (-418 (-967 *4)))))) (-3520 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4))))) (-5 *1 (-1203 *4)) (-5 *3 (-418 (-967 *4))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5)) (-5 *3 (-303 (-418 (-967 *5)))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-1194)) (-4 *5 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5)) (-5 *3 (-418 (-967 *5))))) (-3520 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-1203 *4)) (-5 *3 (-655 (-303 (-418 (-967 *4))))))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-1203 *4)))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-1203 *5)) (-5 *3 (-655 (-303 (-418 (-967 *5))))))) (-3520 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194))) (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-1203 *5)))))
-(-10 -7 (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))) (-655 (-1194)))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-418 (-967 |#1|))))) (-15 -3520 ((-655 (-655 (-303 (-418 (-967 |#1|))))) (-655 (-303 (-418 (-967 |#1|)))))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)) (-1194))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))) (-1194))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-418 (-967 |#1|)))) (-15 -3520 ((-655 (-303 (-418 (-967 |#1|)))) (-303 (-418 (-967 |#1|))))) (-15 -2350 ((-655 (-655 (-967 |#1|))) (-655 (-418 (-967 |#1|))) (-655 (-1194)))))
-((-3142 (((-1176)) 7)) (-2297 (((-1176)) 11 T CONST)) (-3962 (((-1290) (-1176)) 13)) (-2373 (((-1176)) 8 T CONST)) (-1694 (((-131)) 10 T CONST)))
-(((-1204) (-13 (-1235) (-10 -7 (-15 -3142 ((-1176))) (-15 -2373 ((-1176)) -3736) (-15 -1694 ((-131)) -3736) (-15 -2297 ((-1176)) -3736) (-15 -3962 ((-1290) (-1176)))))) (T -1204))
-((-3142 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))) (-2373 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))) (-1694 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1204)))) (-2297 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1204)))))
-(-13 (-1235) (-10 -7 (-15 -3142 ((-1176))) (-15 -2373 ((-1176)) -3736) (-15 -1694 ((-131)) -3736) (-15 -2297 ((-1176)) -3736) (-15 -3962 ((-1290) (-1176)))))
-((-2488 (((-655 (-655 |#1|)) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|)))) 56)) (-3833 (((-655 (-655 (-655 |#1|))) (-655 (-655 |#1|))) 38)) (-2821 (((-1206 (-655 |#1|)) (-655 |#1|)) 49)) (-3207 (((-655 (-655 |#1|)) (-655 |#1|)) 45)) (-4222 (((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 (-655 (-655 |#1|)))) 53)) (-1422 (((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 |#1|) (-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|)))) 52)) (-3880 (((-655 (-655 |#1|)) (-655 (-655 |#1|))) 43)) (-1729 (((-655 |#1|) (-655 |#1|)) 46)) (-2747 (((-655 (-655 (-655 |#1|))) (-655 |#1|) (-655 (-655 (-655 |#1|)))) 32)) (-4230 (((-655 (-655 (-655 |#1|))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 (-655 |#1|)))) 29)) (-2740 (((-2 (|:| |fs| (-112)) (|:| |sd| (-655 |#1|)) (|:| |td| (-655 (-655 |#1|)))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 |#1|))) 24)) (-2321 (((-655 (-655 |#1|)) (-655 (-655 (-655 |#1|)))) 58)) (-1516 (((-655 (-655 |#1|)) (-1206 (-655 |#1|))) 60)))
-(((-1205 |#1|) (-10 -7 (-15 -2740 ((-2 (|:| |fs| (-112)) (|:| |sd| (-655 |#1|)) (|:| |td| (-655 (-655 |#1|)))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 |#1|)))) (-15 -4230 ((-655 (-655 (-655 |#1|))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -2747 ((-655 (-655 (-655 |#1|))) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -2488 ((-655 (-655 |#1|)) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -2321 ((-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -1516 ((-655 (-655 |#1|)) (-1206 (-655 |#1|)))) (-15 -3833 ((-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)))) (-15 -2821 ((-1206 (-655 |#1|)) (-655 |#1|))) (-15 -3880 ((-655 (-655 |#1|)) (-655 (-655 |#1|)))) (-15 -3207 ((-655 (-655 |#1|)) (-655 |#1|))) (-15 -1729 ((-655 |#1|) (-655 |#1|))) (-15 -1422 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 |#1|) (-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))))) (-15 -4222 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 (-655 (-655 |#1|)))))) (-861)) (T -1205))
-((-4222 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-655 *4)) (|:| |f2| (-655 (-655 (-655 *4)))) (|:| |f3| (-655 (-655 *4))) (|:| |f4| (-655 (-655 (-655 *4)))))) (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 (-655 *4)))))) (-1422 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-655 *6)) (-5 *5 (-655 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-655 *5)) (|:| |f3| *5) (|:| |f4| (-655 *5)))) (-5 *1 (-1205 *6)) (-5 *4 (-655 *5)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-1205 *3)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)) (-5 *3 (-655 *4)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-861)) (-5 *1 (-1205 *3)))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1206 (-655 *4))) (-5 *1 (-1205 *4)) (-5 *3 (-655 *4)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 (-655 *4)))) (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 *4))))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-1206 (-655 *4))) (-4 *4 (-861)) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)) (-4 *4 (-861)))) (-2488 (*1 *2 *2 *3) (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4))) (-4 *4 (-861)) (-5 *1 (-1205 *4)))) (-2747 (*1 *2 *3 *2) (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-655 *4)) (-4 *4 (-861)) (-5 *1 (-1205 *4)))) (-4230 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-655 *5)) (-4 *5 (-861)) (-5 *1 (-1205 *5)))) (-2740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-655 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-655 *4)))) (-5 *1 (-1205 *6)) (-5 *5 (-655 *4)))))
-(-10 -7 (-15 -2740 ((-2 (|:| |fs| (-112)) (|:| |sd| (-655 |#1|)) (|:| |td| (-655 (-655 |#1|)))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 |#1|)))) (-15 -4230 ((-655 (-655 (-655 |#1|))) (-1 (-112) |#1| |#1|) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -2747 ((-655 (-655 (-655 |#1|))) (-655 |#1|) (-655 (-655 (-655 |#1|))))) (-15 -2488 ((-655 (-655 |#1|)) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -2321 ((-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))))) (-15 -1516 ((-655 (-655 |#1|)) (-1206 (-655 |#1|)))) (-15 -3833 ((-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)))) (-15 -2821 ((-1206 (-655 |#1|)) (-655 |#1|))) (-15 -3880 ((-655 (-655 |#1|)) (-655 (-655 |#1|)))) (-15 -3207 ((-655 (-655 |#1|)) (-655 |#1|))) (-15 -1729 ((-655 |#1|) (-655 |#1|))) (-15 -1422 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 |#1|) (-655 (-655 (-655 |#1|))) (-655 (-655 |#1|)) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))) (-655 (-655 (-655 |#1|))))) (-15 -4222 ((-2 (|:| |f1| (-655 |#1|)) (|:| |f2| (-655 (-655 (-655 |#1|)))) (|:| |f3| (-655 (-655 |#1|))) (|:| |f4| (-655 (-655 (-655 |#1|))))) (-655 (-655 (-655 |#1|))))))
-((-1565 (($ (-655 (-655 |#1|))) 10)) (-3194 (((-655 (-655 |#1|)) $) 11)) (-2882 (((-873) $) 33)))
-(((-1206 |#1|) (-10 -8 (-15 -1565 ($ (-655 (-655 |#1|)))) (-15 -3194 ((-655 (-655 |#1|)) $)) (-15 -2882 ((-873) $))) (-1117)) (T -1206))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1206 *3)) (-4 *3 (-1117)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1117)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-1206 *3)))))
-(-10 -8 (-15 -1565 ($ (-655 (-655 |#1|)))) (-15 -3194 ((-655 (-655 |#1|)) $)) (-15 -2882 ((-873) $)))
-((-2859 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2291 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4116 (((-1290) $ |#1| |#1|) NIL (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#2| $ |#1| |#2|) NIL)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) NIL)) (-3261 (($) NIL T CONST)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) NIL)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) NIL)) (-2569 ((|#1| $) NIL (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-655 |#2|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2263 ((|#1| $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1995 (((-655 |#1|) $) NIL)) (-3766 (((-112) |#1| $) NIL)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-1653 (((-655 |#1|) $) NIL)) (-1801 (((-112) |#1| $) NIL)) (-3912 (((-1137) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-1955 ((|#2| $) NIL (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL)) (-1652 (($ $ |#2|) NIL (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3323 (($) NIL) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) NIL (-12 (|has| $ (-6 -4460)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (((-782) |#2| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117)))) (((-782) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-2882 (((-873) $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873))) (|has| |#2| (-624 (-873)))))) (-3685 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) NIL)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) NIL (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) NIL (-3763 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| |#2| (-1117))))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1207 |#1| |#2|) (-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460))) (-1117) (-1117)) (T -1207))
-NIL
-(-13 (-1211 |#1| |#2|) (-10 -7 (-6 -4460)))
-((-2859 (((-112) $ $) NIL)) (-2567 (($ |#1| (-55)) 10)) (-1777 ((|#1| $) 12)) (-4264 (((-1176) $) NIL)) (-3371 (((-112) $ |#1|) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3425 (((-55) $) 14)) (-3913 (((-112) $ $) NIL)))
-(((-1208 |#1|) (-13 (-846 |#1|) (-10 -8 (-15 -2567 ($ |#1| (-55))))) (-1117)) (T -1208))
-((-2567 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1208 *2)) (-4 *2 (-1117)))))
-(-13 (-846 |#1|) (-10 -8 (-15 -2567 ($ |#1| (-55)))))
-((-2052 ((|#1| (-655 |#1|)) 46)) (-1671 ((|#1| |#1| (-575)) 24)) (-3031 (((-1190 |#1|) |#1| (-936)) 20)))
-(((-1209 |#1|) (-10 -7 (-15 -2052 (|#1| (-655 |#1|))) (-15 -3031 ((-1190 |#1|) |#1| (-936))) (-15 -1671 (|#1| |#1| (-575)))) (-373)) (T -1209))
-((-1671 (*1 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-1209 *2)) (-4 *2 (-373)))) (-3031 (*1 *2 *3 *4) (-12 (-5 *4 (-936)) (-5 *2 (-1190 *3)) (-5 *1 (-1209 *3)) (-4 *3 (-373)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-373)))))
-(-10 -7 (-15 -2052 (|#1| (-655 |#1|))) (-15 -3031 ((-1190 |#1|) |#1| (-936))) (-15 -1671 (|#1| |#1| (-575))))
-((-2291 (($) 10) (($ (-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)))) 14)) (-2375 (($ (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3999 (((-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 39) (((-655 |#3|) $) 41)) (-2844 (($ (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2544 (($ (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4030 (((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 60)) (-4218 (($ (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 16)) (-1653 (((-655 |#2|) $) 19)) (-1801 (((-112) |#2| $) 65)) (-1540 (((-3 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) 64)) (-3773 (((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) 69)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2697 (((-655 |#3|) $) 43)) (-2065 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-782) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) $) NIL) (((-782) |#3| $) NIL) (((-782) (-1 (-112) |#3|) $) 79)) (-2882 (((-873) $) 27)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3913 (((-112) $ $) 51)))
-(((-1210 |#1| |#2| |#3|) (-10 -8 (-15 -3913 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -2544 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2291 (|#1| (-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))))) (-15 -2291 (|#1|)) (-15 -2544 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2844 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3922 ((-782) (-1 (-112) |#3|) |#1|)) (-15 -3999 ((-655 |#3|) |#1|)) (-15 -3922 ((-782) |#3| |#1|)) (-15 -2065 (|#3| |#1| |#2| |#3|)) (-15 -2065 (|#3| |#1| |#2|)) (-15 -2697 ((-655 |#3|) |#1|)) (-15 -1801 ((-112) |#2| |#1|)) (-15 -1653 ((-655 |#2|) |#1|)) (-15 -2375 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2375 (|#1| (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2375 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -1540 ((-3 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4030 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -4218 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3773 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3922 ((-782) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3999 ((-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3922 ((-782) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2718 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4121 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2844 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2544 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|))) (-1211 |#2| |#3|) (-1117) (-1117)) (T -1210))
-NIL
-(-10 -8 (-15 -3913 ((-112) |#1| |#1|)) (-15 -2882 ((-873) |#1|)) (-15 -2544 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2291 (|#1| (-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))))) (-15 -2291 (|#1|)) (-15 -2544 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2844 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4121 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2718 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3922 ((-782) (-1 (-112) |#3|) |#1|)) (-15 -3999 ((-655 |#3|) |#1|)) (-15 -3922 ((-782) |#3| |#1|)) (-15 -2065 (|#3| |#1| |#2| |#3|)) (-15 -2065 (|#3| |#1| |#2|)) (-15 -2697 ((-655 |#3|) |#1|)) (-15 -1801 ((-112) |#2| |#1|)) (-15 -1653 ((-655 |#2|) |#1|)) (-15 -2375 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2375 (|#1| (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2375 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -1540 ((-3 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) "failed") (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4030 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -4218 (|#1| (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3773 ((-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3922 ((-782) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) |#1|)) (-15 -3999 ((-655 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -3922 ((-782) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2718 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -4121 ((-112) (-1 (-112) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2844 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)) (-15 -2544 (|#1| (-1 (-2 (|:| -4169 |#2|) (|:| -3179 |#3|)) (-2 (|:| -4169 |#2|) (|:| -3179 |#3|))) |#1|)))
-((-2859 (((-112) $ $) 19 (-3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2291 (($) 73) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 72)) (-4116 (((-1290) $ |#1| |#1|) 100 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#2| $ |#1| |#2|) 74)) (-1932 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 46 (|has| $ (-6 -4460)))) (-3983 (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 56 (|has| $ (-6 -4460)))) (-1398 (((-3 |#2| "failed") |#1| $) 62)) (-3261 (($) 7 T CONST)) (-4070 (($ $) 59 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460))))) (-2375 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 48 (|has| $ (-6 -4460))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 47 (|has| $ (-6 -4460))) (((-3 |#2| "failed") |#1| $) 63)) (-3631 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 55 (|has| $ (-6 -4460)))) (-2302 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 57 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 54 (|has| $ (-6 -4460))) (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 53 (|has| $ (-6 -4460)))) (-2857 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4461)))) (-2786 ((|#2| $ |#1|) 89)) (-3999 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 31 (|has| $ (-6 -4460))) (((-655 |#2|) $) 80 (|has| $ (-6 -4460)))) (-3541 (((-112) $ (-782)) 9)) (-2569 ((|#1| $) 97 (|has| |#1| (-861)))) (-4252 (((-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 30 (|has| $ (-6 -4460))) (((-655 |#2|) $) 81 (|has| $ (-6 -4460)))) (-1322 (((-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460))))) (-2263 ((|#1| $) 96 (|has| |#1| (-861)))) (-2844 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 35 (|has| $ (-6 -4461))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4461)))) (-2544 (($ (-1 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3218 (((-112) $ (-782)) 10)) (-4264 (((-1176) $) 22 (-3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1995 (((-655 |#1|) $) 64)) (-3766 (((-112) |#1| $) 65)) (-4030 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 40)) (-4218 (($ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 41)) (-1653 (((-655 |#1|) $) 94)) (-1801 (((-112) |#1| $) 93)) (-3912 (((-1137) $) 21 (-3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-1955 ((|#2| $) 98 (|has| |#1| (-861)))) (-1540 (((-3 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) "failed") (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 52)) (-1652 (($ $ |#2|) 99 (|has| $ (-6 -4461)))) (-3773 (((-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 42)) (-2718 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 33 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))))) 27 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-303 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 26 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) 25 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 24 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)))) (($ $ (-655 |#2|) (-655 |#2|)) 87 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-303 |#2|)) 85 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117)))) (($ $ (-655 (-303 |#2|))) 84 (-12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4460)) (|has| |#2| (-1117))))) (-2697 (((-655 |#2|) $) 92)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3323 (($) 50) (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 49)) (-3922 (((-782) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 32 (|has| $ (-6 -4460))) (((-782) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| $ (-6 -4460)))) (((-782) |#2| $) 82 (-12 (|has| |#2| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4460)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 60 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))))) (-2893 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 51)) (-2882 (((-873) $) 18 (-3763 (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))))) (-3685 (((-112) $ $) 23 (-3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2908 (($ (-655 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) 43)) (-4121 (((-112) (-1 (-112) (-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) $) 34 (|has| $ (-6 -4460))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (-3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1211 |#1| |#2|) (-141) (-1117) (-1117)) (T -1211))
-((-3052 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))) (-2291 (*1 *1) (-12 (-4 *1 (-1211 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2291 (*1 *1 *2) (-12 (-5 *2 (-655 (-2 (|:| -4169 *3) (|:| -3179 *4)))) (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *1 (-1211 *3 *4)))) (-2544 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1211 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))))
-(-13 (-621 |t#1| |t#2|) (-615 |t#1| |t#2|) (-10 -8 (-15 -3052 (|t#2| $ |t#1| |t#2|)) (-15 -2291 ($)) (-15 -2291 ($ (-655 (-2 (|:| -4169 |t#1|) (|:| -3179 |t#2|))))) (-15 -2544 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -4169 |#1|) (|:| -3179 |#2|))) . T) ((-102) -3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-624 (-873)) -3763 (|has| |#2| (-1117)) (|has| |#2| (-624 (-873))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-624 (-873)))) ((-152 #0#) . T) ((-625 (-547)) |has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-625 (-547))) ((-231 #0#) . T) ((-240 #0#) . T) ((-295 |#1| |#2|) . T) ((-297 |#1| |#2|) . T) ((-318 #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-318 |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-500 #0#) . T) ((-500 |#2|) . T) ((-615 |#1| |#2|) . T) ((-525 #0# #0#) -12 (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-318 (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)))) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-525 |#2| |#2|) -12 (|has| |#2| (-318 |#2|)) (|has| |#2| (-1117))) ((-621 |#1| |#2|) . T) ((-1117) -3763 (|has| |#2| (-1117)) (|has| (-2 (|:| -4169 |#1|) (|:| -3179 |#2|)) (-1117))) ((-1235) . T))
-((-2403 (((-112)) 29)) (-2769 (((-1290) (-1176)) 31)) (-1424 (((-112)) 41)) (-2503 (((-1290)) 39)) (-2967 (((-1290) (-1176) (-1176)) 30)) (-2647 (((-112)) 42)) (-4218 (((-1290) |#1| |#2|) 53)) (-3932 (((-1290)) 26)) (-3295 (((-3 |#2| "failed") |#1|) 51)) (-2334 (((-1290)) 40)))
-(((-1212 |#1| |#2|) (-10 -7 (-15 -3932 ((-1290))) (-15 -2967 ((-1290) (-1176) (-1176))) (-15 -2769 ((-1290) (-1176))) (-15 -2503 ((-1290))) (-15 -2334 ((-1290))) (-15 -2403 ((-112))) (-15 -1424 ((-112))) (-15 -2647 ((-112))) (-15 -3295 ((-3 |#2| "failed") |#1|)) (-15 -4218 ((-1290) |#1| |#2|))) (-1117) (-1117)) (T -1212))
-((-4218 (*1 *2 *3 *4) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-3295 (*1 *2 *3) (|partial| -12 (-4 *2 (-1117)) (-5 *1 (-1212 *3 *2)) (-4 *3 (-1117)))) (-2647 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-1424 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-2403 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-2334 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-2503 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)))) (-2967 (*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117)))) (-3932 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117)))))
-(-10 -7 (-15 -3932 ((-1290))) (-15 -2967 ((-1290) (-1176) (-1176))) (-15 -2769 ((-1290) (-1176))) (-15 -2503 ((-1290))) (-15 -2334 ((-1290))) (-15 -2403 ((-112))) (-15 -1424 ((-112))) (-15 -2647 ((-112))) (-15 -3295 ((-3 |#2| "failed") |#1|)) (-15 -4218 ((-1290) |#1| |#2|)))
-((-3860 (((-1176) (-1176)) 22)) (-2635 (((-52) (-1176)) 25)))
-(((-1213) (-10 -7 (-15 -2635 ((-52) (-1176))) (-15 -3860 ((-1176) (-1176))))) (T -1213))
-((-3860 (*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1213)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-1213)))))
-(-10 -7 (-15 -2635 ((-52) (-1176))) (-15 -3860 ((-1176) (-1176))))
-((-2882 (((-1215) |#1|) 11)))
-(((-1214 |#1|) (-10 -7 (-15 -2882 ((-1215) |#1|))) (-1117)) (T -1214))
-((-2882 (*1 *2 *3) (-12 (-5 *2 (-1215)) (-5 *1 (-1214 *3)) (-4 *3 (-1117)))))
-(-10 -7 (-15 -2882 ((-1215) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2741 (((-655 (-1176)) $) 39)) (-3140 (((-655 (-1176)) $ (-655 (-1176))) 42)) (-3075 (((-655 (-1176)) $ (-655 (-1176))) 41)) (-4104 (((-655 (-1176)) $ (-655 (-1176))) 43)) (-1373 (((-655 (-1176)) $) 38)) (-2303 (($) 28)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2702 (((-655 (-1176)) $) 40)) (-2478 (((-1290) $ (-575)) 35) (((-1290) $) 36)) (-2613 (($ (-873) (-575)) 33) (($ (-873) (-575) (-873)) NIL)) (-2882 (((-873) $) 49) (($ (-873)) 32)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1215) (-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2613 ($ (-873) (-575))) (-15 -2613 ($ (-873) (-575) (-873))) (-15 -2478 ((-1290) $ (-575))) (-15 -2478 ((-1290) $)) (-15 -2702 ((-655 (-1176)) $)) (-15 -2741 ((-655 (-1176)) $)) (-15 -2303 ($)) (-15 -1373 ((-655 (-1176)) $)) (-15 -4104 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3140 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3075 ((-655 (-1176)) $ (-655 (-1176))))))) (T -1215))
-((-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215)))) (-2613 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215)))) (-2478 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1215)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1215)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-2303 (*1 *1) (-5 *1 (-1215))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-4104 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-3140 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))) (-3075 (*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
-(-13 (-1117) (-627 (-873)) (-10 -8 (-15 -2613 ($ (-873) (-575))) (-15 -2613 ($ (-873) (-575) (-873))) (-15 -2478 ((-1290) $ (-575))) (-15 -2478 ((-1290) $)) (-15 -2702 ((-655 (-1176)) $)) (-15 -2741 ((-655 (-1176)) $)) (-15 -2303 ($)) (-15 -1373 ((-655 (-1176)) $)) (-15 -4104 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3140 ((-655 (-1176)) $ (-655 (-1176)))) (-15 -3075 ((-655 (-1176)) $ (-655 (-1176))))))
-((-2859 (((-112) $ $) NIL)) (-3029 (((-1176) $ (-1176)) 17) (((-1176) $) 16)) (-1730 (((-1176) $ (-1176)) 15)) (-1899 (($ $ (-1176)) NIL)) (-3868 (((-3 (-1176) "failed") $) 11)) (-2470 (((-1176) $) 8)) (-4229 (((-3 (-1176) "failed") $) 12)) (-2419 (((-1176) $) 9)) (-2976 (($ (-399)) NIL) (($ (-399) (-1176)) NIL)) (-1777 (((-399) $) NIL)) (-4264 (((-1176) $) NIL)) (-2050 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2088 (((-112) $) 21)) (-2882 (((-873) $) NIL)) (-3265 (($ $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1216) (-13 (-374 (-399) (-1176)) (-10 -8 (-15 -3029 ((-1176) $ (-1176))) (-15 -3029 ((-1176) $)) (-15 -2470 ((-1176) $)) (-15 -3868 ((-3 (-1176) "failed") $)) (-15 -4229 ((-3 (-1176) "failed") $)) (-15 -2088 ((-112) $))))) (T -1216))
-((-3029 (*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-3868 (*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-4229 (*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216)))))
-(-13 (-374 (-399) (-1176)) (-10 -8 (-15 -3029 ((-1176) $ (-1176))) (-15 -3029 ((-1176) $)) (-15 -2470 ((-1176) $)) (-15 -3868 ((-3 (-1176) "failed") $)) (-15 -4229 ((-3 (-1176) "failed") $)) (-15 -2088 ((-112) $))))
-((-2326 (((-3 (-575) "failed") |#1|) 19)) (-1437 (((-3 (-575) "failed") |#1|) 14)) (-2889 (((-575) (-1176)) 33)))
-(((-1217 |#1|) (-10 -7 (-15 -2326 ((-3 (-575) "failed") |#1|)) (-15 -1437 ((-3 (-575) "failed") |#1|)) (-15 -2889 ((-575) (-1176)))) (-1066)) (T -1217))
-((-2889 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-1217 *4)) (-4 *4 (-1066)))) (-1437 (*1 *2 *3) (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066)))) (-2326 (*1 *2 *3) (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066)))))
-(-10 -7 (-15 -2326 ((-3 (-575) "failed") |#1|)) (-15 -1437 ((-3 (-575) "failed") |#1|)) (-15 -2889 ((-575) (-1176))))
-((-1935 (((-1150 (-227))) 9)))
-(((-1218) (-10 -7 (-15 -1935 ((-1150 (-227)))))) (T -1218))
-((-1935 (*1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1218)))))
-(-10 -7 (-15 -1935 ((-1150 (-227)))))
-((-1632 (($) 12)) (-1569 (($ $) 36)) (-1544 (($ $) 34)) (-3826 (($ $) 26)) (-1593 (($ $) 18)) (-2912 (($ $) 16)) (-1583 (($ $) 20)) (-3861 (($ $) 31)) (-1554 (($ $) 35)) (-3837 (($ $) 30)))
-(((-1219 |#1|) (-10 -8 (-15 -1632 (|#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3837 (|#1| |#1|))) (-1220)) (T -1219))
-NIL
-(-10 -8 (-15 -1632 (|#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)))
-((-3921 (($ $) 26)) (-3784 (($ $) 11)) (-3895 (($ $) 27)) (-3759 (($ $) 10)) (-1521 (($ $) 28)) (-3805 (($ $) 9)) (-1632 (($) 16)) (-3461 (($ $) 19)) (-2663 (($ $) 18)) (-1531 (($ $) 29)) (-3815 (($ $) 8)) (-3935 (($ $) 30)) (-3795 (($ $) 7)) (-3907 (($ $) 31)) (-3772 (($ $) 6)) (-1569 (($ $) 20)) (-3850 (($ $) 32)) (-1544 (($ $) 21)) (-3826 (($ $) 33)) (-1593 (($ $) 22)) (-3871 (($ $) 34)) (-2912 (($ $) 23)) (-3883 (($ $) 35)) (-1583 (($ $) 24)) (-3861 (($ $) 36)) (-1554 (($ $) 25)) (-3837 (($ $) 37)) (** (($ $ $) 17)))
-(((-1220) (-141)) (T -1220))
-((-1632 (*1 *1) (-4 *1 (-1220))))
-(-13 (-1223) (-95) (-504) (-35) (-293) (-10 -8 (-15 -1632 ($))))
-(((-35) . T) ((-95) . T) ((-293) . T) ((-504) . T) ((-1223) . T))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4181 ((|#1| $) 19)) (-1633 (($ |#1| (-655 $)) 28) (($ (-655 |#1|)) 35) (($ |#1|) 30)) (-3133 (((-112) $ (-782)) 72)) (-2328 ((|#1| $ |#1|) 14 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 13 (|has| $ (-6 -4461)))) (-3261 (($) NIL T CONST)) (-3999 (((-655 |#1|) $) 77 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 64)) (-2510 (((-112) $ $) 50 (|has| |#1| (-1117)))) (-3541 (((-112) $ (-782)) 62)) (-4252 (((-655 |#1|) $) 78 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2844 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 27)) (-3218 (((-112) $ (-782)) 60)) (-2476 (((-655 |#1|) $) 55)) (-1902 (((-112) $) 53)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2718 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 107)) (-2017 (((-112) $) 9)) (-1393 (($) 10)) (-2065 ((|#1| $ "value") NIL)) (-1816 (((-575) $ $) 48)) (-2260 (((-655 $) $) 89)) (-1852 (((-112) $ $) 110)) (-3675 (((-655 $) $) 105)) (-4136 (($ $) 106)) (-3482 (((-112) $) 84)) (-3922 (((-782) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4460))) (((-782) |#1| $) 17 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3076 (($ $) 88)) (-2882 (((-873) $) 91 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 12)) (-2603 (((-112) $ $) 39 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 37 (|has| |#1| (-1117)))) (-2869 (((-782) $) 58 (|has| $ (-6 -4460)))))
-(((-1221 |#1|) (-13 (-1027 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1633 ($ |#1| (-655 $))) (-15 -1633 ($ (-655 |#1|))) (-15 -1633 ($ |#1|)) (-15 -3482 ((-112) $)) (-15 -4136 ($ $)) (-15 -3675 ((-655 $) $)) (-15 -1852 ((-112) $ $)) (-15 -2260 ((-655 $) $)))) (-1117)) (T -1221))
-((-3482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))) (-1633 (*1 *1 *2 *3) (-12 (-5 *3 (-655 (-1221 *2))) (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1221 *3)))) (-1633 (*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) (-4136 (*1 *1 *1) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))) (-1852 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))))
-(-13 (-1027 |#1|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -1633 ($ |#1| (-655 $))) (-15 -1633 ($ (-655 |#1|))) (-15 -1633 ($ |#1|)) (-15 -3482 ((-112) $)) (-15 -4136 ($ $)) (-15 -3675 ((-655 $) $)) (-15 -1852 ((-112) $ $)) (-15 -2260 ((-655 $) $))))
-((-3784 (($ $) 15)) (-3805 (($ $) 12)) (-3815 (($ $) 10)) (-3795 (($ $) 17)))
-(((-1222 |#1|) (-10 -8 (-15 -3795 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3784 (|#1| |#1|))) (-1223)) (T -1222))
-NIL
-(-10 -8 (-15 -3795 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)))
-((-3784 (($ $) 11)) (-3759 (($ $) 10)) (-3805 (($ $) 9)) (-3815 (($ $) 8)) (-3795 (($ $) 7)) (-3772 (($ $) 6)))
-(((-1223) (-141)) (T -1223))
-((-3784 (*1 *1 *1) (-4 *1 (-1223))) (-3759 (*1 *1 *1) (-4 *1 (-1223))) (-3805 (*1 *1 *1) (-4 *1 (-1223))) (-3815 (*1 *1 *1) (-4 *1 (-1223))) (-3795 (*1 *1 *1) (-4 *1 (-1223))) (-3772 (*1 *1 *1) (-4 *1 (-1223))))
-(-13 (-10 -8 (-15 -3772 ($ $)) (-15 -3795 ($ $)) (-15 -3815 ($ $)) (-15 -3805 ($ $)) (-15 -3759 ($ $)) (-15 -3784 ($ $))))
-((-3250 ((|#2| |#2|) 98)) (-3465 (((-112) |#2|) 29)) (-2481 ((|#2| |#2|) 33)) (-1965 ((|#2| |#2|) 35)) (-3925 ((|#2| |#2| (-1194)) 92) ((|#2| |#2|) 93)) (-3172 (((-171 |#2|) |#2|) 31)) (-2033 ((|#2| |#2| (-1194)) 94) ((|#2| |#2|) 95)))
-(((-1224 |#1| |#2|) (-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3925 (|#2| |#2| (-1194))) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-1194))) (-15 -3250 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -1965 (|#2| |#2|)) (-15 -3465 ((-112) |#2|)) (-15 -3172 ((-171 |#2|) |#2|))) (-13 (-463) (-1055 (-575)) (-650 (-575))) (-13 (-27) (-1220) (-441 |#1|))) (T -1224))
-((-3172 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-171 *3)) (-5 *1 (-1224 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-3465 (*1 *2 *3) (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112)) (-5 *1 (-1224 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))) (-1965 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-2481 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-2033 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-2033 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))))
-(-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3925 (|#2| |#2| (-1194))) (-15 -2033 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-1194))) (-15 -3250 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -1965 (|#2| |#2|)) (-15 -3465 ((-112) |#2|)) (-15 -3172 ((-171 |#2|) |#2|)))
-((-3702 ((|#4| |#4| |#1|) 31)) (-3161 ((|#4| |#4| |#1|) 32)))
-(((-1225 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3702 (|#4| |#4| |#1|)) (-15 -3161 (|#4| |#4| |#1|))) (-567) (-383 |#1|) (-383 |#1|) (-698 |#1| |#2| |#3|)) (T -1225))
-((-3161 (*1 *2 *2 *3) (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))) (-3702 (*1 *2 *2 *3) (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(-10 -7 (-15 -3702 (|#4| |#4| |#1|)) (-15 -3161 (|#4| |#4| |#1|)))
-((-3976 ((|#2| |#2|) 148)) (-2643 ((|#2| |#2|) 145)) (-4125 ((|#2| |#2|) 136)) (-2466 ((|#2| |#2|) 133)) (-1689 ((|#2| |#2|) 141)) (-3949 ((|#2| |#2|) 129)) (-3315 ((|#2| |#2|) 44)) (-3793 ((|#2| |#2|) 105)) (-1557 ((|#2| |#2|) 88)) (-1713 ((|#2| |#2|) 143)) (-1357 ((|#2| |#2|) 131)) (-3214 ((|#2| |#2|) 153)) (-2785 ((|#2| |#2|) 151)) (-2561 ((|#2| |#2|) 152)) (-2677 ((|#2| |#2|) 150)) (-4139 ((|#2| |#2|) 163)) (-1887 ((|#2| |#2|) 30 (-12 (|has| |#2| (-625 (-904 |#1|))) (|has| |#2| (-898 |#1|)) (|has| |#1| (-625 (-904 |#1|))) (|has| |#1| (-898 |#1|))))) (-3006 ((|#2| |#2|) 89)) (-3869 ((|#2| |#2|) 154)) (-3943 ((|#2| |#2|) 155)) (-3627 ((|#2| |#2|) 142)) (-3829 ((|#2| |#2|) 130)) (-1534 ((|#2| |#2|) 149)) (-1614 ((|#2| |#2|) 147)) (-3807 ((|#2| |#2|) 137)) (-2858 ((|#2| |#2|) 135)) (-3639 ((|#2| |#2|) 139)) (-2518 ((|#2| |#2|) 127)))
-(((-1226 |#1| |#2|) (-10 -7 (-15 -3943 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3315 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -1713 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -4125 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -2643 (|#2| |#2|)) (-15 -2858 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -2677 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -3214 (|#2| |#2|)) (IF (|has| |#1| (-898 |#1|)) (IF (|has| |#1| (-625 (-904 |#1|))) (IF (|has| |#2| (-625 (-904 |#1|))) (IF (|has| |#2| (-898 |#1|)) (-15 -1887 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-463) (-13 (-441 |#1|) (-1220))) (T -1226))
-((-1887 (*1 *2 *2) (-12 (-4 *3 (-625 (-904 *3))) (-4 *3 (-898 *3)) (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-625 (-904 *3))) (-4 *2 (-898 *3)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2561 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2785 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2858 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2643 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3976 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4125 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1713 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1357 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3829 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3006 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3315 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-4139 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-441 *3) (-1220))))))
-(-10 -7 (-15 -3943 (|#2| |#2|)) (-15 -1557 (|#2| |#2|)) (-15 -4139 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -3315 (|#2| |#2|)) (-15 -3006 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -3829 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -1357 (|#2| |#2|)) (-15 -1713 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -4125 (|#2| |#2|)) (-15 -3976 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -2643 (|#2| |#2|)) (-15 -2858 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -2677 (|#2| |#2|)) (-15 -2785 (|#2| |#2|)) (-15 -2561 (|#2| |#2|)) (-15 -3214 (|#2| |#2|)) (IF (|has| |#1| (-898 |#1|)) (IF (|has| |#1| (-625 (-904 |#1|))) (IF (|has| |#2| (-625 (-904 |#1|))) (IF (|has| |#2| (-898 |#1|)) (-15 -1887 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3184 (((-112) |#5| $) 68) (((-112) $) 110)) (-1479 ((|#5| |#5| $) 83)) (-3983 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-3116 (((-655 |#5|) (-655 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2443 (((-3 $ "failed") (-655 |#5|)) 135)) (-1969 (((-3 $ "failed") $) 120)) (-3355 ((|#5| |#5| $) 102)) (-3073 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3305 ((|#5| |#5| $) 106)) (-2302 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3240 (((-2 (|:| -2454 (-655 |#5|)) (|:| -2976 (-655 |#5|))) $) 63)) (-3621 (((-112) |#5| $) 66) (((-112) $) 111)) (-3757 ((|#4| $) 116)) (-3651 (((-3 |#5| "failed") $) 118)) (-4212 (((-655 |#5|) $) 55)) (-1992 (((-112) |#5| $) 75) (((-112) $) 115)) (-4068 ((|#5| |#5| $) 89)) (-2057 (((-112) $ $) 29)) (-4091 (((-112) |#5| $) 71) (((-112) $) 113)) (-1986 ((|#5| |#5| $) 86)) (-1955 (((-3 |#5| "failed") $) 117)) (-1985 (($ $ |#5|) 136)) (-1753 (((-782) $) 60)) (-2893 (($ (-655 |#5|)) 133)) (-3273 (($ $ |#4|) 131)) (-2078 (($ $ |#4|) 129)) (-3663 (($ $) 128)) (-2882 (((-873) $) NIL) (((-655 |#5|) $) 121)) (-2936 (((-782) $) 140)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1589 (((-112) $ (-1 (-112) |#5| (-655 |#5|))) 108)) (-4094 (((-655 |#4|) $) 123)) (-4060 (((-112) |#4| $) 126)) (-3913 (((-112) $ $) 20)))
-(((-1227 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2936 ((-782) |#1|)) (-15 -1985 (|#1| |#1| |#5|)) (-15 -3983 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4060 ((-112) |#4| |#1|)) (-15 -4094 ((-655 |#4|) |#1|)) (-15 -1969 ((-3 |#1| "failed") |#1|)) (-15 -3651 ((-3 |#5| "failed") |#1|)) (-15 -1955 ((-3 |#5| "failed") |#1|)) (-15 -3305 (|#5| |#5| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -3355 (|#5| |#5| |#1|)) (-15 -4068 (|#5| |#5| |#1|)) (-15 -1986 (|#5| |#5| |#1|)) (-15 -1479 (|#5| |#5| |#1|)) (-15 -3116 ((-655 |#5|) (-655 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2302 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1992 ((-112) |#1|)) (-15 -4091 ((-112) |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -1589 ((-112) |#1| (-1 (-112) |#5| (-655 |#5|)))) (-15 -1992 ((-112) |#5| |#1|)) (-15 -4091 ((-112) |#5| |#1|)) (-15 -3184 ((-112) |#5| |#1|)) (-15 -3073 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3621 ((-112) |#1|)) (-15 -3621 ((-112) |#5| |#1|)) (-15 -3240 ((-2 (|:| -2454 (-655 |#5|)) (|:| -2976 (-655 |#5|))) |#1|)) (-15 -1753 ((-782) |#1|)) (-15 -4212 ((-655 |#5|) |#1|)) (-15 -2823 ((-3 (-2 (|:| |bas| |#1|) (|:| -2006 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2823 ((-3 (-2 (|:| |bas| |#1|) (|:| -2006 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2057 ((-112) |#1| |#1|)) (-15 -3273 (|#1| |#1| |#4|)) (-15 -2078 (|#1| |#1| |#4|)) (-15 -3757 (|#4| |#1|)) (-15 -2443 ((-3 |#1| "failed") (-655 |#5|))) (-15 -2882 ((-655 |#5|) |#1|)) (-15 -2893 (|#1| (-655 |#5|))) (-15 -2302 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2302 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3983 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2302 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|))) (-1228 |#2| |#3| |#4| |#5|) (-567) (-804) (-861) (-1082 |#2| |#3| |#4|)) (T -1227))
-NIL
-(-10 -8 (-15 -2936 ((-782) |#1|)) (-15 -1985 (|#1| |#1| |#5|)) (-15 -3983 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4060 ((-112) |#4| |#1|)) (-15 -4094 ((-655 |#4|) |#1|)) (-15 -1969 ((-3 |#1| "failed") |#1|)) (-15 -3651 ((-3 |#5| "failed") |#1|)) (-15 -1955 ((-3 |#5| "failed") |#1|)) (-15 -3305 (|#5| |#5| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -3355 (|#5| |#5| |#1|)) (-15 -4068 (|#5| |#5| |#1|)) (-15 -1986 (|#5| |#5| |#1|)) (-15 -1479 (|#5| |#5| |#1|)) (-15 -3116 ((-655 |#5|) (-655 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2302 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1992 ((-112) |#1|)) (-15 -4091 ((-112) |#1|)) (-15 -3184 ((-112) |#1|)) (-15 -1589 ((-112) |#1| (-1 (-112) |#5| (-655 |#5|)))) (-15 -1992 ((-112) |#5| |#1|)) (-15 -4091 ((-112) |#5| |#1|)) (-15 -3184 ((-112) |#5| |#1|)) (-15 -3073 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3621 ((-112) |#1|)) (-15 -3621 ((-112) |#5| |#1|)) (-15 -3240 ((-2 (|:| -2454 (-655 |#5|)) (|:| -2976 (-655 |#5|))) |#1|)) (-15 -1753 ((-782) |#1|)) (-15 -4212 ((-655 |#5|) |#1|)) (-15 -2823 ((-3 (-2 (|:| |bas| |#1|) (|:| -2006 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2823 ((-3 (-2 (|:| |bas| |#1|) (|:| -2006 (-655 |#5|))) "failed") (-655 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2057 ((-112) |#1| |#1|)) (-15 -3273 (|#1| |#1| |#4|)) (-15 -2078 (|#1| |#1| |#4|)) (-15 -3757 (|#4| |#1|)) (-15 -2443 ((-3 |#1| "failed") (-655 |#5|))) (-15 -2882 ((-655 |#5|) |#1|)) (-15 -2893 (|#1| (-655 |#5|))) (-15 -2302 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2302 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3983 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2302 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2882 ((-873) |#1|)) (-15 -3913 ((-112) |#1| |#1|)))
-((-2859 (((-112) $ $) 7)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) 86)) (-4014 (((-655 $) (-655 |#4|)) 87)) (-1606 (((-655 |#3|) $) 34)) (-4419 (((-112) $) 27)) (-3414 (((-112) $) 18 (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) 102) (((-112) $) 98)) (-1479 ((|#4| |#4| $) 93)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) 28)) (-3133 (((-112) $ (-782)) 45)) (-3983 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) 80)) (-3261 (($) 46 T CONST)) (-1756 (((-112) $) 23 (|has| |#1| (-567)))) (-1600 (((-112) $ $) 25 (|has| |#1| (-567)))) (-4415 (((-112) $ $) 24 (|has| |#1| (-567)))) (-1759 (((-112) $) 26 (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2762 (((-655 |#4|) (-655 |#4|) $) 19 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) 20 (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) 37)) (-4400 (($ (-655 |#4|)) 36)) (-1969 (((-3 $ "failed") $) 83)) (-3355 ((|#4| |#4| $) 90)) (-4070 (($ $) 69 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#4| $) 68 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3305 ((|#4| |#4| $) 88)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) 106)) (-3999 (((-655 |#4|) $) 53 (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) 105) (((-112) $) 104)) (-3757 ((|#3| $) 35)) (-3541 (((-112) $ (-782)) 44)) (-4252 (((-655 |#4|) $) 54 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) 48)) (-3717 (((-655 |#3|) $) 33)) (-1789 (((-112) |#3| $) 32)) (-3218 (((-112) $ (-782)) 43)) (-4264 (((-1176) $) 10)) (-3651 (((-3 |#4| "failed") $) 84)) (-4212 (((-655 |#4|) $) 108)) (-1992 (((-112) |#4| $) 100) (((-112) $) 96)) (-4068 ((|#4| |#4| $) 91)) (-2057 (((-112) $ $) 111)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) 101) (((-112) $) 97)) (-1986 ((|#4| |#4| $) 92)) (-3912 (((-1137) $) 11)) (-1955 (((-3 |#4| "failed") $) 85)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3629 (((-3 $ "failed") $ |#4|) 79)) (-1985 (($ $ |#4|) 78)) (-2718 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) 60 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) 58 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) 57 (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) 39)) (-2017 (((-112) $) 42)) (-1393 (($) 41)) (-1753 (((-782) $) 107)) (-3922 (((-782) |#4| $) 55 (-12 (|has| |#4| (-1117)) (|has| $ (-6 -4460)))) (((-782) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4460)))) (-3076 (($ $) 40)) (-2613 (((-547) $) 70 (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) 61)) (-3273 (($ $ |#3|) 29)) (-2078 (($ $ |#3|) 31)) (-3663 (($ $) 89)) (-4049 (($ $ |#3|) 30)) (-2882 (((-873) $) 12) (((-655 |#4|) $) 38)) (-2936 (((-782) $) 77 (|has| |#3| (-378)))) (-3685 (((-112) $ $) 9)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) 99)) (-4121 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) 82)) (-4060 (((-112) |#3| $) 81)) (-3913 (((-112) $ $) 6)) (-2869 (((-782) $) 47 (|has| $ (-6 -4460)))))
-(((-1228 |#1| |#2| |#3| |#4|) (-141) (-567) (-804) (-861) (-1082 |t#1| |t#2| |t#3|)) (T -1228))
-((-2057 (*1 *2 *1 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-2823 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2006 (-655 *8)))) (-5 *3 (-655 *8)) (-4 *1 (-1228 *5 *6 *7 *8)))) (-2823 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2006 (-655 *9)))) (-5 *3 (-655 *9)) (-4 *1 (-1228 *6 *7 *8 *9)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *6)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-782)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-2 (|:| -2454 (-655 *6)) (|:| -2976 (-655 *6)))))) (-3621 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-3073 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1228 *5 *6 *7 *3)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)))) (-3184 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-4091 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-1992 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-1589 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-655 *7))) (-4 *1 (-1228 *4 *5 *6 *7)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))) (-2302 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1228 *5 *6 *7 *2)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *2 (-1082 *5 *6 *7)))) (-3116 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1228 *5 *6 *7 *8)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)))) (-1479 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-1986 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-4068 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-3355 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-3663 (*1 *1 *1) (-12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4)))) (-3305 (*1 *2 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1)) (-4 *1 (-1228 *4 *5 *6 *7)))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-655 (-2 (|:| -2454 *1) (|:| -2976 (-655 *7))))) (-5 *3 (-655 *7)) (-4 *1 (-1228 *4 *5 *6 *7)))) (-1955 (*1 *2 *1) (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-3651 (*1 *2 *1) (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-1969 (*1 *1 *1) (|partial| -12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))) (-4060 (*1 *2 *3 *1) (-12 (-4 *1 (-1228 *4 *5 *3 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112)))) (-3983 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1228 *4 *5 *3 *2)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *3 (-861)) (-4 *2 (-1082 *4 *5 *3)))) (-3629 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-1985 (*1 *1 *1 *2) (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *5 (-378)) (-5 *2 (-782)))))
-(-13 (-993 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4460) (-6 -4461) (-15 -2057 ((-112) $ $)) (-15 -2823 ((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |t#4|))) "failed") (-655 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2823 ((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |t#4|))) "failed") (-655 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4212 ((-655 |t#4|) $)) (-15 -1753 ((-782) $)) (-15 -3240 ((-2 (|:| -2454 (-655 |t#4|)) (|:| -2976 (-655 |t#4|))) $)) (-15 -3621 ((-112) |t#4| $)) (-15 -3621 ((-112) $)) (-15 -3073 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -3184 ((-112) |t#4| $)) (-15 -4091 ((-112) |t#4| $)) (-15 -1992 ((-112) |t#4| $)) (-15 -1589 ((-112) $ (-1 (-112) |t#4| (-655 |t#4|)))) (-15 -3184 ((-112) $)) (-15 -4091 ((-112) $)) (-15 -1992 ((-112) $)) (-15 -2302 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3116 ((-655 |t#4|) (-655 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1479 (|t#4| |t#4| $)) (-15 -1986 (|t#4| |t#4| $)) (-15 -4068 (|t#4| |t#4| $)) (-15 -3355 (|t#4| |t#4| $)) (-15 -3663 ($ $)) (-15 -3305 (|t#4| |t#4| $)) (-15 -4014 ((-655 $) (-655 |t#4|))) (-15 -1376 ((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |t#4|)))) (-655 |t#4|))) (-15 -1955 ((-3 |t#4| "failed") $)) (-15 -3651 ((-3 |t#4| "failed") $)) (-15 -1969 ((-3 $ "failed") $)) (-15 -4094 ((-655 |t#3|) $)) (-15 -4060 ((-112) |t#3| $)) (-15 -3983 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3629 ((-3 $ "failed") $ |t#4|)) (-15 -1985 ($ $ |t#4|)) (IF (|has| |t#3| (-378)) (-15 -2936 ((-782) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-624 (-655 |#4|)) . T) ((-624 (-873)) . T) ((-152 |#4|) . T) ((-625 (-547)) |has| |#4| (-625 (-547))) ((-318 |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-500 |#4|) . T) ((-525 |#4| |#4|) -12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))) ((-993 |#1| |#2| |#3| |#4|) . T) ((-1117) . T) ((-1235) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1194)) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2479 (((-967 |#1|) $ (-782)) 17) (((-967 |#1|) $ (-782) (-782)) NIL)) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-782) $ (-1194)) NIL) (((-782) $ (-1194) (-782)) NIL)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3135 (((-112) $) NIL)) (-2414 (($ $ (-655 (-1194)) (-655 (-542 (-1194)))) NIL) (($ $ (-1194) (-542 (-1194))) NIL) (($ |#1| (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-4388 (($ $ (-1194)) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194) |#1|) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-2087 (($ (-1 $) (-1194) |#1|) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1985 (($ $ (-782)) NIL)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3046 (($ $ (-1194) $) NIL) (($ $ (-655 (-1194)) (-655 $)) NIL) (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL)) (-2382 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-1753 (((-542 (-1194)) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-567))) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-1194)) NIL) (($ (-967 |#1|)) NIL)) (-3002 ((|#1| $ (-542 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL) (((-967 |#1|) $ (-782)) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3428 (($ $ (-655 (-1194)) (-655 (-782))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1229 |#1|) (-13 (-751 |#1| (-1194)) (-10 -8 (-15 -3002 ((-967 |#1|) $ (-782))) (-15 -2882 ($ (-1194))) (-15 -2882 ($ (-967 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $ (-1194) |#1|)) (-15 -2087 ($ (-1 $) (-1194) |#1|))) |%noBranch|))) (-1066)) (T -1229))
-((-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-967 *4)) (-5 *1 (-1229 *4)) (-4 *4 (-1066)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-1066)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-5 *1 (-1229 *3)))) (-4388 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)))) (-2087 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1229 *4))) (-5 *3 (-1194)) (-5 *1 (-1229 *4)) (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)))))
-(-13 (-751 |#1| (-1194)) (-10 -8 (-15 -3002 ((-967 |#1|) $ (-782))) (-15 -2882 ($ (-1194))) (-15 -2882 ($ (-967 |#1|))) (IF (|has| |#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $ (-1194) |#1|)) (-15 -2087 ($ (-1 $) (-1194) |#1|))) |%noBranch|)))
-((-1898 (($ |#1| (-655 (-655 (-958 (-227)))) (-112)) 19)) (-2346 (((-112) $ (-112)) 18)) (-1695 (((-112) $) 17)) (-1342 (((-655 (-655 (-958 (-227)))) $) 13)) (-2673 ((|#1| $) 8)) (-2887 (((-112) $) 15)))
-(((-1230 |#1|) (-10 -8 (-15 -2673 (|#1| $)) (-15 -1342 ((-655 (-655 (-958 (-227)))) $)) (-15 -2887 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -2346 ((-112) $ (-112))) (-15 -1898 ($ |#1| (-655 (-655 (-958 (-227)))) (-112)))) (-991)) (T -1230))
-((-1898 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-112)) (-5 *1 (-1230 *2)) (-4 *2 (-991)))) (-2346 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-1230 *3)) (-4 *3 (-991)))) (-2673 (*1 *2 *1) (-12 (-5 *1 (-1230 *2)) (-4 *2 (-991)))))
-(-10 -8 (-15 -2673 (|#1| $)) (-15 -1342 ((-655 (-655 (-958 (-227)))) $)) (-15 -2887 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -2346 ((-112) $ (-112))) (-15 -1898 ($ |#1| (-655 (-655 (-958 (-227)))) (-112))))
-((-4126 (((-958 (-227)) (-958 (-227))) 31)) (-1838 (((-958 (-227)) (-227) (-227) (-227) (-227)) 10)) (-1434 (((-655 (-958 (-227))) (-958 (-227)) (-958 (-227)) (-958 (-227)) (-227) (-655 (-655 (-227)))) 56)) (-2988 (((-227) (-958 (-227)) (-958 (-227))) 27)) (-2969 (((-958 (-227)) (-958 (-227)) (-958 (-227))) 28)) (-3459 (((-655 (-655 (-227))) (-575)) 44)) (-4027 (((-958 (-227)) (-958 (-227)) (-958 (-227))) 26)) (-4015 (((-958 (-227)) (-958 (-227)) (-958 (-227))) 24)) (* (((-958 (-227)) (-227) (-958 (-227))) 22)))
-(((-1231) (-10 -7 (-15 -1838 ((-958 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-958 (-227)) (-227) (-958 (-227)))) (-15 -4015 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4027 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -2988 ((-227) (-958 (-227)) (-958 (-227)))) (-15 -2969 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4126 ((-958 (-227)) (-958 (-227)))) (-15 -3459 ((-655 (-655 (-227))) (-575))) (-15 -1434 ((-655 (-958 (-227))) (-958 (-227)) (-958 (-227)) (-958 (-227)) (-227) (-655 (-655 (-227))))))) (T -1231))
-((-1434 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-655 (-655 (-227)))) (-5 *4 (-227)) (-5 *2 (-655 (-958 *4))) (-5 *1 (-1231)) (-5 *3 (-958 *4)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-575)) (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-1231)))) (-4126 (*1 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (-2969 (*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (-2988 (*1 *2 *3 *3) (-12 (-5 *3 (-958 (-227))) (-5 *2 (-227)) (-5 *1 (-1231)))) (-4027 (*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (-4015 (*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-958 (-227))) (-5 *3 (-227)) (-5 *1 (-1231)))) (-1838 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)) (-5 *3 (-227)))))
-(-10 -7 (-15 -1838 ((-958 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-958 (-227)) (-227) (-958 (-227)))) (-15 -4015 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4027 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -2988 ((-227) (-958 (-227)) (-958 (-227)))) (-15 -2969 ((-958 (-227)) (-958 (-227)) (-958 (-227)))) (-15 -4126 ((-958 (-227)) (-958 (-227)))) (-15 -3459 ((-655 (-655 (-227))) (-575))) (-15 -1434 ((-655 (-958 (-227))) (-958 (-227)) (-958 (-227)) (-958 (-227)) (-227) (-655 (-655 (-227))))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3983 ((|#1| $ (-782)) 18)) (-1840 (((-782) $) 13)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-2882 (((-973 |#1|) $) 12) (($ (-973 |#1|)) 11) (((-873) $) 29 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3913 (((-112) $ $) 22 (|has| |#1| (-1117)))))
-(((-1232 |#1|) (-13 (-501 (-973 |#1|)) (-10 -8 (-15 -3983 (|#1| $ (-782))) (-15 -1840 ((-782) $)) (IF (|has| |#1| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|))) (-1235)) (T -1232))
-((-3983 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-1232 *2)) (-4 *2 (-1235)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1232 *3)) (-4 *3 (-1235)))))
-(-13 (-501 (-973 |#1|)) (-10 -8 (-15 -3983 (|#1| $ (-782))) (-15 -1840 ((-782) $)) (IF (|has| |#1| (-624 (-873))) (-6 (-624 (-873))) |%noBranch|) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|)))
-((-3835 (((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-575)) 94)) (-3000 (((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|))) 86)) (-1558 (((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|))) 70)))
-(((-1233 |#1|) (-10 -7 (-15 -3000 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -1558 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -3835 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-575)))) (-359)) (T -1233))
-((-3835 (*1 *2 *3 *4) (-12 (-5 *4 (-575)) (-4 *5 (-359)) (-5 *2 (-429 (-1190 (-1190 *5)))) (-5 *1 (-1233 *5)) (-5 *3 (-1190 (-1190 *5))))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4)))) (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4))))) (-3000 (*1 *2 *3) (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4)))) (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4))))))
-(-10 -7 (-15 -3000 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -1558 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)))) (-15 -3835 ((-429 (-1190 (-1190 |#1|))) (-1190 (-1190 |#1|)) (-575))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 9) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1234) (-1100)) (T -1234))
-NIL
-(-1100)
-NIL
-(((-1235) (-141)) (T -1235))
-NIL
-(-13 (-10 -7 (-6 -3457)))
-((-2381 (((-112)) 18)) (-2190 (((-1290) (-655 |#1|) (-655 |#1|)) 22) (((-1290) (-655 |#1|)) 23)) (-3541 (((-112) |#1| |#1|) 37 (|has| |#1| (-861)))) (-3218 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3713 ((|#1| (-655 |#1|)) 38 (|has| |#1| (-861))) ((|#1| (-655 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3426 (((-2 (|:| -3897 (-655 |#1|)) (|:| -2480 (-655 |#1|)))) 20)))
-(((-1236 |#1|) (-10 -7 (-15 -2190 ((-1290) (-655 |#1|))) (-15 -2190 ((-1290) (-655 |#1|) (-655 |#1|))) (-15 -3426 ((-2 (|:| -3897 (-655 |#1|)) (|:| -2480 (-655 |#1|))))) (-15 -3218 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3218 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3713 (|#1| (-655 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2381 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3713 (|#1| (-655 |#1|))) (-15 -3541 ((-112) |#1| |#1|))) |%noBranch|)) (-1117)) (T -1236))
-((-3541 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-861)) (-4 *3 (-1117)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-861)) (-5 *1 (-1236 *2)))) (-2381 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1236 *2)) (-4 *2 (-1117)))) (-3218 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1117)) (-5 *2 (-112)) (-5 *1 (-1236 *3)))) (-3218 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) (-3426 (*1 *2) (-12 (-5 *2 (-2 (|:| -3897 (-655 *3)) (|:| -2480 (-655 *3)))) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))) (-2190 (*1 *2 *3 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290)) (-5 *1 (-1236 *4)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290)) (-5 *1 (-1236 *4)))))
-(-10 -7 (-15 -2190 ((-1290) (-655 |#1|))) (-15 -2190 ((-1290) (-655 |#1|) (-655 |#1|))) (-15 -3426 ((-2 (|:| -3897 (-655 |#1|)) (|:| -2480 (-655 |#1|))))) (-15 -3218 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3218 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3713 (|#1| (-655 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2381 ((-112))) (IF (|has| |#1| (-861)) (PROGN (-15 -3713 (|#1| (-655 |#1|))) (-15 -3541 ((-112) |#1| |#1|))) |%noBranch|))
-((-2828 (((-1290) (-655 (-1194)) (-655 (-1194))) 14) (((-1290) (-655 (-1194))) 12)) (-3615 (((-1290)) 16)) (-2449 (((-2 (|:| -2480 (-655 (-1194))) (|:| -3897 (-655 (-1194))))) 20)))
-(((-1237) (-10 -7 (-15 -2828 ((-1290) (-655 (-1194)))) (-15 -2828 ((-1290) (-655 (-1194)) (-655 (-1194)))) (-15 -2449 ((-2 (|:| -2480 (-655 (-1194))) (|:| -3897 (-655 (-1194)))))) (-15 -3615 ((-1290))))) (T -1237))
-((-3615 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1237)))) (-2449 (*1 *2) (-12 (-5 *2 (-2 (|:| -2480 (-655 (-1194))) (|:| -3897 (-655 (-1194))))) (-5 *1 (-1237)))) (-2828 (*1 *2 *3 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237)))))
-(-10 -7 (-15 -2828 ((-1290) (-655 (-1194)))) (-15 -2828 ((-1290) (-655 (-1194)) (-655 (-1194)))) (-15 -2449 ((-2 (|:| -2480 (-655 (-1194))) (|:| -3897 (-655 (-1194)))))) (-15 -3615 ((-1290))))
-((-3312 (($ $) 17)) (-3559 (((-112) $) 28)))
-(((-1238 |#1|) (-10 -8 (-15 -3312 (|#1| |#1|)) (-15 -3559 ((-112) |#1|))) (-1239)) (T -1238))
-NIL
-(-10 -8 (-15 -3312 (|#1| |#1|)) (-15 -3559 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 57)) (-4281 (((-429 $) $) 58)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3559 (((-112) $) 59)) (-3900 (((-112) $) 35)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2347 (((-429 $) $) 56)) (-2849 (((-3 $ "failed") $ $) 48)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27)))
-(((-1239) (-141)) (T -1239))
-((-3559 (*1 *2 *1) (-12 (-4 *1 (-1239)) (-5 *2 (-112)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239)))) (-3312 (*1 *1 *1) (-4 *1 (-1239))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239)))))
-(-13 (-463) (-10 -8 (-15 -3559 ((-112) $)) (-15 -4281 ((-429 $) $)) (-15 -3312 ($ $)) (-15 -2347 ((-429 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-299) . T) ((-463) . T) ((-567) . T) ((-657 (-575)) . T) ((-657 $) . T) ((-659 $) . T) ((-651 $) . T) ((-728 $) . T) ((-737) . T) ((-1068 $) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3380 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-1240) (-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))) (T -1240))
-((-3380 (*1 *1 *1 *1) (-5 *1 (-1240))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1240))) (-3261 (*1 *1) (-5 *1 (-1240))))
-(-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 9)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 7)))
+(((-1204) (-1119)) (T -1204))
+NIL
+(-1119)
+((-2475 (((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 69)) (-2783 (((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|)))) 80) (((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|))) 76) (((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196)) 81) (((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196)) 75) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196))) 107) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 104)))
+(((-1205 |#1|) (-10 -7 (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))))) (-15 -2475 ((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))))) (-568)) (T -1205))
+((-2475 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-969 *5)))) (-5 *1 (-1205 *5)))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-304 (-419 (-969 *4)))))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-419 (-969 *4))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-304 (-419 (-969 *5)))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-419 (-969 *5))))) (-2783 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1205 *4)) (-5 *3 (-656 (-304 (-419 (-969 *4))))))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1205 *4)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1205 *5)) (-5 *3 (-656 (-304 (-419 (-969 *5))))))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1205 *5)))))
+(-10 -7 (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))))) (-15 -2783 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)))) (-15 -2783 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))))) (-15 -2475 ((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))))
+((-4288 (((-1178)) 7)) (-2846 (((-1178)) 11 T CONST)) (-3938 (((-1292) (-1178)) 13)) (-4034 (((-1178)) 8 T CONST)) (-2158 (((-131)) 10 T CONST)))
+(((-1206) (-13 (-1237) (-10 -7 (-15 -4288 ((-1178))) (-15 -4034 ((-1178)) -3712) (-15 -2158 ((-131)) -3712) (-15 -2846 ((-1178)) -3712) (-15 -3938 ((-1292) (-1178)))))) (T -1206))
+((-4288 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-4034 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-2158 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1206)))) (-2846 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206)))))
+(-13 (-1237) (-10 -7 (-15 -4288 ((-1178))) (-15 -4034 ((-1178)) -3712) (-15 -2158 ((-131)) -3712) (-15 -2846 ((-1178)) -3712) (-15 -3938 ((-1292) (-1178)))))
+((-4027 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-2960 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-1858 (((-1208 (-656 |#1|)) (-656 |#1|)) 49)) (-3055 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-4204 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-3130 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-3868 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-2975 (((-656 |#1|) (-656 |#1|)) 46)) (-4230 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-2147 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-1676 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-1644 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-4123 (((-656 (-656 |#1|)) (-1208 (-656 |#1|))) 60)))
+(((-1207 |#1|) (-10 -7 (-15 -1676 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2147 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -4230 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -4027 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1644 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -4123 ((-656 (-656 |#1|)) (-1208 (-656 |#1|)))) (-15 -2960 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -1858 ((-1208 (-656 |#1|)) (-656 |#1|))) (-15 -3868 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3055 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2975 ((-656 |#1|) (-656 |#1|))) (-15 -3130 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4204 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-862)) (T -1207))
+((-4204 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-3130 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1207 *6)) (-5 *4 (-656 *5)))) (-2975 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1207 *3)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-656 *4)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1207 *3)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1208 (-656 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-656 *4)))) (-2960 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 *4))))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-1208 (-656 *4))) (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) (-4 *4 (-862)))) (-4027 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-862)) (-5 *1 (-1207 *4)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *1 (-1207 *4)))) (-2147 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1207 *5)))) (-1676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1207 *6)) (-5 *5 (-656 *4)))))
+(-10 -7 (-15 -1676 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2147 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -4230 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -4027 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1644 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -4123 ((-656 (-656 |#1|)) (-1208 (-656 |#1|)))) (-15 -2960 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -1858 ((-1208 (-656 |#1|)) (-656 |#1|))) (-15 -3868 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3055 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2975 ((-656 |#1|) (-656 |#1|))) (-15 -3130 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -4204 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|))))))
+((-1926 (($ (-656 (-656 |#1|))) 10)) (-4101 (((-656 (-656 |#1|)) $) 11)) (-2858 (((-874) $) 33)))
+(((-1208 |#1|) (-10 -8 (-15 -1926 ($ (-656 (-656 |#1|)))) (-15 -4101 ((-656 (-656 |#1|)) $)) (-15 -2858 ((-874) $))) (-1119)) (T -1208))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1208 *3)) (-4 *3 (-1119)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1208 *3)) (-4 *3 (-1119)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-1208 *3)))))
+(-10 -8 (-15 -1926 ($ (-656 (-656 |#1|)))) (-15 -4101 ((-656 (-656 |#1|)) $)) (-15 -2858 ((-874) $)))
+((-2835 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2316 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3430 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#2| $ |#1| |#2|) NIL)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) NIL)) (-2574 (($) NIL T CONST)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) NIL)) (-2440 ((|#1| $) NIL (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4048 ((|#1| $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2029 (((-656 |#1|) $) NIL)) (-3762 (((-112) |#1| $) NIL)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-2928 (((-656 |#1|) $) NIL)) (-1449 (((-112) |#1| $) NIL)) (-3887 (((-1139) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1989 ((|#2| $) NIL (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL)) (-4040 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1801 (($) NIL) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2858 (((-874) $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2690 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) NIL)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) NIL (-3739 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1209 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119)) (T -1209))
+NIL
+(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462)))
+((-2835 (((-112) $ $) NIL)) (-2569 (($ |#1| (-55)) 10)) (-1811 ((|#1| $) 12)) (-2143 (((-1178) $) NIL)) (-2729 (((-112) $ |#1|) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-2690 (((-112) $ $) NIL)) (-2727 (((-55) $) 14)) (-3889 (((-112) $ $) NIL)))
+(((-1210 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -2569 ($ |#1| (-55))))) (-1119)) (T -1210))
+((-2569 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1119)))))
+(-13 (-847 |#1|) (-10 -8 (-15 -2569 ($ |#1| (-55)))))
+((-2502 ((|#1| (-656 |#1|)) 46)) (-3995 ((|#1| |#1| (-576)) 24)) (-4158 (((-1192 |#1|) |#1| (-938)) 20)))
+(((-1211 |#1|) (-10 -7 (-15 -2502 (|#1| (-656 |#1|))) (-15 -4158 ((-1192 |#1|) |#1| (-938))) (-15 -3995 (|#1| |#1| (-576)))) (-374)) (T -1211))
+((-3995 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1211 *2)) (-4 *2 (-374)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1192 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-374)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-374)))))
+(-10 -7 (-15 -2502 (|#1| (-656 |#1|))) (-15 -4158 ((-1192 |#1|) |#1| (-938))) (-15 -3995 (|#1| |#1| (-576))))
+((-2316 (($) 10) (($ (-656 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)))) 14)) (-3007 (($ (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3975 (((-656 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-2822 (($ (-1 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2548 (($ (-1 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2395 (((-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) $) 60)) (-2329 (($ (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) $) 16)) (-2928 (((-656 |#2|) $) 19)) (-1449 (((-112) |#2| $) 65)) (-3557 (((-3 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) "failed") (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) 64)) (-3079 (((-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) $) 69)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3584 (((-656 |#3|) $) 43)) (-2099 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) NIL) (((-783) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-2858 (((-874) $) 27)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3889 (((-112) $ $) 51)))
+(((-1212 |#1| |#2| |#3|) (-10 -8 (-15 -3889 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -2548 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2316 (|#1| (-656 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))))) (-15 -2316 (|#1|)) (-15 -2548 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2822 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3902 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3975 ((-656 |#3|) |#1|)) (-15 -3902 ((-783) |#3| |#1|)) (-15 -2099 (|#3| |#1| |#2| |#3|)) (-15 -2099 (|#3| |#1| |#2|)) (-15 -3584 ((-656 |#3|) |#1|)) (-15 -1449 ((-112) |#2| |#1|)) (-15 -2928 ((-656 |#2|) |#1|)) (-15 -3007 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3007 (|#1| (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -3007 (|#1| (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3557 ((-3 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) "failed") (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2395 ((-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -2329 (|#1| (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3079 ((-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3902 ((-783) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3975 ((-656 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -3902 ((-783) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -1910 ((-112) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2714 ((-112) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2822 (|#1| (-1 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2548 (|#1| (-1 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|))) (-1213 |#2| |#3|) (-1119) (-1119)) (T -1212))
+NIL
+(-10 -8 (-15 -3889 ((-112) |#1| |#1|)) (-15 -2858 ((-874) |#1|)) (-15 -2548 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2316 (|#1| (-656 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))))) (-15 -2316 (|#1|)) (-15 -2548 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2822 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2714 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1910 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3902 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3975 ((-656 |#3|) |#1|)) (-15 -3902 ((-783) |#3| |#1|)) (-15 -2099 (|#3| |#1| |#2| |#3|)) (-15 -2099 (|#3| |#1| |#2|)) (-15 -3584 ((-656 |#3|) |#1|)) (-15 -1449 ((-112) |#2| |#1|)) (-15 -2928 ((-656 |#2|) |#1|)) (-15 -3007 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3007 (|#1| (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -3007 (|#1| (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3557 ((-3 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) "failed") (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2395 ((-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -2329 (|#1| (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3079 ((-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3902 ((-783) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) |#1|)) (-15 -3975 ((-656 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -3902 ((-783) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -1910 ((-112) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2714 ((-112) (-1 (-112) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2822 (|#1| (-1 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)) (-15 -2548 (|#1| (-1 (-2 (|:| -4147 |#2|) (|:| -3153 |#3|)) (-2 (|:| -4147 |#2|) (|:| -3153 |#3|))) |#1|)))
+((-2835 (((-112) $ $) 19 (-3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-2316 (($) 73) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 72)) (-3430 (((-1292) $ |#1| |#1|) 100 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#2| $ |#1| |#2|) 74)) (-3423 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 46 (|has| $ (-6 -4462)))) (-3959 (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 56 (|has| $ (-6 -4462)))) (-1405 (((-3 |#2| "failed") |#1| $) 62)) (-2574 (($) 7 T CONST)) (-3229 (($ $) 59 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-3007 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 47 (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 63)) (-3607 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 55 (|has| $ (-6 -4462)))) (-2326 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 57 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 54 (|has| $ (-6 -4462))) (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 53 (|has| $ (-6 -4462)))) (-2832 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4463)))) (-2767 ((|#2| $ |#1|) 89)) (-3975 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 31 (|has| $ (-6 -4462))) (((-656 |#2|) $) 80 (|has| $ (-6 -4462)))) (-3639 (((-112) $ (-783)) 9)) (-2440 ((|#1| $) 97 (|has| |#1| (-862)))) (-3531 (((-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 30 (|has| $ (-6 -4462))) (((-656 |#2|) $) 81 (|has| $ (-6 -4462)))) (-3606 (((-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4048 ((|#1| $) 96 (|has| |#1| (-862)))) (-2822 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 35 (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4463)))) (-2548 (($ (-1 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1684 (((-112) $ (-783)) 10)) (-2143 (((-1178) $) 22 (-3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-2029 (((-656 |#1|) $) 64)) (-3762 (((-112) |#1| $) 65)) (-2395 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 40)) (-2329 (($ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 41)) (-2928 (((-656 |#1|) $) 94)) (-1449 (((-112) |#1| $) 93)) (-3887 (((-1139) $) 21 (-3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-1989 ((|#2| $) 98 (|has| |#1| (-862)))) (-3557 (((-3 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) "failed") (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 52)) (-4040 (($ $ |#2|) 99 (|has| $ (-6 -4463)))) (-3079 (((-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 42)) (-1910 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 33 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))))) 27 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 26 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) 25 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 24 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3584 (((-656 |#2|) $) 92)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1801 (($) 50) (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 49)) (-3902 (((-783) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 32 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4462)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 60 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))))) (-2869 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 51)) (-2858 (((-874) $) 18 (-3739 (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874)))))) (-2690 (((-112) $ $) 23 (-3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-3195 (($ (-656 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) 43)) (-2714 (((-112) (-1 (-112) (-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) $) 34 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (-3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1213 |#1| |#2|) (-141) (-1119) (-1119)) (T -1213))
+((-3028 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-2316 (*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4147 *3) (|:| -3153 *4)))) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *1 (-1213 *3 *4)))) (-2548 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
+(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3028 (|t#2| $ |t#1| |t#2|)) (-15 -2316 ($)) (-15 -2316 ($ (-656 (-2 (|:| -4147 |t#1|) (|:| -3153 |t#2|))))) (-15 -2548 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -4147 |#1|) (|:| -3153 |#2|))) . T) ((-102) -3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-625 (-874)) -3739 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-319 (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)))) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-622 |#1| |#2|) . T) ((-1119) -3739 (|has| |#2| (-1119)) (|has| (-2 (|:| -4147 |#1|) (|:| -3153 |#2|)) (-1119))) ((-1237) . T))
+((-3640 (((-112)) 29)) (-1715 (((-1292) (-1178)) 31)) (-4297 (((-112)) 41)) (-2824 (((-1292)) 39)) (-3479 (((-1292) (-1178) (-1178)) 30)) (-3246 (((-112)) 42)) (-2329 (((-1292) |#1| |#2|) 53)) (-3412 (((-1292)) 26)) (-2851 (((-3 |#2| "failed") |#1|) 51)) (-3322 (((-1292)) 40)))
+(((-1214 |#1| |#2|) (-10 -7 (-15 -3412 ((-1292))) (-15 -3479 ((-1292) (-1178) (-1178))) (-15 -1715 ((-1292) (-1178))) (-15 -2824 ((-1292))) (-15 -3322 ((-1292))) (-15 -3640 ((-112))) (-15 -4297 ((-112))) (-15 -3246 ((-112))) (-15 -2851 ((-3 |#2| "failed") |#1|)) (-15 -2329 ((-1292) |#1| |#2|))) (-1119) (-1119)) (T -1214))
+((-2329 (*1 *2 *3 *4) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2851 (*1 *2 *3) (|partial| -12 (-4 *2 (-1119)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1119)))) (-3246 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4297 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-3640 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-3322 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2824 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)))) (-3479 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)))) (-3412 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
+(-10 -7 (-15 -3412 ((-1292))) (-15 -3479 ((-1292) (-1178) (-1178))) (-15 -1715 ((-1292) (-1178))) (-15 -2824 ((-1292))) (-15 -3322 ((-1292))) (-15 -3640 ((-112))) (-15 -4297 ((-112))) (-15 -3246 ((-112))) (-15 -2851 ((-3 |#2| "failed") |#1|)) (-15 -2329 ((-1292) |#1| |#2|)))
+((-3517 (((-1178) (-1178)) 22)) (-4339 (((-52) (-1178)) 25)))
+(((-1215) (-10 -7 (-15 -4339 ((-52) (-1178))) (-15 -3517 ((-1178) (-1178))))) (T -1215))
+((-3517 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-1215)))))
+(-10 -7 (-15 -4339 ((-52) (-1178))) (-15 -3517 ((-1178) (-1178))))
+((-2858 (((-1217) |#1|) 11)))
+(((-1216 |#1|) (-10 -7 (-15 -2858 ((-1217) |#1|))) (-1119)) (T -1216))
+((-2858 (*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1216 *3)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -2858 ((-1217) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-2726 (((-656 (-1178)) $) 39)) (-2250 (((-656 (-1178)) $ (-656 (-1178))) 42)) (-2547 (((-656 (-1178)) $ (-656 (-1178))) 41)) (-3546 (((-656 (-1178)) $ (-656 (-1178))) 43)) (-3127 (((-656 (-1178)) $) 38)) (-2327 (($) 28)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4076 (((-656 (-1178)) $) 40)) (-2486 (((-1292) $ (-576)) 35) (((-1292) $) 36)) (-2610 (($ (-874) (-576)) 33) (($ (-874) (-576) (-874)) NIL)) (-2858 (((-874) $) 49) (($ (-874)) 32)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1217) (-13 (-1119) (-628 (-874)) (-10 -8 (-15 -2610 ($ (-874) (-576))) (-15 -2610 ($ (-874) (-576) (-874))) (-15 -2486 ((-1292) $ (-576))) (-15 -2486 ((-1292) $)) (-15 -4076 ((-656 (-1178)) $)) (-15 -2726 ((-656 (-1178)) $)) (-15 -2327 ($)) (-15 -3127 ((-656 (-1178)) $)) (-15 -3546 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2250 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2547 ((-656 (-1178)) $ (-656 (-1178))))))) (T -1217))
+((-2610 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217)))) (-2610 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217)))) (-2486 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1217)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1217)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2327 (*1 *1) (-5 *1 (-1217))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-3546 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2250 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2547 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
+(-13 (-1119) (-628 (-874)) (-10 -8 (-15 -2610 ($ (-874) (-576))) (-15 -2610 ($ (-874) (-576) (-874))) (-15 -2486 ((-1292) $ (-576))) (-15 -2486 ((-1292) $)) (-15 -4076 ((-656 (-1178)) $)) (-15 -2726 ((-656 (-1178)) $)) (-15 -2327 ($)) (-15 -3127 ((-656 (-1178)) $)) (-15 -3546 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2250 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2547 ((-656 (-1178)) $ (-656 (-1178))))))
+((-2835 (((-112) $ $) NIL)) (-2103 (((-1178) $ (-1178)) 17) (((-1178) $) 16)) (-3070 (((-1178) $ (-1178)) 15)) (-4031 (($ $ (-1178)) NIL)) (-2966 (((-3 (-1178) "failed") $) 11)) (-4028 (((-1178) $) 8)) (-2019 (((-3 (-1178) "failed") $) 12)) (-1720 (((-1178) $) 9)) (-2952 (($ (-400)) NIL) (($ (-400) (-1178)) NIL)) (-1811 (((-400) $) NIL)) (-2143 (((-1178) $) NIL)) (-2403 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2655 (((-112) $) 21)) (-2858 (((-874) $) NIL)) (-1723 (($ $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1218) (-13 (-375 (-400) (-1178)) (-10 -8 (-15 -2103 ((-1178) $ (-1178))) (-15 -2103 ((-1178) $)) (-15 -4028 ((-1178) $)) (-15 -2966 ((-3 (-1178) "failed") $)) (-15 -2019 ((-3 (-1178) "failed") $)) (-15 -2655 ((-112) $))))) (T -1218))
+((-2103 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2103 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2966 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2019 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218)))))
+(-13 (-375 (-400) (-1178)) (-10 -8 (-15 -2103 ((-1178) $ (-1178))) (-15 -2103 ((-1178) $)) (-15 -4028 ((-1178) $)) (-15 -2966 ((-3 (-1178) "failed") $)) (-15 -2019 ((-3 (-1178) "failed") $)) (-15 -2655 ((-112) $))))
+((-1727 (((-3 (-576) "failed") |#1|) 19)) (-1821 (((-3 (-576) "failed") |#1|) 14)) (-1824 (((-576) (-1178)) 33)))
+(((-1219 |#1|) (-10 -7 (-15 -1727 ((-3 (-576) "failed") |#1|)) (-15 -1821 ((-3 (-576) "failed") |#1|)) (-15 -1824 ((-576) (-1178)))) (-1068)) (T -1219))
+((-1824 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-1219 *4)) (-4 *4 (-1068)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068)))) (-1727 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068)))))
+(-10 -7 (-15 -1727 ((-3 (-576) "failed") |#1|)) (-15 -1821 ((-3 (-576) "failed") |#1|)) (-15 -1824 ((-576) (-1178))))
+((-2544 (((-1152 (-227))) 9)))
+(((-1220) (-10 -7 (-15 -2544 ((-1152 (-227)))))) (T -1220))
+((-2544 (*1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1220)))))
+(-10 -7 (-15 -2544 ((-1152 (-227)))))
+((-1663 (($) 12)) (-1593 (($ $) 36)) (-1567 (($ $) 34)) (-3802 (($ $) 26)) (-1620 (($ $) 18)) (-2888 (($ $) 16)) (-1609 (($ $) 20)) (-3837 (($ $) 31)) (-1578 (($ $) 35)) (-3813 (($ $) 30)))
+(((-1221 |#1|) (-10 -8 (-15 -1663 (|#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3813 (|#1| |#1|))) (-1222)) (T -1221))
+NIL
+(-10 -8 (-15 -1663 (|#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)))
+((-3897 (($ $) 26)) (-3760 (($ $) 11)) (-3871 (($ $) 27)) (-3735 (($ $) 10)) (-1542 (($ $) 28)) (-3781 (($ $) 9)) (-1663 (($) 16)) (-3437 (($ $) 19)) (-2656 (($ $) 18)) (-1553 (($ $) 29)) (-3791 (($ $) 8)) (-3911 (($ $) 30)) (-3771 (($ $) 7)) (-3883 (($ $) 31)) (-3748 (($ $) 6)) (-1593 (($ $) 20)) (-3826 (($ $) 32)) (-1567 (($ $) 21)) (-3802 (($ $) 33)) (-1620 (($ $) 22)) (-3847 (($ $) 34)) (-2888 (($ $) 23)) (-3859 (($ $) 35)) (-1609 (($ $) 24)) (-3837 (($ $) 36)) (-1578 (($ $) 25)) (-3813 (($ $) 37)) (** (($ $ $) 17)))
+(((-1222) (-141)) (T -1222))
+((-1663 (*1 *1) (-4 *1 (-1222))))
+(-13 (-1225) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1663 ($))))
+(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1225) . T))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4160 ((|#1| $) 19)) (-1664 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-2746 (((-112) $ (-783)) 72)) (-4338 ((|#1| $ |#1|) 14 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 13 (|has| $ (-6 -4463)))) (-2574 (($) NIL T CONST)) (-3975 (((-656 |#1|) $) 77 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 64)) (-2231 (((-112) $ $) 50 (|has| |#1| (-1119)))) (-3639 (((-112) $ (-783)) 62)) (-3531 (((-656 |#1|) $) 78 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2822 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 27)) (-1684 (((-112) $ (-783)) 60)) (-2485 (((-656 |#1|) $) 55)) (-3123 (((-112) $) 53)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1910 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 107)) (-3001 (((-112) $) 9)) (-3849 (($) 10)) (-2099 ((|#1| $ "value") NIL)) (-3599 (((-576) $ $) 48)) (-3683 (((-656 $) $) 89)) (-2151 (((-112) $ $) 110)) (-3013 (((-656 $) $) 105)) (-1583 (($ $) 106)) (-2133 (((-112) $) 84)) (-3902 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4462))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3052 (($ $) 88)) (-2858 (((-874) $) 91 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 12)) (-1694 (((-112) $ $) 39 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 37 (|has| |#1| (-1119)))) (-2845 (((-783) $) 58 (|has| $ (-6 -4462)))))
+(((-1223 |#1|) (-13 (-1029 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1664 ($ |#1| (-656 $))) (-15 -1664 ($ (-656 |#1|))) (-15 -1664 ($ |#1|)) (-15 -2133 ((-112) $)) (-15 -1583 ($ $)) (-15 -3013 ((-656 $) $)) (-15 -2151 ((-112) $ $)) (-15 -3683 ((-656 $) $)))) (-1119)) (T -1223))
+((-2133 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))) (-1664 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) (-1664 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1223 *3)))) (-1664 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) (-1583 (*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))) (-2151 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))))
+(-13 (-1029 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1664 ($ |#1| (-656 $))) (-15 -1664 ($ (-656 |#1|))) (-15 -1664 ($ |#1|)) (-15 -2133 ((-112) $)) (-15 -1583 ($ $)) (-15 -3013 ((-656 $) $)) (-15 -2151 ((-112) $ $)) (-15 -3683 ((-656 $) $))))
+((-3760 (($ $) 15)) (-3781 (($ $) 12)) (-3791 (($ $) 10)) (-3771 (($ $) 17)))
+(((-1224 |#1|) (-10 -8 (-15 -3771 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3760 (|#1| |#1|))) (-1225)) (T -1224))
+NIL
+(-10 -8 (-15 -3771 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3760 (|#1| |#1|)))
+((-3760 (($ $) 11)) (-3735 (($ $) 10)) (-3781 (($ $) 9)) (-3791 (($ $) 8)) (-3771 (($ $) 7)) (-3748 (($ $) 6)))
+(((-1225) (-141)) (T -1225))
+((-3760 (*1 *1 *1) (-4 *1 (-1225))) (-3735 (*1 *1 *1) (-4 *1 (-1225))) (-3781 (*1 *1 *1) (-4 *1 (-1225))) (-3791 (*1 *1 *1) (-4 *1 (-1225))) (-3771 (*1 *1 *1) (-4 *1 (-1225))) (-3748 (*1 *1 *1) (-4 *1 (-1225))))
+(-13 (-10 -8 (-15 -3748 ($ $)) (-15 -3771 ($ $)) (-15 -3791 ($ $)) (-15 -3781 ($ $)) (-15 -3735 ($ $)) (-15 -3760 ($ $))))
+((-3857 ((|#2| |#2|) 98)) (-2894 (((-112) |#2|) 29)) (-2490 ((|#2| |#2|) 33)) (-1999 ((|#2| |#2|) 35)) (-4023 ((|#2| |#2| (-1196)) 92) ((|#2| |#2|) 93)) (-4272 (((-171 |#2|) |#2|) 31)) (-3152 ((|#2| |#2| (-1196)) 94) ((|#2| |#2|) 95)))
+(((-1226 |#1| |#2|) (-10 -7 (-15 -4023 (|#2| |#2|)) (-15 -4023 (|#2| |#2| (-1196))) (-15 -3152 (|#2| |#2|)) (-15 -3152 (|#2| |#2| (-1196))) (-15 -3857 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -1999 (|#2| |#2|)) (-15 -2894 ((-112) |#2|)) (-15 -4272 ((-171 |#2|) |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -1226))
+((-4272 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3152 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3152 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-4023 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))))
+(-10 -7 (-15 -4023 (|#2| |#2|)) (-15 -4023 (|#2| |#2| (-1196))) (-15 -3152 (|#2| |#2|)) (-15 -3152 (|#2| |#2| (-1196))) (-15 -3857 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -1999 (|#2| |#2|)) (-15 -2894 ((-112) |#2|)) (-15 -4272 ((-171 |#2|) |#2|)))
+((-3842 ((|#4| |#4| |#1|) 31)) (-2541 ((|#4| |#4| |#1|) 32)))
+(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3842 (|#4| |#4| |#1|)) (-15 -2541 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1227))
+((-2541 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3842 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(-10 -7 (-15 -3842 (|#4| |#4| |#1|)) (-15 -2541 (|#4| |#4| |#1|)))
+((-2402 ((|#2| |#2|) 148)) (-4094 ((|#2| |#2|) 145)) (-1899 ((|#2| |#2|) 136)) (-3710 ((|#2| |#2|) 133)) (-2926 ((|#2| |#2|) 141)) (-1911 ((|#2| |#2|) 129)) (-2288 ((|#2| |#2|) 44)) (-2266 ((|#2| |#2|) 105)) (-2546 ((|#2| |#2|) 88)) (-2777 ((|#2| |#2|) 143)) (-4006 ((|#2| |#2|) 131)) (-2540 ((|#2| |#2|) 153)) (-3869 ((|#2| |#2|) 151)) (-3247 ((|#2| |#2|) 152)) (-2443 ((|#2| |#2|) 150)) (-3734 ((|#2| |#2|) 163)) (-4151 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-905 |#1|))) (|has| |#2| (-899 |#1|)) (|has| |#1| (-626 (-905 |#1|))) (|has| |#1| (-899 |#1|))))) (-3623 ((|#2| |#2|) 89)) (-3061 ((|#2| |#2|) 154)) (-3918 ((|#2| |#2|) 155)) (-2248 ((|#2| |#2|) 142)) (-3694 ((|#2| |#2|) 130)) (-4408 ((|#2| |#2|) 149)) (-3777 ((|#2| |#2|) 147)) (-3985 ((|#2| |#2|) 137)) (-1810 ((|#2| |#2|) 135)) (-4092 ((|#2| |#2|) 139)) (-3556 ((|#2| |#2|) 127)))
+(((-1228 |#1| |#2|) (-10 -7 (-15 -3918 (|#2| |#2|)) (-15 -2546 (|#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -3623 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -3556 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -3247 (|#2| |#2|)) (-15 -2540 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -4151 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1222))) (T -1228))
+((-4151 (*1 *2 *2) (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2540 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3247 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3869 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1899 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1911 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2777 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4408 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3556 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3061 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2546 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))))
+(-10 -7 (-15 -3918 (|#2| |#2|)) (-15 -2546 (|#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -3623 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -3556 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -2777 (|#2| |#2|)) (-15 -1911 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -2443 (|#2| |#2|)) (-15 -3869 (|#2| |#2|)) (-15 -3247 (|#2| |#2|)) (-15 -2540 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -4151 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4295 (((-112) |#5| $) 68) (((-112) $) 110)) (-1778 ((|#5| |#5| $) 83)) (-3959 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2457 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2454 (((-3 $ "failed") (-656 |#5|)) 135)) (-2003 (((-3 $ "failed") $) 120)) (-2040 ((|#5| |#5| $) 102)) (-3527 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3586 ((|#5| |#5| $) 106)) (-2326 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4145 (((-2 (|:| -2463 (-656 |#5|)) (|:| -2952 (-656 |#5|))) $) 63)) (-2914 (((-112) |#5| $) 66) (((-112) $) 111)) (-4402 ((|#4| $) 116)) (-3627 (((-3 |#5| "failed") $) 118)) (-3025 (((-656 |#5|) $) 55)) (-2671 (((-112) |#5| $) 75) (((-112) $) 115)) (-2978 ((|#5| |#5| $) 89)) (-1700 (((-112) $ $) 29)) (-1690 (((-112) |#5| $) 71) (((-112) $) 113)) (-3350 ((|#5| |#5| $) 86)) (-1989 (((-3 |#5| "failed") $) 117)) (-3262 (($ $ |#5|) 136)) (-4436 (((-783) $) 60)) (-2869 (($ (-656 |#5|)) 133)) (-4426 (($ $ |#4|) 131)) (-4127 (($ $ |#4|) 129)) (-2693 (($ $) 128)) (-2858 (((-874) $) NIL) (((-656 |#5|) $) 121)) (-3506 (((-783) $) 140)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3374 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-1914 (((-656 |#4|) $) 123)) (-2576 (((-112) |#4| $) 126)) (-3889 (((-112) $ $) 20)))
+(((-1229 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3506 ((-783) |#1|)) (-15 -3262 (|#1| |#1| |#5|)) (-15 -3959 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2576 ((-112) |#4| |#1|)) (-15 -1914 ((-656 |#4|) |#1|)) (-15 -2003 ((-3 |#1| "failed") |#1|)) (-15 -3627 ((-3 |#5| "failed") |#1|)) (-15 -1989 ((-3 |#5| "failed") |#1|)) (-15 -3586 (|#5| |#5| |#1|)) (-15 -2693 (|#1| |#1|)) (-15 -2040 (|#5| |#5| |#1|)) (-15 -2978 (|#5| |#5| |#1|)) (-15 -3350 (|#5| |#5| |#1|)) (-15 -1778 (|#5| |#5| |#1|)) (-15 -2457 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2326 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2671 ((-112) |#1|)) (-15 -1690 ((-112) |#1|)) (-15 -4295 ((-112) |#1|)) (-15 -3374 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2671 ((-112) |#5| |#1|)) (-15 -1690 ((-112) |#5| |#1|)) (-15 -4295 ((-112) |#5| |#1|)) (-15 -3527 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2914 ((-112) |#1|)) (-15 -2914 ((-112) |#5| |#1|)) (-15 -4145 ((-2 (|:| -2463 (-656 |#5|)) (|:| -2952 (-656 |#5|))) |#1|)) (-15 -4436 ((-783) |#1|)) (-15 -3025 ((-656 |#5|) |#1|)) (-15 -2105 ((-3 (-2 (|:| |bas| |#1|) (|:| -2039 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2105 ((-3 (-2 (|:| |bas| |#1|) (|:| -2039 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1700 ((-112) |#1| |#1|)) (-15 -4426 (|#1| |#1| |#4|)) (-15 -4127 (|#1| |#1| |#4|)) (-15 -4402 (|#4| |#1|)) (-15 -2454 ((-3 |#1| "failed") (-656 |#5|))) (-15 -2858 ((-656 |#5|) |#1|)) (-15 -2869 (|#1| (-656 |#5|))) (-15 -2326 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2326 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3959 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2326 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|))) (-1230 |#2| |#3| |#4| |#5|) (-568) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -1229))
+NIL
+(-10 -8 (-15 -3506 ((-783) |#1|)) (-15 -3262 (|#1| |#1| |#5|)) (-15 -3959 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2576 ((-112) |#4| |#1|)) (-15 -1914 ((-656 |#4|) |#1|)) (-15 -2003 ((-3 |#1| "failed") |#1|)) (-15 -3627 ((-3 |#5| "failed") |#1|)) (-15 -1989 ((-3 |#5| "failed") |#1|)) (-15 -3586 (|#5| |#5| |#1|)) (-15 -2693 (|#1| |#1|)) (-15 -2040 (|#5| |#5| |#1|)) (-15 -2978 (|#5| |#5| |#1|)) (-15 -3350 (|#5| |#5| |#1|)) (-15 -1778 (|#5| |#5| |#1|)) (-15 -2457 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2326 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2671 ((-112) |#1|)) (-15 -1690 ((-112) |#1|)) (-15 -4295 ((-112) |#1|)) (-15 -3374 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -2671 ((-112) |#5| |#1|)) (-15 -1690 ((-112) |#5| |#1|)) (-15 -4295 ((-112) |#5| |#1|)) (-15 -3527 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2914 ((-112) |#1|)) (-15 -2914 ((-112) |#5| |#1|)) (-15 -4145 ((-2 (|:| -2463 (-656 |#5|)) (|:| -2952 (-656 |#5|))) |#1|)) (-15 -4436 ((-783) |#1|)) (-15 -3025 ((-656 |#5|) |#1|)) (-15 -2105 ((-3 (-2 (|:| |bas| |#1|) (|:| -2039 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2105 ((-3 (-2 (|:| |bas| |#1|) (|:| -2039 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -1700 ((-112) |#1| |#1|)) (-15 -4426 (|#1| |#1| |#4|)) (-15 -4127 (|#1| |#1| |#4|)) (-15 -4402 (|#4| |#1|)) (-15 -2454 ((-3 |#1| "failed") (-656 |#5|))) (-15 -2858 ((-656 |#5|) |#1|)) (-15 -2869 (|#1| (-656 |#5|))) (-15 -2326 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2326 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3959 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2326 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2858 ((-874) |#1|)) (-15 -3889 ((-112) |#1| |#1|)))
+((-2835 (((-112) $ $) 7)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) 86)) (-1952 (((-656 $) (-656 |#4|)) 87)) (-1634 (((-656 |#3|) $) 34)) (-4001 (((-112) $) 27)) (-3169 (((-112) $) 18 (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) 102) (((-112) $) 98)) (-1778 ((|#4| |#4| $) 93)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) 28)) (-2746 (((-112) $ (-783)) 45)) (-3959 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-2574 (($) 46 T CONST)) (-1516 (((-112) $) 23 (|has| |#1| (-568)))) (-2097 (((-112) $ $) 25 (|has| |#1| (-568)))) (-3593 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3695 (((-112) $) 26 (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3390 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) 37)) (-4397 (($ (-656 |#4|)) 36)) (-2003 (((-3 $ "failed") $) 83)) (-2040 ((|#4| |#4| $) 90)) (-3229 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3586 ((|#4| |#4| $) 88)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) 106)) (-3975 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) 105) (((-112) $) 104)) (-4402 ((|#3| $) 35)) (-3639 (((-112) $ (-783)) 44)) (-3531 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) 48)) (-2804 (((-656 |#3|) $) 33)) (-2872 (((-112) |#3| $) 32)) (-1684 (((-112) $ (-783)) 43)) (-2143 (((-1178) $) 10)) (-3627 (((-3 |#4| "failed") $) 84)) (-3025 (((-656 |#4|) $) 108)) (-2671 (((-112) |#4| $) 100) (((-112) $) 96)) (-2978 ((|#4| |#4| $) 91)) (-1700 (((-112) $ $) 111)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) 101) (((-112) $) 97)) (-3350 ((|#4| |#4| $) 92)) (-3887 (((-1139) $) 11)) (-1989 (((-3 |#4| "failed") $) 85)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2451 (((-3 $ "failed") $ |#4|) 79)) (-3262 (($ $ |#4|) 78)) (-1910 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) 39)) (-3001 (((-112) $) 42)) (-3849 (($) 41)) (-4436 (((-783) $) 107)) (-3902 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-3052 (($ $) 40)) (-2610 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) 61)) (-4426 (($ $ |#3|) 29)) (-4127 (($ $ |#3|) 31)) (-2693 (($ $) 89)) (-3668 (($ $ |#3|) 30)) (-2858 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3506 (((-783) $) 77 (|has| |#3| (-379)))) (-2690 (((-112) $ $) 9)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2714 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) 82)) (-2576 (((-112) |#3| $) 81)) (-3889 (((-112) $ $) 6)) (-2845 (((-783) $) 47 (|has| $ (-6 -4462)))))
+(((-1230 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1230))
+((-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-2105 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2039 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1230 *5 *6 *7 *8)))) (-2105 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2039 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1230 *6 *7 *8 *9)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *6)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-783)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-2 (|:| -2463 (-656 *6)) (|:| -2952 (-656 *6)))))) (-2914 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-3527 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1230 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)))) (-4295 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1690 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2671 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1230 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-2326 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1230 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *2 (-1084 *5 *6 *7)))) (-2457 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1230 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)))) (-1778 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3350 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2978 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2040 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2693 (*1 *1 *1) (-12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) (-3586 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1230 *4 *5 *6 *7)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -2463 *1) (|:| -2952 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1230 *4 *5 *6 *7)))) (-1989 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3627 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2003 (*1 *1 *1) (|partial| -12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2576 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) (-3959 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1230 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1084 *4 *5 *3)))) (-2451 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3262 (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783)))))
+(-13 (-995 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1700 ((-112) $ $)) (-15 -2105 ((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2105 ((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3025 ((-656 |t#4|) $)) (-15 -4436 ((-783) $)) (-15 -4145 ((-2 (|:| -2463 (-656 |t#4|)) (|:| -2952 (-656 |t#4|))) $)) (-15 -2914 ((-112) |t#4| $)) (-15 -2914 ((-112) $)) (-15 -3527 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4295 ((-112) |t#4| $)) (-15 -1690 ((-112) |t#4| $)) (-15 -2671 ((-112) |t#4| $)) (-15 -3374 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -4295 ((-112) $)) (-15 -1690 ((-112) $)) (-15 -2671 ((-112) $)) (-15 -2326 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2457 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1778 (|t#4| |t#4| $)) (-15 -3350 (|t#4| |t#4| $)) (-15 -2978 (|t#4| |t#4| $)) (-15 -2040 (|t#4| |t#4| $)) (-15 -2693 ($ $)) (-15 -3586 (|t#4| |t#4| $)) (-15 -1952 ((-656 $) (-656 |t#4|))) (-15 -1417 ((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |t#4|)))) (-656 |t#4|))) (-15 -1989 ((-3 |t#4| "failed") $)) (-15 -3627 ((-3 |t#4| "failed") $)) (-15 -2003 ((-3 $ "failed") $)) (-15 -1914 ((-656 |t#3|) $)) (-15 -2576 ((-112) |t#3| $)) (-15 -3959 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2451 ((-3 $ "failed") $ |t#4|)) (-15 -3262 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3506 ((-783) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1237) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1196)) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2488 (((-969 |#1|) $ (-783)) 17) (((-969 |#1|) $ (-783) (-783)) NIL)) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-783) $ (-1196)) NIL) (((-783) $ (-1196) (-783)) NIL)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1711 (((-112) $) NIL)) (-2428 (($ $ (-656 (-1196)) (-656 (-543 (-1196)))) NIL) (($ $ (-1196) (-543 (-1196))) NIL) (($ |#1| (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-1850 (($ $ (-1196)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-2553 (($ (-1 $) (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3262 (($ $ (-783)) NIL)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3022 (($ $ (-1196) $) NIL) (($ $ (-656 (-1196)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2399 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-4436 (((-543 (-1196)) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1196)) NIL) (($ (-969 |#1|)) NIL)) (-4417 ((|#1| $ (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (((-969 |#1|) $ (-783)) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3404 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1231 |#1|) (-13 (-752 |#1| (-1196)) (-10 -8 (-15 -4417 ((-969 |#1|) $ (-783))) (-15 -2858 ($ (-1196))) (-15 -2858 ($ (-969 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $ (-1196) |#1|)) (-15 -2553 ($ (-1 $) (-1196) |#1|))) |%noBranch|))) (-1068)) (T -1231))
+((-4417 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-969 *4)) (-5 *1 (-1231 *4)) (-4 *4 (-1068)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-1068)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-5 *1 (-1231 *3)))) (-1850 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))) (-2553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1196)) (-5 *1 (-1231 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)))))
+(-13 (-752 |#1| (-1196)) (-10 -8 (-15 -4417 ((-969 |#1|) $ (-783))) (-15 -2858 ($ (-1196))) (-15 -2858 ($ (-969 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $ (-1196) |#1|)) (-15 -2553 ($ (-1 $) (-1196) |#1|))) |%noBranch|)))
+((-3931 (($ |#1| (-656 (-656 (-960 (-227)))) (-112)) 19)) (-3407 (((-112) $ (-112)) 18)) (-2271 (((-112) $) 17)) (-3543 (((-656 (-656 (-960 (-227)))) $) 13)) (-2182 ((|#1| $) 8)) (-1721 (((-112) $) 15)))
+(((-1232 |#1|) (-10 -8 (-15 -2182 (|#1| $)) (-15 -3543 ((-656 (-656 (-960 (-227)))) $)) (-15 -1721 ((-112) $)) (-15 -2271 ((-112) $)) (-15 -3407 ((-112) $ (-112))) (-15 -3931 ($ |#1| (-656 (-656 (-960 (-227)))) (-112)))) (-993)) (T -1232))
+((-3931 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-112)) (-5 *1 (-1232 *2)) (-4 *2 (-993)))) (-3407 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-2182 (*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-993)))))
+(-10 -8 (-15 -2182 (|#1| $)) (-15 -3543 ((-656 (-656 (-960 (-227)))) $)) (-15 -1721 ((-112) $)) (-15 -2271 ((-112) $)) (-15 -3407 ((-112) $ (-112))) (-15 -3931 ($ |#1| (-656 (-656 (-960 (-227)))) (-112))))
+((-2002 (((-960 (-227)) (-960 (-227))) 31)) (-1872 (((-960 (-227)) (-227) (-227) (-227) (-227)) 10)) (-4221 (((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-2139 (((-227) (-960 (-227)) (-960 (-227))) 27)) (-3021 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 28)) (-2705 (((-656 (-656 (-227))) (-576)) 44)) (-4002 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 26)) (-3990 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 24)) (* (((-960 (-227)) (-227) (-960 (-227))) 22)))
+(((-1233) (-10 -7 (-15 -1872 ((-960 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-960 (-227)) (-227) (-960 (-227)))) (-15 -3990 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -4002 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2139 ((-227) (-960 (-227)) (-960 (-227)))) (-15 -3021 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2002 ((-960 (-227)) (-960 (-227)))) (-15 -2705 ((-656 (-656 (-227))) (-576))) (-15 -4221 ((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227))))))) (T -1233))
+((-4221 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-960 *4))) (-5 *1 (-1233)) (-5 *3 (-960 *4)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1233)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (-3021 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (-2139 (*1 *2 *3 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-227)) (-5 *1 (-1233)))) (-4002 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (-3990 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-960 (-227))) (-5 *3 (-227)) (-5 *1 (-1233)))) (-1872 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)) (-5 *3 (-227)))))
+(-10 -7 (-15 -1872 ((-960 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-960 (-227)) (-227) (-960 (-227)))) (-15 -3990 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -4002 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2139 ((-227) (-960 (-227)) (-960 (-227)))) (-15 -3021 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2002 ((-960 (-227)) (-960 (-227)))) (-15 -2705 ((-656 (-656 (-227))) (-576))) (-15 -4221 ((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227))))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3959 ((|#1| $ (-783)) 18)) (-1873 (((-783) $) 13)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2858 (((-975 |#1|) $) 12) (($ (-975 |#1|)) 11) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3889 (((-112) $ $) 22 (|has| |#1| (-1119)))))
+(((-1234 |#1|) (-13 (-502 (-975 |#1|)) (-10 -8 (-15 -3959 (|#1| $ (-783))) (-15 -1873 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1237)) (T -1234))
+((-3959 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1234 *2)) (-4 *2 (-1237)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1234 *3)) (-4 *3 (-1237)))))
+(-13 (-502 (-975 |#1|)) (-10 -8 (-15 -3959 (|#1| $ (-783))) (-15 -1873 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|)))
+((-3187 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)) 94)) (-4179 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 86)) (-2639 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 70)))
+(((-1235 |#1|) (-10 -7 (-15 -4179 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -2639 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -3187 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)))) (-360)) (T -1235))
+((-3187 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1192 (-1192 *5)))) (-5 *1 (-1235 *5)) (-5 *3 (-1192 (-1192 *5))))) (-2639 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4))))) (-4179 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4))))))
+(-10 -7 (-15 -4179 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -2639 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -3187 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 9) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1236) (-1102)) (T -1236))
+NIL
+(-1102)
+NIL
+(((-1237) (-141)) (T -1237))
+NIL
+(-13 (-10 -7 (-6 -3434)))
+((-2401 (((-112)) 18)) (-2191 (((-1292) (-656 |#1|) (-656 |#1|)) 22) (((-1292) (-656 |#1|)) 23)) (-3639 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-1684 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3628 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2812 (((-2 (|:| -2779 (-656 |#1|)) (|:| -3540 (-656 |#1|)))) 20)))
+(((-1238 |#1|) (-10 -7 (-15 -2191 ((-1292) (-656 |#1|))) (-15 -2191 ((-1292) (-656 |#1|) (-656 |#1|))) (-15 -2812 ((-2 (|:| -2779 (-656 |#1|)) (|:| -3540 (-656 |#1|))))) (-15 -1684 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1684 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3628 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2401 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3628 (|#1| (-656 |#1|))) (-15 -3639 ((-112) |#1| |#1|))) |%noBranch|)) (-1119)) (T -1238))
+((-3639 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-862)) (-4 *3 (-1119)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-862)) (-5 *1 (-1238 *2)))) (-2401 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1238 *2)) (-4 *2 (-1119)))) (-1684 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-1238 *3)))) (-1684 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) (-2812 (*1 *2) (-12 (-5 *2 (-2 (|:| -2779 (-656 *3)) (|:| -3540 (-656 *3)))) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) (-2191 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292)) (-5 *1 (-1238 *4)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292)) (-5 *1 (-1238 *4)))))
+(-10 -7 (-15 -2191 ((-1292) (-656 |#1|))) (-15 -2191 ((-1292) (-656 |#1|) (-656 |#1|))) (-15 -2812 ((-2 (|:| -2779 (-656 |#1|)) (|:| -3540 (-656 |#1|))))) (-15 -1684 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1684 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3628 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2401 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3628 (|#1| (-656 |#1|))) (-15 -3639 ((-112) |#1| |#1|))) |%noBranch|))
+((-4337 (((-1292) (-656 (-1196)) (-656 (-1196))) 14) (((-1292) (-656 (-1196))) 12)) (-1508 (((-1292)) 16)) (-1649 (((-2 (|:| -3540 (-656 (-1196))) (|:| -2779 (-656 (-1196))))) 20)))
+(((-1239) (-10 -7 (-15 -4337 ((-1292) (-656 (-1196)))) (-15 -4337 ((-1292) (-656 (-1196)) (-656 (-1196)))) (-15 -1649 ((-2 (|:| -3540 (-656 (-1196))) (|:| -2779 (-656 (-1196)))))) (-15 -1508 ((-1292))))) (T -1239))
+((-1508 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239)))) (-1649 (*1 *2) (-12 (-5 *2 (-2 (|:| -3540 (-656 (-1196))) (|:| -2779 (-656 (-1196))))) (-5 *1 (-1239)))) (-4337 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) (-4337 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))))
+(-10 -7 (-15 -4337 ((-1292) (-656 (-1196)))) (-15 -4337 ((-1292) (-656 (-1196)) (-656 (-1196)))) (-15 -1649 ((-2 (|:| -3540 (-656 (-1196))) (|:| -2779 (-656 (-1196)))))) (-15 -1508 ((-1292))))
+((-3179 (($ $) 17)) (-3011 (((-112) $) 28)))
+(((-1240 |#1|) (-10 -8 (-15 -3179 (|#1| |#1|)) (-15 -3011 ((-112) |#1|))) (-1241)) (T -1240))
+NIL
+(-10 -8 (-15 -3179 (|#1| |#1|)) (-15 -3011 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 57)) (-2464 (((-430 $) $) 58)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-3011 (((-112) $) 59)) (-1838 (((-112) $) 35)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2367 (((-430 $) $) 56)) (-2825 (((-3 $ "failed") $ $) 48)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27)))
+(((-1241) (-141)) (T -1241))
+((-3011 (*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-112)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) (-3179 (*1 *1 *1) (-4 *1 (-1241))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))))
+(-13 (-464) (-10 -8 (-15 -3011 ((-112) $)) (-15 -2464 ((-430 $) $)) (-15 -3179 ($ $)) (-15 -2367 ((-430 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-1502 (($ $ $) NIL)) (-3356 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-1242) (-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))) (T -1242))
+((-3356 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1502 (*1 *1 *1 *1) (-5 *1 (-1242))) (-2574 (*1 *1) (-5 *1 (-1242))))
+(-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3380 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-1241) (-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))) (T -1241))
-((-3380 (*1 *1 *1 *1) (-5 *1 (-1241))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1241))) (-3261 (*1 *1) (-5 *1 (-1241))))
-(-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-1502 (($ $ $) NIL)) (-3356 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-1243) (-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))) (T -1243))
+((-3356 (*1 *1 *1 *1) (-5 *1 (-1243))) (-1502 (*1 *1 *1 *1) (-5 *1 (-1243))) (-2574 (*1 *1) (-5 *1 (-1243))))
+(-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3380 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-1242) (-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))) (T -1242))
-((-3380 (*1 *1 *1 *1) (-5 *1 (-1242))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3261 (*1 *1) (-5 *1 (-1242))))
-(-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-1502 (($ $ $) NIL)) (-3356 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-1244) (-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))) (T -1244))
+((-3356 (*1 *1 *1 *1) (-5 *1 (-1244))) (-1502 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2574 (*1 *1) (-5 *1 (-1244))))
+(-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64)))
-((-2859 (((-112) $ $) NIL)) (-2409 (((-782)) NIL)) (-3261 (($) NIL T CONST)) (-2073 (($) NIL)) (-1914 (($ $ $) NIL) (($) NIL T CONST)) (-3503 (($ $ $) NIL) (($) NIL T CONST)) (-1894 (((-936) $) NIL)) (-4264 (((-1176) $) NIL)) (-4317 (($ (-936)) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) NIL)) (-1484 (($ $ $) NIL)) (-3380 (($ $ $) NIL)) (-3685 (((-112) $ $) NIL)) (-3980 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL)) (-3940 (((-112) $ $) NIL)))
-(((-1243) (-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))) (T -1243))
-((-3380 (*1 *1 *1 *1) (-5 *1 (-1243))) (-1484 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3261 (*1 *1) (-5 *1 (-1243))))
-(-13 (-855) (-10 -8 (-15 -3380 ($ $ $)) (-15 -1484 ($ $ $)) (-15 -3261 ($) -3736)))
+((-2835 (((-112) $ $) NIL)) (-2422 (((-783)) NIL)) (-2574 (($) NIL T CONST)) (-2107 (($) NIL)) (-1950 (($ $ $) NIL) (($) NIL T CONST)) (-1492 (($ $ $) NIL) (($) NIL T CONST)) (-1654 (((-938) $) NIL)) (-2143 (((-1178) $) NIL)) (-4308 (($ (-938)) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) NIL)) (-1502 (($ $ $) NIL)) (-3356 (($ $ $) NIL)) (-2690 (((-112) $ $) NIL)) (-3956 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-3916 (((-112) $ $) NIL)))
+(((-1245) (-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))) (T -1245))
+((-3356 (*1 *1 *1 *1) (-5 *1 (-1245))) (-1502 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2574 (*1 *1) (-5 *1 (-1245))))
+(-13 (-856) (-10 -8 (-15 -3356 ($ $ $)) (-15 -1502 ($ $ $)) (-15 -2574 ($) -3712)))
((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8)))
-((-2544 (((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)) 23)))
-(((-1244 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2544 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|)))) (-1066) (-1066) (-1194) (-1194) |#1| |#2|) (T -1244))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1194)))))
-(-10 -7 (-15 -2544 ((-1249 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1249 |#1| |#3| |#5|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-3449 (($ $ (-575)) 113) (($ $ (-575) (-575)) 112)) (-3149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 119)) (-3921 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 177 (|has| |#1| (-373)))) (-4281 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2467 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3895 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 188)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) 18 T CONST)) (-2800 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2494 (((-418 (-967 |#1|)) $ (-575)) 186 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 185 (|has| |#1| (-567)))) (-2811 (($ $ $) 171 (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-3559 (((-112) $) 179 (|has| |#1| (-373)))) (-2333 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-575) $) 115) (((-575) $ (-575)) 114)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) 116)) (-2691 (($ (-1 |#1| (-575)) $) 187)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-3135 (((-112) $) 74)) (-2414 (($ |#1| (-575)) 73) (($ $ (-1099) (-575)) 88) (($ $ (-655 (-1099)) (-655 (-575))) 87)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-3461 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3886 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-4264 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4388 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3763 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3923 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-2347 (((-429 $) $) 176 (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 173 (|has| |#1| (-373)))) (-1985 (($ $ (-575)) 110)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2663 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-575)))))) (-1720 (((-782) $) 169 (|has| |#1| (-373)))) (-2065 ((|#1| $ (-575)) 120) (($ $ $) 96 (|has| (-575) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 170 (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-1753 (((-575) $) 76)) (-1531 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-3002 ((|#1| $ (-575)) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-575)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-575) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-1245 |#1|) (-141) (-1066)) (T -1245))
-((-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3)))) (-4 *3 (-1066)) (-4 *1 (-1245 *3)))) (-2691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1245 *3)) (-4 *3 (-1066)))) (-2494 (*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567)) (-5 *2 (-418 (-967 *4))))) (-2494 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567)) (-5 *2 (-418 (-967 *4))))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) (-4388 (*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066)) (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) (-4 *3 (-38 (-418 (-575)))))) (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066)) (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) (|has| *3 (-15 -4388 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575)))))))))
-(-13 (-1263 |t#1| (-575)) (-10 -8 (-15 -1873 ($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |t#1|))))) (-15 -2691 ($ (-1 |t#1| (-575)) $)) (IF (|has| |t#1| (-567)) (PROGN (-15 -2494 ((-418 (-967 |t#1|)) $ (-575))) (-15 -2494 ((-418 (-967 |t#1|)) $ (-575) (-575)))) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $)) (IF (|has| |t#1| (-15 -4388 (|t#1| |t#1| (-1194)))) (IF (|has| |t#1| (-15 -1606 ((-655 (-1194)) |t#1|))) (-15 -4388 ($ $ (-1194))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1220)) (IF (|has| |t#1| (-974)) (IF (|has| |t#1| (-29 (-575))) (-15 -4388 ($ $ (-1194))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1019)) (-6 (-1220))) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-575)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-575) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-575) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-575) |#1|))) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-575) (-1129)) ((-299) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-373) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-728 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1263 |#1| #0#) . T))
-((-2045 (((-112) $) 12)) (-2443 (((-3 |#3| "failed") $) 17) (((-3 (-1194) "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL)) (-4400 ((|#3| $) 14) (((-1194) $) NIL) (((-418 (-575)) $) NIL) (((-575) $) NIL)))
-(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-1194) "failed") |#1|)) (-15 -4400 ((-1194) |#1|)) (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -2045 ((-112) |#1|))) (-1247 |#2| |#3|) (-1066) (-1276 |#2|)) (T -1246))
-NIL
-(-10 -8 (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -2443 ((-3 (-1194) "failed") |#1|)) (-15 -4400 ((-1194) |#1|)) (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -2045 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3824 ((|#2| $) 248 (-3224 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-3449 (($ $ (-575)) 113) (($ $ (-575) (-575)) 112)) (-3149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 119)) (-2913 ((|#2| $) 284)) (-4108 (((-3 |#2| "failed") $) 280)) (-4290 ((|#2| $) 281)) (-3921 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) 20)) (-4005 (((-429 (-1190 $)) (-1190 $)) 257 (-3224 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3312 (($ $) 177 (|has| |#1| (-373)))) (-4281 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2467 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 254 (-3224 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3599 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3895 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-2326 (((-575) $) 266 (-3224 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 188)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#2| "failed") $) 287) (((-3 (-575) "failed") $) 277 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) 275 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-1194) "failed") $) 259 (-3224 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-4400 ((|#2| $) 288) (((-575) $) 276 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-418 (-575)) $) 274 (-3224 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-1194) $) 258 (-3224 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-3709 (($ $) 283) (($ (-575) $) 282)) (-2800 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-2862 (((-700 |#2|) (-1285 $)) 238 (|has| |#1| (-373))) (((-700 |#2|) (-700 $)) 237 (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) 236 (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 235 (-3224 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) 234 (-3224 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) 233 (-3224 (|has| |#2| (-650 (-575))) (|has| |#1| (-373))))) (-4162 (((-3 $ "failed") $) 37)) (-2494 (((-418 (-967 |#1|)) $ (-575)) 186 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 185 (|has| |#1| (-567)))) (-2073 (($) 250 (-3224 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-2811 (($ $ $) 171 (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-3559 (((-112) $) 179 (|has| |#1| (-373)))) (-2359 (((-112) $) 264 (-3224 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-2333 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 242 (-3224 (|has| |#2| (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 241 (-3224 (|has| |#2| (-898 (-575))) (|has| |#1| (-373))))) (-3369 (((-575) $) 115) (((-575) $ (-575)) 114)) (-3900 (((-112) $) 35)) (-4300 (($ $) 246 (|has| |#1| (-373)))) (-1595 ((|#2| $) 244 (|has| |#1| (-373)))) (-2111 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-2808 (((-3 $ "failed") $) 278 (-3224 (|has| |#2| (-1169)) (|has| |#1| (-373))))) (-1721 (((-112) $) 265 (-3224 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1752 (($ $ (-936)) 116)) (-2691 (($ (-1 |#1| (-575)) $) 187)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-3135 (((-112) $) 74)) (-2414 (($ |#1| (-575)) 73) (($ $ (-1099) (-575)) 88) (($ $ (-655 (-1099)) (-655 (-575))) 87)) (-1914 (($ $ $) 268 (-3224 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3503 (($ $ $) 269 (-3224 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-2544 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 228 (|has| |#1| (-373)))) (-3461 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3886 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-4301 (($ (-575) |#2|) 285)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4388 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3763 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3472 (($) 279 (-3224 (|has| |#2| (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3923 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-1931 (($ $) 249 (-3224 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-3920 ((|#2| $) 252 (-3224 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-1343 (((-429 (-1190 $)) (-1190 $)) 255 (-3224 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3154 (((-429 (-1190 $)) (-1190 $)) 256 (-3224 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2347 (((-429 $) $) 176 (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 173 (|has| |#1| (-373)))) (-1985 (($ $ (-575)) 110)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2663 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) |#2|) 227 (-3224 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 |#2|)) 226 (-3224 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-303 |#2|))) 225 (-3224 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-303 |#2|)) 224 (-3224 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ |#2| |#2|) 223 (-3224 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-655 |#2|) (-655 |#2|)) 222 (-3224 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373))))) (-1720 (((-782) $) 169 (|has| |#1| (-373)))) (-2065 ((|#1| $ (-575)) 120) (($ $ $) 96 (|has| (-575) (-1129))) (($ $ |#2|) 221 (-3224 (|has| |#2| (-295 |#2| |#2|)) (|has| |#1| (-373))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 170 (|has| |#1| (-373)))) (-2382 (($ $ (-1 |#2| |#2|) (-782)) 230 (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-373))) (($ $) 100 (-3763 (-3224 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) 98 (-3763 (-3224 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) 108 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194))) 106 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-1194) (-782)) 105 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))))) (-2325 (($ $) 247 (|has| |#1| (-373)))) (-1608 ((|#2| $) 245 (|has| |#1| (-373)))) (-1753 (((-575) $) 76)) (-1531 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-2613 (((-227) $) 263 (-3224 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-389) $) 262 (-3224 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-547) $) 261 (-3224 (|has| |#2| (-625 (-547))) (|has| |#1| (-373)))) (((-904 (-389)) $) 240 (-3224 (|has| |#2| (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) 239 (-3224 (|has| |#2| (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 253 (-3224 (-3224 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#1| (-373))))) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 286) (($ (-1194)) 260 (-3224 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373)))) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-3002 ((|#1| $ (-575)) 71)) (-1724 (((-3 $ "failed") $) 60 (-3763 (-3224 (-3763 (|has| |#2| (-146)) (-3224 (|has| $ (-146)) (|has| |#2| (-924)))) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-4421 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-4248 ((|#2| $) 251 (-3224 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-575)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) 267 (-3224 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1 |#2| |#2|) (-782)) 232 (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-373))) (($ $) 99 (-3763 (-3224 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) 97 (-3763 (-3224 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) 107 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194))) 103 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-1194) (-782)) 102 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-3763 (-3224 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))))) (-3980 (((-112) $ $) 271 (-3224 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3955 (((-112) $ $) 272 (-3224 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3913 (((-112) $ $) 6)) (-3967 (((-112) $ $) 270 (-3224 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3940 (((-112) $ $) 273 (-3224 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373))) (($ |#2| |#2|) 243 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 220 (|has| |#1| (-373))) (($ |#2| $) 219 (|has| |#1| (-373))) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-1247 |#1| |#2|) (-141) (-1066) (-1276 |t#1|)) (T -1247))
-((-1753 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1276 *3)) (-5 *2 (-575)))) (-4301 (*1 *1 *2 *3) (-12 (-5 *2 (-575)) (-4 *4 (-1066)) (-4 *1 (-1247 *4 *3)) (-4 *3 (-1276 *4)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))) (-3709 (*1 *1 *1) (-12 (-4 *1 (-1247 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1276 *2)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1276 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))) (-4108 (*1 *2 *1) (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))))
-(-13 (-1245 |t#1|) (-1055 |t#2|) (-627 |t#2|) (-10 -8 (-15 -4301 ($ (-575) |t#2|)) (-15 -1753 ((-575) $)) (-15 -2913 (|t#2| $)) (-15 -3709 ($ $)) (-15 -3709 ($ (-575) $)) (-15 -4290 (|t#2| $)) (-15 -4108 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-373)) (-6 (-1009 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-575)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-373)) ((-38 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-373)) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-627 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 #2=(-1194)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) ((-627 |#1|) |has| |#1| (-174)) ((-627 |#2|) . T) ((-627 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-625 (-227)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) ((-625 (-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) ((-625 (-547)) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-625 (-904 (-575))))) ((-234 $) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-237))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) ((-232 |#2|) |has| |#1| (-373)) ((-238) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) ((-237) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-237))) (-12 (|has| |#1| (-373)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-575) |#1|)))) ((-271 |#2|) |has| |#1| (-373)) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 |#2| $) -12 (|has| |#1| (-373)) (|has| |#2| (-295 |#2| |#2|))) ((-295 $ $) |has| (-575) (-1129)) ((-299) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-318 |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))) ((-373) |has| |#1| (-373)) ((-348 |#2|) |has| |#1| (-373)) ((-387 |#2|) |has| |#1| (-373)) ((-411 |#2|) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-525 (-1194) |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-525 (-1194) |#2|))) ((-525 |#2| |#2|) -12 (|has| |#1| (-373)) (|has| |#2| (-318 |#2|))) ((-567) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 |#2|) |has| |#1| (-373)) ((-657 $) . T) ((-659 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 #3=(-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) ((-659 |#1|) . T) ((-659 |#2|) |has| |#1| (-373)) ((-659 $) . T) ((-651 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 |#2|) |has| |#1| (-373)) ((-651 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-650 #3#) -12 (|has| |#1| (-373)) (|has| |#2| (-650 (-575)))) ((-650 |#2|) |has| |#1| (-373)) ((-728 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 |#2|) |has| |#1| (-373)) ((-728 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-802) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-803) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-805) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-806) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-831) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-859) -12 (|has| |#1| (-373)) (|has| |#2| (-831))) ((-861) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-861))) (-12 (|has| |#1| (-373)) (|has| |#2| (-831)))) ((-908 $ #4=(-1194)) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) ((-913 (-1194)) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) ((-915 #4#) -3763 (-12 (|has| |#1| (-373)) (|has| |#2| (-915 (-1194)))) (-12 (|has| |#1| (-373)) (|has| |#2| (-913 (-1194)))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))) ((-898 (-389)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-389)))) ((-898 (-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-898 (-575)))) ((-896 |#2|) |has| |#1| (-373)) ((-924) -12 (|has| |#1| (-373)) (|has| |#2| (-924))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1009 |#2|) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1039) -12 (|has| |#1| (-373)) (|has| |#2| (-1039))) ((-1055 (-418 (-575))) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))) ((-1055 (-575)) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-575)))) ((-1055 #2#) -12 (|has| |#1| (-373)) (|has| |#2| (-1055 (-1194)))) ((-1055 |#2|) . T) ((-1068 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 |#2|) |has| |#1| (-373)) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 |#2|) |has| |#1| (-373)) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) -12 (|has| |#1| (-373)) (|has| |#2| (-1169))) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1245 |#1|) . T) ((-1263 |#1| #0#) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 81)) (-3824 ((|#2| $) NIL (-12 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 100)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-575)) 109) (($ $ (-575) (-575)) 111)) (-3149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) 51)) (-2913 ((|#2| $) 11)) (-4108 (((-3 |#2| "failed") $) 35)) (-4290 ((|#2| $) 36)) (-3921 (($ $) 206 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 182 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) 202 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 178 (|has| |#1| (-38 (-418 (-575)))))) (-2326 (((-575) $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) 59)) (-1521 (($ $) 210 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 186 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) 157) (((-3 (-575) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-1194) "failed") $) NIL (-12 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-4400 ((|#2| $) 156) (((-575) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-418 (-575)) $) NIL (-12 (|has| |#2| (-1055 (-575))) (|has| |#1| (-373)))) (((-1194) $) NIL (-12 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373))))) (-3709 (($ $) 65) (($ (-575) $) 28)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-2862 (((-700 |#2|) (-1285 $)) NIL (|has| |#1| (-373))) (((-700 |#2|) (-700 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| |#2| (-650 (-575))) (|has| |#1| (-373))))) (-4162 (((-3 $ "failed") $) 88)) (-2494 (((-418 (-967 |#1|)) $ (-575)) 124 (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) 126 (|has| |#1| (-567)))) (-2073 (($) NIL (-12 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2359 (((-112) $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-2333 (((-112) $) 74)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| |#2| (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| |#2| (-898 (-575))) (|has| |#1| (-373))))) (-3369 (((-575) $) 105) (((-575) $ (-575)) 107)) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL (|has| |#1| (-373)))) (-1595 ((|#2| $) 165 (|has| |#1| (-373)))) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2808 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1169)) (|has| |#1| (-373))))) (-1721 (((-112) $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1752 (($ $ (-936)) 148)) (-2691 (($ (-1 |#1| (-575)) $) 144)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-575)) 20) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-1914 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3503 (($ $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-2544 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-373)))) (-3461 (($ $) 176 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4301 (($ (-575) |#2|) 10)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 159 (|has| |#1| (-373)))) (-4388 (($ $) 228 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 233 (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220)))))) (-3472 (($) NIL (-12 (|has| |#2| (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-1931 (($ $) NIL (-12 (|has| |#2| (-316)) (|has| |#1| (-373))))) (-3920 ((|#2| $) NIL (-12 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| |#2| (-924)) (|has| |#1| (-373))))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-575)) 138)) (-2849 (((-3 $ "failed") $ $) 128 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) 174 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) |#2|) NIL (-12 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 |#2|)) NIL (-12 (|has| |#2| (-525 (-1194) |#2|)) (|has| |#1| (-373)))) (($ $ (-655 (-303 |#2|))) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-303 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373)))) (($ $ (-655 |#2|) (-655 |#2|)) NIL (-12 (|has| |#2| (-318 |#2|)) (|has| |#1| (-373))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-575)) 103) (($ $ $) 90 (|has| (-575) (-1129))) (($ $ |#2|) NIL (-12 (|has| |#2| (-295 |#2| |#2|)) (|has| |#1| (-373))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-373))) (($ $) 149 (-3763 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) 153 (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-2325 (($ $) NIL (|has| |#1| (-373)))) (-1608 ((|#2| $) 166 (|has| |#1| (-373)))) (-1753 (((-575) $) 12)) (-1531 (($ $) 212 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 188 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 208 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 184 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 204 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 180 (|has| |#1| (-38 (-418 (-575)))))) (-2613 (((-227) $) NIL (-12 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-389) $) NIL (-12 (|has| |#2| (-1039)) (|has| |#1| (-373)))) (((-547) $) NIL (-12 (|has| |#2| (-625 (-547))) (|has| |#1| (-373)))) (((-904 (-389)) $) NIL (-12 (|has| |#2| (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) NIL (-12 (|has| |#2| (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924)) (|has| |#1| (-373))))) (-3575 (($ $) 136)) (-2882 (((-873) $) 266) (($ (-575)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1194)) NIL (-12 (|has| |#2| (-1055 (-1194))) (|has| |#1| (-373)))) (($ (-418 (-575))) 169 (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-3002 ((|#1| $ (-575)) 85)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924)) (|has| |#1| (-373))) (-12 (|has| |#2| (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-4421 (((-782)) 155 T CONST)) (-1751 ((|#1| $) 102)) (-4248 ((|#2| $) NIL (-12 (|has| |#2| (-556)) (|has| |#1| (-373))))) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) 218 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 194 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 214 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 190 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 222 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 198 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-575)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 224 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 200 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 220 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 196 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 216 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 192 (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-373))))) (-1989 (($) 13 T CONST)) (-2005 (($) 18 T CONST)) (-3428 (($ $ (-1 |#2| |#2|) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-373))) (($ $) NIL (-3763 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3763 (-12 (|has| |#2| (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| |#2| (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-3980 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3955 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3913 (((-112) $ $) 72)) (-3967 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-3940 (((-112) $ $) NIL (-12 (|has| |#2| (-861)) (|has| |#1| (-373))))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373))) (($ |#2| |#2|) 164 (|has| |#1| (-373)))) (-4027 (($ $) 227) (($ $ $) 78)) (-4015 (($ $ $) 76)) (** (($ $ (-936)) NIL) (($ $ (-782)) 84) (($ $ (-575)) 160 (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 172 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-373))) (($ |#2| $) 161 (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1248 |#1| |#2|) (-1247 |#1| |#2|) (-1066) (-1276 |#1|)) (T -1248))
-NIL
-(-1247 |#1| |#2|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3824 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 10)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-2456 (($ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3978 (((-112) $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-3449 (($ $ (-575)) NIL) (($ $ (-575) (-575)) NIL)) (-3149 (((-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|))) $) NIL)) (-2913 (((-1277 |#1| |#2| |#3|) $) NIL)) (-4108 (((-3 (-1277 |#1| |#2| |#3|) "failed") $) NIL)) (-4290 (((-1277 |#1| |#2| |#3|) $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2326 (((-575) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1873 (($ (-1174 (-2 (|:| |k| (-575)) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-1277 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1194) "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-3 (-418 (-575)) "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-3 (-575) "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-4400 (((-1277 |#1| |#2| |#3|) $) NIL) (((-1194) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (((-418 (-575)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373)))) (((-575) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))))) (-3709 (($ $) NIL) (($ (-575) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-1277 |#1| |#2| |#3|)) (-1285 $)) NIL (|has| |#1| (-373))) (((-700 (-1277 |#1| |#2| |#3|)) (-700 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 (-1277 |#1| |#2| |#3|))) (|:| |vec| (-1285 (-1277 |#1| |#2| |#3|)))) (-700 $) (-1285 $)) NIL (|has| |#1| (-373))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-700 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373)))) (((-700 (-575)) (-1285 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-650 (-575))) (|has| |#1| (-373))))) (-4162 (((-3 $ "failed") $) NIL)) (-2494 (((-418 (-967 |#1|)) $ (-575)) NIL (|has| |#1| (-567))) (((-418 (-967 |#1|)) $ (-575) (-575)) NIL (|has| |#1| (-567)))) (-2073 (($) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2359 (((-112) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-898 (-389))) (|has| |#1| (-373)))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-898 (-575))) (|has| |#1| (-373))))) (-3369 (((-575) $) NIL) (((-575) $ (-575)) NIL)) (-3900 (((-112) $) NIL)) (-4300 (($ $) NIL (|has| |#1| (-373)))) (-1595 (((-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-373)))) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2808 (((-3 $ "failed") $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))))) (-1721 (((-112) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1752 (($ $ (-936)) NIL)) (-2691 (($ (-1 |#1| (-575)) $) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-575)) 18) (($ $ (-1099) (-575)) NIL) (($ $ (-655 (-1099)) (-655 (-575))) NIL)) (-1914 (($ $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3503 (($ $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-373)))) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4301 (($ (-575) (-1277 |#1| |#2| |#3|)) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4388 (($ $) 27 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 28 (|has| |#1| (-38 (-418 (-575)))))) (-3472 (($) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1169)) (|has| |#1| (-373))) CONST)) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-1931 (($ $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-316)) (|has| |#1| (-373))))) (-3920 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-575)) NIL)) (-2849 (((-3 $ "failed") $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-575))))) (($ $ (-1194) (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-525 (-1194) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1194)) (-655 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-525 (-1194) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-303 (-1277 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-303 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373)))) (($ $ (-655 (-1277 |#1| |#2| |#3|)) (-655 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-318 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-575)) NIL) (($ $ $) NIL (|has| (-575) (-1129))) (($ $ (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-295 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-373))))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $ (-1281 |#2|)) 26) (($ $) 25 (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-2325 (($ $) NIL (|has| |#1| (-373)))) (-1608 (((-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-373)))) (-1753 (((-575) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-2613 (((-547) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-625 (-547))) (|has| |#1| (-373)))) (((-389) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-227) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1039)) (|has| |#1| (-373)))) (((-904 (-389)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-625 (-904 (-389)))) (|has| |#1| (-373)))) (((-904 (-575)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-625 (-904 (-575)))) (|has| |#1| (-373))))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1277 |#1| |#2| |#3|)) NIL) (($ (-1281 |#2|)) 24) (($ (-1194)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-1194))) (|has| |#1| (-373)))) (($ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567)))) (($ (-418 (-575))) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-1055 (-575))) (|has| |#1| (-373))) (|has| |#1| (-38 (-418 (-575))))))) (-3002 ((|#1| $ (-575)) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-146)) (|has| |#1| (-373))) (|has| |#1| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 11)) (-4248 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-556)) (|has| |#1| (-373))))) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-924)) (|has| |#1| (-373))) (|has| |#1| (-567))))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-575)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-575)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3863 (($ $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))))) (-1989 (($) 20 T CONST)) (-2005 (($) 15 T CONST)) (-3428 (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) (-782)) NIL (|has| |#1| (-373))) (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) NIL (|has| |#1| (-373))) (($ $ (-1281 |#2|)) NIL) (($ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-782)) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-238)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-237)) (|has| |#1| (-373))) (|has| |#1| (-15 * (|#1| (-575) |#1|))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194))) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-1194) (-782)) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194)))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-913 (-1194))) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-915 (-1194))) (|has| |#1| (-373))) (-12 (|has| |#1| (-15 * (|#1| (-575) |#1|))) (|has| |#1| (-913 (-1194))))))) (-3980 (((-112) $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3955 (((-112) $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3913 (((-112) $ $) NIL)) (-3967 (((-112) $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-3940 (((-112) $ $) NIL (-3763 (-12 (|has| (-1277 |#1| |#2| |#3|) (-831)) (|has| |#1| (-373))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-861)) (|has| |#1| (-373)))))) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373))) (($ (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 22)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1277 |#1| |#2| |#3|)) NIL (|has| |#1| (-373))) (($ (-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-373))) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1249 |#1| |#2| |#3|) (-13 (-1247 |#1| (-1277 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1249))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1247 |#1| (-1277 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1281 |#2|))) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-3394 (((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112)) 13)) (-1326 (((-429 |#1|) |#1|) 26)) (-2347 (((-429 |#1|) |#1|) 24)))
-(((-1250 |#1|) (-10 -7 (-15 -2347 ((-429 |#1|) |#1|)) (-15 -1326 ((-429 |#1|) |#1|)) (-15 -3394 ((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112)))) (-1261 (-575))) (T -1250))
-((-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575))))))) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))) (-1326 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))) (-2347 (*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))))
-(-10 -7 (-15 -2347 ((-429 |#1|) |#1|)) (-15 -1326 ((-429 |#1|) |#1|)) (-15 -3394 ((-2 (|:| |contp| (-575)) (|:| -1366 (-655 (-2 (|:| |irr| |#1|) (|:| -2205 (-575)))))) |#1| (-112))))
-((-2544 (((-1174 |#2|) (-1 |#2| |#1|) (-1252 |#1|)) 23 (|has| |#1| (-859))) (((-1252 |#2|) (-1 |#2| |#1|) (-1252 |#1|)) 17)))
-(((-1251 |#1| |#2|) (-10 -7 (-15 -2544 ((-1252 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) (IF (|has| |#1| (-859)) (-15 -2544 ((-1174 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) |%noBranch|)) (-1235) (-1235)) (T -1251))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-859)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1174 *6)) (-5 *1 (-1251 *5 *6)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1252 *6)) (-5 *1 (-1251 *5 *6)))))
-(-10 -7 (-15 -2544 ((-1252 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) (IF (|has| |#1| (-859)) (-15 -2544 ((-1174 |#2|) (-1 |#2| |#1|) (-1252 |#1|))) |%noBranch|))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4127 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2544 (((-1174 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-859)))) (-3897 ((|#1| $) 15)) (-2067 ((|#1| $) 12)) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-3754 (((-575) $) 19)) (-2480 ((|#1| $) 18)) (-3767 ((|#1| $) 13)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-4375 (((-112) $) 17)) (-3943 (((-1174 |#1|) $) 41 (|has| |#1| (-859))) (((-1174 |#1|) (-655 $)) 40 (|has| |#1| (-859)))) (-2613 (($ |#1|) 26)) (-2882 (($ (-1111 |#1|)) 25) (((-873) $) 37 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-1859 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3682 (($ $ (-575)) 14)) (-3913 (((-112) $ $) 30 (|has| |#1| (-1117)))))
-(((-1252 |#1|) (-13 (-1110 |#1|) (-10 -8 (-15 -1859 ($ |#1|)) (-15 -4127 ($ |#1|)) (-15 -2882 ($ (-1111 |#1|))) (-15 -4375 ((-112) $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-1174 |#1|))) |%noBranch|))) (-1235)) (T -1252))
-((-1859 (*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235)))) (-4127 (*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1111 *3)) (-4 *3 (-1235)) (-5 *1 (-1252 *3)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1252 *3)) (-4 *3 (-1235)))))
-(-13 (-1110 |#1|) (-10 -8 (-15 -1859 ($ |#1|)) (-15 -4127 ($ |#1|)) (-15 -2882 ($ (-1111 |#1|))) (-15 -4375 ((-112) $)) (IF (|has| |#1| (-1117)) (-6 (-1117)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1112 |#1| (-1174 |#1|))) |%noBranch|)))
-((-2544 (((-1258 |#3| |#4|) (-1 |#4| |#2|) (-1258 |#1| |#2|)) 15)))
-(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 ((-1258 |#3| |#4|) (-1 |#4| |#2|) (-1258 |#1| |#2|)))) (-1194) (-1066) (-1194) (-1066)) (T -1253))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1258 *5 *6)) (-14 *5 (-1194)) (-4 *6 (-1066)) (-4 *8 (-1066)) (-5 *2 (-1258 *7 *8)) (-5 *1 (-1253 *5 *6 *7 *8)) (-14 *7 (-1194)))))
-(-10 -7 (-15 -2544 ((-1258 |#3| |#4|) (-1 |#4| |#2|) (-1258 |#1| |#2|))))
-((-1657 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2693 ((|#1| |#3|) 13)) (-3439 ((|#3| |#3|) 19)))
-(((-1254 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -1657 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-567) (-1009 |#1|) (-1261 |#2|)) (T -1254))
-((-1657 (*1 *2 *3) (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1254 *4 *5 *3)) (-4 *3 (-1261 *5)))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-1254 *3 *4 *2)) (-4 *2 (-1261 *4)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-1254 *2 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -2693 (|#1| |#3|)) (-15 -3439 (|#3| |#3|)) (-15 -1657 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1941 (((-3 |#2| "failed") |#2| (-782) |#1|) 35)) (-3646 (((-3 |#2| "failed") |#2| (-782)) 36)) (-3813 (((-3 (-2 (|:| -2412 |#2|) (|:| -2429 |#2|)) "failed") |#2|) 50)) (-3225 (((-655 |#2|) |#2|) 52)) (-4394 (((-3 |#2| "failed") |#2| |#2|) 46)))
-(((-1255 |#1| |#2|) (-10 -7 (-15 -3646 ((-3 |#2| "failed") |#2| (-782))) (-15 -1941 ((-3 |#2| "failed") |#2| (-782) |#1|)) (-15 -4394 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3813 ((-3 (-2 (|:| -2412 |#2|) (|:| -2429 |#2|)) "failed") |#2|)) (-15 -3225 ((-655 |#2|) |#2|))) (-13 (-567) (-148)) (-1261 |#1|)) (T -1255))
-((-3225 (*1 *2 *3) (-12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-655 *3)) (-5 *1 (-1255 *4 *3)) (-4 *3 (-1261 *4)))) (-3813 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-2 (|:| -2412 *3) (|:| -2429 *3))) (-5 *1 (-1255 *4 *3)) (-4 *3 (-1261 *4)))) (-4394 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1255 *3 *2)) (-4 *2 (-1261 *3)))) (-1941 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4)))) (-3646 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4)))))
-(-10 -7 (-15 -3646 ((-3 |#2| "failed") |#2| (-782))) (-15 -1941 ((-3 |#2| "failed") |#2| (-782) |#1|)) (-15 -4394 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3813 ((-3 (-2 (|:| -2412 |#2|) (|:| -2429 |#2|)) "failed") |#2|)) (-15 -3225 ((-655 |#2|) |#2|)))
-((-4279 (((-3 (-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1256 |#1| |#2|) (-10 -7 (-15 -4279 ((-3 (-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) "failed") |#2| |#2|))) (-567) (-1261 |#1|)) (T -1256))
-((-4279 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1261 *4)))))
-(-10 -7 (-15 -4279 ((-3 (-2 (|:| -3262 |#2|) (|:| -4041 |#2|)) "failed") |#2| |#2|)))
-((-1981 ((|#2| |#2| |#2|) 22)) (-2121 ((|#2| |#2| |#2|) 36)) (-3580 ((|#2| |#2| |#2| (-782) (-782)) 44)))
-(((-1257 |#1| |#2|) (-10 -7 (-15 -1981 (|#2| |#2| |#2|)) (-15 -2121 (|#2| |#2| |#2|)) (-15 -3580 (|#2| |#2| |#2| (-782) (-782)))) (-1066) (-1261 |#1|)) (T -1257))
-((-3580 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1261 *4)))) (-2121 (*1 *2 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3)))) (-1981 (*1 *2 *2 *2) (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3)))))
-(-10 -7 (-15 -1981 (|#2| |#2| |#2|)) (-15 -2121 (|#2| |#2| |#2|)) (-15 -3580 (|#2| |#2| |#2| (-782) (-782))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1770 (((-1285 |#2|) $ (-782)) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-2132 (($ (-1190 |#2|)) NIL)) (-3462 (((-1190 $) $ (-1099)) NIL) (((-1190 |#2|) $) NIL)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#2| (-567)))) (-2456 (($ $) NIL (|has| |#2| (-567)))) (-3978 (((-112) $) NIL (|has| |#2| (-567)))) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1099))) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-1665 (($ $ $) NIL (|has| |#2| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3312 (($ $) NIL (|has| |#2| (-463)))) (-4281 (((-429 $) $) NIL (|has| |#2| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3599 (((-112) $ $) NIL (|has| |#2| (-373)))) (-4246 (($ $ (-782)) NIL)) (-2681 (($ $ (-782)) NIL)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-463)))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL) (((-3 (-418 (-575)) "failed") $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) NIL (|has| |#2| (-1055 (-575)))) (((-3 (-1099) "failed") $) NIL)) (-4400 ((|#2| $) NIL) (((-418 (-575)) $) NIL (|has| |#2| (-1055 (-418 (-575))))) (((-575) $) NIL (|has| |#2| (-1055 (-575)))) (((-1099) $) NIL)) (-4171 (($ $ $ (-1099)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2800 (($ $ $) NIL (|has| |#2| (-373)))) (-4406 (($ $) NIL)) (-2862 (((-700 (-575)) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-700 (-575)) (-700 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) NIL (|has| |#2| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#2|)) (|:| |vec| (-1285 |#2|))) (-700 $) (-1285 $)) NIL) (((-700 |#2|) (-700 $)) NIL) (((-700 |#2|) (-1285 $)) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2811 (($ $ $) NIL (|has| |#2| (-373)))) (-2804 (($ $ $) NIL)) (-2284 (($ $ $) NIL (|has| |#2| (-567)))) (-1568 (((-2 (|:| -1754 |#2|) (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#2| (-373)))) (-2379 (($ $) NIL (|has| |#2| (-463))) (($ $ (-1099)) NIL (|has| |#2| (-463)))) (-4393 (((-655 $) $) NIL)) (-3559 (((-112) $) NIL (|has| |#2| (-924)))) (-4384 (($ $ |#2| (-782) $) NIL)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) NIL (-12 (|has| (-1099) (-898 (-389))) (|has| |#2| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) NIL (-12 (|has| (-1099) (-898 (-575))) (|has| |#2| (-898 (-575)))))) (-3369 (((-782) $ $) NIL (|has| |#2| (-567)))) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-2808 (((-3 $ "failed") $) NIL (|has| |#2| (-1169)))) (-2430 (($ (-1190 |#2|) (-1099)) NIL) (($ (-1190 $) (-1099)) NIL)) (-1752 (($ $ (-782)) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-2414 (($ |#2| (-782)) 18) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1099)) NIL) (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL)) (-3143 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-1946 (($ (-1 (-782) (-782)) $) NIL)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2918 (((-1190 |#2|) $) NIL)) (-2187 (((-3 (-1099) "failed") $) NIL)) (-4370 (($ $) NIL)) (-4383 ((|#2| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-4264 (((-1176) $) NIL)) (-3888 (((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782)) NIL)) (-1445 (((-3 (-655 $) "failed") $) NIL)) (-1512 (((-3 (-655 $) "failed") $) NIL)) (-2329 (((-3 (-2 (|:| |var| (-1099)) (|:| -1658 (-782))) "failed") $) NIL)) (-4388 (($ $) NIL (|has| |#2| (-38 (-418 (-575)))))) (-3472 (($) NIL (|has| |#2| (-1169)) CONST)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 ((|#2| $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#2| (-463)))) (-3923 (($ (-655 $)) NIL (|has| |#2| (-463))) (($ $ $) NIL (|has| |#2| (-463)))) (-1834 (($ $ (-782) |#2| $) NIL)) (-1343 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) NIL (|has| |#2| (-924)))) (-2347 (((-429 $) $) NIL (|has| |#2| (-924)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#2| (-373)))) (-2849 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-567))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#2| (-373)))) (-3046 (($ $ (-655 (-303 $))) NIL) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#2|) NIL) (($ $ (-655 (-1099)) (-655 |#2|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-655 (-1099)) (-655 $)) NIL)) (-1720 (((-782) $) NIL (|has| |#2| (-373)))) (-2065 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) NIL (|has| |#2| (-567))) ((|#2| (-418 $) |#2|) NIL (|has| |#2| (-373))) (((-418 $) $ (-418 $)) NIL (|has| |#2| (-567)))) (-2720 (((-3 $ "failed") $ (-782)) NIL)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#2| (-373)))) (-2801 (($ $ (-1099)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2382 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-1753 (((-782) $) NIL) (((-782) $ (-1099)) NIL) (((-655 (-782)) $ (-655 (-1099))) NIL)) (-2613 (((-904 (-389)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#2| (-625 (-904 (-389)))))) (((-904 (-575)) $) NIL (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#2| (-625 (-904 (-575)))))) (((-547) $) NIL (-12 (|has| (-1099) (-625 (-547))) (|has| |#2| (-625 (-547)))))) (-3696 ((|#2| $) NIL (|has| |#2| (-463))) (($ $ (-1099)) NIL (|has| |#2| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-924))))) (-4095 (((-3 $ "failed") $ $) NIL (|has| |#2| (-567))) (((-3 (-418 $) "failed") (-418 $) $) NIL (|has| |#2| (-567)))) (-2882 (((-873) $) 13) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-1099)) NIL) (($ (-1281 |#1|)) 20) (($ (-418 (-575))) NIL (-3763 (|has| |#2| (-38 (-418 (-575)))) (|has| |#2| (-1055 (-418 (-575)))))) (($ $) NIL (|has| |#2| (-567)))) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-782)) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-1724 (((-3 $ "failed") $) NIL (-3763 (-12 (|has| $ (-146)) (|has| |#2| (-924))) (|has| |#2| (-146))))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| |#2| (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL (|has| |#2| (-567)))) (-1989 (($) NIL T CONST)) (-2005 (($) 14 T CONST)) (-3428 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $) NIL) (($ $ (-782)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1194)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194))) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-1194) (-782)) NIL (|has| |#2| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (|has| |#2| (-915 (-1194))))) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#2|) NIL (|has| |#2| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-418 (-575))) NIL (|has| |#2| (-38 (-418 (-575))))) (($ (-418 (-575)) $) NIL (|has| |#2| (-38 (-418 (-575))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1258 |#1| |#2|) (-13 (-1261 |#2|) (-627 (-1281 |#1|)) (-10 -8 (-15 -1834 ($ $ (-782) |#2| $)))) (-1194) (-1066)) (T -1258))
-((-1834 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1258 *4 *3)) (-14 *4 (-1194)) (-4 *3 (-1066)))))
-(-13 (-1261 |#2|) (-627 (-1281 |#1|)) (-10 -8 (-15 -1834 ($ $ (-782) |#2| $))))
-((-2544 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1259 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|))) (-1066) (-1261 |#1|) (-1066) (-1261 |#3|)) (T -1259))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1261 *6)) (-5 *1 (-1259 *5 *4 *6 *2)) (-4 *4 (-1261 *5)))))
-(-10 -7 (-15 -2544 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1770 (((-1285 |#2|) $ (-782)) 129)) (-1606 (((-655 (-1099)) $) 16)) (-2132 (($ (-1190 |#2|)) 80)) (-3508 (((-782) $) NIL) (((-782) $ (-655 (-1099))) 21)) (-4005 (((-429 (-1190 $)) (-1190 $)) 204)) (-3312 (($ $) 194)) (-4281 (((-429 $) $) 192)) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 95)) (-4246 (($ $ (-782)) 84)) (-2681 (($ $ (-782)) 86)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2443 (((-3 |#2| "failed") $) 132) (((-3 (-418 (-575)) "failed") $) NIL) (((-3 (-575) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL)) (-4400 ((|#2| $) 130) (((-418 (-575)) $) NIL) (((-575) $) NIL) (((-1099) $) NIL)) (-2284 (($ $ $) 170)) (-1568 (((-2 (|:| -1754 |#2|) (|:| -3262 $) (|:| -4041 $)) $ $) 172)) (-3369 (((-782) $ $) 189)) (-2808 (((-3 $ "failed") $) 138)) (-2414 (($ |#2| (-782)) NIL) (($ $ (-1099) (-782)) 59) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-3143 (((-782) $) NIL) (((-782) $ (-1099)) 54) (((-655 (-782)) $ (-655 (-1099))) 55)) (-2918 (((-1190 |#2|) $) 72)) (-2187 (((-3 (-1099) "failed") $) 52)) (-3888 (((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782)) 83)) (-4388 (($ $) 219)) (-3472 (($) 134)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 201)) (-1343 (((-429 (-1190 $)) (-1190 $)) 101)) (-3154 (((-429 (-1190 $)) (-1190 $)) 99)) (-2347 (((-429 $) $) 120)) (-3046 (($ $ (-655 (-303 $))) 51) (($ $ (-303 $)) NIL) (($ $ $ $) NIL) (($ $ (-655 $) (-655 $)) NIL) (($ $ (-1099) |#2|) 39) (($ $ (-655 (-1099)) (-655 |#2|)) 36) (($ $ (-1099) $) 32) (($ $ (-655 (-1099)) (-655 $)) 30)) (-1720 (((-782) $) 207)) (-2065 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-418 $) (-418 $) (-418 $)) 164) ((|#2| (-418 $) |#2|) 206) (((-418 $) $ (-418 $)) 188)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 212)) (-2382 (($ $ (-655 (-1099)) (-655 (-782))) NIL) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099))) NIL) (($ $ (-1099)) 157) (($ $) 155) (($ $ (-782)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-782)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1194)) NIL) (($ $ (-655 (-1194))) NIL) (($ $ (-1194) (-782)) NIL) (($ $ (-655 (-1194)) (-655 (-782))) NIL)) (-1753 (((-782) $) NIL) (((-782) $ (-1099)) 17) (((-655 (-782)) $ (-655 (-1099))) 23)) (-3696 ((|#2| $) NIL) (($ $ (-1099)) 140)) (-4095 (((-3 $ "failed") $ $) 180) (((-3 (-418 $) "failed") (-418 $) $) 176)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#2|) NIL) (($ (-1099)) 64) (($ (-418 (-575))) NIL) (($ $) NIL)))
-(((-1260 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| |#1|)) (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2065 ((-418 |#1|) |#1| (-418 |#1|))) (-15 -1720 ((-782) |#1|)) (-15 -4416 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -2065 (|#2| (-418 |#1|) |#2|)) (-15 -2486 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1568 ((-2 (|:| -1754 |#2|) (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2284 (|#1| |#1| |#1|)) (-15 -4095 ((-3 (-418 |#1|) "failed") (-418 |#1|) |#1|)) (-15 -4095 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3369 ((-782) |#1| |#1|)) (-15 -2065 ((-418 |#1|) (-418 |#1|) (-418 |#1|))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2681 (|#1| |#1| (-782))) (-15 -4246 (|#1| |#1| (-782))) (-15 -3888 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| (-782))) (-15 -2132 (|#1| (-1190 |#2|))) (-15 -2918 ((-1190 |#2|) |#1|)) (-15 -1770 ((-1285 |#2|) |#1| (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2065 (|#1| |#1| |#1|)) (-15 -2065 (|#2| |#1| |#2|)) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4005 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -3154 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1343 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -3696 (|#1| |#1| (-1099))) (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -3508 ((-782) |#1| (-655 (-1099)))) (-15 -3508 ((-782) |#1|)) (-15 -2414 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2414 (|#1| |#1| (-1099) (-782))) (-15 -3143 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -3143 ((-782) |#1| (-1099))) (-15 -2187 ((-3 (-1099) "failed") |#1|)) (-15 -1753 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -1753 ((-782) |#1| (-1099))) (-15 -2882 (|#1| (-1099))) (-15 -2443 ((-3 (-1099) "failed") |#1|)) (-15 -4400 ((-1099) |#1|)) (-15 -3046 (|#1| |#1| (-655 (-1099)) (-655 |#1|))) (-15 -3046 (|#1| |#1| (-1099) |#1|)) (-15 -3046 (|#1| |#1| (-655 (-1099)) (-655 |#2|))) (-15 -3046 (|#1| |#1| (-1099) |#2|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1753 ((-782) |#1|)) (-15 -2414 (|#1| |#2| (-782))) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -3143 ((-782) |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2382 (|#1| |#1| (-1099))) (-15 -2382 (|#1| |#1| (-655 (-1099)))) (-15 -2382 (|#1| |#1| (-1099) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|))) (-1261 |#2|) (-1066)) (T -1260))
-NIL
-(-10 -8 (-15 -2882 (|#1| |#1|)) (-15 -3354 ((-1190 |#1|) (-1190 |#1|) (-1190 |#1|))) (-15 -2382 (|#1| |#1| (-655 (-1194)) (-655 (-782)))) (-15 -2382 (|#1| |#1| (-1194) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1194)))) (-15 -2382 (|#1| |#1| (-1194))) (-15 -4281 ((-429 |#1|) |#1|)) (-15 -3312 (|#1| |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -3472 (|#1|)) (-15 -2808 ((-3 |#1| "failed") |#1|)) (-15 -2065 ((-418 |#1|) |#1| (-418 |#1|))) (-15 -1720 ((-782) |#1|)) (-15 -4416 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -2065 (|#2| (-418 |#1|) |#2|)) (-15 -2486 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1568 ((-2 (|:| -1754 |#2|) (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| |#1|)) (-15 -2284 (|#1| |#1| |#1|)) (-15 -4095 ((-3 (-418 |#1|) "failed") (-418 |#1|) |#1|)) (-15 -4095 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3369 ((-782) |#1| |#1|)) (-15 -2065 ((-418 |#1|) (-418 |#1|) (-418 |#1|))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2681 (|#1| |#1| (-782))) (-15 -4246 (|#1| |#1| (-782))) (-15 -3888 ((-2 (|:| -3262 |#1|) (|:| -4041 |#1|)) |#1| (-782))) (-15 -2132 (|#1| (-1190 |#2|))) (-15 -2918 ((-1190 |#2|) |#1|)) (-15 -1770 ((-1285 |#2|) |#1| (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|) (-782))) (-15 -2382 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2382 (|#1| |#1| (-782))) (-15 -2382 (|#1| |#1|)) (-15 -2065 (|#1| |#1| |#1|)) (-15 -2065 (|#2| |#1| |#2|)) (-15 -2347 ((-429 |#1|) |#1|)) (-15 -4005 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -3154 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -1343 ((-429 (-1190 |#1|)) (-1190 |#1|))) (-15 -4047 ((-3 (-655 (-1190 |#1|)) "failed") (-655 (-1190 |#1|)) (-1190 |#1|))) (-15 -3696 (|#1| |#1| (-1099))) (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -3508 ((-782) |#1| (-655 (-1099)))) (-15 -3508 ((-782) |#1|)) (-15 -2414 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2414 (|#1| |#1| (-1099) (-782))) (-15 -3143 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -3143 ((-782) |#1| (-1099))) (-15 -2187 ((-3 (-1099) "failed") |#1|)) (-15 -1753 ((-655 (-782)) |#1| (-655 (-1099)))) (-15 -1753 ((-782) |#1| (-1099))) (-15 -2882 (|#1| (-1099))) (-15 -2443 ((-3 (-1099) "failed") |#1|)) (-15 -4400 ((-1099) |#1|)) (-15 -3046 (|#1| |#1| (-655 (-1099)) (-655 |#1|))) (-15 -3046 (|#1| |#1| (-1099) |#1|)) (-15 -3046 (|#1| |#1| (-655 (-1099)) (-655 |#2|))) (-15 -3046 (|#1| |#1| (-1099) |#2|)) (-15 -3046 (|#1| |#1| (-655 |#1|) (-655 |#1|))) (-15 -3046 (|#1| |#1| |#1| |#1|)) (-15 -3046 (|#1| |#1| (-303 |#1|))) (-15 -3046 (|#1| |#1| (-655 (-303 |#1|)))) (-15 -1753 ((-782) |#1|)) (-15 -2414 (|#1| |#2| (-782))) (-15 -2443 ((-3 (-575) "failed") |#1|)) (-15 -4400 ((-575) |#1|)) (-15 -2443 ((-3 (-418 (-575)) "failed") |#1|)) (-15 -4400 ((-418 (-575)) |#1|)) (-15 -4400 (|#2| |#1|)) (-15 -2443 ((-3 |#2| "failed") |#1|)) (-15 -2882 (|#1| |#2|)) (-15 -3143 ((-782) |#1|)) (-15 -3696 (|#2| |#1|)) (-15 -2382 (|#1| |#1| (-1099))) (-15 -2382 (|#1| |#1| (-655 (-1099)))) (-15 -2382 (|#1| |#1| (-1099) (-782))) (-15 -2382 (|#1| |#1| (-655 (-1099)) (-655 (-782)))) (-15 -2882 (|#1| (-575))) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1770 (((-1285 |#1|) $ (-782)) 254)) (-1606 (((-655 (-1099)) $) 113)) (-2132 (($ (-1190 |#1|)) 252)) (-3462 (((-1190 $) $ (-1099)) 128) (((-1190 |#1|) $) 127)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 90 (|has| |#1| (-567)))) (-2456 (($ $) 91 (|has| |#1| (-567)))) (-3978 (((-112) $) 93 (|has| |#1| (-567)))) (-3508 (((-782) $) 115) (((-782) $ (-655 (-1099))) 114)) (-1708 (((-3 $ "failed") $ $) 20)) (-1665 (($ $ $) 239 (|has| |#1| (-567)))) (-4005 (((-429 (-1190 $)) (-1190 $)) 103 (|has| |#1| (-924)))) (-3312 (($ $) 101 (|has| |#1| (-463)))) (-4281 (((-429 $) $) 100 (|has| |#1| (-463)))) (-4047 (((-3 (-655 (-1190 $)) "failed") (-655 (-1190 $)) (-1190 $)) 106 (|has| |#1| (-924)))) (-3599 (((-112) $ $) 224 (|has| |#1| (-373)))) (-4246 (($ $ (-782)) 247)) (-2681 (($ $ (-782)) 246)) (-2486 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 234 (|has| |#1| (-463)))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 169) (((-3 (-418 (-575)) "failed") $) 166 (|has| |#1| (-1055 (-418 (-575))))) (((-3 (-575) "failed") $) 164 (|has| |#1| (-1055 (-575)))) (((-3 (-1099) "failed") $) 141)) (-4400 ((|#1| $) 168) (((-418 (-575)) $) 167 (|has| |#1| (-1055 (-418 (-575))))) (((-575) $) 165 (|has| |#1| (-1055 (-575)))) (((-1099) $) 142)) (-4171 (($ $ $ (-1099)) 111 (|has| |#1| (-174))) ((|#1| $ $) 242 (|has| |#1| (-174)))) (-2800 (($ $ $) 228 (|has| |#1| (-373)))) (-4406 (($ $) 159)) (-2862 (((-700 (-575)) (-1285 $)) 139 (|has| |#1| (-650 (-575)))) (((-700 (-575)) (-700 $)) 138 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 (-575))) (|:| |vec| (-1285 (-575)))) (-700 $) (-1285 $)) 137 (|has| |#1| (-650 (-575)))) (((-2 (|:| -3415 (-700 |#1|)) (|:| |vec| (-1285 |#1|))) (-700 $) (-1285 $)) 136) (((-700 |#1|) (-700 $)) 135) (((-700 |#1|) (-1285 $)) 134)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 227 (|has| |#1| (-373)))) (-2804 (($ $ $) 245)) (-2284 (($ $ $) 236 (|has| |#1| (-567)))) (-1568 (((-2 (|:| -1754 |#1|) (|:| -3262 $) (|:| -4041 $)) $ $) 235 (|has| |#1| (-567)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 222 (|has| |#1| (-373)))) (-2379 (($ $) 181 (|has| |#1| (-463))) (($ $ (-1099)) 108 (|has| |#1| (-463)))) (-4393 (((-655 $) $) 112)) (-3559 (((-112) $) 99 (|has| |#1| (-924)))) (-4384 (($ $ |#1| (-782) $) 177)) (-1806 (((-901 (-389) $) $ (-904 (-389)) (-901 (-389) $)) 87 (-12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389))))) (((-901 (-575) $) $ (-904 (-575)) (-901 (-575) $)) 86 (-12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))))) (-3369 (((-782) $ $) 240 (|has| |#1| (-567)))) (-3900 (((-112) $) 35)) (-1403 (((-782) $) 174)) (-2808 (((-3 $ "failed") $) 220 (|has| |#1| (-1169)))) (-2430 (($ (-1190 |#1|) (-1099)) 120) (($ (-1190 $) (-1099)) 119)) (-1752 (($ $ (-782)) 251)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 231 (|has| |#1| (-373)))) (-1719 (((-655 $) $) 129)) (-3135 (((-112) $) 157)) (-2414 (($ |#1| (-782)) 158) (($ $ (-1099) (-782)) 122) (($ $ (-655 (-1099)) (-655 (-782))) 121)) (-1749 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $ (-1099)) 123) (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 249)) (-3143 (((-782) $) 175) (((-782) $ (-1099)) 125) (((-655 (-782)) $ (-655 (-1099))) 124)) (-1946 (($ (-1 (-782) (-782)) $) 176)) (-2544 (($ (-1 |#1| |#1|) $) 156)) (-2918 (((-1190 |#1|) $) 253)) (-2187 (((-3 (-1099) "failed") $) 126)) (-4370 (($ $) 154)) (-4383 ((|#1| $) 153)) (-3886 (($ (-655 $)) 97 (|has| |#1| (-463))) (($ $ $) 96 (|has| |#1| (-463)))) (-4264 (((-1176) $) 10)) (-3888 (((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782)) 248)) (-1445 (((-3 (-655 $) "failed") $) 117)) (-1512 (((-3 (-655 $) "failed") $) 118)) (-2329 (((-3 (-2 (|:| |var| (-1099)) (|:| -1658 (-782))) "failed") $) 116)) (-4388 (($ $) 232 (|has| |#1| (-38 (-418 (-575)))))) (-3472 (($) 219 (|has| |#1| (-1169)) CONST)) (-3912 (((-1137) $) 11)) (-4346 (((-112) $) 171)) (-4353 ((|#1| $) 172)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 98 (|has| |#1| (-463)))) (-3923 (($ (-655 $)) 95 (|has| |#1| (-463))) (($ $ $) 94 (|has| |#1| (-463)))) (-1343 (((-429 (-1190 $)) (-1190 $)) 105 (|has| |#1| (-924)))) (-3154 (((-429 (-1190 $)) (-1190 $)) 104 (|has| |#1| (-924)))) (-2347 (((-429 $) $) 102 (|has| |#1| (-924)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 230 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 229 (|has| |#1| (-373)))) (-2849 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-567))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 223 (|has| |#1| (-373)))) (-3046 (($ $ (-655 (-303 $))) 150) (($ $ (-303 $)) 149) (($ $ $ $) 148) (($ $ (-655 $) (-655 $)) 147) (($ $ (-1099) |#1|) 146) (($ $ (-655 (-1099)) (-655 |#1|)) 145) (($ $ (-1099) $) 144) (($ $ (-655 (-1099)) (-655 $)) 143)) (-1720 (((-782) $) 225 (|has| |#1| (-373)))) (-2065 ((|#1| $ |#1|) 264) (($ $ $) 263) (((-418 $) (-418 $) (-418 $)) 241 (|has| |#1| (-567))) ((|#1| (-418 $) |#1|) 233 (|has| |#1| (-373))) (((-418 $) $ (-418 $)) 221 (|has| |#1| (-567)))) (-2720 (((-3 $ "failed") $ (-782)) 250)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 226 (|has| |#1| (-373)))) (-2801 (($ $ (-1099)) 110 (|has| |#1| (-174))) ((|#1| $) 243 (|has| |#1| (-174)))) (-2382 (($ $ (-655 (-1099)) (-655 (-782))) 44) (($ $ (-1099) (-782)) 43) (($ $ (-655 (-1099))) 42) (($ $ (-1099)) 40) (($ $) 262) (($ $ (-782)) 260) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-782)) 257) (($ $ (-1 |#1| |#1|) $) 244) (($ $ (-1194)) 218 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 216 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 215 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 214 (|has| |#1| (-915 (-1194))))) (-1753 (((-782) $) 155) (((-782) $ (-1099)) 133) (((-655 (-782)) $ (-655 (-1099))) 132)) (-2613 (((-904 (-389)) $) 85 (-12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389)))))) (((-904 (-575)) $) 84 (-12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575)))))) (((-547) $) 83 (-12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))))) (-3696 ((|#1| $) 180 (|has| |#1| (-463))) (($ $ (-1099)) 109 (|has| |#1| (-463)))) (-1511 (((-3 (-1285 $) "failed") (-700 $)) 107 (-3224 (|has| $ (-146)) (|has| |#1| (-924))))) (-4095 (((-3 $ "failed") $ $) 238 (|has| |#1| (-567))) (((-3 (-418 $) "failed") (-418 $) $) 237 (|has| |#1| (-567)))) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 170) (($ (-1099)) 140) (($ (-418 (-575))) 81 (-3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575)))))) (($ $) 88 (|has| |#1| (-567)))) (-2212 (((-655 |#1|) $) 173)) (-3002 ((|#1| $ (-782)) 160) (($ $ (-1099) (-782)) 131) (($ $ (-655 (-1099)) (-655 (-782))) 130)) (-1724 (((-3 $ "failed") $) 82 (-3763 (-3224 (|has| $ (-146)) (|has| |#1| (-924))) (|has| |#1| (-146))))) (-4421 (((-782)) 32 T CONST)) (-1982 (($ $ $ (-782)) 178 (|has| |#1| (-174)))) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 92 (|has| |#1| (-567)))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-655 (-1099)) (-655 (-782))) 47) (($ $ (-1099) (-782)) 46) (($ $ (-655 (-1099))) 45) (($ $ (-1099)) 41) (($ $) 261) (($ $ (-782)) 259) (($ $ (-1 |#1| |#1|)) 256) (($ $ (-1 |#1| |#1|) (-782)) 255) (($ $ (-1194)) 217 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194))) 213 (|has| |#1| (-915 (-1194)))) (($ $ (-1194) (-782)) 212 (|has| |#1| (-915 (-1194)))) (($ $ (-655 (-1194)) (-655 (-782))) 211 (|has| |#1| (-915 (-1194))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 161 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 163 (|has| |#1| (-38 (-418 (-575))))) (($ (-418 (-575)) $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
-(((-1261 |#1|) (-141) (-1066)) (T -1261))
-((-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-1261 *4)) (-4 *4 (-1066)) (-5 *2 (-1285 *4)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-5 *2 (-1190 *3)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-1066)) (-4 *1 (-1261 *3)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-2720 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1261 *3)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1261 *4)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-2681 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-2804 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)))) (-2382 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174)))) (-4171 (*1 *2 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174)))) (-2065 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)) (-5 *2 (-782)))) (-1665 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-4095 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-4095 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567)))) (-2284 (*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))) (-1568 (*1 *2 *1 *1) (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| -1754 *3) (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1261 *3)))) (-2486 (*1 *2 *1 *1) (-12 (-4 *3 (-463)) (-4 *3 (-1066)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1261 *3)))) (-2065 (*1 *2 *3 *2) (-12 (-5 *3 (-418 *1)) (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))))
-(-13 (-964 |t#1| (-782) (-1099)) (-295 |t#1| |t#1|) (-295 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -1770 ((-1285 |t#1|) $ (-782))) (-15 -2918 ((-1190 |t#1|) $)) (-15 -2132 ($ (-1190 |t#1|))) (-15 -1752 ($ $ (-782))) (-15 -2720 ((-3 $ "failed") $ (-782))) (-15 -1749 ((-2 (|:| -3262 $) (|:| -4041 $)) $ $)) (-15 -3888 ((-2 (|:| -3262 $) (|:| -4041 $)) $ (-782))) (-15 -4246 ($ $ (-782))) (-15 -2681 ($ $ (-782))) (-15 -2804 ($ $ $)) (-15 -2382 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1169)) (-6 (-1169)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2801 (|t#1| $)) (-15 -4171 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-567)) (PROGN (-6 (-295 (-418 $) (-418 $))) (-15 -2065 ((-418 $) (-418 $) (-418 $))) (-15 -3369 ((-782) $ $)) (-15 -1665 ($ $ $)) (-15 -4095 ((-3 $ "failed") $ $)) (-15 -4095 ((-3 (-418 $) "failed") (-418 $) $)) (-15 -2284 ($ $ $)) (-15 -1568 ((-2 (|:| -1754 |t#1|) (|:| -3262 $) (|:| -4041 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-463)) (-15 -2486 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-373)) (PROGN (-6 (-316)) (-6 -4456) (-15 -2065 (|t#1| (-418 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (-15 -4388 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-782)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3763 (|has| |#1| (-1055 (-418 (-575)))) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 #2=(-1099)) . T) ((-627 |#1|) . T) ((-627 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-625 (-547)) -12 (|has| (-1099) (-625 (-547))) (|has| |#1| (-625 (-547)))) ((-625 (-904 (-389))) -12 (|has| (-1099) (-625 (-904 (-389)))) (|has| |#1| (-625 (-904 (-389))))) ((-625 (-904 (-575))) -12 (|has| (-1099) (-625 (-904 (-575)))) (|has| |#1| (-625 (-904 (-575))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-271 |#1|) . T) ((-295 (-418 $) (-418 $)) |has| |#1| (-567)) ((-295 |#1| |#1|) . T) ((-295 $ $) . T) ((-299) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-318 $) . T) ((-335 |#1| #0#) . T) ((-387 |#1|) . T) ((-422 |#1|) . T) ((-463) -3763 (|has| |#1| (-924)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-525 #2# |#1|) . T) ((-525 #2# $) . T) ((-525 $ $) . T) ((-567) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-657 #1#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) |has| |#1| (-38 (-418 (-575)))) ((-659 #3=(-575)) |has| |#1| (-650 (-575))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-650 #3#) |has| |#1| (-650 (-575))) ((-650 |#1|) . T) ((-728 #1#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2#) . T) ((-908 $ #4=(-1194)) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) . T) ((-913 (-1194)) |has| |#1| (-913 (-1194))) ((-915 #2#) . T) ((-915 #4#) -3763 (|has| |#1| (-915 (-1194))) (|has| |#1| (-913 (-1194)))) ((-898 (-389)) -12 (|has| (-1099) (-898 (-389))) (|has| |#1| (-898 (-389)))) ((-898 (-575)) -12 (|has| (-1099) (-898 (-575))) (|has| |#1| (-898 (-575)))) ((-964 |#1| #0# #2#) . T) ((-924) |has| |#1| (-924)) ((-935) |has| |#1| (-373)) ((-1055 (-418 (-575))) |has| |#1| (-1055 (-418 (-575)))) ((-1055 (-575)) |has| |#1| (-1055 (-575))) ((-1055 #2#) . T) ((-1055 |#1|) . T) ((-1068 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-924)) (|has| |#1| (-567)) (|has| |#1| (-463)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1169) |has| |#1| (-1169)) ((-1235) . T) ((-1239) |has| |#1| (-924)))
-((-1606 (((-655 (-1099)) $) 34)) (-4406 (($ $) 31)) (-2414 (($ |#2| |#3|) NIL) (($ $ (-1099) |#3|) 28) (($ $ (-655 (-1099)) (-655 |#3|)) 27)) (-4370 (($ $) 14)) (-4383 ((|#2| $) 12)) (-1753 ((|#3| $) 10)))
-(((-1262 |#1| |#2| |#3|) (-10 -8 (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -2414 (|#1| |#1| (-655 (-1099)) (-655 |#3|))) (-15 -2414 (|#1| |#1| (-1099) |#3|)) (-15 -4406 (|#1| |#1|)) (-15 -2414 (|#1| |#2| |#3|)) (-15 -1753 (|#3| |#1|)) (-15 -4370 (|#1| |#1|)) (-15 -4383 (|#2| |#1|))) (-1263 |#2| |#3|) (-1066) (-803)) (T -1262))
-NIL
-(-10 -8 (-15 -1606 ((-655 (-1099)) |#1|)) (-15 -2414 (|#1| |#1| (-655 (-1099)) (-655 |#3|))) (-15 -2414 (|#1| |#1| (-1099) |#3|)) (-15 -4406 (|#1| |#1|)) (-15 -2414 (|#1| |#2| |#3|)) (-15 -1753 (|#3| |#1|)) (-15 -4370 (|#1| |#1|)) (-15 -4383 (|#2| |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-3449 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3149 (((-1174 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2333 (((-112) $) 85)) (-3369 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-3900 (((-112) $) 35)) (-1752 (($ $ (-936)) 116)) (-3135 (((-112) $) 74)) (-2414 (($ |#1| |#2|) 73) (($ $ (-1099) |#2|) 88) (($ $ (-655 (-1099)) (-655 |#2|)) 87)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-1985 (($ $ |#2|) 110)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-3046 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2065 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1129)))) (-2382 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1753 ((|#2| $) 76)) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3002 ((|#1| $ |#2|) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-3493 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-1263 |#1| |#2|) (-141) (-1066) (-803)) (T -1263))
-((-3149 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-1174 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (-5 *2 (-1194)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3369 (*1 *2 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3449 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3449 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3493 (*1 *2 *1 *3) (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2882 (*2 (-1194)))) (-4 *2 (-1066)))) (-1985 (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))) (-3046 (*1 *2 *1 *3) (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1174 *3)))))
-(-13 (-990 |t#1| |t#2| (-1099)) (-295 |t#2| |t#1|) (-10 -8 (-15 -3149 ((-1174 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1441 ((-1194) $)) (-15 -1751 (|t#1| $)) (-15 -1752 ($ $ (-936))) (-15 -3369 (|t#2| $)) (-15 -3369 (|t#2| $ |t#2|)) (-15 -3449 ($ $ |t#2|)) (-15 -3449 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2882 (|t#1| (-1194)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3493 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1985 ($ $ |t#2|)) (IF (|has| |t#2| (-1129)) (-6 (-295 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-913 (-1194))) (-6 (-913 (-1194))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3046 ((-1174 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #0#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-295 |#2| |#1|) . T) ((-295 $ $) |has| |#2| (-1129)) ((-299) |has| |#1| (-567)) ((-567) |has| |#1| (-567)) ((-657 #0#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #0#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-908 $ #1=(-1194)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| |#2| (-1099)) . T) ((-1068 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #0#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1235) . T))
-((-3312 ((|#2| |#2|) 12)) (-4281 (((-429 |#2|) |#2|) 14)) (-2861 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575)))) 30)))
-(((-1264 |#1| |#2|) (-10 -7 (-15 -4281 ((-429 |#2|) |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -2861 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575)))))) (-567) (-13 (-1261 |#1|) (-567) (-10 -8 (-15 -3923 ($ $ $))))) (T -1264))
-((-2861 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-575)))) (-4 *4 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3923 ($ $ $))))) (-4 *3 (-567)) (-5 *1 (-1264 *3 *4)))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-567)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3923 ($ $ $))))))) (-4281 (*1 *2 *3) (-12 (-4 *4 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-1264 *4 *3)) (-4 *3 (-13 (-1261 *4) (-567) (-10 -8 (-15 -3923 ($ $ $))))))))
-(-10 -7 (-15 -4281 ((-429 |#2|) |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -2861 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-575))))))
-((-2544 (((-1270 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1270 |#1| |#3| |#5|)) 24)))
-(((-1265 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2544 ((-1270 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1270 |#1| |#3| |#5|)))) (-1066) (-1066) (-1194) (-1194) |#1| |#2|) (T -1265))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1270 *5 *7 *9)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1270 *6 *8 *10)) (-5 *1 (-1265 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1194)))))
-(-10 -7 (-15 -2544 ((-1270 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1270 |#1| |#3| |#5|))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) 113) (($ $ (-418 (-575)) (-418 (-575))) 112)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 119)) (-3921 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 177 (|has| |#1| (-373)))) (-4281 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2467 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3895 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) 186)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) 18 T CONST)) (-2800 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 171 (|has| |#1| (-373)))) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-3559 (((-112) $) 179 (|has| |#1| (-373)))) (-2333 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) 115) (((-418 (-575)) $ (-418 (-575))) 114)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) 116) (($ $ (-418 (-575))) 185)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-3135 (((-112) $) 74)) (-2414 (($ |#1| (-418 (-575))) 73) (($ $ (-1099) (-418 (-575))) 88) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) 87)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-3461 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3886 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-4264 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4388 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3763 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3923 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-2347 (((-429 $) $) 176 (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 173 (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) 110)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2663 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) 169 (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) 120) (($ $ $) 96 (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 170 (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-1753 (((-418 (-575)) $) 76)) (-1531 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-1266 |#1|) (-141) (-1066)) (T -1266))
-((-1873 (*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4)))) (-4 *4 (-1066)) (-4 *1 (-1266 *4)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1266 *3)) (-4 *3 (-1066)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) (-4388 (*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066)) (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) (-4 *3 (-38 (-418 (-575)))))) (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066)) (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) (|has| *3 (-15 -4388 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575)))))))))
-(-13 (-1263 |t#1| (-418 (-575))) (-10 -8 (-15 -1873 ($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |t#1|))))) (-15 -1752 ($ $ (-418 (-575)))) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $)) (IF (|has| |t#1| (-15 -4388 (|t#1| |t#1| (-1194)))) (IF (|has| |t#1| (-15 -1606 ((-655 (-1194)) |t#1|))) (-15 -4388 ($ $ (-1194))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1220)) (IF (|has| |t#1| (-974)) (IF (|has| |t#1| (-29 (-575))) (-15 -4388 ($ $ (-1194))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1019)) (-6 (-1220))) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-418 (-575))) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-418 (-575)) (-1129)) ((-299) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-373) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-728 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1263 |#1| #0#) . T))
-((-2045 (((-112) $) 12)) (-2443 (((-3 |#3| "failed") $) 17)) (-4400 ((|#3| $) 14)))
-(((-1267 |#1| |#2| |#3|) (-10 -8 (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -2045 ((-112) |#1|))) (-1268 |#2| |#3|) (-1066) (-1245 |#2|)) (T -1267))
-NIL
-(-10 -8 (-15 -2443 ((-3 |#3| "failed") |#1|)) (-15 -4400 (|#3| |#1|)) (-15 -2045 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) 113) (($ $ (-418 (-575)) (-418 (-575))) 112)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 119)) (-3921 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 177 (|has| |#1| (-373)))) (-4281 (((-429 $) $) 178 (|has| |#1| (-373)))) (-2467 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) 168 (|has| |#1| (-373)))) (-3895 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) 186)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#2| "failed") $) 197)) (-4400 ((|#2| $) 198)) (-2800 (($ $ $) 172 (|has| |#1| (-373)))) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-3344 (((-418 (-575)) $) 194)) (-2811 (($ $ $) 171 (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) |#2|) 195)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 166 (|has| |#1| (-373)))) (-3559 (((-112) $) 179 (|has| |#1| (-373)))) (-2333 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) 115) (((-418 (-575)) $ (-418 (-575))) 114)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) 116) (($ $ (-418 (-575))) 185)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 175 (|has| |#1| (-373)))) (-3135 (((-112) $) 74)) (-2414 (($ |#1| (-418 (-575))) 73) (($ $ (-1099) (-418 (-575))) 88) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) 87)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-3461 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-3886 (($ (-655 $)) 164 (|has| |#1| (-373))) (($ $ $) 163 (|has| |#1| (-373)))) (-3074 ((|#2| $) 193)) (-2531 (((-3 |#2| "failed") $) 191)) (-4301 ((|#2| $) 192)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 180 (|has| |#1| (-373)))) (-4388 (($ $) 184 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 183 (-3763 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 165 (|has| |#1| (-373)))) (-3923 (($ (-655 $)) 162 (|has| |#1| (-373))) (($ $ $) 161 (|has| |#1| (-373)))) (-2347 (((-429 $) $) 176 (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 173 (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) 110)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 167 (|has| |#1| (-373)))) (-2663 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) 169 (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) 120) (($ $ $) 96 (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 170 (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-1753 (((-418 (-575)) $) 76)) (-1531 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373))) (($ $ $) 182 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 181 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-1268 |#1| |#2|) (-141) (-1066) (-1245 |t#1|)) (T -1268))
-((-1753 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3)) (-5 *2 (-418 (-575))))) (-4311 (*1 *1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-4 *4 (-1066)) (-4 *1 (-1268 *4 *3)) (-4 *3 (-1245 *4)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3)) (-5 *2 (-418 (-575))))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))) (-2531 (*1 *2 *1) (|partial| -12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))))
-(-13 (-1266 |t#1|) (-1055 |t#2|) (-627 |t#2|) (-10 -8 (-15 -4311 ($ (-418 (-575)) |t#2|)) (-15 -3344 ((-418 (-575)) $)) (-15 -3074 (|t#2| $)) (-15 -1753 ((-418 (-575)) $)) (-15 -4301 (|t#2| $)) (-15 -2531 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-418 (-575))) . T) ((-25) . T) ((-38 #1=(-418 (-575))) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 |#2|) . T) ((-627 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) ((-248) |has| |#1| (-373)) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-418 (-575)) (-1129)) ((-299) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-316) |has| |#1| (-373)) ((-373) |has| |#1| (-373)) ((-463) |has| |#1| (-373)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-657 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-728 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373))) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-935) |has| |#1| (-373)) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1055 |#2|) . T) ((-1068 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1073 #1#) -3763 (|has| |#1| (-373)) (|has| |#1| (-38 (-418 (-575))))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-373)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1239) |has| |#1| (-373)) ((-1263 |#1| #0#) . T) ((-1266 |#1|) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 104)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) 116) (($ $ (-418 (-575)) (-418 (-575))) 118)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) 54)) (-3921 (($ $) 192 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 168 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) 188 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 164 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) 65)) (-1521 (($ $) 196 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 172 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL)) (-4400 ((|#2| $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) 85)) (-3344 (((-418 (-575)) $) 13)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) |#2|) 11)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2333 (((-112) $) 74)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) 113) (((-418 (-575)) $ (-418 (-575))) 114)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) 130) (($ $ (-418 (-575))) 128)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-418 (-575))) 33) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) 125)) (-3461 (($ $) 162 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3074 ((|#2| $) 12)) (-2531 (((-3 |#2| "failed") $) 44)) (-4301 ((|#2| $) 45)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) 101 (|has| |#1| (-373)))) (-4388 (($ $) 146 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 151 (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220)))))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) 122)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) 108) (($ $ $) 94 (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) 138 (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-1753 (((-418 (-575)) $) 16)) (-1531 (($ $) 198 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 174 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 194 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 170 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 190 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 166 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 120)) (-2882 (((-873) $) NIL) (($ (-575)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-418 (-575))) 139 (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) 107)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) 127 T CONST)) (-1751 ((|#1| $) 106)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) 204 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 180 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) 200 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 176 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 208 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 184 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 210 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 186 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 206 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 182 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 202 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 178 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 21 T CONST)) (-2005 (($) 17 T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))))) (-3913 (((-112) $ $) 72)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) 100 (|has| |#1| (-373)))) (-4027 (($ $) 142) (($ $ $) 78)) (-4015 (($ $ $) 76)) (** (($ $ (-936)) NIL) (($ $ (-782)) 82) (($ $ (-575)) 157 (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 158 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1269 |#1| |#2|) (-1268 |#1| |#2|) (-1066) (-1245 |#1|)) (T -1269))
-NIL
-(-1268 |#1| |#2|)
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 11)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) NIL (|has| |#1| (-567)))) (-3449 (($ $ (-418 (-575))) NIL) (($ $ (-418 (-575)) (-418 (-575))) NIL)) (-3149 (((-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|))) $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-3312 (($ $) NIL (|has| |#1| (-373)))) (-4281 (((-429 $) $) NIL (|has| |#1| (-373)))) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3599 (((-112) $ $) NIL (|has| |#1| (-373)))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-782) (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#1|)))) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1277 |#1| |#2| |#3|) "failed") $) 22)) (-4400 (((-1249 |#1| |#2| |#3|) $) NIL) (((-1277 |#1| |#2| |#3|) $) NIL)) (-2800 (($ $ $) NIL (|has| |#1| (-373)))) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-3344 (((-418 (-575)) $) 69)) (-2811 (($ $ $) NIL (|has| |#1| (-373)))) (-4311 (($ (-418 (-575)) (-1249 |#1| |#2| |#3|)) NIL)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) NIL (|has| |#1| (-373)))) (-3559 (((-112) $) NIL (|has| |#1| (-373)))) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-418 (-575)) $) NIL) (((-418 (-575)) $ (-418 (-575))) NIL)) (-3900 (((-112) $) NIL)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) NIL) (($ $ (-418 (-575))) NIL)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-418 (-575))) 30) (($ $ (-1099) (-418 (-575))) NIL) (($ $ (-655 (-1099)) (-655 (-418 (-575)))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-3886 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-3074 (((-1249 |#1| |#2| |#3|) $) 72)) (-2531 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL)) (-4301 (((-1249 |#1| |#2| |#3|) $) NIL)) (-4264 (((-1176) $) NIL)) (-4332 (($ $) NIL (|has| |#1| (-373)))) (-4388 (($ $) 39 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) NIL (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 40 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) NIL (|has| |#1| (-373)))) (-3923 (($ (-655 $)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-2347 (((-429 $) $) NIL (|has| |#1| (-373)))) (-3523 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-373))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) NIL (|has| |#1| (-373)))) (-1985 (($ $ (-418 (-575))) NIL)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2880 (((-3 (-655 $) "failed") (-655 $) $) NIL (|has| |#1| (-373)))) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))))) (-1720 (((-782) $) NIL (|has| |#1| (-373)))) (-2065 ((|#1| $ (-418 (-575))) NIL) (($ $ $) NIL (|has| (-418 (-575)) (-1129)))) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) NIL (|has| |#1| (-373)))) (-2382 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) 38)) (-1753 (((-418 (-575)) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) NIL)) (-2882 (((-873) $) 107) (($ (-575)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1249 |#1| |#2| |#3|)) 16) (($ (-1277 |#1| |#2| |#3|)) 17) (($ (-1281 |#2|)) 36) (($ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567)))) (-3002 ((|#1| $ (-418 (-575))) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 12)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-418 (-575))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-418 (-575))))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 32 T CONST)) (-2005 (($) 26 T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-418 (-575)) |#1|)))) (($ $ (-1281 |#2|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 34)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ (-575)) NIL (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1270 |#1| |#2| |#3|) (-13 (-1268 |#1| (-1249 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-1055 (-1277 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1270))
-((-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1270 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1268 |#1| (-1249 |#1| |#2| |#3|)) (-908 $ (-1281 |#2|)) (-1055 (-1277 |#1| |#2| |#3|)) (-627 (-1281 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 37)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL)) (-2456 (($ $) NIL)) (-3978 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 (-575) "failed") $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-575)))) (((-3 (-418 (-575)) "failed") $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-418 (-575))))) (((-3 (-1270 |#2| |#3| |#4|) "failed") $) 22)) (-4400 (((-575) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-575)))) (((-418 (-575)) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-1055 (-418 (-575))))) (((-1270 |#2| |#3| |#4|) $) NIL)) (-4406 (($ $) 41)) (-4162 (((-3 $ "failed") $) 27)) (-2379 (($ $) NIL (|has| (-1270 |#2| |#3| |#4|) (-463)))) (-4384 (($ $ (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|) $) NIL)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) 11)) (-3135 (((-112) $) NIL)) (-2414 (($ (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) 25)) (-3143 (((-328 |#2| |#3| |#4|) $) NIL)) (-1946 (($ (-1 (-328 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) $) NIL)) (-2544 (($ (-1 (-1270 |#2| |#3| |#4|) (-1270 |#2| |#3| |#4|)) $) NIL)) (-1918 (((-3 (-854 |#2|) "failed") $) 90)) (-4370 (($ $) NIL)) (-4383 (((-1270 |#2| |#3| |#4|) $) 20)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-4346 (((-112) $) NIL)) (-4353 (((-1270 |#2| |#3| |#4|) $) NIL)) (-2849 (((-3 $ "failed") $ (-1270 |#2| |#3| |#4|)) NIL (|has| (-1270 |#2| |#3| |#4|) (-567))) (((-3 $ "failed") $ $) NIL)) (-4013 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 |#2| |#3| |#4|)) (|:| |%expon| (-328 |#2| |#3| |#4|)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#2|)))))) (|:| |%type| (-1176))) "failed") $) 74)) (-1753 (((-328 |#2| |#3| |#4|) $) 17)) (-3696 (((-1270 |#2| |#3| |#4|) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-463)))) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ (-1270 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-418 (-575))) NIL (-3763 (|has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575)))) (|has| (-1270 |#2| |#3| |#4|) (-1055 (-418 (-575))))))) (-2212 (((-655 (-1270 |#2| |#3| |#4|)) $) NIL)) (-3002 (((-1270 |#2| |#3| |#4|) $ (-328 |#2| |#3| |#4|)) NIL)) (-1724 (((-3 $ "failed") $) NIL (|has| (-1270 |#2| |#3| |#4|) (-146)))) (-4421 (((-782)) NIL T CONST)) (-1982 (($ $ $ (-782)) NIL (|has| (-1270 |#2| |#3| |#4|) (-174)))) (-3685 (((-112) $ $) NIL)) (-3930 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ (-1270 |#2| |#3| |#4|)) NIL (|has| (-1270 |#2| |#3| |#4|) (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ (-1270 |#2| |#3| |#4|)) NIL) (($ (-1270 |#2| |#3| |#4|) $) NIL) (($ (-418 (-575)) $) NIL (|has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| (-1270 |#2| |#3| |#4|) (-38 (-418 (-575)))))))
-(((-1271 |#1| |#2| |#3| |#4|) (-13 (-335 (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) (-567) (-10 -8 (-15 -1918 ((-3 (-854 |#2|) "failed") $)) (-15 -4013 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 |#2| |#3| |#4|)) (|:| |%expon| (-328 |#2| |#3| |#4|)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#2|)))))) (|:| |%type| (-1176))) "failed") $)))) (-13 (-1055 (-575)) (-650 (-575)) (-463)) (-13 (-27) (-1220) (-441 |#1|)) (-1194) |#2|) (T -1271))
-((-1918 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *2 (-854 *4)) (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4))) (-4013 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 *4 *5 *6)) (|:| |%expon| (-328 *4 *5 *6)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4)))))) (|:| |%type| (-1176)))) (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194)) (-14 *6 *4))))
-(-13 (-335 (-1270 |#2| |#3| |#4|) (-328 |#2| |#3| |#4|)) (-567) (-10 -8 (-15 -1918 ((-3 (-854 |#2|) "failed") $)) (-15 -4013 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1270 |#2| |#3| |#4|)) (|:| |%expon| (-328 |#2| |#3| |#4|)) (|:| |%expTerms| (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| |#2|)))))) (|:| |%type| (-1176))) "failed") $))))
-((-4181 ((|#2| $) 34)) (-2987 ((|#2| $) 18)) (-3460 (($ $) 53)) (-3742 (($ $ (-575)) 85)) (-3133 (((-112) $ (-782)) 46)) (-2328 ((|#2| $ |#2|) 82)) (-2940 ((|#2| $ |#2|) 78)) (-3052 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3001 (($ $ (-655 $)) 81)) (-2975 ((|#2| $) 17)) (-1969 (($ $) NIL) (($ $ (-782)) 59)) (-1893 (((-655 $) $) 31)) (-2510 (((-112) $ $) 69)) (-3541 (((-112) $ (-782)) 45)) (-3218 (((-112) $ (-782)) 43)) (-1902 (((-112) $) 33)) (-3651 ((|#2| $) 25) (($ $ (-782)) 64)) (-2065 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3482 (((-112) $) 23)) (-3247 (($ $) 56)) (-1774 (($ $) 86)) (-3984 (((-782) $) 58)) (-1431 (($ $) 57)) (-1513 (($ $ $) 77) (($ |#2| $) NIL)) (-3620 (((-655 $) $) 32)) (-3913 (((-112) $ $) 67)) (-2869 (((-782) $) 52)))
-(((-1272 |#1| |#2|) (-10 -8 (-15 -3742 (|#1| |#1| (-575))) (-15 -3052 (|#2| |#1| "last" |#2|)) (-15 -2940 (|#2| |#1| |#2|)) (-15 -3052 (|#1| |#1| "rest" |#1|)) (-15 -3052 (|#2| |#1| "first" |#2|)) (-15 -1774 (|#1| |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -3984 ((-782) |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -2987 (|#2| |#1|)) (-15 -2975 (|#2| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3651 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "last")) (-15 -3651 (|#2| |#1|)) (-15 -1969 (|#1| |#1| (-782))) (-15 -2065 (|#1| |#1| "rest")) (-15 -1969 (|#1| |#1|)) (-15 -2065 (|#2| |#1| "first")) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -2328 (|#2| |#1| |#2|)) (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -3001 (|#1| |#1| (-655 |#1|))) (-15 -2510 ((-112) |#1| |#1|)) (-15 -3482 ((-112) |#1|)) (-15 -2065 (|#2| |#1| "value")) (-15 -4181 (|#2| |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -1893 ((-655 |#1|) |#1|)) (-15 -3620 ((-655 |#1|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782)))) (-1273 |#2|) (-1235)) (T -1272))
-NIL
-(-10 -8 (-15 -3742 (|#1| |#1| (-575))) (-15 -3052 (|#2| |#1| "last" |#2|)) (-15 -2940 (|#2| |#1| |#2|)) (-15 -3052 (|#1| |#1| "rest" |#1|)) (-15 -3052 (|#2| |#1| "first" |#2|)) (-15 -1774 (|#1| |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -3984 ((-782) |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -2987 (|#2| |#1|)) (-15 -2975 (|#2| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3651 (|#1| |#1| (-782))) (-15 -2065 (|#2| |#1| "last")) (-15 -3651 (|#2| |#1|)) (-15 -1969 (|#1| |#1| (-782))) (-15 -2065 (|#1| |#1| "rest")) (-15 -1969 (|#1| |#1|)) (-15 -2065 (|#2| |#1| "first")) (-15 -1513 (|#1| |#2| |#1|)) (-15 -1513 (|#1| |#1| |#1|)) (-15 -2328 (|#2| |#1| |#2|)) (-15 -3052 (|#2| |#1| "value" |#2|)) (-15 -3001 (|#1| |#1| (-655 |#1|))) (-15 -2510 ((-112) |#1| |#1|)) (-15 -3482 ((-112) |#1|)) (-15 -2065 (|#2| |#1| "value")) (-15 -4181 (|#2| |#1|)) (-15 -1902 ((-112) |#1|)) (-15 -1893 ((-655 |#1|) |#1|)) (-15 -3620 ((-655 |#1|) |#1|)) (-15 -3913 ((-112) |#1| |#1|)) (-15 -2869 ((-782) |#1|)) (-15 -3133 ((-112) |#1| (-782))) (-15 -3541 ((-112) |#1| (-782))) (-15 -3218 ((-112) |#1| (-782))))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-4181 ((|#1| $) 49)) (-2987 ((|#1| $) 66)) (-3460 (($ $) 68)) (-3742 (($ $ (-575)) 53 (|has| $ (-6 -4461)))) (-3133 (((-112) $ (-782)) 8)) (-2328 ((|#1| $ |#1|) 40 (|has| $ (-6 -4461)))) (-2089 (($ $ $) 57 (|has| $ (-6 -4461)))) (-2940 ((|#1| $ |#1|) 55 (|has| $ (-6 -4461)))) (-3055 ((|#1| $ |#1|) 59 (|has| $ (-6 -4461)))) (-3052 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4461))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4461))) (($ $ "rest" $) 56 (|has| $ (-6 -4461))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4461)))) (-3001 (($ $ (-655 $)) 42 (|has| $ (-6 -4461)))) (-2975 ((|#1| $) 67)) (-3261 (($) 7 T CONST)) (-1969 (($ $) 74) (($ $ (-782)) 72)) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-1893 (((-655 $) $) 51)) (-2510 (((-112) $ $) 43 (|has| |#1| (-1117)))) (-3541 (((-112) $ (-782)) 9)) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36)) (-3218 (((-112) $ (-782)) 10)) (-2476 (((-655 |#1|) $) 46)) (-1902 (((-112) $) 50)) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-3651 ((|#1| $) 71) (($ $ (-782)) 69)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 77) (($ $ (-782)) 75)) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-1816 (((-575) $ $) 45)) (-3482 (((-112) $) 47)) (-3247 (($ $) 63)) (-1774 (($ $) 60 (|has| $ (-6 -4461)))) (-3984 (((-782) $) 64)) (-1431 (($ $) 65)) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3076 (($ $) 13)) (-3357 (($ $ $) 62 (|has| $ (-6 -4461))) (($ $ |#1|) 61 (|has| $ (-6 -4461)))) (-1513 (($ $ $) 79) (($ |#1| $) 78)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3620 (((-655 $) $) 52)) (-2603 (((-112) $ $) 44 (|has| |#1| (-1117)))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1273 |#1|) (-141) (-1235)) (T -1273))
-((-1513 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1513 (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1955 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-1969 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3651 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1431 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))) (-3247 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3357 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3357 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-1774 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3055 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3052 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-2089 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3052 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))) (-2940 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3052 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))) (-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3)) (-4 *3 (-1235)))))
-(-13 (-1027 |t#1|) (-10 -8 (-15 -1513 ($ $ $)) (-15 -1513 ($ |t#1| $)) (-15 -1955 (|t#1| $)) (-15 -2065 (|t#1| $ "first")) (-15 -1955 ($ $ (-782))) (-15 -1969 ($ $)) (-15 -2065 ($ $ "rest")) (-15 -1969 ($ $ (-782))) (-15 -3651 (|t#1| $)) (-15 -2065 (|t#1| $ "last")) (-15 -3651 ($ $ (-782))) (-15 -3460 ($ $)) (-15 -2975 (|t#1| $)) (-15 -2987 (|t#1| $)) (-15 -1431 ($ $)) (-15 -3984 ((-782) $)) (-15 -3247 ($ $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3357 ($ $ $)) (-15 -3357 ($ $ |t#1|)) (-15 -1774 ($ $)) (-15 -3055 (|t#1| $ |t#1|)) (-15 -3052 (|t#1| $ "first" |t#1|)) (-15 -2089 ($ $ $)) (-15 -3052 ($ $ "rest" $)) (-15 -2940 (|t#1| $ |t#1|)) (-15 -3052 (|t#1| $ "last" |t#1|)) (-15 -3742 ($ $ (-575)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1117)) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-624 (-873)))) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-500 |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-1027 |#1|) . T) ((-1117) |has| |#1| (-1117)) ((-1235) . T))
-((-2544 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 (|#4| (-1 |#2| |#1|) |#3|))) (-1066) (-1066) (-1276 |#1|) (-1276 |#2|)) (T -1274))
-((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066)) (-4 *2 (-1276 *6)) (-5 *1 (-1274 *5 *6 *4 *2)) (-4 *4 (-1276 *5)))))
-(-10 -7 (-15 -2544 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2045 (((-112) $) 17)) (-3921 (($ $) 105)) (-3784 (($ $) 81)) (-3895 (($ $) 101)) (-3759 (($ $) 77)) (-1521 (($ $) 109)) (-3805 (($ $) 85)) (-3461 (($ $) 75)) (-2663 (($ $) 73)) (-1531 (($ $) 111)) (-3815 (($ $) 87)) (-3935 (($ $) 107)) (-3795 (($ $) 83)) (-3907 (($ $) 103)) (-3772 (($ $) 79)) (-2882 (((-873) $) 61) (($ (-575)) NIL) (($ (-418 (-575))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1569 (($ $) 117)) (-3850 (($ $) 93)) (-1544 (($ $) 113)) (-3826 (($ $) 89)) (-1593 (($ $) 121)) (-3871 (($ $) 97)) (-2912 (($ $) 123)) (-3883 (($ $) 99)) (-1583 (($ $) 119)) (-3861 (($ $) 95)) (-1554 (($ $) 115)) (-3837 (($ $) 91)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-418 (-575))) 71)))
-(((-1275 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -3784 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -2045 ((-112) |#1|)) (-15 -2882 ((-873) |#1|))) (-1276 |#2|) (-1066)) (T -1275))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-418 (-575)))) (-15 -3784 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3805 (|#1| |#1|)) (-15 -3815 (|#1| |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3861 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -1531 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -3895 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -1554 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -2912 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2882 (|#1| |#2|)) (-15 -2882 (|#1| |#1|)) (-15 -2882 (|#1| (-418 (-575)))) (-15 -2882 (|#1| (-575))) (-15 ** (|#1| |#1| (-782))) (-15 ** (|#1| |#1| (-936))) (-15 -2045 ((-112) |#1|)) (-15 -2882 ((-873) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1606 (((-655 (-1099)) $) 86)) (-1441 (((-1194) $) 118)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 63 (|has| |#1| (-567)))) (-2456 (($ $) 64 (|has| |#1| (-567)))) (-3978 (((-112) $) 66 (|has| |#1| (-567)))) (-3449 (($ $ (-782)) 113) (($ $ (-782) (-782)) 112)) (-3149 (((-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|))) $) 119)) (-3921 (($ $) 150 (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) 133 (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) 20)) (-2467 (($ $) 132 (|has| |#1| (-38 (-418 (-575)))))) (-3895 (($ $) 149 (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) 134 (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|)))) 170) (($ (-1174 |#1|)) 168)) (-1521 (($ $) 148 (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) 135 (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) 18 T CONST)) (-4406 (($ $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-3548 (($ $) 167)) (-2479 (((-967 |#1|) $ (-782)) 165) (((-967 |#1|) $ (-782) (-782)) 164)) (-2333 (((-112) $) 85)) (-1632 (($) 160 (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-782) $) 115) (((-782) $ (-782)) 114)) (-3900 (((-112) $) 35)) (-2111 (($ $ (-575)) 131 (|has| |#1| (-38 (-418 (-575)))))) (-1752 (($ $ (-936)) 116)) (-2691 (($ (-1 |#1| (-575)) $) 166)) (-3135 (((-112) $) 74)) (-2414 (($ |#1| (-782)) 73) (($ $ (-1099) (-782)) 88) (($ $ (-655 (-1099)) (-655 (-782))) 87)) (-2544 (($ (-1 |#1| |#1|) $) 75)) (-3461 (($ $) 157 (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) 77)) (-4383 ((|#1| $) 78)) (-4264 (((-1176) $) 10)) (-4388 (($ $) 162 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 161 (-3763 (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-974)) (|has| |#1| (-1220)) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-38 (-418 (-575)))))))) (-3912 (((-1137) $) 11)) (-1985 (($ $ (-782)) 110)) (-2849 (((-3 $ "failed") $ $) 62 (|has| |#1| (-567)))) (-2663 (($ $) 158 (|has| |#1| (-38 (-418 (-575)))))) (-3046 (((-1174 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-782)))))) (-2065 ((|#1| $ (-782)) 120) (($ $ $) 96 (|has| (-782) (-1129)))) (-2382 (($ $ (-1194)) 108 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194))) 106 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-1194) (-782)) 105 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 104 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) 98 (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (-1753 (((-782) $) 76)) (-1531 (($ $) 147 (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) 136 (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) 146 (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) 137 (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) 145 (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) 138 (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 84)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ (-418 (-575))) 69 (|has| |#1| (-38 (-418 (-575))))) (($ $) 61 (|has| |#1| (-567))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2212 (((-1174 |#1|) $) 169)) (-3002 ((|#1| $ (-782)) 71)) (-1724 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4421 (((-782)) 32 T CONST)) (-1751 ((|#1| $) 117)) (-3685 (((-112) $ $) 9)) (-1569 (($ $) 156 (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) 144 (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) 65 (|has| |#1| (-567)))) (-1544 (($ $) 155 (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) 143 (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) 154 (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) 142 (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-782)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-782)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) 153 (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) 141 (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) 152 (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) 140 (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) 139 (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3428 (($ $ (-1194)) 107 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194))) 103 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-1194) (-782)) 102 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $ (-655 (-1194)) (-655 (-782))) 101 (-12 (|has| |#1| (-913 (-1194))) (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) 97 (|has| |#1| (-15 * (|#1| (-782) |#1|))))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 70 (|has| |#1| (-373)))) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ |#1|) 163 (|has| |#1| (-373))) (($ $ $) 159 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 130 (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-418 (-575)) $) 68 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) 67 (|has| |#1| (-38 (-418 (-575)))))))
-(((-1276 |#1|) (-141) (-1066)) (T -1276))
-((-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 (-2 (|:| |k| (-782)) (|:| |c| *3)))) (-4 *3 (-1066)) (-4 *1 (-1276 *3)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-5 *2 (-1174 *3)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-4 *1 (-1276 *3)))) (-3548 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)))) (-2691 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1276 *3)) (-4 *3 (-1066)))) (-2479 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066)) (-5 *2 (-967 *4)))) (-2479 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066)) (-5 *2 (-967 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575)))))) (-4388 (*1 *1 *1 *2) (-3763 (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220)) (-4 *3 (-38 (-418 (-575)))))) (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-12 (|has| *3 (-15 -1606 ((-655 *2) *3))) (|has| *3 (-15 -4388 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575)))))))))
-(-13 (-1263 |t#1| (-782)) (-10 -8 (-15 -1873 ($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |t#1|))))) (-15 -2212 ((-1174 |t#1|) $)) (-15 -1873 ($ (-1174 |t#1|))) (-15 -3548 ($ $)) (-15 -2691 ($ (-1 |t#1| (-575)) $)) (-15 -2479 ((-967 |t#1|) $ (-782))) (-15 -2479 ((-967 |t#1|) $ (-782) (-782))) (IF (|has| |t#1| (-373)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-418 (-575)))) (PROGN (-15 -4388 ($ $)) (IF (|has| |t#1| (-15 -4388 (|t#1| |t#1| (-1194)))) (IF (|has| |t#1| (-15 -1606 ((-655 (-1194)) |t#1|))) (-15 -4388 ($ $ (-1194))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1220)) (IF (|has| |t#1| (-974)) (IF (|has| |t#1| (-29 (-575))) (-15 -4388 ($ $ (-1194))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1019)) (-6 (-1220))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-782)) . T) ((-25) . T) ((-38 #1=(-418 (-575))) |has| |#1| (-38 (-418 (-575)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-567)) ((-35) |has| |#1| (-38 (-418 (-575)))) ((-95) |has| |#1| (-38 (-418 (-575)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-418 (-575)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-627 #1#) |has| |#1| (-38 (-418 (-575)))) ((-627 (-575)) . T) ((-627 |#1|) |has| |#1| (-174)) ((-627 $) |has| |#1| (-567)) ((-624 (-873)) . T) ((-174) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-782) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-782) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-782) |#1|))) ((-293) |has| |#1| (-38 (-418 (-575)))) ((-295 #0# |#1|) . T) ((-295 $ $) |has| (-782) (-1129)) ((-299) |has| |#1| (-567)) ((-504) |has| |#1| (-38 (-418 (-575)))) ((-567) |has| |#1| (-567)) ((-657 #1#) |has| |#1| (-38 (-418 (-575)))) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #1#) |has| |#1| (-38 (-418 (-575)))) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #1#) |has| |#1| (-38 (-418 (-575)))) ((-651 |#1|) |has| |#1| (-174)) ((-651 $) |has| |#1| (-567)) ((-728 #1#) |has| |#1| (-38 (-418 (-575)))) ((-728 |#1|) |has| |#1| (-174)) ((-728 $) |has| |#1| (-567)) ((-737) . T) ((-908 $ #2=(-1194)) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))) ((-913 #2#) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194)))) ((-990 |#1| #0# (-1099)) . T) ((-1019) |has| |#1| (-38 (-418 (-575)))) ((-1068 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1068 |#1|) . T) ((-1068 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1073 #1#) |has| |#1| (-38 (-418 (-575)))) ((-1073 |#1|) . T) ((-1073 $) -3763 (|has| |#1| (-567)) (|has| |#1| (-174))) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1220) |has| |#1| (-38 (-418 (-575)))) ((-1223) |has| |#1| (-38 (-418 (-575)))) ((-1235) . T) ((-1263 |#1| #0#) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1606 (((-655 (-1099)) $) NIL)) (-1441 (((-1194) $) 90)) (-2891 (((-1258 |#2| |#1|) $ (-782)) 73)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) NIL (|has| |#1| (-567)))) (-2456 (($ $) NIL (|has| |#1| (-567)))) (-3978 (((-112) $) 142 (|has| |#1| (-567)))) (-3449 (($ $ (-782)) 127) (($ $ (-782) (-782)) 130)) (-3149 (((-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|))) $) 43)) (-3921 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3784 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1708 (((-3 $ "failed") $ $) NIL)) (-2467 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3895 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3759 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1873 (($ (-1174 (-2 (|:| |k| (-782)) (|:| |c| |#1|)))) 52) (($ (-1174 |#1|)) NIL)) (-1521 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3805 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3261 (($) NIL T CONST)) (-2330 (($ $) 134)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-3548 (($ $) 140)) (-2479 (((-967 |#1|) $ (-782)) 63) (((-967 |#1|) $ (-782) (-782)) 65)) (-2333 (((-112) $) NIL)) (-1632 (($) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3369 (((-782) $) NIL) (((-782) $ (-782)) NIL)) (-3900 (((-112) $) NIL)) (-2875 (($ $) 117)) (-2111 (($ $ (-575)) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3367 (($ (-575) (-575) $) 136)) (-1752 (($ $ (-936)) 139)) (-2691 (($ (-1 |#1| (-575)) $) 111)) (-3135 (((-112) $) NIL)) (-2414 (($ |#1| (-782)) 16) (($ $ (-1099) (-782)) NIL) (($ $ (-655 (-1099)) (-655 (-782))) NIL)) (-2544 (($ (-1 |#1| |#1|) $) 98)) (-3461 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4370 (($ $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-1391 (($ $) 115)) (-2143 (($ $) 113)) (-3530 (($ (-575) (-575) $) 138)) (-4388 (($ $) 150 (|has| |#1| (-38 (-418 (-575))))) (($ $ (-1194)) 156 (-3763 (-12 (|has| |#1| (-15 -4388 (|#1| |#1| (-1194)))) (|has| |#1| (-15 -1606 ((-655 (-1194)) |#1|))) (|has| |#1| (-38 (-418 (-575))))) (-12 (|has| |#1| (-29 (-575))) (|has| |#1| (-38 (-418 (-575)))) (|has| |#1| (-974)) (|has| |#1| (-1220))))) (($ $ (-1281 |#2|)) 151 (|has| |#1| (-38 (-418 (-575)))))) (-3912 (((-1137) $) NIL)) (-3379 (($ $ (-575) (-575)) 121)) (-1985 (($ $ (-782)) 123)) (-2849 (((-3 $ "failed") $ $) NIL (|has| |#1| (-567)))) (-2663 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-4221 (($ $) 119)) (-3046 (((-1174 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-782)))))) (-2065 ((|#1| $ (-782)) 95) (($ $ $) 132 (|has| (-782) (-1129)))) (-2382 (($ $ (-1194)) 108 (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-1281 |#2|)) 103)) (-1753 (((-782) $) NIL)) (-1531 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3815 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3935 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3795 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3772 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3575 (($ $) 125)) (-2882 (((-873) $) NIL) (($ (-575)) 26) (($ (-418 (-575))) 148 (|has| |#1| (-38 (-418 (-575))))) (($ $) NIL (|has| |#1| (-567))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1258 |#2| |#1|)) 81) (($ (-1281 |#2|)) 22)) (-2212 (((-1174 |#1|) $) NIL)) (-3002 ((|#1| $ (-782)) 94)) (-1724 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4421 (((-782)) NIL T CONST)) (-1751 ((|#1| $) 91)) (-3685 (((-112) $ $) NIL)) (-1569 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3930 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1544 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1593 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3493 ((|#1| $ (-782)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-782)))) (|has| |#1| (-15 -2882 (|#1| (-1194))))))) (-2912 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1583 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3861 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1554 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-418 (-575)))))) (-1989 (($) 18 T CONST)) (-2005 (($) 13 T CONST)) (-3428 (($ $ (-1194)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-1194) (-782)) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $ (-655 (-1194)) (-655 (-782))) NIL (-12 (|has| |#1| (-15 * (|#1| (-782) |#1|))) (|has| |#1| (-913 (-1194))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-782)) NIL (|has| |#1| (-15 * (|#1| (-782) |#1|)))) (($ $ (-1281 |#2|)) NIL)) (-3913 (((-112) $ $) NIL)) (-4038 (($ $ |#1|) NIL (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) 107)) (-4015 (($ $ $) 20)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL) (($ $ |#1|) 145 (|has| |#1| (-373))) (($ $ $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-418 (-575)) $) NIL (|has| |#1| (-38 (-418 (-575))))) (($ $ (-418 (-575))) NIL (|has| |#1| (-38 (-418 (-575)))))))
-(((-1277 |#1| |#2| |#3|) (-13 (-1276 |#1|) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1258 |#2| |#1|))) (-15 -2891 ((-1258 |#2| |#1|) $ (-782))) (-15 -2882 ($ (-1281 |#2|))) (-15 -2143 ($ $)) (-15 -1391 ($ $)) (-15 -2875 ($ $)) (-15 -4221 ($ $)) (-15 -3379 ($ $ (-575) (-575))) (-15 -2330 ($ $)) (-15 -3367 ($ (-575) (-575) $)) (-15 -3530 ($ (-575) (-575) $)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|))) (-1066) (-1194) |#1|) (T -1277))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3) (-5 *1 (-1277 *3 *4 *5)))) (-2891 (*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1277 *4 *5 *6)) (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *5 *3))) (-2143 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-1391 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-2875 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-4221 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-3379 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3))) (-2330 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194)) (-14 *4 *2))) (-3367 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3))) (-3530 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194)) (-14 *5 *3))) (-4388 (*1 *1 *1 *2) (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(-13 (-1276 |#1|) (-908 $ (-1281 |#2|)) (-10 -8 (-15 -2882 ($ (-1258 |#2| |#1|))) (-15 -2891 ((-1258 |#2| |#1|) $ (-782))) (-15 -2882 ($ (-1281 |#2|))) (-15 -2143 ($ $)) (-15 -1391 ($ $)) (-15 -2875 ($ $)) (-15 -4221 ($ $)) (-15 -3379 ($ $ (-575) (-575))) (-15 -2330 ($ $)) (-15 -3367 ($ (-575) (-575) $)) (-15 -3530 ($ (-575) (-575) $)) (IF (|has| |#1| (-38 (-418 (-575)))) (-15 -4388 ($ $ (-1281 |#2|))) |%noBranch|)))
-((-3669 (((-1 (-1174 |#1|) (-655 (-1174 |#1|))) (-1 |#2| (-655 |#2|))) 24)) (-2185 (((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2276 (((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|)) 13)) (-1973 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1406 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3701 ((|#2| (-1 |#2| (-655 |#2|)) (-655 |#1|)) 60)) (-2923 (((-655 |#2|) (-655 |#1|) (-655 (-1 |#2| (-655 |#2|)))) 66)) (-3778 ((|#2| |#2| |#2|) 43)))
-(((-1278 |#1| |#2|) (-10 -7 (-15 -2276 ((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|))) (-15 -2185 ((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3669 ((-1 (-1174 |#1|) (-655 (-1174 |#1|))) (-1 |#2| (-655 |#2|)))) (-15 -3778 (|#2| |#2| |#2|)) (-15 -1406 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1973 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3701 (|#2| (-1 |#2| (-655 |#2|)) (-655 |#1|))) (-15 -2923 ((-655 |#2|) (-655 |#1|) (-655 (-1 |#2| (-655 |#2|)))))) (-38 (-418 (-575))) (-1276 |#1|)) (T -1278))
-((-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 (-1 *6 (-655 *6)))) (-4 *5 (-38 (-418 (-575)))) (-4 *6 (-1276 *5)) (-5 *2 (-655 *6)) (-5 *1 (-1278 *5 *6)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-655 *2))) (-5 *4 (-655 *5)) (-4 *5 (-38 (-418 (-575)))) (-4 *2 (-1276 *5)) (-5 *1 (-1278 *5 *2)))) (-1973 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2)) (-4 *4 (-38 (-418 (-575)))))) (-1406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2)) (-4 *4 (-38 (-418 (-575)))))) (-3778 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1278 *3 *2)) (-4 *2 (-1276 *3)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-655 *5))) (-4 *5 (-1276 *4)) (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-655 (-1174 *4)))) (-5 *1 (-1278 *4 *5)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1276 *4)) (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-1174 *4) (-1174 *4))) (-5 *1 (-1278 *4 *5)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1276 *4)) (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1278 *4 *5)))))
-(-10 -7 (-15 -2276 ((-1 (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2|))) (-15 -2185 ((-1 (-1174 |#1|) (-1174 |#1|) (-1174 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3669 ((-1 (-1174 |#1|) (-655 (-1174 |#1|))) (-1 |#2| (-655 |#2|)))) (-15 -3778 (|#2| |#2| |#2|)) (-15 -1406 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1973 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3701 (|#2| (-1 |#2| (-655 |#2|)) (-655 |#1|))) (-15 -2923 ((-655 |#2|) (-655 |#1|) (-655 (-1 |#2| (-655 |#2|))))))
-((-3678 ((|#2| |#4| (-782)) 31)) (-2930 ((|#4| |#2|) 26)) (-4325 ((|#4| (-418 |#2|)) 49 (|has| |#1| (-567)))) (-4305 (((-1 |#4| (-655 |#4|)) |#3|) 43)))
-(((-1279 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2930 (|#4| |#2|)) (-15 -3678 (|#2| |#4| (-782))) (-15 -4305 ((-1 |#4| (-655 |#4|)) |#3|)) (IF (|has| |#1| (-567)) (-15 -4325 (|#4| (-418 |#2|))) |%noBranch|)) (-1066) (-1261 |#1|) (-667 |#2|) (-1276 |#1|)) (T -1279))
-((-4325 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-567)) (-4 *4 (-1066)) (-4 *2 (-1276 *4)) (-5 *1 (-1279 *4 *5 *6 *2)) (-4 *6 (-667 *5)))) (-4305 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *5 (-1261 *4)) (-5 *2 (-1 *6 (-655 *6))) (-5 *1 (-1279 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-1276 *4)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-1279 *5 *2 *6 *3)) (-4 *6 (-667 *2)) (-4 *3 (-1276 *5)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-1066)) (-4 *3 (-1261 *4)) (-4 *2 (-1276 *4)) (-5 *1 (-1279 *4 *3 *5 *2)) (-4 *5 (-667 *3)))))
-(-10 -7 (-15 -2930 (|#4| |#2|)) (-15 -3678 (|#2| |#4| (-782))) (-15 -4305 ((-1 |#4| (-655 |#4|)) |#3|)) (IF (|has| |#1| (-567)) (-15 -4325 (|#4| (-418 |#2|))) |%noBranch|))
-NIL
-(((-1280) (-141)) (T -1280))
-NIL
-(-13 (-10 -7 (-6 -3457)))
-((-2859 (((-112) $ $) NIL)) (-1441 (((-1194)) 12)) (-4264 (((-1176) $) 18)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 11) (((-1194) $) 8)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 15)))
-(((-1281 |#1|) (-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -2882 ((-1194) $)) (-15 -1441 ((-1194))))) (-1194)) (T -1281))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2))) (-1441 (*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2))))
-(-13 (-1117) (-624 (-1194)) (-10 -8 (-15 -2882 ((-1194) $)) (-15 -1441 ((-1194)))))
-((-2878 (($ (-782)) 19)) (-4056 (((-700 |#2|) $ $) 41)) (-2405 ((|#2| $) 51)) (-1840 ((|#2| $) 50)) (-2988 ((|#2| $ $) 36)) (-2969 (($ $ $) 47)) (-4027 (($ $) 23) (($ $ $) 29)) (-4015 (($ $ $) 15)) (* (($ (-575) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1282 |#1| |#2|) (-10 -8 (-15 -2405 (|#2| |#1|)) (-15 -1840 (|#2| |#1|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -4056 ((-700 |#2|) |#1| |#1|)) (-15 -2988 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 -2878 (|#1| (-782))) (-15 -4015 (|#1| |#1| |#1|))) (-1283 |#2|) (-1235)) (T -1282))
-NIL
-(-10 -8 (-15 -2405 (|#2| |#1|)) (-15 -1840 (|#2| |#1|)) (-15 -2969 (|#1| |#1| |#1|)) (-15 -4056 ((-700 |#2|) |#1| |#1|)) (-15 -2988 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-575) |#1|)) (-15 -4027 (|#1| |#1| |#1|)) (-15 -4027 (|#1| |#1|)) (-15 -2878 (|#1| (-782))) (-15 -4015 (|#1| |#1| |#1|)))
-((-2859 (((-112) $ $) 19 (|has| |#1| (-1117)))) (-2878 (($ (-782)) 115 (|has| |#1| (-23)))) (-4116 (((-1290) $ (-575) (-575)) 41 (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4461))) (($ $) 91 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4461))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) 8)) (-3052 ((|#1| $ (-575) |#1|) 53 (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) 60 (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4460)))) (-3261 (($) 7 T CONST)) (-3086 (($ $) 93 (|has| $ (-6 -4461)))) (-4380 (($ $) 103)) (-4070 (($ $) 80 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-3631 (($ |#1| $) 79 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) 54 (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) 52)) (-2630 (((-575) (-1 (-112) |#1|) $) 100) (((-575) |#1| $) 99 (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) 98 (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) 31 (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) 108 (|has| |#1| (-1066)))) (-2303 (($ (-782) |#1|) 70)) (-3541 (((-112) $ (-782)) 9)) (-2569 (((-575) $) 44 (|has| (-575) (-861)))) (-1914 (($ $ $) 90 (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) 30 (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2263 (((-575) $) 45 (|has| (-575) (-861)))) (-3503 (($ $ $) 89 (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2405 ((|#1| $) 105 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-3218 (((-112) $ (-782)) 10)) (-1840 ((|#1| $) 106 (-12 (|has| |#1| (-1066)) (|has| |#1| (-1019))))) (-4264 (((-1176) $) 22 (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) 62) (($ $ $ (-575)) 61)) (-1653 (((-655 (-575)) $) 47)) (-1801 (((-112) (-575) $) 48)) (-3912 (((-1137) $) 21 (|has| |#1| (-1117)))) (-1955 ((|#1| $) 43 (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1652 (($ $ |#1|) 42 (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) 27 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) 26 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) 24 (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) 14)) (-3808 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) 49)) (-2017 (((-112) $) 11)) (-1393 (($) 12)) (-2065 ((|#1| $ (-575) |#1|) 51) ((|#1| $ (-575)) 50) (($ $ (-1252 (-575))) 71)) (-2988 ((|#1| $ $) 109 (|has| |#1| (-1066)))) (-3237 (($ $ (-575)) 64) (($ $ (-1252 (-575))) 63)) (-2969 (($ $ $) 107 (|has| |#1| (-1066)))) (-3922 (((-782) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4460))) (((-782) |#1| $) 29 (-12 (|has| |#1| (-1117)) (|has| $ (-6 -4460))))) (-2617 (($ $ $ (-575)) 94 (|has| $ (-6 -4461)))) (-3076 (($ $) 13)) (-2613 (((-547) $) 81 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 72)) (-1513 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-655 $)) 66)) (-2882 (((-873) $) 18 (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) 23 (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) 87 (|has| |#1| (-861)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-861)))) (-3913 (((-112) $ $) 20 (|has| |#1| (-1117)))) (-3967 (((-112) $ $) 88 (|has| |#1| (-861)))) (-3940 (((-112) $ $) 85 (|has| |#1| (-861)))) (-4027 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4015 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-575) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-737))) (($ $ |#1|) 110 (|has| |#1| (-737)))) (-2869 (((-782) $) 6 (|has| $ (-6 -4460)))))
-(((-1283 |#1|) (-141) (-1235)) (T -1283))
-((-4015 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-25)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1283 *3)) (-4 *3 (-23)) (-4 *3 (-1235)))) (-4027 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21)))) (-4027 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737)))) (-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))) (-4056 (*1 *2 *1 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-1066)) (-5 *2 (-700 *3)))) (-2969 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019)) (-4 *2 (-1066)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019)) (-4 *2 (-1066)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4015 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2878 ($ (-782))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4027 ($ $)) (-15 -4027 ($ $ $)) (-15 * ($ (-575) $))) |%noBranch|) (IF (|has| |t#1| (-737)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1066)) (PROGN (-15 -2988 (|t#1| $ $)) (-15 -4056 ((-700 |t#1|) $ $)) (-15 -2969 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1019)) (IF (|has| |t#1| (-1066)) (PROGN (-15 -1840 (|t#1| $)) (-15 -2405 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-624 (-873)) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861)) (|has| |#1| (-624 (-873)))) ((-152 |#1|) . T) ((-625 (-547)) |has| |#1| (-625 (-547))) ((-295 #0=(-575) |#1|) . T) ((-295 (-1252 (-575)) $) . T) ((-297 #0# |#1|) . T) ((-318 |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-383 |#1|) . T) ((-500 |#1|) . T) ((-615 #0# |#1|) . T) ((-525 |#1| |#1|) -12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))) ((-662 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-1117) -3763 (|has| |#1| (-1117)) (|has| |#1| (-861))) ((-1235) . T))
-((-3436 (((-1285 |#2|) (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|) 13)) (-2302 ((|#2| (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|) 15)) (-2544 (((-3 (-1285 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1285 |#1|)) 30) (((-1285 |#2|) (-1 |#2| |#1|) (-1285 |#1|)) 18)))
-(((-1284 |#1| |#2|) (-10 -7 (-15 -3436 ((-1285 |#2|) (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2544 ((-1285 |#2|) (-1 |#2| |#1|) (-1285 |#1|))) (-15 -2544 ((-3 (-1285 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1285 |#1|)))) (-1235) (-1235)) (T -1284))
-((-2544 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1285 *6)) (-5 *1 (-1284 *5 *6)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1285 *6)) (-5 *1 (-1284 *5 *6)))) (-2302 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1285 *5)) (-4 *5 (-1235)) (-4 *2 (-1235)) (-5 *1 (-1284 *5 *2)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1285 *6)) (-4 *6 (-1235)) (-4 *5 (-1235)) (-5 *2 (-1285 *5)) (-5 *1 (-1284 *6 *5)))))
-(-10 -7 (-15 -3436 ((-1285 |#2|) (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2302 (|#2| (-1 |#2| |#1| |#2|) (-1285 |#1|) |#2|)) (-15 -2544 ((-1285 |#2|) (-1 |#2| |#1|) (-1285 |#1|))) (-15 -2544 ((-3 (-1285 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1285 |#1|))))
-((-2859 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-2878 (($ (-782)) NIL (|has| |#1| (-23)))) (-2371 (($ (-655 |#1|)) 11)) (-4116 (((-1290) $ (-575) (-575)) NIL (|has| $ (-6 -4461)))) (-1905 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-861)))) (-3175 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4461))) (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-861))))) (-2025 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-861)))) (-3133 (((-112) $ (-782)) NIL)) (-3052 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461))) ((|#1| $ (-1252 (-575)) |#1|) NIL (|has| $ (-6 -4461)))) (-3983 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3261 (($) NIL T CONST)) (-3086 (($ $) NIL (|has| $ (-6 -4461)))) (-4380 (($ $) NIL)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-3631 (($ |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-2302 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4460))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4460)))) (-2857 ((|#1| $ (-575) |#1|) NIL (|has| $ (-6 -4461)))) (-2786 ((|#1| $ (-575)) NIL)) (-2630 (((-575) (-1 (-112) |#1|) $) NIL) (((-575) |#1| $) NIL (|has| |#1| (-1117))) (((-575) |#1| $ (-575)) NIL (|has| |#1| (-1117)))) (-3999 (((-655 |#1|) $) 16 (|has| $ (-6 -4460)))) (-4056 (((-700 |#1|) $ $) NIL (|has| |#1| (-1066)))) (-2303 (($ (-782) |#1|) NIL)) (-3541 (((-112) $ (-782)) NIL)) (-2569 (((-575) $) NIL (|has| (-575) (-861)))) (-1914 (($ $ $) NIL (|has| |#1| (-861)))) (-4167 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-861)))) (-4252 (((-655 |#1|) $) NIL (|has| $ (-6 -4460)))) (-1322 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2263 (((-575) $) 12 (|has| (-575) (-861)))) (-3503 (($ $ $) NIL (|has| |#1| (-861)))) (-2844 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2405 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-3218 (((-112) $ (-782)) NIL)) (-1840 ((|#1| $) NIL (-12 (|has| |#1| (-1019)) (|has| |#1| (-1066))))) (-4264 (((-1176) $) NIL (|has| |#1| (-1117)))) (-2129 (($ |#1| $ (-575)) NIL) (($ $ $ (-575)) NIL)) (-1653 (((-655 (-575)) $) NIL)) (-1801 (((-112) (-575) $) NIL)) (-3912 (((-1137) $) NIL (|has| |#1| (-1117)))) (-1955 ((|#1| $) NIL (|has| (-575) (-861)))) (-1540 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1652 (($ $ |#1|) NIL (|has| $ (-6 -4461)))) (-2718 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 (-303 |#1|))) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-303 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117)))) (($ $ (-655 |#1|) (-655 |#1|)) NIL (-12 (|has| |#1| (-318 |#1|)) (|has| |#1| (-1117))))) (-2391 (((-112) $ $) NIL)) (-3808 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2697 (((-655 |#1|) $) NIL)) (-2017 (((-112) $) NIL)) (-1393 (($) NIL)) (-2065 ((|#1| $ (-575) |#1|) NIL) ((|#1| $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-2988 ((|#1| $ $) NIL (|has| |#1| (-1066)))) (-3237 (($ $ (-575)) NIL) (($ $ (-1252 (-575))) NIL)) (-2969 (($ $ $) NIL (|has| |#1| (-1066)))) (-3922 (((-782) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460))) (((-782) |#1| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#1| (-1117))))) (-2617 (($ $ $ (-575)) NIL (|has| $ (-6 -4461)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) 20 (|has| |#1| (-625 (-547))))) (-2893 (($ (-655 |#1|)) 10)) (-1513 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-655 $)) NIL)) (-2882 (((-873) $) NIL (|has| |#1| (-624 (-873))))) (-3685 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-4121 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4460)))) (-3980 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3913 (((-112) $ $) NIL (|has| |#1| (-1117)))) (-3967 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3940 (((-112) $ $) NIL (|has| |#1| (-861)))) (-4027 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4015 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-575) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-737))) (($ $ |#1|) NIL (|has| |#1| (-737)))) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1285 |#1|) (-13 (-1283 |#1|) (-10 -8 (-15 -2371 ($ (-655 |#1|))))) (-1235)) (T -1285))
-((-2371 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1285 *3)))))
-(-13 (-1283 |#1|) (-10 -8 (-15 -2371 ($ (-655 |#1|)))))
-((-2859 (((-112) $ $) NIL)) (-3041 (((-1176) $ (-1176)) 107) (((-1176) $ (-1176) (-1176)) 105) (((-1176) $ (-1176) (-655 (-1176))) 104)) (-1460 (($) 69)) (-2565 (((-1290) $ (-479) (-936)) 54)) (-2490 (((-1290) $ (-936) (-1176)) 89) (((-1290) $ (-936) (-885)) 90)) (-3531 (((-1290) $ (-936) (-389) (-389)) 57)) (-2482 (((-1290) $ (-1176)) 84)) (-1427 (((-1290) $ (-936) (-1176)) 94)) (-4283 (((-1290) $ (-936) (-389) (-389)) 58)) (-2388 (((-1290) $ (-936) (-936)) 55)) (-3015 (((-1290) $) 85)) (-3079 (((-1290) $ (-936) (-1176)) 93)) (-1693 (((-1290) $ (-479) (-936)) 41)) (-2499 (((-1290) $ (-936) (-1176)) 92)) (-1615 (((-655 (-269)) $) 29) (($ $ (-655 (-269))) 30)) (-3771 (((-1290) $ (-782) (-782)) 52)) (-1950 (($ $) 70) (($ (-479) (-655 (-269))) 71)) (-4264 (((-1176) $) NIL)) (-4169 (((-575) $) 48)) (-3912 (((-1137) $) NIL)) (-4392 (((-1285 (-3 (-479) "undefined")) $) 47)) (-3110 (((-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2499 (-575)) (|:| -4179 (-575)) (|:| |spline| (-575)) (|:| -3454 (-575)) (|:| |axesColor| (-885)) (|:| -2490 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575)))) $) 46)) (-3434 (((-1290) $ (-936) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-885) (-575) (-885) (-575)) 83)) (-2968 (((-655 (-958 (-227))) $) NIL)) (-1576 (((-479) $ (-936)) 43)) (-1546 (((-1290) $ (-782) (-782) (-936) (-936)) 50)) (-4028 (((-1290) $ (-1176)) 95)) (-4179 (((-1290) $ (-936) (-1176)) 91)) (-2882 (((-873) $) 102)) (-2454 (((-1290) $) 96)) (-3685 (((-112) $ $) NIL)) (-3454 (((-1290) $ (-936) (-1176)) 87) (((-1290) $ (-936) (-885)) 88)) (-3913 (((-112) $ $) NIL)))
-(((-1286) (-13 (-1117) (-10 -8 (-15 -2968 ((-655 (-958 (-227))) $)) (-15 -1460 ($)) (-15 -1950 ($ $)) (-15 -1615 ((-655 (-269)) $)) (-15 -1615 ($ $ (-655 (-269)))) (-15 -1950 ($ (-479) (-655 (-269)))) (-15 -3434 ((-1290) $ (-936) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-885) (-575) (-885) (-575))) (-15 -3110 ((-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2499 (-575)) (|:| -4179 (-575)) (|:| |spline| (-575)) (|:| -3454 (-575)) (|:| |axesColor| (-885)) (|:| -2490 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575)))) $)) (-15 -4392 ((-1285 (-3 (-479) "undefined")) $)) (-15 -2482 ((-1290) $ (-1176))) (-15 -1693 ((-1290) $ (-479) (-936))) (-15 -1576 ((-479) $ (-936))) (-15 -3454 ((-1290) $ (-936) (-1176))) (-15 -3454 ((-1290) $ (-936) (-885))) (-15 -2490 ((-1290) $ (-936) (-1176))) (-15 -2490 ((-1290) $ (-936) (-885))) (-15 -2499 ((-1290) $ (-936) (-1176))) (-15 -3079 ((-1290) $ (-936) (-1176))) (-15 -4179 ((-1290) $ (-936) (-1176))) (-15 -4028 ((-1290) $ (-1176))) (-15 -2454 ((-1290) $)) (-15 -1546 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -4283 ((-1290) $ (-936) (-389) (-389))) (-15 -3531 ((-1290) $ (-936) (-389) (-389))) (-15 -1427 ((-1290) $ (-936) (-1176))) (-15 -3771 ((-1290) $ (-782) (-782))) (-15 -2565 ((-1290) $ (-479) (-936))) (-15 -2388 ((-1290) $ (-936) (-936))) (-15 -3041 ((-1176) $ (-1176))) (-15 -3041 ((-1176) $ (-1176) (-1176))) (-15 -3041 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -3015 ((-1290) $)) (-15 -4169 ((-575) $)) (-15 -2882 ((-873) $))))) (T -1286))
-((-2882 (*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1286)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-655 (-958 (-227)))) (-5 *1 (-1286)))) (-1460 (*1 *1) (-5 *1 (-1286))) (-1950 (*1 *1 *1) (-5 *1 (-1286))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286)))) (-1950 (*1 *1 *2 *3) (-12 (-5 *2 (-479)) (-5 *3 (-655 (-269))) (-5 *1 (-1286)))) (-3434 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-936)) (-5 *4 (-227)) (-5 *5 (-575)) (-5 *6 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2499 (-575)) (|:| -4179 (-575)) (|:| |spline| (-575)) (|:| -3454 (-575)) (|:| |axesColor| (-885)) (|:| -2490 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575))))) (-5 *1 (-1286)))) (-4392 (*1 *2 *1) (-12 (-5 *2 (-1285 (-3 (-479) "undefined"))) (-5 *1 (-1286)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1693 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1576 (*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-5 *2 (-479)) (-5 *1 (-1286)))) (-3454 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3454 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2490 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2490 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2499 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3079 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-4179 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-4028 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1546 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-4283 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3531 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-1427 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3771 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2565 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-2388 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))) (-3041 (*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286)))) (-3041 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286)))) (-3041 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1286)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1286)))))
-(-13 (-1117) (-10 -8 (-15 -2968 ((-655 (-958 (-227))) $)) (-15 -1460 ($)) (-15 -1950 ($ $)) (-15 -1615 ((-655 (-269)) $)) (-15 -1615 ($ $ (-655 (-269)))) (-15 -1950 ($ (-479) (-655 (-269)))) (-15 -3434 ((-1290) $ (-936) (-227) (-227) (-227) (-227) (-575) (-575) (-575) (-575) (-885) (-575) (-885) (-575))) (-15 -3110 ((-1285 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2499 (-575)) (|:| -4179 (-575)) (|:| |spline| (-575)) (|:| -3454 (-575)) (|:| |axesColor| (-885)) (|:| -2490 (-575)) (|:| |unitsColor| (-885)) (|:| |showing| (-575)))) $)) (-15 -4392 ((-1285 (-3 (-479) "undefined")) $)) (-15 -2482 ((-1290) $ (-1176))) (-15 -1693 ((-1290) $ (-479) (-936))) (-15 -1576 ((-479) $ (-936))) (-15 -3454 ((-1290) $ (-936) (-1176))) (-15 -3454 ((-1290) $ (-936) (-885))) (-15 -2490 ((-1290) $ (-936) (-1176))) (-15 -2490 ((-1290) $ (-936) (-885))) (-15 -2499 ((-1290) $ (-936) (-1176))) (-15 -3079 ((-1290) $ (-936) (-1176))) (-15 -4179 ((-1290) $ (-936) (-1176))) (-15 -4028 ((-1290) $ (-1176))) (-15 -2454 ((-1290) $)) (-15 -1546 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -4283 ((-1290) $ (-936) (-389) (-389))) (-15 -3531 ((-1290) $ (-936) (-389) (-389))) (-15 -1427 ((-1290) $ (-936) (-1176))) (-15 -3771 ((-1290) $ (-782) (-782))) (-15 -2565 ((-1290) $ (-479) (-936))) (-15 -2388 ((-1290) $ (-936) (-936))) (-15 -3041 ((-1176) $ (-1176))) (-15 -3041 ((-1176) $ (-1176) (-1176))) (-15 -3041 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -3015 ((-1290) $)) (-15 -4169 ((-575) $)) (-15 -2882 ((-873) $))))
-((-2859 (((-112) $ $) NIL)) (-2774 (((-1290) $ (-389)) 169) (((-1290) $ (-389) (-389) (-389)) 170)) (-3041 (((-1176) $ (-1176)) 179) (((-1176) $ (-1176) (-1176)) 177) (((-1176) $ (-1176) (-655 (-1176))) 176)) (-2609 (($) 67)) (-3188 (((-1290) $ (-389) (-389) (-389) (-389) (-389)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1290) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1290) $ (-575) (-575) (-389) (-389) (-389)) 144) (((-1290) $ (-389) (-389)) 145) (((-1290) $ (-389) (-389) (-389)) 152)) (-3854 (((-389)) 122) (((-389) (-389)) 123)) (-4374 (((-389)) 117) (((-389) (-389)) 119)) (-3106 (((-389)) 120) (((-389) (-389)) 121)) (-4009 (((-389)) 126) (((-389) (-389)) 127)) (-2993 (((-389)) 124) (((-389) (-389)) 125)) (-3531 (((-1290) $ (-389) (-389)) 171)) (-2482 (((-1290) $ (-1176)) 153)) (-2621 (((-1150 (-227)) $) 68) (($ $ (-1150 (-227))) 69)) (-4355 (((-1290) $ (-1176)) 187)) (-1420 (((-1290) $ (-1176)) 188)) (-1797 (((-1290) $ (-389) (-389)) 151) (((-1290) $ (-575) (-575)) 168)) (-2388 (((-1290) $ (-936) (-936)) 160)) (-3015 (((-1290) $) 137)) (-3322 (((-1290) $ (-1176)) 186)) (-4140 (((-1290) $ (-1176)) 134)) (-1615 (((-655 (-269)) $) 70) (($ $ (-655 (-269))) 71)) (-3771 (((-1290) $ (-782) (-782)) 159)) (-1707 (((-1290) $ (-782) (-958 (-227))) 193)) (-2189 (($ $) 73) (($ (-1150 (-227)) (-1176)) 74) (($ (-1150 (-227)) (-655 (-269))) 75)) (-3904 (((-1290) $ (-389) (-389) (-389)) 131)) (-4264 (((-1176) $) NIL)) (-4169 (((-575) $) 128)) (-2145 (((-1290) $ (-389)) 174)) (-2119 (((-1290) $ (-389)) 191)) (-3912 (((-1137) $) NIL)) (-1947 (((-1290) $ (-389)) 190)) (-3995 (((-1290) $ (-1176)) 136)) (-1546 (((-1290) $ (-782) (-782) (-936) (-936)) 158)) (-4321 (((-1290) $ (-1176)) 133)) (-4028 (((-1290) $ (-1176)) 135)) (-4277 (((-1290) $ (-158) (-158)) 157)) (-2882 (((-873) $) 166)) (-2454 (((-1290) $) 138)) (-3399 (((-1290) $ (-1176)) 189)) (-3685 (((-112) $ $) NIL)) (-3454 (((-1290) $ (-1176)) 132)) (-3913 (((-112) $ $) NIL)))
-(((-1287) (-13 (-1117) (-10 -8 (-15 -4374 ((-389))) (-15 -4374 ((-389) (-389))) (-15 -3106 ((-389))) (-15 -3106 ((-389) (-389))) (-15 -3854 ((-389))) (-15 -3854 ((-389) (-389))) (-15 -2993 ((-389))) (-15 -2993 ((-389) (-389))) (-15 -4009 ((-389))) (-15 -4009 ((-389) (-389))) (-15 -2609 ($)) (-15 -2189 ($ $)) (-15 -2189 ($ (-1150 (-227)) (-1176))) (-15 -2189 ($ (-1150 (-227)) (-655 (-269)))) (-15 -2621 ((-1150 (-227)) $)) (-15 -2621 ($ $ (-1150 (-227)))) (-15 -1707 ((-1290) $ (-782) (-958 (-227)))) (-15 -1615 ((-655 (-269)) $)) (-15 -1615 ($ $ (-655 (-269)))) (-15 -3771 ((-1290) $ (-782) (-782))) (-15 -2388 ((-1290) $ (-936) (-936))) (-15 -2482 ((-1290) $ (-1176))) (-15 -1546 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -3188 ((-1290) $ (-389) (-389) (-389) (-389) (-389))) (-15 -3188 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3188 ((-1290) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3188 ((-1290) $ (-575) (-575) (-389) (-389) (-389))) (-15 -3188 ((-1290) $ (-389) (-389))) (-15 -3188 ((-1290) $ (-389) (-389) (-389))) (-15 -4028 ((-1290) $ (-1176))) (-15 -3454 ((-1290) $ (-1176))) (-15 -4321 ((-1290) $ (-1176))) (-15 -4140 ((-1290) $ (-1176))) (-15 -3995 ((-1290) $ (-1176))) (-15 -1797 ((-1290) $ (-389) (-389))) (-15 -1797 ((-1290) $ (-575) (-575))) (-15 -2774 ((-1290) $ (-389))) (-15 -2774 ((-1290) $ (-389) (-389) (-389))) (-15 -3531 ((-1290) $ (-389) (-389))) (-15 -3322 ((-1290) $ (-1176))) (-15 -1947 ((-1290) $ (-389))) (-15 -2119 ((-1290) $ (-389))) (-15 -4355 ((-1290) $ (-1176))) (-15 -1420 ((-1290) $ (-1176))) (-15 -3399 ((-1290) $ (-1176))) (-15 -3904 ((-1290) $ (-389) (-389) (-389))) (-15 -2145 ((-1290) $ (-389))) (-15 -3015 ((-1290) $)) (-15 -4277 ((-1290) $ (-158) (-158))) (-15 -3041 ((-1176) $ (-1176))) (-15 -3041 ((-1176) $ (-1176) (-1176))) (-15 -3041 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -2454 ((-1290) $)) (-15 -4169 ((-575) $))))) (T -1287))
-((-4374 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-3106 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-3854 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2993 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2993 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-4009 (*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))) (-2609 (*1 *1) (-5 *1 (-1287))) (-2189 (*1 *1 *1) (-5 *1 (-1287))) (-2189 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1176)) (-5 *1 (-1287)))) (-2189 (*1 *1 *2 *3) (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-655 (-269))) (-5 *1 (-1287)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287)))) (-2621 (*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287)))) (-1707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287)))) (-3771 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2388 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1546 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3188 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1287)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3188 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-575)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3188 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3188 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4028 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3454 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4321 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4140 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3995 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2774 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3531 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1947 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4355 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-1420 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3399 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3904 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-2145 (*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4277 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1290)) (-5 *1 (-1287)))) (-3041 (*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287)))) (-3041 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287)))) (-3041 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1287)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1287)))))
-(-13 (-1117) (-10 -8 (-15 -4374 ((-389))) (-15 -4374 ((-389) (-389))) (-15 -3106 ((-389))) (-15 -3106 ((-389) (-389))) (-15 -3854 ((-389))) (-15 -3854 ((-389) (-389))) (-15 -2993 ((-389))) (-15 -2993 ((-389) (-389))) (-15 -4009 ((-389))) (-15 -4009 ((-389) (-389))) (-15 -2609 ($)) (-15 -2189 ($ $)) (-15 -2189 ($ (-1150 (-227)) (-1176))) (-15 -2189 ($ (-1150 (-227)) (-655 (-269)))) (-15 -2621 ((-1150 (-227)) $)) (-15 -2621 ($ $ (-1150 (-227)))) (-15 -1707 ((-1290) $ (-782) (-958 (-227)))) (-15 -1615 ((-655 (-269)) $)) (-15 -1615 ($ $ (-655 (-269)))) (-15 -3771 ((-1290) $ (-782) (-782))) (-15 -2388 ((-1290) $ (-936) (-936))) (-15 -2482 ((-1290) $ (-1176))) (-15 -1546 ((-1290) $ (-782) (-782) (-936) (-936))) (-15 -3188 ((-1290) $ (-389) (-389) (-389) (-389) (-389))) (-15 -3188 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -3188 ((-1290) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3188 ((-1290) $ (-575) (-575) (-389) (-389) (-389))) (-15 -3188 ((-1290) $ (-389) (-389))) (-15 -3188 ((-1290) $ (-389) (-389) (-389))) (-15 -4028 ((-1290) $ (-1176))) (-15 -3454 ((-1290) $ (-1176))) (-15 -4321 ((-1290) $ (-1176))) (-15 -4140 ((-1290) $ (-1176))) (-15 -3995 ((-1290) $ (-1176))) (-15 -1797 ((-1290) $ (-389) (-389))) (-15 -1797 ((-1290) $ (-575) (-575))) (-15 -2774 ((-1290) $ (-389))) (-15 -2774 ((-1290) $ (-389) (-389) (-389))) (-15 -3531 ((-1290) $ (-389) (-389))) (-15 -3322 ((-1290) $ (-1176))) (-15 -1947 ((-1290) $ (-389))) (-15 -2119 ((-1290) $ (-389))) (-15 -4355 ((-1290) $ (-1176))) (-15 -1420 ((-1290) $ (-1176))) (-15 -3399 ((-1290) $ (-1176))) (-15 -3904 ((-1290) $ (-389) (-389) (-389))) (-15 -2145 ((-1290) $ (-389))) (-15 -3015 ((-1290) $)) (-15 -4277 ((-1290) $ (-158) (-158))) (-15 -3041 ((-1176) $ (-1176))) (-15 -3041 ((-1176) $ (-1176) (-1176))) (-15 -3041 ((-1176) $ (-1176) (-655 (-1176)))) (-15 -2454 ((-1290) $)) (-15 -4169 ((-575) $))))
-((-1528 (((-655 (-1176)) (-655 (-1176))) 104) (((-655 (-1176))) 96)) (-2153 (((-655 (-1176))) 94)) (-2941 (((-655 (-936)) (-655 (-936))) 69) (((-655 (-936))) 64)) (-1881 (((-655 (-782)) (-655 (-782))) 61) (((-655 (-782))) 55)) (-2162 (((-1290)) 71)) (-1456 (((-936) (-936)) 87) (((-936)) 86)) (-4226 (((-936) (-936)) 85) (((-936)) 84)) (-2548 (((-885) (-885)) 81) (((-885)) 80)) (-2633 (((-227)) 91) (((-227) (-389)) 93)) (-3358 (((-936)) 88) (((-936) (-936)) 89)) (-2962 (((-936) (-936)) 83) (((-936)) 82)) (-2543 (((-885) (-885)) 75) (((-885)) 73)) (-1865 (((-885) (-885)) 77) (((-885)) 76)) (-1790 (((-885) (-885)) 79) (((-885)) 78)))
-(((-1288) (-10 -7 (-15 -2543 ((-885))) (-15 -2543 ((-885) (-885))) (-15 -1865 ((-885))) (-15 -1865 ((-885) (-885))) (-15 -1790 ((-885))) (-15 -1790 ((-885) (-885))) (-15 -2548 ((-885))) (-15 -2548 ((-885) (-885))) (-15 -2962 ((-936))) (-15 -2962 ((-936) (-936))) (-15 -1881 ((-655 (-782)))) (-15 -1881 ((-655 (-782)) (-655 (-782)))) (-15 -2941 ((-655 (-936)))) (-15 -2941 ((-655 (-936)) (-655 (-936)))) (-15 -2162 ((-1290))) (-15 -1528 ((-655 (-1176)))) (-15 -1528 ((-655 (-1176)) (-655 (-1176)))) (-15 -2153 ((-655 (-1176)))) (-15 -4226 ((-936))) (-15 -1456 ((-936))) (-15 -4226 ((-936) (-936))) (-15 -1456 ((-936) (-936))) (-15 -3358 ((-936) (-936))) (-15 -3358 ((-936))) (-15 -2633 ((-227) (-389))) (-15 -2633 ((-227))))) (T -1288))
-((-2633 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1288)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-1288)))) (-3358 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-3358 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-4226 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-1456 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-4226 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2153 (*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) (-1528 (*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) (-1528 (*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))) (-2162 (*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1288)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288)))) (-2941 (*1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288)))) (-1881 (*1 *2 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288)))) (-1881 (*1 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288)))) (-2962 (*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2962 (*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2548 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-1790 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-1865 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2543 (*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))) (-2543 (*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))))
-(-10 -7 (-15 -2543 ((-885))) (-15 -2543 ((-885) (-885))) (-15 -1865 ((-885))) (-15 -1865 ((-885) (-885))) (-15 -1790 ((-885))) (-15 -1790 ((-885) (-885))) (-15 -2548 ((-885))) (-15 -2548 ((-885) (-885))) (-15 -2962 ((-936))) (-15 -2962 ((-936) (-936))) (-15 -1881 ((-655 (-782)))) (-15 -1881 ((-655 (-782)) (-655 (-782)))) (-15 -2941 ((-655 (-936)))) (-15 -2941 ((-655 (-936)) (-655 (-936)))) (-15 -2162 ((-1290))) (-15 -1528 ((-655 (-1176)))) (-15 -1528 ((-655 (-1176)) (-655 (-1176)))) (-15 -2153 ((-655 (-1176)))) (-15 -4226 ((-936))) (-15 -1456 ((-936))) (-15 -4226 ((-936) (-936))) (-15 -1456 ((-936) (-936))) (-15 -3358 ((-936) (-936))) (-15 -3358 ((-936))) (-15 -2633 ((-227) (-389))) (-15 -2633 ((-227))))
-((-2984 (((-479) (-655 (-655 (-958 (-227)))) (-655 (-269))) 22) (((-479) (-655 (-655 (-958 (-227))))) 21) (((-479) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269))) 20)) (-3334 (((-1286) (-655 (-655 (-958 (-227)))) (-655 (-269))) 30) (((-1286) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269))) 29)) (-2882 (((-1286) (-479)) 46)))
-(((-1289) (-10 -7 (-15 -2984 ((-479) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -2984 ((-479) (-655 (-655 (-958 (-227)))))) (-15 -2984 ((-479) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -3334 ((-1286) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -3334 ((-1286) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -2882 ((-1286) (-479))))) (T -1289))
-((-2882 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1286)) (-5 *1 (-1289)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-1289)))) (-3334 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-1289)))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269))) (-5 *2 (-479)) (-5 *1 (-1289)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-479)) (-5 *1 (-1289)))) (-2984 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885)) (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-479)) (-5 *1 (-1289)))))
-(-10 -7 (-15 -2984 ((-479) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -2984 ((-479) (-655 (-655 (-958 (-227)))))) (-15 -2984 ((-479) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -3334 ((-1286) (-655 (-655 (-958 (-227)))) (-885) (-885) (-936) (-655 (-269)))) (-15 -3334 ((-1286) (-655 (-655 (-958 (-227)))) (-655 (-269)))) (-15 -2882 ((-1286) (-479))))
-((-2001 (($) 6)) (-2882 (((-873) $) 9)))
-(((-1290) (-13 (-624 (-873)) (-10 -8 (-15 -2001 ($))))) (T -1290))
-((-2001 (*1 *1) (-5 *1 (-1290))))
-(-13 (-624 (-873)) (-10 -8 (-15 -2001 ($))))
-((-4038 (($ $ |#2|) 10)))
-(((-1291 |#1| |#2|) (-10 -8 (-15 -4038 (|#1| |#1| |#2|))) (-1292 |#2|) (-373)) (T -1291))
-NIL
-(-10 -8 (-15 -4038 (|#1| |#1| |#2|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-1605 (((-135)) 33)) (-2882 (((-873) $) 12)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-3913 (((-112) $ $) 6)) (-4038 (($ $ |#1|) 34)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1292 |#1|) (-141) (-373)) (T -1292))
-((-4038 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-373)))) (-1605 (*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-373)) (-5 *2 (-135)))))
-(-13 (-728 |t#1|) (-10 -8 (-15 -4038 ($ $ |t#1|)) (-15 -1605 ((-135)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-659 |#1|) . T) ((-651 |#1|) . T) ((-728 |#1|) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1117) . T))
-((-2091 (((-655 (-1229 |#1|)) (-1194) (-1229 |#1|)) 83)) (-1604 (((-1174 (-1174 (-967 |#1|))) (-1194) (-1174 (-967 |#1|))) 63)) (-1681 (((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-782) (-1229 |#1|) (-1174 (-1229 |#1|))) 74)) (-3544 (((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782)) 65)) (-1492 (((-1 (-1190 (-967 |#1|)) (-967 |#1|)) (-1194)) 32)) (-3223 (((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782)) 64)))
-(((-1293 |#1|) (-10 -7 (-15 -3544 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -3223 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -1604 ((-1174 (-1174 (-967 |#1|))) (-1194) (-1174 (-967 |#1|)))) (-15 -1492 ((-1 (-1190 (-967 |#1|)) (-967 |#1|)) (-1194))) (-15 -2091 ((-655 (-1229 |#1|)) (-1194) (-1229 |#1|))) (-15 -1681 ((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-782) (-1229 |#1|) (-1174 (-1229 |#1|))))) (-373)) (T -1293))
-((-1681 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782)) (-4 *6 (-373)) (-5 *4 (-1229 *6)) (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1293 *6)) (-5 *5 (-1174 *4)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-655 (-1229 *5))) (-5 *1 (-1293 *5)) (-5 *4 (-1229 *5)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1 (-1190 (-967 *4)) (-967 *4))) (-5 *1 (-1293 *4)) (-4 *4 (-373)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-1174 (-1174 (-967 *5)))) (-5 *1 (-1293 *5)) (-5 *4 (-1174 (-967 *5))))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4)))) (-5 *1 (-1293 *4)) (-4 *4 (-373)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4)))) (-5 *1 (-1293 *4)) (-4 *4 (-373)))))
-(-10 -7 (-15 -3544 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -3223 ((-1 (-1174 (-967 |#1|)) (-1174 (-967 |#1|))) (-782))) (-15 -1604 ((-1174 (-1174 (-967 |#1|))) (-1194) (-1174 (-967 |#1|)))) (-15 -1492 ((-1 (-1190 (-967 |#1|)) (-967 |#1|)) (-1194))) (-15 -2091 ((-655 (-1229 |#1|)) (-1194) (-1229 |#1|))) (-15 -1681 ((-1 (-1174 (-1229 |#1|)) (-1174 (-1229 |#1|))) (-782) (-1229 |#1|) (-1174 (-1229 |#1|)))))
-((-3056 (((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|) 80)) (-3189 (((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|)))) 79)))
-(((-1294 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3189 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -3056 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|))) (-359) (-1261 |#1|) (-1261 |#2|) (-420 |#2| |#3|)) (T -1294))
-((-3056 (*1 *2 *3) (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3)) (-5 *2 (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-700 *3)))) (-5 *1 (-1294 *4 *3 *5 *6)) (-4 *6 (-420 *3 *5)))) (-3189 (*1 *2) (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4)) (-5 *2 (-2 (|:| -2098 (-700 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-700 *4)))) (-5 *1 (-1294 *3 *4 *5 *6)) (-4 *6 (-420 *4 *5)))))
-(-10 -7 (-15 -3189 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))))) (-15 -3056 ((-2 (|:| -2098 (-700 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-700 |#2|))) |#2|)))
-((-2859 (((-112) $ $) NIL)) (-4025 (((-1152) $) 11)) (-2973 (((-1152) $) 9)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 17) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1295) (-13 (-1100) (-10 -8 (-15 -2973 ((-1152) $)) (-15 -4025 ((-1152) $))))) (T -1295))
-((-2973 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295)))))
-(-13 (-1100) (-10 -8 (-15 -2973 ((-1152) $)) (-15 -4025 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3686 (((-1152) $) 9)) (-2882 (((-873) $) 15) (($ (-1199)) NIL) (((-1199) $) NIL)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) NIL)))
-(((-1296) (-13 (-1100) (-10 -8 (-15 -3686 ((-1152) $))))) (T -1296))
-((-3686 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1296)))))
-(-13 (-1100) (-10 -8 (-15 -3686 ((-1152) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 58)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) NIL)) (-3900 (((-112) $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 81) (($ (-575)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-4421 (((-782)) NIL T CONST)) (-3873 (((-1290) (-782)) 16)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 37 T CONST)) (-2005 (($) 84 T CONST)) (-3913 (((-112) $ $) 87)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-373)))) (-4027 (($ $) 89) (($ $ $) NIL)) (-4015 (($ $ $) 63)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
-(((-1297 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1066) (-501 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3873 ((-1290) (-782))))) (-1066) (-861) (-804) (-964 |#1| |#3| |#2|) (-655 |#2|) (-655 (-782)) (-782)) (T -1297))
-((-4038 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-373)) (-4 *2 (-1066)) (-4 *3 (-861)) (-4 *4 (-804)) (-14 *6 (-655 *3)) (-5 *1 (-1297 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-964 *2 *4 *3)) (-14 *7 (-655 (-782))) (-14 *8 (-782)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-4 *5 (-861)) (-4 *6 (-804)) (-14 *8 (-655 *5)) (-5 *2 (-1290)) (-5 *1 (-1297 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-964 *4 *6 *5)) (-14 *9 (-655 *3)) (-14 *10 *3))))
-(-13 (-1066) (-501 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (-15 -4038 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3873 ((-1290) (-782)))))
-((-2859 (((-112) $ $) NIL)) (-1376 (((-655 (-2 (|:| -2454 $) (|:| -2976 (-655 |#4|)))) (-655 |#4|)) NIL)) (-4014 (((-655 $) (-655 |#4|)) 96)) (-1606 (((-655 |#3|) $) NIL)) (-4419 (((-112) $) NIL)) (-3414 (((-112) $) NIL (|has| |#1| (-567)))) (-3184 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1479 ((|#4| |#4| $) NIL)) (-2025 (((-2 (|:| |under| $) (|:| -3920 $) (|:| |upper| $)) $ |#3|) NIL)) (-3133 (((-112) $ (-782)) NIL)) (-3983 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3261 (($) NIL T CONST)) (-1756 (((-112) $) NIL (|has| |#1| (-567)))) (-1600 (((-112) $ $) NIL (|has| |#1| (-567)))) (-4415 (((-112) $ $) NIL (|has| |#1| (-567)))) (-1759 (((-112) $) NIL (|has| |#1| (-567)))) (-3116 (((-655 |#4|) (-655 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2762 (((-655 |#4|) (-655 |#4|) $) 28 (|has| |#1| (-567)))) (-2540 (((-655 |#4|) (-655 |#4|) $) NIL (|has| |#1| (-567)))) (-2443 (((-3 $ "failed") (-655 |#4|)) NIL)) (-4400 (($ (-655 |#4|)) NIL)) (-1969 (((-3 $ "failed") $) 78)) (-3355 ((|#4| |#4| $) 83)) (-4070 (($ $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3631 (($ |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4041 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-3073 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3305 ((|#4| |#4| $) NIL)) (-2302 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4460))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4460))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3240 (((-2 (|:| -2454 (-655 |#4|)) (|:| -2976 (-655 |#4|))) $) NIL)) (-3999 (((-655 |#4|) $) NIL (|has| $ (-6 -4460)))) (-3621 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3757 ((|#3| $) 84)) (-3541 (((-112) $ (-782)) NIL)) (-4252 (((-655 |#4|) $) 32 (|has| $ (-6 -4460)))) (-1322 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117))))) (-3481 (((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-655 |#4|)) 38)) (-2844 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-2544 (($ (-1 |#4| |#4|) $) NIL)) (-3717 (((-655 |#3|) $) NIL)) (-1789 (((-112) |#3| $) NIL)) (-3218 (((-112) $ (-782)) NIL)) (-4264 (((-1176) $) NIL)) (-3651 (((-3 |#4| "failed") $) NIL)) (-4212 (((-655 |#4|) $) 54)) (-1992 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4068 ((|#4| |#4| $) 82)) (-2057 (((-112) $ $) 93)) (-3007 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-567)))) (-4091 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1986 ((|#4| |#4| $) NIL)) (-3912 (((-1137) $) NIL)) (-1955 (((-3 |#4| "failed") $) 77)) (-1540 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3629 (((-3 $ "failed") $ |#4|) NIL)) (-1985 (($ $ |#4|) NIL)) (-2718 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3046 (($ $ (-655 |#4|) (-655 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-303 |#4|)) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117)))) (($ $ (-655 (-303 |#4|))) NIL (-12 (|has| |#4| (-318 |#4|)) (|has| |#4| (-1117))))) (-2391 (((-112) $ $) NIL)) (-2017 (((-112) $) 75)) (-1393 (($) 46)) (-1753 (((-782) $) NIL)) (-3922 (((-782) |#4| $) NIL (-12 (|has| $ (-6 -4460)) (|has| |#4| (-1117)))) (((-782) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-3076 (($ $) NIL)) (-2613 (((-547) $) NIL (|has| |#4| (-625 (-547))))) (-2893 (($ (-655 |#4|)) NIL)) (-3273 (($ $ |#3|) NIL)) (-2078 (($ $ |#3|) NIL)) (-3663 (($ $) NIL)) (-4049 (($ $ |#3|) NIL)) (-2882 (((-873) $) NIL) (((-655 |#4|) $) 63)) (-2936 (((-782) $) NIL (|has| |#3| (-378)))) (-4012 (((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-655 |#4|)) 45)) (-1408 (((-655 $) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-655 $) (-655 |#4|)) 74)) (-3685 (((-112) $ $) NIL)) (-2823 (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2006 (-655 |#4|))) "failed") (-655 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1589 (((-112) $ (-1 (-112) |#4| (-655 |#4|))) NIL)) (-4121 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4460)))) (-4094 (((-655 |#3|) $) NIL)) (-4060 (((-112) |#3| $) NIL)) (-3913 (((-112) $ $) NIL)) (-2869 (((-782) $) NIL (|has| $ (-6 -4460)))))
-(((-1298 |#1| |#2| |#3| |#4|) (-13 (-1228 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3481 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3481 ((-3 $ "failed") (-655 |#4|))) (-15 -4012 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4012 ((-3 $ "failed") (-655 |#4|))) (-15 -1408 ((-655 $) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1408 ((-655 $) (-655 |#4|))))) (-567) (-804) (-861) (-1082 |#1| |#2| |#3|)) (T -1298))
-((-3481 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8)))) (-3481 (*1 *1 *2) (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1298 *3 *4 *5 *6)))) (-4012 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8)))) (-4012 (*1 *1 *2) (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1298 *3 *4 *5 *6)))) (-1408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-655 (-1298 *6 *7 *8 *9))) (-5 *1 (-1298 *6 *7 *8 *9)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-1298 *4 *5 *6 *7))) (-5 *1 (-1298 *4 *5 *6 *7)))))
-(-13 (-1228 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3481 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3481 ((-3 $ "failed") (-655 |#4|))) (-15 -4012 ((-3 $ "failed") (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4012 ((-3 $ "failed") (-655 |#4|))) (-15 -1408 ((-655 $) (-655 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1408 ((-655 $) (-655 |#4|)))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1708 (((-3 $ "failed") $ $) 20)) (-3261 (($) 18 T CONST)) (-4162 (((-3 $ "failed") $) 37)) (-3900 (((-112) $) 35)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#1|) 45)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1299 |#1|) (-141) (-1066)) (T -1299))
-NIL
-(-13 (-1066) (-111 |t#1| |t#1|) (-627 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 |#1|) |has| |#1| (-174)) ((-728 |#1|) |has| |#1| (-174)) ((-737) . T) ((-1068 |#1|) . T) ((-1073 |#1|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T))
-((-2859 (((-112) $ $) 67)) (-2045 (((-112) $) NIL)) (-3486 (((-655 |#1|) $) 52)) (-2744 (($ $ (-782)) 46)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-782)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3261 (($) NIL T CONST)) (-1735 (($ $ $) 70) (($ $ (-830 |#1|)) 56) (($ $ |#1|) 60)) (-2443 (((-3 (-830 |#1|) "failed") $) NIL)) (-4400 (((-830 |#1|) $) NIL)) (-4406 (($ $) 39)) (-4162 (((-3 $ "failed") $) NIL)) (-2694 (((-112) $) NIL)) (-3679 (($ $) NIL)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-3692 (($ (-830 |#1|) |#2|) 38)) (-1488 (($ $) 40)) (-1355 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) 12)) (-4428 (((-830 |#1|) $) NIL)) (-1428 (((-830 |#1|) $) 41)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (($ $ $) 69) (($ $ (-830 |#1|)) 58) (($ $ |#1|) 62)) (-2574 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4370 (((-830 |#1|) $) 35)) (-4383 ((|#2| $) 37)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-1753 (((-782) $) 43)) (-3054 (((-112) $) 47)) (-3736 ((|#2| $) NIL)) (-2882 (((-873) $) NIL) (($ (-830 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-575)) NIL)) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-830 |#1|)) NIL)) (-1754 ((|#2| $ $) 76) ((|#2| $ (-830 |#1|)) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 13 T CONST)) (-2005 (($) 19 T CONST)) (-1332 (((-655 (-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3913 (((-112) $ $) 44)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 28)) (** (($ $ (-782)) NIL) (($ $ (-936)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-830 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1300 |#1| |#2|) (-13 (-392 |#2| (-830 |#1|)) (-1306 |#1| |#2|)) (-861) (-1066)) (T -1300))
-NIL
-(-13 (-392 |#2| (-830 |#1|)) (-1306 |#1| |#2|))
-((-3461 ((|#3| |#3| (-782)) 28)) (-2663 ((|#3| |#3| (-782)) 34)) (-1979 ((|#3| |#3| |#3| (-782)) 35)))
-(((-1301 |#1| |#2| |#3|) (-10 -7 (-15 -2663 (|#3| |#3| (-782))) (-15 -3461 (|#3| |#3| (-782))) (-15 -1979 (|#3| |#3| |#3| (-782)))) (-13 (-1066) (-728 (-418 (-575)))) (-861) (-1306 |#2| |#1|)) (T -1301))
-((-1979 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))) (-3461 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575))))) (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))))
-(-10 -7 (-15 -2663 (|#3| |#3| (-782))) (-15 -3461 (|#3| |#3| (-782))) (-15 -1979 (|#3| |#3| |#3| (-782))))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3486 (((-655 |#1|) $) 47)) (-1708 (((-3 $ "failed") $ $) 20)) (-3743 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-782)) 49 (|has| |#2| (-174)))) (-3261 (($) 18 T CONST)) (-1735 (($ $ |#1|) 61) (($ $ (-830 |#1|)) 60) (($ $ $) 59)) (-2443 (((-3 (-830 |#1|) "failed") $) 71)) (-4400 (((-830 |#1|) $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2694 (((-112) $) 52)) (-3679 (($ $) 51)) (-3900 (((-112) $) 35)) (-3135 (((-112) $) 57)) (-3692 (($ (-830 |#1|) |#2|) 58)) (-1488 (($ $) 56)) (-1355 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) 67)) (-4428 (((-830 |#1|) $) 68)) (-2544 (($ (-1 |#2| |#2|) $) 48)) (-2431 (($ $ |#1|) 64) (($ $ (-830 |#1|)) 63) (($ $ $) 62)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-3054 (((-112) $) 54)) (-3736 ((|#2| $) 53)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#2|) 75) (($ (-830 |#1|)) 70) (($ |#1|) 55)) (-1754 ((|#2| $ (-830 |#1|)) 66) ((|#2| $ $) 65)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1302 |#1| |#2|) (-141) (-861) (-1066)) (T -1302))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-4428 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-830 *3)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-2 (|:| |k| (-830 *3)) (|:| |c| *4))))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-830 *4)) (-4 *1 (-1302 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1066)))) (-1754 (*1 *2 *1 *1) (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) (-2431 (*1 *1 *1 *2) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-2431 (*1 *1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-2431 (*1 *1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-1735 (*1 *1 *1 *2) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-3692 (*1 *1 *2 *3) (-12 (-5 *2 (-830 *4)) (-4 *4 (-861)) (-4 *1 (-1302 *4 *3)) (-4 *3 (-1066)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-1488 (*1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-2882 (*1 *1 *2) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066)))) (-2694 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-112)))) (-3679 (*1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))) (-3743 (*1 *1 *1 *1) (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)) (-4 *3 (-174)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-4 *4 (-174)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-655 *3)))))
-(-13 (-1066) (-1299 |t#2|) (-1055 (-830 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4428 ((-830 |t#1|) $)) (-15 -1355 ((-2 (|:| |k| (-830 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1754 (|t#2| $ (-830 |t#1|))) (-15 -1754 (|t#2| $ $)) (-15 -2431 ($ $ |t#1|)) (-15 -2431 ($ $ (-830 |t#1|))) (-15 -2431 ($ $ $)) (-15 -1735 ($ $ |t#1|)) (-15 -1735 ($ $ (-830 |t#1|))) (-15 -1735 ($ $ $)) (-15 -3692 ($ (-830 |t#1|) |t#2|)) (-15 -3135 ((-112) $)) (-15 -1488 ($ $)) (-15 -2882 ($ |t#1|)) (-15 -3054 ((-112) $)) (-15 -3736 (|t#2| $)) (-15 -2694 ((-112) $)) (-15 -3679 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3743 ($ $ $)) (-15 -3743 ($ $ (-782)))) |%noBranch|) (-15 -2544 ($ (-1 |t#2| |t#2|) $)) (-15 -3486 ((-655 |t#1|) $)) (IF (|has| |t#2| (-6 -4453)) (-6 -4453) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 #0=(-830 |#1|)) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-651 |#2|) |has| |#2| (-174)) ((-728 |#2|) |has| |#2| (-174)) ((-737) . T) ((-1055 #0#) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1299 |#2|) . T))
-((-2770 (((-112) $) 15)) (-4060 (((-112) $) 14)) (-1514 (($ $) 19) (($ $ (-782)) 21)))
-(((-1303 |#1| |#2|) (-10 -8 (-15 -1514 (|#1| |#1| (-782))) (-15 -1514 (|#1| |#1|)) (-15 -2770 ((-112) |#1|)) (-15 -4060 ((-112) |#1|))) (-1304 |#2|) (-373)) (T -1303))
-NIL
-(-10 -8 (-15 -1514 (|#1| |#1| (-782))) (-15 -1514 (|#1| |#1|)) (-15 -2770 ((-112) |#1|)) (-15 -4060 ((-112) |#1|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-1984 (((-2 (|:| -2942 $) (|:| -4447 $) (|:| |associate| $)) $) 47)) (-2456 (($ $) 46)) (-3978 (((-112) $) 44)) (-2770 (((-112) $) 104)) (-4142 (((-782)) 100)) (-1708 (((-3 $ "failed") $ $) 20)) (-3312 (($ $) 81)) (-4281 (((-429 $) $) 80)) (-3599 (((-112) $ $) 65)) (-3261 (($) 18 T CONST)) (-2443 (((-3 |#1| "failed") $) 111)) (-4400 ((|#1| $) 112)) (-2800 (($ $ $) 61)) (-4162 (((-3 $ "failed") $) 37)) (-2811 (($ $ $) 62)) (-2105 (((-2 (|:| -1754 (-655 $)) (|:| -3657 $)) (-655 $)) 57)) (-2457 (($ $ (-782)) 97 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378)))) (($ $) 96 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3559 (((-112) $) 79)) (-3369 (((-844 (-936)) $) 94 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-3900 (((-112) $) 35)) (-4418 (((-3 (-655 $) "failed") (-655 $) $) 58)) (-3886 (($ $ $) 52) (($ (-655 $)) 51)) (-4264 (((-1176) $) 10)) (-4332 (($ $) 78)) (-3953 (((-112) $) 103)) (-3912 (((-1137) $) 11)) (-3354 (((-1190 $) (-1190 $) (-1190 $)) 50)) (-3923 (($ $ $) 54) (($ (-655 $)) 53)) (-2347 (((-429 $) $) 82)) (-2113 (((-844 (-936))) 101)) (-3523 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3657 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2849 (((-3 $ "failed") $ $) 48)) (-2880 (((-3 (-655 $) "failed") (-655 $) $) 56)) (-1720 (((-782) $) 64)) (-4416 (((-2 (|:| -3262 $) (|:| -4041 $)) $ $) 63)) (-2619 (((-3 (-782) "failed") $ $) 95 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-1605 (((-135)) 109)) (-1753 (((-844 (-936)) $) 102)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ $) 49) (($ (-418 (-575))) 74) (($ |#1|) 110)) (-1724 (((-3 $ "failed") $) 93 (-3763 (|has| |#1| (-146)) (|has| |#1| (-378))))) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-3930 (((-112) $ $) 45)) (-4060 (((-112) $) 105)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-1514 (($ $) 99 (|has| |#1| (-378))) (($ $ (-782)) 98 (|has| |#1| (-378)))) (-3913 (((-112) $ $) 6)) (-4038 (($ $ $) 73) (($ $ |#1|) 108)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36) (($ $ (-575)) 77)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ $ (-418 (-575))) 76) (($ (-418 (-575)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1304 |#1|) (-141) (-373)) (T -1304))
-((-4060 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936))))) (-2113 (*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936))))) (-4142 (*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-782)))) (-1514 (*1 *1 *1) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-373)) (-4 *2 (-378)))) (-1514 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-4 *3 (-378)))))
-(-13 (-373) (-1055 |t#1|) (-1292 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-413)) |%noBranch|) (-15 -4060 ((-112) $)) (-15 -2770 ((-112) $)) (-15 -3953 ((-112) $)) (-15 -1753 ((-844 (-936)) $)) (-15 -2113 ((-844 (-936)))) (-15 -4142 ((-782))) (IF (|has| |t#1| (-378)) (PROGN (-6 (-413)) (-15 -1514 ($ $)) (-15 -1514 ($ $ (-782)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-418 (-575))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3763 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-627 #0#) . T) ((-627 (-575)) . T) ((-627 |#1|) . T) ((-627 $) . T) ((-624 (-873)) . T) ((-174) . T) ((-248) . T) ((-299) . T) ((-316) . T) ((-373) . T) ((-413) -3763 (|has| |#1| (-378)) (|has| |#1| (-146))) ((-463) . T) ((-567) . T) ((-657 #0#) . T) ((-657 (-575)) . T) ((-657 |#1|) . T) ((-657 $) . T) ((-659 #0#) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-651 #0#) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-728 #0#) . T) ((-728 |#1|) . T) ((-728 $) . T) ((-737) . T) ((-935) . T) ((-1055 |#1|) . T) ((-1068 #0#) . T) ((-1068 |#1|) . T) ((-1068 $) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1239) . T) ((-1292 |#1|) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3486 (((-655 |#1|) $) 98)) (-2744 (($ $ (-782)) 102)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-782)) NIL (|has| |#2| (-174)))) (-3261 (($) NIL T CONST)) (-1735 (($ $ |#1|) NIL) (($ $ (-830 |#1|)) NIL) (($ $ $) NIL)) (-2443 (((-3 (-830 |#1|) "failed") $) NIL) (((-3 (-905 |#1|) "failed") $) NIL)) (-4400 (((-830 |#1|) $) NIL) (((-905 |#1|) $) NIL)) (-4406 (($ $) 101)) (-4162 (((-3 $ "failed") $) NIL)) (-2694 (((-112) $) 90)) (-3679 (($ $) 93)) (-3431 (($ $ $ (-782)) 103)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-3692 (($ (-830 |#1|) |#2|) NIL) (($ (-905 |#1|) |#2|) 29)) (-1488 (($ $) 119)) (-1355 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4428 (((-830 |#1|) $) NIL)) (-1428 (((-830 |#1|) $) NIL)) (-2544 (($ (-1 |#2| |#2|) $) NIL)) (-2431 (($ $ |#1|) NIL) (($ $ (-830 |#1|)) NIL) (($ $ $) NIL)) (-3461 (($ $ (-782)) 112 (|has| |#2| (-728 (-418 (-575)))))) (-2574 (((-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4370 (((-905 |#1|) $) 83)) (-4383 ((|#2| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2663 (($ $ (-782)) 109 (|has| |#2| (-728 (-418 (-575)))))) (-1753 (((-782) $) 99)) (-3054 (((-112) $) 84)) (-3736 ((|#2| $) 88)) (-2882 (((-873) $) 69) (($ (-575)) NIL) (($ |#2|) 60) (($ (-830 |#1|)) NIL) (($ |#1|) 71) (($ (-905 |#1|)) NIL) (($ (-675 |#1| |#2|)) 48) (((-1300 |#1| |#2|) $) 76) (((-1309 |#1| |#2|) $) 81)) (-2212 (((-655 |#2|) $) NIL)) (-3002 ((|#2| $ (-905 |#1|)) NIL)) (-1754 ((|#2| $ (-830 |#1|)) NIL) ((|#2| $ $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 21 T CONST)) (-2005 (($) 28 T CONST)) (-1332 (((-655 (-2 (|:| |k| (-905 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1590 (((-3 (-675 |#1| |#2|) "failed") $) 118)) (-3913 (((-112) $ $) 77)) (-4027 (($ $) 111) (($ $ $) 110)) (-4015 (($ $ $) 20)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-905 |#1|)) NIL)))
-(((-1305 |#1| |#2|) (-13 (-1306 |#1| |#2|) (-392 |#2| (-905 |#1|)) (-10 -8 (-15 -2882 ($ (-675 |#1| |#2|))) (-15 -2882 ((-1300 |#1| |#2|) $)) (-15 -2882 ((-1309 |#1| |#2|) $)) (-15 -1590 ((-3 (-675 |#1| |#2|) "failed") $)) (-15 -3431 ($ $ $ (-782))) (IF (|has| |#2| (-728 (-418 (-575)))) (PROGN (-15 -2663 ($ $ (-782))) (-15 -3461 ($ $ (-782)))) |%noBranch|))) (-861) (-174)) (T -1305))
-((-2882 (*1 *1 *2) (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)) (-5 *1 (-1305 *3 *4)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-1590 (*1 *2 *1) (|partial| -12 (-5 *2 (-675 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-3431 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174)))))
-(-13 (-1306 |#1| |#2|) (-392 |#2| (-905 |#1|)) (-10 -8 (-15 -2882 ($ (-675 |#1| |#2|))) (-15 -2882 ((-1300 |#1| |#2|) $)) (-15 -2882 ((-1309 |#1| |#2|) $)) (-15 -1590 ((-3 (-675 |#1| |#2|) "failed") $)) (-15 -3431 ($ $ $ (-782))) (IF (|has| |#2| (-728 (-418 (-575)))) (PROGN (-15 -2663 ($ $ (-782))) (-15 -3461 ($ $ (-782)))) |%noBranch|)))
-((-2859 (((-112) $ $) 7)) (-2045 (((-112) $) 17)) (-3486 (((-655 |#1|) $) 47)) (-2744 (($ $ (-782)) 80)) (-1708 (((-3 $ "failed") $ $) 20)) (-3743 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-782)) 49 (|has| |#2| (-174)))) (-3261 (($) 18 T CONST)) (-1735 (($ $ |#1|) 61) (($ $ (-830 |#1|)) 60) (($ $ $) 59)) (-2443 (((-3 (-830 |#1|) "failed") $) 71)) (-4400 (((-830 |#1|) $) 72)) (-4162 (((-3 $ "failed") $) 37)) (-2694 (((-112) $) 52)) (-3679 (($ $) 51)) (-3900 (((-112) $) 35)) (-3135 (((-112) $) 57)) (-3692 (($ (-830 |#1|) |#2|) 58)) (-1488 (($ $) 56)) (-1355 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) 67)) (-4428 (((-830 |#1|) $) 68)) (-1428 (((-830 |#1|) $) 82)) (-2544 (($ (-1 |#2| |#2|) $) 48)) (-2431 (($ $ |#1|) 64) (($ $ (-830 |#1|)) 63) (($ $ $) 62)) (-4264 (((-1176) $) 10)) (-3912 (((-1137) $) 11)) (-1753 (((-782) $) 81)) (-3054 (((-112) $) 54)) (-3736 ((|#2| $) 53)) (-2882 (((-873) $) 12) (($ (-575)) 33) (($ |#2|) 75) (($ (-830 |#1|)) 70) (($ |#1|) 55)) (-1754 ((|#2| $ (-830 |#1|)) 66) ((|#2| $ $) 65)) (-4421 (((-782)) 32 T CONST)) (-3685 (((-112) $ $) 9)) (-1989 (($) 19 T CONST)) (-2005 (($) 34 T CONST)) (-3913 (((-112) $ $) 6)) (-4027 (($ $) 23) (($ $ $) 22)) (-4015 (($ $ $) 15)) (** (($ $ (-936)) 28) (($ $ (-782)) 36)) (* (($ (-936) $) 14) (($ (-782) $) 16) (($ (-575) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1306 |#1| |#2|) (-141) (-861) (-1066)) (T -1306))
-((-1428 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-830 *3)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *2 (-782)))) (-2744 (*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))))
-(-13 (-1302 |t#1| |t#2|) (-10 -8 (-15 -1428 ((-830 |t#1|) $)) (-15 -1753 ((-782) $)) (-15 -2744 ($ $ (-782)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-627 (-575)) . T) ((-627 #0=(-830 |#1|)) . T) ((-627 |#2|) . T) ((-624 (-873)) . T) ((-657 (-575)) . T) ((-657 |#2|) . T) ((-657 $) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-651 |#2|) |has| |#2| (-174)) ((-728 |#2|) |has| |#2| (-174)) ((-737) . T) ((-1055 #0#) . T) ((-1068 |#2|) . T) ((-1073 |#2|) . T) ((-1066) . T) ((-1075) . T) ((-1129) . T) ((-1117) . T) ((-1299 |#2|) . T) ((-1302 |#1| |#2|) . T))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-3486 (((-655 (-1194)) $) NIL)) (-3118 (($ (-1300 (-1194) |#1|)) NIL)) (-2744 (($ $ (-782)) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-782)) NIL (|has| |#1| (-174)))) (-3261 (($) NIL T CONST)) (-1735 (($ $ (-1194)) NIL) (($ $ (-830 (-1194))) NIL) (($ $ $) NIL)) (-2443 (((-3 (-830 (-1194)) "failed") $) NIL)) (-4400 (((-830 (-1194)) $) NIL)) (-4162 (((-3 $ "failed") $) NIL)) (-2694 (((-112) $) NIL)) (-3679 (($ $) NIL)) (-3900 (((-112) $) NIL)) (-3135 (((-112) $) NIL)) (-3692 (($ (-830 (-1194)) |#1|) NIL)) (-1488 (($ $) NIL)) (-1355 (((-2 (|:| |k| (-830 (-1194))) (|:| |c| |#1|)) $) NIL)) (-4428 (((-830 (-1194)) $) NIL)) (-1428 (((-830 (-1194)) $) NIL)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2431 (($ $ (-1194)) NIL) (($ $ (-830 (-1194))) NIL) (($ $ $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3943 (((-1300 (-1194) |#1|) $) NIL)) (-1753 (((-782) $) NIL)) (-3054 (((-112) $) NIL)) (-3736 ((|#1| $) NIL)) (-2882 (((-873) $) NIL) (($ (-575)) NIL) (($ |#1|) NIL) (($ (-830 (-1194))) NIL) (($ (-1194)) NIL)) (-1754 ((|#1| $ (-830 (-1194))) NIL) ((|#1| $ $) NIL)) (-4421 (((-782)) NIL T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) NIL T CONST)) (-3410 (((-655 (-2 (|:| |k| (-1194)) (|:| |c| $))) $) NIL)) (-2005 (($) NIL T CONST)) (-3913 (((-112) $ $) NIL)) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) NIL)) (** (($ $ (-936)) NIL) (($ $ (-782)) NIL)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1194) $) NIL)))
-(((-1307 |#1|) (-13 (-1306 (-1194) |#1|) (-10 -8 (-15 -3943 ((-1300 (-1194) |#1|) $)) (-15 -3118 ($ (-1300 (-1194) |#1|))) (-15 -3410 ((-655 (-2 (|:| |k| (-1194)) (|:| |c| $))) $)))) (-1066)) (T -1307))
-((-3943 (*1 *2 *1) (-12 (-5 *2 (-1300 (-1194) *3)) (-5 *1 (-1307 *3)) (-4 *3 (-1066)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-1300 (-1194) *3)) (-4 *3 (-1066)) (-5 *1 (-1307 *3)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| (-1194)) (|:| |c| (-1307 *3))))) (-5 *1 (-1307 *3)) (-4 *3 (-1066)))))
-(-13 (-1306 (-1194) |#1|) (-10 -8 (-15 -3943 ((-1300 (-1194) |#1|) $)) (-15 -3118 ($ (-1300 (-1194) |#1|))) (-15 -3410 ((-655 (-2 (|:| |k| (-1194)) (|:| |c| $))) $))))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) NIL)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3261 (($) NIL T CONST)) (-2443 (((-3 |#2| "failed") $) NIL)) (-4400 ((|#2| $) NIL)) (-4406 (($ $) NIL)) (-4162 (((-3 $ "failed") $) 42)) (-2694 (((-112) $) 35)) (-3679 (($ $) 37)) (-3900 (((-112) $) NIL)) (-1403 (((-782) $) NIL)) (-1719 (((-655 $) $) NIL)) (-3135 (((-112) $) NIL)) (-3692 (($ |#2| |#1|) NIL)) (-4428 ((|#2| $) 24)) (-1428 ((|#2| $) 22)) (-2544 (($ (-1 |#1| |#1|) $) NIL)) (-2574 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4370 ((|#2| $) NIL)) (-4383 ((|#1| $) NIL)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3054 (((-112) $) 32)) (-3736 ((|#1| $) 33)) (-2882 (((-873) $) 65) (($ (-575)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2212 (((-655 |#1|) $) NIL)) (-3002 ((|#1| $ |#2|) NIL)) (-1754 ((|#1| $ |#2|) 28)) (-4421 (((-782)) 14 T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 29 T CONST)) (-2005 (($) 11 T CONST)) (-1332 (((-655 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3913 (((-112) $ $) 30)) (-4038 (($ $ |#1|) 67 (|has| |#1| (-373)))) (-4027 (($ $) NIL) (($ $ $) NIL)) (-4015 (($ $ $) 50)) (** (($ $ (-936)) NIL) (($ $ (-782)) 52)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2869 (((-782) $) 16)))
-(((-1308 |#1| |#2|) (-13 (-1066) (-1299 |#1|) (-392 |#1| |#2|) (-627 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2869 ((-782) $)) (-15 -1428 (|#2| $)) (-15 -4428 (|#2| $)) (-15 -4406 ($ $)) (-15 -1754 (|#1| $ |#2|)) (-15 -3054 ((-112) $)) (-15 -3736 (|#1| $)) (-15 -2694 ((-112) $)) (-15 -3679 ($ $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-373)) (-15 -4038 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|))) (-1066) (-857)) (T -1308))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))) (-4406 (*1 *1 *1) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))) (-2544 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-857)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-857)))) (-1428 (*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066)))) (-4428 (*1 *2 *1) (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066)))) (-1754 (*1 *2 *1 *3) (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-857)))) (-3736 (*1 *2 *1) (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-857)))) (-3679 (*1 *1 *1) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))) (-4038 (*1 *1 *1 *2) (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-373)) (-4 *2 (-1066)) (-4 *3 (-857)))))
-(-13 (-1066) (-1299 |#1|) (-392 |#1| |#2|) (-627 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2869 ((-782) $)) (-15 -1428 (|#2| $)) (-15 -4428 (|#2| $)) (-15 -4406 ($ $)) (-15 -1754 (|#1| $ |#2|)) (-15 -3054 ((-112) $)) (-15 -3736 (|#1| $)) (-15 -2694 ((-112) $)) (-15 -3679 ($ $)) (-15 -2544 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-373)) (-15 -4038 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|)))
-((-2859 (((-112) $ $) 27)) (-2045 (((-112) $) NIL)) (-3486 (((-655 |#1|) $) 132)) (-3118 (($ (-1300 |#1| |#2|)) 50)) (-2744 (($ $ (-782)) 38)) (-1708 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-782)) 52 (|has| |#2| (-174)))) (-3261 (($) NIL T CONST)) (-1735 (($ $ |#1|) 114) (($ $ (-830 |#1|)) 115) (($ $ $) 26)) (-2443 (((-3 (-830 |#1|) "failed") $) NIL)) (-4400 (((-830 |#1|) $) NIL)) (-4162 (((-3 $ "failed") $) 122)) (-2694 (((-112) $) 117)) (-3679 (($ $) 118)) (-3900 (((-112) $) NIL)) (-3135 (((-112) $) NIL)) (-3692 (($ (-830 |#1|) |#2|) 20)) (-1488 (($ $) NIL)) (-1355 (((-2 (|:| |k| (-830 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4428 (((-830 |#1|) $) 123)) (-1428 (((-830 |#1|) $) 126)) (-2544 (($ (-1 |#2| |#2|) $) 131)) (-2431 (($ $ |#1|) 112) (($ $ (-830 |#1|)) 113) (($ $ $) 62)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-3943 (((-1300 |#1| |#2|) $) 94)) (-1753 (((-782) $) 129)) (-3054 (((-112) $) 81)) (-3736 ((|#2| $) 32)) (-2882 (((-873) $) 73) (($ (-575)) 87) (($ |#2|) 85) (($ (-830 |#1|)) 18) (($ |#1|) 84)) (-1754 ((|#2| $ (-830 |#1|)) 116) ((|#2| $ $) 28)) (-4421 (((-782)) 120 T CONST)) (-3685 (((-112) $ $) NIL)) (-1989 (($) 15 T CONST)) (-3410 (((-655 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2005 (($) 33 T CONST)) (-3913 (((-112) $ $) 14)) (-4027 (($ $) 98) (($ $ $) 101)) (-4015 (($ $ $) 61)) (** (($ $ (-936)) NIL) (($ $ (-782)) 55)) (* (($ (-936) $) NIL) (($ (-782) $) 53) (($ (-575) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1309 |#1| |#2|) (-13 (-1306 |#1| |#2|) (-10 -8 (-15 -3943 ((-1300 |#1| |#2|) $)) (-15 -3118 ($ (-1300 |#1| |#2|))) (-15 -3410 ((-655 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1066)) (T -1309))
-((-3943 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)) (-5 *1 (-1309 *3 *4)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-655 (-2 (|:| |k| *3) (|:| |c| (-1309 *3 *4))))) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))))
-(-13 (-1306 |#1| |#2|) (-10 -8 (-15 -3943 ((-1300 |#1| |#2|) $)) (-15 -3118 ($ (-1300 |#1| |#2|))) (-15 -3410 ((-655 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-2859 (((-112) $ $) NIL)) (-2130 (($ (-655 (-936))) 10)) (-2507 (((-988) $) 12)) (-4264 (((-1176) $) NIL)) (-3912 (((-1137) $) NIL)) (-2882 (((-873) $) 25) (($ (-988)) 14) (((-988) $) 13)) (-3685 (((-112) $ $) NIL)) (-3913 (((-112) $ $) 17)))
-(((-1310) (-13 (-1117) (-501 (-988)) (-10 -8 (-15 -2130 ($ (-655 (-936)))) (-15 -2507 ((-988) $))))) (T -1310))
-((-2130 (*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1310)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-1310)))))
-(-13 (-1117) (-501 (-988)) (-10 -8 (-15 -2130 ($ (-655 (-936)))) (-15 -2507 ((-988) $))))
-((-2253 (((-655 (-1174 |#1|)) (-1 (-655 (-1174 |#1|)) (-655 (-1174 |#1|))) (-575)) 16) (((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|))) 13)))
-(((-1311 |#1|) (-10 -7 (-15 -2253 ((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|)))) (-15 -2253 ((-655 (-1174 |#1|)) (-1 (-655 (-1174 |#1|)) (-655 (-1174 |#1|))) (-575)))) (-1235)) (T -1311))
-((-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-655 (-1174 *5)) (-655 (-1174 *5)))) (-5 *4 (-575)) (-5 *2 (-655 (-1174 *5))) (-5 *1 (-1311 *5)) (-4 *5 (-1235)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-1 (-1174 *4) (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1311 *4)) (-4 *4 (-1235)))))
-(-10 -7 (-15 -2253 ((-1174 |#1|) (-1 (-1174 |#1|) (-1174 |#1|)))) (-15 -2253 ((-655 (-1174 |#1|)) (-1 (-655 (-1174 |#1|)) (-655 (-1174 |#1|))) (-575))))
-((-4051 (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|))) 174) (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112)) 173) (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112)) 172) (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112) (-112)) 171) (((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-1063 |#1| |#2|)) 156)) (-3881 (((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|))) 85) (((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112)) 84) (((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112) (-112)) 83)) (-4281 (((-655 (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) (-1063 |#1| |#2|)) 73)) (-2195 (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|))) 140) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112)) 139) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112)) 138) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112) (-112)) 137) (((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|)) 132)) (-2251 (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|))) 145) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112)) 144) (((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112)) 143) (((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|)) 142)) (-2613 (((-655 (-791 |#1| (-875 |#3|))) (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) 111) (((-1190 (-1041 (-418 |#1|))) (-1190 |#1|)) 102) (((-967 (-1041 (-418 |#1|))) (-791 |#1| (-875 |#3|))) 109) (((-967 (-1041 (-418 |#1|))) (-967 |#1|)) 107) (((-791 |#1| (-875 |#3|)) (-791 |#1| (-875 |#2|))) 33)))
-(((-1312 |#1| |#2| |#3|) (-10 -7 (-15 -3881 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112) (-112))) (-15 -3881 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112))) (-15 -3881 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-1063 |#1| |#2|))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -4281 ((-655 (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) (-1063 |#1| |#2|))) (-15 -2613 ((-791 |#1| (-875 |#3|)) (-791 |#1| (-875 |#2|)))) (-15 -2613 ((-967 (-1041 (-418 |#1|))) (-967 |#1|))) (-15 -2613 ((-967 (-1041 (-418 |#1|))) (-791 |#1| (-875 |#3|)))) (-15 -2613 ((-1190 (-1041 (-418 |#1|))) (-1190 |#1|))) (-15 -2613 ((-655 (-791 |#1| (-875 |#3|))) (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))))) (-13 (-859) (-316) (-148) (-1039)) (-655 (-1194)) (-655 (-1194))) (T -1312))
-((-2613 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6)))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-791 *4 (-875 *6)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-1190 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-1190 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-791 *4 (-875 *6))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194))) (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-791 *4 (-875 *5))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-791 *4 (-875 *6))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2251 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2195 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2195 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *4)) (|:| -2209 (-655 (-967 *4)))))) (-5 *1 (-1312 *4 *5 *6)) (-5 *3 (-655 (-967 *4))) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-4051 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5)))))) (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-4051 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5)))))) (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-4051 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5)))))) (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5))) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-2 (|:| -3885 (-1190 *4)) (|:| -2209 (-655 (-967 *4)))))) (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-1063 *4 *5))) (-5 *1 (-1312 *4 *5 *6)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))) (-3881 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039))) (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7)) (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194))))))
-(-10 -7 (-15 -3881 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112) (-112))) (-15 -3881 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)) (-112))) (-15 -3881 ((-655 (-1063 |#1| |#2|)) (-655 (-967 |#1|)))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-1063 |#1| |#2|))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)) (-112))) (-15 -4051 ((-655 (-2 (|:| -3885 (-1190 |#1|)) (|:| -2209 (-655 (-967 |#1|))))) (-655 (-967 |#1|)))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112) (-112))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -2195 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-1063 |#1| |#2|))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112) (-112))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)) (-112))) (-15 -2251 ((-655 (-655 (-1041 (-418 |#1|)))) (-655 (-967 |#1|)))) (-15 -4281 ((-655 (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|)))) (-1063 |#1| |#2|))) (-15 -2613 ((-791 |#1| (-875 |#3|)) (-791 |#1| (-875 |#2|)))) (-15 -2613 ((-967 (-1041 (-418 |#1|))) (-967 |#1|))) (-15 -2613 ((-967 (-1041 (-418 |#1|))) (-791 |#1| (-875 |#3|)))) (-15 -2613 ((-1190 (-1041 (-418 |#1|))) (-1190 |#1|))) (-15 -2613 ((-655 (-791 |#1| (-875 |#3|))) (-1163 |#1| (-542 (-875 |#3|)) (-875 |#3|) (-791 |#1| (-875 |#3|))))))
-((-3856 (((-3 (-1285 (-418 (-575))) "failed") (-1285 |#1|) |#1|) 21)) (-4024 (((-112) (-1285 |#1|)) 12)) (-3234 (((-3 (-1285 (-575)) "failed") (-1285 |#1|)) 16)))
-(((-1313 |#1|) (-10 -7 (-15 -4024 ((-112) (-1285 |#1|))) (-15 -3234 ((-3 (-1285 (-575)) "failed") (-1285 |#1|))) (-15 -3856 ((-3 (-1285 (-418 (-575))) "failed") (-1285 |#1|) |#1|))) (-13 (-1066) (-650 (-575)))) (T -1313))
-((-3856 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) (-5 *2 (-1285 (-418 (-575)))) (-5 *1 (-1313 *4)))) (-3234 (*1 *2 *3) (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) (-5 *2 (-1285 (-575))) (-5 *1 (-1313 *4)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575)))) (-5 *2 (-112)) (-5 *1 (-1313 *4)))))
-(-10 -7 (-15 -4024 ((-112) (-1285 |#1|))) (-15 -3234 ((-3 (-1285 (-575)) "failed") (-1285 |#1|))) (-15 -3856 ((-3 (-1285 (-418 (-575))) "failed") (-1285 |#1|) |#1|)))
-((-2859 (((-112) $ $) NIL)) (-2045 (((-112) $) 11)) (-1708 (((-3 $ "failed") $ $) NIL)) (-2409 (((-782)) 8)) (-3261 (($) NIL T CONST)) (-4162 (((-3 $ "failed") $) 58)) (-2073 (($) 49)) (-3900 (((-112) $) 57)) (-2808 (((-3 $ "failed") $) 40)) (-1894 (((-936) $) 15)) (-4264 (((-1176) $) NIL)) (-3472 (($) 32 T CONST)) (-4317 (($ (-936)) 50)) (-3912 (((-1137) $) NIL)) (-2613 (((-575) $) 13)) (-2882 (((-873) $) 27) (($ (-575)) 24)) (-4421 (((-782)) 9 T CONST)) (-3685 (((-112) $ $) 60)) (-1989 (($) 29 T CONST)) (-2005 (($) 31 T CONST)) (-3913 (((-112) $ $) 38)) (-4027 (($ $) 52) (($ $ $) 47)) (-4015 (($ $ $) 35)) (** (($ $ (-936)) NIL) (($ $ (-782)) 54)) (* (($ (-936) $) NIL) (($ (-782) $) NIL) (($ (-575) $) 44) (($ $ $) 43)))
-(((-1314 |#1|) (-13 (-174) (-378) (-625 (-575)) (-1169)) (-936)) (T -1314))
-NIL
-(-13 (-174) (-378) (-625 (-575)) (-1169))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3248516 3248521 3248526 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3248501 3248506 3248511 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3248486 3248491 3248496 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3248471 3248476 3248481 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1314 3247614 3248346 3248423 "ZMOD" 3248428 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1313 3246668 3246832 3247055 "ZLINDEP" 3247446 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1312 3235968 3237736 3239708 "ZDSOLVE" 3244798 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1311 3235214 3235355 3235544 "YSTREAM" 3235814 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1310 3234642 3234888 3235001 "YDIAGRAM" 3235123 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1309 3232416 3233943 3234147 "XRPOLY" 3234485 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1308 3228969 3230287 3230862 "XPR" 3231888 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1307 3226690 3228300 3228504 "XPOLY" 3228800 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1306 3224343 3225711 3225766 "XPOLYC" 3226054 NIL XPOLYC (NIL T T) -9 NIL 3226167 NIL) (-1305 3220719 3222860 3223248 "XPBWPOLY" 3224001 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1304 3216414 3218709 3218751 "XF" 3219372 NIL XF (NIL T) -9 NIL 3219772 NIL) (-1303 3216035 3216123 3216292 "XF-" 3216297 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1302 3211231 3212520 3212575 "XFALG" 3214747 NIL XFALG (NIL T T) -9 NIL 3215536 NIL) (-1301 3210364 3210468 3210673 "XEXPPKG" 3211123 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1300 3208473 3210214 3210310 "XDPOLY" 3210315 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1299 3207280 3207880 3207923 "XALG" 3207928 NIL XALG (NIL T) -9 NIL 3208039 NIL) (-1298 3200722 3205257 3205751 "WUTSET" 3206872 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1297 3198978 3199774 3200097 "WP" 3200533 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1296 3198580 3198800 3198870 "WHILEAST" 3198930 T WHILEAST (NIL) -8 NIL NIL NIL) (-1295 3198052 3198297 3198391 "WHEREAST" 3198508 T WHEREAST (NIL) -8 NIL NIL NIL) (-1294 3196938 3197136 3197431 "WFFINTBS" 3197849 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1293 3194842 3195269 3195731 "WEIER" 3196510 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1292 3193888 3194338 3194380 "VSPACE" 3194516 NIL VSPACE (NIL T) -9 NIL 3194590 NIL) (-1291 3193726 3193753 3193844 "VSPACE-" 3193849 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1290 3193535 3193577 3193645 "VOID" 3193680 T VOID (NIL) -8 NIL NIL NIL) (-1289 3191671 3192030 3192436 "VIEW" 3193151 T VIEW (NIL) -7 NIL NIL NIL) (-1288 3188095 3188734 3189471 "VIEWDEF" 3190956 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1287 3177399 3179643 3181816 "VIEW3D" 3185944 T VIEW3D (NIL) -8 NIL NIL NIL) (-1286 3169650 3171310 3172889 "VIEW2D" 3175842 T VIEW2D (NIL) -8 NIL NIL NIL) (-1285 3165003 3169420 3169512 "VECTOR" 3169593 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1284 3163580 3163839 3164157 "VECTOR2" 3164733 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1283 3157022 3161331 3161374 "VECTCAT" 3162369 NIL VECTCAT (NIL T) -9 NIL 3162956 NIL) (-1282 3156036 3156290 3156680 "VECTCAT-" 3156685 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1281 3155490 3155687 3155807 "VARIABLE" 3155951 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1280 3155423 3155428 3155458 "UTYPE" 3155463 T UTYPE (NIL) -9 NIL NIL NIL) (-1279 3154253 3154407 3154669 "UTSODETL" 3155249 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1278 3151693 3152153 3152677 "UTSODE" 3153794 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1277 3143641 3149454 3149934 "UTS" 3151271 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1276 3134205 3139575 3139618 "UTSCAT" 3140730 NIL UTSCAT (NIL T) -9 NIL 3141488 NIL) (-1275 3131553 3132275 3133264 "UTSCAT-" 3133269 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1274 3131180 3131223 3131356 "UTS2" 3131504 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1273 3125406 3128018 3128061 "URAGG" 3130131 NIL URAGG (NIL T) -9 NIL 3130854 NIL) (-1272 3122345 3123208 3124331 "URAGG-" 3124336 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1271 3118054 3120980 3121445 "UPXSSING" 3122009 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1270 3110230 3117436 3117700 "UPXS" 3117848 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1269 3103303 3110134 3110206 "UPXSCONS" 3110211 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1268 3092710 3099506 3099568 "UPXSCCA" 3100142 NIL UPXSCCA (NIL T T) -9 NIL 3100375 NIL) (-1267 3092348 3092433 3092607 "UPXSCCA-" 3092612 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1266 3081607 3088176 3088219 "UPXSCAT" 3088867 NIL UPXSCAT (NIL T) -9 NIL 3089476 NIL) (-1265 3081037 3081116 3081295 "UPXS2" 3081522 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1264 3079691 3079944 3080295 "UPSQFREE" 3080780 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1263 3072899 3075959 3076014 "UPSCAT" 3077094 NIL UPSCAT (NIL T T) -9 NIL 3077859 NIL) (-1262 3072103 3072310 3072637 "UPSCAT-" 3072642 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1261 3057372 3065230 3065273 "UPOLYC" 3067374 NIL UPOLYC (NIL T) -9 NIL 3068595 NIL) (-1260 3048700 3051126 3054273 "UPOLYC-" 3054278 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1259 3048327 3048370 3048503 "UPOLYC2" 3048651 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1258 3040049 3048010 3048139 "UP" 3048246 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1257 3039388 3039495 3039659 "UPMP" 3039938 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1256 3038941 3039022 3039161 "UPDIVP" 3039301 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1255 3037509 3037758 3038074 "UPDECOMP" 3038690 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1254 3036740 3036852 3037038 "UPCDEN" 3037393 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1253 3036259 3036328 3036477 "UP2" 3036665 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1252 3034726 3035463 3035740 "UNISEG" 3036017 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1251 3033941 3034068 3034273 "UNISEG2" 3034569 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1250 3033001 3033181 3033407 "UNIFACT" 3033757 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1249 3016040 3032313 3032555 "ULS" 3032817 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3003903 3015944 3016016 "ULSCONS" 3016021 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1247 2984966 2997091 2997153 "ULSCCAT" 2997791 NIL ULSCCAT (NIL T T) -9 NIL 2998080 NIL) (-1246 2984016 2984261 2984649 "ULSCCAT-" 2984654 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1245 2973080 2979563 2979606 "ULSCAT" 2980469 NIL ULSCAT (NIL T) -9 NIL 2981200 NIL) (-1244 2972510 2972589 2972768 "ULS2" 2972995 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1243 2971629 2972139 2972246 "UINT8" 2972357 T UINT8 (NIL) -8 NIL NIL 2972442) (-1242 2970747 2971257 2971364 "UINT64" 2971475 T UINT64 (NIL) -8 NIL NIL 2971560) (-1241 2969865 2970375 2970482 "UINT32" 2970593 T UINT32 (NIL) -8 NIL NIL 2970678) (-1240 2968983 2969493 2969600 "UINT16" 2969711 T UINT16 (NIL) -8 NIL NIL 2969796) (-1239 2967286 2968243 2968273 "UFD" 2968485 T UFD (NIL) -9 NIL 2968599 NIL) (-1238 2967080 2967126 2967221 "UFD-" 2967226 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1237 2966162 2966345 2966561 "UDVO" 2966886 T UDVO (NIL) -7 NIL NIL NIL) (-1236 2963978 2964387 2964858 "UDPO" 2965726 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1235 2963911 2963916 2963946 "TYPE" 2963951 T TYPE (NIL) -9 NIL NIL NIL) (-1234 2963671 2963866 2963897 "TYPEAST" 2963902 T TYPEAST (NIL) -8 NIL NIL NIL) (-1233 2962642 2962844 2963084 "TWOFACT" 2963465 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1232 2961665 2962051 2962286 "TUPLE" 2962442 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1231 2959356 2959875 2960414 "TUBETOOL" 2961148 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1230 2958205 2958410 2958651 "TUBE" 2959149 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1229 2952934 2957177 2957460 "TS" 2957957 NIL TS (NIL T) -8 NIL NIL NIL) (-1228 2941574 2945693 2945790 "TSETCAT" 2951059 NIL TSETCAT (NIL T T T T) -9 NIL 2952590 NIL) (-1227 2936306 2937906 2939797 "TSETCAT-" 2939802 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1226 2930945 2931792 2932721 "TRMANIP" 2935442 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1225 2930386 2930449 2930612 "TRIMAT" 2930877 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1224 2928252 2928489 2928846 "TRIGMNIP" 2930135 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1223 2927772 2927885 2927915 "TRIGCAT" 2928128 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1222 2927441 2927520 2927661 "TRIGCAT-" 2927666 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1221 2924286 2926299 2926580 "TREE" 2927195 NIL TREE (NIL T) -8 NIL NIL NIL) (-1220 2923560 2924088 2924118 "TRANFUN" 2924153 T TRANFUN (NIL) -9 NIL 2924219 NIL) (-1219 2922839 2923030 2923310 "TRANFUN-" 2923315 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1218 2922643 2922675 2922736 "TOPSP" 2922800 T TOPSP (NIL) -7 NIL NIL NIL) (-1217 2921991 2922106 2922260 "TOOLSIGN" 2922524 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1216 2920625 2921168 2921407 "TEXTFILE" 2921774 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1215 2918537 2919078 2919507 "TEX" 2920218 T TEX (NIL) -8 NIL NIL NIL) (-1214 2918318 2918349 2918421 "TEX1" 2918500 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1213 2917966 2918029 2918119 "TEMUTL" 2918250 T TEMUTL (NIL) -7 NIL NIL NIL) (-1212 2916120 2916400 2916725 "TBCMPPK" 2917689 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1211 2907897 2914280 2914336 "TBAGG" 2914736 NIL TBAGG (NIL T T) -9 NIL 2914947 NIL) (-1210 2902967 2904455 2906209 "TBAGG-" 2906214 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1209 2902351 2902458 2902603 "TANEXP" 2902856 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1208 2901862 2902126 2902216 "TALGOP" 2902296 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1207 2895252 2901719 2901812 "TABLE" 2901817 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1206 2894664 2894763 2894901 "TABLEAU" 2895149 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1205 2889272 2890492 2891740 "TABLBUMP" 2893450 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1204 2888494 2888641 2888822 "SYSTEM" 2889113 T SYSTEM (NIL) -8 NIL NIL NIL) (-1203 2884953 2885652 2886435 "SYSSOLP" 2887745 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1202 2884751 2884908 2884939 "SYSPTR" 2884944 T SYSPTR (NIL) -8 NIL NIL NIL) (-1201 2883787 2884292 2884411 "SYSNNI" 2884597 NIL SYSNNI (NIL NIL) -8 NIL NIL 2884682) (-1200 2883086 2883545 2883624 "SYSINT" 2883684 NIL SYSINT (NIL NIL) -8 NIL NIL 2883729) (-1199 2879418 2880364 2881074 "SYNTAX" 2882398 T SYNTAX (NIL) -8 NIL NIL NIL) (-1198 2876576 2877178 2877810 "SYMTAB" 2878808 T SYMTAB (NIL) -8 NIL NIL NIL) (-1197 2871825 2872727 2873710 "SYMS" 2875615 T SYMS (NIL) -8 NIL NIL NIL) (-1196 2869060 2871283 2871513 "SYMPOLY" 2871630 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1195 2868577 2868652 2868775 "SYMFUNC" 2868972 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1194 2864597 2865889 2866702 "SYMBOL" 2867786 T SYMBOL (NIL) -8 NIL NIL NIL) (-1193 2858136 2859825 2861545 "SWITCH" 2862899 T SWITCH (NIL) -8 NIL NIL NIL) (-1192 2851480 2857092 2857386 "SUTS" 2857900 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 2843656 2850862 2851126 "SUPXS" 2851274 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1190 2835326 2843274 2843400 "SUP" 2843565 NIL SUP (NIL T) -8 NIL NIL NIL) (-1189 2834485 2834612 2834829 "SUPFRACF" 2835194 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1188 2834106 2834165 2834278 "SUP2" 2834420 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1187 2832554 2832828 2833184 "SUMRF" 2833805 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1186 2831889 2831955 2832147 "SUMFS" 2832475 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1185 2814963 2831201 2831443 "SULS" 2831705 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1184 2814565 2814785 2814855 "SUCHTAST" 2814915 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1183 2813860 2814090 2814230 "SUCH" 2814473 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1182 2807727 2808766 2809725 "SUBSPACE" 2812948 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1181 2807157 2807247 2807411 "SUBRESP" 2807615 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1180 2800525 2801822 2803133 "STTF" 2805893 NIL STTF (NIL T) -7 NIL NIL NIL) (-1179 2794698 2795818 2796965 "STTFNC" 2799425 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1178 2786011 2787880 2789674 "STTAYLOR" 2792939 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1177 2779141 2785875 2785958 "STRTBL" 2785963 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1176 2774505 2779096 2779127 "STRING" 2779132 T STRING (NIL) -8 NIL NIL NIL) (-1175 2769334 2773848 2773878 "STRICAT" 2773937 T STRICAT (NIL) -9 NIL 2773999 NIL) (-1174 2762087 2766953 2767564 "STREAM" 2768758 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1173 2761597 2761674 2761818 "STREAM3" 2762004 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1172 2760579 2760762 2760997 "STREAM2" 2761410 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1171 2760267 2760319 2760412 "STREAM1" 2760521 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1170 2759283 2759464 2759695 "STINPROD" 2760083 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1169 2758835 2759045 2759075 "STEP" 2759155 T STEP (NIL) -9 NIL 2759233 NIL) (-1168 2758022 2758324 2758472 "STEPAST" 2758709 T STEPAST (NIL) -8 NIL NIL NIL) (-1167 2751454 2757921 2757998 "STBL" 2758003 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1166 2746549 2750645 2750688 "STAGG" 2750841 NIL STAGG (NIL T) -9 NIL 2750930 NIL) (-1165 2744251 2744853 2745725 "STAGG-" 2745730 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1164 2742398 2744021 2744113 "STACK" 2744194 NIL STACK (NIL T) -8 NIL NIL NIL) (-1163 2735093 2740539 2740995 "SREGSET" 2742028 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1162 2727518 2728887 2730400 "SRDCMPK" 2733699 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1161 2720403 2724928 2724958 "SRAGG" 2726261 T SRAGG (NIL) -9 NIL 2726869 NIL) (-1160 2719420 2719675 2720054 "SRAGG-" 2720059 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1159 2713791 2718367 2718788 "SQMATRIX" 2719046 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1158 2707476 2710509 2711236 "SPLTREE" 2713136 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1157 2703439 2704132 2704778 "SPLNODE" 2706902 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1156 2702486 2702719 2702749 "SPFCAT" 2703193 T SPFCAT (NIL) -9 NIL NIL NIL) (-1155 2701223 2701433 2701697 "SPECOUT" 2702244 T SPECOUT (NIL) -7 NIL NIL NIL) (-1154 2692333 2694205 2694235 "SPADXPT" 2698911 T SPADXPT (NIL) -9 NIL 2701075 NIL) (-1153 2692094 2692134 2692203 "SPADPRSR" 2692286 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1152 2690143 2692049 2692080 "SPADAST" 2692085 T SPADAST (NIL) -8 NIL NIL NIL) (-1151 2682088 2683861 2683904 "SPACEC" 2688277 NIL SPACEC (NIL T) -9 NIL 2690093 NIL) (-1150 2680218 2682020 2682069 "SPACE3" 2682074 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1149 2678970 2679141 2679432 "SORTPAK" 2680023 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1148 2677062 2677365 2677777 "SOLVETRA" 2678634 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1147 2676112 2676334 2676595 "SOLVESER" 2676835 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1146 2671416 2672304 2673299 "SOLVERAD" 2675164 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1145 2667231 2667840 2668569 "SOLVEFOR" 2670783 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1144 2661501 2666580 2666677 "SNTSCAT" 2666682 NIL SNTSCAT (NIL T T T T) -9 NIL 2666752 NIL) (-1143 2655607 2659824 2660215 "SMTS" 2661191 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1142 2650203 2655495 2655572 "SMP" 2655577 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1141 2648362 2648663 2649061 "SMITH" 2649900 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1140 2640653 2644941 2645044 "SMATCAT" 2646395 NIL SMATCAT (NIL NIL T T T) -9 NIL 2646945 NIL) (-1139 2637371 2638256 2639514 "SMATCAT-" 2639519 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1138 2635037 2636607 2636650 "SKAGG" 2636911 NIL SKAGG (NIL T) -9 NIL 2637046 NIL) (-1137 2631313 2634510 2634694 "SINT" 2634846 T SINT (NIL) -8 NIL NIL 2635008) (-1136 2631085 2631123 2631189 "SIMPAN" 2631269 T SIMPAN (NIL) -7 NIL NIL NIL) (-1135 2630364 2630620 2630760 "SIG" 2630967 T SIG (NIL) -8 NIL NIL NIL) (-1134 2629202 2629423 2629698 "SIGNRF" 2630123 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1133 2628035 2628186 2628470 "SIGNEF" 2629031 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1132 2627341 2627618 2627742 "SIGAST" 2627933 T SIGAST (NIL) -8 NIL NIL NIL) (-1131 2625031 2625485 2625991 "SHP" 2626882 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1130 2619036 2624932 2625008 "SHDP" 2625013 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1129 2618609 2618801 2618831 "SGROUP" 2618924 T SGROUP (NIL) -9 NIL 2618986 NIL) (-1128 2618467 2618493 2618566 "SGROUP-" 2618571 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1127 2615258 2615956 2616679 "SGCF" 2617766 T SGCF (NIL) -7 NIL NIL NIL) (-1126 2609626 2614705 2614802 "SFRTCAT" 2614807 NIL SFRTCAT (NIL T T T T) -9 NIL 2614846 NIL) (-1125 2603047 2604065 2605201 "SFRGCD" 2608609 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1124 2596173 2597246 2598432 "SFQCMPK" 2601980 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1123 2595793 2595882 2595993 "SFORT" 2596114 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1122 2594911 2595633 2595754 "SEXOF" 2595759 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1121 2594018 2594792 2594860 "SEX" 2594865 T SEX (NIL) -8 NIL NIL NIL) (-1120 2589799 2590514 2590609 "SEXCAT" 2593231 NIL SEXCAT (NIL T T T T T) -9 NIL 2593791 NIL) (-1119 2586952 2589733 2589781 "SET" 2589786 NIL SET (NIL T) -8 NIL NIL NIL) (-1118 2585176 2585665 2585970 "SETMN" 2586693 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1117 2584672 2584824 2584854 "SETCAT" 2585030 T SETCAT (NIL) -9 NIL 2585140 NIL) (-1116 2584364 2584442 2584572 "SETCAT-" 2584577 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1115 2580725 2582825 2582868 "SETAGG" 2583738 NIL SETAGG (NIL T) -9 NIL 2584078 NIL) (-1114 2580183 2580299 2580536 "SETAGG-" 2580541 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1113 2579626 2579879 2579980 "SEQAST" 2580104 T SEQAST (NIL) -8 NIL NIL NIL) (-1112 2578825 2579119 2579180 "SEGXCAT" 2579466 NIL SEGXCAT (NIL T T) -9 NIL 2579586 NIL) (-1111 2577831 2578491 2578673 "SEG" 2578678 NIL SEG (NIL T) -8 NIL NIL NIL) (-1110 2576810 2577024 2577067 "SEGCAT" 2577589 NIL SEGCAT (NIL T) -9 NIL 2577810 NIL) (-1109 2575742 2576173 2576381 "SEGBIND" 2576637 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1108 2575363 2575422 2575535 "SEGBIND2" 2575677 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1107 2574936 2575164 2575241 "SEGAST" 2575308 T SEGAST (NIL) -8 NIL NIL NIL) (-1106 2574155 2574281 2574485 "SEG2" 2574780 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1105 2573526 2574090 2574137 "SDVAR" 2574142 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1104 2565964 2573296 2573426 "SDPOL" 2573431 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1103 2564557 2564823 2565142 "SCPKG" 2565679 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1102 2563721 2563893 2564085 "SCOPE" 2564387 T SCOPE (NIL) -8 NIL NIL NIL) (-1101 2562941 2563075 2563254 "SCACHE" 2563576 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1100 2562587 2562773 2562803 "SASTCAT" 2562808 T SASTCAT (NIL) -9 NIL 2562821 NIL) (-1099 2562074 2562422 2562498 "SAOS" 2562533 T SAOS (NIL) -8 NIL NIL NIL) (-1098 2561639 2561674 2561847 "SAERFFC" 2562033 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1097 2555489 2561536 2561616 "SAE" 2561621 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1096 2555082 2555117 2555276 "SAEFACT" 2555448 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1095 2553403 2553717 2554118 "RURPK" 2554748 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1094 2552040 2552346 2552651 "RULESET" 2553237 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1093 2549263 2549793 2550251 "RULE" 2551721 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1092 2548875 2549057 2549140 "RULECOLD" 2549215 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1091 2548665 2548693 2548764 "RTVALUE" 2548826 T RTVALUE (NIL) -8 NIL NIL NIL) (-1090 2548136 2548382 2548476 "RSTRCAST" 2548593 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1089 2542984 2543779 2544699 "RSETGCD" 2547335 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1088 2532214 2537293 2537390 "RSETCAT" 2541509 NIL RSETCAT (NIL T T T T) -9 NIL 2542606 NIL) (-1087 2530141 2530680 2531504 "RSETCAT-" 2531509 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1086 2522527 2523903 2525423 "RSDCMPK" 2528740 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1085 2520506 2520973 2521047 "RRCC" 2522133 NIL RRCC (NIL T T) -9 NIL 2522477 NIL) (-1084 2519857 2520031 2520310 "RRCC-" 2520315 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1083 2519300 2519553 2519654 "RPTAST" 2519778 T RPTAST (NIL) -8 NIL NIL NIL) (-1082 2492963 2502412 2502479 "RPOLCAT" 2513145 NIL RPOLCAT (NIL T T T) -9 NIL 2516305 NIL) (-1081 2484461 2486801 2489923 "RPOLCAT-" 2489928 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1080 2475392 2482672 2483154 "ROUTINE" 2484001 T ROUTINE (NIL) -8 NIL NIL NIL) (-1079 2472139 2475018 2475158 "ROMAN" 2475274 T ROMAN (NIL) -8 NIL NIL NIL) (-1078 2470383 2470999 2471259 "ROIRC" 2471944 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1077 2466615 2468899 2468929 "RNS" 2469233 T RNS (NIL) -9 NIL 2469507 NIL) (-1076 2465124 2465507 2466041 "RNS-" 2466116 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1075 2464527 2464935 2464965 "RNG" 2464970 T RNG (NIL) -9 NIL 2464991 NIL) (-1074 2463530 2463892 2464094 "RNGBIND" 2464378 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1073 2462929 2463317 2463360 "RMODULE" 2463365 NIL RMODULE (NIL T) -9 NIL 2463392 NIL) (-1072 2461765 2461859 2462195 "RMCAT2" 2462830 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1071 2458615 2461111 2461408 "RMATRIX" 2461527 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1070 2451442 2453702 2453817 "RMATCAT" 2457176 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2458158 NIL) (-1069 2450817 2450964 2451271 "RMATCAT-" 2451276 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1068 2450218 2450439 2450482 "RLINSET" 2450676 NIL RLINSET (NIL T) -9 NIL 2450767 NIL) (-1067 2449785 2449860 2449988 "RINTERP" 2450137 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1066 2448843 2449397 2449427 "RING" 2449483 T RING (NIL) -9 NIL 2449575 NIL) (-1065 2448635 2448679 2448776 "RING-" 2448781 NIL RING- (NIL T) -8 NIL NIL NIL) (-1064 2447476 2447713 2447971 "RIDIST" 2448399 T RIDIST (NIL) -7 NIL NIL NIL) (-1063 2438765 2446944 2447150 "RGCHAIN" 2447324 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1062 2438115 2438521 2438562 "RGBCSPC" 2438620 NIL RGBCSPC (NIL T) -9 NIL 2438672 NIL) (-1061 2437273 2437654 2437695 "RGBCMDL" 2437927 NIL RGBCMDL (NIL T) -9 NIL 2438041 NIL) (-1060 2434267 2434881 2435551 "RF" 2436637 NIL RF (NIL T) -7 NIL NIL NIL) (-1059 2433913 2433976 2434079 "RFFACTOR" 2434198 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1058 2433638 2433673 2433770 "RFFACT" 2433872 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1057 2431755 2432119 2432501 "RFDIST" 2433278 T RFDIST (NIL) -7 NIL NIL NIL) (-1056 2431208 2431300 2431463 "RETSOL" 2431657 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1055 2430844 2430924 2430967 "RETRACT" 2431100 NIL RETRACT (NIL T) -9 NIL 2431187 NIL) (-1054 2430693 2430718 2430805 "RETRACT-" 2430810 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1053 2430295 2430515 2430585 "RETAST" 2430645 T RETAST (NIL) -8 NIL NIL NIL) (-1052 2423033 2429948 2430075 "RESULT" 2430190 T RESULT (NIL) -8 NIL NIL NIL) (-1051 2421624 2422302 2422501 "RESRING" 2422936 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1050 2421260 2421309 2421407 "RESLATC" 2421561 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1049 2420965 2421000 2421107 "REPSQ" 2421219 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1048 2418387 2418967 2419569 "REP" 2420385 T REP (NIL) -7 NIL NIL NIL) (-1047 2418084 2418119 2418230 "REPDB" 2418346 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1046 2411984 2413373 2414596 "REP2" 2416896 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1045 2408361 2409042 2409850 "REP1" 2411211 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1044 2401057 2406502 2406958 "REGSET" 2407991 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1043 2399822 2400205 2400455 "REF" 2400842 NIL REF (NIL T) -8 NIL NIL NIL) (-1042 2399199 2399302 2399469 "REDORDER" 2399706 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1041 2395167 2398412 2398639 "RECLOS" 2399027 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1040 2394219 2394400 2394615 "REALSOLV" 2394974 T REALSOLV (NIL) -7 NIL NIL NIL) (-1039 2394065 2394106 2394136 "REAL" 2394141 T REAL (NIL) -9 NIL 2394176 NIL) (-1038 2390548 2391350 2392234 "REAL0Q" 2393230 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1037 2386149 2387137 2388198 "REAL0" 2389529 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1036 2385620 2385866 2385960 "RDUCEAST" 2386077 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1035 2385025 2385097 2385304 "RDIV" 2385542 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1034 2384093 2384267 2384480 "RDIST" 2384847 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1033 2382690 2382977 2383349 "RDETRS" 2383801 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1032 2380502 2380956 2381494 "RDETR" 2382232 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1031 2379127 2379405 2379802 "RDEEFS" 2380218 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1030 2377636 2377942 2378367 "RDEEF" 2378815 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1029 2371697 2374617 2374647 "RCFIELD" 2375942 T RCFIELD (NIL) -9 NIL 2376673 NIL) (-1028 2369761 2370265 2370961 "RCFIELD-" 2371036 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1027 2366030 2367862 2367905 "RCAGG" 2368989 NIL RCAGG (NIL T) -9 NIL 2369454 NIL) (-1026 2365658 2365752 2365915 "RCAGG-" 2365920 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1025 2364993 2365105 2365270 "RATRET" 2365542 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1024 2364546 2364613 2364734 "RATFACT" 2364921 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1023 2363854 2363974 2364126 "RANDSRC" 2364416 T RANDSRC (NIL) -7 NIL NIL NIL) (-1022 2363588 2363632 2363705 "RADUTIL" 2363803 T RADUTIL (NIL) -7 NIL NIL NIL) (-1021 2356609 2362419 2362730 "RADIX" 2363311 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1020 2347277 2356451 2356581 "RADFF" 2356586 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1019 2346924 2346999 2347029 "RADCAT" 2347189 T RADCAT (NIL) -9 NIL NIL NIL) (-1018 2346706 2346754 2346854 "RADCAT-" 2346859 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1017 2344804 2346476 2346568 "QUEUE" 2346649 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1016 2341252 2344737 2344785 "QUAT" 2344790 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1015 2340883 2340926 2341057 "QUATCT2" 2341203 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1014 2333896 2337333 2337375 "QUATCAT" 2338166 NIL QUATCAT (NIL T) -9 NIL 2338932 NIL) (-1013 2330035 2331072 2332462 "QUATCAT-" 2332558 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1012 2327500 2329111 2329154 "QUAGG" 2329535 NIL QUAGG (NIL T) -9 NIL 2329710 NIL) (-1011 2327102 2327322 2327392 "QQUTAST" 2327452 T QQUTAST (NIL) -8 NIL NIL NIL) (-1010 2326115 2326615 2326780 "QFORM" 2326983 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1009 2316689 2322017 2322059 "QFCAT" 2322727 NIL QFCAT (NIL T) -9 NIL 2323728 NIL) (-1008 2312034 2313297 2314971 "QFCAT-" 2315067 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1007 2311665 2311708 2311839 "QFCAT2" 2311985 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1006 2311120 2311230 2311362 "QEQUAT" 2311555 T QEQUAT (NIL) -8 NIL NIL NIL) (-1005 2304246 2305319 2306505 "QCMPACK" 2310053 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1004 2301784 2302232 2302662 "QALGSET" 2303901 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1003 2301019 2301195 2301431 "QALGSET2" 2301602 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1002 2299704 2299928 2300247 "PWFFINTB" 2300792 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1001 2297879 2298047 2298403 "PUSHVAR" 2299518 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1000 2293768 2294822 2294865 "PTRANFN" 2296776 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-999 2292170 2292461 2292783 "PTPACK" 2293479 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-998 2291802 2291859 2291968 "PTFUNC2" 2292107 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-997 2286247 2290644 2290685 "PTCAT" 2290981 NIL PTCAT (NIL T) -9 NIL 2291134 NIL) (-996 2285905 2285940 2286064 "PSQFR" 2286206 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-995 2284500 2284798 2285132 "PSEUDLIN" 2285603 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-994 2271263 2273634 2275958 "PSETPK" 2282260 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-993 2264281 2267021 2267117 "PSETCAT" 2270138 NIL PSETCAT (NIL T T T T) -9 NIL 2270952 NIL) (-992 2262117 2262751 2263572 "PSETCAT-" 2263577 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-991 2261466 2261631 2261659 "PSCURVE" 2261927 T PSCURVE (NIL) -9 NIL 2262094 NIL) (-990 2257464 2258980 2259045 "PSCAT" 2259889 NIL PSCAT (NIL T T T) -9 NIL 2260129 NIL) (-989 2256527 2256743 2257143 "PSCAT-" 2257148 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-988 2254886 2255596 2255859 "PRTITION" 2256284 T PRTITION (NIL) -8 NIL NIL NIL) (-987 2254361 2254607 2254699 "PRTDAST" 2254814 T PRTDAST (NIL) -8 NIL NIL NIL) (-986 2243451 2245665 2247853 "PRS" 2252223 NIL PRS (NIL T T) -7 NIL NIL NIL) (-985 2241262 2242801 2242841 "PRQAGG" 2243024 NIL PRQAGG (NIL T) -9 NIL 2243126 NIL) (-984 2240598 2240903 2240931 "PROPLOG" 2241070 T PROPLOG (NIL) -9 NIL 2241185 NIL) (-983 2240202 2240259 2240382 "PROPFUN2" 2240521 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-982 2239517 2239638 2239810 "PROPFUN1" 2240063 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-981 2237698 2238264 2238561 "PROPFRML" 2239253 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-980 2237167 2237274 2237402 "PROPERTY" 2237590 T PROPERTY (NIL) -8 NIL NIL NIL) (-979 2231225 2235333 2236153 "PRODUCT" 2236393 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-978 2228503 2230683 2230917 "PR" 2231036 NIL PR (NIL T T) -8 NIL NIL NIL) (-977 2228299 2228331 2228390 "PRINT" 2228464 T PRINT (NIL) -7 NIL NIL NIL) (-976 2227639 2227756 2227908 "PRIMES" 2228179 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-975 2225704 2226105 2226571 "PRIMELT" 2227218 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-974 2225433 2225482 2225510 "PRIMCAT" 2225634 T PRIMCAT (NIL) -9 NIL NIL NIL) (-973 2221548 2225371 2225416 "PRIMARR" 2225421 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-972 2220555 2220733 2220961 "PRIMARR2" 2221366 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-971 2220198 2220254 2220365 "PREASSOC" 2220493 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-970 2219673 2219806 2219834 "PPCURVE" 2220039 T PPCURVE (NIL) -9 NIL 2220175 NIL) (-969 2219268 2219468 2219551 "PORTNUM" 2219610 T PORTNUM (NIL) -8 NIL NIL NIL) (-968 2216627 2217026 2217618 "POLYROOT" 2218849 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-967 2210720 2216231 2216391 "POLY" 2216500 NIL POLY (NIL T) -8 NIL NIL NIL) (-966 2210103 2210161 2210395 "POLYLIFT" 2210656 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-965 2206378 2206827 2207456 "POLYCATQ" 2209648 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-964 2192907 2198125 2198190 "POLYCAT" 2201704 NIL POLYCAT (NIL T T T) -9 NIL 2203582 NIL) (-963 2186134 2188058 2190522 "POLYCAT-" 2190527 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-962 2185721 2185789 2185909 "POLY2UP" 2186060 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-961 2185353 2185410 2185519 "POLY2" 2185658 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-960 2184038 2184277 2184553 "POLUTIL" 2185127 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-959 2182393 2182670 2183001 "POLTOPOL" 2183760 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-958 2177858 2182329 2182375 "POINT" 2182380 NIL POINT (NIL T) -8 NIL NIL NIL) (-957 2176045 2176402 2176777 "PNTHEORY" 2177503 T PNTHEORY (NIL) -7 NIL NIL NIL) (-956 2174503 2174800 2175199 "PMTOOLS" 2175743 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-955 2174096 2174174 2174291 "PMSYM" 2174419 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-954 2173604 2173673 2173848 "PMQFCAT" 2174021 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-953 2172959 2173069 2173225 "PMPRED" 2173481 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-952 2172352 2172438 2172600 "PMPREDFS" 2172860 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-951 2171016 2171224 2171602 "PMPLCAT" 2172114 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-950 2170548 2170627 2170779 "PMLSAGG" 2170931 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-949 2170021 2170097 2170279 "PMKERNEL" 2170466 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-948 2169638 2169713 2169826 "PMINS" 2169940 NIL PMINS (NIL T) -7 NIL NIL NIL) (-947 2169080 2169149 2169358 "PMFS" 2169563 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-946 2168308 2168426 2168631 "PMDOWN" 2168957 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-945 2167475 2167633 2167814 "PMASS" 2168147 T PMASS (NIL) -7 NIL NIL NIL) (-944 2166748 2166858 2167021 "PMASSFS" 2167362 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-943 2166403 2166471 2166565 "PLOTTOOL" 2166674 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-942 2161010 2162214 2163362 "PLOT" 2165275 T PLOT (NIL) -8 NIL NIL NIL) (-941 2156814 2157858 2158779 "PLOT3D" 2160109 T PLOT3D (NIL) -8 NIL NIL NIL) (-940 2155726 2155903 2156138 "PLOT1" 2156618 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-939 2131117 2135792 2140643 "PLEQN" 2150992 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-938 2130435 2130557 2130737 "PINTERP" 2130982 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-937 2130128 2130175 2130278 "PINTERPA" 2130382 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-936 2129344 2129892 2129979 "PI" 2130019 T PI (NIL) -8 NIL NIL 2130086) (-935 2127641 2128616 2128644 "PID" 2128826 T PID (NIL) -9 NIL 2128960 NIL) (-934 2127392 2127429 2127504 "PICOERCE" 2127598 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-933 2126712 2126851 2127027 "PGROEB" 2127248 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-932 2122299 2123113 2124018 "PGE" 2125827 T PGE (NIL) -7 NIL NIL NIL) (-931 2120422 2120669 2121035 "PGCD" 2122016 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-930 2119760 2119863 2120024 "PFRPAC" 2120306 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-929 2116400 2118308 2118661 "PFR" 2119439 NIL PFR (NIL T) -8 NIL NIL NIL) (-928 2114789 2115033 2115358 "PFOTOOLS" 2116147 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-927 2113322 2113561 2113912 "PFOQ" 2114546 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-926 2111823 2112035 2112391 "PFO" 2113106 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-925 2108376 2111712 2111781 "PF" 2111786 NIL PF (NIL NIL) -8 NIL NIL NIL) (-924 2105710 2106981 2107009 "PFECAT" 2107594 T PFECAT (NIL) -9 NIL 2107978 NIL) (-923 2105155 2105309 2105523 "PFECAT-" 2105528 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-922 2103758 2104010 2104311 "PFBRU" 2104904 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-921 2101624 2101976 2102408 "PFBR" 2103409 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-920 2097670 2099136 2099783 "PERM" 2101010 NIL PERM (NIL T) -8 NIL NIL NIL) (-919 2092904 2093877 2094747 "PERMGRP" 2096833 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-918 2091023 2091983 2092024 "PERMCAT" 2092424 NIL PERMCAT (NIL T) -9 NIL 2092722 NIL) (-917 2090676 2090717 2090841 "PERMAN" 2090976 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-916 2088164 2090341 2090463 "PENDTREE" 2090587 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-915 2087093 2087308 2087349 "PDSPC" 2087882 NIL PDSPC (NIL T) -9 NIL 2088127 NIL) (-914 2086196 2086414 2086776 "PDSPC-" 2086781 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-913 2085078 2085846 2085887 "PDRING" 2085892 NIL PDRING (NIL T) -9 NIL 2085920 NIL) (-912 2082293 2083071 2083739 "PDEPROB" 2084430 T PDEPROB (NIL) -8 NIL NIL NIL) (-911 2079838 2080342 2080897 "PDEPACK" 2081758 T PDEPACK (NIL) -7 NIL NIL NIL) (-910 2078750 2078940 2079191 "PDECOMP" 2079637 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-909 2076329 2077172 2077200 "PDECAT" 2077987 T PDECAT (NIL) -9 NIL 2078700 NIL) (-908 2075958 2076013 2076067 "PDDOM" 2076232 NIL PDDOM (NIL T T) -9 NIL 2076312 NIL) (-907 2075777 2075807 2075914 "PDDOM-" 2075919 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-906 2075528 2075561 2075651 "PCOMP" 2075738 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-905 2073706 2074329 2074626 "PBWLB" 2075257 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-904 2066179 2067779 2069117 "PATTERN" 2072389 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-903 2065811 2065868 2065977 "PATTERN2" 2066116 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-902 2063568 2063956 2064413 "PATTERN1" 2065400 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-901 2060936 2061517 2061998 "PATRES" 2063133 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-900 2060500 2060567 2060699 "PATRES2" 2060863 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-899 2058383 2058788 2059195 "PATMATCH" 2060167 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-898 2057893 2058102 2058143 "PATMAB" 2058250 NIL PATMAB (NIL T) -9 NIL 2058333 NIL) (-897 2056411 2056747 2057005 "PATLRES" 2057698 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-896 2055957 2056080 2056121 "PATAB" 2056126 NIL PATAB (NIL T) -9 NIL 2056298 NIL) (-895 2054139 2054534 2054957 "PARTPERM" 2055554 T PARTPERM (NIL) -7 NIL NIL NIL) (-894 2053760 2053823 2053925 "PARSURF" 2054070 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-893 2053392 2053449 2053558 "PARSU2" 2053697 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-892 2053156 2053196 2053263 "PARSER" 2053345 T PARSER (NIL) -7 NIL NIL NIL) (-891 2052777 2052840 2052942 "PARSCURV" 2053087 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-890 2052409 2052466 2052575 "PARSC2" 2052714 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-889 2052048 2052106 2052203 "PARPCURV" 2052345 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-888 2051680 2051737 2051846 "PARPC2" 2051985 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-887 2050741 2051053 2051235 "PARAMAST" 2051518 T PARAMAST (NIL) -8 NIL NIL NIL) (-886 2050261 2050347 2050466 "PAN2EXPR" 2050642 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-885 2049038 2049382 2049610 "PALETTE" 2050053 T PALETTE (NIL) -8 NIL NIL NIL) (-884 2047431 2048043 2048403 "PAIR" 2048724 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-883 2041210 2046688 2046883 "PADICRC" 2047285 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-882 2034334 2040554 2040739 "PADICRAT" 2041057 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-881 2032649 2034271 2034316 "PADIC" 2034321 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-880 2029759 2031323 2031363 "PADICCT" 2031944 NIL PADICCT (NIL NIL) -9 NIL 2032226 NIL) (-879 2028716 2028916 2029184 "PADEPAC" 2029546 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-878 2027928 2028061 2028267 "PADE" 2028578 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-877 2026315 2027136 2027416 "OWP" 2027732 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-876 2025808 2026021 2026118 "OVERSET" 2026238 T OVERSET (NIL) -8 NIL NIL NIL) (-875 2024854 2025413 2025585 "OVAR" 2025676 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-874 2024118 2024239 2024400 "OUT" 2024713 T OUT (NIL) -7 NIL NIL NIL) (-873 2012990 2015227 2017427 "OUTFORM" 2021938 T OUTFORM (NIL) -8 NIL NIL NIL) (-872 2012326 2012587 2012714 "OUTBFILE" 2012883 T OUTBFILE (NIL) -8 NIL NIL NIL) (-871 2011633 2011798 2011826 "OUTBCON" 2012144 T OUTBCON (NIL) -9 NIL 2012310 NIL) (-870 2011234 2011346 2011503 "OUTBCON-" 2011508 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-869 2010614 2010963 2011052 "OSI" 2011165 T OSI (NIL) -8 NIL NIL NIL) (-868 2010144 2010482 2010510 "OSGROUP" 2010515 T OSGROUP (NIL) -9 NIL 2010537 NIL) (-867 2008889 2009116 2009401 "ORTHPOL" 2009891 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-866 2006440 2008724 2008845 "OREUP" 2008850 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-865 2003843 2006131 2006258 "ORESUP" 2006382 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-864 2001371 2001871 2002432 "OREPCTO" 2003332 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-863 1995057 1997258 1997299 "OREPCAT" 1999647 NIL OREPCAT (NIL T) -9 NIL 2000751 NIL) (-862 1992204 1992986 1994044 "OREPCAT-" 1994049 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-861 1991355 1991653 1991681 "ORDSET" 1991990 T ORDSET (NIL) -9 NIL 1992154 NIL) (-860 1990786 1990934 1991158 "ORDSET-" 1991163 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-859 1989351 1990142 1990170 "ORDRING" 1990372 T ORDRING (NIL) -9 NIL 1990497 NIL) (-858 1988996 1989090 1989234 "ORDRING-" 1989239 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-857 1988376 1988839 1988867 "ORDMON" 1988872 T ORDMON (NIL) -9 NIL 1988893 NIL) (-856 1987538 1987685 1987880 "ORDFUNS" 1988225 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-855 1986876 1987295 1987323 "ORDFIN" 1987388 T ORDFIN (NIL) -9 NIL 1987462 NIL) (-854 1983435 1985462 1985871 "ORDCOMP" 1986500 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-853 1982701 1982828 1983014 "ORDCOMP2" 1983295 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-852 1979282 1980192 1981006 "OPTPROB" 1981907 T OPTPROB (NIL) -8 NIL NIL NIL) (-851 1976084 1976723 1977427 "OPTPACK" 1978598 T OPTPACK (NIL) -7 NIL NIL NIL) (-850 1973771 1974537 1974565 "OPTCAT" 1975384 T OPTCAT (NIL) -9 NIL 1976034 NIL) (-849 1973155 1973448 1973553 "OPSIG" 1973686 T OPSIG (NIL) -8 NIL NIL NIL) (-848 1972923 1972962 1973028 "OPQUERY" 1973109 T OPQUERY (NIL) -7 NIL NIL NIL) (-847 1970054 1971234 1971738 "OP" 1972452 NIL OP (NIL T) -8 NIL NIL NIL) (-846 1969428 1969654 1969695 "OPERCAT" 1969907 NIL OPERCAT (NIL T) -9 NIL 1970004 NIL) (-845 1969183 1969239 1969356 "OPERCAT-" 1969361 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-844 1965996 1967980 1968349 "ONECOMP" 1968847 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-843 1965301 1965416 1965590 "ONECOMP2" 1965868 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1964720 1964826 1964956 "OMSERVER" 1965191 T OMSERVER (NIL) -7 NIL NIL NIL) (-841 1961582 1964160 1964200 "OMSAGG" 1964261 NIL OMSAGG (NIL T) -9 NIL 1964325 NIL) (-840 1960205 1960468 1960750 "OMPKG" 1961320 T OMPKG (NIL) -7 NIL NIL NIL) (-839 1959635 1959738 1959766 "OM" 1960065 T OM (NIL) -9 NIL NIL NIL) (-838 1958182 1959184 1959353 "OMLO" 1959516 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-837 1957142 1957289 1957509 "OMEXPR" 1958008 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-836 1956433 1956688 1956824 "OMERR" 1957026 T OMERR (NIL) -8 NIL NIL NIL) (-835 1955584 1955854 1956014 "OMERRK" 1956293 T OMERRK (NIL) -8 NIL NIL NIL) (-834 1955035 1955261 1955369 "OMENC" 1955496 T OMENC (NIL) -8 NIL NIL NIL) (-833 1948930 1950115 1951286 "OMDEV" 1953884 T OMDEV (NIL) -8 NIL NIL NIL) (-832 1947999 1948170 1948364 "OMCONN" 1948756 T OMCONN (NIL) -8 NIL NIL NIL) (-831 1946520 1947496 1947524 "OINTDOM" 1947529 T OINTDOM (NIL) -9 NIL 1947550 NIL) (-830 1943858 1945208 1945545 "OFMONOID" 1946215 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-829 1943230 1943795 1943840 "ODVAR" 1943845 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-828 1940653 1942975 1943130 "ODR" 1943135 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-827 1933145 1940429 1940555 "ODPOL" 1940560 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-826 1927120 1933017 1933122 "ODP" 1933127 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-825 1925886 1926101 1926376 "ODETOOLS" 1926894 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-824 1922853 1923511 1924227 "ODESYS" 1925219 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-823 1917735 1918643 1919668 "ODERTRIC" 1921928 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-822 1917161 1917243 1917437 "ODERED" 1917647 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-821 1914049 1914597 1915274 "ODERAT" 1916584 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-820 1911008 1911473 1912070 "ODEPRRIC" 1913578 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-819 1908951 1909547 1910033 "ODEPROB" 1910542 T ODEPROB (NIL) -8 NIL NIL NIL) (-818 1905471 1905956 1906603 "ODEPRIM" 1908430 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-817 1904720 1904822 1905082 "ODEPAL" 1905363 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-816 1900882 1901673 1902537 "ODEPACK" 1903876 T ODEPACK (NIL) -7 NIL NIL NIL) (-815 1899943 1900050 1900272 "ODEINT" 1900771 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-814 1894044 1895469 1896916 "ODEIFTBL" 1898516 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-813 1889442 1890228 1891180 "ODEEF" 1893203 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-812 1888791 1888880 1889103 "ODECONST" 1889347 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-811 1886916 1887577 1887605 "ODECAT" 1888210 T ODECAT (NIL) -9 NIL 1888741 NIL) (-810 1883771 1886621 1886743 "OCT" 1886826 NIL OCT (NIL T) -8 NIL NIL NIL) (-809 1883409 1883452 1883579 "OCTCT2" 1883722 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-808 1878020 1880455 1880495 "OC" 1881592 NIL OC (NIL T) -9 NIL 1882450 NIL) (-807 1875247 1875995 1876985 "OC-" 1877079 NIL OC- (NIL T T) -8 NIL NIL NIL) (-806 1874599 1875067 1875095 "OCAMON" 1875100 T OCAMON (NIL) -9 NIL 1875121 NIL) (-805 1874130 1874471 1874499 "OASGP" 1874504 T OASGP (NIL) -9 NIL 1874524 NIL) (-804 1873391 1873880 1873908 "OAMONS" 1873948 T OAMONS (NIL) -9 NIL 1873991 NIL) (-803 1872805 1873238 1873266 "OAMON" 1873271 T OAMON (NIL) -9 NIL 1873291 NIL) (-802 1872063 1872581 1872609 "OAGROUP" 1872614 T OAGROUP (NIL) -9 NIL 1872634 NIL) (-801 1871753 1871803 1871891 "NUMTUBE" 1872007 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-800 1865326 1866844 1868380 "NUMQUAD" 1870237 T NUMQUAD (NIL) -7 NIL NIL NIL) (-799 1861082 1862070 1863095 "NUMODE" 1864321 T NUMODE (NIL) -7 NIL NIL NIL) (-798 1858437 1859317 1859345 "NUMINT" 1860268 T NUMINT (NIL) -9 NIL 1861032 NIL) (-797 1857385 1857582 1857800 "NUMFMT" 1858239 T NUMFMT (NIL) -7 NIL NIL NIL) (-796 1843744 1846689 1849221 "NUMERIC" 1854892 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-795 1838114 1843193 1843288 "NTSCAT" 1843293 NIL NTSCAT (NIL T T T T) -9 NIL 1843332 NIL) (-794 1837308 1837473 1837666 "NTPOLFN" 1837953 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-793 1825296 1834133 1834945 "NSUP" 1836529 NIL NSUP (NIL T) -8 NIL NIL NIL) (-792 1824928 1824985 1825094 "NSUP2" 1825233 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-791 1815065 1824702 1824835 "NSMP" 1824840 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-790 1813497 1813798 1814155 "NREP" 1814753 NIL NREP (NIL T) -7 NIL NIL NIL) (-789 1812088 1812340 1812698 "NPCOEF" 1813240 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-788 1811154 1811269 1811485 "NORMRETR" 1811969 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-787 1809195 1809485 1809894 "NORMPK" 1810862 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-786 1808880 1808908 1809032 "NORMMA" 1809161 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-785 1808680 1808837 1808866 "NONE" 1808871 T NONE (NIL) -8 NIL NIL NIL) (-784 1808469 1808498 1808567 "NONE1" 1808644 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-783 1807966 1808028 1808207 "NODE1" 1808401 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-782 1806247 1807098 1807353 "NNI" 1807700 T NNI (NIL) -8 NIL NIL 1807935) (-781 1804667 1804980 1805344 "NLINSOL" 1805915 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-780 1800908 1801903 1802802 "NIPROB" 1803788 T NIPROB (NIL) -8 NIL NIL NIL) (-779 1799665 1799899 1800201 "NFINTBAS" 1800670 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-778 1798839 1799315 1799356 "NETCLT" 1799528 NIL NETCLT (NIL T) -9 NIL 1799610 NIL) (-777 1797547 1797778 1798059 "NCODIV" 1798607 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-776 1797309 1797346 1797421 "NCNTFRAC" 1797504 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-775 1795489 1795853 1796273 "NCEP" 1796934 NIL NCEP (NIL T) -7 NIL NIL NIL) (-774 1794340 1795113 1795141 "NASRING" 1795251 T NASRING (NIL) -9 NIL 1795331 NIL) (-773 1794135 1794179 1794273 "NASRING-" 1794278 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-772 1793242 1793767 1793795 "NARNG" 1793912 T NARNG (NIL) -9 NIL 1794003 NIL) (-771 1792934 1793001 1793135 "NARNG-" 1793140 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-770 1791813 1792020 1792255 "NAGSP" 1792719 T NAGSP (NIL) -7 NIL NIL NIL) (-769 1783085 1784769 1786442 "NAGS" 1790160 T NAGS (NIL) -7 NIL NIL NIL) (-768 1781633 1781941 1782272 "NAGF07" 1782774 T NAGF07 (NIL) -7 NIL NIL NIL) (-767 1776171 1777462 1778769 "NAGF04" 1780346 T NAGF04 (NIL) -7 NIL NIL NIL) (-766 1769139 1770753 1772386 "NAGF02" 1774558 T NAGF02 (NIL) -7 NIL NIL NIL) (-765 1764363 1765463 1766580 "NAGF01" 1768042 T NAGF01 (NIL) -7 NIL NIL NIL) (-764 1757991 1759557 1761142 "NAGE04" 1762798 T NAGE04 (NIL) -7 NIL NIL NIL) (-763 1749160 1751281 1753411 "NAGE02" 1755881 T NAGE02 (NIL) -7 NIL NIL NIL) (-762 1745113 1746060 1747024 "NAGE01" 1748216 T NAGE01 (NIL) -7 NIL NIL NIL) (-761 1742908 1743442 1744000 "NAGD03" 1744575 T NAGD03 (NIL) -7 NIL NIL NIL) (-760 1734658 1736586 1738540 "NAGD02" 1740974 T NAGD02 (NIL) -7 NIL NIL NIL) (-759 1728469 1729894 1731334 "NAGD01" 1733238 T NAGD01 (NIL) -7 NIL NIL NIL) (-758 1724678 1725500 1726337 "NAGC06" 1727652 T NAGC06 (NIL) -7 NIL NIL NIL) (-757 1723143 1723475 1723831 "NAGC05" 1724342 T NAGC05 (NIL) -7 NIL NIL NIL) (-756 1722519 1722638 1722782 "NAGC02" 1723019 T NAGC02 (NIL) -7 NIL NIL NIL) (-755 1721478 1722061 1722101 "NAALG" 1722180 NIL NAALG (NIL T) -9 NIL 1722241 NIL) (-754 1721313 1721342 1721432 "NAALG-" 1721437 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-753 1715263 1716371 1717558 "MULTSQFR" 1720209 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-752 1714582 1714657 1714841 "MULTFACT" 1715175 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-751 1707253 1711167 1711220 "MTSCAT" 1712290 NIL MTSCAT (NIL T T) -9 NIL 1712805 NIL) (-750 1706965 1707019 1707111 "MTHING" 1707193 NIL MTHING (NIL T) -7 NIL NIL NIL) (-749 1706757 1706790 1706850 "MSYSCMD" 1706925 T MSYSCMD (NIL) -7 NIL NIL NIL) (-748 1702839 1705512 1705832 "MSET" 1706470 NIL MSET (NIL T) -8 NIL NIL NIL) (-747 1699908 1702400 1702441 "MSETAGG" 1702446 NIL MSETAGG (NIL T) -9 NIL 1702480 NIL) (-746 1695750 1697287 1698032 "MRING" 1699208 NIL MRING (NIL T T) -8 NIL NIL NIL) (-745 1695316 1695383 1695514 "MRF2" 1695677 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-744 1694934 1694969 1695113 "MRATFAC" 1695275 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-743 1692546 1692841 1693272 "MPRFF" 1694639 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-742 1686754 1692400 1692497 "MPOLY" 1692502 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-741 1686244 1686279 1686487 "MPCPF" 1686713 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-740 1685758 1685801 1685985 "MPC3" 1686195 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1684953 1685034 1685255 "MPC2" 1685673 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-738 1683254 1683591 1683981 "MONOTOOL" 1684613 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-737 1682479 1682796 1682824 "MONOID" 1683043 T MONOID (NIL) -9 NIL 1683190 NIL) (-736 1682025 1682144 1682325 "MONOID-" 1682330 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-735 1671760 1677803 1677862 "MONOGEN" 1678536 NIL MONOGEN (NIL T T) -9 NIL 1678992 NIL) (-734 1668978 1669713 1670713 "MONOGEN-" 1670832 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-733 1667811 1668257 1668285 "MONADWU" 1668677 T MONADWU (NIL) -9 NIL 1668915 NIL) (-732 1667183 1667342 1667590 "MONADWU-" 1667595 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-731 1666542 1666786 1666814 "MONAD" 1667021 T MONAD (NIL) -9 NIL 1667133 NIL) (-730 1666227 1666305 1666437 "MONAD-" 1666442 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-729 1664516 1665140 1665419 "MOEBIUS" 1665980 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-728 1663794 1664198 1664238 "MODULE" 1664243 NIL MODULE (NIL T) -9 NIL 1664282 NIL) (-727 1663362 1663458 1663648 "MODULE-" 1663653 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-726 1661042 1661726 1662053 "MODRING" 1663186 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-725 1657986 1659147 1659668 "MODOP" 1660571 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-724 1656574 1657053 1657330 "MODMONOM" 1657849 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-723 1646529 1654865 1655279 "MODMON" 1656211 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-722 1643685 1645373 1645649 "MODFIELD" 1646404 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-721 1642662 1642966 1643156 "MMLFORM" 1643515 T MMLFORM (NIL) -8 NIL NIL NIL) (-720 1642188 1642231 1642410 "MMAP" 1642613 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-719 1640267 1641034 1641075 "MLO" 1641498 NIL MLO (NIL T) -9 NIL 1641740 NIL) (-718 1637633 1638149 1638751 "MLIFT" 1639748 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-717 1637024 1637108 1637262 "MKUCFUNC" 1637544 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-716 1636623 1636693 1636816 "MKRECORD" 1636947 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-715 1635670 1635832 1636060 "MKFUNC" 1636434 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-714 1635058 1635162 1635318 "MKFLCFN" 1635553 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-713 1634335 1634437 1634622 "MKBCFUNC" 1634951 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-712 1631010 1633889 1634025 "MINT" 1634219 T MINT (NIL) -8 NIL NIL NIL) (-711 1629822 1630065 1630342 "MHROWRED" 1630765 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-710 1625202 1628357 1628762 "MFLOAT" 1629437 T MFLOAT (NIL) -8 NIL NIL NIL) (-709 1624559 1624635 1624806 "MFINFACT" 1625114 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-708 1620874 1621722 1622606 "MESH" 1623695 T MESH (NIL) -7 NIL NIL NIL) (-707 1619264 1619576 1619929 "MDDFACT" 1620561 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-706 1616059 1618423 1618464 "MDAGG" 1618719 NIL MDAGG (NIL T) -9 NIL 1618862 NIL) (-705 1604946 1615352 1615559 "MCMPLX" 1615872 T MCMPLX (NIL) -8 NIL NIL NIL) (-704 1604083 1604229 1604430 "MCDEN" 1604795 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-703 1601973 1602243 1602623 "MCALCFN" 1603813 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-702 1600898 1601138 1601371 "MAYBE" 1601779 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-701 1598510 1599033 1599595 "MATSTOR" 1600369 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-700 1594467 1597882 1598130 "MATRIX" 1598295 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-699 1590233 1590940 1591676 "MATLIN" 1593824 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-698 1580339 1583525 1583602 "MATCAT" 1588482 NIL MATCAT (NIL T T T) -9 NIL 1589899 NIL) (-697 1576695 1577716 1579072 "MATCAT-" 1579077 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-696 1575289 1575442 1575775 "MATCAT2" 1576530 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-695 1573401 1573725 1574109 "MAPPKG3" 1574964 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-694 1572382 1572555 1572777 "MAPPKG2" 1573225 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-693 1570881 1571165 1571492 "MAPPKG1" 1572088 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-692 1569960 1570287 1570464 "MAPPAST" 1570724 T MAPPAST (NIL) -8 NIL NIL NIL) (-691 1569571 1569629 1569752 "MAPHACK3" 1569896 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-690 1569163 1569224 1569338 "MAPHACK2" 1569503 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-689 1568601 1568704 1568846 "MAPHACK1" 1569054 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-688 1566680 1567301 1567605 "MAGMA" 1568329 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-687 1566159 1566404 1566495 "MACROAST" 1566609 T MACROAST (NIL) -8 NIL NIL NIL) (-686 1562577 1564398 1564859 "M3D" 1565731 NIL M3D (NIL T) -8 NIL NIL NIL) (-685 1556652 1560916 1560957 "LZSTAGG" 1561739 NIL LZSTAGG (NIL T) -9 NIL 1562034 NIL) (-684 1552610 1553783 1555240 "LZSTAGG-" 1555245 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-683 1549697 1550501 1550988 "LWORD" 1552155 NIL LWORD (NIL T) -8 NIL NIL NIL) (-682 1549273 1549501 1549576 "LSTAST" 1549642 T LSTAST (NIL) -8 NIL NIL NIL) (-681 1542350 1549044 1549178 "LSQM" 1549183 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-680 1541574 1541713 1541941 "LSPP" 1542205 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-679 1539386 1539687 1540143 "LSMP" 1541263 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-678 1536165 1536839 1537569 "LSMP1" 1538688 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-677 1530011 1535302 1535343 "LSAGG" 1535405 NIL LSAGG (NIL T) -9 NIL 1535483 NIL) (-676 1526706 1527630 1528843 "LSAGG-" 1528848 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-675 1524305 1525850 1526099 "LPOLY" 1526501 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-674 1523887 1523972 1524095 "LPEFRAC" 1524214 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-673 1522208 1522981 1523234 "LO" 1523719 NIL LO (NIL T T T) -8 NIL NIL NIL) (-672 1521860 1521972 1522000 "LOGIC" 1522111 T LOGIC (NIL) -9 NIL 1522192 NIL) (-671 1521722 1521745 1521816 "LOGIC-" 1521821 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-670 1520915 1521055 1521248 "LODOOPS" 1521578 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-669 1518338 1520831 1520897 "LODO" 1520902 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-668 1516876 1517111 1517464 "LODOF" 1518085 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-667 1513080 1515511 1515552 "LODOCAT" 1515990 NIL LODOCAT (NIL T) -9 NIL 1516201 NIL) (-666 1512813 1512871 1512998 "LODOCAT-" 1513003 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-665 1510133 1512654 1512772 "LODO2" 1512777 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-664 1507568 1510070 1510115 "LODO1" 1510120 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-663 1506449 1506614 1506919 "LODEEF" 1507391 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-662 1501752 1504643 1504684 "LNAGG" 1505546 NIL LNAGG (NIL T) -9 NIL 1505981 NIL) (-661 1500899 1501113 1501455 "LNAGG-" 1501460 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-660 1497035 1497824 1498463 "LMOPS" 1500314 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-659 1496438 1496826 1496867 "LMODULE" 1496872 NIL LMODULE (NIL T) -9 NIL 1496898 NIL) (-658 1493636 1496083 1496206 "LMDICT" 1496348 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-657 1493042 1493263 1493304 "LLINSET" 1493495 NIL LLINSET (NIL T) -9 NIL 1493586 NIL) (-656 1492741 1492950 1493010 "LITERAL" 1493015 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-655 1485904 1491675 1491979 "LIST" 1492470 NIL LIST (NIL T) -8 NIL NIL NIL) (-654 1485429 1485503 1485642 "LIST3" 1485824 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-653 1484436 1484614 1484842 "LIST2" 1485247 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-652 1482570 1482882 1483281 "LIST2MAP" 1484083 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-651 1482166 1482403 1482444 "LINSET" 1482449 NIL LINSET (NIL T) -9 NIL 1482483 NIL) (-650 1480895 1481428 1481469 "LINEXP" 1481820 NIL LINEXP (NIL T) -9 NIL 1482011 NIL) (-649 1479472 1479732 1480043 "LINDEP" 1480647 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-648 1476239 1476958 1477735 "LIMITRF" 1478727 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-647 1474542 1474838 1475247 "LIMITPS" 1475934 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-646 1468970 1474053 1474281 "LIE" 1474363 NIL LIE (NIL T T) -8 NIL NIL NIL) (-645 1467918 1468387 1468427 "LIECAT" 1468567 NIL LIECAT (NIL T) -9 NIL 1468718 NIL) (-644 1467759 1467786 1467874 "LIECAT-" 1467879 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-643 1460346 1467299 1467455 "LIB" 1467623 T LIB (NIL) -8 NIL NIL NIL) (-642 1455981 1456864 1457799 "LGROBP" 1459463 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-641 1453979 1454253 1454603 "LF" 1455702 NIL LF (NIL T T) -7 NIL NIL NIL) (-640 1452819 1453511 1453539 "LFCAT" 1453746 T LFCAT (NIL) -9 NIL 1453885 NIL) (-639 1449721 1450351 1451039 "LEXTRIPK" 1452183 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-638 1446465 1447291 1447794 "LEXP" 1449301 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-637 1445941 1446186 1446278 "LETAST" 1446393 T LETAST (NIL) -8 NIL NIL NIL) (-636 1444339 1444652 1445053 "LEADCDET" 1445623 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-635 1443529 1443603 1443832 "LAZM3PK" 1444260 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-634 1438446 1441606 1442144 "LAUPOL" 1443041 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-633 1438025 1438069 1438230 "LAPLACE" 1438396 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-632 1435964 1437126 1437377 "LA" 1437858 NIL LA (NIL T T T) -8 NIL NIL NIL) (-631 1434958 1435542 1435583 "LALG" 1435645 NIL LALG (NIL T) -9 NIL 1435704 NIL) (-630 1434672 1434731 1434867 "LALG-" 1434872 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-629 1434507 1434531 1434572 "KVTFROM" 1434634 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-628 1433430 1433874 1434059 "KTVLOGIC" 1434342 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-627 1433265 1433289 1433330 "KRCFROM" 1433392 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-626 1432169 1432356 1432655 "KOVACIC" 1433065 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-625 1432004 1432028 1432069 "KONVERT" 1432131 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-624 1431839 1431863 1431904 "KOERCE" 1431966 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-623 1429670 1430432 1430809 "KERNEL" 1431495 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-622 1429166 1429247 1429379 "KERNEL2" 1429584 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-621 1422936 1427705 1427759 "KDAGG" 1428136 NIL KDAGG (NIL T T) -9 NIL 1428342 NIL) (-620 1422465 1422589 1422794 "KDAGG-" 1422799 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-619 1415613 1422126 1422281 "KAFILE" 1422343 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-618 1410041 1415124 1415352 "JORDAN" 1415434 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-617 1409420 1409690 1409811 "JOINAST" 1409940 T JOINAST (NIL) -8 NIL NIL NIL) (-616 1409266 1409325 1409380 "JAVACODE" 1409385 T JAVACODE (NIL) -8 NIL NIL NIL) (-615 1405518 1407471 1407525 "IXAGG" 1408454 NIL IXAGG (NIL T T) -9 NIL 1408913 NIL) (-614 1404437 1404743 1405162 "IXAGG-" 1405167 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1399967 1404359 1404418 "IVECTOR" 1404423 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-612 1398733 1398970 1399236 "ITUPLE" 1399734 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-611 1397235 1397412 1397707 "ITRIGMNP" 1398555 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-610 1395980 1396184 1396467 "ITFUN3" 1397011 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-609 1395612 1395669 1395778 "ITFUN2" 1395917 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-608 1394771 1395092 1395266 "ITFORM" 1395458 T ITFORM (NIL) -8 NIL NIL NIL) (-607 1392732 1393791 1394069 "ITAYLOR" 1394526 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-606 1381677 1386869 1388032 "ISUPS" 1391602 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-605 1380781 1380921 1381157 "ISUMP" 1381524 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-604 1376156 1380726 1380767 "ISTRING" 1380772 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-603 1375632 1375877 1375969 "ISAST" 1376084 T ISAST (NIL) -8 NIL NIL NIL) (-602 1374841 1374923 1375139 "IRURPK" 1375546 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-601 1373777 1373978 1374218 "IRSN" 1374621 T IRSN (NIL) -7 NIL NIL NIL) (-600 1371848 1372203 1372632 "IRRF2F" 1373415 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-599 1371595 1371633 1371709 "IRREDFFX" 1371804 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-598 1370210 1370469 1370768 "IROOT" 1371328 NIL IROOT (NIL T) -7 NIL NIL NIL) (-597 1366814 1367894 1368586 "IR" 1369550 NIL IR (NIL T) -8 NIL NIL NIL) (-596 1366019 1366307 1366458 "IRFORM" 1366683 T IRFORM (NIL) -8 NIL NIL NIL) (-595 1363632 1364127 1364693 "IR2" 1365497 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-594 1362732 1362845 1363059 "IR2F" 1363515 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-593 1362523 1362557 1362617 "IPRNTPK" 1362692 T IPRNTPK (NIL) -7 NIL NIL NIL) (-592 1359104 1362412 1362481 "IPF" 1362486 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-591 1357431 1359029 1359086 "IPADIC" 1359091 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-590 1356743 1356991 1357121 "IP4ADDR" 1357321 T IP4ADDR (NIL) -8 NIL NIL NIL) (-589 1356117 1356372 1356504 "IOMODE" 1356631 T IOMODE (NIL) -8 NIL NIL NIL) (-588 1355190 1355714 1355841 "IOBFILE" 1356010 T IOBFILE (NIL) -8 NIL NIL NIL) (-587 1354678 1355094 1355122 "IOBCON" 1355127 T IOBCON (NIL) -9 NIL 1355148 NIL) (-586 1354189 1354247 1354430 "INVLAPLA" 1354614 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-585 1343837 1346191 1348577 "INTTR" 1351853 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-584 1340172 1340914 1341779 "INTTOOLS" 1343022 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-583 1339758 1339849 1339966 "INTSLPE" 1340075 T INTSLPE (NIL) -7 NIL NIL NIL) (-582 1337711 1339681 1339740 "INTRVL" 1339745 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-581 1335313 1335825 1336400 "INTRF" 1337196 NIL INTRF (NIL T) -7 NIL NIL NIL) (-580 1334724 1334821 1334963 "INTRET" 1335211 NIL INTRET (NIL T) -7 NIL NIL NIL) (-579 1332721 1333110 1333580 "INTRAT" 1334332 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-578 1329984 1330567 1331186 "INTPM" 1332206 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-577 1326729 1327328 1328066 "INTPAF" 1329370 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-576 1321908 1322870 1323921 "INTPACK" 1325698 T INTPACK (NIL) -7 NIL NIL NIL) (-575 1318806 1321705 1321814 "INT" 1321819 T INT (NIL) -8 NIL NIL NIL) (-574 1318058 1318210 1318418 "INTHERTR" 1318648 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-573 1317497 1317577 1317765 "INTHERAL" 1317972 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-572 1315343 1315786 1316243 "INTHEORY" 1317060 T INTHEORY (NIL) -7 NIL NIL NIL) (-571 1306749 1308370 1310142 "INTG0" 1313695 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-570 1287322 1292112 1296922 "INTFTBL" 1301959 T INTFTBL (NIL) -8 NIL NIL NIL) (-569 1286571 1286709 1286882 "INTFACT" 1287181 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-568 1283998 1284444 1285001 "INTEF" 1286125 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-567 1282365 1283104 1283132 "INTDOM" 1283433 T INTDOM (NIL) -9 NIL 1283640 NIL) (-566 1281734 1281908 1282150 "INTDOM-" 1282155 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-565 1278122 1280050 1280104 "INTCAT" 1280903 NIL INTCAT (NIL T) -9 NIL 1281224 NIL) (-564 1277594 1277697 1277825 "INTBIT" 1278014 T INTBIT (NIL) -7 NIL NIL NIL) (-563 1276293 1276447 1276754 "INTALG" 1277439 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-562 1275776 1275866 1276023 "INTAF" 1276197 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-561 1269119 1275586 1275726 "INTABL" 1275731 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-560 1268452 1268918 1268983 "INT8" 1269017 T INT8 (NIL) -8 NIL NIL 1269062) (-559 1267784 1268250 1268315 "INT64" 1268349 T INT64 (NIL) -8 NIL NIL 1268394) (-558 1267116 1267582 1267647 "INT32" 1267681 T INT32 (NIL) -8 NIL NIL 1267726) (-557 1266448 1266914 1266979 "INT16" 1267013 T INT16 (NIL) -8 NIL NIL 1267058) (-556 1261243 1264009 1264037 "INS" 1264971 T INS (NIL) -9 NIL 1265636 NIL) (-555 1258483 1259254 1260228 "INS-" 1260301 NIL INS- (NIL T) -8 NIL NIL NIL) (-554 1257258 1257485 1257783 "INPSIGN" 1258236 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-553 1256376 1256493 1256690 "INPRODPF" 1257138 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-552 1255270 1255387 1255624 "INPRODFF" 1256256 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-551 1254270 1254422 1254682 "INNMFACT" 1255106 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-550 1253467 1253564 1253752 "INMODGCD" 1254169 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-549 1251975 1252220 1252544 "INFSP" 1253212 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-548 1251159 1251276 1251459 "INFPROD0" 1251855 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-547 1248014 1249224 1249739 "INFORM" 1250652 T INFORM (NIL) -8 NIL NIL NIL) (-546 1247624 1247684 1247782 "INFORM1" 1247949 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-545 1247147 1247236 1247350 "INFINITY" 1247530 T INFINITY (NIL) -7 NIL NIL NIL) (-544 1246323 1246867 1246968 "INETCLTS" 1247066 T INETCLTS (NIL) -8 NIL NIL NIL) (-543 1244939 1245189 1245510 "INEP" 1246071 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-542 1244188 1244836 1244901 "INDE" 1244906 NIL INDE (NIL T) -8 NIL NIL NIL) (-541 1243752 1243820 1243937 "INCRMAPS" 1244115 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-540 1242570 1243021 1243227 "INBFILE" 1243566 T INBFILE (NIL) -8 NIL NIL NIL) (-539 1237869 1238806 1239750 "INBFF" 1241658 NIL INBFF (NIL T) -7 NIL NIL NIL) (-538 1236777 1237046 1237074 "INBCON" 1237587 T INBCON (NIL) -9 NIL 1237853 NIL) (-537 1236029 1236252 1236528 "INBCON-" 1236533 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-536 1235508 1235753 1235844 "INAST" 1235958 T INAST (NIL) -8 NIL NIL NIL) (-535 1234935 1235187 1235293 "IMPTAST" 1235422 T IMPTAST (NIL) -8 NIL NIL NIL) (-534 1231381 1234779 1234883 "IMATRIX" 1234888 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-533 1230089 1230212 1230528 "IMATQF" 1231237 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-532 1228309 1228536 1228873 "IMATLIN" 1229845 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-531 1222887 1228233 1228291 "ILIST" 1228296 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-530 1220792 1222747 1222860 "IIARRAY2" 1222865 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-529 1216190 1220703 1220767 "IFF" 1220772 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-528 1215537 1215807 1215923 "IFAST" 1216094 T IFAST (NIL) -8 NIL NIL NIL) (-527 1210532 1214829 1215017 "IFARRAY" 1215394 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-526 1209712 1210436 1210509 "IFAMON" 1210514 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-525 1209296 1209361 1209415 "IEVALAB" 1209622 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-524 1208971 1209039 1209199 "IEVALAB-" 1209204 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-523 1208602 1208885 1208948 "IDPO" 1208953 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-522 1207852 1208491 1208566 "IDPOAMS" 1208571 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-521 1207159 1207741 1207816 "IDPOAM" 1207821 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-520 1206218 1206494 1206547 "IDPC" 1206960 NIL IDPC (NIL T T) -9 NIL 1207109 NIL) (-519 1205687 1206110 1206183 "IDPAM" 1206188 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-518 1205063 1205579 1205652 "IDPAG" 1205657 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-517 1204708 1204899 1204974 "IDENT" 1205008 T IDENT (NIL) -8 NIL NIL NIL) (-516 1200963 1201811 1202706 "IDECOMP" 1203865 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-515 1193800 1194886 1195933 "IDEAL" 1199999 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-514 1192960 1193072 1193272 "ICDEN" 1193684 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-513 1192031 1192440 1192587 "ICARD" 1192833 T ICARD (NIL) -8 NIL NIL NIL) (-512 1190091 1190404 1190809 "IBPTOOLS" 1191708 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-511 1185698 1189711 1189824 "IBITS" 1190010 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-510 1182421 1182997 1183692 "IBATOOL" 1185115 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-509 1180200 1180662 1181195 "IBACHIN" 1181956 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-508 1178029 1180046 1180149 "IARRAY2" 1180154 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-507 1174135 1177955 1178012 "IARRAY1" 1178017 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-506 1168173 1172547 1173028 "IAN" 1173674 T IAN (NIL) -8 NIL NIL NIL) (-505 1167684 1167741 1167914 "IALGFACT" 1168110 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-504 1167212 1167325 1167353 "HYPCAT" 1167560 T HYPCAT (NIL) -9 NIL NIL NIL) (-503 1166750 1166867 1167053 "HYPCAT-" 1167058 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-502 1166345 1166545 1166628 "HOSTNAME" 1166687 T HOSTNAME (NIL) -8 NIL NIL NIL) (-501 1166190 1166227 1166268 "HOMOTOP" 1166273 NIL HOMOTOP (NIL T) -9 NIL 1166306 NIL) (-500 1162822 1164200 1164241 "HOAGG" 1165222 NIL HOAGG (NIL T) -9 NIL 1165901 NIL) (-499 1161416 1161815 1162341 "HOAGG-" 1162346 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-498 1155325 1161009 1161159 "HEXADEC" 1161286 T HEXADEC (NIL) -8 NIL NIL NIL) (-497 1154073 1154295 1154558 "HEUGCD" 1155102 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-496 1153149 1153910 1154040 "HELLFDIV" 1154045 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-495 1151328 1152926 1153014 "HEAP" 1153093 NIL HEAP (NIL T) -8 NIL NIL NIL) (-494 1150591 1150880 1151014 "HEADAST" 1151214 T HEADAST (NIL) -8 NIL NIL NIL) (-493 1144610 1150506 1150568 "HDP" 1150573 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-492 1138509 1144245 1144397 "HDMP" 1144511 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-491 1137833 1137973 1138137 "HB" 1138365 T HB (NIL) -7 NIL NIL NIL) (-490 1131219 1137679 1137783 "HASHTBL" 1137788 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-489 1130695 1130940 1131032 "HASAST" 1131147 T HASAST (NIL) -8 NIL NIL NIL) (-488 1128473 1130317 1130499 "HACKPI" 1130533 T HACKPI (NIL) -8 NIL NIL NIL) (-487 1124141 1128326 1128439 "GTSET" 1128444 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-486 1117556 1124019 1124117 "GSTBL" 1124122 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-485 1109943 1116721 1116977 "GSERIES" 1117356 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-484 1109084 1109501 1109529 "GROUP" 1109732 T GROUP (NIL) -9 NIL 1109866 NIL) (-483 1108450 1108609 1108860 "GROUP-" 1108865 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-482 1106817 1107138 1107525 "GROEBSOL" 1108127 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-481 1105731 1106019 1106070 "GRMOD" 1106599 NIL GRMOD (NIL T T) -9 NIL 1106767 NIL) (-480 1105499 1105535 1105663 "GRMOD-" 1105668 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-479 1100789 1101853 1102853 "GRIMAGE" 1104519 T GRIMAGE (NIL) -8 NIL NIL NIL) (-478 1099255 1099516 1099840 "GRDEF" 1100485 T GRDEF (NIL) -7 NIL NIL NIL) (-477 1098699 1098815 1098956 "GRAY" 1099134 T GRAY (NIL) -7 NIL NIL NIL) (-476 1097886 1098292 1098343 "GRALG" 1098496 NIL GRALG (NIL T T) -9 NIL 1098589 NIL) (-475 1097547 1097620 1097783 "GRALG-" 1097788 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-474 1094324 1097132 1097310 "GPOLSET" 1097454 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-473 1093678 1093735 1093993 "GOSPER" 1094261 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-472 1089410 1090116 1090642 "GMODPOL" 1093377 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-471 1088415 1088599 1088837 "GHENSEL" 1089222 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-470 1082571 1083414 1084434 "GENUPS" 1087499 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-469 1082268 1082319 1082408 "GENUFACT" 1082514 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-468 1081680 1081757 1081922 "GENPGCD" 1082186 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-467 1081154 1081189 1081402 "GENMFACT" 1081639 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-466 1079720 1079977 1080284 "GENEEZ" 1080897 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-465 1073779 1079331 1079493 "GDMP" 1079643 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-464 1063122 1067550 1068656 "GCNAALG" 1072762 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-463 1061449 1062311 1062339 "GCDDOM" 1062594 T GCDDOM (NIL) -9 NIL 1062751 NIL) (-462 1060919 1061046 1061261 "GCDDOM-" 1061266 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-461 1059591 1059776 1060080 "GB" 1060698 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-460 1048207 1050537 1052929 "GBINTERN" 1057282 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-459 1046044 1046336 1046757 "GBF" 1047882 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-458 1044825 1044990 1045257 "GBEUCLID" 1045860 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-457 1044174 1044299 1044448 "GAUSSFAC" 1044696 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-456 1042541 1042843 1043157 "GALUTIL" 1043893 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-455 1040849 1041123 1041447 "GALPOLYU" 1042268 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-454 1038214 1038504 1038911 "GALFACTU" 1040546 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-453 1030020 1031519 1033127 "GALFACT" 1036646 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-452 1027408 1028066 1028094 "FVFUN" 1029250 T FVFUN (NIL) -9 NIL 1029970 NIL) (-451 1026674 1026856 1026884 "FVC" 1027175 T FVC (NIL) -9 NIL 1027358 NIL) (-450 1026317 1026499 1026567 "FUNDESC" 1026626 T FUNDESC (NIL) -8 NIL NIL NIL) (-449 1025932 1026114 1026195 "FUNCTION" 1026269 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-448 1023676 1024254 1024720 "FT" 1025486 T FT (NIL) -8 NIL NIL NIL) (-447 1022467 1022977 1023180 "FTEM" 1023493 T FTEM (NIL) -8 NIL NIL NIL) (-446 1020758 1021047 1021444 "FSUPFACT" 1022158 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-445 1019155 1019444 1019776 "FST" 1020446 T FST (NIL) -8 NIL NIL NIL) (-444 1018354 1018460 1018648 "FSRED" 1019037 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-443 1017053 1017309 1017656 "FSPRMELT" 1018069 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-442 1014359 1014797 1015283 "FSPECF" 1016616 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-441 995661 1004133 1004174 "FS" 1008058 NIL FS (NIL T) -9 NIL 1010347 NIL) (-440 984304 987297 991354 "FS-" 991654 NIL FS- (NIL T T) -8 NIL NIL NIL) (-439 983832 983886 984056 "FSINT" 984245 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-438 982124 982825 983128 "FSERIES" 983611 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-437 981166 981282 981506 "FSCINT" 982004 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-436 977374 980110 980151 "FSAGG" 980521 NIL FSAGG (NIL T) -9 NIL 980780 NIL) (-435 975136 975737 976533 "FSAGG-" 976628 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-434 974178 974321 974548 "FSAGG2" 974989 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-433 971856 972136 972684 "FS2UPS" 973896 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-432 971490 971533 971662 "FS2" 971807 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-431 970368 970539 970841 "FS2EXPXP" 971315 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-430 969794 969909 970061 "FRUTIL" 970248 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-429 961207 965289 966647 "FR" 968468 NIL FR (NIL T) -8 NIL NIL NIL) (-428 956221 958896 958936 "FRNAALG" 960256 NIL FRNAALG (NIL T) -9 NIL 960854 NIL) (-427 951894 952970 954245 "FRNAALG-" 954995 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-426 951532 951575 951702 "FRNAAF2" 951845 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-425 949907 950381 950677 "FRMOD" 951344 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-424 947650 948282 948600 "FRIDEAL" 949698 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-423 946841 946928 947219 "FRIDEAL2" 947557 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-422 945974 946388 946429 "FRETRCT" 946434 NIL FRETRCT (NIL T) -9 NIL 946610 NIL) (-421 945086 945317 945668 "FRETRCT-" 945673 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-420 942174 943384 943443 "FRAMALG" 944325 NIL FRAMALG (NIL T T) -9 NIL 944617 NIL) (-419 940308 940763 941393 "FRAMALG-" 941616 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-418 934138 939781 940058 "FRAC" 940063 NIL FRAC (NIL T) -8 NIL NIL NIL) (-417 933774 933831 933938 "FRAC2" 934075 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-416 933410 933467 933574 "FR2" 933711 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-415 927923 930816 930844 "FPS" 931963 T FPS (NIL) -9 NIL 932520 NIL) (-414 927372 927481 927645 "FPS-" 927791 NIL FPS- (NIL T) -8 NIL NIL NIL) (-413 924674 926343 926371 "FPC" 926596 T FPC (NIL) -9 NIL 926738 NIL) (-412 924467 924507 924604 "FPC-" 924609 NIL FPC- (NIL T) -8 NIL NIL NIL) (-411 923257 923955 923996 "FPATMAB" 924001 NIL FPATMAB (NIL T) -9 NIL 924153 NIL) (-410 921496 921999 922346 "FPARFRAC" 922973 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-409 916890 917388 918070 "FORTRAN" 920928 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-408 914606 915106 915645 "FORT" 916371 T FORT (NIL) -7 NIL NIL NIL) (-407 912282 912844 912872 "FORTFN" 913932 T FORTFN (NIL) -9 NIL 914556 NIL) (-406 912046 912096 912124 "FORTCAT" 912183 T FORTCAT (NIL) -9 NIL 912245 NIL) (-405 910152 910662 911052 "FORMULA" 911676 T FORMULA (NIL) -8 NIL NIL NIL) (-404 909940 909970 910039 "FORMULA1" 910116 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-403 909463 909515 909688 "FORDER" 909882 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-402 908559 908723 908916 "FOP" 909290 T FOP (NIL) -7 NIL NIL NIL) (-401 907140 907839 908013 "FNLA" 908441 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-400 905869 906284 906312 "FNCAT" 906772 T FNCAT (NIL) -9 NIL 907032 NIL) (-399 905408 905828 905856 "FNAME" 905861 T FNAME (NIL) -8 NIL NIL NIL) (-398 903971 904934 904962 "FMTC" 904967 T FMTC (NIL) -9 NIL 905003 NIL) (-397 902717 903907 903953 "FMONOID" 903958 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-396 899545 900713 900754 "FMONCAT" 901971 NIL FMONCAT (NIL T) -9 NIL 902576 NIL) (-395 898737 899287 899436 "FM" 899441 NIL FM (NIL T T) -8 NIL NIL NIL) (-394 896161 896807 896835 "FMFUN" 897979 T FMFUN (NIL) -9 NIL 898687 NIL) (-393 895430 895611 895639 "FMC" 895929 T FMC (NIL) -9 NIL 896111 NIL) (-392 892509 893369 893423 "FMCAT" 894618 NIL FMCAT (NIL T T) -9 NIL 895113 NIL) (-391 891375 892275 892375 "FM1" 892454 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-390 889149 889565 890059 "FLOATRP" 890926 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-389 882727 886878 887499 "FLOAT" 888548 T FLOAT (NIL) -8 NIL NIL NIL) (-388 880165 880665 881243 "FLOATCP" 882194 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-387 879012 879771 879812 "FLINEXP" 879817 NIL FLINEXP (NIL T) -9 NIL 879910 NIL) (-386 877944 878241 878649 "FLINEXP-" 878654 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-385 877020 877164 877388 "FLASORT" 877796 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-384 874136 875004 875056 "FLALG" 876283 NIL FLALG (NIL T T) -9 NIL 876750 NIL) (-383 867840 871592 871633 "FLAGG" 872895 NIL FLAGG (NIL T) -9 NIL 873547 NIL) (-382 866566 866905 867395 "FLAGG-" 867400 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-381 865608 865751 865978 "FLAGG2" 866419 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-380 862459 863467 863526 "FINRALG" 864654 NIL FINRALG (NIL T T) -9 NIL 865162 NIL) (-379 861619 861848 862187 "FINRALG-" 862192 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-378 860999 861238 861266 "FINITE" 861462 T FINITE (NIL) -9 NIL 861569 NIL) (-377 853356 855543 855583 "FINAALG" 859250 NIL FINAALG (NIL T) -9 NIL 860703 NIL) (-376 848688 849738 850882 "FINAALG-" 852261 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-375 848056 848443 848546 "FILE" 848618 NIL FILE (NIL T) -8 NIL NIL NIL) (-374 846714 847052 847106 "FILECAT" 847790 NIL FILECAT (NIL T T) -9 NIL 848006 NIL) (-373 844430 845958 845986 "FIELD" 846026 T FIELD (NIL) -9 NIL 846106 NIL) (-372 843050 843435 843946 "FIELD-" 843951 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-371 840900 841685 842032 "FGROUP" 842736 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-370 839990 840154 840374 "FGLMICPK" 840732 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-369 835822 839915 839972 "FFX" 839977 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-368 835423 835484 835619 "FFSLPE" 835755 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-367 831413 832195 832991 "FFPOLY" 834659 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-366 830917 830953 831162 "FFPOLY2" 831371 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-365 826763 830836 830899 "FFP" 830904 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-364 822161 826674 826738 "FF" 826743 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-363 817287 821504 821694 "FFNBX" 822015 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-362 812215 816422 816680 "FFNBP" 817141 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-361 806848 811499 811710 "FFNB" 812048 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-360 805680 805878 806193 "FFINTBAS" 806645 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-359 801706 803927 803955 "FFIELDC" 804575 T FFIELDC (NIL) -9 NIL 804951 NIL) (-358 800368 800739 801236 "FFIELDC-" 801241 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-357 799937 799983 800107 "FFHOM" 800310 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-356 797632 798119 798636 "FFF" 799452 NIL FFF (NIL T) -7 NIL NIL NIL) (-355 793250 797374 797475 "FFCGX" 797575 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-354 788872 792982 793089 "FFCGP" 793193 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-353 784055 788599 788707 "FFCG" 788808 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-352 763736 773731 773817 "FFCAT" 778982 NIL FFCAT (NIL T T T) -9 NIL 780433 NIL) (-351 758933 759981 761295 "FFCAT-" 762525 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-350 758344 758387 758622 "FFCAT2" 758884 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-349 747667 751316 752536 "FEXPR" 757196 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-348 746629 747064 747105 "FEVALAB" 747189 NIL FEVALAB (NIL T) -9 NIL 747450 NIL) (-347 745788 745998 746336 "FEVALAB-" 746341 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-346 744354 745171 745374 "FDIV" 745687 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 741374 742115 742230 "FDIVCAT" 743798 NIL FDIVCAT (NIL T T T T) -9 NIL 744235 NIL) (-344 741136 741163 741333 "FDIVCAT-" 741338 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-343 740356 740443 740720 "FDIV2" 741043 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-342 739330 739651 739853 "FCTRDATA" 740174 T FCTRDATA (NIL) -8 NIL NIL NIL) (-341 738016 738275 738564 "FCPAK1" 739061 T FCPAK1 (NIL) -7 NIL NIL NIL) (-340 737115 737516 737657 "FCOMP" 737907 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-339 720820 724265 727803 "FC" 733597 T FC (NIL) -8 NIL NIL NIL) (-338 713099 717127 717167 "FAXF" 718969 NIL FAXF (NIL T) -9 NIL 719661 NIL) (-337 710376 711033 711858 "FAXF-" 712323 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-336 705428 709752 709928 "FARRAY" 710233 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-335 700322 702389 702442 "FAMR" 703465 NIL FAMR (NIL T T) -9 NIL 703925 NIL) (-334 699212 699514 699949 "FAMR-" 699954 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-333 698381 699134 699187 "FAMONOID" 699192 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-332 696167 696877 696930 "FAMONC" 697871 NIL FAMONC (NIL T T) -9 NIL 698257 NIL) (-331 694831 695921 696058 "FAGROUP" 696063 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-330 692626 692945 693348 "FACUTIL" 694512 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-329 691725 691910 692132 "FACTFUNC" 692436 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-328 684147 691028 691227 "EXPUPXS" 691581 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-327 681630 682170 682756 "EXPRTUBE" 683581 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-326 677901 678493 679223 "EXPRODE" 680969 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-325 663620 676550 676979 "EXPR" 677505 NIL EXPR (NIL T) -8 NIL NIL NIL) (-324 658174 658761 659567 "EXPR2UPS" 662918 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-323 657806 657863 657972 "EXPR2" 658111 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-322 649059 656957 657248 "EXPEXPAN" 657642 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-321 648859 649016 649045 "EXIT" 649050 T EXIT (NIL) -8 NIL NIL NIL) (-320 648339 648583 648674 "EXITAST" 648788 T EXITAST (NIL) -8 NIL NIL NIL) (-319 647966 648028 648141 "EVALCYC" 648271 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-318 647507 647625 647666 "EVALAB" 647836 NIL EVALAB (NIL T) -9 NIL 647940 NIL) (-317 646988 647110 647331 "EVALAB-" 647336 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-316 644356 645658 645686 "EUCDOM" 646241 T EUCDOM (NIL) -9 NIL 646591 NIL) (-315 642761 643203 643793 "EUCDOM-" 643798 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-314 630300 633059 635809 "ESTOOLS" 640031 T ESTOOLS (NIL) -7 NIL NIL NIL) (-313 629932 629989 630098 "ESTOOLS2" 630237 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-312 629683 629725 629805 "ESTOOLS1" 629884 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-311 623720 625328 625356 "ES" 628124 T ES (NIL) -9 NIL 629534 NIL) (-310 618667 619954 621771 "ES-" 621935 NIL ES- (NIL T) -8 NIL NIL NIL) (-309 615041 615802 616582 "ESCONT" 617907 T ESCONT (NIL) -7 NIL NIL NIL) (-308 614786 614818 614900 "ESCONT1" 615003 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-307 614461 614511 614611 "ES2" 614730 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-306 614091 614149 614258 "ES1" 614397 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-305 613307 613436 613612 "ERROR" 613935 T ERROR (NIL) -7 NIL NIL NIL) (-304 606699 613166 613257 "EQTBL" 613262 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-303 599202 602013 603462 "EQ" 605283 NIL -3091 (NIL T) -8 NIL NIL NIL) (-302 598834 598891 599000 "EQ2" 599139 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-301 594125 595172 596265 "EP" 597773 NIL EP (NIL T) -7 NIL NIL NIL) (-300 592725 593016 593322 "ENV" 593839 T ENV (NIL) -8 NIL NIL NIL) (-299 591819 592373 592401 "ENTIRER" 592406 T ENTIRER (NIL) -9 NIL 592452 NIL) (-298 588513 590001 590362 "EMR" 591627 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-297 587643 587828 587882 "ELTAGG" 588262 NIL ELTAGG (NIL T T) -9 NIL 588473 NIL) (-296 587362 587424 587565 "ELTAGG-" 587570 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-295 587126 587155 587209 "ELTAB" 587293 NIL ELTAB (NIL T T) -9 NIL 587345 NIL) (-294 586252 586398 586597 "ELFUTS" 586977 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-293 585994 586050 586078 "ELEMFUN" 586183 T ELEMFUN (NIL) -9 NIL NIL NIL) (-292 585864 585885 585953 "ELEMFUN-" 585958 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-291 580678 583934 583975 "ELAGG" 584915 NIL ELAGG (NIL T) -9 NIL 585378 NIL) (-290 578963 579397 580060 "ELAGG-" 580065 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-289 578275 578412 578568 "ELABOR" 578827 T ELABOR (NIL) -8 NIL NIL NIL) (-288 576936 577215 577509 "ELABEXPR" 578001 T ELABEXPR (NIL) -8 NIL NIL NIL) (-287 569770 571573 572402 "EFUPXS" 576211 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-286 563218 565019 565830 "EFULS" 569045 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-285 560703 561061 561533 "EFSTRUC" 562850 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-284 550494 552060 553608 "EF" 559218 NIL EF (NIL T T) -7 NIL NIL NIL) (-283 549568 549979 550128 "EAB" 550365 T EAB (NIL) -8 NIL NIL NIL) (-282 548750 549527 549555 "E04UCFA" 549560 T E04UCFA (NIL) -8 NIL NIL NIL) (-281 547932 548709 548737 "E04NAFA" 548742 T E04NAFA (NIL) -8 NIL NIL NIL) (-280 547114 547891 547919 "E04MBFA" 547924 T E04MBFA (NIL) -8 NIL NIL NIL) (-279 546296 547073 547101 "E04JAFA" 547106 T E04JAFA (NIL) -8 NIL NIL NIL) (-278 545480 546255 546283 "E04GCFA" 546288 T E04GCFA (NIL) -8 NIL NIL NIL) (-277 544664 545439 545467 "E04FDFA" 545472 T E04FDFA (NIL) -8 NIL NIL NIL) (-276 543846 544623 544651 "E04DGFA" 544656 T E04DGFA (NIL) -8 NIL NIL NIL) (-275 538019 539371 540735 "E04AGNT" 542502 T E04AGNT (NIL) -7 NIL NIL NIL) (-274 536790 537333 537373 "DVARCAT" 537714 NIL DVARCAT (NIL T) -9 NIL 537877 NIL) (-273 535994 536206 536520 "DVARCAT-" 536525 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-272 529042 535793 535922 "DSMP" 535927 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-271 527465 528184 528225 "DSEXT" 528588 NIL DSEXT (NIL T) -9 NIL 528882 NIL) (-270 525750 526178 526844 "DSEXT-" 526849 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-269 520531 521695 522763 "DROPT" 524702 T DROPT (NIL) -8 NIL NIL NIL) (-268 520196 520255 520353 "DROPT1" 520466 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-267 515311 516437 517574 "DROPT0" 519079 T DROPT0 (NIL) -7 NIL NIL NIL) (-266 513656 513981 514367 "DRAWPT" 514945 T DRAWPT (NIL) -7 NIL NIL NIL) (-265 508243 509166 510245 "DRAW" 512630 NIL DRAW (NIL T) -7 NIL NIL NIL) (-264 507876 507929 508047 "DRAWHACK" 508184 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-263 506607 506876 507167 "DRAWCX" 507605 T DRAWCX (NIL) -7 NIL NIL NIL) (-262 506122 506191 506342 "DRAWCURV" 506533 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-261 496590 498552 500667 "DRAWCFUN" 504027 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-260 493354 495283 495324 "DQAGG" 495953 NIL DQAGG (NIL T) -9 NIL 496227 NIL) (-259 481006 487565 487648 "DPOLCAT" 489500 NIL DPOLCAT (NIL T T T T) -9 NIL 490045 NIL) (-258 475843 477191 479149 "DPOLCAT-" 479154 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-257 469425 475704 475802 "DPMO" 475807 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-256 462910 469205 469372 "DPMM" 469377 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-255 462480 462694 462783 "DOMTMPLT" 462841 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-254 461913 462282 462362 "DOMCTOR" 462420 T DOMCTOR (NIL) -8 NIL NIL NIL) (-253 461125 461393 461544 "DOMAIN" 461782 T DOMAIN (NIL) -8 NIL NIL NIL) (-252 455024 460760 460912 "DMP" 461026 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-251 454624 454680 454824 "DLP" 454962 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 448446 453951 454141 "DLIST" 454466 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 445243 447299 447340 "DLAGG" 447890 NIL DLAGG (NIL T) -9 NIL 448120 NIL) (-248 443919 444583 444611 "DIVRING" 444703 T DIVRING (NIL) -9 NIL 444786 NIL) (-247 443156 443346 443646 "DIVRING-" 443651 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 441258 441615 442021 "DISPLAY" 442770 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 435297 441172 441235 "DIRPROD" 441240 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 434145 434348 434613 "DIRPROD2" 435090 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 423073 428931 428984 "DIRPCAT" 429242 NIL DIRPCAT (NIL NIL T) -9 NIL 430117 NIL) (-242 420177 420881 421842 "DIRPCAT-" 422179 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 419464 419624 419810 "DIOSP" 420011 T DIOSP (NIL) -7 NIL NIL NIL) (-240 416119 418376 418417 "DIOPS" 418851 NIL DIOPS (NIL T) -9 NIL 419080 NIL) (-239 415668 415782 415973 "DIOPS-" 415978 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 414719 415347 415375 "DIFRING" 415380 T DIFRING (NIL) -9 NIL 415402 NIL) (-237 414391 414465 414493 "DIFFSPC" 414612 T DIFFSPC (NIL) -9 NIL 414687 NIL) (-236 414036 414114 414266 "DIFFSPC-" 414271 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 413192 413670 413710 "DIFFMOD" 413715 NIL DIFFMOD (NIL T) -9 NIL 413742 NIL) (-234 412900 412945 412986 "DIFFDOM" 413107 NIL DIFFDOM (NIL T) -9 NIL 413175 NIL) (-233 412753 412777 412861 "DIFFDOM-" 412866 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 410685 411957 411998 "DIFEXT" 412003 NIL DIFEXT (NIL T) -9 NIL 412156 NIL) (-231 407960 410217 410258 "DIAGG" 410263 NIL DIAGG (NIL T) -9 NIL 410283 NIL) (-230 407344 407501 407753 "DIAGG-" 407758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 402761 406303 406580 "DHMATRIX" 407113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 398373 399282 400292 "DFSFUN" 401771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 393453 397304 397616 "DFLOAT" 398081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 391716 391997 392386 "DFINTTLS" 393161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 388745 389737 390137 "DERHAM" 391382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 386546 388520 388609 "DEQUEUE" 388689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 385800 385933 386116 "DEGRED" 386408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 382230 382975 383821 "DEFINTRF" 385028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 379785 380254 380846 "DEFINTEF" 381749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 379135 379405 379520 "DEFAST" 379690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 373044 378728 378878 "DECIMAL" 379005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 370556 371014 371520 "DDFACT" 372588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 370152 370195 370346 "DBLRESP" 370507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 368020 368382 368743 "DBASE" 369918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 367262 367500 367646 "DATAARY" 367919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 366368 367221 367249 "D03FAFA" 367254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 365475 366327 366355 "D03EEFA" 366360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 363425 363891 364380 "D03AGNT" 365006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 362714 363384 363412 "D02EJFA" 363417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 362003 362673 362701 "D02CJFA" 362706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 361292 361962 361990 "D02BHFA" 361995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 360581 361251 361279 "D02BBFA" 361284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 353778 355367 356973 "D02AGNT" 358995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 351546 352069 352615 "D01WGTS" 353252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 350613 351505 351533 "D01TRNS" 351538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 349681 350572 350600 "D01GBFA" 350605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 348749 349640 349668 "D01FCFA" 349673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 347817 348708 348736 "D01ASFA" 348741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 346885 347776 347804 "D01AQFA" 347809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 345953 346844 346872 "D01APFA" 346877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 345021 345912 345940 "D01ANFA" 345945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 344089 344980 345008 "D01AMFA" 345013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 343157 344048 344076 "D01ALFA" 344081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 342225 343116 343144 "D01AKFA" 343149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 341293 342184 342212 "D01AJFA" 342217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 334588 336141 337702 "D01AGNT" 339752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 333925 334053 334205 "CYCLOTOM" 334456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 330658 331373 332100 "CYCLES" 333218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 329970 330104 330275 "CVMP" 330519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 327811 328069 328438 "CTRIGMNP" 329698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 327247 327605 327678 "CTOR" 327758 T CTOR (NIL) -8 NIL NIL NIL) (-188 326756 326978 327079 "CTORKIND" 327166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 326047 326363 326391 "CTORCAT" 326573 T CTORCAT (NIL) -9 NIL 326686 NIL) (-186 325645 325756 325915 "CTORCAT-" 325920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 325107 325319 325427 "CTORCALL" 325569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 324481 324580 324733 "CSTTOOLS" 325004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 320280 320937 321695 "CRFP" 323793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 319755 320001 320093 "CRCEAST" 320208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 318802 318987 319215 "CRAPACK" 319559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 318186 318287 318491 "CPMATCH" 318678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 317911 317939 318045 "CPIMA" 318152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 314259 314931 315650 "COORDSYS" 317246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 313671 313792 313934 "CONTOUR" 314137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 309562 311674 312166 "CONTFRAC" 313211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 309442 309463 309491 "CONDUIT" 309528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 308530 309084 309112 "COMRING" 309117 T COMRING (NIL) -9 NIL 309169 NIL) (-173 307584 307888 308072 "COMPPROP" 308366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 307245 307280 307408 "COMPLPAT" 307543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 296735 307054 307163 "COMPLEX" 307168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 296371 296428 296535 "COMPLEX2" 296672 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 295710 295831 295991 "COMPILER" 296231 T COMPILER (NIL) -8 NIL NIL NIL) (-168 295428 295463 295561 "COMPFACT" 295669 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277894 289132 289172 "COMPCAT" 290176 NIL COMPCAT (NIL T) -9 NIL 291524 NIL) (-166 267184 270173 273880 "COMPCAT-" 274236 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266913 266941 267044 "COMMUPC" 267150 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 266707 266741 266800 "COMMONOP" 266874 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 266263 266458 266545 "COMM" 266640 T COMM (NIL) -8 NIL NIL NIL) (-162 265839 266067 266142 "COMMAAST" 266208 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 265088 265282 265310 "COMBOPC" 265648 T COMBOPC (NIL) -9 NIL 265823 NIL) (-160 263984 264194 264436 "COMBINAT" 264878 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 260441 261015 261642 "COMBF" 263406 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 259199 259557 259792 "COLOR" 260226 T COLOR (NIL) -8 NIL NIL NIL) (-157 258675 258920 259012 "COLONAST" 259127 T COLONAST (NIL) -8 NIL NIL NIL) (-156 258315 258362 258487 "CMPLXRT" 258622 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 257763 258015 258114 "CLLCTAST" 258236 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 253265 254293 255373 "CLIP" 256703 T CLIP (NIL) -7 NIL NIL NIL) (-153 251606 252366 252606 "CLIF" 253092 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 247781 249752 249793 "CLAGG" 250722 NIL CLAGG (NIL T) -9 NIL 251258 NIL) (-151 246203 246660 247243 "CLAGG-" 247248 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 245747 245832 245972 "CINTSLPE" 246112 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 243248 243719 244267 "CHVAR" 245275 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 242422 242976 243004 "CHARZ" 243009 T CHARZ (NIL) -9 NIL 243024 NIL) (-147 242176 242216 242294 "CHARPOL" 242376 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 241234 241821 241849 "CHARNZ" 241896 T CHARNZ (NIL) -9 NIL 241952 NIL) (-145 239140 239888 240241 "CHAR" 240901 T CHAR (NIL) -8 NIL NIL NIL) (-144 238866 238927 238955 "CFCAT" 239066 T CFCAT (NIL) -9 NIL NIL NIL) (-143 238107 238218 238401 "CDEN" 238750 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 234072 237260 237540 "CCLASS" 237847 T CCLASS (NIL) -8 NIL NIL NIL) (-141 233323 233480 233657 "CATEGORY" 233915 T -10 (NIL) -8 NIL NIL NIL) (-140 232896 233242 233290 "CATCTOR" 233295 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 232347 232599 232697 "CATAST" 232818 T CATAST (NIL) -8 NIL NIL NIL) (-138 231823 232068 232160 "CASEAST" 232275 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226961 227980 228724 "CARTEN" 231135 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 226069 226217 226438 "CARTEN2" 226808 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 224385 225219 225476 "CARD" 225832 T CARD (NIL) -8 NIL NIL NIL) (-134 223961 224189 224264 "CAPSLAST" 224330 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 223465 223673 223701 "CACHSET" 223833 T CACHSET (NIL) -9 NIL 223911 NIL) (-132 222935 223257 223285 "CABMON" 223335 T CABMON (NIL) -9 NIL 223391 NIL) (-131 222408 222639 222749 "BYTEORD" 222845 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 221385 221937 222079 "BYTE" 222242 T BYTE (NIL) -8 NIL NIL 222364) (-129 216735 220890 221062 "BYTEBUF" 221233 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214244 216427 216534 "BTREE" 216661 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 211693 213892 214014 "BTOURN" 214154 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 209063 211163 211204 "BTCAT" 211272 NIL BTCAT (NIL T) -9 NIL 211349 NIL) (-125 208730 208810 208959 "BTCAT-" 208964 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 204109 207989 208017 "BTAGG" 208131 T BTAGG (NIL) -9 NIL 208241 NIL) (-123 203599 203724 203930 "BTAGG-" 203935 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 200594 202877 203092 "BSTREE" 203416 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 199732 199858 200042 "BRILL" 200450 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 196384 198458 198499 "BRAGG" 199148 NIL BRAGG (NIL T) -9 NIL 199406 NIL) (-119 194913 195319 195874 "BRAGG-" 195879 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 188037 194257 194442 "BPADICRT" 194760 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 186352 187974 188019 "BPADIC" 188024 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 186050 186080 186194 "BOUNDZRO" 186316 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 181278 182476 183388 "BOP" 185158 T BOP (NIL) -8 NIL NIL NIL) (-114 179059 179463 179938 "BOP1" 180836 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 178760 178821 178849 "BOOLE" 178960 T BOOLE (NIL) -9 NIL 179042 NIL) (-112 177585 178334 178483 "BOOLEAN" 178631 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176864 177268 177322 "BMODULE" 177327 NIL BMODULE (NIL T T) -9 NIL 177392 NIL) (-110 172665 176662 176735 "BITS" 176811 T BITS (NIL) -8 NIL NIL NIL) (-109 172086 172205 172345 "BINDING" 172545 T BINDING (NIL) -8 NIL NIL NIL) (-108 165998 171681 171830 "BINARY" 171957 T BINARY (NIL) -8 NIL NIL NIL) (-107 163778 165253 165294 "BGAGG" 165554 NIL BGAGG (NIL T) -9 NIL 165691 NIL) (-106 163609 163641 163732 "BGAGG-" 163737 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 162680 162993 163198 "BFUNCT" 163424 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 161370 161548 161836 "BEZOUT" 162504 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 157839 160222 160552 "BBTREE" 161073 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 157573 157626 157654 "BASTYPE" 157773 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 157425 157454 157527 "BASTYPE-" 157532 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156859 156935 157087 "BALFACT" 157336 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 155715 156274 156460 "AUTOMOR" 156704 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 155441 155446 155472 "ATTREG" 155477 T ATTREG (NIL) -9 NIL NIL NIL) (-97 153693 154138 154490 "ATTRBUT" 155107 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 153301 153521 153587 "ATTRAST" 153645 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 152837 152950 152976 "ATRIG" 153177 T ATRIG (NIL) -9 NIL NIL NIL) (-94 152646 152687 152774 "ATRIG-" 152779 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 152291 152477 152503 "ASTCAT" 152508 T ASTCAT (NIL) -9 NIL 152538 NIL) (-92 152018 152077 152196 "ASTCAT-" 152201 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 150167 151794 151882 "ASTACK" 151961 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 148672 148969 149334 "ASSOCEQ" 149849 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 147704 148331 148455 "ASP9" 148579 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 147467 147652 147691 "ASP8" 147696 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 146335 147072 147214 "ASP80" 147356 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 145233 145970 146102 "ASP7" 146234 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 144187 144910 145028 "ASP78" 145146 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 143156 143867 143984 "ASP77" 144101 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 142068 142794 142925 "ASP74" 143056 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140968 141703 141835 "ASP73" 141967 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 140072 140794 140894 "ASP6" 140899 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139019 139749 139867 "ASP55" 139985 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137968 138693 138812 "ASP50" 138931 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 137056 137669 137779 "ASP4" 137889 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 136144 136757 136867 "ASP49" 136977 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134928 135683 135851 "ASP42" 136033 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 133705 134461 134631 "ASP41" 134815 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 132655 133382 133500 "ASP35" 133618 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 132420 132603 132642 "ASP34" 132647 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 132157 132224 132300 "ASP33" 132375 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 131051 131792 131924 "ASP31" 132056 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 130816 130999 131038 "ASP30" 131043 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 130551 130620 130696 "ASP29" 130771 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 130316 130499 130538 "ASP28" 130543 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 130081 130264 130303 "ASP27" 130308 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 129165 129779 129890 "ASP24" 130001 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 128242 128967 129079 "ASP20" 129084 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 127330 127943 128053 "ASP1" 128163 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 126273 127004 127123 "ASP19" 127242 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126010 126077 126153 "ASP12" 126228 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124862 125609 125753 "ASP10" 125897 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 122713 124706 124797 "ARRAY2" 124802 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 118478 122361 122475 "ARRAY1" 122630 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 117510 117683 117904 "ARRAY12" 118301 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 111822 113740 113815 "ARR2CAT" 116445 NIL ARR2CAT (NIL T T T) -9 NIL 117203 NIL) (-56 109256 110000 110954 "ARR2CAT-" 110959 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 108573 108883 109008 "ARITY" 109149 T ARITY (NIL) -8 NIL NIL NIL) (-54 107349 107501 107800 "APPRULE" 108409 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107000 107048 107167 "APPLYORE" 107295 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 106354 106593 106713 "ANY" 106898 T ANY (NIL) -8 NIL NIL NIL) (-51 105632 105755 105912 "ANY1" 106228 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 103162 104069 104396 "ANTISYM" 105356 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 102654 102869 102965 "ANON" 103084 T ANON (NIL) -8 NIL NIL NIL) (-48 96832 101193 101647 "AN" 102218 T AN (NIL) -8 NIL NIL NIL) (-47 92730 94118 94169 "AMR" 94917 NIL AMR (NIL T T) -9 NIL 95517 NIL) (-46 91842 92063 92426 "AMR-" 92431 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 76281 91759 91820 "ALIST" 91825 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73086 75875 76044 "ALGSC" 76199 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 69642 70196 70803 "ALGPKG" 72526 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68919 69020 69204 "ALGMFACT" 69528 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64954 65533 66127 "ALGMANIP" 68503 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 64580 64730 "ALGFF" 64887 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-2548 (((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)) 23)))
+(((-1246 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2548 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) (-1068) (-1068) (-1196) (-1196) |#1| |#2|) (T -1246))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196)))))
+(-10 -7 (-15 -2548 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 (-1101)) $) 86)) (-1455 (((-1196) $) 118)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3019 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3754 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3897 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 177 (|has| |#1| (-374)))) (-2464 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2477 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3871 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-1542 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) 18 T CONST)) (-2780 (($ $ $) 172 (|has| |#1| (-374)))) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-3237 (((-419 (-969 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2790 (($ $ $) 171 (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3011 (((-112) $) 179 (|has| |#1| (-374)))) (-3219 (((-112) $) 85)) (-1663 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) 116)) (-4199 (($ (-1 |#1| (-576)) $) 187)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1711 (((-112) $) 74)) (-2428 (($ |#1| (-576)) 73) (($ $ (-1101) (-576)) 88) (($ $ (-656 (-1101)) (-656 (-576))) 87)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-3437 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-3862 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2143 (((-1178) $) 10)) (-4324 (($ $) 180 (|has| |#1| (-374)))) (-1850 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3739 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3901 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2367 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 173 (|has| |#1| (-374)))) (-3262 (($ $ (-576)) 110)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2656 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-3076 (((-783) $) 169 (|has| |#1| (-374)))) (-2099 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 170 (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-4436 (((-576) $) 76)) (-1553 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4417 ((|#1| $ (-576)) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-1785 ((|#1| $) 117)) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1567 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1247 |#1|) (-141) (-1068)) (T -1247))
+((-1907 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1247 *3)))) (-4199 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1247 *3)) (-4 *3 (-1068)))) (-3237 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-969 *4))))) (-3237 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-969 *4))))) (-1850 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-1850 (*1 *1 *1 *2) (-3739 (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1634 ((-656 *2) *3))) (|has| *3 (-15 -1850 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))))
+(-13 (-1265 |t#1| (-576)) (-10 -8 (-15 -1907 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -4199 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3237 ((-419 (-969 |t#1|)) $ (-576))) (-15 -3237 ((-419 (-969 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $)) (IF (|has| |t#1| (-15 -1850 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1634 ((-656 (-1196)) |t#1|))) (-15 -1850 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -1850 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1131)) ((-300) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T))
+((-3203 (((-112) $) 12)) (-2454 (((-3 |#3| "failed") $) 17) (((-3 (-1196) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-4397 ((|#3| $) 14) (((-1196) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL)))
+(((-1248 |#1| |#2| |#3|) (-10 -8 (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-1196) "failed") |#1|)) (-15 -4397 ((-1196) |#1|)) (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -4397 (|#3| |#1|)) (-15 -3203 ((-112) |#1|))) (-1249 |#2| |#3|) (-1068) (-1278 |#2|)) (T -1248))
+NIL
+(-10 -8 (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -2454 ((-3 (-1196) "failed") |#1|)) (-15 -4397 ((-1196) |#1|)) (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -4397 (|#3| |#1|)) (-15 -3203 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1463 ((|#2| $) 248 (-3200 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1634 (((-656 (-1101)) $) 86)) (-1455 (((-1196) $) 118)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3019 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3754 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3401 ((|#2| $) 284)) (-3830 (((-3 |#2| "failed") $) 280)) (-4278 ((|#2| $) 281)) (-3897 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) 20)) (-3389 (((-430 (-1192 $)) (-1192 $)) 257 (-3200 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3179 (($ $) 177 (|has| |#1| (-374)))) (-2464 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2477 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 254 (-3200 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3417 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3871 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-576) $) 266 (-3200 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1907 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-1542 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#2| "failed") $) 287) (((-3 (-576) "failed") $) 277 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 275 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-1196) "failed") $) 259 (-3200 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-4397 ((|#2| $) 288) (((-576) $) 276 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 274 (-3200 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-1196) $) 258 (-3200 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-2444 (($ $) 283) (($ (-576) $) 282)) (-2780 (($ $ $) 172 (|has| |#1| (-374)))) (-4404 (($ $) 72)) (-2085 (((-701 |#2|) (-1287 $)) 238 (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) 237 (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 236 (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 235 (-3200 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 234 (-3200 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) 233 (-3200 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-4011 (((-3 $ "failed") $) 37)) (-3237 (((-419 (-969 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2107 (($) 250 (-3200 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2790 (($ $ $) 171 (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3011 (((-112) $) 179 (|has| |#1| (-374)))) (-2127 (((-112) $) 264 (-3200 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3219 (((-112) $) 85)) (-1663 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 242 (-3200 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 241 (-3200 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-2620 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1838 (((-112) $) 35)) (-3763 (($ $) 246 (|has| |#1| (-374)))) (-1621 ((|#2| $) 244 (|has| |#1| (-374)))) (-1404 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3397 (((-3 $ "failed") $) 278 (-3200 (|has| |#2| (-1171)) (|has| |#1| (-374))))) (-3196 (((-112) $) 265 (-3200 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4323 (($ $ (-938)) 116)) (-4199 (($ (-1 |#1| (-576)) $) 187)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1711 (((-112) $) 74)) (-2428 (($ |#1| (-576)) 73) (($ $ (-1101) (-576)) 88) (($ $ (-656 (-1101)) (-656 (-576))) 87)) (-1950 (($ $ $) 268 (-3200 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1492 (($ $ $) 269 (-3200 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2548 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 228 (|has| |#1| (-374)))) (-3437 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-3862 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-4290 (($ (-576) |#2|) 285)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 180 (|has| |#1| (-374)))) (-1850 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3739 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3448 (($) 279 (-3200 (|has| |#2| (-1171)) (|has| |#1| (-374))) CONST)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3901 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-3328 (($ $) 249 (-3200 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3807 ((|#2| $) 252 (-3200 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3642 (((-430 (-1192 $)) (-1192 $)) 255 (-3200 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3068 (((-430 (-1192 $)) (-1192 $)) 256 (-3200 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-2367 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 173 (|has| |#1| (-374)))) (-3262 (($ $ (-576)) 110)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2656 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) |#2|) 227 (-3200 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 |#2|)) 226 (-3200 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 225 (-3200 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 224 (-3200 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 223 (-3200 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 222 (-3200 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-3076 (((-783) $) 169 (|has| |#1| (-374)))) (-2099 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1131))) (($ $ |#2|) 221 (-3200 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 170 (|has| |#1| (-374)))) (-2399 (($ $ (-1 |#2| |#2|) (-783)) 230 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-374))) (($ $) 100 (-3739 (-3200 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-3739 (-3200 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 108 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196))) 106 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1196) (-783)) 105 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3560 (($ $) 247 (|has| |#1| (-374)))) (-1635 ((|#2| $) 245 (|has| |#1| (-374)))) (-4436 (((-576) $) 76)) (-1553 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2610 (((-227) $) 263 (-3200 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-390) $) 262 (-3200 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-548) $) 261 (-3200 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) 240 (-3200 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) 239 (-3200 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 253 (-3200 (-3200 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#1| (-374))))) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 286) (($ (-1196)) 260 (-3200 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4417 ((|#1| $ (-576)) 71)) (-3689 (((-3 $ "failed") $) 60 (-3739 (-3200 (-3739 (|has| |#2| (-146)) (-3200 (|has| $ (-146)) (|has| |#2| (-926)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2981 (((-783)) 32 T CONST)) (-1785 ((|#1| $) 117)) (-3156 ((|#2| $) 251 (-3200 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1567 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-3680 (($ $) 267 (-3200 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1 |#2| |#2|) (-783)) 232 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-374))) (($ $) 99 (-3739 (-3200 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-3739 (-3200 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 107 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196))) 103 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1196) (-783)) 102 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-3739 (-3200 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3956 (((-112) $ $) 271 (-3200 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3930 (((-112) $ $) 272 (-3200 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3889 (((-112) $ $) 6)) (-3944 (((-112) $ $) 270 (-3200 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3916 (((-112) $ $) 273 (-3200 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 243 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 220 (|has| |#1| (-374))) (($ |#2| $) 219 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1249 |#1| |#2|) (-141) (-1068) (-1278 |t#1|)) (T -1249))
+((-4436 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1278 *3)) (-5 *2 (-576)))) (-4290 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1068)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1278 *4)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1278 *2)))) (-2444 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1278 *3)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))) (-3830 (*1 *2 *1) (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))))
+(-13 (-1247 |t#1|) (-1057 |t#2|) (-628 |t#2|) (-10 -8 (-15 -4290 ($ (-576) |t#2|)) (-15 -4436 ((-576) $)) (-15 -3401 (|t#2| $)) (-15 -2444 ($ $)) (-15 -2444 ($ (-576) $)) (-15 -4278 (|t#2| $)) (-15 -3830 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1011 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) ((-234 $) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1131)) ((-300) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1196) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1196) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-862) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-909 $ #4=(-1196)) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) ((-915 (-1196)) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) ((-917 #4#) -3739 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) ((-899 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))) ((-897 |#2|) |has| |#1| (-374)) ((-926) -12 (|has| |#1| (-374)) (|has| |#2| (-926))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1011 |#2|) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1041) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-1057 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) ((-1057 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) ((-1057 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) ((-1057 |#2|) . T) ((-1070 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 |#2|) |has| |#1| (-374)) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 |#2|) |has| |#1| (-374)) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) -12 (|has| |#1| (-374)) (|has| |#2| (-1171))) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1247 |#1|) . T) ((-1265 |#1| #0#) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 81)) (-1463 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 100)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-3754 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-3401 ((|#2| $) 11)) (-3830 (((-3 |#2| "failed") $) 35)) (-4278 ((|#2| $) 36)) (-3897 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1907 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-1542 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-1196) "failed") $) NIL (-12 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-4397 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-1196) $) NIL (-12 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-2444 (($ $) 65) (($ (-576) $) 28)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-2085 (((-701 |#2|) (-1287 $)) NIL (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-4011 (((-3 $ "failed") $) 88)) (-3237 (((-419 (-969 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-2107 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-2127 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3219 (((-112) $) 74)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-2620 (((-576) $) 105) (((-576) $ (-576)) 107)) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL (|has| |#1| (-374)))) (-1621 ((|#2| $) 165 (|has| |#1| (-374)))) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3397 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1171)) (|has| |#1| (-374))))) (-3196 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4323 (($ $ (-938)) 148)) (-4199 (($ (-1 |#1| (-576)) $) 144)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-576)) 20) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-1950 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1492 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2548 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3437 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4290 (($ (-576) |#2|) 10)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 159 (|has| |#1| (-374)))) (-1850 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 233 (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222)))))) (-3448 (($) NIL (-12 (|has| |#2| (-1171)) (|has| |#1| (-374))) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3328 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3807 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-576)) 138)) (-2825 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) |#2|) NIL (-12 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1131))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-3739 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 153 (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3560 (($ $) NIL (|has| |#1| (-374)))) (-1635 ((|#2| $) 166 (|has| |#1| (-374)))) (-4436 (((-576) $) 12)) (-1553 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2610 (((-227) $) NIL (-12 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926)) (|has| |#1| (-374))))) (-2137 (($ $) 136)) (-2858 (((-874) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1196)) NIL (-12 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4417 ((|#1| $ (-576)) 85)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2981 (((-783)) 155 T CONST)) (-1785 ((|#1| $) 102)) (-3156 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3680 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2022 (($) 13 T CONST)) (-2038 (($) 18 T CONST)) (-3404 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-3739 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3739 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3956 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3930 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3889 (((-112) $ $) 72)) (-3944 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3916 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-4002 (($ $) 227) (($ $ $) 78)) (-3990 (($ $ $) 76)) (** (($ $ (-938)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1250 |#1| |#2|) (-1249 |#1| |#2|) (-1068) (-1278 |#1|)) (T -1250))
+NIL
+(-1249 |#1| |#2|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1463 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 10)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2150 (($ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2637 (((-112) $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3019 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-3754 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3401 (((-1279 |#1| |#2| |#3|) $) NIL)) (-3830 (((-3 (-1279 |#1| |#2| |#3|) "failed") $) NIL)) (-4278 (((-1279 |#1| |#2| |#3|) $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-576) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1907 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-1279 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-4397 (((-1279 |#1| |#2| |#3|) $) NIL) (((-1196) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-2444 (($ $) NIL) (($ (-576) $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-1279 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-374))) (((-701 (-1279 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 (-1279 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1279 |#1| |#2| |#3|)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-4011 (((-3 $ "failed") $) NIL)) (-3237 (((-419 (-969 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-2107 (($) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-2127 (((-112) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-2620 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-1838 (((-112) $) NIL)) (-3763 (($ $) NIL (|has| |#1| (-374)))) (-1621 (((-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3397 (((-3 $ "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))))) (-3196 (((-112) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4323 (($ $ (-938)) NIL)) (-4199 (($ (-1 |#1| (-576)) $) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-576)) 18) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-1950 (($ $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1492 (($ $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4290 (($ (-576) (-1279 |#1| |#2| |#3|)) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-1850 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))) CONST)) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3328 (($ $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3807 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-576)) NIL)) (-2825 (((-3 $ "failed") $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1279 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1279 |#1| |#2| |#3|)) (-656 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1131))) (($ $ (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-296 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) 26) (($ $) 25 (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3560 (($ $) NIL (|has| |#1| (-374)))) (-1635 (((-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-4436 (((-576) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2610 (((-548) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1279 |#1| |#2| |#3|)) NIL) (($ (-1283 |#2|)) 24) (($ (-1196)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (($ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4417 ((|#1| $ (-576)) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 11)) (-3156 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3680 (($ $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2022 (($) 20 T CONST)) (-2038 (($) 15 T CONST)) (-3404 (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) NIL) (($ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3956 (((-112) $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3930 (((-112) $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3889 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3916 (((-112) $ $) NIL (-3739 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 22)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1279 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1251 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1279 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1251))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1249 |#1| (-1279 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-4115 (((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112)) 13)) (-4384 (((-430 |#1|) |#1|) 26)) (-2367 (((-430 |#1|) |#1|) 24)))
+(((-1252 |#1|) (-10 -7 (-15 -2367 ((-430 |#1|) |#1|)) (-15 -4384 ((-430 |#1|) |#1|)) (-15 -4115 ((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112)))) (-1263 (-576))) (T -1252))
+((-4115 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576))))))) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))) (-4384 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))))
+(-10 -7 (-15 -2367 ((-430 |#1|) |#1|)) (-15 -4384 ((-430 |#1|) |#1|)) (-15 -4115 ((-2 (|:| |contp| (-576)) (|:| -1603 (-656 (-2 (|:| |irr| |#1|) (|:| -2972 (-576)))))) |#1| (-112))))
+((-2548 (((-1176 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 23 (|has| |#1| (-860))) (((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 17)))
+(((-1253 |#1| |#2|) (-10 -7 (-15 -2548 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-860)) (-15 -2548 ((-1176 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1253))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-860)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1176 *6)) (-5 *1 (-1253 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6)))))
+(-10 -7 (-15 -2548 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-860)) (-15 -2548 ((-1176 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4105 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2548 (((-1176 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-2779 ((|#1| $) 15)) (-2101 ((|#1| $) 12)) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3729 (((-576) $) 19)) (-3540 ((|#1| $) 18)) (-3743 ((|#1| $) 13)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3185 (((-112) $) 17)) (-3918 (((-1176 |#1|) $) 41 (|has| |#1| (-860))) (((-1176 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-2610 (($ |#1|) 26)) (-2858 (($ (-1113 |#1|)) 25) (((-874) $) 37 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1892 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3658 (($ $ (-576)) 14)) (-3889 (((-112) $ $) 30 (|has| |#1| (-1119)))))
+(((-1254 |#1|) (-13 (-1112 |#1|) (-10 -8 (-15 -1892 ($ |#1|)) (-15 -4105 ($ |#1|)) (-15 -2858 ($ (-1113 |#1|))) (-15 -3185 ((-112) $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-1176 |#1|))) |%noBranch|))) (-1237)) (T -1254))
+((-1892 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-4105 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1254 *3)) (-4 *3 (-1237)))))
+(-13 (-1112 |#1|) (-10 -8 (-15 -1892 ($ |#1|)) (-15 -4105 ($ |#1|)) (-15 -2858 ($ (-1113 |#1|))) (-15 -3185 ((-112) $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-1176 |#1|))) |%noBranch|)))
+((-2548 (((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)) 15)))
+(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 ((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)))) (-1196) (-1068) (-1196) (-1068)) (T -1255))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1260 *5 *6)) (-14 *5 (-1196)) (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1260 *7 *8)) (-5 *1 (-1255 *5 *6 *7 *8)) (-14 *7 (-1196)))))
+(-10 -7 (-15 -2548 ((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|))))
+((-3363 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4414 ((|#1| |#3|) 13)) (-1432 ((|#3| |#3|) 19)))
+(((-1256 |#1| |#2| |#3|) (-10 -7 (-15 -4414 (|#1| |#3|)) (-15 -1432 (|#3| |#3|)) (-15 -3363 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1011 |#1|) (-1263 |#2|)) (T -1256))
+((-3363 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1256 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-1256 *3 *4 *2)) (-4 *2 (-1263 *4)))) (-4414 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-1256 *2 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -4414 (|#1| |#3|)) (-15 -1432 (|#3| |#3|)) (-15 -3363 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1967 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-3544 (((-3 |#2| "failed") |#2| (-783)) 36)) (-1688 (((-3 (-2 (|:| -2425 |#2|) (|:| -2442 |#2|)) "failed") |#2|) 50)) (-4137 (((-656 |#2|) |#2|) 52)) (-4212 (((-3 |#2| "failed") |#2| |#2|) 46)))
+(((-1257 |#1| |#2|) (-10 -7 (-15 -3544 ((-3 |#2| "failed") |#2| (-783))) (-15 -1967 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -4212 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1688 ((-3 (-2 (|:| -2425 |#2|) (|:| -2442 |#2|)) "failed") |#2|)) (-15 -4137 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1263 |#1|)) (T -1257))
+((-4137 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))) (-1688 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -2425 *3) (|:| -2442 *3))) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))) (-4212 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1263 *3)))) (-1967 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4)))) (-3544 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4)))))
+(-10 -7 (-15 -3544 ((-3 |#2| "failed") |#2| (-783))) (-15 -1967 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -4212 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1688 ((-3 (-2 (|:| -2425 |#2|) (|:| -2442 |#2|)) "failed") |#2|)) (-15 -4137 ((-656 |#2|) |#2|)))
+((-2258 (((-3 (-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1258 |#1| |#2|) (-10 -7 (-15 -2258 ((-3 (-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) "failed") |#2| |#2|))) (-568) (-1263 |#1|)) (T -1258))
+((-2258 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1263 *4)))))
+(-10 -7 (-15 -2258 ((-3 (-2 (|:| -2647 |#2|) (|:| -2307 |#2|)) "failed") |#2| |#2|)))
+((-4099 ((|#2| |#2| |#2|) 22)) (-4335 ((|#2| |#2| |#2|) 36)) (-4377 ((|#2| |#2| |#2| (-783) (-783)) 44)))
+(((-1259 |#1| |#2|) (-10 -7 (-15 -4099 (|#2| |#2| |#2|)) (-15 -4335 (|#2| |#2| |#2|)) (-15 -4377 (|#2| |#2| |#2| (-783) (-783)))) (-1068) (-1263 |#1|)) (T -1259))
+((-4377 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4)))) (-4335 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))) (-4099 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))))
+(-10 -7 (-15 -4099 (|#2| |#2| |#2|)) (-15 -4335 (|#2| |#2| |#2|)) (-15 -4377 (|#2| |#2| |#2| (-783) (-783))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3402 (((-1287 |#2|) $ (-783)) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-3067 (($ (-1192 |#2|)) NIL)) (-3440 (((-1192 $) $ (-1101)) NIL) (((-1192 |#2|) $) NIL)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2150 (($ $) NIL (|has| |#2| (-568)))) (-2637 (((-112) $) NIL (|has| |#2| (-568)))) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-1546 (($ $ $) NIL (|has| |#2| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3179 (($ $) NIL (|has| |#2| (-464)))) (-2464 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3417 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2949 (($ $ (-783)) NIL)) (-2689 (($ $ (-783)) NIL)) (-3811 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-4397 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-1101) $) NIL)) (-2495 (($ $ $ (-1101)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2780 (($ $ $) NIL (|has| |#2| (-374)))) (-4404 (($ $) NIL)) (-2085 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-2790 (($ $ $) NIL (|has| |#2| (-374)))) (-2976 (($ $ $) NIL)) (-3051 (($ $ $) NIL (|has| |#2| (-568)))) (-2260 (((-2 (|:| -1788 |#2|) (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-3420 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1101)) NIL (|has| |#2| (-464)))) (-4391 (((-656 $) $) NIL)) (-3011 (((-112) $) NIL (|has| |#2| (-926)))) (-2611 (($ $ |#2| (-783) $) NIL)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-2620 (((-783) $ $) NIL (|has| |#2| (-568)))) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-3397 (((-3 $ "failed") $) NIL (|has| |#2| (-1171)))) (-2441 (($ (-1192 |#2|) (-1101)) NIL) (($ (-1192 $) (-1101)) NIL)) (-4323 (($ $ (-783)) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-2428 (($ |#2| (-783)) 18) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1101)) NIL) (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL)) (-4389 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4149 (($ (-1 (-783) (-783)) $) NIL)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-2760 (((-1192 |#2|) $) NIL)) (-1848 (((-3 (-1101) "failed") $) NIL)) (-4366 (($ $) NIL)) (-4379 ((|#2| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2143 (((-1178) $) NIL)) (-3300 (((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783)) NIL)) (-2829 (((-3 (-656 $) "failed") $) NIL)) (-1972 (((-3 (-656 $) "failed") $) NIL)) (-2994 (((-3 (-2 (|:| |var| (-1101)) (|:| -2273 (-783))) "failed") $) NIL)) (-1850 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3448 (($) NIL (|has| |#2| (-1171)) CONST)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 ((|#2| $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3901 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1930 (($ $ (-783) |#2| $) NIL)) (-3642 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-2367 (((-430 $) $) NIL (|has| |#2| (-926)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#2| (-374)))) (-2825 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3022 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#2|) NIL) (($ $ (-656 (-1101)) (-656 |#2|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3076 (((-783) $) NIL (|has| |#2| (-374)))) (-2099 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-2065 (((-3 $ "failed") $ (-783)) NIL)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#2| (-374)))) (-3880 (($ $ (-1101)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2399 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-4436 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2610 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-4325 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1101)) NIL (|has| |#2| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-2033 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-2858 (((-874) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1101)) NIL) (($ (-1283 |#1|)) 20) (($ (-419 (-576))) NIL (-3739 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3689 (((-3 $ "failed") $) NIL (-3739 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2022 (($) NIL T CONST)) (-2038 (($) 14 T CONST)) (-3404 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1260 |#1| |#2|) (-13 (-1263 |#2|) (-628 (-1283 |#1|)) (-10 -8 (-15 -1930 ($ $ (-783) |#2| $)))) (-1196) (-1068)) (T -1260))
+((-1930 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1260 *4 *3)) (-14 *4 (-1196)) (-4 *3 (-1068)))))
+(-13 (-1263 |#2|) (-628 (-1283 |#1|)) (-10 -8 (-15 -1930 ($ $ (-783) |#2| $))))
+((-2548 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1261 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-1263 |#1|) (-1068) (-1263 |#3|)) (T -1261))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *4 *6 *2)) (-4 *4 (-1263 *5)))))
+(-10 -7 (-15 -2548 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3402 (((-1287 |#2|) $ (-783)) 129)) (-1634 (((-656 (-1101)) $) 16)) (-3067 (($ (-1192 |#2|)) 80)) (-3988 (((-783) $) NIL) (((-783) $ (-656 (-1101))) 21)) (-3389 (((-430 (-1192 $)) (-1192 $)) 204)) (-3179 (($ $) 194)) (-2464 (((-430 $) $) 192)) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 95)) (-2949 (($ $ (-783)) 84)) (-2689 (($ $ (-783)) 86)) (-3811 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2454 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1101) "failed") $) NIL)) (-4397 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1101) $) NIL)) (-3051 (($ $ $) 170)) (-2260 (((-2 (|:| -1788 |#2|) (|:| -2647 $) (|:| -2307 $)) $ $) 172)) (-2620 (((-783) $ $) 189)) (-3397 (((-3 $ "failed") $) 138)) (-2428 (($ |#2| (-783)) NIL) (($ $ (-1101) (-783)) 59) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-4389 (((-783) $) NIL) (((-783) $ (-1101)) 54) (((-656 (-783)) $ (-656 (-1101))) 55)) (-2760 (((-1192 |#2|) $) 72)) (-1848 (((-3 (-1101) "failed") $) 52)) (-3300 (((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783)) 83)) (-1850 (($ $) 219)) (-3448 (($) 134)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 201)) (-3642 (((-430 (-1192 $)) (-1192 $)) 101)) (-3068 (((-430 (-1192 $)) (-1192 $)) 99)) (-2367 (((-430 $) $) 120)) (-3022 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#2|) 39) (($ $ (-656 (-1101)) (-656 |#2|)) 36) (($ $ (-1101) $) 32) (($ $ (-656 (-1101)) (-656 $)) 30)) (-3076 (((-783) $) 207)) (-2099 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 212)) (-2399 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-4436 (((-783) $) NIL) (((-783) $ (-1101)) 17) (((-656 (-783)) $ (-656 (-1101))) 23)) (-4325 ((|#2| $) NIL) (($ $ (-1101)) 140)) (-2033 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1101)) 64) (($ (-419 (-576))) NIL) (($ $) NIL)))
+(((-1262 |#1| |#2|) (-10 -8 (-15 -2858 (|#1| |#1|)) (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -2099 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -3076 ((-783) |#1|)) (-15 -3684 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -2099 (|#2| (-419 |#1|) |#2|)) (-15 -3811 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2260 ((-2 (|:| -1788 |#2|) (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -3051 (|#1| |#1| |#1|)) (-15 -2033 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2620 ((-783) |#1| |#1|)) (-15 -2099 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2689 (|#1| |#1| (-783))) (-15 -2949 (|#1| |#1| (-783))) (-15 -3300 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| (-783))) (-15 -3067 (|#1| (-1192 |#2|))) (-15 -2760 ((-1192 |#2|) |#1|)) (-15 -3402 ((-1287 |#2|) |#1| (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2099 (|#1| |#1| |#1|)) (-15 -2099 (|#2| |#1| |#2|)) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3389 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3068 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3642 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -4325 (|#1| |#1| (-1101))) (-15 -1634 ((-656 (-1101)) |#1|)) (-15 -3988 ((-783) |#1| (-656 (-1101)))) (-15 -3988 ((-783) |#1|)) (-15 -2428 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -2428 (|#1| |#1| (-1101) (-783))) (-15 -4389 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -4389 ((-783) |#1| (-1101))) (-15 -1848 ((-3 (-1101) "failed") |#1|)) (-15 -4436 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -4436 ((-783) |#1| (-1101))) (-15 -2858 (|#1| (-1101))) (-15 -2454 ((-3 (-1101) "failed") |#1|)) (-15 -4397 ((-1101) |#1|)) (-15 -3022 (|#1| |#1| (-656 (-1101)) (-656 |#1|))) (-15 -3022 (|#1| |#1| (-1101) |#1|)) (-15 -3022 (|#1| |#1| (-656 (-1101)) (-656 |#2|))) (-15 -3022 (|#1| |#1| (-1101) |#2|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -4436 ((-783) |#1|)) (-15 -2428 (|#1| |#2| (-783))) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -4389 ((-783) |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2399 (|#1| |#1| (-1101))) (-15 -2399 (|#1| |#1| (-656 (-1101)))) (-15 -2399 (|#1| |#1| (-1101) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|))) (-1263 |#2|) (-1068)) (T -1262))
+NIL
+(-10 -8 (-15 -2858 (|#1| |#1|)) (-15 -1919 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2399 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2399 (|#1| |#1| (-1196) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1196)))) (-15 -2399 (|#1| |#1| (-1196))) (-15 -2464 ((-430 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -3448 (|#1|)) (-15 -3397 ((-3 |#1| "failed") |#1|)) (-15 -2099 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -3076 ((-783) |#1|)) (-15 -3684 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -2099 (|#2| (-419 |#1|) |#2|)) (-15 -3811 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2260 ((-2 (|:| -1788 |#2|) (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| |#1|)) (-15 -3051 (|#1| |#1| |#1|)) (-15 -2033 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -2033 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2620 ((-783) |#1| |#1|)) (-15 -2099 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2689 (|#1| |#1| (-783))) (-15 -2949 (|#1| |#1| (-783))) (-15 -3300 ((-2 (|:| -2647 |#1|) (|:| -2307 |#1|)) |#1| (-783))) (-15 -3067 (|#1| (-1192 |#2|))) (-15 -2760 ((-1192 |#2|) |#1|)) (-15 -3402 ((-1287 |#2|) |#1| (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2399 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2399 (|#1| |#1| (-783))) (-15 -2399 (|#1| |#1|)) (-15 -2099 (|#1| |#1| |#1|)) (-15 -2099 (|#2| |#1| |#2|)) (-15 -2367 ((-430 |#1|) |#1|)) (-15 -3389 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3068 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3642 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -1667 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -4325 (|#1| |#1| (-1101))) (-15 -1634 ((-656 (-1101)) |#1|)) (-15 -3988 ((-783) |#1| (-656 (-1101)))) (-15 -3988 ((-783) |#1|)) (-15 -2428 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -2428 (|#1| |#1| (-1101) (-783))) (-15 -4389 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -4389 ((-783) |#1| (-1101))) (-15 -1848 ((-3 (-1101) "failed") |#1|)) (-15 -4436 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -4436 ((-783) |#1| (-1101))) (-15 -2858 (|#1| (-1101))) (-15 -2454 ((-3 (-1101) "failed") |#1|)) (-15 -4397 ((-1101) |#1|)) (-15 -3022 (|#1| |#1| (-656 (-1101)) (-656 |#1|))) (-15 -3022 (|#1| |#1| (-1101) |#1|)) (-15 -3022 (|#1| |#1| (-656 (-1101)) (-656 |#2|))) (-15 -3022 (|#1| |#1| (-1101) |#2|)) (-15 -3022 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3022 (|#1| |#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| (-304 |#1|))) (-15 -3022 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -4436 ((-783) |#1|)) (-15 -2428 (|#1| |#2| (-783))) (-15 -2454 ((-3 (-576) "failed") |#1|)) (-15 -4397 ((-576) |#1|)) (-15 -2454 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4397 ((-419 (-576)) |#1|)) (-15 -4397 (|#2| |#1|)) (-15 -2454 ((-3 |#2| "failed") |#1|)) (-15 -2858 (|#1| |#2|)) (-15 -4389 ((-783) |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2399 (|#1| |#1| (-1101))) (-15 -2399 (|#1| |#1| (-656 (-1101)))) (-15 -2399 (|#1| |#1| (-1101) (-783))) (-15 -2399 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -2858 (|#1| (-576))) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3402 (((-1287 |#1|) $ (-783)) 254)) (-1634 (((-656 (-1101)) $) 113)) (-3067 (($ (-1192 |#1|)) 252)) (-3440 (((-1192 $) $ (-1101)) 128) (((-1192 |#1|) $) 127)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2150 (($ $) 91 (|has| |#1| (-568)))) (-2637 (((-112) $) 93 (|has| |#1| (-568)))) (-3988 (((-783) $) 115) (((-783) $ (-656 (-1101))) 114)) (-3161 (((-3 $ "failed") $ $) 20)) (-1546 (($ $ $) 239 (|has| |#1| (-568)))) (-3389 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-3179 (($ $) 101 (|has| |#1| (-464)))) (-2464 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1667 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-3417 (((-112) $ $) 224 (|has| |#1| (-374)))) (-2949 (($ $ (-783)) 247)) (-2689 (($ $ (-783)) 246)) (-3811 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 234 (|has| |#1| (-464)))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 169) (((-3 (-419 (-576)) "failed") $) 166 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 164 (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) 141)) (-4397 ((|#1| $) 168) (((-419 (-576)) $) 167 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 165 (|has| |#1| (-1057 (-576)))) (((-1101) $) 142)) (-2495 (($ $ $ (-1101)) 111 (|has| |#1| (-174))) ((|#1| $ $) 242 (|has| |#1| (-174)))) (-2780 (($ $ $) 228 (|has| |#1| (-374)))) (-4404 (($ $) 159)) (-2085 (((-701 (-576)) (-1287 $)) 139 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 137 (|has| |#1| (-651 (-576)))) (((-2 (|:| -3260 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 136) (((-701 |#1|) (-701 $)) 135) (((-701 |#1|) (-1287 $)) 134)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 227 (|has| |#1| (-374)))) (-2976 (($ $ $) 245)) (-3051 (($ $ $) 236 (|has| |#1| (-568)))) (-2260 (((-2 (|:| -1788 |#1|) (|:| -2647 $) (|:| -2307 $)) $ $) 235 (|has| |#1| (-568)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 222 (|has| |#1| (-374)))) (-3420 (($ $) 181 (|has| |#1| (-464))) (($ $ (-1101)) 108 (|has| |#1| (-464)))) (-4391 (((-656 $) $) 112)) (-3011 (((-112) $) 99 (|has| |#1| (-926)))) (-2611 (($ $ |#1| (-783) $) 177)) (-1835 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2620 (((-783) $ $) 240 (|has| |#1| (-568)))) (-1838 (((-112) $) 35)) (-1890 (((-783) $) 174)) (-3397 (((-3 $ "failed") $) 220 (|has| |#1| (-1171)))) (-2441 (($ (-1192 |#1|) (-1101)) 120) (($ (-1192 $) (-1101)) 119)) (-4323 (($ $ (-783)) 251)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 231 (|has| |#1| (-374)))) (-2936 (((-656 $) $) 129)) (-1711 (((-112) $) 157)) (-2428 (($ |#1| (-783)) 158) (($ $ (-1101) (-783)) 122) (($ $ (-656 (-1101)) (-656 (-783))) 121)) (-2290 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $ (-1101)) 123) (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 249)) (-4389 (((-783) $) 175) (((-783) $ (-1101)) 125) (((-656 (-783)) $ (-656 (-1101))) 124)) (-4149 (($ (-1 (-783) (-783)) $) 176)) (-2548 (($ (-1 |#1| |#1|) $) 156)) (-2760 (((-1192 |#1|) $) 253)) (-1848 (((-3 (-1101) "failed") $) 126)) (-4366 (($ $) 154)) (-4379 ((|#1| $) 153)) (-3862 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2143 (((-1178) $) 10)) (-3300 (((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783)) 248)) (-2829 (((-3 (-656 $) "failed") $) 117)) (-1972 (((-3 (-656 $) "failed") $) 118)) (-2994 (((-3 (-2 (|:| |var| (-1101)) (|:| -2273 (-783))) "failed") $) 116)) (-1850 (($ $) 232 (|has| |#1| (-38 (-419 (-576)))))) (-3448 (($) 219 (|has| |#1| (-1171)) CONST)) (-3887 (((-1139) $) 11)) (-4336 (((-112) $) 171)) (-4347 ((|#1| $) 172)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3901 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-3642 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3068 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-2367 (((-430 $) $) 102 (|has| |#1| (-926)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 230 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 229 (|has| |#1| (-374)))) (-2825 (((-3 $ "failed") $ |#1|) 179 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 223 (|has| |#1| (-374)))) (-3022 (($ $ (-656 (-304 $))) 150) (($ $ (-304 $)) 149) (($ $ $ $) 148) (($ $ (-656 $) (-656 $)) 147) (($ $ (-1101) |#1|) 146) (($ $ (-656 (-1101)) (-656 |#1|)) 145) (($ $ (-1101) $) 144) (($ $ (-656 (-1101)) (-656 $)) 143)) (-3076 (((-783) $) 225 (|has| |#1| (-374)))) (-2099 ((|#1| $ |#1|) 264) (($ $ $) 263) (((-419 $) (-419 $) (-419 $)) 241 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 233 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 221 (|has| |#1| (-568)))) (-2065 (((-3 $ "failed") $ (-783)) 250)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 226 (|has| |#1| (-374)))) (-3880 (($ $ (-1101)) 110 (|has| |#1| (-174))) ((|#1| $) 243 (|has| |#1| (-174)))) (-2399 (($ $ (-656 (-1101)) (-656 (-783))) 44) (($ $ (-1101) (-783)) 43) (($ $ (-656 (-1101))) 42) (($ $ (-1101)) 40) (($ $) 262) (($ $ (-783)) 260) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1 |#1| |#1|) $) 244) (($ $ (-1196)) 218 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 216 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 215 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 214 (|has| |#1| (-917 (-1196))))) (-4436 (((-783) $) 155) (((-783) $ (-1101)) 133) (((-656 (-783)) $ (-656 (-1101))) 132)) (-2610 (((-905 (-390)) $) 85 (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-4325 ((|#1| $) 180 (|has| |#1| (-464))) (($ $ (-1101)) 109 (|has| |#1| (-464)))) (-1874 (((-3 (-1287 $) "failed") (-701 $)) 107 (-3200 (|has| $ (-146)) (|has| |#1| (-926))))) (-2033 (((-3 $ "failed") $ $) 238 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 237 (|has| |#1| (-568)))) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 170) (($ (-1101)) 140) (($ (-419 (-576))) 81 (-3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2461 (((-656 |#1|) $) 173)) (-4417 ((|#1| $ (-783)) 160) (($ $ (-1101) (-783)) 131) (($ $ (-656 (-1101)) (-656 (-783))) 130)) (-3689 (((-3 $ "failed") $) 82 (-3739 (-3200 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2981 (((-783)) 32 T CONST)) (-2986 (($ $ $ (-783)) 178 (|has| |#1| (-174)))) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-656 (-1101)) (-656 (-783))) 47) (($ $ (-1101) (-783)) 46) (($ $ (-656 (-1101))) 45) (($ $ (-1101)) 41) (($ $) 261) (($ $ (-783)) 259) (($ $ (-1 |#1| |#1|)) 256) (($ $ (-1 |#1| |#1|) (-783)) 255) (($ $ (-1196)) 217 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 213 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 212 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 211 (|has| |#1| (-917 (-1196))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 161 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 163 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 152) (($ $ |#1|) 151)))
+(((-1263 |#1|) (-141) (-1068)) (T -1263))
+((-3402 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1263 *4)) (-4 *4 (-1068)) (-5 *2 (-1287 *4)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-5 *2 (-1192 *3)))) (-3067 (*1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1068)) (-4 *1 (-1263 *3)))) (-4323 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-2065 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-2290 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1263 *3)))) (-3300 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1263 *4)))) (-2949 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-2976 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)))) (-2399 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))) (-2495 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))) (-2099 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-2620 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) (-5 *2 (-783)))) (-1546 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-2033 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-2033 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-3051 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-2260 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1788 *3) (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1263 *3)))) (-3811 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1263 *3)))) (-2099 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1850 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))))
+(-13 (-966 |t#1| (-783) (-1101)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -3402 ((-1287 |t#1|) $ (-783))) (-15 -2760 ((-1192 |t#1|) $)) (-15 -3067 ($ (-1192 |t#1|))) (-15 -4323 ($ $ (-783))) (-15 -2065 ((-3 $ "failed") $ (-783))) (-15 -2290 ((-2 (|:| -2647 $) (|:| -2307 $)) $ $)) (-15 -3300 ((-2 (|:| -2647 $) (|:| -2307 $)) $ (-783))) (-15 -2949 ($ $ (-783))) (-15 -2689 ($ $ (-783))) (-15 -2976 ($ $ $)) (-15 -2399 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3880 (|t#1| $)) (-15 -2495 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2099 ((-419 $) (-419 $) (-419 $))) (-15 -2620 ((-783) $ $)) (-15 -1546 ($ $ $)) (-15 -2033 ((-3 $ "failed") $ $)) (-15 -2033 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -3051 ($ $ $)) (-15 -2260 ((-2 (|:| -1788 |t#1|) (|:| -2647 $) (|:| -2307 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -3811 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4458) (-15 -2099 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -1850 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3739 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1101)) . T) ((-628 |#1|) . T) ((-628 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3739 (|has| |#1| (-926)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2#) . T) ((-909 $ #4=(-1196)) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) . T) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #2#) . T) ((-917 #4#) -3739 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-390)) -12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390)))) ((-899 (-576)) -12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))) ((-966 |#1| #0# #2#) . T) ((-926) |has| |#1| (-926)) ((-937) |has| |#1| (-374)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 |#1|) . T) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-1171)) ((-1237) . T) ((-1241) |has| |#1| (-926)))
+((-1634 (((-656 (-1101)) $) 34)) (-4404 (($ $) 31)) (-2428 (($ |#2| |#3|) NIL) (($ $ (-1101) |#3|) 28) (($ $ (-656 (-1101)) (-656 |#3|)) 27)) (-4366 (($ $) 14)) (-4379 ((|#2| $) 12)) (-4436 ((|#3| $) 10)))
+(((-1264 |#1| |#2| |#3|) (-10 -8 (-15 -1634 ((-656 (-1101)) |#1|)) (-15 -2428 (|#1| |#1| (-656 (-1101)) (-656 |#3|))) (-15 -2428 (|#1| |#1| (-1101) |#3|)) (-15 -4404 (|#1| |#1|)) (-15 -2428 (|#1| |#2| |#3|)) (-15 -4436 (|#3| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -4379 (|#2| |#1|))) (-1265 |#2| |#3|) (-1068) (-804)) (T -1264))
+NIL
+(-10 -8 (-15 -1634 ((-656 (-1101)) |#1|)) (-15 -2428 (|#1| |#1| (-656 (-1101)) (-656 |#3|))) (-15 -2428 (|#1| |#1| (-1101) |#3|)) (-15 -4404 (|#1| |#1|)) (-15 -2428 (|#1| |#2| |#3|)) (-15 -4436 (|#3| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -4379 (|#2| |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 (-1101)) $) 86)) (-1455 (((-1196) $) 118)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3019 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3754 (((-1176 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-3219 (((-112) $) 85)) (-2620 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-1838 (((-112) $) 35)) (-4323 (($ $ (-938)) 116)) (-1711 (((-112) $) 74)) (-2428 (($ |#1| |#2|) 73) (($ $ (-1101) |#2|) 88) (($ $ (-656 (-1101)) (-656 |#2|)) 87)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-3262 (($ $ |#2|) 110)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3022 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2099 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1131)))) (-2399 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4436 ((|#2| $) 76)) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4417 ((|#1| $ |#2|) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-1785 ((|#1| $) 117)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3468 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1265 |#1| |#2|) (-141) (-1068) (-804)) (T -1265))
+((-3754 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-1196)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-4323 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2620 (*1 *2 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3019 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3019 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3468 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2858 (*2 (-1196)))) (-4 *2 (-1068)))) (-3262 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3022 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3)))))
+(-13 (-992 |t#1| |t#2| (-1101)) (-296 |t#2| |t#1|) (-10 -8 (-15 -3754 ((-1176 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1455 ((-1196) $)) (-15 -1785 (|t#1| $)) (-15 -4323 ($ $ (-938))) (-15 -2620 (|t#2| $)) (-15 -2620 (|t#2| $ |t#2|)) (-15 -3019 ($ $ |t#2|)) (-15 -3019 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2858 (|t#1| (-1196)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3468 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3262 ($ $ |t#2|)) (IF (|has| |t#2| (-1131)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3022 ((-1176 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1131)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #1=(-1196)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| |#2| (-1101)) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T))
+((-3179 ((|#2| |#2|) 12)) (-2464 (((-430 |#2|) |#2|) 14)) (-2015 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30)))
+(((-1266 |#1| |#2|) (-10 -7 (-15 -2464 ((-430 |#2|) |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -2015 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1263 |#1|) (-568) (-10 -8 (-15 -3901 ($ $ $))))) (T -1266))
+((-2015 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3901 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1266 *3 *4)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) (-4 *2 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3901 ($ $ $))))))) (-2464 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1266 *4 *3)) (-4 *3 (-13 (-1263 *4) (-568) (-10 -8 (-15 -3901 ($ $ $))))))))
+(-10 -7 (-15 -2464 ((-430 |#2|) |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -2015 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))))))
+((-2548 (((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)) 24)))
+(((-1267 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2548 ((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)))) (-1068) (-1068) (-1196) (-1196) |#1| |#2|) (T -1267))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1272 *6 *8 *10)) (-5 *1 (-1267 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196)))))
+(-10 -7 (-15 -2548 ((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 (-1101)) $) 86)) (-1455 (((-1196) $) 118)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3897 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 177 (|has| |#1| (-374)))) (-2464 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2477 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3871 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-1542 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) 18 T CONST)) (-2780 (($ $ $) 172 (|has| |#1| (-374)))) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 171 (|has| |#1| (-374)))) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3011 (((-112) $) 179 (|has| |#1| (-374)))) (-3219 (((-112) $) 85)) (-1663 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) 116) (($ $ (-419 (-576))) 185)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1711 (((-112) $) 74)) (-2428 (($ |#1| (-419 (-576))) 73) (($ $ (-1101) (-419 (-576))) 88) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) 87)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-3437 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-3862 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2143 (((-1178) $) 10)) (-4324 (($ $) 180 (|has| |#1| (-374)))) (-1850 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3739 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3901 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2367 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 173 (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) 110)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2656 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) 169 (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 170 (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4436 (((-419 (-576)) $) 76)) (-1553 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-1785 ((|#1| $) 117)) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1567 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1268 |#1|) (-141) (-1068)) (T -1268))
+((-1907 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1068)) (-4 *1 (-1268 *4)))) (-4323 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1268 *3)) (-4 *3 (-1068)))) (-1850 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-1850 (*1 *1 *1 *2) (-3739 (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1634 ((-656 *2) *3))) (|has| *3 (-15 -1850 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))))
+(-13 (-1265 |t#1| (-419 (-576))) (-10 -8 (-15 -1907 ($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -4323 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $)) (IF (|has| |t#1| (-15 -1850 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1634 ((-656 (-1196)) |t#1|))) (-15 -1850 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -1850 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1131)) ((-300) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T))
+((-3203 (((-112) $) 12)) (-2454 (((-3 |#3| "failed") $) 17)) (-4397 ((|#3| $) 14)))
+(((-1269 |#1| |#2| |#3|) (-10 -8 (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -4397 (|#3| |#1|)) (-15 -3203 ((-112) |#1|))) (-1270 |#2| |#3|) (-1068) (-1247 |#2|)) (T -1269))
+NIL
+(-10 -8 (-15 -2454 ((-3 |#3| "failed") |#1|)) (-15 -4397 (|#3| |#1|)) (-15 -3203 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 (-1101)) $) 86)) (-1455 (((-1196) $) 118)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3897 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 177 (|has| |#1| (-374)))) (-2464 (((-430 $) $) 178 (|has| |#1| (-374)))) (-2477 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3871 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-1542 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#2| "failed") $) 197)) (-4397 ((|#2| $) 198)) (-2780 (($ $ $) 172 (|has| |#1| (-374)))) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-3381 (((-419 (-576)) $) 194)) (-2790 (($ $ $) 171 (|has| |#1| (-374)))) (-4301 (($ (-419 (-576)) |#2|) 195)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-3011 (((-112) $) 179 (|has| |#1| (-374)))) (-3219 (((-112) $) 85)) (-1663 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) 116) (($ $ (-419 (-576))) 185)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-1711 (((-112) $) 74)) (-2428 (($ |#1| (-419 (-576))) 73) (($ $ (-1101) (-419 (-576))) 88) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) 87)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-3437 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-3862 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2429 ((|#2| $) 193)) (-3443 (((-3 |#2| "failed") $) 191)) (-4290 ((|#2| $) 192)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 180 (|has| |#1| (-374)))) (-1850 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3739 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3901 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2367 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 173 (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) 110)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-2656 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) 169 (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 170 (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4436 (((-419 (-576)) $) 76)) (-1553 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-1785 ((|#1| $) 117)) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1567 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1270 |#1| |#2|) (-141) (-1068) (-1247 |t#1|)) (T -1270))
+((-4436 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3)) (-5 *2 (-419 (-576))))) (-4301 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1068)) (-4 *1 (-1270 *4 *3)) (-4 *3 (-1247 *4)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3)) (-5 *2 (-419 (-576))))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))) (-4290 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))))
+(-13 (-1268 |t#1|) (-1057 |t#2|) (-628 |t#2|) (-10 -8 (-15 -4301 ($ (-419 (-576)) |t#2|)) (-15 -3381 ((-419 (-576)) $)) (-15 -2429 (|t#2| $)) (-15 -4436 ((-419 (-576)) $)) (-15 -4290 (|t#2| $)) (-15 -3443 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1131)) ((-300) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1057 |#2|) . T) ((-1070 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3739 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T) ((-1268 |#1|) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 104)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-3897 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-1542 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL)) (-4397 ((|#2| $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) 85)) (-3381 (((-419 (-576)) $) 13)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-4301 (($ (-419 (-576)) |#2|) 11)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-3219 (((-112) $) 74)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) 130) (($ $ (-419 (-576))) 128)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-419 (-576))) 33) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) 125)) (-3437 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2429 ((|#2| $) 12)) (-3443 (((-3 |#2| "failed") $) 44)) (-4290 ((|#2| $) 45)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) 101 (|has| |#1| (-374)))) (-1850 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 151 (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222)))))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) 122)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-4436 (((-419 (-576)) $) 16)) (-1553 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 120)) (-2858 (((-874) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) 107)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) 127 T CONST)) (-1785 ((|#1| $) 106)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 21 T CONST)) (-2038 (($) 17 T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3889 (((-112) $ $) 72)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-4002 (($ $) 142) (($ $ $) 78)) (-3990 (($ $ $) 76)) (** (($ $ (-938)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1271 |#1| |#2|) (-1270 |#1| |#2|) (-1068) (-1247 |#1|)) (T -1271))
+NIL
+(-1270 |#1| |#2|)
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 11)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) NIL (|has| |#1| (-568)))) (-3019 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3754 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-3179 (($ $) NIL (|has| |#1| (-374)))) (-2464 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3417 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1279 |#1| |#2| |#3|) "failed") $) 22)) (-4397 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1279 |#1| |#2| |#3|) $) NIL)) (-2780 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-3381 (((-419 (-576)) $) 69)) (-2790 (($ $ $) NIL (|has| |#1| (-374)))) (-4301 (($ (-419 (-576)) (-1251 |#1| |#2| |#3|)) NIL)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3011 (((-112) $) NIL (|has| |#1| (-374)))) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1838 (((-112) $) NIL)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-419 (-576))) 30) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-3862 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2429 (((-1251 |#1| |#2| |#3|) $) 72)) (-3443 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-4290 (((-1251 |#1| |#2| |#3|) $) NIL)) (-2143 (((-1178) $) NIL)) (-4324 (($ $) NIL (|has| |#1| (-374)))) (-1850 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3901 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2367 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1749 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) NIL (|has| |#1| (-374)))) (-3262 (($ $ (-419 (-576))) NIL)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2297 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3076 (((-783) $) NIL (|has| |#1| (-374)))) (-2099 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) NIL (|has| |#1| (-374)))) (-2399 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 38)) (-4436 (((-419 (-576)) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL)) (-2858 (((-874) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1251 |#1| |#2| |#3|)) 16) (($ (-1279 |#1| |#2| |#3|)) 17) (($ (-1283 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4417 ((|#1| $ (-419 (-576))) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 12)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 32 T CONST)) (-2038 (($) 26 T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 34)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1272 |#1| |#2| |#3|) (-13 (-1270 |#1| (-1251 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1279 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1272))
+((-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1270 |#1| (-1251 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1279 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 37)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2150 (($ $) NIL)) (-2637 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 (-576) "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-419 (-576))))) (((-3 (-1272 |#2| |#3| |#4|) "failed") $) 22)) (-4397 (((-576) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-419 (-576))))) (((-1272 |#2| |#3| |#4|) $) NIL)) (-4404 (($ $) 41)) (-4011 (((-3 $ "failed") $) 27)) (-3420 (($ $) NIL (|has| (-1272 |#2| |#3| |#4|) (-464)))) (-2611 (($ $ (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) 11)) (-1711 (((-112) $) NIL)) (-2428 (($ (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-4389 (((-329 |#2| |#3| |#4|) $) NIL)) (-4149 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-2548 (($ (-1 (-1272 |#2| |#3| |#4|) (-1272 |#2| |#3| |#4|)) $) NIL)) (-4291 (((-3 (-855 |#2|) "failed") $) 90)) (-4366 (($ $) NIL)) (-4379 (((-1272 |#2| |#3| |#4|) $) 20)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4336 (((-112) $) NIL)) (-4347 (((-1272 |#2| |#3| |#4|) $) NIL)) (-2825 (((-3 $ "failed") $ (-1272 |#2| |#3| |#4|)) NIL (|has| (-1272 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-1842 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $) 74)) (-4436 (((-329 |#2| |#3| |#4|) $) 17)) (-4325 (((-1272 |#2| |#3| |#4|) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-464)))) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ (-1272 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-3739 (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1272 |#2| |#3| |#4|) (-1057 (-419 (-576))))))) (-2461 (((-656 (-1272 |#2| |#3| |#4|)) $) NIL)) (-4417 (((-1272 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3689 (((-3 $ "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-146)))) (-2981 (((-783)) NIL T CONST)) (-2986 (($ $ $ (-783)) NIL (|has| (-1272 |#2| |#3| |#4|) (-174)))) (-2690 (((-112) $ $) NIL)) (-3199 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ (-1272 |#2| |#3| |#4|)) NIL (|has| (-1272 |#2| |#3| |#4|) (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1272 |#2| |#3| |#4|)) NIL) (($ (-1272 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))))))
+(((-1273 |#1| |#2| |#3| |#4|) (-13 (-336 (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -4291 ((-3 (-855 |#2|) "failed") $)) (-15 -1842 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $)))) (-13 (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -1273))
+((-4291 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4))) (-1842 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1178)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4))))
+(-13 (-336 (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -4291 ((-3 (-855 |#2|) "failed") $)) (-15 -1842 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $))))
+((-4160 ((|#2| $) 34)) (-2963 ((|#2| $) 18)) (-3436 (($ $) 53)) (-2619 (($ $ (-576)) 85)) (-2746 (((-112) $ (-783)) 46)) (-4338 ((|#2| $ |#2|) 82)) (-2649 ((|#2| $ |#2|) 78)) (-3028 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4280 (($ $ (-656 $)) 81)) (-2951 ((|#2| $) 17)) (-2003 (($ $) NIL) (($ $ (-783)) 59)) (-1550 (((-656 $) $) 31)) (-2231 (((-112) $ $) 69)) (-3639 (((-112) $ (-783)) 45)) (-1684 (((-112) $ (-783)) 43)) (-3123 (((-112) $) 33)) (-3627 ((|#2| $) 25) (($ $ (-783)) 64)) (-2099 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2133 (((-112) $) 23)) (-3579 (($ $) 56)) (-2604 (($ $) 86)) (-1836 (((-783) $) 58)) (-1668 (($ $) 57)) (-1534 (($ $ $) 77) (($ |#2| $) NIL)) (-4016 (((-656 $) $) 32)) (-3889 (((-112) $ $) 67)) (-2845 (((-783) $) 52)))
+(((-1274 |#1| |#2|) (-10 -8 (-15 -2619 (|#1| |#1| (-576))) (-15 -3028 (|#2| |#1| "last" |#2|)) (-15 -2649 (|#2| |#1| |#2|)) (-15 -3028 (|#1| |#1| "rest" |#1|)) (-15 -3028 (|#2| |#1| "first" |#2|)) (-15 -2604 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -1836 ((-783) |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -2963 (|#2| |#1|)) (-15 -2951 (|#2| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -3627 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "last")) (-15 -3627 (|#2| |#1|)) (-15 -2003 (|#1| |#1| (-783))) (-15 -2099 (|#1| |#1| "rest")) (-15 -2003 (|#1| |#1|)) (-15 -2099 (|#2| |#1| "first")) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#1|)) (-15 -4338 (|#2| |#1| |#2|)) (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -4280 (|#1| |#1| (-656 |#1|))) (-15 -2231 ((-112) |#1| |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -2099 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -3123 ((-112) |#1|)) (-15 -1550 ((-656 |#1|) |#1|)) (-15 -4016 ((-656 |#1|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783)))) (-1275 |#2|) (-1237)) (T -1274))
+NIL
+(-10 -8 (-15 -2619 (|#1| |#1| (-576))) (-15 -3028 (|#2| |#1| "last" |#2|)) (-15 -2649 (|#2| |#1| |#2|)) (-15 -3028 (|#1| |#1| "rest" |#1|)) (-15 -3028 (|#2| |#1| "first" |#2|)) (-15 -2604 (|#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -1836 ((-783) |#1|)) (-15 -1668 (|#1| |#1|)) (-15 -2963 (|#2| |#1|)) (-15 -2951 (|#2| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -3627 (|#1| |#1| (-783))) (-15 -2099 (|#2| |#1| "last")) (-15 -3627 (|#2| |#1|)) (-15 -2003 (|#1| |#1| (-783))) (-15 -2099 (|#1| |#1| "rest")) (-15 -2003 (|#1| |#1|)) (-15 -2099 (|#2| |#1| "first")) (-15 -1534 (|#1| |#2| |#1|)) (-15 -1534 (|#1| |#1| |#1|)) (-15 -4338 (|#2| |#1| |#2|)) (-15 -3028 (|#2| |#1| "value" |#2|)) (-15 -4280 (|#1| |#1| (-656 |#1|))) (-15 -2231 ((-112) |#1| |#1|)) (-15 -2133 ((-112) |#1|)) (-15 -2099 (|#2| |#1| "value")) (-15 -4160 (|#2| |#1|)) (-15 -3123 ((-112) |#1|)) (-15 -1550 ((-656 |#1|) |#1|)) (-15 -4016 ((-656 |#1|) |#1|)) (-15 -3889 ((-112) |#1| |#1|)) (-15 -2845 ((-783) |#1|)) (-15 -2746 ((-112) |#1| (-783))) (-15 -3639 ((-112) |#1| (-783))) (-15 -1684 ((-112) |#1| (-783))))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4160 ((|#1| $) 49)) (-2963 ((|#1| $) 66)) (-3436 (($ $) 68)) (-2619 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2746 (((-112) $ (-783)) 8)) (-4338 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-2649 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2674 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-3028 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463)))) (-4280 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-2951 ((|#1| $) 67)) (-2574 (($) 7 T CONST)) (-2003 (($ $) 74) (($ $ (-783)) 72)) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1550 (((-656 $) $) 51)) (-2231 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3639 (((-112) $ (-783)) 9)) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36)) (-1684 (((-112) $ (-783)) 10)) (-2485 (((-656 |#1|) $) 46)) (-3123 (((-112) $) 50)) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3627 ((|#1| $) 71) (($ $ (-783)) 69)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 77) (($ $ (-783)) 75)) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3599 (((-576) $ $) 45)) (-2133 (((-112) $) 47)) (-3579 (($ $) 63)) (-2604 (($ $) 60 (|has| $ (-6 -4463)))) (-1836 (((-783) $) 64)) (-1668 (($ $) 65)) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3052 (($ $) 13)) (-3925 (($ $ $) 62 (|has| $ (-6 -4463))) (($ $ |#1|) 61 (|has| $ (-6 -4463)))) (-1534 (($ $ $) 79) (($ |#1| $) 78)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-4016 (((-656 $) $) 52)) (-1694 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1275 |#1|) (-141) (-1237)) (T -1275))
+((-1534 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1534 (*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2003 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2003 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2099 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2951 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1668 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3925 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3925 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2604 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2674 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3028 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2744 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3028 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2649 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3028 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2619 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))))
+(-13 (-1029 |t#1|) (-10 -8 (-15 -1534 ($ $ $)) (-15 -1534 ($ |t#1| $)) (-15 -1989 (|t#1| $)) (-15 -2099 (|t#1| $ "first")) (-15 -1989 ($ $ (-783))) (-15 -2003 ($ $)) (-15 -2099 ($ $ "rest")) (-15 -2003 ($ $ (-783))) (-15 -3627 (|t#1| $)) (-15 -2099 (|t#1| $ "last")) (-15 -3627 ($ $ (-783))) (-15 -3436 ($ $)) (-15 -2951 (|t#1| $)) (-15 -2963 (|t#1| $)) (-15 -1668 ($ $)) (-15 -1836 ((-783) $)) (-15 -3579 ($ $)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3925 ($ $ $)) (-15 -3925 ($ $ |t#1|)) (-15 -2604 ($ $)) (-15 -2674 (|t#1| $ |t#1|)) (-15 -3028 (|t#1| $ "first" |t#1|)) (-15 -2744 ($ $ $)) (-15 -3028 ($ $ "rest" $)) (-15 -2649 (|t#1| $ |t#1|)) (-15 -3028 (|t#1| $ "last" |t#1|)) (-15 -2619 ($ $ (-576)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T))
+((-2548 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1276 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2548 (|#4| (-1 |#2| |#1|) |#3|))) (-1068) (-1068) (-1278 |#1|) (-1278 |#2|)) (T -1276))
+((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1278 *6)) (-5 *1 (-1276 *5 *6 *4 *2)) (-4 *4 (-1278 *5)))))
+(-10 -7 (-15 -2548 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3203 (((-112) $) 17)) (-3897 (($ $) 105)) (-3760 (($ $) 81)) (-3871 (($ $) 101)) (-3735 (($ $) 77)) (-1542 (($ $) 109)) (-3781 (($ $) 85)) (-3437 (($ $) 75)) (-2656 (($ $) 73)) (-1553 (($ $) 111)) (-3791 (($ $) 87)) (-3911 (($ $) 107)) (-3771 (($ $) 83)) (-3883 (($ $) 103)) (-3748 (($ $) 79)) (-2858 (((-874) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1593 (($ $) 117)) (-3826 (($ $) 93)) (-1567 (($ $) 113)) (-3802 (($ $) 89)) (-1620 (($ $) 121)) (-3847 (($ $) 97)) (-2888 (($ $) 123)) (-3859 (($ $) 99)) (-1609 (($ $) 119)) (-3837 (($ $) 95)) (-1578 (($ $) 115)) (-3813 (($ $) 91)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71)))
+(((-1277 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3760 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1542 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -3437 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -3203 ((-112) |#1|)) (-15 -2858 ((-874) |#1|))) (-1278 |#2|) (-1068)) (T -1277))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3760 (|#1| |#1|)) (-15 -3735 (|#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3748 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3859 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3826 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -1553 (|#1| |#1|)) (-15 -1542 (|#1| |#1|)) (-15 -3871 (|#1| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1578 (|#1| |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -2888 (|#1| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -1593 (|#1| |#1|)) (-15 -3437 (|#1| |#1|)) (-15 -2656 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2858 (|#1| |#2|)) (-15 -2858 (|#1| |#1|)) (-15 -2858 (|#1| (-419 (-576)))) (-15 -2858 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -3203 ((-112) |#1|)) (-15 -2858 ((-874) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-1634 (((-656 (-1101)) $) 86)) (-1455 (((-1196) $) 118)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2150 (($ $) 64 (|has| |#1| (-568)))) (-2637 (((-112) $) 66 (|has| |#1| (-568)))) (-3019 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-3754 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-3897 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) 20)) (-2477 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3871 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1176 |#1|)) 168)) (-1542 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) 18 T CONST)) (-4404 (($ $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-4382 (($ $) 167)) (-2488 (((-969 |#1|) $ (-783)) 165) (((-969 |#1|) $ (-783) (-783)) 164)) (-3219 (((-112) $) 85)) (-1663 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-783) $) 115) (((-783) $ (-783)) 114)) (-1838 (((-112) $) 35)) (-1404 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4323 (($ $ (-938)) 116)) (-4199 (($ (-1 |#1| (-576)) $) 166)) (-1711 (((-112) $) 74)) (-2428 (($ |#1| (-783)) 73) (($ $ (-1101) (-783)) 88) (($ $ (-656 (-1101)) (-656 (-783))) 87)) (-2548 (($ (-1 |#1| |#1|) $) 75)) (-3437 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) 77)) (-4379 ((|#1| $) 78)) (-2143 (((-1178) $) 10)) (-1850 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 161 (-3739 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3887 (((-1139) $) 11)) (-3262 (($ $ (-783)) 110)) (-2825 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2656 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3022 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2099 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1131)))) (-2399 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-4436 (((-783) $) 76)) (-1553 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 84)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2461 (((-1176 |#1|) $) 169)) (-4417 ((|#1| $ (-783)) 71)) (-3689 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2981 (((-783)) 32 T CONST)) (-1785 ((|#1| $) 117)) (-2690 (((-112) $ $) 9)) (-1593 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) 65 (|has| |#1| (-568)))) (-1567 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3404 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576)))))))
+(((-1278 |#1|) (-141) (-1068)) (T -1278))
+((-1907 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1278 *3)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-5 *2 (-1176 *3)))) (-1907 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-4 *1 (-1278 *3)))) (-4382 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)))) (-4199 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1278 *3)) (-4 *3 (-1068)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068)) (-5 *2 (-969 *4)))) (-2488 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068)) (-5 *2 (-969 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1850 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-1850 (*1 *1 *1 *2) (-3739 (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1634 ((-656 *2) *3))) (|has| *3 (-15 -1850 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))))
+(-13 (-1265 |t#1| (-783)) (-10 -8 (-15 -1907 ($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -2461 ((-1176 |t#1|) $)) (-15 -1907 ($ (-1176 |t#1|))) (-15 -4382 ($ $)) (-15 -4199 ($ (-1 |t#1| (-576)) $)) (-15 -2488 ((-969 |t#1|) $ (-783))) (-15 -2488 ((-969 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1850 ($ $)) (IF (|has| |t#1| (-15 -1850 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1634 ((-656 (-1196)) |t#1|))) (-15 -1850 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -1850 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1131)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3739 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1265 |#1| #0#) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-1634 (((-656 (-1101)) $) NIL)) (-1455 (((-1196) $) 90)) (-2078 (((-1260 |#2| |#1|) $ (-783)) 73)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2150 (($ $) NIL (|has| |#1| (-568)))) (-2637 (((-112) $) 142 (|has| |#1| (-568)))) (-3019 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-3754 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-3897 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3760 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3161 (((-3 $ "failed") $ $) NIL)) (-2477 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3871 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3735 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1907 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1176 |#1|)) NIL)) (-1542 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3781 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2574 (($) NIL T CONST)) (-2847 (($ $) 134)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-4382 (($ $) 140)) (-2488 (((-969 |#1|) $ (-783)) 63) (((-969 |#1|) $ (-783) (-783)) 65)) (-3219 (((-112) $) NIL)) (-1663 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2620 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-1838 (((-112) $) NIL)) (-3201 (($ $) 117)) (-1404 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2385 (($ (-576) (-576) $) 136)) (-4323 (($ $ (-938)) 139)) (-4199 (($ (-1 |#1| (-576)) $) 111)) (-1711 (((-112) $) NIL)) (-2428 (($ |#1| (-783)) 16) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2548 (($ (-1 |#1| |#1|) $) 98)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4366 (($ $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-1915 (($ $) 115)) (-1695 (($ $) 113)) (-2255 (($ (-576) (-576) $) 138)) (-1850 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 156 (-3739 (-12 (|has| |#1| (-15 -1850 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1634 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3887 (((-1139) $) NIL)) (-4257 (($ $ (-576) (-576)) 121)) (-3262 (($ $ (-783)) 123)) (-2825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2656 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2630 (($ $) 119)) (-3022 (((-1176 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2099 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1131)))) (-2399 (($ $ (-1196)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) 103)) (-4436 (((-783) $) NIL)) (-1553 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3791 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3771 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3883 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3748 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 125)) (-2858 (((-874) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1260 |#2| |#1|)) 81) (($ (-1283 |#2|)) 22)) (-2461 (((-1176 |#1|) $) NIL)) (-4417 ((|#1| $ (-783)) 94)) (-3689 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2981 (((-783)) NIL T CONST)) (-1785 ((|#1| $) 91)) (-2690 (((-112) $ $) NIL)) (-1593 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3826 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3199 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1567 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3802 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1620 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3468 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -2858 (|#1| (-1196))))))) (-2888 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3859 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1609 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1578 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3813 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2022 (($) 18 T CONST)) (-2038 (($) 13 T CONST)) (-3404 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3889 (((-112) $ $) NIL)) (-4013 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) 107)) (-3990 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))))
+(((-1279 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1260 |#2| |#1|))) (-15 -2078 ((-1260 |#2| |#1|) $ (-783))) (-15 -2858 ($ (-1283 |#2|))) (-15 -1695 ($ $)) (-15 -1915 ($ $)) (-15 -3201 ($ $)) (-15 -2630 ($ $)) (-15 -4257 ($ $ (-576) (-576))) (-15 -2847 ($ $)) (-15 -2385 ($ (-576) (-576) $)) (-15 -2255 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1279))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1279 *3 *4 *5)))) (-2078 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1279 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-1695 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-1915 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-3201 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-2630 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4257 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-2847 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-2385 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-2255 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-1850 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -2858 ($ (-1260 |#2| |#1|))) (-15 -2078 ((-1260 |#2| |#1|) $ (-783))) (-15 -2858 ($ (-1283 |#2|))) (-15 -1695 ($ $)) (-15 -1915 ($ $)) (-15 -3201 ($ $)) (-15 -2630 ($ $)) (-15 -4257 ($ $ (-576) (-576))) (-15 -2847 ($ $)) (-15 -2385 ($ (-576) (-576) $)) (-15 -2255 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1850 ($ $ (-1283 |#2|))) |%noBranch|)))
+((-1986 (((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-2867 (((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1831 (((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|)) 13)) (-3589 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2155 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3718 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-1852 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-3383 ((|#2| |#2| |#2|) 43)))
+(((-1280 |#1| |#2|) (-10 -7 (-15 -1831 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -2867 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1986 ((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -3383 (|#2| |#2| |#2|)) (-15 -2155 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3589 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3718 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -1852 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1278 |#1|)) (T -1280))
+((-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1278 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1280 *5 *6)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1278 *5)) (-5 *1 (-1280 *5 *2)))) (-3589 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1280 *3 *2)) (-4 *2 (-1278 *3)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-656 (-1176 *4)))) (-5 *1 (-1280 *4 *5)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1280 *4 *5)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1280 *4 *5)))))
+(-10 -7 (-15 -1831 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -2867 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1986 ((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -3383 (|#2| |#2| |#2|)) (-15 -2155 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3589 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3718 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -1852 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|))))))
+((-3281 ((|#2| |#4| (-783)) 31)) (-4342 ((|#4| |#2|) 26)) (-4203 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-3032 (((-1 |#4| (-656 |#4|)) |#3|) 43)))
+(((-1281 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4342 (|#4| |#2|)) (-15 -3281 (|#2| |#4| (-783))) (-15 -3032 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -4203 (|#4| (-419 |#2|))) |%noBranch|)) (-1068) (-1263 |#1|) (-668 |#2|) (-1278 |#1|)) (T -1281))
+((-4203 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-568)) (-4 *4 (-1068)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1278 *4)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1278 *5)))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-1263 *4)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-668 *3)))))
+(-10 -7 (-15 -4342 (|#4| |#2|)) (-15 -3281 (|#2| |#4| (-783))) (-15 -3032 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -4203 (|#4| (-419 |#2|))) |%noBranch|))
+NIL
+(((-1282) (-141)) (T -1282))
+NIL
+(-13 (-10 -7 (-6 -3434)))
+((-2835 (((-112) $ $) NIL)) (-1455 (((-1196)) 12)) (-2143 (((-1178) $) 18)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 11) (((-1196) $) 8)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 15)))
+(((-1283 |#1|) (-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -2858 ((-1196) $)) (-15 -1455 ((-1196))))) (-1196)) (T -1283))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) (-1455 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))))
+(-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -2858 ((-1196) $)) (-15 -1455 ((-1196)))))
+((-2854 (($ (-783)) 19)) (-4033 (((-701 |#2|) $ $) 41)) (-2229 ((|#2| $) 51)) (-1873 ((|#2| $) 50)) (-2139 ((|#2| $ $) 36)) (-3021 (($ $ $) 47)) (-4002 (($ $) 23) (($ $ $) 29)) (-3990 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1284 |#1| |#2|) (-10 -8 (-15 -2229 (|#2| |#1|)) (-15 -1873 (|#2| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -4033 ((-701 |#2|) |#1| |#1|)) (-15 -2139 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -2854 (|#1| (-783))) (-15 -3990 (|#1| |#1| |#1|))) (-1285 |#2|) (-1237)) (T -1284))
+NIL
+(-10 -8 (-15 -2229 (|#2| |#1|)) (-15 -1873 (|#2| |#1|)) (-15 -3021 (|#1| |#1| |#1|)) (-15 -4033 ((-701 |#2|) |#1| |#1|)) (-15 -2139 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4002 (|#1| |#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -2854 (|#1| (-783))) (-15 -3990 (|#1| |#1| |#1|)))
+((-2835 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2854 (($ (-783)) 115 (|has| |#1| (-23)))) (-3430 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) 8)) (-3028 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-2574 (($) 7 T CONST)) (-2338 (($ $) 93 (|has| $ (-6 -4463)))) (-4374 (($ $) 103)) (-3229 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3607 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) 52)) (-2627 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4033 (((-701 |#1|) $ $) 108 (|has| |#1| (-1068)))) (-2327 (($ (-783) |#1|) 70)) (-3639 (((-112) $ (-783)) 9)) (-2440 (((-576) $) 44 (|has| (-576) (-862)))) (-1950 (($ $ $) 90 (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4048 (((-576) $) 45 (|has| (-576) (-862)))) (-1492 (($ $ $) 89 (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2229 ((|#1| $) 105 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-1684 (((-112) $ (-783)) 10)) (-1873 ((|#1| $) 106 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-2143 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-2928 (((-656 (-576)) $) 47)) (-1449 (((-112) (-576) $) 48)) (-3887 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1989 ((|#1| $) 43 (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-4040 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) 14)) (-4317 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) 49)) (-3001 (((-112) $) 11)) (-3849 (($) 12)) (-2099 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2139 ((|#1| $ $) 109 (|has| |#1| (-1068)))) (-3213 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3021 (($ $ $) 107 (|has| |#1| (-1068)))) (-3902 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3272 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-3052 (($ $) 13)) (-2610 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 72)) (-1534 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-2858 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3930 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3889 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3944 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3916 (((-112) $ $) 85 (|has| |#1| (-862)))) (-4002 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3990 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2845 (((-783) $) 6 (|has| $ (-6 -4462)))))
+(((-1285 |#1|) (-141) (-1237)) (T -1285))
+((-3990 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-25)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1237)))) (-4002 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (-4002 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) (-2139 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))) (-4033 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-1068)) (-5 *2 (-701 *3)))) (-3021 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021)) (-4 *2 (-1068)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021)) (-4 *2 (-1068)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3990 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2854 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4002 ($ $)) (-15 -4002 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-15 -2139 (|t#1| $ $)) (-15 -4033 ((-701 |t#1|) $ $)) (-15 -3021 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1021)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -1873 (|t#1| $)) (-15 -2229 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3739 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T))
+((-4244 (((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 13)) (-2326 ((|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 15)) (-2548 (((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)) 30) (((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|)) 18)))
+(((-1286 |#1| |#2|) (-10 -7 (-15 -4244 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2548 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -2548 ((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)))) (-1237) (-1237)) (T -1286))
+((-2548 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1286 *5 *2)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1286 *6 *5)))))
+(-10 -7 (-15 -4244 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2326 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2548 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -2548 ((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|))))
+((-2835 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2854 (($ (-783)) NIL (|has| |#1| (-23)))) (-2389 (($ (-656 |#1|)) 11)) (-3430 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-3429 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-1426 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2059 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2746 (((-112) $ (-783)) NIL)) (-3028 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3959 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2574 (($) NIL T CONST)) (-2338 (($ $) NIL (|has| $ (-6 -4463)))) (-4374 (($ $) NIL)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3607 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2326 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-2832 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-2767 ((|#1| $ (-576)) NIL)) (-2627 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3975 (((-656 |#1|) $) 16 (|has| $ (-6 -4462)))) (-4033 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-2327 (($ (-783) |#1|) NIL)) (-3639 (((-112) $ (-783)) NIL)) (-2440 (((-576) $) NIL (|has| (-576) (-862)))) (-1950 (($ $ $) NIL (|has| |#1| (-862)))) (-3343 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-3531 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3606 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4048 (((-576) $) 12 (|has| (-576) (-862)))) (-1492 (($ $ $) NIL (|has| |#1| (-862)))) (-2822 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2229 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-1684 (((-112) $ (-783)) NIL)) (-1873 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-2143 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2163 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2928 (((-656 (-576)) $) NIL)) (-1449 (((-112) (-576) $) NIL)) (-3887 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1989 ((|#1| $) NIL (|has| (-576) (-862)))) (-3557 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4040 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-1910 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1974 (((-112) $ $) NIL)) (-4317 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3584 (((-656 |#1|) $) NIL)) (-3001 (((-112) $) NIL)) (-3849 (($) NIL)) (-2099 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2139 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-3213 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3021 (($ $ $) NIL (|has| |#1| (-1068)))) (-3902 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3272 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-2869 (($ (-656 |#1|)) 10)) (-1534 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-2858 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2690 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2714 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3956 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3930 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3889 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3916 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4002 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3990 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1287 |#1|) (-13 (-1285 |#1|) (-10 -8 (-15 -2389 ($ (-656 |#1|))))) (-1237)) (T -1287))
+((-2389 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3)))))
+(-13 (-1285 |#1|) (-10 -8 (-15 -2389 ($ (-656 |#1|)))))
+((-2835 (((-112) $ $) NIL)) (-3017 (((-1178) $ (-1178)) 107) (((-1178) $ (-1178) (-1178)) 105) (((-1178) $ (-1178) (-656 (-1178))) 104)) (-2912 (($) 69)) (-2567 (((-1292) $ (-480) (-938)) 54)) (-2498 (((-1292) $ (-938) (-1178)) 89) (((-1292) $ (-938) (-886)) 90)) (-3507 (((-1292) $ (-938) (-390) (-390)) 57)) (-2491 (((-1292) $ (-1178)) 84)) (-1441 (((-1292) $ (-938) (-1178)) 94)) (-2687 (((-1292) $ (-938) (-390) (-390)) 58)) (-1774 (((-1292) $ (-938) (-938)) 55)) (-2991 (((-1292) $) 85)) (-2889 (((-1292) $ (-938) (-1178)) 93)) (-2058 (((-1292) $ (-480) (-938)) 41)) (-2512 (((-1292) $ (-938) (-1178)) 92)) (-1645 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-2973 (((-1292) $ (-783) (-783)) 52)) (-1514 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-2143 (((-1178) $) NIL)) (-4147 (((-576) $) 48)) (-3887 (((-1139) $) NIL)) (-4121 (((-1287 (-3 (-480) "undefined")) $) 47)) (-3015 (((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2512 (-576)) (|:| -2074 (-576)) (|:| |spline| (-576)) (|:| -3512 (-576)) (|:| |axesColor| (-886)) (|:| -2498 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $) 46)) (-2223 (((-1292) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576)) 83)) (-3978 (((-656 (-960 (-227))) $) NIL)) (-1590 (((-480) $ (-938)) 43)) (-4054 (((-1292) $ (-783) (-783) (-938) (-938)) 50)) (-3416 (((-1292) $ (-1178)) 95)) (-2074 (((-1292) $ (-938) (-1178)) 91)) (-2858 (((-874) $) 102)) (-2463 (((-1292) $) 96)) (-2690 (((-112) $ $) NIL)) (-3512 (((-1292) $ (-938) (-1178)) 87) (((-1292) $ (-938) (-886)) 88)) (-3889 (((-112) $ $) NIL)))
+(((-1288) (-13 (-1119) (-10 -8 (-15 -3978 ((-656 (-960 (-227))) $)) (-15 -2912 ($)) (-15 -1514 ($ $)) (-15 -1645 ((-656 (-270)) $)) (-15 -1645 ($ $ (-656 (-270)))) (-15 -1514 ($ (-480) (-656 (-270)))) (-15 -2223 ((-1292) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -3015 ((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2512 (-576)) (|:| -2074 (-576)) (|:| |spline| (-576)) (|:| -3512 (-576)) (|:| |axesColor| (-886)) (|:| -2498 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -4121 ((-1287 (-3 (-480) "undefined")) $)) (-15 -2491 ((-1292) $ (-1178))) (-15 -2058 ((-1292) $ (-480) (-938))) (-15 -1590 ((-480) $ (-938))) (-15 -3512 ((-1292) $ (-938) (-1178))) (-15 -3512 ((-1292) $ (-938) (-886))) (-15 -2498 ((-1292) $ (-938) (-1178))) (-15 -2498 ((-1292) $ (-938) (-886))) (-15 -2512 ((-1292) $ (-938) (-1178))) (-15 -2889 ((-1292) $ (-938) (-1178))) (-15 -2074 ((-1292) $ (-938) (-1178))) (-15 -3416 ((-1292) $ (-1178))) (-15 -2463 ((-1292) $)) (-15 -4054 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -2687 ((-1292) $ (-938) (-390) (-390))) (-15 -3507 ((-1292) $ (-938) (-390) (-390))) (-15 -1441 ((-1292) $ (-938) (-1178))) (-15 -2973 ((-1292) $ (-783) (-783))) (-15 -2567 ((-1292) $ (-480) (-938))) (-15 -1774 ((-1292) $ (-938) (-938))) (-15 -3017 ((-1178) $ (-1178))) (-15 -3017 ((-1178) $ (-1178) (-1178))) (-15 -3017 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2991 ((-1292) $)) (-15 -4147 ((-576) $)) (-15 -2858 ((-874) $))))) (T -1288))
+((-2858 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1288)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-656 (-960 (-227)))) (-5 *1 (-1288)))) (-2912 (*1 *1) (-5 *1 (-1288))) (-1514 (*1 *1 *1) (-5 *1 (-1288))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-1514 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) (-2223 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-938)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2512 (-576)) (|:| -2074 (-576)) (|:| |spline| (-576)) (|:| -3512 (-576)) (|:| |axesColor| (-886)) (|:| -2498 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) (-5 *1 (-1288)))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1288)))) (-2491 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2058 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1590 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1288)))) (-3512 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3512 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2498 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2498 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2512 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2074 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) (-4054 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2687 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3507 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1441 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2973 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2567 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1774 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3017 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) (-3017 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) (-3017 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288)))))
+(-13 (-1119) (-10 -8 (-15 -3978 ((-656 (-960 (-227))) $)) (-15 -2912 ($)) (-15 -1514 ($ $)) (-15 -1645 ((-656 (-270)) $)) (-15 -1645 ($ $ (-656 (-270)))) (-15 -1514 ($ (-480) (-656 (-270)))) (-15 -2223 ((-1292) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -3015 ((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2512 (-576)) (|:| -2074 (-576)) (|:| |spline| (-576)) (|:| -3512 (-576)) (|:| |axesColor| (-886)) (|:| -2498 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -4121 ((-1287 (-3 (-480) "undefined")) $)) (-15 -2491 ((-1292) $ (-1178))) (-15 -2058 ((-1292) $ (-480) (-938))) (-15 -1590 ((-480) $ (-938))) (-15 -3512 ((-1292) $ (-938) (-1178))) (-15 -3512 ((-1292) $ (-938) (-886))) (-15 -2498 ((-1292) $ (-938) (-1178))) (-15 -2498 ((-1292) $ (-938) (-886))) (-15 -2512 ((-1292) $ (-938) (-1178))) (-15 -2889 ((-1292) $ (-938) (-1178))) (-15 -2074 ((-1292) $ (-938) (-1178))) (-15 -3416 ((-1292) $ (-1178))) (-15 -2463 ((-1292) $)) (-15 -4054 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -2687 ((-1292) $ (-938) (-390) (-390))) (-15 -3507 ((-1292) $ (-938) (-390) (-390))) (-15 -1441 ((-1292) $ (-938) (-1178))) (-15 -2973 ((-1292) $ (-783) (-783))) (-15 -2567 ((-1292) $ (-480) (-938))) (-15 -1774 ((-1292) $ (-938) (-938))) (-15 -3017 ((-1178) $ (-1178))) (-15 -3017 ((-1178) $ (-1178) (-1178))) (-15 -3017 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2991 ((-1292) $)) (-15 -4147 ((-576) $)) (-15 -2858 ((-874) $))))
+((-2835 (((-112) $ $) NIL)) (-2227 (((-1292) $ (-390)) 169) (((-1292) $ (-390) (-390) (-390)) 170)) (-3017 (((-1178) $ (-1178)) 179) (((-1178) $ (-1178) (-1178)) 177) (((-1178) $ (-1178) (-656 (-1178))) 176)) (-2172 (($) 67)) (-1623 (((-1292) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1292) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1292) $ (-390) (-390)) 145) (((-1292) $ (-390) (-390) (-390)) 152)) (-4154 (((-390)) 122) (((-390) (-390)) 123)) (-3053 (((-390)) 117) (((-390) (-390)) 119)) (-4421 (((-390)) 120) (((-390) (-390)) 121)) (-2643 (((-390)) 126) (((-390) (-390)) 127)) (-2782 (((-390)) 124) (((-390) (-390)) 125)) (-3507 (((-1292) $ (-390) (-390)) 171)) (-2491 (((-1292) $ (-1178)) 153)) (-2455 (((-1152 (-227)) $) 68) (($ $ (-1152 (-227))) 69)) (-3730 (((-1292) $ (-1178)) 187)) (-1804 (((-1292) $ (-1178)) 188)) (-2296 (((-1292) $ (-390) (-390)) 151) (((-1292) $ (-576) (-576)) 168)) (-1774 (((-1292) $ (-938) (-938)) 160)) (-2991 (((-1292) $) 137)) (-1699 (((-1292) $ (-1178)) 186)) (-3836 (((-1292) $ (-1178)) 134)) (-1645 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-2973 (((-1292) $ (-783) (-783)) 159)) (-3050 (((-1292) $ (-783) (-960 (-227))) 193)) (-2081 (($ $) 73) (($ (-1152 (-227)) (-1178)) 74) (($ (-1152 (-227)) (-656 (-270))) 75)) (-2201 (((-1292) $ (-390) (-390) (-390)) 131)) (-2143 (((-1178) $) NIL)) (-4147 (((-576) $) 128)) (-1897 (((-1292) $ (-390)) 174)) (-4109 (((-1292) $ (-390)) 191)) (-3887 (((-1139) $) NIL)) (-4274 (((-1292) $ (-390)) 190)) (-3600 (((-1292) $ (-1178)) 136)) (-4054 (((-1292) $ (-783) (-783) (-938) (-938)) 158)) (-2000 (((-1292) $ (-1178)) 133)) (-3416 (((-1292) $ (-1178)) 135)) (-3259 (((-1292) $ (-158) (-158)) 157)) (-2858 (((-874) $) 166)) (-2463 (((-1292) $) 138)) (-4353 (((-1292) $ (-1178)) 189)) (-2690 (((-112) $ $) NIL)) (-3512 (((-1292) $ (-1178)) 132)) (-3889 (((-112) $ $) NIL)))
+(((-1289) (-13 (-1119) (-10 -8 (-15 -3053 ((-390))) (-15 -3053 ((-390) (-390))) (-15 -4421 ((-390))) (-15 -4421 ((-390) (-390))) (-15 -4154 ((-390))) (-15 -4154 ((-390) (-390))) (-15 -2782 ((-390))) (-15 -2782 ((-390) (-390))) (-15 -2643 ((-390))) (-15 -2643 ((-390) (-390))) (-15 -2172 ($)) (-15 -2081 ($ $)) (-15 -2081 ($ (-1152 (-227)) (-1178))) (-15 -2081 ($ (-1152 (-227)) (-656 (-270)))) (-15 -2455 ((-1152 (-227)) $)) (-15 -2455 ($ $ (-1152 (-227)))) (-15 -3050 ((-1292) $ (-783) (-960 (-227)))) (-15 -1645 ((-656 (-270)) $)) (-15 -1645 ($ $ (-656 (-270)))) (-15 -2973 ((-1292) $ (-783) (-783))) (-15 -1774 ((-1292) $ (-938) (-938))) (-15 -2491 ((-1292) $ (-1178))) (-15 -4054 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -1623 ((-1292) $ (-390) (-390) (-390) (-390) (-390))) (-15 -1623 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1623 ((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1623 ((-1292) $ (-576) (-576) (-390) (-390) (-390))) (-15 -1623 ((-1292) $ (-390) (-390))) (-15 -1623 ((-1292) $ (-390) (-390) (-390))) (-15 -3416 ((-1292) $ (-1178))) (-15 -3512 ((-1292) $ (-1178))) (-15 -2000 ((-1292) $ (-1178))) (-15 -3836 ((-1292) $ (-1178))) (-15 -3600 ((-1292) $ (-1178))) (-15 -2296 ((-1292) $ (-390) (-390))) (-15 -2296 ((-1292) $ (-576) (-576))) (-15 -2227 ((-1292) $ (-390))) (-15 -2227 ((-1292) $ (-390) (-390) (-390))) (-15 -3507 ((-1292) $ (-390) (-390))) (-15 -1699 ((-1292) $ (-1178))) (-15 -4274 ((-1292) $ (-390))) (-15 -4109 ((-1292) $ (-390))) (-15 -3730 ((-1292) $ (-1178))) (-15 -1804 ((-1292) $ (-1178))) (-15 -4353 ((-1292) $ (-1178))) (-15 -2201 ((-1292) $ (-390) (-390) (-390))) (-15 -1897 ((-1292) $ (-390))) (-15 -2991 ((-1292) $)) (-15 -3259 ((-1292) $ (-158) (-158))) (-15 -3017 ((-1178) $ (-1178))) (-15 -3017 ((-1178) $ (-1178) (-1178))) (-15 -3017 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2463 ((-1292) $)) (-15 -4147 ((-576) $))))) (T -1289))
+((-3053 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4421 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4421 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4154 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2782 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2643 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2172 (*1 *1) (-5 *1 (-1289))) (-2081 (*1 *1 *1) (-5 *1 (-1289))) (-2081 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1178)) (-5 *1 (-1289)))) (-2081 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289)))) (-2455 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289)))) (-3050 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-2973 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1774 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2491 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4054 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1623 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1289)))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1623 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1623 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2000 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3836 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2296 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2296 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2227 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2227 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3507 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4274 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3730 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1804 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4353 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2201 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1897 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3259 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3017 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-3017 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-3017 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289)))))
+(-13 (-1119) (-10 -8 (-15 -3053 ((-390))) (-15 -3053 ((-390) (-390))) (-15 -4421 ((-390))) (-15 -4421 ((-390) (-390))) (-15 -4154 ((-390))) (-15 -4154 ((-390) (-390))) (-15 -2782 ((-390))) (-15 -2782 ((-390) (-390))) (-15 -2643 ((-390))) (-15 -2643 ((-390) (-390))) (-15 -2172 ($)) (-15 -2081 ($ $)) (-15 -2081 ($ (-1152 (-227)) (-1178))) (-15 -2081 ($ (-1152 (-227)) (-656 (-270)))) (-15 -2455 ((-1152 (-227)) $)) (-15 -2455 ($ $ (-1152 (-227)))) (-15 -3050 ((-1292) $ (-783) (-960 (-227)))) (-15 -1645 ((-656 (-270)) $)) (-15 -1645 ($ $ (-656 (-270)))) (-15 -2973 ((-1292) $ (-783) (-783))) (-15 -1774 ((-1292) $ (-938) (-938))) (-15 -2491 ((-1292) $ (-1178))) (-15 -4054 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -1623 ((-1292) $ (-390) (-390) (-390) (-390) (-390))) (-15 -1623 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1623 ((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1623 ((-1292) $ (-576) (-576) (-390) (-390) (-390))) (-15 -1623 ((-1292) $ (-390) (-390))) (-15 -1623 ((-1292) $ (-390) (-390) (-390))) (-15 -3416 ((-1292) $ (-1178))) (-15 -3512 ((-1292) $ (-1178))) (-15 -2000 ((-1292) $ (-1178))) (-15 -3836 ((-1292) $ (-1178))) (-15 -3600 ((-1292) $ (-1178))) (-15 -2296 ((-1292) $ (-390) (-390))) (-15 -2296 ((-1292) $ (-576) (-576))) (-15 -2227 ((-1292) $ (-390))) (-15 -2227 ((-1292) $ (-390) (-390) (-390))) (-15 -3507 ((-1292) $ (-390) (-390))) (-15 -1699 ((-1292) $ (-1178))) (-15 -4274 ((-1292) $ (-390))) (-15 -4109 ((-1292) $ (-390))) (-15 -3730 ((-1292) $ (-1178))) (-15 -1804 ((-1292) $ (-1178))) (-15 -4353 ((-1292) $ (-1178))) (-15 -2201 ((-1292) $ (-390) (-390) (-390))) (-15 -1897 ((-1292) $ (-390))) (-15 -2991 ((-1292) $)) (-15 -3259 ((-1292) $ (-158) (-158))) (-15 -3017 ((-1178) $ (-1178))) (-15 -3017 ((-1178) $ (-1178) (-1178))) (-15 -3017 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2463 ((-1292) $)) (-15 -4147 ((-576) $))))
+((-2205 (((-656 (-1178)) (-656 (-1178))) 104) (((-656 (-1178))) 96)) (-1415 (((-656 (-1178))) 94)) (-2757 (((-656 (-938)) (-656 (-938))) 69) (((-656 (-938))) 64)) (-1678 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-4236 (((-1292)) 71)) (-2542 (((-938) (-938)) 87) (((-938)) 86)) (-1701 (((-938) (-938)) 85) (((-938)) 84)) (-1520 (((-886) (-886)) 81) (((-886)) 80)) (-2251 (((-227)) 91) (((-227) (-390)) 93)) (-4019 (((-938)) 88) (((-938) (-938)) 89)) (-3464 (((-938) (-938)) 83) (((-938)) 82)) (-4202 (((-886) (-886)) 75) (((-886)) 73)) (-3894 (((-886) (-886)) 77) (((-886)) 76)) (-1717 (((-886) (-886)) 79) (((-886)) 78)))
+(((-1290) (-10 -7 (-15 -4202 ((-886))) (-15 -4202 ((-886) (-886))) (-15 -3894 ((-886))) (-15 -3894 ((-886) (-886))) (-15 -1717 ((-886))) (-15 -1717 ((-886) (-886))) (-15 -1520 ((-886))) (-15 -1520 ((-886) (-886))) (-15 -3464 ((-938))) (-15 -3464 ((-938) (-938))) (-15 -1678 ((-656 (-783)))) (-15 -1678 ((-656 (-783)) (-656 (-783)))) (-15 -2757 ((-656 (-938)))) (-15 -2757 ((-656 (-938)) (-656 (-938)))) (-15 -4236 ((-1292))) (-15 -2205 ((-656 (-1178)))) (-15 -2205 ((-656 (-1178)) (-656 (-1178)))) (-15 -1415 ((-656 (-1178)))) (-15 -1701 ((-938))) (-15 -2542 ((-938))) (-15 -1701 ((-938) (-938))) (-15 -2542 ((-938) (-938))) (-15 -4019 ((-938) (-938))) (-15 -4019 ((-938))) (-15 -2251 ((-227) (-390))) (-15 -2251 ((-227))))) (T -1290))
+((-2251 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1290)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1290)))) (-4019 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-2542 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-1701 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-1415 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-2205 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-4236 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1290)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290)))) (-2757 (*1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) (-1678 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-3464 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-1520 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-1717 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-3894 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-4202 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-4202 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))))
+(-10 -7 (-15 -4202 ((-886))) (-15 -4202 ((-886) (-886))) (-15 -3894 ((-886))) (-15 -3894 ((-886) (-886))) (-15 -1717 ((-886))) (-15 -1717 ((-886) (-886))) (-15 -1520 ((-886))) (-15 -1520 ((-886) (-886))) (-15 -3464 ((-938))) (-15 -3464 ((-938) (-938))) (-15 -1678 ((-656 (-783)))) (-15 -1678 ((-656 (-783)) (-656 (-783)))) (-15 -2757 ((-656 (-938)))) (-15 -2757 ((-656 (-938)) (-656 (-938)))) (-15 -4236 ((-1292))) (-15 -2205 ((-656 (-1178)))) (-15 -2205 ((-656 (-1178)) (-656 (-1178)))) (-15 -1415 ((-656 (-1178)))) (-15 -1701 ((-938))) (-15 -2542 ((-938))) (-15 -1701 ((-938) (-938))) (-15 -2542 ((-938) (-938))) (-15 -4019 ((-938) (-938))) (-15 -4019 ((-938))) (-15 -2251 ((-227) (-390))) (-15 -2251 ((-227))))
+((-1796 (((-480) (-656 (-656 (-960 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-960 (-227))))) 21) (((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270))) 20)) (-3582 (((-1288) (-656 (-656 (-960 (-227)))) (-656 (-270))) 30) (((-1288) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270))) 29)) (-2858 (((-1288) (-480)) 46)))
+(((-1291) (-10 -7 (-15 -1796 ((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -1796 ((-480) (-656 (-656 (-960 (-227)))))) (-15 -1796 ((-480) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -3582 ((-1288) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -3582 ((-1288) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -2858 ((-1288) (-480))))) (T -1291))
+((-2858 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-3582 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-480)) (-5 *1 (-1291)))) (-1796 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291)))))
+(-10 -7 (-15 -1796 ((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -1796 ((-480) (-656 (-656 (-960 (-227)))))) (-15 -1796 ((-480) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -3582 ((-1288) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -3582 ((-1288) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -2858 ((-1288) (-480))))
+((-2035 (($) 6)) (-2858 (((-874) $) 9)))
+(((-1292) (-13 (-625 (-874)) (-10 -8 (-15 -2035 ($))))) (T -1292))
+((-2035 (*1 *1) (-5 *1 (-1292))))
+(-13 (-625 (-874)) (-10 -8 (-15 -2035 ($))))
+((-4013 (($ $ |#2|) 10)))
+(((-1293 |#1| |#2|) (-10 -8 (-15 -4013 (|#1| |#1| |#2|))) (-1294 |#2|) (-374)) (T -1293))
+NIL
+(-10 -8 (-15 -4013 (|#1| |#1| |#2|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4340 (((-135)) 33)) (-2858 (((-874) $) 12)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-3889 (((-112) $ $) 6)) (-4013 (($ $ |#1|) 34)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1294 |#1|) (-141) (-374)) (T -1294))
+((-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-374)))) (-4340 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-374)) (-5 *2 (-135)))))
+(-13 (-729 |t#1|) (-10 -8 (-15 -4013 ($ $ |t#1|)) (-15 -4340 ((-135)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T))
+((-2931 (((-656 (-1231 |#1|)) (-1196) (-1231 |#1|)) 83)) (-4222 (((-1176 (-1176 (-969 |#1|))) (-1196) (-1176 (-969 |#1|))) 63)) (-3480 (((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-783) (-1231 |#1|) (-1176 (-1231 |#1|))) 74)) (-3937 (((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783)) 65)) (-3783 (((-1 (-1192 (-969 |#1|)) (-969 |#1|)) (-1196)) 32)) (-2206 (((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783)) 64)))
+(((-1295 |#1|) (-10 -7 (-15 -3937 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -2206 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -4222 ((-1176 (-1176 (-969 |#1|))) (-1196) (-1176 (-969 |#1|)))) (-15 -3783 ((-1 (-1192 (-969 |#1|)) (-969 |#1|)) (-1196))) (-15 -2931 ((-656 (-1231 |#1|)) (-1196) (-1231 |#1|))) (-15 -3480 ((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-783) (-1231 |#1|) (-1176 (-1231 |#1|))))) (-374)) (T -1295))
+((-3480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1231 *6)) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1295 *6)) (-5 *5 (-1176 *4)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-656 (-1231 *5))) (-5 *1 (-1295 *5)) (-5 *4 (-1231 *5)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1192 (-969 *4)) (-969 *4))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-1176 (-1176 (-969 *5)))) (-5 *1 (-1295 *5)) (-5 *4 (-1176 (-969 *5))))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))))
+(-10 -7 (-15 -3937 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -2206 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -4222 ((-1176 (-1176 (-969 |#1|))) (-1196) (-1176 (-969 |#1|)))) (-15 -3783 ((-1 (-1192 (-969 |#1|)) (-969 |#1|)) (-1196))) (-15 -2931 ((-656 (-1231 |#1|)) (-1196) (-1231 |#1|))) (-15 -3480 ((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-783) (-1231 |#1|) (-1176 (-1231 |#1|)))))
+((-2784 (((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-1666 (((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79)))
+(((-1296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1666 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2784 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1263 |#1|) (-1263 |#2|) (-421 |#2| |#3|)) (T -1296))
+((-2784 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-1666 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -4261 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5)))))
+(-10 -7 (-15 -1666 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2784 ((-2 (|:| -4261 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)))
+((-2835 (((-112) $ $) NIL)) (-3239 (((-1154) $) 11)) (-3241 (((-1154) $) 9)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1297) (-13 (-1102) (-10 -8 (-15 -3241 ((-1154) $)) (-15 -3239 ((-1154) $))))) (T -1297))
+((-3241 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297)))))
+(-13 (-1102) (-10 -8 (-15 -3241 ((-1154) $)) (-15 -3239 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3662 (((-1154) $) 9)) (-2858 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) NIL)))
+(((-1298) (-13 (-1102) (-10 -8 (-15 -3662 ((-1154) $))))) (T -1298))
+((-3662 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1298)))))
+(-13 (-1102) (-10 -8 (-15 -3662 ((-1154) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 58)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) NIL)) (-1838 (((-112) $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2981 (((-783)) NIL T CONST)) (-3320 (((-1292) (-783)) 16)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 37 T CONST)) (-2038 (($) 84 T CONST)) (-3889 (((-112) $ $) 87)) (-4013 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4002 (($ $) 89) (($ $ $) NIL)) (-3990 (($ $ $) 63)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174)))))
+(((-1299 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3320 ((-1292) (-783))))) (-1068) (-862) (-805) (-966 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1299))
+((-4013 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-966 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1292)) (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-966 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3))))
+(-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4013 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3320 ((-1292) (-783)))))
+((-2835 (((-112) $ $) NIL)) (-1417 (((-656 (-2 (|:| -2463 $) (|:| -2952 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1952 (((-656 $) (-656 |#4|)) 96)) (-1634 (((-656 |#3|) $) NIL)) (-4001 (((-112) $) NIL)) (-3169 (((-112) $) NIL (|has| |#1| (-568)))) (-4295 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1778 ((|#4| |#4| $) NIL)) (-2059 (((-2 (|:| |under| $) (|:| -3807 $) (|:| |upper| $)) $ |#3|) NIL)) (-2746 (((-112) $ (-783)) NIL)) (-3959 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2574 (($) NIL T CONST)) (-1516 (((-112) $) NIL (|has| |#1| (-568)))) (-2097 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3593 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3695 (((-112) $) NIL (|has| |#1| (-568)))) (-2457 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3390 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-1832 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2454 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4397 (($ (-656 |#4|)) NIL)) (-2003 (((-3 $ "failed") $) 78)) (-2040 ((|#4| |#4| $) 83)) (-3229 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3607 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2307 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3527 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3586 ((|#4| |#4| $) NIL)) (-2326 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4145 (((-2 (|:| -2463 (-656 |#4|)) (|:| -2952 (-656 |#4|))) $) NIL)) (-3975 (((-656 |#4|) $) NIL (|has| $ (-6 -4462)))) (-2914 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4402 ((|#3| $) 84)) (-3639 (((-112) $ (-783)) NIL)) (-3531 (((-656 |#4|) $) 32 (|has| $ (-6 -4462)))) (-3606 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3651 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-2822 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4463)))) (-2548 (($ (-1 |#4| |#4|) $) NIL)) (-2804 (((-656 |#3|) $) NIL)) (-2872 (((-112) |#3| $) NIL)) (-1684 (((-112) $ (-783)) NIL)) (-2143 (((-1178) $) NIL)) (-3627 (((-3 |#4| "failed") $) NIL)) (-3025 (((-656 |#4|) $) 54)) (-2671 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2978 ((|#4| |#4| $) 82)) (-1700 (((-112) $ $) 93)) (-3731 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1690 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3350 ((|#4| |#4| $) NIL)) (-3887 (((-1139) $) NIL)) (-1989 (((-3 |#4| "failed") $) 77)) (-3557 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2451 (((-3 $ "failed") $ |#4|) NIL)) (-3262 (($ $ |#4|) NIL)) (-1910 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3022 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1974 (((-112) $ $) NIL)) (-3001 (((-112) $) 75)) (-3849 (($) 46)) (-4436 (((-783) $) NIL)) (-3902 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3052 (($ $) NIL)) (-2610 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-2869 (($ (-656 |#4|)) NIL)) (-4426 (($ $ |#3|) NIL)) (-4127 (($ $ |#3|) NIL)) (-2693 (($ $) NIL)) (-3668 (($ $ |#3|) NIL)) (-2858 (((-874) $) NIL) (((-656 |#4|) $) 63)) (-3506 (((-783) $) NIL (|has| |#3| (-379)))) (-1761 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-2653 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-2690 (((-112) $ $) NIL)) (-2105 (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2039 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3374 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2714 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1914 (((-656 |#3|) $) NIL)) (-2576 (((-112) |#3| $) NIL)) (-3889 (((-112) $ $) NIL)) (-2845 (((-783) $) NIL (|has| $ (-6 -4462)))))
+(((-1300 |#1| |#2| |#3| |#4|) (-13 (-1230 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3651 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3651 ((-3 $ "failed") (-656 |#4|))) (-15 -1761 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1761 ((-3 $ "failed") (-656 |#4|))) (-15 -2653 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2653 ((-656 $) (-656 |#4|))))) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1300))
+((-3651 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-3651 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-1761 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-1761 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-2653 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1300 *6 *7 *8 *9))) (-5 *1 (-1300 *6 *7 *8 *9)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1300 *4 *5 *6 *7))) (-5 *1 (-1300 *4 *5 *6 *7)))))
+(-13 (-1230 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3651 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3651 ((-3 $ "failed") (-656 |#4|))) (-15 -1761 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1761 ((-3 $ "failed") (-656 |#4|))) (-15 -2653 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2653 ((-656 $) (-656 |#4|)))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3161 (((-3 $ "failed") $ $) 20)) (-2574 (($) 18 T CONST)) (-4011 (((-3 $ "failed") $) 37)) (-1838 (((-112) $) 35)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1301 |#1|) (-141) (-1068)) (T -1301))
+NIL
+(-13 (-1068) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T))
+((-2835 (((-112) $ $) 67)) (-3203 (((-112) $) NIL)) (-3463 (((-656 |#1|) $) 52)) (-2067 (($ $ (-783)) 46)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2699 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-2574 (($) NIL T CONST)) (-3478 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-2454 (((-3 (-831 |#1|) "failed") $) NIL)) (-4397 (((-831 |#1|) $) NIL)) (-4404 (($ $) 39)) (-4011 (((-3 $ "failed") $) NIL)) (-1386 (((-112) $) NIL)) (-3369 (($ $) NIL)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-3667 (($ (-831 |#1|) |#2|) 38)) (-1419 (($ $) 40)) (-2739 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-2372 (((-831 |#1|) $) NIL)) (-3677 (((-831 |#1|) $) 41)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1504 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-1652 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4366 (((-831 |#1|) $) 35)) (-4379 ((|#2| $) 37)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-4436 (((-783) $) 43)) (-2565 (((-112) $) 47)) (-3712 ((|#2| $) NIL)) (-2858 (((-874) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-831 |#1|)) NIL)) (-1788 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 13 T CONST)) (-2038 (($) 19 T CONST)) (-1754 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3889 (((-112) $ $) 44)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1302 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1308 |#1| |#2|)) (-862) (-1068)) (T -1302))
+NIL
+(-13 (-393 |#2| (-831 |#1|)) (-1308 |#1| |#2|))
+((-3437 ((|#3| |#3| (-783)) 28)) (-2656 ((|#3| |#3| (-783)) 34)) (-3963 ((|#3| |#3| |#3| (-783)) 35)))
+(((-1303 |#1| |#2| |#3|) (-10 -7 (-15 -2656 (|#3| |#3| (-783))) (-15 -3437 (|#3| |#3| (-783))) (-15 -3963 (|#3| |#3| |#3| (-783)))) (-13 (-1068) (-729 (-419 (-576)))) (-862) (-1308 |#2| |#1|)) (T -1303))
+((-3963 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) (-2656 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))))
+(-10 -7 (-15 -2656 (|#3| |#3| (-783))) (-15 -3437 (|#3| |#3| (-783))) (-15 -3963 (|#3| |#3| |#3| (-783))))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3463 (((-656 |#1|) $) 47)) (-3161 (((-3 $ "failed") $ $) 20)) (-2699 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-2574 (($) 18 T CONST)) (-3478 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2454 (((-3 (-831 |#1|) "failed") $) 71)) (-4397 (((-831 |#1|) $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-1386 (((-112) $) 52)) (-3369 (($ $) 51)) (-1838 (((-112) $) 35)) (-1711 (((-112) $) 57)) (-3667 (($ (-831 |#1|) |#2|) 58)) (-1419 (($ $) 56)) (-2739 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-2372 (((-831 |#1|) $) 68)) (-2548 (($ (-1 |#2| |#2|) $) 48)) (-1504 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-2565 (((-112) $) 54)) (-3712 ((|#2| $) 53)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1788 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1304 |#1| |#2|) (-141) (-862) (-1068)) (T -1304))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-831 *3)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1304 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1068)))) (-1788 (*1 *2 *1 *1) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (-1504 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-1504 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3478 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3478 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-3478 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3667 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1304 *4 *3)) (-4 *3 (-1068)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-2858 (*1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-3369 (*1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-2699 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)) (-4 *3 (-174)))) (-2699 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-4 *4 (-174)))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-656 *3)))))
+(-13 (-1068) (-1301 |t#2|) (-1057 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2372 ((-831 |t#1|) $)) (-15 -2739 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1788 (|t#2| $ (-831 |t#1|))) (-15 -1788 (|t#2| $ $)) (-15 -1504 ($ $ |t#1|)) (-15 -1504 ($ $ (-831 |t#1|))) (-15 -1504 ($ $ $)) (-15 -3478 ($ $ |t#1|)) (-15 -3478 ($ $ (-831 |t#1|))) (-15 -3478 ($ $ $)) (-15 -3667 ($ (-831 |t#1|) |t#2|)) (-15 -1711 ((-112) $)) (-15 -1419 ($ $)) (-15 -2858 ($ |t#1|)) (-15 -2565 ((-112) $)) (-15 -3712 (|t#2| $)) (-15 -1386 ((-112) $)) (-15 -3369 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2699 ($ $ $)) (-15 -2699 ($ $ (-783)))) |%noBranch|) (-15 -2548 ($ (-1 |t#2| |t#2|) $)) (-15 -3463 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4455)) (-6 -4455) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1057 #0#) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1301 |#2|) . T))
+((-1819 (((-112) $) 15)) (-2576 (((-112) $) 14)) (-2086 (($ $) 19) (($ $ (-783)) 21)))
+(((-1305 |#1| |#2|) (-10 -8 (-15 -2086 (|#1| |#1| (-783))) (-15 -2086 (|#1| |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -2576 ((-112) |#1|))) (-1306 |#2|) (-374)) (T -1305))
+NIL
+(-10 -8 (-15 -2086 (|#1| |#1| (-783))) (-15 -2086 (|#1| |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -2576 ((-112) |#1|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3149 (((-2 (|:| -2857 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2150 (($ $) 46)) (-2637 (((-112) $) 44)) (-1819 (((-112) $) 104)) (-4029 (((-783)) 100)) (-3161 (((-3 $ "failed") $ $) 20)) (-3179 (($ $) 81)) (-2464 (((-430 $) $) 80)) (-3417 (((-112) $ $) 65)) (-2574 (($) 18 T CONST)) (-2454 (((-3 |#1| "failed") $) 111)) (-4397 ((|#1| $) 112)) (-2780 (($ $ $) 61)) (-4011 (((-3 $ "failed") $) 37)) (-2790 (($ $ $) 62)) (-2064 (((-2 (|:| -1788 (-656 $)) (|:| -3633 $)) (-656 $)) 57)) (-2244 (($ $ (-783)) 97 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3011 (((-112) $) 79)) (-2620 (((-845 (-938)) $) 94 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1838 (((-112) $) 35)) (-3882 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3862 (($ $ $) 52) (($ (-656 $)) 51)) (-2143 (((-1178) $) 10)) (-4324 (($ $) 78)) (-2196 (((-112) $) 103)) (-3887 (((-1139) $) 11)) (-1919 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3901 (($ $ $) 54) (($ (-656 $)) 53)) (-2367 (((-430 $) $) 82)) (-1651 (((-845 (-938))) 101)) (-1749 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3633 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2825 (((-3 $ "failed") $ $) 48)) (-2297 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3076 (((-783) $) 64)) (-3684 (((-2 (|:| -2647 $) (|:| -2307 $)) $ $) 63)) (-3447 (((-3 (-783) "failed") $ $) 95 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4340 (((-135)) 109)) (-4436 (((-845 (-938)) $) 102)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3689 (((-3 $ "failed") $) 93 (-3739 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-3199 (((-112) $ $) 45)) (-2576 (((-112) $) 105)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-2086 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3889 (((-112) $ $) 6)) (-4013 (($ $ $) 73) (($ $ |#1|) 108)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1306 |#1|) (-141) (-374)) (T -1306))
+((-2576 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) (-1651 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) (-4029 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-2086 (*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-2086 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-4 *3 (-379)))))
+(-13 (-374) (-1057 |t#1|) (-1294 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -2576 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -2196 ((-112) $)) (-15 -4436 ((-845 (-938)) $)) (-15 -1651 ((-845 (-938)))) (-15 -4029 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -2086 ($ $)) (-15 -2086 ($ $ (-783)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3739 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -3739 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T) ((-1294 |#1|) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3463 (((-656 |#1|) $) 98)) (-2067 (($ $ (-783)) 102)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2699 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-2574 (($) NIL T CONST)) (-3478 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2454 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-906 |#1|) "failed") $) NIL)) (-4397 (((-831 |#1|) $) NIL) (((-906 |#1|) $) NIL)) (-4404 (($ $) 101)) (-4011 (((-3 $ "failed") $) NIL)) (-1386 (((-112) $) 90)) (-3369 (($ $) 93)) (-1904 (($ $ $ (-783)) 103)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-3667 (($ (-831 |#1|) |#2|) NIL) (($ (-906 |#1|) |#2|) 29)) (-1419 (($ $) 119)) (-2739 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2372 (((-831 |#1|) $) NIL)) (-3677 (((-831 |#1|) $) NIL)) (-2548 (($ (-1 |#2| |#2|) $) NIL)) (-1504 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3437 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-1652 (((-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4366 (((-906 |#1|) $) 83)) (-4379 ((|#2| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2656 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-4436 (((-783) $) 99)) (-2565 (((-112) $) 84)) (-3712 ((|#2| $) 88)) (-2858 (((-874) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-906 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1302 |#1| |#2|) $) 76) (((-1311 |#1| |#2|) $) 81)) (-2461 (((-656 |#2|) $) NIL)) (-4417 ((|#2| $ (-906 |#1|)) NIL)) (-1788 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 21 T CONST)) (-2038 (($) 28 T CONST)) (-1754 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2387 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-3889 (((-112) $ $) 77)) (-4002 (($ $) 111) (($ $ $) 110)) (-3990 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-906 |#1|)) NIL)))
+(((-1307 |#1| |#2|) (-13 (-1308 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -2858 ($ (-676 |#1| |#2|))) (-15 -2858 ((-1302 |#1| |#2|) $)) (-15 -2858 ((-1311 |#1| |#2|) $)) (-15 -2387 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -1904 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2656 ($ $ (-783))) (-15 -3437 ($ $ (-783)))) |%noBranch|))) (-862) (-174)) (T -1307))
+((-2858 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1307 *3 *4)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2387 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-1904 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2656 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))))
+(-13 (-1308 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -2858 ($ (-676 |#1| |#2|))) (-15 -2858 ((-1302 |#1| |#2|) $)) (-15 -2858 ((-1311 |#1| |#2|) $)) (-15 -2387 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -1904 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -2656 ($ $ (-783))) (-15 -3437 ($ $ (-783)))) |%noBranch|)))
+((-2835 (((-112) $ $) 7)) (-3203 (((-112) $) 17)) (-3463 (((-656 |#1|) $) 47)) (-2067 (($ $ (-783)) 80)) (-3161 (((-3 $ "failed") $ $) 20)) (-2699 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-2574 (($) 18 T CONST)) (-3478 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2454 (((-3 (-831 |#1|) "failed") $) 71)) (-4397 (((-831 |#1|) $) 72)) (-4011 (((-3 $ "failed") $) 37)) (-1386 (((-112) $) 52)) (-3369 (($ $) 51)) (-1838 (((-112) $) 35)) (-1711 (((-112) $) 57)) (-3667 (($ (-831 |#1|) |#2|) 58)) (-1419 (($ $) 56)) (-2739 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-2372 (((-831 |#1|) $) 68)) (-3677 (((-831 |#1|) $) 82)) (-2548 (($ (-1 |#2| |#2|) $) 48)) (-1504 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-2143 (((-1178) $) 10)) (-3887 (((-1139) $) 11)) (-4436 (((-783) $) 81)) (-2565 (((-112) $) 54)) (-3712 ((|#2| $) 53)) (-2858 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1788 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-2981 (((-783)) 32 T CONST)) (-2690 (((-112) $ $) 9)) (-2022 (($) 19 T CONST)) (-2038 (($) 34 T CONST)) (-3889 (((-112) $ $) 6)) (-4002 (($ $) 23) (($ $ $) 22)) (-3990 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1308 |#1| |#2|) (-141) (-862) (-1068)) (T -1308))
+((-3677 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-831 *3)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-783)))) (-2067 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))))
+(-13 (-1304 |t#1| |t#2|) (-10 -8 (-15 -3677 ((-831 |t#1|) $)) (-15 -4436 ((-783) $)) (-15 -2067 ($ $ (-783)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1057 #0#) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1301 |#2|) . T) ((-1304 |#1| |#2|) . T))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3463 (((-656 (-1196)) $) NIL)) (-4063 (($ (-1302 (-1196) |#1|)) NIL)) (-2067 (($ $ (-783)) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2699 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-2574 (($) NIL T CONST)) (-3478 (($ $ (-1196)) NIL) (($ $ (-831 (-1196))) NIL) (($ $ $) NIL)) (-2454 (((-3 (-831 (-1196)) "failed") $) NIL)) (-4397 (((-831 (-1196)) $) NIL)) (-4011 (((-3 $ "failed") $) NIL)) (-1386 (((-112) $) NIL)) (-3369 (($ $) NIL)) (-1838 (((-112) $) NIL)) (-1711 (((-112) $) NIL)) (-3667 (($ (-831 (-1196)) |#1|) NIL)) (-1419 (($ $) NIL)) (-2739 (((-2 (|:| |k| (-831 (-1196))) (|:| |c| |#1|)) $) NIL)) (-2372 (((-831 (-1196)) $) NIL)) (-3677 (((-831 (-1196)) $) NIL)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1504 (($ $ (-1196)) NIL) (($ $ (-831 (-1196))) NIL) (($ $ $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3918 (((-1302 (-1196) |#1|) $) NIL)) (-4436 (((-783) $) NIL)) (-2565 (((-112) $) NIL)) (-3712 ((|#1| $) NIL)) (-2858 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1196))) NIL) (($ (-1196)) NIL)) (-1788 ((|#1| $ (-831 (-1196))) NIL) ((|#1| $ $) NIL)) (-2981 (((-783)) NIL T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) NIL T CONST)) (-2641 (((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $) NIL)) (-2038 (($) NIL T CONST)) (-3889 (((-112) $ $) NIL)) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1196) $) NIL)))
+(((-1309 |#1|) (-13 (-1308 (-1196) |#1|) (-10 -8 (-15 -3918 ((-1302 (-1196) |#1|) $)) (-15 -4063 ($ (-1302 (-1196) |#1|))) (-15 -2641 ((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $)))) (-1068)) (T -1309))
+((-3918 (*1 *2 *1) (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1068)))) (-4063 (*1 *1 *2) (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1068)) (-5 *1 (-1309 *3)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1196)) (|:| |c| (-1309 *3))))) (-5 *1 (-1309 *3)) (-4 *3 (-1068)))))
+(-13 (-1308 (-1196) |#1|) (-10 -8 (-15 -3918 ((-1302 (-1196) |#1|) $)) (-15 -4063 ($ (-1302 (-1196) |#1|))) (-15 -2641 ((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $))))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) NIL)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2574 (($) NIL T CONST)) (-2454 (((-3 |#2| "failed") $) NIL)) (-4397 ((|#2| $) NIL)) (-4404 (($ $) NIL)) (-4011 (((-3 $ "failed") $) 42)) (-1386 (((-112) $) 35)) (-3369 (($ $) 37)) (-1838 (((-112) $) NIL)) (-1890 (((-783) $) NIL)) (-2936 (((-656 $) $) NIL)) (-1711 (((-112) $) NIL)) (-3667 (($ |#2| |#1|) NIL)) (-2372 ((|#2| $) 24)) (-3677 ((|#2| $) 22)) (-2548 (($ (-1 |#1| |#1|) $) NIL)) (-1652 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4366 ((|#2| $) NIL)) (-4379 ((|#1| $) NIL)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2565 (((-112) $) 32)) (-3712 ((|#1| $) 33)) (-2858 (((-874) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2461 (((-656 |#1|) $) NIL)) (-4417 ((|#1| $ |#2|) NIL)) (-1788 ((|#1| $ |#2|) 28)) (-2981 (((-783)) 14 T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 29 T CONST)) (-2038 (($) 11 T CONST)) (-1754 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3889 (((-112) $ $) 30)) (-4013 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-4002 (($ $) NIL) (($ $ $) NIL)) (-3990 (($ $ $) 50)) (** (($ $ (-938)) NIL) (($ $ (-783)) 52)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2845 (((-783) $) 16)))
+(((-1310 |#1| |#2|) (-13 (-1068) (-1301 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2845 ((-783) $)) (-15 -3677 (|#2| $)) (-15 -2372 (|#2| $)) (-15 -4404 ($ $)) (-15 -1788 (|#1| $ |#2|)) (-15 -2565 ((-112) $)) (-15 -3712 (|#1| $)) (-15 -1386 ((-112) $)) (-15 -3369 ($ $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4013 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) (-1068) (-858)) (T -1310))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-4404 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-2548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1310 *3 *4)) (-4 *4 (-858)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-3677 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))) (-2372 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))) (-1788 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-3712 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-3369 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-858)))))
+(-13 (-1068) (-1301 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2845 ((-783) $)) (-15 -3677 (|#2| $)) (-15 -2372 (|#2| $)) (-15 -4404 ($ $)) (-15 -1788 (|#1| $ |#2|)) (-15 -2565 ((-112) $)) (-15 -3712 (|#1| $)) (-15 -1386 ((-112) $)) (-15 -3369 ($ $)) (-15 -2548 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4013 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|)))
+((-2835 (((-112) $ $) 27)) (-3203 (((-112) $) NIL)) (-3463 (((-656 |#1|) $) 132)) (-4063 (($ (-1302 |#1| |#2|)) 50)) (-2067 (($ $ (-783)) 38)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2699 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-2574 (($) NIL T CONST)) (-3478 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-2454 (((-3 (-831 |#1|) "failed") $) NIL)) (-4397 (((-831 |#1|) $) NIL)) (-4011 (((-3 $ "failed") $) 122)) (-1386 (((-112) $) 117)) (-3369 (($ $) 118)) (-1838 (((-112) $) NIL)) (-1711 (((-112) $) NIL)) (-3667 (($ (-831 |#1|) |#2|) 20)) (-1419 (($ $) NIL)) (-2739 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2372 (((-831 |#1|) $) 123)) (-3677 (((-831 |#1|) $) 126)) (-2548 (($ (-1 |#2| |#2|) $) 131)) (-1504 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-3918 (((-1302 |#1| |#2|) $) 94)) (-4436 (((-783) $) 129)) (-2565 (((-112) $) 81)) (-3712 ((|#2| $) 32)) (-2858 (((-874) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1788 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-2981 (((-783)) 120 T CONST)) (-2690 (((-112) $ $) NIL)) (-2022 (($) 15 T CONST)) (-2641 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2038 (($) 33 T CONST)) (-3889 (((-112) $ $) 14)) (-4002 (($ $) 98) (($ $ $) 101)) (-3990 (($ $ $) 61)) (** (($ $ (-938)) NIL) (($ $ (-783)) 55)) (* (($ (-938) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1311 |#1| |#2|) (-13 (-1308 |#1| |#2|) (-10 -8 (-15 -3918 ((-1302 |#1| |#2|) $)) (-15 -4063 ($ (-1302 |#1| |#2|))) (-15 -2641 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1068)) (T -1311))
+((-3918 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-4063 (*1 *1 *2) (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *1 (-1311 *3 *4)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))))
+(-13 (-1308 |#1| |#2|) (-10 -8 (-15 -3918 ((-1302 |#1| |#2|) $)) (-15 -4063 ($ (-1302 |#1| |#2|))) (-15 -2641 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2835 (((-112) $ $) NIL)) (-4049 (($ (-656 (-938))) 10)) (-1893 (((-990) $) 12)) (-2143 (((-1178) $) NIL)) (-3887 (((-1139) $) NIL)) (-2858 (((-874) $) 25) (($ (-990)) 14) (((-990) $) 13)) (-2690 (((-112) $ $) NIL)) (-3889 (((-112) $ $) 17)))
+(((-1312) (-13 (-1119) (-502 (-990)) (-10 -8 (-15 -4049 ($ (-656 (-938)))) (-15 -1893 ((-990) $))))) (T -1312))
+((-4049 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1312)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1312)))))
+(-13 (-1119) (-502 (-990)) (-10 -8 (-15 -4049 ($ (-656 (-938)))) (-15 -1893 ((-990) $))))
+((-2282 (((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)) 16) (((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|))) 13)))
+(((-1313 |#1|) (-10 -7 (-15 -2282 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -2282 ((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)))) (-1237)) (T -1313))
+((-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1176 *5)) (-656 (-1176 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1176 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1237)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1313 *4)) (-4 *4 (-1237)))))
+(-10 -7 (-15 -2282 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -2282 ((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576))))
+((-3919 (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|))) 174) (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112)) 173) (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-1065 |#1| |#2|)) 156)) (-3994 (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|))) 85) (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112)) 84) (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112)) 83)) (-2464 (((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|)) 73)) (-1397 (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|))) 140) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112)) 139) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 132)) (-2177 (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|))) 145) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112)) 144) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 142)) (-2610 (((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) 111) (((-1192 (-1043 (-419 |#1|))) (-1192 |#1|)) 102) (((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|))) 109) (((-969 (-1043 (-419 |#1|))) (-969 |#1|)) 107) (((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|))) 33)))
+(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -3994 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3994 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112))) (-15 -3994 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-1065 |#1| |#2|))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2464 ((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -2610 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -2610 ((-969 (-1043 (-419 |#1|))) (-969 |#1|))) (-15 -2610 ((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -2610 ((-1192 (-1043 (-419 |#1|))) (-1192 |#1|))) (-15 -2610 ((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) (-13 (-860) (-317) (-148) (-1041)) (-656 (-1196)) (-656 (-1196))) (T -1314))
+((-2610 (*1 *2 *3) (-12 (-5 *3 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-1192 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196))) (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-2610 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-2177 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1397 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *4)) (|:| -3392 (-656 (-969 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-656 (-969 *4))) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3919 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3919 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-2 (|:| -3073 (-1192 *4)) (|:| -3392 (-656 (-969 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-3994 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-3994 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))))
+(-10 -7 (-15 -3994 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3994 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112))) (-15 -3994 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-1065 |#1| |#2|))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -3919 ((-656 (-2 (|:| -3073 (-1192 |#1|)) (|:| -3392 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -1397 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -2177 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2464 ((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -2610 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -2610 ((-969 (-1043 (-419 |#1|))) (-969 |#1|))) (-15 -2610 ((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -2610 ((-1192 (-1043 (-419 |#1|))) (-1192 |#1|))) (-15 -2610 ((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|))))))
+((-4356 (((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|) 21)) (-1425 (((-112) (-1287 |#1|)) 12)) (-3671 (((-3 (-1287 (-576)) "failed") (-1287 |#1|)) 16)))
+(((-1315 |#1|) (-10 -7 (-15 -1425 ((-112) (-1287 |#1|))) (-15 -3671 ((-3 (-1287 (-576)) "failed") (-1287 |#1|))) (-15 -4356 ((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|))) (-13 (-1068) (-651 (-576)))) (T -1315))
+((-4356 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-1287 (-419 (-576)))) (-5 *1 (-1315 *4)))) (-3671 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-1287 (-576))) (-5 *1 (-1315 *4)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1315 *4)))))
+(-10 -7 (-15 -1425 ((-112) (-1287 |#1|))) (-15 -3671 ((-3 (-1287 (-576)) "failed") (-1287 |#1|))) (-15 -4356 ((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|)))
+((-2835 (((-112) $ $) NIL)) (-3203 (((-112) $) 11)) (-3161 (((-3 $ "failed") $ $) NIL)) (-2422 (((-783)) 8)) (-2574 (($) NIL T CONST)) (-4011 (((-3 $ "failed") $) 58)) (-2107 (($) 49)) (-1838 (((-112) $) 57)) (-3397 (((-3 $ "failed") $) 40)) (-1654 (((-938) $) 15)) (-2143 (((-1178) $) NIL)) (-3448 (($) 32 T CONST)) (-4308 (($ (-938)) 50)) (-3887 (((-1139) $) NIL)) (-2610 (((-576) $) 13)) (-2858 (((-874) $) 27) (($ (-576)) 24)) (-2981 (((-783)) 9 T CONST)) (-2690 (((-112) $ $) 60)) (-2022 (($) 29 T CONST)) (-2038 (($) 31 T CONST)) (-3889 (((-112) $ $) 38)) (-4002 (($ $) 52) (($ $ $) 47)) (-3990 (($ $ $) 35)) (** (($ $ (-938)) NIL) (($ $ (-783)) 54)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43)))
+(((-1316 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1171)) (-938)) (T -1316))
+NIL
+(-13 (-174) (-379) (-626 (-576)) (-1171))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3251798 3251803 3251808 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3251783 3251788 3251793 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3251768 3251773 3251778 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3251753 3251758 3251763 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1316 3250896 3251628 3251705 "ZMOD" 3251710 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1315 3249950 3250114 3250337 "ZLINDEP" 3250728 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1314 3239250 3241018 3242990 "ZDSOLVE" 3248080 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1313 3238496 3238637 3238826 "YSTREAM" 3239096 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1312 3237924 3238170 3238283 "YDIAGRAM" 3238405 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1311 3235698 3237225 3237429 "XRPOLY" 3237767 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1310 3232251 3233569 3234144 "XPR" 3235170 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1309 3229972 3231582 3231786 "XPOLY" 3232082 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1308 3227625 3228993 3229048 "XPOLYC" 3229336 NIL XPOLYC (NIL T T) -9 NIL 3229449 NIL) (-1307 3224001 3226142 3226530 "XPBWPOLY" 3227283 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3219696 3221991 3222033 "XF" 3222654 NIL XF (NIL T) -9 NIL 3223054 NIL) (-1305 3219317 3219405 3219574 "XF-" 3219579 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1304 3214513 3215802 3215857 "XFALG" 3218029 NIL XFALG (NIL T T) -9 NIL 3218818 NIL) (-1303 3213646 3213750 3213955 "XEXPPKG" 3214405 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1302 3211755 3213496 3213592 "XDPOLY" 3213597 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1301 3210562 3211162 3211205 "XALG" 3211210 NIL XALG (NIL T) -9 NIL 3211321 NIL) (-1300 3204004 3208539 3209033 "WUTSET" 3210154 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1299 3202260 3203056 3203379 "WP" 3203815 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1298 3201862 3202082 3202152 "WHILEAST" 3202212 T WHILEAST (NIL) -8 NIL NIL NIL) (-1297 3201334 3201579 3201673 "WHEREAST" 3201790 T WHEREAST (NIL) -8 NIL NIL NIL) (-1296 3200220 3200418 3200713 "WFFINTBS" 3201131 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1295 3198124 3198551 3199013 "WEIER" 3199792 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1294 3197170 3197620 3197662 "VSPACE" 3197798 NIL VSPACE (NIL T) -9 NIL 3197872 NIL) (-1293 3197008 3197035 3197126 "VSPACE-" 3197131 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1292 3196817 3196859 3196927 "VOID" 3196962 T VOID (NIL) -8 NIL NIL NIL) (-1291 3194953 3195312 3195718 "VIEW" 3196433 T VIEW (NIL) -7 NIL NIL NIL) (-1290 3191377 3192016 3192753 "VIEWDEF" 3194238 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1289 3180681 3182925 3185098 "VIEW3D" 3189226 T VIEW3D (NIL) -8 NIL NIL NIL) (-1288 3172932 3174592 3176171 "VIEW2D" 3179124 T VIEW2D (NIL) -8 NIL NIL NIL) (-1287 3168285 3172702 3172794 "VECTOR" 3172875 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1286 3166862 3167121 3167439 "VECTOR2" 3168015 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1285 3160304 3164613 3164656 "VECTCAT" 3165651 NIL VECTCAT (NIL T) -9 NIL 3166238 NIL) (-1284 3159318 3159572 3159962 "VECTCAT-" 3159967 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1283 3158772 3158969 3159089 "VARIABLE" 3159233 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1282 3158705 3158710 3158740 "UTYPE" 3158745 T UTYPE (NIL) -9 NIL NIL NIL) (-1281 3157535 3157689 3157951 "UTSODETL" 3158531 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1280 3154975 3155435 3155959 "UTSODE" 3157076 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1279 3146923 3152736 3153216 "UTS" 3154553 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1278 3137487 3142857 3142900 "UTSCAT" 3144012 NIL UTSCAT (NIL T) -9 NIL 3144770 NIL) (-1277 3134835 3135557 3136546 "UTSCAT-" 3136551 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1276 3134462 3134505 3134638 "UTS2" 3134786 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1275 3128688 3131300 3131343 "URAGG" 3133413 NIL URAGG (NIL T) -9 NIL 3134136 NIL) (-1274 3125627 3126490 3127613 "URAGG-" 3127618 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1273 3121336 3124262 3124727 "UPXSSING" 3125291 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1272 3113512 3120718 3120982 "UPXS" 3121130 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1271 3106585 3113416 3113488 "UPXSCONS" 3113493 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1270 3095992 3102788 3102850 "UPXSCCA" 3103424 NIL UPXSCCA (NIL T T) -9 NIL 3103657 NIL) (-1269 3095630 3095715 3095889 "UPXSCCA-" 3095894 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1268 3084889 3091458 3091501 "UPXSCAT" 3092149 NIL UPXSCAT (NIL T) -9 NIL 3092758 NIL) (-1267 3084319 3084398 3084577 "UPXS2" 3084804 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1266 3082973 3083226 3083577 "UPSQFREE" 3084062 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1265 3076181 3079241 3079296 "UPSCAT" 3080376 NIL UPSCAT (NIL T T) -9 NIL 3081141 NIL) (-1264 3075385 3075592 3075919 "UPSCAT-" 3075924 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1263 3060654 3068512 3068555 "UPOLYC" 3070656 NIL UPOLYC (NIL T) -9 NIL 3071877 NIL) (-1262 3051982 3054408 3057555 "UPOLYC-" 3057560 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1261 3051609 3051652 3051785 "UPOLYC2" 3051933 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1260 3043331 3051292 3051421 "UP" 3051528 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1259 3042670 3042777 3042941 "UPMP" 3043220 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1258 3042223 3042304 3042443 "UPDIVP" 3042583 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1257 3040791 3041040 3041356 "UPDECOMP" 3041972 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1256 3040022 3040134 3040320 "UPCDEN" 3040675 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1255 3039541 3039610 3039759 "UP2" 3039947 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1254 3038008 3038745 3039022 "UNISEG" 3039299 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1253 3037223 3037350 3037555 "UNISEG2" 3037851 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1252 3036283 3036463 3036689 "UNIFACT" 3037039 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1251 3019322 3035595 3035837 "ULS" 3036099 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3007185 3019226 3019298 "ULSCONS" 3019303 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1249 2988248 3000373 3000435 "ULSCCAT" 3001073 NIL ULSCCAT (NIL T T) -9 NIL 3001362 NIL) (-1248 2987298 2987543 2987931 "ULSCCAT-" 2987936 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1247 2976362 2982845 2982888 "ULSCAT" 2983751 NIL ULSCAT (NIL T) -9 NIL 2984482 NIL) (-1246 2975792 2975871 2976050 "ULS2" 2976277 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1245 2974911 2975421 2975528 "UINT8" 2975639 T UINT8 (NIL) -8 NIL NIL 2975724) (-1244 2974029 2974539 2974646 "UINT64" 2974757 T UINT64 (NIL) -8 NIL NIL 2974842) (-1243 2973147 2973657 2973764 "UINT32" 2973875 T UINT32 (NIL) -8 NIL NIL 2973960) (-1242 2972265 2972775 2972882 "UINT16" 2972993 T UINT16 (NIL) -8 NIL NIL 2973078) (-1241 2970568 2971525 2971555 "UFD" 2971767 T UFD (NIL) -9 NIL 2971881 NIL) (-1240 2970362 2970408 2970503 "UFD-" 2970508 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1239 2969444 2969627 2969843 "UDVO" 2970168 T UDVO (NIL) -7 NIL NIL NIL) (-1238 2967260 2967669 2968140 "UDPO" 2969008 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1237 2967193 2967198 2967228 "TYPE" 2967233 T TYPE (NIL) -9 NIL NIL NIL) (-1236 2966953 2967148 2967179 "TYPEAST" 2967184 T TYPEAST (NIL) -8 NIL NIL NIL) (-1235 2965924 2966126 2966366 "TWOFACT" 2966747 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1234 2964947 2965333 2965568 "TUPLE" 2965724 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1233 2962638 2963157 2963696 "TUBETOOL" 2964430 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1232 2961487 2961692 2961933 "TUBE" 2962431 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1231 2956216 2960459 2960742 "TS" 2961239 NIL TS (NIL T) -8 NIL NIL NIL) (-1230 2944856 2948975 2949072 "TSETCAT" 2954341 NIL TSETCAT (NIL T T T T) -9 NIL 2955872 NIL) (-1229 2939588 2941188 2943079 "TSETCAT-" 2943084 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1228 2934227 2935074 2936003 "TRMANIP" 2938724 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1227 2933668 2933731 2933894 "TRIMAT" 2934159 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1226 2931534 2931771 2932128 "TRIGMNIP" 2933417 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1225 2931054 2931167 2931197 "TRIGCAT" 2931410 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1224 2930723 2930802 2930943 "TRIGCAT-" 2930948 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1223 2927568 2929581 2929862 "TREE" 2930477 NIL TREE (NIL T) -8 NIL NIL NIL) (-1222 2926842 2927370 2927400 "TRANFUN" 2927435 T TRANFUN (NIL) -9 NIL 2927501 NIL) (-1221 2926121 2926312 2926592 "TRANFUN-" 2926597 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1220 2925925 2925957 2926018 "TOPSP" 2926082 T TOPSP (NIL) -7 NIL NIL NIL) (-1219 2925273 2925388 2925542 "TOOLSIGN" 2925806 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1218 2923907 2924450 2924689 "TEXTFILE" 2925056 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1217 2921819 2922360 2922789 "TEX" 2923500 T TEX (NIL) -8 NIL NIL NIL) (-1216 2921600 2921631 2921703 "TEX1" 2921782 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1215 2921248 2921311 2921401 "TEMUTL" 2921532 T TEMUTL (NIL) -7 NIL NIL NIL) (-1214 2919402 2919682 2920007 "TBCMPPK" 2920971 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1213 2911179 2917562 2917618 "TBAGG" 2918018 NIL TBAGG (NIL T T) -9 NIL 2918229 NIL) (-1212 2906249 2907737 2909491 "TBAGG-" 2909496 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1211 2905633 2905740 2905885 "TANEXP" 2906138 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1210 2905144 2905408 2905498 "TALGOP" 2905578 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1209 2898534 2905001 2905094 "TABLE" 2905099 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1208 2897946 2898045 2898183 "TABLEAU" 2898431 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1207 2892554 2893774 2895022 "TABLBUMP" 2896732 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1206 2891776 2891923 2892104 "SYSTEM" 2892395 T SYSTEM (NIL) -8 NIL NIL NIL) (-1205 2888235 2888934 2889717 "SYSSOLP" 2891027 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1204 2888033 2888190 2888221 "SYSPTR" 2888226 T SYSPTR (NIL) -8 NIL NIL NIL) (-1203 2887069 2887574 2887693 "SYSNNI" 2887879 NIL SYSNNI (NIL NIL) -8 NIL NIL 2887964) (-1202 2886368 2886827 2886906 "SYSINT" 2886966 NIL SYSINT (NIL NIL) -8 NIL NIL 2887011) (-1201 2882700 2883646 2884356 "SYNTAX" 2885680 T SYNTAX (NIL) -8 NIL NIL NIL) (-1200 2879858 2880460 2881092 "SYMTAB" 2882090 T SYMTAB (NIL) -8 NIL NIL NIL) (-1199 2875107 2876009 2876992 "SYMS" 2878897 T SYMS (NIL) -8 NIL NIL NIL) (-1198 2872342 2874565 2874795 "SYMPOLY" 2874912 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1197 2871859 2871934 2872057 "SYMFUNC" 2872254 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1196 2867879 2869171 2869984 "SYMBOL" 2871068 T SYMBOL (NIL) -8 NIL NIL NIL) (-1195 2861418 2863107 2864827 "SWITCH" 2866181 T SWITCH (NIL) -8 NIL NIL NIL) (-1194 2854762 2860374 2860668 "SUTS" 2861182 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2846938 2854144 2854408 "SUPXS" 2854556 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2838608 2846556 2846682 "SUP" 2846847 NIL SUP (NIL T) -8 NIL NIL NIL) (-1191 2837767 2837894 2838111 "SUPFRACF" 2838476 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1190 2837388 2837447 2837560 "SUP2" 2837702 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1189 2835836 2836110 2836466 "SUMRF" 2837087 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1188 2835171 2835237 2835429 "SUMFS" 2835757 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1187 2818245 2834483 2834725 "SULS" 2834987 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2817847 2818067 2818137 "SUCHTAST" 2818197 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1185 2817142 2817372 2817512 "SUCH" 2817755 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1184 2811009 2812048 2813007 "SUBSPACE" 2816230 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1183 2810439 2810529 2810693 "SUBRESP" 2810897 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1182 2803807 2805104 2806415 "STTF" 2809175 NIL STTF (NIL T) -7 NIL NIL NIL) (-1181 2797980 2799100 2800247 "STTFNC" 2802707 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1180 2789293 2791162 2792956 "STTAYLOR" 2796221 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1179 2782423 2789157 2789240 "STRTBL" 2789245 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1178 2777787 2782378 2782409 "STRING" 2782414 T STRING (NIL) -8 NIL NIL NIL) (-1177 2772616 2777130 2777160 "STRICAT" 2777219 T STRICAT (NIL) -9 NIL 2777281 NIL) (-1176 2765369 2770235 2770846 "STREAM" 2772040 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1175 2764879 2764956 2765100 "STREAM3" 2765286 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1174 2763861 2764044 2764279 "STREAM2" 2764692 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1173 2763549 2763601 2763694 "STREAM1" 2763803 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1172 2762565 2762746 2762977 "STINPROD" 2763365 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1171 2762117 2762327 2762357 "STEP" 2762437 T STEP (NIL) -9 NIL 2762515 NIL) (-1170 2761304 2761606 2761754 "STEPAST" 2761991 T STEPAST (NIL) -8 NIL NIL NIL) (-1169 2754736 2761203 2761280 "STBL" 2761285 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1168 2749831 2753927 2753970 "STAGG" 2754123 NIL STAGG (NIL T) -9 NIL 2754212 NIL) (-1167 2747533 2748135 2749007 "STAGG-" 2749012 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1166 2745680 2747303 2747395 "STACK" 2747476 NIL STACK (NIL T) -8 NIL NIL NIL) (-1165 2738375 2743821 2744277 "SREGSET" 2745310 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1164 2730800 2732169 2733682 "SRDCMPK" 2736981 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1163 2723685 2728210 2728240 "SRAGG" 2729543 T SRAGG (NIL) -9 NIL 2730151 NIL) (-1162 2722702 2722957 2723336 "SRAGG-" 2723341 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1161 2717073 2721649 2722070 "SQMATRIX" 2722328 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1160 2710758 2713791 2714518 "SPLTREE" 2716418 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1159 2706721 2707414 2708060 "SPLNODE" 2710184 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1158 2705768 2706001 2706031 "SPFCAT" 2706475 T SPFCAT (NIL) -9 NIL NIL NIL) (-1157 2704505 2704715 2704979 "SPECOUT" 2705526 T SPECOUT (NIL) -7 NIL NIL NIL) (-1156 2695615 2697487 2697517 "SPADXPT" 2702193 T SPADXPT (NIL) -9 NIL 2704357 NIL) (-1155 2695376 2695416 2695485 "SPADPRSR" 2695568 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1154 2693425 2695331 2695362 "SPADAST" 2695367 T SPADAST (NIL) -8 NIL NIL NIL) (-1153 2685370 2687143 2687186 "SPACEC" 2691559 NIL SPACEC (NIL T) -9 NIL 2693375 NIL) (-1152 2683500 2685302 2685351 "SPACE3" 2685356 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1151 2682252 2682423 2682714 "SORTPAK" 2683305 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1150 2680344 2680647 2681059 "SOLVETRA" 2681916 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1149 2679394 2679616 2679877 "SOLVESER" 2680117 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1148 2674698 2675586 2676581 "SOLVERAD" 2678446 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1147 2670513 2671122 2671851 "SOLVEFOR" 2674065 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1146 2664783 2669862 2669959 "SNTSCAT" 2669964 NIL SNTSCAT (NIL T T T T) -9 NIL 2670034 NIL) (-1145 2658889 2663106 2663497 "SMTS" 2664473 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1144 2653485 2658777 2658854 "SMP" 2658859 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1143 2651644 2651945 2652343 "SMITH" 2653182 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1142 2643935 2648223 2648326 "SMATCAT" 2649677 NIL SMATCAT (NIL NIL T T T) -9 NIL 2650227 NIL) (-1141 2640653 2641538 2642796 "SMATCAT-" 2642801 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1140 2638319 2639889 2639932 "SKAGG" 2640193 NIL SKAGG (NIL T) -9 NIL 2640328 NIL) (-1139 2634595 2637792 2637976 "SINT" 2638128 T SINT (NIL) -8 NIL NIL 2638290) (-1138 2634367 2634405 2634471 "SIMPAN" 2634551 T SIMPAN (NIL) -7 NIL NIL NIL) (-1137 2633646 2633902 2634042 "SIG" 2634249 T SIG (NIL) -8 NIL NIL NIL) (-1136 2632484 2632705 2632980 "SIGNRF" 2633405 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1135 2631317 2631468 2631752 "SIGNEF" 2632313 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1134 2630623 2630900 2631024 "SIGAST" 2631215 T SIGAST (NIL) -8 NIL NIL NIL) (-1133 2628313 2628767 2629273 "SHP" 2630164 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1132 2622318 2628214 2628290 "SHDP" 2628295 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1131 2621891 2622083 2622113 "SGROUP" 2622206 T SGROUP (NIL) -9 NIL 2622268 NIL) (-1130 2621749 2621775 2621848 "SGROUP-" 2621853 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1129 2618540 2619238 2619961 "SGCF" 2621048 T SGCF (NIL) -7 NIL NIL NIL) (-1128 2612908 2617987 2618084 "SFRTCAT" 2618089 NIL SFRTCAT (NIL T T T T) -9 NIL 2618128 NIL) (-1127 2606329 2607347 2608483 "SFRGCD" 2611891 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1126 2599455 2600528 2601714 "SFQCMPK" 2605262 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1125 2599075 2599164 2599275 "SFORT" 2599396 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1124 2598193 2598915 2599036 "SEXOF" 2599041 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1123 2597300 2598074 2598142 "SEX" 2598147 T SEX (NIL) -8 NIL NIL NIL) (-1122 2593081 2593796 2593891 "SEXCAT" 2596513 NIL SEXCAT (NIL T T T T T) -9 NIL 2597073 NIL) (-1121 2590234 2593015 2593063 "SET" 2593068 NIL SET (NIL T) -8 NIL NIL NIL) (-1120 2588458 2588947 2589252 "SETMN" 2589975 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1119 2587954 2588106 2588136 "SETCAT" 2588312 T SETCAT (NIL) -9 NIL 2588422 NIL) (-1118 2587646 2587724 2587854 "SETCAT-" 2587859 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1117 2584007 2586107 2586150 "SETAGG" 2587020 NIL SETAGG (NIL T) -9 NIL 2587360 NIL) (-1116 2583465 2583581 2583818 "SETAGG-" 2583823 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1115 2582908 2583161 2583262 "SEQAST" 2583386 T SEQAST (NIL) -8 NIL NIL NIL) (-1114 2582107 2582401 2582462 "SEGXCAT" 2582748 NIL SEGXCAT (NIL T T) -9 NIL 2582868 NIL) (-1113 2581113 2581773 2581955 "SEG" 2581960 NIL SEG (NIL T) -8 NIL NIL NIL) (-1112 2580092 2580306 2580349 "SEGCAT" 2580871 NIL SEGCAT (NIL T) -9 NIL 2581092 NIL) (-1111 2579024 2579455 2579663 "SEGBIND" 2579919 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1110 2578645 2578704 2578817 "SEGBIND2" 2578959 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1109 2578218 2578446 2578523 "SEGAST" 2578590 T SEGAST (NIL) -8 NIL NIL NIL) (-1108 2577437 2577563 2577767 "SEG2" 2578062 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1107 2576808 2577372 2577419 "SDVAR" 2577424 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1106 2569246 2576578 2576708 "SDPOL" 2576713 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1105 2567839 2568105 2568424 "SCPKG" 2568961 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1104 2567003 2567175 2567367 "SCOPE" 2567669 T SCOPE (NIL) -8 NIL NIL NIL) (-1103 2566223 2566357 2566536 "SCACHE" 2566858 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1102 2565869 2566055 2566085 "SASTCAT" 2566090 T SASTCAT (NIL) -9 NIL 2566103 NIL) (-1101 2565356 2565704 2565780 "SAOS" 2565815 T SAOS (NIL) -8 NIL NIL NIL) (-1100 2564921 2564956 2565129 "SAERFFC" 2565315 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1099 2558771 2564818 2564898 "SAE" 2564903 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1098 2558364 2558399 2558558 "SAEFACT" 2558730 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1097 2556685 2556999 2557400 "RURPK" 2558030 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1096 2555322 2555628 2555933 "RULESET" 2556519 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1095 2552545 2553075 2553533 "RULE" 2555003 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1094 2552157 2552339 2552422 "RULECOLD" 2552497 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1093 2551947 2551975 2552046 "RTVALUE" 2552108 T RTVALUE (NIL) -8 NIL NIL NIL) (-1092 2551418 2551664 2551758 "RSTRCAST" 2551875 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1091 2546266 2547061 2547981 "RSETGCD" 2550617 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1090 2535496 2540575 2540672 "RSETCAT" 2544791 NIL RSETCAT (NIL T T T T) -9 NIL 2545888 NIL) (-1089 2533423 2533962 2534786 "RSETCAT-" 2534791 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1088 2525809 2527185 2528705 "RSDCMPK" 2532022 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1087 2523788 2524255 2524329 "RRCC" 2525415 NIL RRCC (NIL T T) -9 NIL 2525759 NIL) (-1086 2523139 2523313 2523592 "RRCC-" 2523597 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1085 2522582 2522835 2522936 "RPTAST" 2523060 T RPTAST (NIL) -8 NIL NIL NIL) (-1084 2496245 2505694 2505761 "RPOLCAT" 2516427 NIL RPOLCAT (NIL T T T) -9 NIL 2519587 NIL) (-1083 2487743 2490083 2493205 "RPOLCAT-" 2493210 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1082 2478674 2485954 2486436 "ROUTINE" 2487283 T ROUTINE (NIL) -8 NIL NIL NIL) (-1081 2475421 2478300 2478440 "ROMAN" 2478556 T ROMAN (NIL) -8 NIL NIL NIL) (-1080 2473665 2474281 2474541 "ROIRC" 2475226 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1079 2469897 2472181 2472211 "RNS" 2472515 T RNS (NIL) -9 NIL 2472789 NIL) (-1078 2468406 2468789 2469323 "RNS-" 2469398 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1077 2467809 2468217 2468247 "RNG" 2468252 T RNG (NIL) -9 NIL 2468273 NIL) (-1076 2466812 2467174 2467376 "RNGBIND" 2467660 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1075 2466211 2466599 2466642 "RMODULE" 2466647 NIL RMODULE (NIL T) -9 NIL 2466674 NIL) (-1074 2465047 2465141 2465477 "RMCAT2" 2466112 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1073 2461897 2464393 2464690 "RMATRIX" 2464809 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1072 2454724 2456984 2457099 "RMATCAT" 2460458 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2461440 NIL) (-1071 2454099 2454246 2454553 "RMATCAT-" 2454558 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1070 2453500 2453721 2453764 "RLINSET" 2453958 NIL RLINSET (NIL T) -9 NIL 2454049 NIL) (-1069 2453067 2453142 2453270 "RINTERP" 2453419 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1068 2452125 2452679 2452709 "RING" 2452765 T RING (NIL) -9 NIL 2452857 NIL) (-1067 2451917 2451961 2452058 "RING-" 2452063 NIL RING- (NIL T) -8 NIL NIL NIL) (-1066 2450758 2450995 2451253 "RIDIST" 2451681 T RIDIST (NIL) -7 NIL NIL NIL) (-1065 2442047 2450226 2450432 "RGCHAIN" 2450606 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1064 2441397 2441803 2441844 "RGBCSPC" 2441902 NIL RGBCSPC (NIL T) -9 NIL 2441954 NIL) (-1063 2440555 2440936 2440977 "RGBCMDL" 2441209 NIL RGBCMDL (NIL T) -9 NIL 2441323 NIL) (-1062 2437549 2438163 2438833 "RF" 2439919 NIL RF (NIL T) -7 NIL NIL NIL) (-1061 2437195 2437258 2437361 "RFFACTOR" 2437480 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1060 2436920 2436955 2437052 "RFFACT" 2437154 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1059 2435037 2435401 2435783 "RFDIST" 2436560 T RFDIST (NIL) -7 NIL NIL NIL) (-1058 2434490 2434582 2434745 "RETSOL" 2434939 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1057 2434126 2434206 2434249 "RETRACT" 2434382 NIL RETRACT (NIL T) -9 NIL 2434469 NIL) (-1056 2433975 2434000 2434087 "RETRACT-" 2434092 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1055 2433577 2433797 2433867 "RETAST" 2433927 T RETAST (NIL) -8 NIL NIL NIL) (-1054 2426315 2433230 2433357 "RESULT" 2433472 T RESULT (NIL) -8 NIL NIL NIL) (-1053 2424906 2425584 2425783 "RESRING" 2426218 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1052 2424542 2424591 2424689 "RESLATC" 2424843 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1051 2424247 2424282 2424389 "REPSQ" 2424501 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1050 2421669 2422249 2422851 "REP" 2423667 T REP (NIL) -7 NIL NIL NIL) (-1049 2421366 2421401 2421512 "REPDB" 2421628 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1048 2415266 2416655 2417878 "REP2" 2420178 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1047 2411643 2412324 2413132 "REP1" 2414493 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1046 2404339 2409784 2410240 "REGSET" 2411273 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1045 2403104 2403487 2403737 "REF" 2404124 NIL REF (NIL T) -8 NIL NIL NIL) (-1044 2402481 2402584 2402751 "REDORDER" 2402988 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1043 2398449 2401694 2401921 "RECLOS" 2402309 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1042 2397501 2397682 2397897 "REALSOLV" 2398256 T REALSOLV (NIL) -7 NIL NIL NIL) (-1041 2397347 2397388 2397418 "REAL" 2397423 T REAL (NIL) -9 NIL 2397458 NIL) (-1040 2393830 2394632 2395516 "REAL0Q" 2396512 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1039 2389431 2390419 2391480 "REAL0" 2392811 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1038 2388902 2389148 2389242 "RDUCEAST" 2389359 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1037 2388307 2388379 2388586 "RDIV" 2388824 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1036 2387375 2387549 2387762 "RDIST" 2388129 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1035 2385972 2386259 2386631 "RDETRS" 2387083 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1034 2383784 2384238 2384776 "RDETR" 2385514 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1033 2382409 2382687 2383084 "RDEEFS" 2383500 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1032 2380918 2381224 2381649 "RDEEF" 2382097 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1031 2374979 2377899 2377929 "RCFIELD" 2379224 T RCFIELD (NIL) -9 NIL 2379955 NIL) (-1030 2373043 2373547 2374243 "RCFIELD-" 2374318 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1029 2369312 2371144 2371187 "RCAGG" 2372271 NIL RCAGG (NIL T) -9 NIL 2372736 NIL) (-1028 2368940 2369034 2369197 "RCAGG-" 2369202 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1027 2368275 2368387 2368552 "RATRET" 2368824 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1026 2367828 2367895 2368016 "RATFACT" 2368203 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1025 2367136 2367256 2367408 "RANDSRC" 2367698 T RANDSRC (NIL) -7 NIL NIL NIL) (-1024 2366870 2366914 2366987 "RADUTIL" 2367085 T RADUTIL (NIL) -7 NIL NIL NIL) (-1023 2359891 2365701 2366012 "RADIX" 2366593 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1022 2350559 2359733 2359863 "RADFF" 2359868 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1021 2350206 2350281 2350311 "RADCAT" 2350471 T RADCAT (NIL) -9 NIL NIL NIL) (-1020 2349988 2350036 2350136 "RADCAT-" 2350141 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1019 2348086 2349758 2349850 "QUEUE" 2349931 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1018 2344534 2348019 2348067 "QUAT" 2348072 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1017 2344165 2344208 2344339 "QUATCT2" 2344485 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1016 2337178 2340615 2340657 "QUATCAT" 2341448 NIL QUATCAT (NIL T) -9 NIL 2342214 NIL) (-1015 2333317 2334354 2335744 "QUATCAT-" 2335840 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1014 2330782 2332393 2332436 "QUAGG" 2332817 NIL QUAGG (NIL T) -9 NIL 2332992 NIL) (-1013 2330384 2330604 2330674 "QQUTAST" 2330734 T QQUTAST (NIL) -8 NIL NIL NIL) (-1012 2329397 2329897 2330062 "QFORM" 2330265 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1011 2319971 2325299 2325341 "QFCAT" 2326009 NIL QFCAT (NIL T) -9 NIL 2327010 NIL) (-1010 2315316 2316579 2318253 "QFCAT-" 2318349 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1009 2314947 2314990 2315121 "QFCAT2" 2315267 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1008 2314402 2314512 2314644 "QEQUAT" 2314837 T QEQUAT (NIL) -8 NIL NIL NIL) (-1007 2307528 2308601 2309787 "QCMPACK" 2313335 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1006 2305066 2305514 2305944 "QALGSET" 2307183 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1005 2304301 2304477 2304713 "QALGSET2" 2304884 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1004 2302986 2303210 2303529 "PWFFINTB" 2304074 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1003 2301161 2301329 2301685 "PUSHVAR" 2302800 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1002 2297050 2298104 2298147 "PTRANFN" 2300058 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1001 2295441 2295732 2296056 "PTPACK" 2296761 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1000 2295070 2295127 2295238 "PTFUNC2" 2295378 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-999 2289515 2293912 2293953 "PTCAT" 2294249 NIL PTCAT (NIL T) -9 NIL 2294402 NIL) (-998 2289173 2289208 2289332 "PSQFR" 2289474 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-997 2287768 2288066 2288400 "PSEUDLIN" 2288871 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-996 2274531 2276902 2279226 "PSETPK" 2285528 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-995 2267549 2270289 2270385 "PSETCAT" 2273406 NIL PSETCAT (NIL T T T T) -9 NIL 2274220 NIL) (-994 2265385 2266019 2266840 "PSETCAT-" 2266845 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-993 2264734 2264899 2264927 "PSCURVE" 2265195 T PSCURVE (NIL) -9 NIL 2265362 NIL) (-992 2260732 2262248 2262313 "PSCAT" 2263157 NIL PSCAT (NIL T T T) -9 NIL 2263397 NIL) (-991 2259795 2260011 2260411 "PSCAT-" 2260416 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-990 2258154 2258864 2259127 "PRTITION" 2259552 T PRTITION (NIL) -8 NIL NIL NIL) (-989 2257629 2257875 2257967 "PRTDAST" 2258082 T PRTDAST (NIL) -8 NIL NIL NIL) (-988 2246719 2248933 2251121 "PRS" 2255491 NIL PRS (NIL T T) -7 NIL NIL NIL) (-987 2244530 2246069 2246109 "PRQAGG" 2246292 NIL PRQAGG (NIL T) -9 NIL 2246394 NIL) (-986 2243866 2244171 2244199 "PROPLOG" 2244338 T PROPLOG (NIL) -9 NIL 2244453 NIL) (-985 2243470 2243527 2243650 "PROPFUN2" 2243789 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-984 2242785 2242906 2243078 "PROPFUN1" 2243331 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-983 2240966 2241532 2241829 "PROPFRML" 2242521 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-982 2240435 2240542 2240670 "PROPERTY" 2240858 T PROPERTY (NIL) -8 NIL NIL NIL) (-981 2234493 2238601 2239421 "PRODUCT" 2239661 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-980 2231771 2233951 2234185 "PR" 2234304 NIL PR (NIL T T) -8 NIL NIL NIL) (-979 2231567 2231599 2231658 "PRINT" 2231732 T PRINT (NIL) -7 NIL NIL NIL) (-978 2230907 2231024 2231176 "PRIMES" 2231447 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-977 2228972 2229373 2229839 "PRIMELT" 2230486 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-976 2228701 2228750 2228778 "PRIMCAT" 2228902 T PRIMCAT (NIL) -9 NIL NIL NIL) (-975 2224816 2228639 2228684 "PRIMARR" 2228689 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-974 2223823 2224001 2224229 "PRIMARR2" 2224634 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-973 2223466 2223522 2223633 "PREASSOC" 2223761 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-972 2222941 2223074 2223102 "PPCURVE" 2223307 T PPCURVE (NIL) -9 NIL 2223443 NIL) (-971 2222536 2222736 2222819 "PORTNUM" 2222878 T PORTNUM (NIL) -8 NIL NIL NIL) (-970 2219895 2220294 2220886 "POLYROOT" 2222117 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-969 2213988 2219499 2219659 "POLY" 2219768 NIL POLY (NIL T) -8 NIL NIL NIL) (-968 2213371 2213429 2213663 "POLYLIFT" 2213924 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-967 2209646 2210095 2210724 "POLYCATQ" 2212916 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-966 2196175 2201393 2201458 "POLYCAT" 2204972 NIL POLYCAT (NIL T T T) -9 NIL 2206850 NIL) (-965 2189402 2191326 2193790 "POLYCAT-" 2193795 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2188989 2189057 2189177 "POLY2UP" 2189328 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-963 2188621 2188678 2188787 "POLY2" 2188926 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-962 2187306 2187545 2187821 "POLUTIL" 2188395 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-961 2185661 2185938 2186269 "POLTOPOL" 2187028 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-960 2181126 2185597 2185643 "POINT" 2185648 NIL POINT (NIL T) -8 NIL NIL NIL) (-959 2179313 2179670 2180045 "PNTHEORY" 2180771 T PNTHEORY (NIL) -7 NIL NIL NIL) (-958 2177771 2178068 2178467 "PMTOOLS" 2179011 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-957 2177364 2177442 2177559 "PMSYM" 2177687 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-956 2176872 2176941 2177116 "PMQFCAT" 2177289 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-955 2176227 2176337 2176493 "PMPRED" 2176749 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-954 2175620 2175706 2175868 "PMPREDFS" 2176128 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-953 2174284 2174492 2174870 "PMPLCAT" 2175382 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-952 2173816 2173895 2174047 "PMLSAGG" 2174199 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-951 2173289 2173365 2173547 "PMKERNEL" 2173734 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-950 2172906 2172981 2173094 "PMINS" 2173208 NIL PMINS (NIL T) -7 NIL NIL NIL) (-949 2172348 2172417 2172626 "PMFS" 2172831 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-948 2171576 2171694 2171899 "PMDOWN" 2172225 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-947 2170743 2170901 2171082 "PMASS" 2171415 T PMASS (NIL) -7 NIL NIL NIL) (-946 2170016 2170126 2170289 "PMASSFS" 2170630 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-945 2169671 2169739 2169833 "PLOTTOOL" 2169942 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-944 2164278 2165482 2166630 "PLOT" 2168543 T PLOT (NIL) -8 NIL NIL NIL) (-943 2160082 2161126 2162047 "PLOT3D" 2163377 T PLOT3D (NIL) -8 NIL NIL NIL) (-942 2158994 2159171 2159406 "PLOT1" 2159886 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-941 2134385 2139060 2143911 "PLEQN" 2154260 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-940 2133703 2133825 2134005 "PINTERP" 2134250 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-939 2133396 2133443 2133546 "PINTERPA" 2133650 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-938 2132612 2133160 2133247 "PI" 2133287 T PI (NIL) -8 NIL NIL 2133354) (-937 2130909 2131884 2131912 "PID" 2132094 T PID (NIL) -9 NIL 2132228 NIL) (-936 2130660 2130697 2130772 "PICOERCE" 2130866 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-935 2129980 2130119 2130295 "PGROEB" 2130516 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-934 2125567 2126381 2127286 "PGE" 2129095 T PGE (NIL) -7 NIL NIL NIL) (-933 2123690 2123937 2124303 "PGCD" 2125284 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-932 2123028 2123131 2123292 "PFRPAC" 2123574 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-931 2119668 2121576 2121929 "PFR" 2122707 NIL PFR (NIL T) -8 NIL NIL NIL) (-930 2118057 2118301 2118626 "PFOTOOLS" 2119415 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-929 2116590 2116829 2117180 "PFOQ" 2117814 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-928 2115091 2115303 2115659 "PFO" 2116374 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-927 2111644 2114980 2115049 "PF" 2115054 NIL PF (NIL NIL) -8 NIL NIL NIL) (-926 2108978 2110249 2110277 "PFECAT" 2110862 T PFECAT (NIL) -9 NIL 2111246 NIL) (-925 2108423 2108577 2108791 "PFECAT-" 2108796 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-924 2107026 2107278 2107579 "PFBRU" 2108172 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-923 2104892 2105244 2105676 "PFBR" 2106677 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-922 2100938 2102404 2103051 "PERM" 2104278 NIL PERM (NIL T) -8 NIL NIL NIL) (-921 2096172 2097145 2098015 "PERMGRP" 2100101 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-920 2094291 2095251 2095292 "PERMCAT" 2095692 NIL PERMCAT (NIL T) -9 NIL 2095990 NIL) (-919 2093944 2093985 2094109 "PERMAN" 2094244 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-918 2091432 2093609 2093731 "PENDTREE" 2093855 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-917 2090361 2090576 2090617 "PDSPC" 2091150 NIL PDSPC (NIL T) -9 NIL 2091395 NIL) (-916 2089464 2089682 2090044 "PDSPC-" 2090049 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-915 2088346 2089114 2089155 "PDRING" 2089160 NIL PDRING (NIL T) -9 NIL 2089188 NIL) (-914 2087233 2087851 2087905 "PDMOD" 2087910 NIL PDMOD (NIL T T) -9 NIL 2088014 NIL) (-913 2084448 2085226 2085894 "PDEPROB" 2086585 T PDEPROB (NIL) -8 NIL NIL NIL) (-912 2081993 2082497 2083052 "PDEPACK" 2083913 T PDEPACK (NIL) -7 NIL NIL NIL) (-911 2080905 2081095 2081346 "PDECOMP" 2081792 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-910 2078484 2079327 2079355 "PDECAT" 2080142 T PDECAT (NIL) -9 NIL 2080855 NIL) (-909 2078113 2078168 2078222 "PDDOM" 2078387 NIL PDDOM (NIL T T) -9 NIL 2078467 NIL) (-908 2077932 2077962 2078069 "PDDOM-" 2078074 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-907 2077683 2077716 2077806 "PCOMP" 2077893 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-906 2075861 2076484 2076781 "PBWLB" 2077412 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-905 2068334 2069934 2071272 "PATTERN" 2074544 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-904 2067966 2068023 2068132 "PATTERN2" 2068271 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-903 2065723 2066111 2066568 "PATTERN1" 2067555 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-902 2063091 2063672 2064153 "PATRES" 2065288 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-901 2062655 2062722 2062854 "PATRES2" 2063018 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-900 2060538 2060943 2061350 "PATMATCH" 2062322 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-899 2060048 2060257 2060298 "PATMAB" 2060405 NIL PATMAB (NIL T) -9 NIL 2060488 NIL) (-898 2058566 2058902 2059160 "PATLRES" 2059853 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-897 2058112 2058235 2058276 "PATAB" 2058281 NIL PATAB (NIL T) -9 NIL 2058453 NIL) (-896 2056294 2056689 2057112 "PARTPERM" 2057709 T PARTPERM (NIL) -7 NIL NIL NIL) (-895 2055915 2055978 2056080 "PARSURF" 2056225 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-894 2055547 2055604 2055713 "PARSU2" 2055852 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-893 2055311 2055351 2055418 "PARSER" 2055500 T PARSER (NIL) -7 NIL NIL NIL) (-892 2054932 2054995 2055097 "PARSCURV" 2055242 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-891 2054564 2054621 2054730 "PARSC2" 2054869 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-890 2054203 2054261 2054358 "PARPCURV" 2054500 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-889 2053835 2053892 2054001 "PARPC2" 2054140 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-888 2052896 2053208 2053390 "PARAMAST" 2053673 T PARAMAST (NIL) -8 NIL NIL NIL) (-887 2052416 2052502 2052621 "PAN2EXPR" 2052797 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-886 2051193 2051537 2051765 "PALETTE" 2052208 T PALETTE (NIL) -8 NIL NIL NIL) (-885 2049586 2050198 2050558 "PAIR" 2050879 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-884 2043365 2048843 2049038 "PADICRC" 2049440 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-883 2036489 2042709 2042894 "PADICRAT" 2043212 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-882 2034804 2036426 2036471 "PADIC" 2036476 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-881 2031914 2033478 2033518 "PADICCT" 2034099 NIL PADICCT (NIL NIL) -9 NIL 2034381 NIL) (-880 2030871 2031071 2031339 "PADEPAC" 2031701 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-879 2030083 2030216 2030422 "PADE" 2030733 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-878 2028470 2029291 2029571 "OWP" 2029887 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-877 2027963 2028176 2028273 "OVERSET" 2028393 T OVERSET (NIL) -8 NIL NIL NIL) (-876 2027009 2027568 2027740 "OVAR" 2027831 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-875 2026273 2026394 2026555 "OUT" 2026868 T OUT (NIL) -7 NIL NIL NIL) (-874 2015145 2017382 2019582 "OUTFORM" 2024093 T OUTFORM (NIL) -8 NIL NIL NIL) (-873 2014481 2014742 2014869 "OUTBFILE" 2015038 T OUTBFILE (NIL) -8 NIL NIL NIL) (-872 2013788 2013953 2013981 "OUTBCON" 2014299 T OUTBCON (NIL) -9 NIL 2014465 NIL) (-871 2013389 2013501 2013658 "OUTBCON-" 2013663 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-870 2012769 2013118 2013207 "OSI" 2013320 T OSI (NIL) -8 NIL NIL NIL) (-869 2012299 2012637 2012665 "OSGROUP" 2012670 T OSGROUP (NIL) -9 NIL 2012692 NIL) (-868 2011044 2011271 2011556 "ORTHPOL" 2012046 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-867 2008595 2010879 2011000 "OREUP" 2011005 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-866 2005998 2008286 2008413 "ORESUP" 2008537 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-865 2003526 2004026 2004587 "OREPCTO" 2005487 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-864 1997212 1999413 1999454 "OREPCAT" 2001802 NIL OREPCAT (NIL T) -9 NIL 2002906 NIL) (-863 1994359 1995141 1996199 "OREPCAT-" 1996204 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-862 1993510 1993808 1993836 "ORDSET" 1994145 T ORDSET (NIL) -9 NIL 1994309 NIL) (-861 1992941 1993089 1993313 "ORDSET-" 1993318 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-860 1991506 1992297 1992325 "ORDRING" 1992527 T ORDRING (NIL) -9 NIL 1992652 NIL) (-859 1991151 1991245 1991389 "ORDRING-" 1991394 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 1990531 1990994 1991022 "ORDMON" 1991027 T ORDMON (NIL) -9 NIL 1991048 NIL) (-857 1989693 1989840 1990035 "ORDFUNS" 1990380 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1989031 1989450 1989478 "ORDFIN" 1989543 T ORDFIN (NIL) -9 NIL 1989617 NIL) (-855 1985590 1987617 1988026 "ORDCOMP" 1988655 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1984856 1984983 1985169 "ORDCOMP2" 1985450 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1981437 1982347 1983161 "OPTPROB" 1984062 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1978239 1978878 1979582 "OPTPACK" 1980753 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1975926 1976692 1976720 "OPTCAT" 1977539 T OPTCAT (NIL) -9 NIL 1978189 NIL) (-850 1975310 1975603 1975708 "OPSIG" 1975841 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1975078 1975117 1975183 "OPQUERY" 1975264 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1972209 1973389 1973893 "OP" 1974607 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1971583 1971809 1971850 "OPERCAT" 1972062 NIL OPERCAT (NIL T) -9 NIL 1972159 NIL) (-846 1971338 1971394 1971511 "OPERCAT-" 1971516 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1968151 1970135 1970504 "ONECOMP" 1971002 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1967456 1967571 1967745 "ONECOMP2" 1968023 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1966875 1966981 1967111 "OMSERVER" 1967346 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1963737 1966315 1966355 "OMSAGG" 1966416 NIL OMSAGG (NIL T) -9 NIL 1966480 NIL) (-841 1962360 1962623 1962905 "OMPKG" 1963475 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1961790 1961893 1961921 "OM" 1962220 T OM (NIL) -9 NIL NIL NIL) (-839 1960337 1961339 1961508 "OMLO" 1961671 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1959297 1959444 1959664 "OMEXPR" 1960163 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1958588 1958843 1958979 "OMERR" 1959181 T OMERR (NIL) -8 NIL NIL NIL) (-836 1957739 1958009 1958169 "OMERRK" 1958448 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1957190 1957416 1957524 "OMENC" 1957651 T OMENC (NIL) -8 NIL NIL NIL) (-834 1951085 1952270 1953441 "OMDEV" 1956039 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1950154 1950325 1950519 "OMCONN" 1950911 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1948675 1949651 1949679 "OINTDOM" 1949684 T OINTDOM (NIL) -9 NIL 1949705 NIL) (-831 1946013 1947363 1947700 "OFMONOID" 1948370 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1945385 1945950 1945995 "ODVAR" 1946000 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1942808 1945130 1945285 "ODR" 1945290 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1935300 1942584 1942710 "ODPOL" 1942715 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1929275 1935172 1935277 "ODP" 1935282 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1928041 1928256 1928531 "ODETOOLS" 1929049 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1925008 1925666 1926382 "ODESYS" 1927374 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1919890 1920798 1921823 "ODERTRIC" 1924083 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1919316 1919398 1919592 "ODERED" 1919802 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1916204 1916752 1917429 "ODERAT" 1918739 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1913163 1913628 1914225 "ODEPRRIC" 1915733 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1911106 1911702 1912188 "ODEPROB" 1912697 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1907626 1908111 1908758 "ODEPRIM" 1910585 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1906875 1906977 1907237 "ODEPAL" 1907518 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1903037 1903828 1904692 "ODEPACK" 1906031 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1902098 1902205 1902427 "ODEINT" 1902926 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1896199 1897624 1899071 "ODEIFTBL" 1900671 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1891597 1892383 1893335 "ODEEF" 1895358 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1890946 1891035 1891258 "ODECONST" 1891502 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1889071 1889732 1889760 "ODECAT" 1890365 T ODECAT (NIL) -9 NIL 1890896 NIL) (-811 1885926 1888776 1888898 "OCT" 1888981 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1885564 1885607 1885734 "OCTCT2" 1885877 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1880175 1882610 1882650 "OC" 1883747 NIL OC (NIL T) -9 NIL 1884605 NIL) (-808 1877402 1878150 1879140 "OC-" 1879234 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1876754 1877222 1877250 "OCAMON" 1877255 T OCAMON (NIL) -9 NIL 1877276 NIL) (-806 1876285 1876626 1876654 "OASGP" 1876659 T OASGP (NIL) -9 NIL 1876679 NIL) (-805 1875546 1876035 1876063 "OAMONS" 1876103 T OAMONS (NIL) -9 NIL 1876146 NIL) (-804 1874960 1875393 1875421 "OAMON" 1875426 T OAMON (NIL) -9 NIL 1875446 NIL) (-803 1874218 1874736 1874764 "OAGROUP" 1874769 T OAGROUP (NIL) -9 NIL 1874789 NIL) (-802 1873908 1873958 1874046 "NUMTUBE" 1874162 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1867481 1868999 1870535 "NUMQUAD" 1872392 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1863237 1864225 1865250 "NUMODE" 1866476 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1860592 1861472 1861500 "NUMINT" 1862423 T NUMINT (NIL) -9 NIL 1863187 NIL) (-798 1859540 1859737 1859955 "NUMFMT" 1860394 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1845899 1848844 1851376 "NUMERIC" 1857047 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1840269 1845348 1845443 "NTSCAT" 1845448 NIL NTSCAT (NIL T T T T) -9 NIL 1845487 NIL) (-795 1839463 1839628 1839821 "NTPOLFN" 1840108 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1827451 1836288 1837100 "NSUP" 1838684 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1827083 1827140 1827249 "NSUP2" 1827388 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1817220 1826857 1826990 "NSMP" 1826995 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1815652 1815953 1816310 "NREP" 1816908 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1814243 1814495 1814853 "NPCOEF" 1815395 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1813309 1813424 1813640 "NORMRETR" 1814124 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1811350 1811640 1812049 "NORMPK" 1813017 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1811035 1811063 1811187 "NORMMA" 1811316 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1810835 1810992 1811021 "NONE" 1811026 T NONE (NIL) -8 NIL NIL NIL) (-785 1810624 1810653 1810722 "NONE1" 1810799 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1810121 1810183 1810362 "NODE1" 1810556 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1808402 1809253 1809508 "NNI" 1809855 T NNI (NIL) -8 NIL NIL 1810090) (-782 1806822 1807135 1807499 "NLINSOL" 1808070 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1803063 1804058 1804957 "NIPROB" 1805943 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1801820 1802054 1802356 "NFINTBAS" 1802825 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1800994 1801470 1801511 "NETCLT" 1801683 NIL NETCLT (NIL T) -9 NIL 1801765 NIL) (-778 1799702 1799933 1800214 "NCODIV" 1800762 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1799464 1799501 1799576 "NCNTFRAC" 1799659 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1797644 1798008 1798428 "NCEP" 1799089 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1796495 1797268 1797296 "NASRING" 1797406 T NASRING (NIL) -9 NIL 1797486 NIL) (-774 1796290 1796334 1796428 "NASRING-" 1796433 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1795397 1795922 1795950 "NARNG" 1796067 T NARNG (NIL) -9 NIL 1796158 NIL) (-772 1795089 1795156 1795290 "NARNG-" 1795295 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1793968 1794175 1794410 "NAGSP" 1794874 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1785240 1786924 1788597 "NAGS" 1792315 T NAGS (NIL) -7 NIL NIL NIL) (-769 1783788 1784096 1784427 "NAGF07" 1784929 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1778326 1779617 1780924 "NAGF04" 1782501 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1771294 1772908 1774541 "NAGF02" 1776713 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1766518 1767618 1768735 "NAGF01" 1770197 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1760146 1761712 1763297 "NAGE04" 1764953 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1751315 1753436 1755566 "NAGE02" 1758036 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1747268 1748215 1749179 "NAGE01" 1750371 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1745063 1745597 1746155 "NAGD03" 1746730 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1736813 1738741 1740695 "NAGD02" 1743129 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1730624 1732049 1733489 "NAGD01" 1735393 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1726833 1727655 1728492 "NAGC06" 1729807 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1725298 1725630 1725986 "NAGC05" 1726497 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1724674 1724793 1724937 "NAGC02" 1725174 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1723633 1724216 1724256 "NAALG" 1724335 NIL NAALG (NIL T) -9 NIL 1724396 NIL) (-755 1723468 1723497 1723587 "NAALG-" 1723592 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1717418 1718526 1719713 "MULTSQFR" 1722364 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1716737 1716812 1716996 "MULTFACT" 1717330 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1709408 1713322 1713375 "MTSCAT" 1714445 NIL MTSCAT (NIL T T) -9 NIL 1714960 NIL) (-751 1709120 1709174 1709266 "MTHING" 1709348 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1708912 1708945 1709005 "MSYSCMD" 1709080 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1704994 1707667 1707987 "MSET" 1708625 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1702063 1704555 1704596 "MSETAGG" 1704601 NIL MSETAGG (NIL T) -9 NIL 1704635 NIL) (-747 1697905 1699442 1700187 "MRING" 1701363 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1697471 1697538 1697669 "MRF2" 1697832 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1697089 1697124 1697268 "MRATFAC" 1697430 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1694701 1694996 1695427 "MPRFF" 1696794 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1688909 1694555 1694652 "MPOLY" 1694657 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1688399 1688434 1688642 "MPCPF" 1688868 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1687913 1687956 1688140 "MPC3" 1688350 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1687108 1687189 1687410 "MPC2" 1687828 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1685409 1685746 1686136 "MONOTOOL" 1686768 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1684634 1684951 1684979 "MONOID" 1685198 T MONOID (NIL) -9 NIL 1685345 NIL) (-737 1684180 1684299 1684480 "MONOID-" 1684485 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1673915 1679958 1680017 "MONOGEN" 1680691 NIL MONOGEN (NIL T T) -9 NIL 1681147 NIL) (-735 1671133 1671868 1672868 "MONOGEN-" 1672987 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1669966 1670412 1670440 "MONADWU" 1670832 T MONADWU (NIL) -9 NIL 1671070 NIL) (-733 1669338 1669497 1669745 "MONADWU-" 1669750 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1668697 1668941 1668969 "MONAD" 1669176 T MONAD (NIL) -9 NIL 1669288 NIL) (-731 1668382 1668460 1668592 "MONAD-" 1668597 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1666671 1667295 1667574 "MOEBIUS" 1668135 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1665949 1666353 1666393 "MODULE" 1666398 NIL MODULE (NIL T) -9 NIL 1666437 NIL) (-728 1665517 1665613 1665803 "MODULE-" 1665808 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1663197 1663881 1664208 "MODRING" 1665341 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1660141 1661302 1661823 "MODOP" 1662726 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1658729 1659208 1659485 "MODMONOM" 1660004 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1648684 1657020 1657434 "MODMON" 1658366 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1645840 1647528 1647804 "MODFIELD" 1648559 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1644817 1645121 1645311 "MMLFORM" 1645670 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1644343 1644386 1644565 "MMAP" 1644768 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1642422 1643189 1643230 "MLO" 1643653 NIL MLO (NIL T) -9 NIL 1643895 NIL) (-719 1639788 1640304 1640906 "MLIFT" 1641903 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1639179 1639263 1639417 "MKUCFUNC" 1639699 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1638778 1638848 1638971 "MKRECORD" 1639102 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1637825 1637987 1638215 "MKFUNC" 1638589 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1637213 1637317 1637473 "MKFLCFN" 1637708 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1636490 1636592 1636777 "MKBCFUNC" 1637106 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1633165 1636044 1636180 "MINT" 1636374 T MINT (NIL) -8 NIL NIL NIL) (-712 1631977 1632220 1632497 "MHROWRED" 1632920 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1627357 1630512 1630917 "MFLOAT" 1631592 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1626714 1626790 1626961 "MFINFACT" 1627269 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1623029 1623877 1624761 "MESH" 1625850 T MESH (NIL) -7 NIL NIL NIL) (-708 1621419 1621731 1622084 "MDDFACT" 1622716 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1618214 1620578 1620619 "MDAGG" 1620874 NIL MDAGG (NIL T) -9 NIL 1621017 NIL) (-706 1607101 1617507 1617714 "MCMPLX" 1618027 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1606238 1606384 1606585 "MCDEN" 1606950 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1604128 1604398 1604778 "MCALCFN" 1605968 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1603053 1603293 1603526 "MAYBE" 1603934 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1600665 1601188 1601750 "MATSTOR" 1602524 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1596622 1600037 1600285 "MATRIX" 1600450 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1592388 1593095 1593831 "MATLIN" 1595979 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1582494 1585680 1585757 "MATCAT" 1590637 NIL MATCAT (NIL T T T) -9 NIL 1592054 NIL) (-698 1578850 1579871 1581227 "MATCAT-" 1581232 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1577444 1577597 1577930 "MATCAT2" 1578685 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1575556 1575880 1576264 "MAPPKG3" 1577119 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1574537 1574710 1574932 "MAPPKG2" 1575380 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1573036 1573320 1573647 "MAPPKG1" 1574243 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1572115 1572442 1572619 "MAPPAST" 1572879 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1571726 1571784 1571907 "MAPHACK3" 1572051 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1571318 1571379 1571493 "MAPHACK2" 1571658 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1570756 1570859 1571001 "MAPHACK1" 1571209 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1568835 1569456 1569760 "MAGMA" 1570484 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1568314 1568559 1568650 "MACROAST" 1568764 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1564732 1566553 1567014 "M3D" 1567886 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1558807 1563071 1563112 "LZSTAGG" 1563894 NIL LZSTAGG (NIL T) -9 NIL 1564189 NIL) (-685 1554765 1555938 1557395 "LZSTAGG-" 1557400 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1551852 1552656 1553143 "LWORD" 1554310 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1551428 1551656 1551731 "LSTAST" 1551797 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1544505 1551199 1551333 "LSQM" 1551338 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1543729 1543868 1544096 "LSPP" 1544360 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1541541 1541842 1542298 "LSMP" 1543418 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1538320 1538994 1539724 "LSMP1" 1540843 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1532166 1537457 1537498 "LSAGG" 1537560 NIL LSAGG (NIL T) -9 NIL 1537638 NIL) (-677 1528861 1529785 1530998 "LSAGG-" 1531003 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1526460 1528005 1528254 "LPOLY" 1528656 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1526042 1526127 1526250 "LPEFRAC" 1526369 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1524363 1525136 1525389 "LO" 1525874 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1524015 1524127 1524155 "LOGIC" 1524266 T LOGIC (NIL) -9 NIL 1524347 NIL) (-672 1523877 1523900 1523971 "LOGIC-" 1523976 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1523070 1523210 1523403 "LODOOPS" 1523733 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1520493 1522986 1523052 "LODO" 1523057 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1519031 1519266 1519619 "LODOF" 1520240 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1515235 1517666 1517707 "LODOCAT" 1518145 NIL LODOCAT (NIL T) -9 NIL 1518356 NIL) (-667 1514968 1515026 1515153 "LODOCAT-" 1515158 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1512288 1514809 1514927 "LODO2" 1514932 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1509723 1512225 1512270 "LODO1" 1512275 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1508604 1508769 1509074 "LODEEF" 1509546 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1503907 1506798 1506839 "LNAGG" 1507701 NIL LNAGG (NIL T) -9 NIL 1508136 NIL) (-662 1503054 1503268 1503610 "LNAGG-" 1503615 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1499190 1499979 1500618 "LMOPS" 1502469 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1498593 1498981 1499022 "LMODULE" 1499027 NIL LMODULE (NIL T) -9 NIL 1499053 NIL) (-659 1495791 1498238 1498361 "LMDICT" 1498503 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1495197 1495418 1495459 "LLINSET" 1495650 NIL LLINSET (NIL T) -9 NIL 1495741 NIL) (-657 1494896 1495105 1495165 "LITERAL" 1495170 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1488059 1493830 1494134 "LIST" 1494625 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1487584 1487658 1487797 "LIST3" 1487979 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1486591 1486769 1486997 "LIST2" 1487402 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1484725 1485037 1485436 "LIST2MAP" 1486238 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1484321 1484558 1484599 "LINSET" 1484604 NIL LINSET (NIL T) -9 NIL 1484638 NIL) (-651 1483050 1483583 1483624 "LINEXP" 1483975 NIL LINEXP (NIL T) -9 NIL 1484166 NIL) (-650 1481627 1481887 1482198 "LINDEP" 1482802 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1478394 1479113 1479890 "LIMITRF" 1480882 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1476697 1476993 1477402 "LIMITPS" 1478089 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1471125 1476208 1476436 "LIE" 1476518 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1470073 1470542 1470582 "LIECAT" 1470722 NIL LIECAT (NIL T) -9 NIL 1470873 NIL) (-645 1469914 1469941 1470029 "LIECAT-" 1470034 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1462501 1469454 1469610 "LIB" 1469778 T LIB (NIL) -8 NIL NIL NIL) (-643 1458136 1459019 1459954 "LGROBP" 1461618 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1456134 1456408 1456758 "LF" 1457857 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1454974 1455666 1455694 "LFCAT" 1455901 T LFCAT (NIL) -9 NIL 1456040 NIL) (-640 1451876 1452506 1453194 "LEXTRIPK" 1454338 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1448620 1449446 1449949 "LEXP" 1451456 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1448096 1448341 1448433 "LETAST" 1448548 T LETAST (NIL) -8 NIL NIL NIL) (-637 1446494 1446807 1447208 "LEADCDET" 1447778 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1445684 1445758 1445987 "LAZM3PK" 1446415 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1440601 1443761 1444299 "LAUPOL" 1445196 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1440180 1440224 1440385 "LAPLACE" 1440551 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1438119 1439281 1439532 "LA" 1440013 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1437113 1437697 1437738 "LALG" 1437800 NIL LALG (NIL T) -9 NIL 1437859 NIL) (-631 1436827 1436886 1437022 "LALG-" 1437027 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1436662 1436686 1436727 "KVTFROM" 1436789 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1435585 1436029 1436214 "KTVLOGIC" 1436497 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1435420 1435444 1435485 "KRCFROM" 1435547 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1434324 1434511 1434810 "KOVACIC" 1435220 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1434159 1434183 1434224 "KONVERT" 1434286 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1433994 1434018 1434059 "KOERCE" 1434121 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1431825 1432587 1432964 "KERNEL" 1433650 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1431321 1431402 1431534 "KERNEL2" 1431739 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1425091 1429860 1429914 "KDAGG" 1430291 NIL KDAGG (NIL T T) -9 NIL 1430497 NIL) (-621 1424620 1424744 1424949 "KDAGG-" 1424954 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1417768 1424281 1424436 "KAFILE" 1424498 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1412196 1417279 1417507 "JORDAN" 1417589 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1411575 1411845 1411966 "JOINAST" 1412095 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1411421 1411480 1411535 "JAVACODE" 1411540 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1407673 1409626 1409680 "IXAGG" 1410609 NIL IXAGG (NIL T T) -9 NIL 1411068 NIL) (-615 1406592 1406898 1407317 "IXAGG-" 1407322 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1402122 1406514 1406573 "IVECTOR" 1406578 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1400888 1401125 1401391 "ITUPLE" 1401889 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1399390 1399567 1399862 "ITRIGMNP" 1400710 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1398135 1398339 1398622 "ITFUN3" 1399166 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1397767 1397824 1397933 "ITFUN2" 1398072 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1396926 1397247 1397421 "ITFORM" 1397613 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1394887 1395946 1396224 "ITAYLOR" 1396681 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1383832 1389024 1390187 "ISUPS" 1393757 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1382936 1383076 1383312 "ISUMP" 1383679 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1378311 1382881 1382922 "ISTRING" 1382927 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1377787 1378032 1378124 "ISAST" 1378239 T ISAST (NIL) -8 NIL NIL NIL) (-603 1376996 1377078 1377294 "IRURPK" 1377701 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1375932 1376133 1376373 "IRSN" 1376776 T IRSN (NIL) -7 NIL NIL NIL) (-601 1374003 1374358 1374787 "IRRF2F" 1375570 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1373750 1373788 1373864 "IRREDFFX" 1373959 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1372365 1372624 1372923 "IROOT" 1373483 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1368969 1370049 1370741 "IR" 1371705 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1368174 1368462 1368613 "IRFORM" 1368838 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1365787 1366282 1366848 "IR2" 1367652 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1364887 1365000 1365214 "IR2F" 1365670 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1364678 1364712 1364772 "IPRNTPK" 1364847 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1361259 1364567 1364636 "IPF" 1364641 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1359586 1361184 1361241 "IPADIC" 1361246 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1358898 1359146 1359276 "IP4ADDR" 1359476 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1358272 1358527 1358659 "IOMODE" 1358786 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1357345 1357869 1357996 "IOBFILE" 1358165 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1356833 1357249 1357277 "IOBCON" 1357282 T IOBCON (NIL) -9 NIL 1357303 NIL) (-587 1356344 1356402 1356585 "INVLAPLA" 1356769 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1345992 1348346 1350732 "INTTR" 1354008 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1342327 1343069 1343934 "INTTOOLS" 1345177 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1341913 1342004 1342121 "INTSLPE" 1342230 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1339866 1341836 1341895 "INTRVL" 1341900 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1337468 1337980 1338555 "INTRF" 1339351 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1336879 1336976 1337118 "INTRET" 1337366 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1334876 1335265 1335735 "INTRAT" 1336487 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1332139 1332722 1333341 "INTPM" 1334361 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1328884 1329483 1330221 "INTPAF" 1331525 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1324063 1325025 1326076 "INTPACK" 1327853 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1320961 1323860 1323969 "INT" 1323974 T INT (NIL) -8 NIL NIL NIL) (-575 1320213 1320365 1320573 "INTHERTR" 1320803 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1319652 1319732 1319920 "INTHERAL" 1320127 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1317498 1317941 1318398 "INTHEORY" 1319215 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1308904 1310525 1312297 "INTG0" 1315850 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1289477 1294267 1299077 "INTFTBL" 1304114 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1288726 1288864 1289037 "INTFACT" 1289336 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1286153 1286599 1287156 "INTEF" 1288280 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1284520 1285259 1285287 "INTDOM" 1285588 T INTDOM (NIL) -9 NIL 1285795 NIL) (-567 1283889 1284063 1284305 "INTDOM-" 1284310 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1280277 1282205 1282259 "INTCAT" 1283058 NIL INTCAT (NIL T) -9 NIL 1283379 NIL) (-565 1279749 1279852 1279980 "INTBIT" 1280169 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1278448 1278602 1278909 "INTALG" 1279594 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1277931 1278021 1278178 "INTAF" 1278352 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1271274 1277741 1277881 "INTABL" 1277886 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1270607 1271073 1271138 "INT8" 1271172 T INT8 (NIL) -8 NIL NIL 1271217) (-560 1269939 1270405 1270470 "INT64" 1270504 T INT64 (NIL) -8 NIL NIL 1270549) (-559 1269271 1269737 1269802 "INT32" 1269836 T INT32 (NIL) -8 NIL NIL 1269881) (-558 1268603 1269069 1269134 "INT16" 1269168 T INT16 (NIL) -8 NIL NIL 1269213) (-557 1263398 1266164 1266192 "INS" 1267126 T INS (NIL) -9 NIL 1267791 NIL) (-556 1260638 1261409 1262383 "INS-" 1262456 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1259413 1259640 1259938 "INPSIGN" 1260391 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1258531 1258648 1258845 "INPRODPF" 1259293 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1257425 1257542 1257779 "INPRODFF" 1258411 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1256425 1256577 1256837 "INNMFACT" 1257261 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1255622 1255719 1255907 "INMODGCD" 1256324 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1254130 1254375 1254699 "INFSP" 1255367 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1253314 1253431 1253614 "INFPROD0" 1254010 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1250169 1251379 1251894 "INFORM" 1252807 T INFORM (NIL) -8 NIL NIL NIL) (-547 1249779 1249839 1249937 "INFORM1" 1250104 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1249302 1249391 1249505 "INFINITY" 1249685 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1248478 1249022 1249123 "INETCLTS" 1249221 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1247094 1247344 1247665 "INEP" 1248226 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1246343 1246991 1247056 "INDE" 1247061 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1245907 1245975 1246092 "INCRMAPS" 1246270 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1244725 1245176 1245382 "INBFILE" 1245721 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1240024 1240961 1241905 "INBFF" 1243813 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1238932 1239201 1239229 "INBCON" 1239742 T INBCON (NIL) -9 NIL 1240008 NIL) (-538 1238184 1238407 1238683 "INBCON-" 1238688 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1237663 1237908 1237999 "INAST" 1238113 T INAST (NIL) -8 NIL NIL NIL) (-536 1237090 1237342 1237448 "IMPTAST" 1237577 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1233536 1236934 1237038 "IMATRIX" 1237043 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1232244 1232367 1232683 "IMATQF" 1233392 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1230464 1230691 1231028 "IMATLIN" 1232000 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1225042 1230388 1230446 "ILIST" 1230451 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1222947 1224902 1225015 "IIARRAY2" 1225020 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1218345 1222858 1222922 "IFF" 1222927 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1217692 1217962 1218078 "IFAST" 1218249 T IFAST (NIL) -8 NIL NIL NIL) (-528 1212687 1216984 1217172 "IFARRAY" 1217549 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1211867 1212591 1212664 "IFAMON" 1212669 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1211451 1211516 1211570 "IEVALAB" 1211777 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1211126 1211194 1211354 "IEVALAB-" 1211359 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1210757 1211040 1211103 "IDPO" 1211108 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1210007 1210646 1210721 "IDPOAMS" 1210726 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1209314 1209896 1209971 "IDPOAM" 1209976 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1208373 1208649 1208702 "IDPC" 1209115 NIL IDPC (NIL T T) -9 NIL 1209264 NIL) (-520 1207842 1208265 1208338 "IDPAM" 1208343 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1207218 1207734 1207807 "IDPAG" 1207812 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1206863 1207054 1207129 "IDENT" 1207163 T IDENT (NIL) -8 NIL NIL NIL) (-517 1203118 1203966 1204861 "IDECOMP" 1206020 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1195955 1197041 1198088 "IDEAL" 1202154 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1195115 1195227 1195427 "ICDEN" 1195839 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1194186 1194595 1194742 "ICARD" 1194988 T ICARD (NIL) -8 NIL NIL NIL) (-513 1192246 1192559 1192964 "IBPTOOLS" 1193863 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1187853 1191866 1191979 "IBITS" 1192165 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1184576 1185152 1185847 "IBATOOL" 1187270 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1182355 1182817 1183350 "IBACHIN" 1184111 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1180184 1182201 1182304 "IARRAY2" 1182309 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1176290 1180110 1180167 "IARRAY1" 1180172 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1170328 1174702 1175183 "IAN" 1175829 T IAN (NIL) -8 NIL NIL NIL) (-506 1169839 1169896 1170069 "IALGFACT" 1170265 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1169367 1169480 1169508 "HYPCAT" 1169715 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1168905 1169022 1169208 "HYPCAT-" 1169213 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1168500 1168700 1168783 "HOSTNAME" 1168842 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1168345 1168382 1168423 "HOMOTOP" 1168428 NIL HOMOTOP (NIL T) -9 NIL 1168461 NIL) (-501 1164977 1166355 1166396 "HOAGG" 1167377 NIL HOAGG (NIL T) -9 NIL 1168056 NIL) (-500 1163571 1163970 1164496 "HOAGG-" 1164501 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1157480 1163164 1163314 "HEXADEC" 1163441 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1156228 1156450 1156713 "HEUGCD" 1157257 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1155304 1156065 1156195 "HELLFDIV" 1156200 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1153483 1155081 1155169 "HEAP" 1155248 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1152746 1153035 1153169 "HEADAST" 1153369 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1146765 1152661 1152723 "HDP" 1152728 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1140664 1146400 1146552 "HDMP" 1146666 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1139988 1140128 1140292 "HB" 1140520 T HB (NIL) -7 NIL NIL NIL) (-491 1133374 1139834 1139938 "HASHTBL" 1139943 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1132850 1133095 1133187 "HASAST" 1133302 T HASAST (NIL) -8 NIL NIL NIL) (-489 1130628 1132472 1132654 "HACKPI" 1132688 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1126296 1130481 1130594 "GTSET" 1130599 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1119711 1126174 1126272 "GSTBL" 1126277 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1112098 1118876 1119132 "GSERIES" 1119511 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1111239 1111656 1111684 "GROUP" 1111887 T GROUP (NIL) -9 NIL 1112021 NIL) (-484 1110605 1110764 1111015 "GROUP-" 1111020 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1108972 1109293 1109680 "GROEBSOL" 1110282 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1107886 1108174 1108225 "GRMOD" 1108754 NIL GRMOD (NIL T T) -9 NIL 1108922 NIL) (-481 1107654 1107690 1107818 "GRMOD-" 1107823 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1102944 1104008 1105008 "GRIMAGE" 1106674 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1101410 1101671 1101995 "GRDEF" 1102640 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1100854 1100970 1101111 "GRAY" 1101289 T GRAY (NIL) -7 NIL NIL NIL) (-477 1100041 1100447 1100498 "GRALG" 1100651 NIL GRALG (NIL T T) -9 NIL 1100744 NIL) (-476 1099702 1099775 1099938 "GRALG-" 1099943 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1096479 1099287 1099465 "GPOLSET" 1099609 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1095833 1095890 1096148 "GOSPER" 1096416 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1091565 1092271 1092797 "GMODPOL" 1095532 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1090570 1090754 1090992 "GHENSEL" 1091377 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1084726 1085569 1086589 "GENUPS" 1089654 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1084423 1084474 1084563 "GENUFACT" 1084669 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1083835 1083912 1084077 "GENPGCD" 1084341 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1083309 1083344 1083557 "GENMFACT" 1083794 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1081875 1082132 1082439 "GENEEZ" 1083052 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1075934 1081486 1081648 "GDMP" 1081798 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1065277 1069705 1070811 "GCNAALG" 1074917 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1063604 1064466 1064494 "GCDDOM" 1064749 T GCDDOM (NIL) -9 NIL 1064906 NIL) (-463 1063074 1063201 1063416 "GCDDOM-" 1063421 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1061746 1061931 1062235 "GB" 1062853 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1050362 1052692 1055084 "GBINTERN" 1059437 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1048199 1048491 1048912 "GBF" 1050037 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1046980 1047145 1047412 "GBEUCLID" 1048015 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1046329 1046454 1046603 "GAUSSFAC" 1046851 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1044696 1044998 1045312 "GALUTIL" 1046048 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1043004 1043278 1043602 "GALPOLYU" 1044423 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1040369 1040659 1041066 "GALFACTU" 1042701 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1032175 1033674 1035282 "GALFACT" 1038801 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1029563 1030221 1030249 "FVFUN" 1031405 T FVFUN (NIL) -9 NIL 1032125 NIL) (-452 1028829 1029011 1029039 "FVC" 1029330 T FVC (NIL) -9 NIL 1029513 NIL) (-451 1028472 1028654 1028722 "FUNDESC" 1028781 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1028087 1028269 1028350 "FUNCTION" 1028424 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1025831 1026409 1026875 "FT" 1027641 T FT (NIL) -8 NIL NIL NIL) (-448 1024622 1025132 1025335 "FTEM" 1025648 T FTEM (NIL) -8 NIL NIL NIL) (-447 1022913 1023202 1023599 "FSUPFACT" 1024313 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1021310 1021599 1021931 "FST" 1022601 T FST (NIL) -8 NIL NIL NIL) (-445 1020509 1020615 1020803 "FSRED" 1021192 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1019208 1019464 1019811 "FSPRMELT" 1020224 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1016514 1016952 1017438 "FSPECF" 1018771 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 997816 1006288 1006329 "FS" 1010213 NIL FS (NIL T) -9 NIL 1012502 NIL) (-441 986459 989452 993509 "FS-" 993809 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 985987 986041 986211 "FSINT" 986400 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 984279 984980 985283 "FSERIES" 985766 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 983321 983437 983661 "FSCINT" 984159 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 979529 982265 982306 "FSAGG" 982676 NIL FSAGG (NIL T) -9 NIL 982935 NIL) (-436 977291 977892 978688 "FSAGG-" 978783 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 976333 976476 976703 "FSAGG2" 977144 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 974011 974291 974839 "FS2UPS" 976051 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 973645 973688 973817 "FS2" 973962 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 972523 972694 972996 "FS2EXPXP" 973470 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 971949 972064 972216 "FRUTIL" 972403 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 963362 967444 968802 "FR" 970623 NIL FR (NIL T) -8 NIL NIL NIL) (-429 958376 961051 961091 "FRNAALG" 962411 NIL FRNAALG (NIL T) -9 NIL 963009 NIL) (-428 954049 955125 956400 "FRNAALG-" 957150 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 953687 953730 953857 "FRNAAF2" 954000 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 952062 952536 952832 "FRMOD" 953499 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 949805 950437 950755 "FRIDEAL" 951853 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 948996 949083 949374 "FRIDEAL2" 949712 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 948129 948543 948584 "FRETRCT" 948589 NIL FRETRCT (NIL T) -9 NIL 948765 NIL) (-422 947241 947472 947823 "FRETRCT-" 947828 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 944329 945539 945598 "FRAMALG" 946480 NIL FRAMALG (NIL T T) -9 NIL 946772 NIL) (-420 942463 942918 943548 "FRAMALG-" 943771 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 936293 941936 942213 "FRAC" 942218 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 935929 935986 936093 "FRAC2" 936230 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 935565 935622 935729 "FR2" 935866 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 930078 932971 932999 "FPS" 934118 T FPS (NIL) -9 NIL 934675 NIL) (-415 929527 929636 929800 "FPS-" 929946 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 926829 928498 928526 "FPC" 928751 T FPC (NIL) -9 NIL 928893 NIL) (-413 926622 926662 926759 "FPC-" 926764 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 925412 926110 926151 "FPATMAB" 926156 NIL FPATMAB (NIL T) -9 NIL 926308 NIL) (-411 923651 924154 924501 "FPARFRAC" 925128 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 919045 919543 920225 "FORTRAN" 923083 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 916761 917261 917800 "FORT" 918526 T FORT (NIL) -7 NIL NIL NIL) (-408 914437 914999 915027 "FORTFN" 916087 T FORTFN (NIL) -9 NIL 916711 NIL) (-407 914201 914251 914279 "FORTCAT" 914338 T FORTCAT (NIL) -9 NIL 914400 NIL) (-406 912307 912817 913207 "FORMULA" 913831 T FORMULA (NIL) -8 NIL NIL NIL) (-405 912095 912125 912194 "FORMULA1" 912271 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 911618 911670 911843 "FORDER" 912037 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 910714 910878 911071 "FOP" 911445 T FOP (NIL) -7 NIL NIL NIL) (-402 909295 909994 910168 "FNLA" 910596 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 908024 908439 908467 "FNCAT" 908927 T FNCAT (NIL) -9 NIL 909187 NIL) (-400 907563 907983 908011 "FNAME" 908016 T FNAME (NIL) -8 NIL NIL NIL) (-399 906126 907089 907117 "FMTC" 907122 T FMTC (NIL) -9 NIL 907158 NIL) (-398 904872 906062 906108 "FMONOID" 906113 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 901700 902868 902909 "FMONCAT" 904126 NIL FMONCAT (NIL T) -9 NIL 904731 NIL) (-396 900892 901442 901591 "FM" 901596 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 898316 898962 898990 "FMFUN" 900134 T FMFUN (NIL) -9 NIL 900842 NIL) (-394 897585 897766 897794 "FMC" 898084 T FMC (NIL) -9 NIL 898266 NIL) (-393 894664 895524 895578 "FMCAT" 896773 NIL FMCAT (NIL T T) -9 NIL 897268 NIL) (-392 893530 894430 894530 "FM1" 894609 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 891304 891720 892214 "FLOATRP" 893081 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 884882 889033 889654 "FLOAT" 890703 T FLOAT (NIL) -8 NIL NIL NIL) (-389 882320 882820 883398 "FLOATCP" 884349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 881167 881926 881967 "FLINEXP" 881972 NIL FLINEXP (NIL T) -9 NIL 882065 NIL) (-387 880099 880396 880804 "FLINEXP-" 880809 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 879175 879319 879543 "FLASORT" 879951 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 876291 877159 877211 "FLALG" 878438 NIL FLALG (NIL T T) -9 NIL 878905 NIL) (-384 869995 873747 873788 "FLAGG" 875050 NIL FLAGG (NIL T) -9 NIL 875702 NIL) (-383 868721 869060 869550 "FLAGG-" 869555 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 867763 867906 868133 "FLAGG2" 868574 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 864614 865622 865681 "FINRALG" 866809 NIL FINRALG (NIL T T) -9 NIL 867317 NIL) (-380 863774 864003 864342 "FINRALG-" 864347 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 863154 863393 863421 "FINITE" 863617 T FINITE (NIL) -9 NIL 863724 NIL) (-378 855511 857698 857738 "FINAALG" 861405 NIL FINAALG (NIL T) -9 NIL 862858 NIL) (-377 850843 851893 853037 "FINAALG-" 854416 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 850211 850598 850701 "FILE" 850773 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 848869 849207 849261 "FILECAT" 849945 NIL FILECAT (NIL T T) -9 NIL 850161 NIL) (-374 846585 848113 848141 "FIELD" 848181 T FIELD (NIL) -9 NIL 848261 NIL) (-373 845205 845590 846101 "FIELD-" 846106 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 843055 843840 844187 "FGROUP" 844891 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 842145 842309 842529 "FGLMICPK" 842887 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 837977 842070 842127 "FFX" 842132 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 837578 837639 837774 "FFSLPE" 837910 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 833568 834350 835146 "FFPOLY" 836814 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 833072 833108 833317 "FFPOLY2" 833526 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 828918 832991 833054 "FFP" 833059 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 824316 828829 828893 "FF" 828898 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 819442 823659 823849 "FFNBX" 824170 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 814370 818577 818835 "FFNBP" 819296 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 809003 813654 813865 "FFNB" 814203 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 807835 808033 808348 "FFINTBAS" 808800 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 803861 806082 806110 "FFIELDC" 806730 T FFIELDC (NIL) -9 NIL 807106 NIL) (-359 802523 802894 803391 "FFIELDC-" 803396 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 802092 802138 802262 "FFHOM" 802465 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 799787 800274 800791 "FFF" 801607 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 795405 799529 799630 "FFCGX" 799730 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 791027 795137 795244 "FFCGP" 795348 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 786210 790754 790862 "FFCG" 790963 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 765891 775886 775972 "FFCAT" 781137 NIL FFCAT (NIL T T T) -9 NIL 782588 NIL) (-352 761088 762136 763450 "FFCAT-" 764680 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 760499 760542 760777 "FFCAT2" 761039 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 749822 753471 754691 "FEXPR" 759351 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 748784 749219 749260 "FEVALAB" 749344 NIL FEVALAB (NIL T) -9 NIL 749605 NIL) (-348 747943 748153 748491 "FEVALAB-" 748496 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 746509 747326 747529 "FDIV" 747842 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 743529 744270 744385 "FDIVCAT" 745953 NIL FDIVCAT (NIL T T T T) -9 NIL 746390 NIL) (-345 743291 743318 743488 "FDIVCAT-" 743493 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 742511 742598 742875 "FDIV2" 743198 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 741485 741806 742008 "FCTRDATA" 742329 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 740171 740430 740719 "FCPAK1" 741216 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 739270 739671 739812 "FCOMP" 740062 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 722975 726420 729958 "FC" 735752 T FC (NIL) -8 NIL NIL NIL) (-339 715254 719282 719322 "FAXF" 721124 NIL FAXF (NIL T) -9 NIL 721816 NIL) (-338 712531 713188 714013 "FAXF-" 714478 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 707583 711907 712083 "FARRAY" 712388 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 702477 704544 704597 "FAMR" 705620 NIL FAMR (NIL T T) -9 NIL 706080 NIL) (-335 701367 701669 702104 "FAMR-" 702109 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 700536 701289 701342 "FAMONOID" 701347 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 698322 699032 699085 "FAMONC" 700026 NIL FAMONC (NIL T T) -9 NIL 700412 NIL) (-332 696986 698076 698213 "FAGROUP" 698218 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 694781 695100 695503 "FACUTIL" 696667 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 693880 694065 694287 "FACTFUNC" 694591 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 686302 693183 693382 "EXPUPXS" 693736 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 683785 684325 684911 "EXPRTUBE" 685736 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 680056 680648 681378 "EXPRODE" 683124 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 665775 678705 679134 "EXPR" 679660 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 660329 660916 661722 "EXPR2UPS" 665073 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 659961 660018 660127 "EXPR2" 660266 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 651214 659112 659403 "EXPEXPAN" 659797 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 651014 651171 651200 "EXIT" 651205 T EXIT (NIL) -8 NIL NIL NIL) (-321 650494 650738 650829 "EXITAST" 650943 T EXITAST (NIL) -8 NIL NIL NIL) (-320 650121 650183 650296 "EVALCYC" 650426 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 649662 649780 649821 "EVALAB" 649991 NIL EVALAB (NIL T) -9 NIL 650095 NIL) (-318 649143 649265 649486 "EVALAB-" 649491 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 646511 647813 647841 "EUCDOM" 648396 T EUCDOM (NIL) -9 NIL 648746 NIL) (-316 644916 645358 645948 "EUCDOM-" 645953 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 632455 635214 637964 "ESTOOLS" 642186 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 632087 632144 632253 "ESTOOLS2" 632392 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 631838 631880 631960 "ESTOOLS1" 632039 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 625875 627483 627511 "ES" 630279 T ES (NIL) -9 NIL 631689 NIL) (-311 620822 622109 623926 "ES-" 624090 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 617196 617957 618737 "ESCONT" 620062 T ESCONT (NIL) -7 NIL NIL NIL) (-309 616941 616973 617055 "ESCONT1" 617158 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 616616 616666 616766 "ES2" 616885 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 616246 616304 616413 "ES1" 616552 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 615462 615591 615767 "ERROR" 616090 T ERROR (NIL) -7 NIL NIL NIL) (-305 608854 615321 615412 "EQTBL" 615417 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 601357 604168 605617 "EQ" 607438 NIL -3066 (NIL T) -8 NIL NIL NIL) (-303 600989 601046 601155 "EQ2" 601294 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 596280 597327 598420 "EP" 599928 NIL EP (NIL T) -7 NIL NIL NIL) (-301 594880 595171 595477 "ENV" 595994 T ENV (NIL) -8 NIL NIL NIL) (-300 593974 594528 594556 "ENTIRER" 594561 T ENTIRER (NIL) -9 NIL 594607 NIL) (-299 590668 592156 592517 "EMR" 593782 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 589798 589983 590037 "ELTAGG" 590417 NIL ELTAGG (NIL T T) -9 NIL 590628 NIL) (-297 589517 589579 589720 "ELTAGG-" 589725 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 589281 589310 589364 "ELTAB" 589448 NIL ELTAB (NIL T T) -9 NIL 589500 NIL) (-295 588407 588553 588752 "ELFUTS" 589132 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 588149 588205 588233 "ELEMFUN" 588338 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 588019 588040 588108 "ELEMFUN-" 588113 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 582833 586089 586130 "ELAGG" 587070 NIL ELAGG (NIL T) -9 NIL 587533 NIL) (-291 581118 581552 582215 "ELAGG-" 582220 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 580430 580567 580723 "ELABOR" 580982 T ELABOR (NIL) -8 NIL NIL NIL) (-289 579091 579370 579664 "ELABEXPR" 580156 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 571925 573728 574557 "EFUPXS" 578366 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 565373 567174 567985 "EFULS" 571200 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 562858 563216 563688 "EFSTRUC" 565005 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 552649 554215 555763 "EF" 561373 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 551723 552134 552283 "EAB" 552520 T EAB (NIL) -8 NIL NIL NIL) (-283 550905 551682 551710 "E04UCFA" 551715 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 550087 550864 550892 "E04NAFA" 550897 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 549269 550046 550074 "E04MBFA" 550079 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 548451 549228 549256 "E04JAFA" 549261 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 547635 548410 548438 "E04GCFA" 548443 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 546819 547594 547622 "E04FDFA" 547627 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 546001 546778 546806 "E04DGFA" 546811 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 540174 541526 542890 "E04AGNT" 544657 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 538945 539488 539528 "DVARCAT" 539869 NIL DVARCAT (NIL T) -9 NIL 540032 NIL) (-274 538149 538361 538675 "DVARCAT-" 538680 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 531197 537948 538077 "DSMP" 538082 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 529620 530339 530380 "DSEXT" 530743 NIL DSEXT (NIL T) -9 NIL 531037 NIL) (-271 527905 528333 528999 "DSEXT-" 529004 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 522686 523850 524918 "DROPT" 526857 T DROPT (NIL) -8 NIL NIL NIL) (-269 522351 522410 522508 "DROPT1" 522621 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 517466 518592 519729 "DROPT0" 521234 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 515811 516136 516522 "DRAWPT" 517100 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 510398 511321 512400 "DRAW" 514785 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 510031 510084 510202 "DRAWHACK" 510339 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 508762 509031 509322 "DRAWCX" 509760 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 508277 508346 508497 "DRAWCURV" 508688 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 498745 500707 502822 "DRAWCFUN" 506182 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 495509 497438 497479 "DQAGG" 498108 NIL DQAGG (NIL T) -9 NIL 498382 NIL) (-260 483161 489720 489803 "DPOLCAT" 491655 NIL DPOLCAT (NIL T T T T) -9 NIL 492200 NIL) (-259 477998 479346 481304 "DPOLCAT-" 481309 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 471580 477859 477957 "DPMO" 477962 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 465065 471360 471527 "DPMM" 471532 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 464635 464849 464938 "DOMTMPLT" 464996 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 464068 464437 464517 "DOMCTOR" 464575 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 463280 463548 463699 "DOMAIN" 463937 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 457179 462915 463067 "DMP" 463181 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 455124 456246 456287 "DMEXT" 456292 NIL DMEXT (NIL T) -9 NIL 456468 NIL) (-251 454724 454780 454924 "DLP" 455062 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 448546 454051 454241 "DLIST" 454566 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 445343 447399 447440 "DLAGG" 447990 NIL DLAGG (NIL T) -9 NIL 448220 NIL) (-248 444019 444683 444711 "DIVRING" 444803 T DIVRING (NIL) -9 NIL 444886 NIL) (-247 443256 443446 443746 "DIVRING-" 443751 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 441358 441715 442121 "DISPLAY" 442870 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 435397 441272 441335 "DIRPROD" 441340 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 434245 434448 434713 "DIRPROD2" 435190 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 423173 429031 429084 "DIRPCAT" 429342 NIL DIRPCAT (NIL NIL T) -9 NIL 430217 NIL) (-242 420277 420981 421942 "DIRPCAT-" 422279 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 419564 419724 419910 "DIOSP" 420111 T DIOSP (NIL) -7 NIL NIL NIL) (-240 416219 418476 418517 "DIOPS" 418951 NIL DIOPS (NIL T) -9 NIL 419180 NIL) (-239 415768 415882 416073 "DIOPS-" 416078 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 414819 415447 415475 "DIFRING" 415480 T DIFRING (NIL) -9 NIL 415502 NIL) (-237 414491 414565 414593 "DIFFSPC" 414712 T DIFFSPC (NIL) -9 NIL 414787 NIL) (-236 414136 414214 414366 "DIFFSPC-" 414371 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 413192 413670 413711 "DIFFMOD" 413716 NIL DIFFMOD (NIL T) -9 NIL 413814 NIL) (-234 412900 412945 412986 "DIFFDOM" 413107 NIL DIFFDOM (NIL T) -9 NIL 413175 NIL) (-233 412753 412777 412861 "DIFFDOM-" 412866 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 410685 411957 411998 "DIFEXT" 412003 NIL DIFEXT (NIL T) -9 NIL 412156 NIL) (-231 407960 410217 410258 "DIAGG" 410263 NIL DIAGG (NIL T) -9 NIL 410283 NIL) (-230 407344 407501 407753 "DIAGG-" 407758 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 402761 406303 406580 "DHMATRIX" 407113 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 398373 399282 400292 "DFSFUN" 401771 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 393453 397304 397616 "DFLOAT" 398081 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 391716 391997 392386 "DFINTTLS" 393161 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 388745 389737 390137 "DERHAM" 391382 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 386546 388520 388609 "DEQUEUE" 388689 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 385800 385933 386116 "DEGRED" 386408 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 382230 382975 383821 "DEFINTRF" 385028 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 379785 380254 380846 "DEFINTEF" 381749 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 379135 379405 379520 "DEFAST" 379690 T DEFAST (NIL) -8 NIL NIL NIL) (-219 373044 378728 378878 "DECIMAL" 379005 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 370556 371014 371520 "DDFACT" 372588 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 370152 370195 370346 "DBLRESP" 370507 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 368020 368382 368743 "DBASE" 369918 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 367262 367500 367646 "DATAARY" 367919 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 366368 367221 367249 "D03FAFA" 367254 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 365475 366327 366355 "D03EEFA" 366360 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 363425 363891 364380 "D03AGNT" 365006 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 362714 363384 363412 "D02EJFA" 363417 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 362003 362673 362701 "D02CJFA" 362706 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 361292 361962 361990 "D02BHFA" 361995 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 360581 361251 361279 "D02BBFA" 361284 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 353778 355367 356973 "D02AGNT" 358995 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 351546 352069 352615 "D01WGTS" 353252 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 350613 351505 351533 "D01TRNS" 351538 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 349681 350572 350600 "D01GBFA" 350605 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 348749 349640 349668 "D01FCFA" 349673 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 347817 348708 348736 "D01ASFA" 348741 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 346885 347776 347804 "D01AQFA" 347809 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 345953 346844 346872 "D01APFA" 346877 T D01APFA (NIL) -8 NIL NIL NIL) (-199 345021 345912 345940 "D01ANFA" 345945 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 344089 344980 345008 "D01AMFA" 345013 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 343157 344048 344076 "D01ALFA" 344081 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 342225 343116 343144 "D01AKFA" 343149 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 341293 342184 342212 "D01AJFA" 342217 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 334588 336141 337702 "D01AGNT" 339752 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 333925 334053 334205 "CYCLOTOM" 334456 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 330658 331373 332100 "CYCLES" 333218 T CYCLES (NIL) -7 NIL NIL NIL) (-191 329970 330104 330275 "CVMP" 330519 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 327811 328069 328438 "CTRIGMNP" 329698 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 327247 327605 327678 "CTOR" 327758 T CTOR (NIL) -8 NIL NIL NIL) (-188 326756 326978 327079 "CTORKIND" 327166 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 326047 326363 326391 "CTORCAT" 326573 T CTORCAT (NIL) -9 NIL 326686 NIL) (-186 325645 325756 325915 "CTORCAT-" 325920 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 325107 325319 325427 "CTORCALL" 325569 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 324481 324580 324733 "CSTTOOLS" 325004 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 320280 320937 321695 "CRFP" 323793 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 319755 320001 320093 "CRCEAST" 320208 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 318802 318987 319215 "CRAPACK" 319559 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 318186 318287 318491 "CPMATCH" 318678 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 317911 317939 318045 "CPIMA" 318152 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 314259 314931 315650 "COORDSYS" 317246 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 313671 313792 313934 "CONTOUR" 314137 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 309562 311674 312166 "CONTFRAC" 313211 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 309442 309463 309491 "CONDUIT" 309528 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 308530 309084 309112 "COMRING" 309117 T COMRING (NIL) -9 NIL 309169 NIL) (-173 307584 307888 308072 "COMPPROP" 308366 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 307245 307280 307408 "COMPLPAT" 307543 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 296735 307054 307163 "COMPLEX" 307168 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 296371 296428 296535 "COMPLEX2" 296672 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 295710 295831 295991 "COMPILER" 296231 T COMPILER (NIL) -8 NIL NIL NIL) (-168 295428 295463 295561 "COMPFACT" 295669 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 277894 289132 289172 "COMPCAT" 290176 NIL COMPCAT (NIL T) -9 NIL 291524 NIL) (-166 267184 270173 273880 "COMPCAT-" 274236 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 266913 266941 267044 "COMMUPC" 267150 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 266707 266741 266800 "COMMONOP" 266874 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 266263 266458 266545 "COMM" 266640 T COMM (NIL) -8 NIL NIL NIL) (-162 265839 266067 266142 "COMMAAST" 266208 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 265088 265282 265310 "COMBOPC" 265648 T COMBOPC (NIL) -9 NIL 265823 NIL) (-160 263984 264194 264436 "COMBINAT" 264878 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 260441 261015 261642 "COMBF" 263406 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 259199 259557 259792 "COLOR" 260226 T COLOR (NIL) -8 NIL NIL NIL) (-157 258675 258920 259012 "COLONAST" 259127 T COLONAST (NIL) -8 NIL NIL NIL) (-156 258315 258362 258487 "CMPLXRT" 258622 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 257763 258015 258114 "CLLCTAST" 258236 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 253265 254293 255373 "CLIP" 256703 T CLIP (NIL) -7 NIL NIL NIL) (-153 251606 252366 252606 "CLIF" 253092 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 247781 249752 249793 "CLAGG" 250722 NIL CLAGG (NIL T) -9 NIL 251258 NIL) (-151 246203 246660 247243 "CLAGG-" 247248 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 245747 245832 245972 "CINTSLPE" 246112 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 243248 243719 244267 "CHVAR" 245275 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 242422 242976 243004 "CHARZ" 243009 T CHARZ (NIL) -9 NIL 243024 NIL) (-147 242176 242216 242294 "CHARPOL" 242376 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 241234 241821 241849 "CHARNZ" 241896 T CHARNZ (NIL) -9 NIL 241952 NIL) (-145 239140 239888 240241 "CHAR" 240901 T CHAR (NIL) -8 NIL NIL NIL) (-144 238866 238927 238955 "CFCAT" 239066 T CFCAT (NIL) -9 NIL NIL NIL) (-143 238107 238218 238401 "CDEN" 238750 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 234072 237260 237540 "CCLASS" 237847 T CCLASS (NIL) -8 NIL NIL NIL) (-141 233323 233480 233657 "CATEGORY" 233915 T -10 (NIL) -8 NIL NIL NIL) (-140 232896 233242 233290 "CATCTOR" 233295 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 232347 232599 232697 "CATAST" 232818 T CATAST (NIL) -8 NIL NIL NIL) (-138 231823 232068 232160 "CASEAST" 232275 T CASEAST (NIL) -8 NIL NIL NIL) (-137 226961 227980 228724 "CARTEN" 231135 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 226069 226217 226438 "CARTEN2" 226808 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 224385 225219 225476 "CARD" 225832 T CARD (NIL) -8 NIL NIL NIL) (-134 223961 224189 224264 "CAPSLAST" 224330 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 223465 223673 223701 "CACHSET" 223833 T CACHSET (NIL) -9 NIL 223911 NIL) (-132 222935 223257 223285 "CABMON" 223335 T CABMON (NIL) -9 NIL 223391 NIL) (-131 222408 222639 222749 "BYTEORD" 222845 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 221385 221937 222079 "BYTE" 222242 T BYTE (NIL) -8 NIL NIL 222364) (-129 216735 220890 221062 "BYTEBUF" 221233 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214244 216427 216534 "BTREE" 216661 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 211693 213892 214014 "BTOURN" 214154 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 209063 211163 211204 "BTCAT" 211272 NIL BTCAT (NIL T) -9 NIL 211349 NIL) (-125 208730 208810 208959 "BTCAT-" 208964 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 204109 207989 208017 "BTAGG" 208131 T BTAGG (NIL) -9 NIL 208241 NIL) (-123 203599 203724 203930 "BTAGG-" 203935 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 200594 202877 203092 "BSTREE" 203416 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 199732 199858 200042 "BRILL" 200450 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 196384 198458 198499 "BRAGG" 199148 NIL BRAGG (NIL T) -9 NIL 199406 NIL) (-119 194913 195319 195874 "BRAGG-" 195879 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 188037 194257 194442 "BPADICRT" 194760 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 186352 187974 188019 "BPADIC" 188024 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 186050 186080 186194 "BOUNDZRO" 186316 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 181278 182476 183388 "BOP" 185158 T BOP (NIL) -8 NIL NIL NIL) (-114 179059 179463 179938 "BOP1" 180836 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 178760 178821 178849 "BOOLE" 178960 T BOOLE (NIL) -9 NIL 179042 NIL) (-112 177585 178334 178483 "BOOLEAN" 178631 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 176864 177268 177322 "BMODULE" 177327 NIL BMODULE (NIL T T) -9 NIL 177392 NIL) (-110 172665 176662 176735 "BITS" 176811 T BITS (NIL) -8 NIL NIL NIL) (-109 172086 172205 172345 "BINDING" 172545 T BINDING (NIL) -8 NIL NIL NIL) (-108 165998 171681 171830 "BINARY" 171957 T BINARY (NIL) -8 NIL NIL NIL) (-107 163778 165253 165294 "BGAGG" 165554 NIL BGAGG (NIL T) -9 NIL 165691 NIL) (-106 163609 163641 163732 "BGAGG-" 163737 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 162680 162993 163198 "BFUNCT" 163424 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 161370 161548 161836 "BEZOUT" 162504 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 157839 160222 160552 "BBTREE" 161073 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 157573 157626 157654 "BASTYPE" 157773 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 157425 157454 157527 "BASTYPE-" 157532 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 156859 156935 157087 "BALFACT" 157336 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 155715 156274 156460 "AUTOMOR" 156704 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 155441 155446 155472 "ATTREG" 155477 T ATTREG (NIL) -9 NIL NIL NIL) (-97 153693 154138 154490 "ATTRBUT" 155107 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 153301 153521 153587 "ATTRAST" 153645 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 152837 152950 152976 "ATRIG" 153177 T ATRIG (NIL) -9 NIL NIL NIL) (-94 152646 152687 152774 "ATRIG-" 152779 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 152291 152477 152503 "ASTCAT" 152508 T ASTCAT (NIL) -9 NIL 152538 NIL) (-92 152018 152077 152196 "ASTCAT-" 152201 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 150167 151794 151882 "ASTACK" 151961 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 148672 148969 149334 "ASSOCEQ" 149849 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 147704 148331 148455 "ASP9" 148579 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 147467 147652 147691 "ASP8" 147696 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 146335 147072 147214 "ASP80" 147356 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 145233 145970 146102 "ASP7" 146234 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 144187 144910 145028 "ASP78" 145146 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 143156 143867 143984 "ASP77" 144101 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 142068 142794 142925 "ASP74" 143056 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 140968 141703 141835 "ASP73" 141967 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 140072 140794 140894 "ASP6" 140899 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139019 139749 139867 "ASP55" 139985 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 137968 138693 138812 "ASP50" 138931 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 137056 137669 137779 "ASP4" 137889 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 136144 136757 136867 "ASP49" 136977 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 134928 135683 135851 "ASP42" 136033 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 133705 134461 134631 "ASP41" 134815 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 132655 133382 133500 "ASP35" 133618 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 132420 132603 132642 "ASP34" 132647 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 132157 132224 132300 "ASP33" 132375 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 131051 131792 131924 "ASP31" 132056 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 130816 130999 131038 "ASP30" 131043 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 130551 130620 130696 "ASP29" 130771 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 130316 130499 130538 "ASP28" 130543 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 130081 130264 130303 "ASP27" 130308 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 129165 129779 129890 "ASP24" 130001 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 128242 128967 129079 "ASP20" 129084 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 127330 127943 128053 "ASP1" 128163 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 126273 127004 127123 "ASP19" 127242 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126010 126077 126153 "ASP12" 126228 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 124862 125609 125753 "ASP10" 125897 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 122713 124706 124797 "ARRAY2" 124802 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 118478 122361 122475 "ARRAY1" 122630 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 117510 117683 117904 "ARRAY12" 118301 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 111822 113740 113815 "ARR2CAT" 116445 NIL ARR2CAT (NIL T T T) -9 NIL 117203 NIL) (-56 109256 110000 110954 "ARR2CAT-" 110959 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 108573 108883 109008 "ARITY" 109149 T ARITY (NIL) -8 NIL NIL NIL) (-54 107349 107501 107800 "APPRULE" 108409 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107000 107048 107167 "APPLYORE" 107295 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 106354 106593 106713 "ANY" 106898 T ANY (NIL) -8 NIL NIL NIL) (-51 105632 105755 105912 "ANY1" 106228 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 103162 104069 104396 "ANTISYM" 105356 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 102654 102869 102965 "ANON" 103084 T ANON (NIL) -8 NIL NIL NIL) (-48 96832 101193 101647 "AN" 102218 T AN (NIL) -8 NIL NIL NIL) (-47 92730 94118 94169 "AMR" 94917 NIL AMR (NIL T T) -9 NIL 95517 NIL) (-46 91842 92063 92426 "AMR-" 92431 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 76281 91759 91820 "ALIST" 91825 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73086 75875 76044 "ALGSC" 76199 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 69642 70196 70803 "ALGPKG" 72526 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 68919 69020 69204 "ALGMFACT" 69528 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 64954 65533 66127 "ALGMANIP" 68503 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55373 64580 64730 "ALGFF" 64887 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54569 54700 54879 "ALGFACT" 55231 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53510 54110 54148 "ALGEBRA" 54153 NIL ALGEBRA (NIL T) -9 NIL 54194 NIL) (-37 53228 53287 53419 "ALGEBRA-" 53424 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35291 51200 51252 "ALAGG" 51388 NIL ALAGG (NIL T T) -9 NIL 51549 NIL) (-35 34827 34940 34966 "AHYP" 35167 T AHYP (NIL) -9 NIL NIL NIL) (-34 33758 34006 34032 "AGG" 34531 T AGG (NIL) -9 NIL 34810 NIL) (-33 33192 33354 33568 "AGG-" 33573 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30998 31421 31826 "AF" 32834 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30478 30723 30813 "ADDAST" 30926 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29746 30005 30161 "ACPLOT" 30340 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26678 26716 "ACFS" 27323 NIL ACFS (NIL T) -9 NIL 27562 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 1e83b5e7..1f2f3f68 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,6969 +1,6412 @@
-(731300 . 3485856134)
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-833)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1197))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290))
- (-5 *1 (-1197))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1290))
- (-5 *1 (-1197)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2882 ($ *7)))))
- (-4 *7 (-859))
- (-4 *8
- (-13 (-1263 *3 *7) (-373) (-1220)
- (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))))
- (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8))
- (-14 *10 (-1194)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1055 (-575))) (-4 *3 (-567)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-441 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1190 *4)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1066)) (-4 *1 (-311))))
- ((*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3))))
- ((*1 *2) (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3))))
+(731328 . 3485863923)
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))
((*1 *2 *1)
- (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373)))
- (-4 *2 (-1261 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575))
- (-5 *2 (-1052)) (-5 *1 (-767)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373))
- (-5 *2
- (-2 (|:| |ir| (-597 (-418 *6))) (|:| |specpart| (-418 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-373)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066))
- (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3))
- (-4 *3 (-863 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-830 *3))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068))
+ (-14 *4 (-656 (-1196)))))
((*1 *2 *1)
- (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066)))))
-(((*1 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290))
- (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290))
- (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-694 *4 *3)) (-4 *4 (-1117))
- (-4 *3 (-1117)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885)))
- (-5 *1 (-479)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-418 (-575))))
- (-5 *2 (-2 (|:| -3759 (-1174 *4)) (|:| -3772 (-1174 *4))))
- (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862)))
+ (-14 *4 (-656 (-1196)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862))
+ (-4 *8 (-966 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1068))
+ (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-1263 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *2 (-804))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1278 *3))
+ (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-783)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-656 (-1192 *13))) (-5 *3 (-1192 *13))
+ (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13))
+ (-5 *7 (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| *13)))))
+ (-5 *8 (-656 (-783))) (-5 *9 (-1287 (-656 (-1192 *10))))
+ (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-966 *10 *11 *12))
+ (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))))
+(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))))
+(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112))
+ (-5 *1 (-368 *4)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1178))
+ (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3))
+ (-4 *3 (-626 (-548)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227) (-227)))
+ (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1245))) (-5 *3 (-1245)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1054)) (-5 *1 (-765)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575))
+ (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))
(-14 *4 *2) (-4 *5 (-174))))
((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-936)) (-5 *1 (-166 *3 *4))
+ (-12 (-4 *4 (-174)) (-5 *2 (-938)) (-5 *1 (-166 *3 *4))
(-4 *3 (-167 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-936))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-938))))
((*1 *2)
- (-12 (-4 *1 (-380 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3))
- (-5 *2 (-936))))
+ (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3))
+ (-5 *2 (-938))))
((*1 *2 *3)
- (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))
- (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6))))
+ (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373))
- (-5 *2 (-782)) (-5 *1 (-678 *5))))
+ (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374))
+ (-5 *2 (-783)) (-5 *1 (-679 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461))))
- (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-782))
- (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4))))
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463))))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-783))
+ (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783))))
((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3))
- (-4 *3 (-698 *4 *5 *6))))
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567))
- (-5 *2 (-782)))))
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568))
+ (-5 *2 (-783)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1068)) (-4 *2 (-1263 *4))
+ (-5 *1 (-456 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1287 (-326 *5)))
+ (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1149 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-166 *3 *4))
- (-4 *3 (-167 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782))
- (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-440 *3 *4))
- (-4 *3 (-441 *4))))
- ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-555 *3)) (-4 *3 (-556))))
- ((*1 *2) (-12 (-4 *1 (-774)) (-5 *2 (-782))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-807 *3 *4))
- (-4 *3 (-808 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-1008 *3 *4))
- (-4 *3 (-1009 *4))))
+ (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5)))
+ (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-782)) (-5 *1 (-1013 *3 *4))
- (-4 *3 (-1014 *4))))
- ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1028 *3)) (-4 *3 (-1029))))
- ((*1 *2) (-12 (-4 *1 (-1066)) (-5 *2 (-782))))
- ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-1076 *3)) (-4 *3 (-1077)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-316)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4)) (-4 *6 (-1261 *5))
- (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7))
- (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112))
- (-5 *1 (-926 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6))
- (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4)))
- (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-927 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-316))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068))))
((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1117))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-396 *3))))
+ (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 (-938))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5))
+ (-14 *4 (-938)) (-14 *5 (-1012 *4 *2))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3262 (-782)) (|:| -4041 (-782))))
- (-5 *1 (-782))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-714 *3))
- (-4 *3 (-625 (-547)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1194)) (-5 *2 (-1 (-227) (-227) (-227)))
- (-5 *1 (-714 *3)) (-4 *3 (-625 (-547))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25))))))
+ (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4))
+ (-4 *4 (-1263 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5))
+ (-4 *4 (-1068)) (-4 *5 (-862))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068))
+ (-4 *2 (-862))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6))
+ (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *2 (-862))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *2 (-966 *4 (-543 *5) *5))
+ (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-862))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-969 *4)) (-5 *1 (-1231 *4))
+ (-4 *4 (-1068)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-115)) (-5 *4 (-783))
+ (-4 *5 (-13 (-464) (-1057 (-576)))) (-4 *5 (-568))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *5 (-624 $)) $))
+ (-15 -1635 ((-1144 *5 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *5 (-624 $))))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4))
- (-5 *1 (-539 *4)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3))
- (-4 *3 (-1117)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))))
+ (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3))
+ (-4 *3 (-384 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3))
+ (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-568))
+ (-5 *1 (-705 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-1256 *2 *4 *3))
+ (-4 *3 (-1263 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1019 *3)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237))
+ (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))))
((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194)))))
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196)))))
((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861)))
- (-14 *3 (-655 (-1194)))))
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862)))
+ (-14 *3 (-656 (-1196)))))
((*1 *1 *1)
- (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117))))
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119))))
((*1 *1 *1)
- (-12 (-14 *2 (-655 (-1194))) (-4 *3 (-174))
- (-4 *5 (-243 (-2869 *2) (-782)))
+ (-12 (-14 *2 (-656 (-1196))) (-4 *3 (-174))
+ (-4 *5 (-243 (-2845 *2) (-783)))
(-14 *6
- (-1 (-112) (-2 (|:| -4317 *4) (|:| -1658 *5))
- (-2 (|:| -4317 *4) (|:| -1658 *5))))
- (-5 *1 (-472 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861))
- (-4 *7 (-964 *3 *5 (-875 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861))))
+ (-1 (-112) (-2 (|:| -4308 *4) (|:| -2273 *5))
+ (-2 (|:| -4308 *4) (|:| -2273 *5))))
+ (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862))
+ (-4 *7 (-966 *3 *5 (-876 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862))))
((*1 *1 *1)
- (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066))))
+ (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068))))
((*1 *1 *1)
- (-12 (-5 *1 (-746 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1066))
- (-4 *3 (-737))))
- ((*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1068))
+ (-4 *3 (-738))))
+ ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861))))
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862))))
((*1 *1 *1)
- (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))))
+ (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52))
+ (-5 *1 (-1024)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))
- (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6))
- (-4 *6 (-352 *3 *4 *5)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-575)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-429 *2)) (-4 *2 (-567)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 (-623 *5))) (-5 *3 (-1194)) (-4 *5 (-441 *4))
- (-4 *4 (-1117)) (-5 *1 (-584 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235))))
+ (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6))
+ (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-969 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6))
+ (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-701 *2)) (-5 *4 (-576))
+ (-4 *2 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 *2))
- (-14 *4 (-655 *2)) (-4 *5 (-398))))
+ (-12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2))
+ (-14 *4 (-656 *2)) (-4 *5 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 *5)) (-4 *5 (-398)) (-5 *1 (-349 *3 *4 *5))
- (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194)))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-967 (-575))) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-967 (-389))) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452))))
+ (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5))
+ (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-325 (-227)))
- (|:| -1974 (-655 (-1111 (-854 (-227)))))
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-656 (-1113 (-855 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-780))))
+ (-5 *1 (-781))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-819))))
+ (-5 *1 (-820))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227))))
- (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227))))
+ (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-655 (-325 (-227))))
- (|:| -3472 (-655 (-227)))))))
- (-5 *1 (-852))))
+ (-2 (|:| |lfn| (-656 (-326 (-227))))
+ (|:| -3448 (-656 (-227)))))))
+ (-5 *1 (-853))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-655 (-325 (-227))))
+ (-2 (|:| |pde| (-656 (-326 (-227))))
(|:| |constraints|
- (-655
+ (-656
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-782)) (|:| |boundaryType| (-575))
- (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227))))))
- (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178))
(|:| |tol| (-227))))
- (-5 *1 (-912))))
+ (-5 *1 (-913))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *1 (-993 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1055 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1237))))
((*1 *1 *2)
- (-3763
- (-12 (-5 *2 (-967 *3))
- (-12 (-3213 (-4 *3 (-38 (-418 (-575)))))
- (-3213 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)))
- (-12 (-5 *2 (-967 *3))
- (-12 (-3213 (-4 *3 (-556))) (-3213 (-4 *3 (-38 (-418 (-575)))))
- (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)))
- (-12 (-5 *2 (-967 *3))
- (-12 (-3213 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575))))
- (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)))))
+ (-3739
+ (-12 (-5 *2 (-969 *3))
+ (-12 (-3189 (-4 *3 (-38 (-419 (-576)))))
+ (-3189 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 *3))
+ (-12 (-3189 (-4 *3 (-557))) (-3189 (-4 *3 (-38 (-419 (-576)))))
+ (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 *3))
+ (-12 (-3189 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576))))
+ (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))))
((*1 *1 *2)
- (-3763
- (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5))
- (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575)))
- (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))
- (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5))
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))))
+ (-3739
+ (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5))
+ (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576)))
+ (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2)))))
+ (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-701 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5))
+ (-14 *3 (-783)) (-14 *4 (-783)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237))
+ (-14 *4 (-576)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-850))
- (-5 *3
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
- (-5 *2 (-1052))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-850))
- (-5 *3
- (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))
- (-5 *2 (-1052)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1194))) (-4 *6 (-373))
- (-5 *2 (-655 (-303 (-967 *6)))) (-5 *1 (-549 *5 *6 *7))
- (-4 *5 (-463)) (-4 *7 (-13 (-373) (-859))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052))
- (-5 *1 (-759)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-1255 *3 *2))
- (-4 *2 (-1261 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-964 *3 *4 *5)))))
+ (-12 (-5 *3 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))
+ (-5 *2 (-419 (-576))) (-5 *1 (-1039 *4)) (-4 *4 (-1263 (-576))))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1285 (-3 (-479) "undefined"))) (-5 *1 (-1286)))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1263 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5))
- (-5 *2 (-424 *4 (-418 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1285 *6)) (-4 *6 (-13 (-420 *4 *5) (-1055 *4)))
- (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *3 (-316))
- (-5 *1 (-424 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-655 *3)) (|:| |image| (-655 *3))))
- (-5 *1 (-920 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1109 (-854 *3))) (-4 *3 (-13 (-1220) (-974) (-29 *5)))
- (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1109 (-854 *3))) (-5 *5 (-1176))
- (-4 *3 (-13 (-1220) (-974) (-29 *6)))
- (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1109 (-854 (-325 *5))))
- (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1109 (-854 (-325 *6))))
- (-5 *5 (-1176))
- (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1109 (-854 (-418 (-967 *5))))) (-5 *3 (-418 (-967 *5)))
- (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (|:| |f1| (-854 (-325 *5))) (|:| |f2| (-655 (-854 (-325 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1109 (-854 (-418 (-967 *6))))) (-5 *5 (-1176))
- (-5 *3 (-418 (-967 *6)))
- (-4 *6 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (|:| |f1| (-854 (-325 *6))) (|:| |f2| (-655 (-854 (-325 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-222 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-3 *3 (-655 *3))) (-5 *1 (-439 *5 *3))
- (-4 *3 (-13 (-1220) (-974) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389))))
- (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389))))
- (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389))))
- (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576))))
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-966 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-5 *2 (-783)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-289)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-5 *1 (-1007 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-5 *1 (-1126 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1263 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-1111 (-854 (-389))))
- (-5 *2 (-1052)) (-5 *1 (-576))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389)))))
- (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389)))))
- (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389)))))
- (-5 *5 (-389)) (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-1111 (-854 (-389)))))
- (-5 *5 (-389)) (-5 *6 (-1080)) (-5 *2 (-1052)) (-5 *1 (-576))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389))))
- (-5 *5 (-1176)) (-5 *2 (-1052)) (-5 *1 (-576))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-325 (-389))) (-5 *4 (-1109 (-854 (-389))))
- (-5 *5 (-1194)) (-5 *2 (-1052)) (-5 *1 (-576))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3))
+ (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1263 (-576)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4))
- (-5 *2 (-597 (-418 *5))) (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-3 (-325 *5) (-655 (-325 *5)))) (-5 *1 (-600 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-751 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861))
- (-4 *3 (-38 (-418 (-575))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1194)) (-5 *1 (-967 *3)) (-4 *3 (-38 (-418 (-575))))
- (-4 *3 (-1066))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-4 *2 (-861))
- (-5 *1 (-1143 *3 *2 *4)) (-4 *4 (-964 *3 (-542 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066))
- (-5 *1 (-1178 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1191 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-38 (-418 (-575))))
- (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-3763
- (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066))
- (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220))
- (-4 *3 (-38 (-418 (-575))))))
- (-12 (-5 *2 (-1194)) (-4 *1 (-1245 *3)) (-4 *3 (-1066))
- (-12 (|has| *3 (-15 -1606 ((-655 *2) *3)))
- (|has| *3 (-15 -4388 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575))))))
- ((*1 *1 *1 *2)
- (-3763
- (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066))
- (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220))
- (-4 *3 (-38 (-418 (-575))))))
- (-12 (-5 *2 (-1194)) (-4 *1 (-1266 *3)) (-4 *3 (-1066))
- (-12 (|has| *3 (-15 -1606 ((-655 *2) *3)))
- (|has| *3 (-15 -4388 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1270 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3763
- (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066))
- (-12 (-4 *3 (-29 (-575))) (-4 *3 (-974)) (-4 *3 (-1220))
- (-4 *3 (-38 (-418 (-575))))))
- (-12 (-5 *2 (-1194)) (-4 *1 (-1276 *3)) (-4 *3 (-1066))
- (-12 (|has| *3 (-15 -1606 ((-655 *2) *3)))
- (|has| *3 (-15 -4388 (*3 *3 *2))) (-4 *3 (-38 (-418 (-575))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-38 (-418 (-575))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-263)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3))
+ (-4 *3 (-1263 (-419 (-576))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1287 (-656 (-2 (|:| -4160 (-927 *3)) (|:| -4308 (-1139))))))
+ (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139))))))
+ (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139))))))
+ (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068))))
((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194)))))
+ (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196)))))
((*1 *2 *1)
- (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194)))))
+ (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4))
+ (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196)))))
((*1 *2 *1)
- (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066))))
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068))))
((*1 *2 *1)
- (-12 (-14 *3 (-655 (-1194))) (-4 *5 (-243 (-2869 *3) (-782)))
+ (-12 (-14 *3 (-656 (-1196))) (-4 *5 (-243 (-2845 *3) (-783)))
(-14 *6
- (-1 (-112) (-2 (|:| -4317 *4) (|:| -1658 *5))
- (-2 (|:| -4317 *4) (|:| -1658 *5))))
- (-4 *2 (-174)) (-5 *1 (-472 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861))
- (-4 *7 (-964 *2 *5 (-875 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-520 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1117))))
+ (-1 (-112) (-2 (|:| -4308 *4) (|:| -2273 *5))
+ (-2 (|:| -4308 *4) (|:| -2273 *5))))
+ (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862))
+ (-4 *7 (-966 *2 *5 (-876 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1119))))
((*1 *2 *1)
- (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-719 *2)) (-4 *2 (-1066))))
+ (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068))))
((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-861))
- (-4 *3 (-737))))
- ((*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066))))
+ (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862))
+ (-4 *3 (-738))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068))))
((*1 *2 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *3 (-803)) (-4 *4 (-861))
- (-4 *2 (-1066))))
+ (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862))
+ (-4 *2 (-1068))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-418 *6))
- (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373))
- (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5)))
- (-5 *1 (-879 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-782)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-373))
- (-14 *6 (-1194)) (-14 *7 *5) (-5 *2 (-418 (-1258 *6 *5)))
- (-5 *1 (-879 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833)))))
-(((*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235))))
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -2367 (-1192 *6)) (|:| -2273 (-576)))))
+ (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576))
+ (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-1259 *4 *2))
+ (-4 *2 (-1263 *4)))))
+(((*1 *1 *1) (-4 *1 (-881 *2))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237))))
((*1 *2 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3))))
+ (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8))
- (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804))
- (-4 *7 (-861)) (-5 *2 (-112)) (-5 *1 (-994 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1111 *3)) (-4 *3 (-964 *7 *6 *4)) (-4 *6 (-804))
- (-4 *4 (-861)) (-4 *7 (-567))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575))))
- (-5 *1 (-605 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-567))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-575))))
- (-5 *1 (-605 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1) (-5 *1 (-873)))
+ (-12 (-5 *5 (-1113 *3)) (-4 *3 (-966 *7 *6 *4)) (-4 *6 (-805))
+ (-4 *4 (-862)) (-4 *7 (-568))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576))))
+ (-5 *1 (-606 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576))))
+ (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1) (-5 *1 (-874)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1186 *4 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-161) (-27) (-1220)))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1186 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575))))
- (-5 *2 (-418 (-967 *5))) (-5 *1 (-1187 *5)) (-5 *3 (-967 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575))))
- (-5 *2 (-3 (-418 (-967 *5)) (-325 *5))) (-5 *1 (-1187 *5))
- (-5 *3 (-418 (-967 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1109 (-967 *5))) (-5 *3 (-967 *5))
- (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 *3))
- (-5 *1 (-1187 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1109 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5)))
- (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-3 *3 (-325 *5)))
- (-5 *1 (-1187 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1252 *3)) (-4 *3 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+ (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222)))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1188 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576))))
+ (-5 *2 (-419 (-969 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-969 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576))))
+ (-5 *2 (-3 (-419 (-969 *5)) (-326 *5))) (-5 *1 (-1189 *5))
+ (-5 *3 (-419 (-969 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1111 (-969 *5))) (-5 *3 (-969 *5))
+ (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 *3))
+ (-5 *1 (-1189 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1111 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5)))
+ (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 *3 (-326 *5)))
+ (-5 *1 (-1189 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374))
+ (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1263 *5))
+ (-5 *2 (-701 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082)))))
+(((*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *2 (-655 *3)) (-5 *1 (-939 *4 *5 *6 *3))
- (-4 *3 (-964 *4 *6 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))))
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))))
((*1 *2 *1)
- (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119))))
((*1 *2 *1)
- (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174))
- (-4 *6 (-243 (-2869 *3) (-782)))
+ (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174))
+ (-4 *6 (-243 (-2845 *3) (-783)))
(-14 *7
- (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *6))
- (-2 (|:| -4317 *5) (|:| -1658 *6))))
- (-5 *2 (-724 *5 *6 *7)) (-5 *1 (-472 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-861)) (-4 *8 (-964 *4 *6 (-875 *3)))))
+ (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *6))
+ (-2 (|:| -4308 *5) (|:| -2273 *6))))
+ (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-862)) (-4 *8 (-966 *4 *6 (-876 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-737)) (-4 *2 (-861)) (-5 *1 (-746 *3 *2))
- (-4 *3 (-1066))))
+ (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2))
+ (-4 *3 (-1068))))
((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803))
- (-4 *4 (-861)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463)))))
-(((*1 *1) (-5 *1 (-834))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415))
- (-5 *2 (-936)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-575)) (|has| *1 (-6 -4451)) (-4 *1 (-415))
- (-5 *2 (-936)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339))
- (-5 *1 (-341)))))
-(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))))
+ (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804))
+ (-4 *4 (-862)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *2 (-655 *3)) (-5 *1 (-994 *4 *5 *6 *3))
- (-4 *3 (-1082 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-958 *5)) (-4 *5 (-1066)) (-5 *2 (-782))
- (-5 *1 (-1182 *4 *5)) (-14 *4 (-936))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5))
- (-14 *4 (-936)) (-4 *5 (-1066))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066))
- (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *4 *5 *6))
- (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)))))
+ (-12 (-5 *3 (-576)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-938))
+ (-5 *1 (-930 *4 *5)) (-4 *5 (-1263 (-419 *4))))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-373)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3657 *1)))
- (-4 *1 (-863 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-693 *2)) (-4 *2 (-1117))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-655 *5) (-655 *5))) (-5 *4 (-575))
- (-5 *2 (-655 *5)) (-5 *1 (-693 *5)) (-4 *5 (-1117)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-655 (-1194))) (-14 *5 (-782))
- (-5 *2
- (-655
- (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4)
- (-252 *4 (-418 (-575))))))
- (-5 *1 (-516 *4 *5))
- (-5 *3
- (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4)
- (-252 *4 (-418 (-575))))))))
+ (-12 (-5 *2 (-2 (|:| -3901 (-794 *3)) (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -3901 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1068))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *1))))
+ (-4 *1 (-1090 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-759)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290))
- (-5 *1 (-460 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066))))
- ((*1 *2 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)))))
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-373)) (-4 *6 (-1261 (-418 *2)))
- (-4 *2 (-1261 *5)) (-5 *1 (-217 *5 *2 *6 *3))
- (-4 *3 (-352 *5 *2 *6)))))
+ (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576))))
+ (-5 *2 (-1287 (-419 (-576)))) (-5 *1 (-1315 *4)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-1082)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-4 *3 (-13 (-27) (-1220) (-441 *6) (-10 -8 (-15 -2882 ($ *7)))))
- (-4 *7 (-859))
- (-4 *8
- (-13 (-1263 *3 *7) (-373) (-1220)
- (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))))
- (-5 *1 (-433 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1176)) (-4 *9 (-1000 *8))
- (-14 *10 (-1194)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-700 (-575))) (-5 *5 (-112)) (-5 *7 (-700 (-227)))
- (-5 *3 (-575)) (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-765)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1174 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1974
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1052)) (-5 *1 (-314)))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
+ (-4 *5 (-243 *3 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-576)))
+ (-5 *2 (-701 (-576))) (-5 *1 (-1129)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-655 (-325 (-227))))
- (|:| |constraints|
- (-655
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-782)) (|:| |boundaryType| (-575))
- (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227))))))
- (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176))
- (|:| |tol| (-227))))
- (-5 *2 (-112)) (-5 *1 (-212)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576))
+ (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1119)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068))))
+ ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196)))))
+ (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123))
+ (-5 *1 (-409))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196)))))
+ (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123))
+ (-5 *1 (-409))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-656 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196))
+ (-5 *2 (-1123)) (-5 *1 (-409)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-575)) (-5 *1 (-206)))))
-(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-1192 *6))
+ (-5 *1 (-331 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066))
- (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373))
- (-5 *2 (-2 (|:| -2063 (-418 *6)) (|:| |coeff| (-418 *6))))
- (-5 *1 (-585 *5 *6)) (-5 *3 (-418 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132))
- (-4 *3 (-803)))))
+ (-12 (-4 *4 (-1068)) (-4 *3 (-1263 *4)) (-4 *2 (-1278 *4))
+ (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-668 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))))
+(((*1 *2)
+ (-12 (-14 *4 (-783)) (-4 *5 (-1237)) (-5 *2 (-135))
+ (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-938))))
+ ((*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-374)) (-5 *2 (-135)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-1215)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-340)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-655
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861))
- (-5 *1 (-460 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-547)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292))
+ (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292))
+ (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054))
+ (-5 *1 (-760)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-548)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068))
+ (-4 *2 (-464))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1263 (-576))) (-5 *2 (-656 (-576)))
+ (-5 *1 (-498 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-464)))))
(((*1 *1 *1) (-4 *1 (-248)))
((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-3763 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235)))
- (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235)))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3))))
+ (-3739 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237)))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237)))))
+ ((*1 *1 *1) (-4 *1 (-485)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-373)))))
-(((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-567))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-682))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936))
- (-14 *4 (-936)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-655 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-938)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-804))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1268 *3)) (-4 *3 (-1068)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))
- (-5 *2 (-418 (-575))) (-5 *1 (-1037 *4)) (-4 *4 (-1261 (-575))))))
-(((*1 *1) (-5 *1 (-608))))
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-418 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-567))
- (-4 *4 (-1066)) (-4 *2 (-1276 *4)) (-5 *1 (-1279 *4 *5 *6 *2))
- (-4 *6 (-667 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |h| *6)
- (|:| |c1| (-418 *6)) (|:| |c2| (-418 *6)) (|:| -1888 *6)))
- (-5 *1 (-1033 *5 *6)) (-5 *3 (-418 *6)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-310)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1119))
+ (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862))
+ (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1080)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-5 *2 (-973 (-1190 *4))) (-5 *1 (-367 *4))
- (-5 *3 (-1190 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029)))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-567))
- (-4 *7 (-964 *3 *5 *6))
- (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *8) (|:| |radicand| *8)))
- (-5 *1 (-968 *5 *6 *3 *7 *8)) (-5 *4 (-782))
- (-4 *8
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-378))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227)))
+ (-5 *5 (-112)) (-5 *2 (-1289)) (-5 *1 (-264)))))
+(((*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-379))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4))
- (-4 *4 (-359))))
+ (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360))))
((*1 *2 *1)
- (-12 (-4 *2 (-861)) (-5 *1 (-724 *2 *3 *4)) (-4 *3 (-1117))
+ (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1119))
(-14 *4
- (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *3))
- (-2 (|:| -4317 *2) (|:| -1658 *3)))))))
+ (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *3))
+ (-2 (|:| -4308 *2) (|:| -2273 *3)))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-873))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-5 *2 (-1159 *3 *4)) (-5 *1 (-1010 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-373))))
+ (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-374))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *5))) (-4 *5 (-1066))
- (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5))
+ (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1068))
+ (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5))
(-4 *7 (-243 *3 *5)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-655
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-575)))))
- (-4 *2 (-567)) (-5 *1 (-429 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-575))
- (|:| -1366 (-655 (-2 (|:| |irr| *4) (|:| -2205 (-575)))))))
- (-4 *4 (-1261 (-575))) (-5 *2 (-429 *4)) (-5 *1 (-453 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7))))
- (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-118 *3)) (-14 *3 (-575))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-316)) (-5 *1 (-176 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-176 (-575))) (-5 *1 (-776 *3)) (-4 *3 (-415))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-176 (-418 (-575)))) (-5 *1 (-882 *3)) (-14 *3 (-575))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-575)) (-5 *2 (-176 (-418 (-575))))
- (-5 *1 (-883 *3 *4)) (-4 *4 (-880 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112))
+ (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3))
+ (-4 *5 (-13 (-442 *4) (-1021) (-1222)))
+ (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4)))))
+ (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-418 (-575)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))))
+ (-12 (-5 *4 (-419 (-576)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *5 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575)))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *6 *3))))
+ (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576)))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8))
- (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575)))
- (-4 *8 (-13 (-27) (-1220) (-441 *7)))
- (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8))
+ (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576)))
+ (-4 *8 (-13 (-27) (-1222) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575))))
- (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8)))
- (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *8 *3))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576))))
+ (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8)))
+ (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-418 (-575))) (-4 *4 (-1066)) (-4 *1 (-1268 *4 *3))
- (-4 *3 (-1245 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *1 (-1049 *2))
- (-4 *2 (-13 (-1117) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-517)) (-5 *2 (-702 (-785))) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-785)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-980)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-252 *4 *5))) (-5 *2 (-252 *4 *5))
- (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-763)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))))
+ (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1068)) (-4 *1 (-1270 *4 *3))
+ (-4 *3 (-1247 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -2858 ($ *7)))))
+ (-4 *7 (-860))
+ (-4 *8
+ (-13 (-1265 *3 *7) (-374) (-1222)
+ (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))))
+ (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8))
+ (-14 *10 (-1196)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-1261 *4)) (-5 *2 (-1 *6 (-655 *6)))
- (-5 *1 (-1279 *4 *5 *3 *6)) (-4 *3 (-667 *5)) (-4 *6 (-1276 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-575))) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-567)) (-4 *8 (-964 *7 *5 *6))
- (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *9) (|:| |radicand| *9)))
- (-5 *1 (-968 *5 *6 *7 *8 *9)) (-5 *4 (-782))
- (-4 *9
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))))
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227))))
+ (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-656 (-326 (-227))))
+ (|:| -3448 (-656 (-227)))))))
+ (-5 *2 (-656 (-1178))) (-5 *1 (-276)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -1643 *4))) (-5 *1 (-986 *4 *3))
- (-4 *3 (-1261 *4)))))
+ (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196))
+ (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464)))
+ (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464)))
+ (-5 *2 (-855 *4)) (-5 *1 (-1273 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196))
+ (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4)))))
+ (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-575)) (-4 *5 (-13 (-463) (-1055 *4) (-650 *4)))
- (-5 *2 (-52)) (-5 *1 (-324 *5 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *5)))))
+ (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1057 *4) (-651 *4)))
+ (-5 *2 (-52)) (-5 *1 (-325 *5 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *5 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-463) (-1055 *5) (-650 *5))) (-5 *5 (-575))
- (-5 *2 (-52)) (-5 *1 (-324 *6 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1057 *5) (-651 *5))) (-5 *5 (-576))
+ (-5 *2 (-52)) (-5 *1 (-325 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575)))
- (-4 *7 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576)))
+ (-4 *7 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575)))
- (-4 *3 (-13 (-27) (-1220) (-441 *7)))
- (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *7 *3))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576)))
+ (-4 *3 (-13 (-27) (-1222) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-575)) (-4 *4 (-1066)) (-4 *1 (-1247 *4 *3))
- (-4 *3 (-1276 *4))))
+ (-12 (-5 *2 (-576)) (-4 *4 (-1068)) (-4 *1 (-1249 *4 *3))
+ (-4 *3 (-1278 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *2 (-1290))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1261 (-418 *5))) (-14 *7 *6))))
+ (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-4 *2 (-1119))
+ (-5 *1 (-902 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1119))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339))
- (-5 *1 (-341))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-1109 (-967 (-575)))) (-5 *2 (-339))
- (-5 *1 (-341))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066))
- (-4 *3 (-1117)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))))
+ (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7))
+ (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))
+ (-4 *7 (-1237))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6))
+ (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -1603 (-656 (-2 (|:| |irr| *10) (|:| -2972 (-576)))))))
+ (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317))
+ (-4 *10 (-966 *3 *9 *8)) (-4 *9 (-805))
+ (-5 *2
+ (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-656 (-1192 *3)))))
+ (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1192 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *1) (-5 *1 (-609))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-339))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-52)) (-5 *1 (-324 *5 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *5 *3))))
+ (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4463)) (-4 *1 (-1029 *3))
+ (-4 *3 (-1237)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-52)) (-5 *1 (-325 *5 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-303 *3)) (-5 *5 (-782))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6))
- (-4 *6 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *5 *6))))
+ (-12 (-5 *4 (-304 *3)) (-5 *5 (-783))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6))
+ (-4 *6 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *6 *3))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-782)))
- (-4 *7 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-783)))
+ (-4 *7 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-782)))
- (-4 *3 (-13 (-27) (-1220) (-441 *7)))
- (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-567))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463))
- (-5 *1 (-933 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27))
- (-5 *2 (-655 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
- ((*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $))
- (-15 -1608 ((-1142 *3 (-623 $)) $))
- (-15 -2882 ($ (-1142 *3 (-623 $))))))))))
-(((*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3))
- (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316))
- (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 *7)))
- (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1190 *7))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-783)))
+ (-4 *3 (-13 (-27) (-1222) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-463)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-429 *1)) (-4 *1 (-964 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-463)) (-5 *2 (-429 *3))
- (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463))
- (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7))))
- (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-429 *3)) (-5 *1 (-1264 *4 *3))
- (-4 *3 (-13 (-1261 *4) (-567) (-10 -8 (-15 -3923 ($ $ $)))))))
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-576))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862))
+ (-5 *1 (-461 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-805))
+ (-4 *5 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *6 (-568))
+ (-5 *2 (-2 (|:| -1869 (-969 *6)) (|:| -4320 (-969 *6))))
+ (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-171 (-326 *4)))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-238)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4))
+ (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-14 *5 (-655 (-1194)))
- (-5 *2
- (-655 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6)))))
- (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-1256 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-158)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227)))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1052)) (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-1080))))
+ (-12 (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805))
+ (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1)))
+ (-4 *1 (-1090 *4 *5 *6 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-575))))
+ (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-598 *3)) (-4 *3 (-374)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7))
+ (-4 *7 (-966 *5 *6 *4)) (-4 *5 (-926)) (-4 *6 (-805))
+ (-4 *4 (-862)) (-5 *1 (-923 *5 *6 *4 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-430 *4)) (-4 *4 (-568)))))
+(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1158))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))))
+(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1287 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317))
+ (-4 *3 (-568)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-4 *4 (-374)) (-5 *2 (-1287 *1))
+ (-4 *1 (-339 *4))))
+ ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1))
+ (-4 *1 (-421 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-667 *3)) (-4 *3 (-1066)) (-4 *3 (-373))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373))
- (-5 *1 (-670 *5 *2)) (-4 *2 (-667 *5)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *8 (-1082 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-655 *8))
- (|:| |towers| (-655 (-1044 *5 *6 *7 *8)))))
- (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-655 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *8 (-1082 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-655 *8))
- (|:| |towers| (-655 (-1163 *5 *6 *7 *8)))))
- (-5 *1 (-1163 *5 *6 *7 *8)) (-5 *3 (-655 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311)))))
+ (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4))
+ (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6))
+ (-4 *6 (-13 (-421 *4 *5) (-1057 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4))
+ (-5 *2 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))
+ (-4 *6 (-421 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-429 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576))))
+ (-4 *2 (-174)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2
- (-2 (|:| |solns| (-655 *5))
- (|:| |maps| (-655 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1145 *3 *5)) (-4 *3 (-1261 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-336 *3)) (-4 *3 (-1235))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235))
- (-14 *4 (-575)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112))
- (-5 *2 (-1052)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-700 *11)) (-5 *4 (-655 (-418 (-967 *8))))
- (-5 *5 (-782)) (-5 *6 (-1176)) (-4 *8 (-13 (-316) (-148)))
- (-4 *11 (-964 *8 *10 *9)) (-4 *9 (-13 (-861) (-625 (-1194))))
- (-4 *10 (-804))
- (-5 *2
- (-2
- (|:| |rgl|
- (-655
- (-2 (|:| |eqzro| (-655 *11)) (|:| |neqzro| (-655 *11))
- (|:| |wcond| (-655 (-967 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *8))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *8))))))))))
- (|:| |rgsz| (-575))))
- (-5 *1 (-939 *8 *9 *10 *11)) (-5 *7 (-575)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1176)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-112)) (-5 *1 (-904 *4))
- (-4 *4 (-1117)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1157 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1158 *5 *6)))))
+ (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783))
+ (-5 *2 (-701 (-227))) (-5 *1 (-276)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068))
+ (-5 *1 (-1180 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068))
+ (-14 *4 (-1196)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
+ (-5 *7 (-701 (-576)))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-804)) (-4 *2 (-964 *4 *5 *6)) (-5 *1 (-460 *4 *5 *6 *2))
- (-4 *4 (-463)) (-4 *6 (-861)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2))
- (-4 *2 (-667 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-575))
- (-5 *6
- (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))))
- (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389)))
- (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290))
- (-5 *1 (-799))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-575))
- (-5 *6
- (-2 (|:| |try| (-389)) (|:| |did| (-389)) (|:| -2079 (-389))))
- (-5 *7 (-1 (-1290) (-1285 *5) (-1285 *5) (-389)))
- (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290))
- (-5 *1 (-799)))))
-(((*1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-378)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068))
+ (-5 *2 (-783)))))
+(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-442 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1237))
+ (-4 *5 (-1237)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783))
+ (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-245 *6 *5))
+ (-5 *1 (-244 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237))
+ (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119))
+ (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1237))
+ (-4 *5 (-1237)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1237))
+ (-4 *5 (-1237)) (-5 *2 (-975 *5)) (-5 *1 (-974 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1237))
+ (-4 *3 (-1237)) (-5 *2 (-1176 *3)) (-5 *1 (-1174 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237))
+ (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1286 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3))
+ (-4 *3 (-13 (-1222) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148)))
+ (-5 *2 (-598 (-419 (-969 *5)))) (-5 *1 (-582 *5))
+ (-5 *3 (-419 (-969 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-782))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4)))
+ (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1196))
+ (-4 *2 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *5 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-783))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782)))))
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944))
+ (-5 *1 (-942 *3)) (-4 *3 (-626 (-548)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-5 *2 (-944)) (-5 *1 (-942 *3))
+ (-4 *3 (-626 (-548)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-944))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194))
- (-5 *2 (-655 *4)) (-5 *1 (-1131 *4 *5)))))
+ (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1263 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1290)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-996 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235))
- (-5 *2 (-655 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-748 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-450))) (-5 *1 (-876)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052))
- (-5 *1 (-759)))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4)))
+ (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862))
+ (-5 *1 (-1207 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-1176 (-1176 (-969 *5))))
+ (-5 *1 (-1295 *5)) (-5 *4 (-1176 (-969 *5))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227))
+ (-5 *2 (-656 (-960 *4))) (-5 *1 (-1233)) (-5 *3 (-960 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-833)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1170)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-389)) (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556))))
- ((*1 *1 *1) (-4 *1 (-1077))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1052))
- (-5 *1 (-757)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-1176 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196)))
+ (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196)))
+ (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1257 *3 *2))
+ (-4 *2 (-1263 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227)))
+ (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-766)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1158 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))))))
+ (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938))
+ (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-782))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-782)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1052)) (-5 *1 (-759)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1117) (-34))) (-4 *6 (-13 (-1117) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1157 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *2)) (-5 *1 (-181 *2)) (-4 *2 (-316))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-655 (-655 *4))) (-5 *2 (-655 *4)) (-4 *4 (-316))
- (-5 *1 (-181 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 *8))
- (-5 *4
- (-655
- (-2 (|:| -2098 (-700 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-700 *7)))))
- (-5 *5 (-782)) (-4 *8 (-1261 *7)) (-4 *7 (-1261 *6)) (-4 *6 (-359))
- (-5 *2
- (-2 (|:| -2098 (-700 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-700 *7))))
- (-5 *1 (-509 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-655 (-418 *6))) (-5 *3 (-418 *6))
- (-4 *6 (-1261 *5)) (-4 *5 (-13 (-373) (-148) (-1055 (-575))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-579 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-655 (-623 *3)))
- (|:| |vals| (-655 *3))))
- (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8)))
- (-4 *7 (-861)) (-4 *8 (-316)) (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804))
+ (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568))
+ (-5 *2 (-1192 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-862))
(-5 *2
- (-2 (|:| |upol| (-1190 *8)) (|:| |Lval| (-655 *8))
- (|:| |Lfact|
- (-655 (-2 (|:| -2347 (-1190 *8)) (|:| -1658 (-575)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-753 *6 *7 *8 *9)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1121)) (-5 *1 (-288)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-575)) (-5 *1 (-389)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-981 *2)) (-4 *2 (-1117)))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-655 *5)) (-4 *5 (-861)) (-5 *1 (-1205 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-375 *2)) (-4 *2 (-1117))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117)))))
+ (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4))))
+ (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4))))))
+ (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 (-656 *4)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-568))
+ (-4 *4 (-1068)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *5 *6 *2))
+ (-4 *6 (-668 *5)))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))))
+(((*1 *1) (-5 *1 (-1104))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+ (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-185 *3)) (-4 *3 (-187)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-607 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1247 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1278 *3)) (-4 *3 (-1068)))))
+(((*1 *1) (-5 *1 (-340))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-861))
- (-5 *2
- (-2 (|:| |f1| (-655 *4)) (|:| |f2| (-655 (-655 (-655 *4))))
- (|:| |f3| (-655 (-655 *4))) (|:| |f4| (-655 (-655 (-655 *4))))))
- (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 (-655 *4)))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-861))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-291 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -4169
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3179
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1174 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1974
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-570))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-706 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-576)) (-5 *1 (-1129))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576))
+ (-5 *1 (-1129)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *2 (-966 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2))
+ (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3)))))
((*1 *1 *2)
- (-12
+ (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860)))
+ (-5 *2 (-656 (-2 (|:| -1603 (-656 *3)) (|:| -3058 *5))))
+ (-5 *1 (-183 *5 *3)) (-4 *3 (-1263 (-171 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-374) (-860)))
+ (-5 *2 (-656 (-2 (|:| -1603 (-656 *3)) (|:| -3058 *4))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
(-5 *2
- (-2
- (|:| -4169
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (|:| -3179
- (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389))
- (|:| |expense| (-389)) (|:| |accuracy| (-389))
- (|:| |intermediateResults| (-389))))))
- (-5 *1 (-814))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *5 (-936))
- (-5 *2 (-1290)) (-5 *1 (-479))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-885)) (-5 *5 (-936))
- (-5 *2 (-1290)) (-5 *1 (-479)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-655 (-575))) (-5 *3 (-655 (-936))) (-5 *4 (-112))
- (-5 *1 (-1127)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-658 *2)) (-4 *2 (-1117)))))
-(((*1 *1) (-5 *1 (-339))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *6)))))
+ (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4))
+ (|:| |genIdeal| (-516 *4 *5 *6 *7))))
+ (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3))
- (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-964 *6 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873))))
- ((*1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *2 (-655 (-655 (-575))))
- (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *6 *5)))))
+ (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-1155)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1254 (-576))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4))))
+ (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576))))
+ (-5 *1 (-1129)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 (-655 *6))) (-4 *6 (-964 *3 *5 *4))
- (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194))))
- (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117))
- (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052))
- (-5 *1 (-759)))))
+ (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-1153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-706 *3)) (-4 *3 (-1117))
- (-5 *2 (-655 (-2 (|:| -3179 *3) (|:| -3922 (-782))))))))
+ (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196)))
+ (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1178) (-1201)))
+ (-5 *1 (-1201)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1178)) (-5 *2 (-216 (-514))) (-5 *1 (-849)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1236))) (-5 *3 (-1236)) (-5 *1 (-693)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-656 *3)) (-5 *5 (-938)) (-4 *3 (-1263 *4))
+ (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832))
+ (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-982))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1008))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *2 *3))
+ (-4 *3 (-13 (-1119) (-34))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-575))) (-5 *5 (-1 (-1174 *4))) (-4 *4 (-373))
- (-4 *4 (-1066)) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1261 *6))
- (-4 *6 (-13 (-373) (-148) (-1055 *4))) (-5 *4 (-575))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -2566
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1032 *6 *3)))))
+ (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-576))) (-5 *5 (-576))
+ (-4 *6 (-1119)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-938)) (-5 *2 (-1192 *3)) (-5 *1 (-1211 *3))
+ (-4 *3 (-374)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3))
+ (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2))
+ (-4 *2 (-699 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2))
+ (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2))
+ (-4 *4 (-699 *2 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174))
+ (-5 *2 (-1287 (-701 (-969 *4)))) (-5 *1 (-191 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))))
-(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-936)) (-4 *5 (-316)) (-4 *3 (-1261 *5))
- (-5 *2 (-2 (|:| |plist| (-655 *3)) (|:| |modulo| *5)))
- (-5 *1 (-471 *5 *3)) (-5 *4 (-655 *3)))))
+ (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464))
+ (-5 *1 (-1228 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575))))
+ (-12 (-4 *5 (-374))
(-5 *2
- (-3 (|:| |%expansion| (-322 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1176)) (|:| |prob| (-1176))))))
- (-5 *1 (-431 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))
- (-14 *6 (-1194)) (-14 *7 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415))))
- ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))))
+ (-2 (|:| A (-701 *5))
+ (|:| |eqs|
+ (-656
+ (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)) (|:| -2568 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5))
+ (-4 *6 (-668 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-668 *5))
+ (-5 *2 (-2 (|:| -3260 (-701 *6)) (|:| |vec| (-1287 *5))))
+ (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-804)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-655
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-575)))))
- (-5 *1 (-429 *3)) (-4 *3 (-567))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-782)) (-4 *3 (-359)) (-4 *5 (-1261 *3))
- (-5 *2 (-655 (-1190 *3))) (-5 *1 (-509 *3 *5 *6))
- (-4 *6 (-1261 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-373) (-859)))
- (-5 *2 (-655 (-2 (|:| -1366 (-655 *3)) (|:| -3082 *5))))
- (-5 *1 (-183 *5 *3)) (-4 *3 (-1261 (-171 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-373) (-859)))
- (-5 *2 (-655 (-2 (|:| -1366 (-655 *3)) (|:| -3082 *4))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-702 (-1152))) (-5 *1 (-1168)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-869))))
- ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-980))))
- ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1006))))
- ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *2 *3))
- (-4 *3 (-13 (-1117) (-34))))))
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2463 (-656 *6)) (|:| -2952 (-656 *6)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-575))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
+ (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-173))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-756 *3)) (-4 *3 (-174)))))
+(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938))
+ (-14 *4 (-938)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-942))
- (-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 (-227)))))
- (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575)))
- (-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 (-227)))))
- (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3))
+ (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *3 *4 *2 *5 *6)
(-12
- (-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 (-227)))))
- (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-655 (-958 (-227))))))
- ((*1 *2 *3)
+ (-5 *5
+ (-2 (|:| |done| (-656 *11))
+ (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4256 *11))))))
+ (-5 *6 (-783))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4256 *11))))
+ (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9))
+ (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-5 *1 (-1088 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
(-12
+ (-5 *5
+ (-2 (|:| |done| (-656 *11))
+ (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4256 *11))))))
+ (-5 *6 (-783))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4256 *11))))
+ (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9))
+ (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-5 *1 (-1164 *7 *8 *9 *10 *11)))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862))
+ (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8))
+ (-4 *8 (-966 *3 *7 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-624 *4)) (-5 *6 (-1192 *4))
+ (-4 *4 (-13 (-442 *7) (-27) (-1222)))
+ (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
(-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 (-227)))))
- (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))))
- (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 (-227)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269)))))
-(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-158))))
- ((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-782))) (-5 *3 (-112)) (-5 *1 (-1182 *4 *5))
- (-14 *4 (-936)) (-4 *5 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2))))
- ((*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *3 (-174))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-479))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1286))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *5 (-567))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1192 *4)))
+ (-4 *4 (-13 (-442 *7) (-27) (-1222)))
+ (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
(-5 *2
- (-2 (|:| |minor| (-655 (-936))) (|:| -2566 *3)
- (|:| |minors| (-655 (-655 (-936)))) (|:| |ops| (-655 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4))
- (-14 *3 (-936)) (-4 *4 (-1066))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-861)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-300)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1102)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1261 *5))
- (-5 *1 (-738 *5 *2)) (-4 *5 (-373)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -4177 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-374)) (-4 *7 (-1263 *6))
+ (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6)))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-59 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4))
+ (-14 *3 (-783)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227))
+ (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1178))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1054))
+ (-5 *1 (-762)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-936)) (-4 *3 (-373))
- (-14 *4 (-1010 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
- ((*1 *1) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
- ((*1 *1 *1) (|partial| -4 *1 (-733)))
- ((*1 *1 *1) (|partial| -4 *1 (-737)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-13 (-859) (-373)))
- (-4 *2 (-1261 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2063 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7))
- (-5 *3 (-418 *8))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1208 (-656 *4))) (-4 *4 (-862))
+ (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576))))
(-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-585 *7 *8)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4))
- (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112))))
+ (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6)
+ (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -1922 *6)))
+ (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))
((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-567)) (-4 *2 (-964 *3 *5 *4))
- (-5 *1 (-743 *5 *4 *6 *2)) (-5 *3 (-418 (-967 *6))) (-4 *5 (-804))
- (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-871)) (-5 *2 (-702 (-1243))) (-5 *3 (-1243)))))
+ (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1288)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *9 (-1084 *6 *7 *8))
+ (-5 *2
+ (-656
+ (-2 (|:| -2568 (-656 *9)) (|:| -4256 *10) (|:| |ineq| (-656 *9)))))
+ (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *9 (-1084 *6 *7 *8))
+ (-5 *2
+ (-656
+ (-2 (|:| -2568 (-656 *9)) (|:| -4256 *10) (|:| |ineq| (-656 *9)))))
+ (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *1) (-4 *1 (-484))) ((*1 *1 *1 *1) (-4 *1 (-772))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))
- (-5 *2 (-1052)) (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-109))) (-5 *1 (-177)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-590)))))
-(((*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-5 *1 (-339)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -2429 *6) (|:| |sol?| (-112))) (-575)
- *6))
- (-4 *6 (-373)) (-4 *7 (-1261 *6))
+ (-12 (-5 *4 (-112))
(-5 *2
- (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6))
- (-2 (|:| -2063 (-418 *7)) (|:| |coeff| (-418 *7))) "failed"))
- (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4))
- (-4 *3 (-338 *4))))
- ((*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-782)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4)
- (-252 *4 (-418 (-575)))))
- (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112))
- (-5 *1 (-516 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-767)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-575) "failed") *5)) (-4 *5 (-1066))
- (-5 *2 (-575)) (-5 *1 (-554 *5 *3)) (-4 *3 (-1261 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066))
- (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4))))
+ (-2 (|:| |contp| (-576))
+ (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576)))))))
+ (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-576))
+ (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576)))))))
+ (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-703 (-1154))) (-5 *1 (-1170)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-575) "failed") *4)) (-4 *4 (-1066))
- (-5 *2 (-575)) (-5 *1 (-554 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *5) (-27) (-1220)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-597 *3)) (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463))
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
(-5 *2
- (-2 (|:| |dpolys| (-655 (-252 *5 *6)))
- (|:| |coords| (-655 (-575)))))
- (-5 *1 (-482 *5 *6 *7)) (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
-(((*1 *2)
- (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-655 (-1194))) (|:| |pred| (-52))))
- (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416))))
+ ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938))))
+ ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1176 (-576))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464))
+ (-5 *2
+ (-656
+ (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4))))
+ (|:| |geneigvec| (-656 (-701 (-419 (-969 *4))))))))
+ (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3))))
- (-5 *2 (-655 (-1194))) (-5 *1 (-1093 *3 *4 *5))
- (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-700 *2)) (-4 *4 (-1261 *2))
- (-4 *2 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-5 *1 (-510 *2 *4 *5)) (-4 *5 (-420 *2 *4))))
+ (-12 (-4 *2 (-1112 *3)) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1237))))
((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
- (-4 *5 (-243 *3 *2)) (-4 *2 (-1066)))))
+ (-12 (-5 *2 (-1113 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-969 (-576))) (-5 *3 (-1196))
+ (-5 *4 (-1113 (-419 (-576)))) (-5 *1 (-30)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1110 *3)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1235))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1111 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-1235))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-936)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1066))
- (-4 *4 (-1235))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174))
- (-4 *5 (-243 (-2869 *3) (-782)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *5))
- (-2 (|:| -4317 *2) (|:| -1658 *5))))
- (-5 *1 (-472 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861))
- (-4 *7 (-964 *4 *5 (-875 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1194))
- (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *1 (-1197)))))
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1208 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2495 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1129)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4))
- (-4 *4 (-1235)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804))
- (-5 *2 (-112)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-700 *3)) (|:| |invmval| (-700 *3))
- (|:| |genIdeal| (-515 *3 *4 *5 *6))))
- (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194)))
- (-4 *5 (-463))
- (-5 *2
- (-2 (|:| |gblist| (-655 (-252 *4 *5)))
- (|:| |gvlist| (-655 (-575)))))
- (-5 *1 (-642 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1235)) (-5 *2 (-1290)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))))
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1176 *7))) (-4 *6 (-862))
+ (-4 *7 (-966 *5 (-543 *6) *6)) (-4 *5 (-1068))
+ (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1145 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-783)) (-5 *1 (-602)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1263 *4))
+ (-5 *1 (-939 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5))
- (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-13 (-316) (-148)))
- (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-112))
- (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-836)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9))
- (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *9 (-1082 *6 *7 *8))
- (-5 *2
- (-655
- (-2 (|:| -2566 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9)))))
- (-5 *1 (-1005 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-655 *10)) (-5 *5 (-112)) (-4 *10 (-1088 *6 *7 *8 *9))
- (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *9 (-1082 *6 *7 *8))
+ (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2442 *6) (|:| |sol?| (-112))) (-576)
+ *6))
+ (-4 *6 (-374)) (-4 *7 (-1263 *6))
(-5 *2
- (-655
- (-2 (|:| -2566 (-655 *9)) (|:| -4270 *10) (|:| |ineq| (-655 *9)))))
- (-5 *1 (-1124 *6 *7 *8 *9 *10)) (-5 *3 (-655 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-854 (-227)))) (-5 *4 (-227)) (-5 *2 (-655 *4))
- (-5 *1 (-275)))))
-(((*1 *1)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066))
- (-4 *2 (-1276 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-964 *3 *5 *4)) (-5 *1 (-1004 *3 *4 *5 *2))
- (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)))))
+ (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6))
+ (-2 (|:| -4177 (-419 *7)) (|:| |coeff| (-419 *7))) "failed"))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-749 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119))))
+ ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1 *1) (-4 *1 (-557))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))))
+ (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196))))
+ (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-966 *3 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-873)) (-5 *1 (-1174 *3)) (-4 *3 (-1117))
- (-4 *3 (-1235)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3923 (-793 *3)) (|:| |coef2| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-2 (|:| -3923 *1) (|:| |coef2| *1)))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1285 *6)) (-5 *4 (-1285 (-575))) (-5 *5 (-575))
- (-4 *6 (-1117)) (-5 *2 (-1 *6)) (-5 *1 (-1034 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-623 *4)) (-5 *6 (-1194))
- (-4 *4 (-13 (-441 *7) (-27) (-1220)))
- (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
+ (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3))))
+ (-5 *2 (-656 (-1095 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374))
+ (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1068))
+ (-5 *2 (-112)) (-5 *1 (-1048 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-577 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))))
+ (-656
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862))
+ (-5 *1 (-461 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))
+ (-5 *2 (-1054)) (-5 *1 (-760)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066))
- (-4 *3 (-567))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2801 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3))))
- (-5 *2 (-655 (-1093 *3 *4 *5))) (-5 *1 (-1094 *3 *4 *5))
- (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7)))
- (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5)))
- (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-623 *5)) (-4 *5 (-441 *4)) (-4 *4 (-1055 (-575)))
- (-4 *4 (-567)) (-5 *2 (-1190 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-623 *1)) (-4 *1 (-1066)) (-4 *1 (-311))
- (-5 *2 (-1190 *1)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1068)) (-5 *1 (-1309 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *1 (-1311 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1263 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-52)) (-5 *1 (-905 *4))
+ (-4 *4 (-1119)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7))
- (-4 *7 (-964 *5 *6 *4)) (-4 *5 (-924)) (-4 *6 (-804))
- (-4 *4 (-861)) (-5 *1 (-921 *5 *6 *4 *7)))))
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5)))
+ (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576)))))
+ (-14 *6 (-938)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174))
- (-5 *2 (-1285 (-700 (-967 *4)))) (-5 *1 (-191 *4)))))
+ (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3))
+ (-4 *3 (-1084 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))))
+ (-12 (-5 *3 (-1178))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066))
- (-5 *2 (-655 (-655 (-655 (-782))))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1176)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *4 (-1082 *6 *7 *8)) (-5 *2 (-1290))
- (-5 *1 (-787 *6 *7 *8 *4 *5)) (-4 *5 (-1088 *6 *7 *8 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 (-492 *3 *4))) (-14 *3 (-655 (-1194)))
- (-4 *4 (-463)) (-5 *1 (-642 *3 *4)))))
+ (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5))
+ (-5 *2 (-425 *4 (-419 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4)))
+ (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317))
+ (-5 *1 (-425 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-276)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1312)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119))
+ (-4 *2 (-862)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-389)) (-5 *1 (-207)))))
-(((*1 *1 *1) (-5 *1 (-1080))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-701 (-969 *4))) (-5 *1 (-1047 *4))
+ (-4 *4 (-1068)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1643 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4)
- (-252 *4 (-418 (-575)))))
- (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112))
- (-5 *1 (-516 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-655 (-115))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-487 *4 *5 *6 *7)) (|:| -2006 (-655 *7))))
- (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8))))
- (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-859)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1366 (-429 *3))))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))))
-(((*1 *1 *1) (-5 *1 (-1080))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235))
- (-4 *2 (-1117)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575))))
- (-5 *4 (-325 (-171 (-389)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575))))
- (-5 *4 (-325 (-389))) (-5 *1 (-339))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575))))
- (-5 *4 (-325 (-575))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-171 (-389)))))
- (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-389)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-575)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-171 (-389)))))
- (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-389)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-575)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-171 (-389)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-389))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-575))) (-5 *1 (-339))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575))))
- (-5 *4 (-325 (-705))) (-5 *1 (-339))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575))))
- (-5 *4 (-325 (-710))) (-5 *1 (-339))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-967 (-575))))
- (-5 *4 (-325 (-712))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-705)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-710)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-325 (-712)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-705)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-710)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-325 (-712)))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-705))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-710))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-712))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-705))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-710))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-700 (-712))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-705))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-710))) (-5 *1 (-339))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-325 (-712))) (-5 *1 (-339))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-339))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3901 *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *4 (-1194))
- (-5 *1 (-1197))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *4 (-1196))
+ (-5 *1 (-1199))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1197))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-448)) (-5 *3 (-1194)) (-5 *1 (-1198))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1200))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-448)) (-5 *3 (-655 (-1194))) (-5 *1 (-1198)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *2 (-1052)) (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))))
+ (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *1 (-1200)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-763)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3))
- (-4 *3 (-13 (-1220) (-29 *5))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1228 *4 *5 *3 *6)) (-4 *4 (-567)) (-4 *5 (-804))
- (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-112)) (-5 *1 (-309)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
- (-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
+ (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4))
+ (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1157 *3 *2)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *2 (-13 (-1117) (-34))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-1066))
- (-5 *2 (-700 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575))
- (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-695 *4 *5 *6)))))
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1119))
+ (-4 *2 (-1237)))))
+(((*1 *2)
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926))
+ (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-966 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926))
+ (-5 *1 (-923 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-926)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1263 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-4 *4 (-1066))
- (-5 *1 (-1046 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-14 *5 (-655 (-1194)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *4)) (|:| -2209 (-655 (-967 *4))))))
- (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5))))))
- (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5)))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5))))))
- (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5)))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5))))))
- (-5 *1 (-1312 *5 *6 *7)) (-5 *3 (-655 (-967 *5)))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *4)) (|:| -2209 (-655 (-967 *4))))))
- (-5 *1 (-1312 *4 *5 *6)) (-5 *3 (-655 (-967 *4)))
- (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
+ (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1068))
+ (-5 *1 (-1048 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-1068))
+ (-5 *2 (-701 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1178)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))))
+(((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-783)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4)))
+ (-4 *4 (-862)) (-5 *1 (-1207 *4)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1068)) (-4 *3 (-374))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374))
+ (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-716 *3 *4)) (-4 *3 (-1235)) (-4 *4 (-1235)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5))
- (-4 *5 (-167 *4)) (-4 *4 (-556)) (-5 *1 (-150 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 *3)) (-4 *3 (-1261 *5))
- (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *1 (-368 *4 *5 *3))))
+ (-5 *1 (-717 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1119)) (-4 *2 (-915 *5)) (-5 *1 (-704 *5 *2 *3 *4))
+ (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3))))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-1190 (-575)))) (-5 *3 (-1190 (-575)))
- (-5 *1 (-583))))
+ (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-1190 *1))) (-5 *3 (-1190 *1))
- (-4 *1 (-924)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-655 *6) "failed") (-575) *6 *6)) (-4 *6 (-373))
- (-4 *7 (-1261 *6))
- (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6)))
- (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-575))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861))
- (-5 *1 (-460 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))))
+(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))
+ ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117))
- (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4))))
- (-5 *1 (-1093 *4 *5 *2))
- (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4))))))
+ (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119))
+ (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1095 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3))))
- (-5 *1 (-1093 *3 *4 *2))
- (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3)))))))
+ (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1095 *3 *4 *2))
+ (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-576))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862))
+ (-5 *1 (-461 *5 *6 *7 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4))
+ (-14 *3 (-938)) (-4 *4 (-1068)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-252 *4 *5))
- (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194))))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112))
- (-5 *2 (-1052)) (-5 *1 (-756)))))
+ (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783)))
+ (-5 *1 (-921 *4)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))
- (-4 *2 (-373))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-227))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))
+ (-4 *2 (-374))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227))))
((*1 *1 *1 *1)
- (-3763 (-12 (-5 *1 (-303 *2)) (-4 *2 (-373)) (-4 *2 (-1235)))
- (-12 (-5 *1 (-303 *2)) (-4 *2 (-484)) (-4 *2 (-1235)))))
- ((*1 *1 *1 *1) (-4 *1 (-373)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389))))
+ (-3739 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237)))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237)))))
+ ((*1 *1 *1 *1) (-4 *1 (-374)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-567)) (-4 *3 (-1117))
- (-4 *1 (-441 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-484)))
+ (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1119))
+ (-4 *1 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-485)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-547)))
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-548)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-737) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-738) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-737) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174)) (-4 *2 (-373))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-738) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-673 *2 *4 *3)) (-4 *2 (-728 *4))
- (-4 *3 (|SubsetCategory| (-737) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4))
+ (-4 *3 (|SubsetCategory| (-738) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-174)) (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4))
- (-4 *2 (|SubsetCategory| (-737) *4))))
+ (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))
+ (-4 *2 (|SubsetCategory| (-738) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2)) (-4 *2 (-373))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-877 *2 *3 *4 *5)) (-4 *2 (-373))
- (-4 *2 (-1066)) (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-782)))
- (-14 *5 (-782))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567))))
+ (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374))
+ (-4 *2 (-1068)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-783)))
+ (-14 *5 (-783))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066))
- (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-373))))
+ (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068))
+ (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2)) (-4 *2 (-373))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-374))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-373)) (-4 *2 (-1066)) (-4 *3 (-861))
- (-4 *4 (-804)) (-14 *6 (-655 *3))
- (-5 *1 (-1297 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-964 *2 *4 *3))
- (-14 *7 (-655 (-782))) (-14 *8 (-782))))
+ (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-862))
+ (-4 *4 (-805)) (-14 *6 (-656 *3))
+ (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-966 *2 *4 *3))
+ (-14 *7 (-656 (-783))) (-14 *8 (-783))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-373)) (-4 *2 (-1066))
- (-4 *3 (-857)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))
+ (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1068))
+ (-4 *3 (-858)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *2 (-419 (-969 *4))) (-5 *1 (-941 *4 *5 *6 *3))
+ (-4 *3 (-966 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *2 (-701 (-419 (-969 *4))))
+ (-5 *1 (-941 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4))))
+ (-5 *1 (-941 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-374))
+ (-14 *4 (-1012 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1) (|partial| -4 *1 (-734)))
+ ((*1 *1 *1) (|partial| -4 *1 (-738)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374)))
+ (-4 *2 (-1263 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1237)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7)))
+ (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-586 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1192 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3))
+ (-4 *3 (-374)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1196)) (-5 *6 (-112))
+ (-4 *7 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-4 *3 (-13 (-1222) (-976) (-29 *7)))
(-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710))))
- ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137))))))
- (-4 *4 (-359)) (-5 *2 (-700 *4)) (-5 *1 (-356 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194)))
- (-4 *6 (-13 (-567) (-1055 *5))) (-4 *5 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *6)))))) (-5 *1 (-1056 *5 *6)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-373))
- (-5 *1 (-532 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2))
- (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174))
- (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5))))
+ (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-766)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))
+ (-5 *2 (-1192 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
- (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
+ (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))
+ (-5 *2 (-1192 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-135)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $))
- (-15 -3411 ((-1290) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235))))
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $))
+ (-15 -2720 ((-1292) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
- ((*1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873)))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-21)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5))
+ (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8))
+ (-5 *6 (-656 *8)) (-4 *8 (-442 *7))
+ (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8)))
+ (-4 *8 (-442 *7)) (-5 *5 (-304 *8))
+ (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6))
+ (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6))
+ (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6))
+ (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3))
+ (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52))
+ (-5 *1 (-327 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1211 *2)) (-4 *2 (-374)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-969 *4)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-1065 *4 *5))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463))
- (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6))
- (-4 *4 (-463)) (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-994 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575))))
- (-5 *2 (-112)) (-5 *1 (-1313 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-441 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1234))) (-5 *3 (-1234)) (-5 *1 (-692)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-27) (-441 *4))) (-4 *4 (-13 (-567) (-1055 (-575))))
- (-4 *7 (-1261 (-418 *6))) (-5 *1 (-563 *4 *5 *6 *7 *2))
- (-4 *2 (-352 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-979 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-216 *2))
(-4 *2
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $))
- (-15 -3411 ((-1290) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-25)) (-4 *2 (-1235))))
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $))
+ (-15 -2720 ((-1292) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-132))))
+ (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *2))
- (-4 *2 (-1261 *3))))
+ (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2))
+ (-4 *2 (-1263 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861))
- (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-547)))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-548)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-25)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *10))
- (-5 *1 (-635 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1088 *5 *6 *7 *8))
- (-4 *10 (-1126 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463))
- (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6)))
- (-5 *1 (-639 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463))
- (-14 *6 (-655 (-1194)))
- (-5 *2
- (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6)))))
- (-5 *1 (-639 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463))
- (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6)))
- (-5 *1 (-1063 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1228 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1270 *4 *5 *6))
- (|:| |%expon| (-328 *4 *5 *6))
- (|:| |%expTerms|
- (-655 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4))))))
- (|:| |%type| (-1176))))
- (-5 *1 (-1271 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3)))
- (-14 *5 (-1194)) (-14 *6 *4))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5))
- (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-1298 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-655 (-227)))
- (-5 *1 (-479)))))
-(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
-(((*1 *1) (-5 *1 (-55))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-25)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1))
- (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))))
+ (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7))
+ (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))
+ (-4 *7 (-1237)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-783)))))
+(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| -4181 *4) (|:| -2213 (-575)))))
- (-4 *4 (-1117)) (-5 *2 (-1 *4)) (-5 *1 (-1034 *4)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2))
- (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2))
- (-4 *4 (-698 *2 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5)))
- (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782)))))
+ (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-1287 (-326 (-390))))
+ (-5 *1 (-315)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3))
+ (-4 *3 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3)))
+ (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3)))
+ (-4 *3 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3)))
+ (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239))
- (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5)))
- (-5 *2 (-2 (|:| |num| (-700 *5)) (|:| |den| *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283)))))
+ (-12 (-14 *4 (-656 (-1196))) (-14 *5 (-783))
+ (-5 *2
+ (-656
+ (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576))))))
+ (-5 *1 (-517 *4 *5))
+ (-5 *3
+ (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576))))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1192 *7)) (-5 *3 (-576)) (-4 *7 (-966 *6 *4 *5))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068))
+ (-5 *1 (-331 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-960 (-227)))) (-5 *1 (-1288)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-841)))))
+(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-655 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-656 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235))
- (-5 *2 (-655 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-988)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1077)) (-4 *3 (-1220))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-291 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))))
-(((*1 *1) (-5 *1 (-145)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-269)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021) (-1222))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-317))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-936)) (-5 *1 (-1047 *2))
- (-4 *2 (-13 (-1117) (-10 -8 (-15 -4015 ($ $ $))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-547)) (-5 *1 (-546 *4))
- (-4 *4 (-1235)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066))
- (-5 *2 (-967 *5)) (-5 *1 (-959 *4 *5)))))
+ (-12 (-5 *3 (-938)) (-5 *1 (-1049 *2))
+ (-4 *2 (-13 (-1119) (-10 -8 (-15 -3990 ($ $ $))))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1196))) (-5 *1 (-837)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1196)) (-4 *2 (-442 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-4 *1 (-1031))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-5 *4 (-874))
+ (-4 *1 (-1031))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *1 (-1087 *4 *2)) (-4 *2 (-1263 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1054)) (-5 *1 (-760)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-5 *1 (-1005 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4))
+ (-14 *4 (-656 (-1196)))))
((*1 *2 *2)
- (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-5 *1 (-1124 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-782)) (-5 *5 (-655 *3)) (-4 *3 (-316)) (-4 *6 (-861))
- (-4 *7 (-804)) (-5 *2 (-112)) (-5 *1 (-636 *6 *7 *3 *8))
- (-4 *8 (-964 *3 *7 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-782))) (-5 *3 (-173)) (-5 *1 (-1182 *4 *5))
- (-14 *4 (-936)) (-4 *5 (-1066)))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-462 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-462 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464))
+ (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-359))
- (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -3989 *3))))
- (-5 *1 (-218 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))))
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576)))))
+ (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6))
+ (-4 *6 (-13 (-374) (-148) (-1057 *4))) (-5 *4 (-576))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -2568
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1034 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3))
- (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3))
+ (-4 *3 (-1237))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1228 *4 *5 *3 *2)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *3 (-861)) (-4 *2 (-1082 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1230 *4 *5 *3 *2)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1084 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *1 (-1232 *2)) (-4 *2 (-1235)))))
+ (-12 (-5 *3 (-783)) (-5 *1 (-1234 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6)))
+ (-5 *1 (-640 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896))
+ (-5 *3 (-656 (-576)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896))
+ (-5 *3 (-656 (-576))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-1292)) (-5 *1 (-843)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1285 (-782))) (-5 *1 (-686 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-936)) (-4 *4 (-378)) (-4 *4 (-373)) (-5 *2 (-1190 *1))
- (-4 *1 (-338 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1190 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *3 (-373))
- (-4 *2 (-1261 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-1190 *4))
- (-5 *1 (-539 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1258 *4 *5)) (-5 *3 (-655 *5)) (-14 *4 (-1194))
- (-4 *5 (-373)) (-5 *1 (-938 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *5)) (-4 *5 (-373)) (-5 *2 (-1190 *5))
- (-5 *1 (-938 *4 *5)) (-14 *4 (-1194))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-782)) (-4 *6 (-373))
- (-5 *2 (-418 (-967 *6))) (-5 *1 (-1067 *5 *6)) (-14 *5 (-1194)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12
+ (-5 *2
+ (-656
+ (-656
+ (-3 (|:| -1811 (-1196))
+ (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))))
+ (-5 *1 (-1200)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1054))
+ (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *4 (-624 $)) $))
+ (-15 -1635 ((-1144 *4 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *4 (-624 $))))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))))
(((*1 *1) (-5 *1 (-188))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *6))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-804))
- (-4 *3 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *5 (-567))
- (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *3
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *6))
- (-4 *6
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2))
- (-4 *2 (-964 (-967 *4) *5 *6)))))
+ (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196))
+ (-14 *5 *3) (-5 *1 (-329 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))))
+(((*1 *1)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1263 *4)) (-5 *2 (-701 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4))
+ (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3))
+ (-5 *2 (-701 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1204)))))
+ (-12
+ (-5 *3
+ (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-517 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4))))
+ (-5 *1 (-1295 *4)) (-4 *4 (-374)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576))))
+ (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *6 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4))
- (-4 *2 (-243 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1174 (-655 (-936)))) (-5 *1 (-895)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-597 *3) *3 (-1194)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1194)))
- (-4 *3 (-293)) (-4 *3 (-640)) (-4 *3 (-1055 *4)) (-4 *3 (-441 *7))
- (-5 *4 (-1194)) (-4 *7 (-625 (-904 (-575)))) (-4 *7 (-463))
- (-4 *7 (-898 (-575))) (-4 *7 (-1117)) (-5 *2 (-597 *3))
- (-5 *1 (-584 *7 *3)))))
+ (-12 (-5 *2 (-173)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
(((*1 *1) (-5 *1 (-188))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *3 (-575)) (-4 *1 (-880 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567))))
- ((*1 *1 *1) (|partial| -4 *1 (-733))))
-(((*1 *1 *1) (-5 *1 (-547))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *5)) (-4 *5 (-373)) (-5 *2 (-655 *6))
- (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575))))
- (-4 *5 (-898 (-575)))
- (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-578 *5 *3)) (-4 *3 (-640))
- (-4 *3 (-13 (-27) (-1220) (-441 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1194)) (-5 *4 (-854 *2)) (-4 *2 (-1156))
- (-4 *2 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-625 (-904 (-575)))) (-4 *5 (-898 (-575)))
- (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575))))
- (-5 *1 (-578 *5 *2)))))
-(((*1 *2)
- (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-353 *3 *4)) (-14 *3 (-936))
- (-14 *4 (-936))))
- ((*1 *2)
- (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-354 *3 *4)) (-4 *3 (-359))
- (-14 *4 (-1190 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-973 (-1137))) (-5 *1 (-355 *3 *4)) (-4 *3 (-359))
- (-14 *4 (-936)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1232 *3))
+ (-5 *1 (-802 *3)) (-4 *3 (-993))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-112))
+ (-5 *1 (-1232 *2)) (-4 *2 (-993)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1184 *3 *4))
+ (-14 *3 (-938)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1239)) (-4 *5 (-1261 *3)) (-4 *6 (-1261 (-418 *5)))
- (-5 *2 (-112)) (-5 *1 (-351 *4 *3 *5 *6)) (-4 *4 (-352 *3 *5 *6))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3901 *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1 *1) (-5 *1 (-548))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1198 (-419 (-576))))
+ (-5 *1 (-192)))))
(((*1 *1) (-5 *1 (-188))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-14 *5 (-656 (-1196)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *4)) (|:| -3392 (-656 (-969 *4))))))
+ (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5))))))
+ (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5)))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5))))))
+ (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5)))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5))))))
+ (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5)))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *4)) (|:| -3392 (-656 (-969 *4))))))
+ (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-656 (-969 *4)))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-4 *6 (-567)) (-5 *2 (-655 (-325 *6)))
- (-5 *1 (-223 *5 *6)) (-5 *3 (-325 *6)) (-4 *5 (-1066))))
- ((*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567))))
+ (-12 (-5 *4 (-938)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6)))
+ (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068))))
+ ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1220)))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-655 *5))
- (-5 *1 (-594 *4 *5))))
+ (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1222)))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 *5))
+ (-5 *1 (-595 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-418 (-967 *4))))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-655 (-325 *4))) (-5 *1 (-600 *4))))
+ (-12 (-5 *3 (-598 (-419 (-969 *4))))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1166 *3))))
+ (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1168 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 *1)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859))
- (-4 *2 (-1166 *4))))
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860))
+ (-4 *2 (-1168 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1300 (-1194) *3)) (-5 *1 (-1307 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1068))))
((*1 *2 *1)
- (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-1066)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-418 (-1190 (-325 *3)))) (-4 *3 (-567))
- (-5 *1 (-1147 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-5 *1 (-1005 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-655 *7)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-5 *1 (-1124 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
- (-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
+ (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1068)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3))))))
-(((*1 *1) (-4 *1 (-984))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))))
+(((*1 *1) (-4 *1 (-986))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1263 *5))
+ (-5 *2
+ (-656
+ (-2 (|:| -4261 (-701 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-701 *6)))))
+ (-5 *1 (-510 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -4261 (-701 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-701 *6))))
+ (-4 *7 (-1263 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287 (-711))) (-5 *1 (-315)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *1) (-4 *1 (-504)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275)))))
-(((*1 *1) (-5 *1 (-570))))
-(((*1 *2)
- (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-875 *5))) (-14 *5 (-655 (-1194))) (-4 *6 (-463))
- (-5 *2 (-655 (-655 (-252 *5 *6)))) (-5 *1 (-482 *5 *6 *7))
- (-5 *3 (-655 (-252 *5 *6))) (-4 *7 (-463)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-567)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4))))
- (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1292)) (-5 *1 (-843)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-541 *3)) (-4 *3 (-13 (-737) (-25))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1198)) (-5 *1 (-1197)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463))))
- ((*1 *1 *1 *1) (-4 *1 (-463)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575)))))
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4))
+ (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-194))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 *4))
+ (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237))
+ (-4 *3 (-1119)) (-5 *2 (-783))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4))
+ (-4 *4 (-1237)) (-5 *2 (-783)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464))))
+ ((*1 *1 *1 *1) (-4 *1 (-464)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-782)))
+ (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-783)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316))
- (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4))))
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317))
+ (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5))
- (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-316))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5))
+ (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-317))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1190 *7))) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-316)) (-5 *2 (-1190 *7)) (-5 *1 (-931 *4 *5 *6 *7))
- (-4 *7 (-964 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-936)))
+ (-12 (-5 *3 (-656 (-1192 *7))) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-317)) (-5 *2 (-1192 *7)) (-5 *1 (-933 *4 *5 *6 *7))
+ (-4 *7 (-966 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-938)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-463)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2))
- (-4 *2 (-1261 *3))))
+ (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2))
+ (-4 *2 (-1263 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235))
- (-4 *3 (-1117)) (-5 *2 (-782))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4))
- (-4 *4 (-1235)) (-5 *2 (-782)))))
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-317)) (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3))
+ (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1079)) (-4 *3 (-1222))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1 *1) (-4 *1 (-504)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-556))))
- ((*1 *1 *1) (-4 *1 (-1077))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1117)) (-4 *4 (-13 (-1066) (-898 *3) (-625 *2)))
- (-5 *2 (-904 *3)) (-5 *1 (-1093 *3 *4 *5))
- (-4 *5 (-13 (-441 *4) (-898 *3) (-625 *2))))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1600 (-115)) (|:| |arg| (-656 (-905 *3)))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4)))
+ (-5 *1 (-905 *4)) (-4 *4 (-1119)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3))
- (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-941)))))
-(((*1 *1 *2) (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-339))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-575))) (-5 *1 (-339))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-389))) (-5 *1 (-339))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-705))) (-5 *1 (-339))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-712))) (-5 *1 (-339))))
- ((*1 *1 *2) (-12 (-5 *2 (-325 (-710))) (-5 *1 (-339))))
- ((*1 *1) (-5 *1 (-339))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-570)))))
-(((*1 *1) (-5 *1 (-300))))
+ (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 *2)))
+ (-5 *2 (-905 *3)) (-5 *1 (-1095 *3 *4 *5))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-656 *8))
+ (|:| |towers| (-656 (-1046 *5 *6 *7 *8)))))
+ (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-656 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-656 *8))
+ (|:| |towers| (-656 (-1165 *5 *6 *7 *8)))))
+ (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2))
+ (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174))
+ (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
+ (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))))
+(((*1 *1) (-5 *1 (-301))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1043 *3)) (-4 *3 (-1235)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1137)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-252 *5 *6))) (-4 *6 (-463))
- (-5 *2 (-252 *5 *6)) (-14 *5 (-655 (-1194))) (-5 *1 (-642 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-700 *3))
- (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1045 *3)) (-4 *3 (-1237)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359)))))
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| -4422 (-783))
+ (|:| |eqns|
+ (-656
+ (-2 (|:| |det| *7) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (|:| |fgb| (-656 *7)))))
+ (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783))
+ (-5 *1 (-941 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1139)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -1451 *4))) (-5 *1 (-988 *4 *3))
+ (-4 *3 (-1263 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -4177 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7))
+ (-5 *3 (-419 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-586 *7 *8)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1 *1) (-4 *1 (-504)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-936)) (-4 *1 (-755 *3)) (-4 *3 (-174)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1117)) (-4 *2 (-913 *4)) (-5 *1 (-703 *4 *2 *5 *3))
- (-4 *5 (-383 *2)) (-4 *3 (-13 (-383 *4) (-10 -7 (-6 -4460)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-815 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1220) (-974))))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))))
+(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1263 *2))
+ (-4 *2 (-174))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1263 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4))
+ (-4 *3 (-421 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1263 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4))
+ (-4 *4 (-421 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-174))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1285 (-655 (-575)))) (-5 *1 (-491))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-1287 (-656 (-576)))) (-5 *1 (-492))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-733)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-737)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-556))))
-(((*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-4 *1 (-338 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239))
- (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174))
- (-4 *1 (-377 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1285 *1)) (-4 *4 (-174))
- (-4 *1 (-380 *4 *5)) (-4 *5 (-1261 *4))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-768)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-926)) (-4 *6 (-805))
+ (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-430 (-1192 *8)))
+ (-5 *1 (-923 *5 *6 *7 *8)) (-5 *4 (-1192 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5)))
+ (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-763)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068))
+ (-5 *2 (-656 (-656 (-960 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *4 (-1068))
+ (-4 *1 (-1153 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4))
- (-4 *4 (-1261 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))))
+ (-12 (-5 *2 (-656 (-656 (-960 *3)))) (-4 *3 (-1068))
+ (-4 *1 (-1153 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1153 *4)) (-4 *4 (-1068))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1153 *4)) (-4 *4 (-1068))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-656 (-656 (-960 *5)))) (-5 *3 (-656 (-173)))
+ (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-656 (-982))) (-5 *1 (-301)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1 *1) (-4 *1 (-504)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-556)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-656 (-1196))) (-4 *5 (-464))
+ (-5 *2
+ (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576)))))
+ (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1207 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638))))
((*1 *2 *1)
- (-12 (-4 *3 (-1117))
- (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))
- (-5 *1 (-1093 *3 *4 *2))
- (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3))))))
+ (-12 (-4 *3 (-1119))
+ (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1095 *3 *4 *2))
+ (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *3 *2)) (-4 *3 (-1117)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-447)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-1066))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1261 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *2 (-655 (-227))) (-5 *1 (-314)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-463))))
- ((*1 *1 *1 *1) (-4 *1 (-463))))
+ (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1119)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-442 *4) (-1021))) (-4 *4 (-568))
+ (-5 *1 (-285 *4 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464))))
+ ((*1 *1 *1 *1) (-4 *1 (-464))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 (-171 (-575))))) (-5 *2 (-655 (-171 *4)))
- (-5 *1 (-388 *4)) (-4 *4 (-13 (-373) (-859)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575))))))
- (-5 *4 (-655 (-1194))) (-5 *2 (-655 (-655 (-171 *5))))
- (-5 *1 (-388 *5)) (-4 *5 (-13 (-373) (-859))))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-5 *2 (-576))
+ (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5))
+ (-4 *6 (-13 (-416) (-1057 *5) (-374) (-1222) (-294)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5))
+ (-4 *3 (-1263 *4))
+ (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-148)))
+ (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782))
- (-4 *4 (-174)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-1063 *5 *6))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4)))
- (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-1063 *4 *5))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-861)) (-5 *1 (-1205 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359))
- (-5 *2 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137))))))
- (-5 *1 (-356 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-489))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-603))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-637))))
+ (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638))))
((*1 *2 *1)
- (-12 (-4 *3 (-1117))
- (-4 *2 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))
- (-5 *1 (-1093 *3 *4 *2))
- (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3))))))
+ (-12 (-4 *3 (-1119))
+ (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1095 *3 *4 *2))
+ (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1117)) (-5 *1 (-1183 *2 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
+ (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1119)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *1 (-635 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *2 (-1126 *3 *4 *5 *6)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-782))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-936))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782))
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
(-4 *4 (-174))))
((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-158))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-158))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220)))
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222)))
(-5 *1 (-229 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235))))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-303 *2)) (-4 *2 (-1129)) (-4 *2 (-1235))))
+ (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-371 *2)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-391 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-861))))
+ (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-392 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1117))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174))
- (-4 *6 (-243 (-2869 *3) (-782)))
+ (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174))
+ (-4 *6 (-243 (-2845 *3) (-783)))
(-14 *7
- (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *6))
- (-2 (|:| -4317 *5) (|:| -1658 *6))))
- (-5 *1 (-472 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861))
- (-4 *2 (-964 *4 *6 (-875 *3)))))
+ (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *6))
+ (-2 (|:| -4308 *5) (|:| -2273 *6))))
+ (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862))
+ (-4 *2 (-966 *4 *6 (-876 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861))
- (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-359)) (-5 *1 (-539 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-547)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-607 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-695 *5 *6 *7))))
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-548)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1131))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-696 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-698 *3 *2 *4)) (-4 *3 (-1066)) (-4 *2 (-383 *3))
- (-4 *4 (-383 *3))))
+ (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1068)) (-4 *2 (-384 *3))
+ (-4 *4 (-384 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-698 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *2 (-383 *3))))
+ (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *2 (-384 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-731))) ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567))
- (-5 *1 (-986 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129))))
- ((*1 *1 *1 *1) (-4 *1 (-1129)))
+ (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568))
+ (-5 *1 (-988 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131))))
+ ((*1 *1 *1 *1) (-4 *1 (-1131)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1140 *3 *4 *2 *5)) (-4 *4 (-1066)) (-4 *2 (-243 *3 *4))
+ (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *2 (-243 *3 *4))
(-4 *5 (-243 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1140 *3 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-243 *3 *4))
+ (-12 (-4 *1 (-1142 *3 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4))
(-4 *2 (-243 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2))
- (-4 *2 (-964 *3 (-542 *4) *4))))
+ (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2))
+ (-4 *2 (-966 *3 (-543 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-958 (-227))) (-5 *3 (-227)) (-5 *1 (-1231))))
+ (-12 (-5 *2 (-960 (-227))) (-5 *3 (-227)) (-5 *1 (-1233))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737))))
+ (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-737))))
+ (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-575)) (-4 *1 (-1283 *3)) (-4 *3 (-1235)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066))))
+ (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-877 *4 *5 *6 *7))
- (-4 *4 (-1066)) (-14 *5 (-655 (-1194))) (-14 *6 (-655 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-4 *5 (-861)) (-4 *6 (-804))
- (-14 *8 (-655 *5)) (-5 *2 (-1290))
- (-5 *1 (-1297 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-964 *4 *6 *5))
- (-14 *9 (-655 *3)) (-14 *10 *3))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301)))
+ ((*1 *1) (-5 *1 (-874)))
+ ((*1 *1)
+ (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805))
+ (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1104)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34)))))
+ ((*1 *1) (-5 *1 (-1199))) ((*1 *1) (-5 *1 (-1200))))
+(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-1216)))))
-(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1077))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)) (-4 *2 (-1077))))
- ((*1 *1 *1) (-4 *1 (-859)))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)) (-4 *2 (-1077))))
- ((*1 *1 *1) (-4 *1 (-1077))) ((*1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862))
+ (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-966 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-656 (-2 (|:| -2367 (-1192 *9)) (|:| -2273 (-576)))))))
+ (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-390)) (-5 *1 (-1082)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1213)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1055 (-48)))
- (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4))
- (-5 *2 (-429 (-1190 (-48)))) (-5 *1 (-446 *4 *5 *3))
- (-4 *3 (-1261 *5)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -2489 (-782)) (|:| |period| (-782))))
- (-5 *1 (-1174 *4)) (-4 *4 (-1235)) (-5 *3 (-782)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-1057 (-419 *2)))) (-5 *2 (-576))
+ (-5 *1 (-116 *4 *3)) (-4 *3 (-1263 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575))))
- (-5 *2 (-1285 (-418 (-575)))) (-5 *1 (-1313 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-112)) (-4 *7 (-1082 *4 *5 *6))
- (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-994 *4 *5 *6 *7)))))
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-461 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068))
+ (-4 *2 (-1278 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *3 (-656 (-270)))
+ (-5 *1 (-268))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6))
+ (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-1287 *6))
+ (-5 *1 (-643 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-969 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))))
(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1 *1 *1) (-5 *1 (-389)))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1 *1 *1) (-5 *1 (-390)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-275)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *1) (-5 *1 (-815))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-966 *3 *5 *4))
+ (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196))))
+ (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-38 (-418 (-575))))
- (-4 *2 (-174)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-765)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-655 (-1 *4 (-655 *4)))) (-4 *4 (-1117))
- (-5 *1 (-114 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117))
- (-5 *1 (-114 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-1 *4 (-655 *4))))
- (-5 *1 (-114 *4)) (-4 *4 (-1117)))))
-(((*1 *1) (-5 *1 (-1197))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-373)) (-5 *1 (-670 *4 *2))
- (-4 *2 (-667 *4)))))
+ (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4))
+ (-4 *2 (-1263 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4))))
- (-5 *1 (-901 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))))
+ (-12 (-5 *2 (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 *4))))
+ (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))
((*1 *2 *1)
- (-12 (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117))
- (-4 *7 (-1117)) (-5 *2 (-655 *1)) (-4 *1 (-1120 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))))
-(((*1 *2 *3) (-12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2))))
+ (-12 (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119))
+ (-4 *7 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-1122 *3 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *2 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-342)) (-5 *1 (-254)))))
+ (-12 (-4 *1 (-1122 *3 *4 *2 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241))
+ (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227))))
- (-5 *2 (-1052)) (-5 *1 (-765)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-575)) (-4 *5 (-359)) (-5 *2 (-429 (-1190 (-1190 *5))))
- (-5 *1 (-1233 *5)) (-5 *3 (-1190 (-1190 *5))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-782)) (-5 *2 (-1290)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-990)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 (-655 *4))))
- (-5 *1 (-1205 *4)) (-5 *3 (-655 (-655 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1174 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1261 *4)) (-5 *2 (-700 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-700 *4))
- (-5 *1 (-419 *3 *4 *5)) (-4 *3 (-420 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3))
- (-5 *2 (-700 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239))
- (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-320))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-987))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1011))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1053))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1090)))))
+ (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1263 *4))
+ (-5 *2 (-2 (|:| -2810 (-635 *4 *5)) (|:| -3225 (-419 *5))))
+ (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4))
+ (-14 *3 (-938)) (-4 *4 (-1068))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-464)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1263 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3))
+ (-4 *3 (-1090 *4 *5 *6 *2)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-768)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557))))
+ ((*1 *1 *1) (-4 *1 (-1079))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390)))
+ (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292))
+ (-5 *1 (-800))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390)))
+ (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292))
+ (-5 *1 (-800)))))
+(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-379)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-321))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092)))))
(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316))))
- ((*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316))))
- ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316))))
- ((*1 *2 *1) (-12 (-4 *1 (-1077)) (-5 *2 (-575)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-761)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-567)) (-4 *2 (-1066))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1))))
- (-4 *1 (-1088 *4 *5 *6 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227))
- (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-938)) (-4 *5 (-568)) (-5 *2 (-701 *5))
+ (-5 *1 (-973 *5 *3)) (-4 *3 (-668 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-409)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-967 *5)) (-4 *5 (-1066)) (-5 *2 (-492 *4 *5))
- (-5 *1 (-959 *4 *5)) (-14 *4 (-655 (-1194))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *3 (-655 (-575)))
- (-5 *1 (-895)))))
+ (-12 (-4 *4 (-464))
+ (-5 *2
+ (-656
+ (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4))))
+ (|:| |eigmult| (-783))
+ (|:| |eigvec| (-656 (-701 (-419 (-969 *4))))))))
+ (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-656 (-227))) (-5 *1 (-206)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *2 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))))
+ (-12 (-4 *1 (-1122 *3 *2 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
- ((*1 *1 *1) (-4 *1 (-1223))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2))
- (-4 *2 (-1276 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3))
- (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2))
- (-4 *2 (-1276 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148)))
- (-5 *1 (-1170 *3)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
+ ((*1 *1 *1) (-4 *1 (-1225))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -4177 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-374)) (-4 *7 (-1263 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6))
+ (-2 (|:| -4177 (-419 *7)) (|:| |coeff| (-419 *7))) "failed"))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-567) (-148)))
- (-5 *2 (-2 (|:| -2412 *3) (|:| -2429 *3))) (-5 *1 (-1255 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804))
- (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804))
- (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1157 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34)))
- (-5 *1 (-1158 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-1157 *3 *4))) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-615 *4 *3)) (-4 *4 (-1117))
- (-4 *3 (-1235)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390))))
+ (-5 *2 (-1054)) (-5 *1 (-315)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-815)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5))
+ (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7))
+ (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-928 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6))
+ (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4)))
+ (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-929 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *6))))
+ (-5 *4 (-1045 (-855 (-576)))) (-5 *5 (-1196)) (-5 *7 (-419 (-576)))
+ (-4 *6 (-1068)) (-5 *2 (-874)) (-5 *1 (-607 *6)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-655 (-1194))) (-4 *5 (-463))
- (-5 *2
- (-2 (|:| |glbase| (-655 (-252 *4 *5))) (|:| |glval| (-655 (-575)))))
- (-5 *1 (-642 *4 *5)) (-5 *3 (-655 (-252 *4 *5))))))
+ (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1192 (-969 *4)) (-969 *4)))
+ (-5 *1 (-1295 *4)) (-4 *4 (-374)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
- ((*1 *1 *1) (-4 *1 (-1223))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
+ ((*1 *1 *1) (-4 *1 (-1225))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-885))))
- ((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 (-418 (-967 (-575))))) (-5 *4 (-655 (-1194)))
- (-5 *2 (-655 (-655 *5))) (-5 *1 (-390 *5))
- (-4 *5 (-13 (-859) (-373)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-390 *4))
- (-4 *4 (-13 (-859) (-373))))))
-(((*1 *2) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
-(((*1 *2 *2) (-12 (-5 *2 (-655 (-325 (-227)))) (-5 *1 (-275)))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-389)) (-5 *1 (-1057)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3))
- (-4 *3 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1285 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-373))
- (-4 *1 (-735 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1261 *5))
- (-5 *2 (-700 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1366 (-655 (-2 (|:| |irr| *10) (|:| -2205 (-575)))))))
- (-5 *6 (-655 *3)) (-5 *7 (-655 *8)) (-4 *8 (-861)) (-4 *3 (-316))
- (-4 *10 (-964 *3 *9 *8)) (-4 *9 (-804))
- (-5 *2
- (-2 (|:| |polfac| (-655 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-655 (-1190 *3)))))
- (-5 *1 (-636 *8 *9 *3 *10)) (-5 *4 (-655 (-1190 *3))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112))
+ (-5 *1 (-368 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-112))
+ (-5 *1 (-540 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
- ((*1 *1 *1) (-4 *1 (-1223))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575))
- (-14 *4 (-782)) (-4 *5 (-174)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
+ ((*1 *1 *1) (-4 *1 (-1225))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1263 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1261 *2)) (-4 *2 (-1261 *4))
- (-5 *1 (-1002 *4 *2 *3 *5)) (-4 *4 (-359)) (-4 *5 (-735 *2 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *2 (-1052)) (-5 *1 (-762)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))))
-(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052))
- (-5 *1 (-759)))))
+ (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360))
+ (-5 *2 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139))))))
+ (-5 *1 (-357 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -1600 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-1068))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
- ((*1 *1 *1) (-4 *1 (-1223))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861))
- (-4 *4 (-274 *3)) (-4 *5 (-804)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
+ ((*1 *1 *1) (-4 *1 (-1225))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4464 "*")))
+ (-4 *4 (-1068)) (-5 *1 (-1047 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938))
+ (|has| *4 (-6 (-4464 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-936)) (-5 *1 (-453 *2))
- (-4 *2 (-1261 (-575)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-936)) (-5 *4 (-782)) (-5 *1 (-453 *2))
- (-4 *2 (-1261 (-575)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *1 (-453 *2))
- (-4 *2 (-1261 (-575)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782))
- (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-936)) (-5 *4 (-655 (-782))) (-5 *5 (-782))
- (-5 *6 (-112)) (-5 *1 (-453 *2)) (-4 *2 (-1261 (-575)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-429 *2)) (-4 *2 (-1261 *5))
- (-5 *1 (-455 *5 *2)) (-4 *5 (-1066)))))
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34))))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1263 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066))
- (-14 *4 (-655 (-1194)))))
+ (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132))
+ (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 *4))))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861)))
- (-14 *4 (-655 (-1194))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-5 *1 (-1278 *3 *2))
- (-4 *2 (-1276 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))))
+ (-12 (-5 *2 (-656 (-2 (|:| -1788 *3) (|:| -3667 *4))))
+ (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-759)))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))))
- (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1235)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
- ((*1 *1 *1) (-4 *1 (-1223))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
+ ((*1 *1 *1) (-4 *1 (-1225))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227)))
+ (-5 *2 (-1289)) (-5 *1 (-264)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-4 *5 (-373))
- (-4 *5 (-1066)) (-5 *2 (-112)) (-5 *1 (-1046 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373)) (-4 *4 (-1066))
- (-5 *2 (-112)) (-5 *1 (-1046 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *4 *5 *6 *7))
- (-4 *4 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235))
- (-4 *7 (-1235)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575))))
- (-4 *5 (-1261 *4))
- (-5 *2 (-2 (|:| -2063 (-418 *5)) (|:| |coeff| (-418 *5))))
- (-5 *1 (-579 *4 *5)) (-5 *3 (-418 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-418 (-575))) (-4 *1 (-565 *3))
- (-4 *3 (-13 (-415) (-1220)))))
- ((*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2568 (-656 *9)) (|:| -4256 *4) (|:| |ineq| (-656 *9))))
+ (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9))
+ (-4 *4 (-1090 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2568 (-656 *9)) (|:| -4256 *4) (|:| |ineq| (-656 *9))))
+ (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9))
+ (-4 *4 (-1090 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1121 *3)) (-5 *1 (-922 *3)) (-4 *3 (-379))
+ (-4 *3 (-1119)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-919 *4))
- (-4 *4 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-655 *5) *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-664 (-418 *7))) (-5 *4 (-1 (-655 *6) *7))
- (-5 *5 (-1 (-429 *7) *7))
- (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-655 *5) *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *6 (-1261 *5)) (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-665 *7 (-418 *7))) (-5 *4 (-1 (-655 *6) *7))
- (-5 *5 (-1 (-429 *7) *7))
- (-4 *6 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *7 (-1261 *6)) (-5 *2 (-655 (-418 *7))) (-5 *1 (-823 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-664 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-1 (-429 *6) *6))
- (-4 *6 (-1261 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 *5 (-418 *5))) (-4 *5 (-1261 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-655 (-418 *5))) (-5 *1 (-823 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-1 (-429 *6) *6))
- (-4 *6 (-1261 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-655 (-418 *6))) (-5 *1 (-823 *5 *6)))))
+ (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8))))
+ (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-833)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1194)) (-5 *1 (-547))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1196)) (-5 *1 (-548))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547)))))
+ (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547)))))
+ (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1194)) (-5 *1 (-715 *3)) (-4 *3 (-625 (-547)))))
+ (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-715 *3))
- (-4 *3 (-625 (-547))))))
+ (-12 (-5 *4 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-716 *3))
+ (-4 *3 (-626 (-548))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
- ((*1 *1 *1) (-4 *1 (-1223))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-1082 *3 *4 *2)) (-4 *2 (-861))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1235)) (-5 *2 (-575)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-782)) (-4 *4 (-316)) (-4 *6 (-1261 *4))
- (-5 *2 (-1285 (-655 *6))) (-5 *1 (-466 *4 *6)) (-5 *5 (-655 *6)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
+ ((*1 *1 *1) (-4 *1 (-1225))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227))))
+ (-5 *2 (-1054)) (-5 *1 (-767)))))
+(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *1) (-5 *1 (-1099))))
-(((*1 *1 *1) (-5 *1 (-1193)))
+ (-12 (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2))
+ (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *1 *1) (-5 *1 (-1195)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1041 *3))
- (-4 *3 (-13 (-859) (-373) (-1039)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3))
- (-4 *3 (-1261 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373)))
- (-4 *3 (-1261 *2)))))
-(((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-640)))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
+(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *1 *1) (-4 *1 (-641)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019) (-1220))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021) (-1222))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4)))
- (-4 *4 (-567)) (-5 *2 (-1285 *4)) (-5 *1 (-649 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))
- (-5 *2 (-1285 *6)) (-5 *1 (-346 *3 *4 *5 *6))
- (-4 *6 (-352 *3 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-1066)) (-4 *4 (-174))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))
- (-4 *3 (-174)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3))
- (-4 *3 (-1235)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5))))
+ (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-938)) (-4 *5 (-317)) (-4 *3 (-1263 *5))
+ (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5))
+ (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1278 *5))
+ (-5 *1 (-1280 *5 *2)))))
(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141))))
((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187))))
- ((*1 *2 *1) (-12 (-5 *2 (-254)) (-5 *1 (-253)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-588))))
- ((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-588)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *1 (-597 *2)) (-4 *2 (-1055 *3))
- (-4 *2 (-373))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-641 *4 *2))
- (-4 *2 (-13 (-441 *4) (-1019) (-1220)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1109 *2)) (-4 *2 (-13 (-441 *4) (-1019) (-1220)))
- (-4 *4 (-567)) (-5 *1 (-641 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-974)) (-5 *2 (-1194))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-974)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6))
+ (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-694 *4 *5)) (-4 *4 (-1117))))
+ (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-893)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-695 *4 *5)) (-4 *4 (-1119))))
((*1 *2 *2)
- (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3))))
+ (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945))))
+ (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))
((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066))))
+ (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068))))
((*1 *2 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575)))))
- (-4 *2 (-13 (-861) (-21))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-339)))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227)))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1052)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *3 (-567)) (-5 *1 (-986 *3 *2))
- (-4 *2 (-1261 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1117)) (-4 *5 (-1117))
- (-5 *2 (-1 *5)) (-5 *1 (-694 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
+ (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4))
- (-4 *3 (-428 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373))
- (-5 *2 (-1190 (-967 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-904 *6)))
- (-5 *5 (-1 (-901 *6 *8) *8 (-904 *6) (-901 *6 *8))) (-4 *6 (-1117))
- (-4 *8 (-13 (-1066) (-625 (-904 *6)) (-1055 *7)))
- (-5 *2 (-901 *6 *8)) (-4 *7 (-1066)) (-5 *1 (-956 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1052)))))
+ (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-4 *4 (-464))
+ (-5 *2 (-656 (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))))
+ (-5 *1 (-302 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-783))
+ (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576))))))
+ (-5 *1 (-251 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3633 *1)))
+ (-4 *1 (-864 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4))
+ (-4 *2 (-243 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1194)) (-5 *1 (-339)))))
-(((*1 *1) (-5 *1 (-589)))
- ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-874))))
- ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-874))))
+ (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-340)))))
+(((*1 *1) (-5 *1 (-590)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-875))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-874))))
+ (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-875))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1174 *4))
- (-4 *4 (-1117)) (-4 *4 (-1235)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1080)) (-5 *3 (-1176)))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1176 *4))
+ (-4 *4 (-1119)) (-4 *4 (-1237)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-782)) (|:| -4408 *4))) (-5 *5 (-782))
- (-4 *4 (-964 *6 *7 *8)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-460 *6 *7 *8 *4)))))
-(((*1 *1 *1) (-4 *1 (-640)))
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-763)))))
+(((*1 *1) (-5 *1 (-145)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-270)))))
+(((*1 *1 *1) (-4 *1 (-641)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019) (-1220))))))
-(((*1 *1) (-5 *1 (-834))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021) (-1222))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-926)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1236 *2))
- (-4 *2 (-1117))))
+ (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-818 *5 *6 *7 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576)))
+ (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-1287 (-701 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 (-701 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374))
+ (-5 *2 (-1287 (-701 (-419 (-969 *5))))) (-5 *1 (-1105 *5))
+ (-5 *4 (-701 (-419 (-969 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374))
+ (-5 *2 (-1287 (-701 (-969 *5)))) (-5 *1 (-1105 *5))
+ (-5 *4 (-701 (-969 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-861))
- (-5 *1 (-1236 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1066)) (-14 *3 (-655 (-1194)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861)))
- (-14 *3 (-655 (-1194))))))
+ (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374))
+ (-5 *2 (-1287 (-701 *4))) (-5 *1 (-1105 *4)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066))
- (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3))
- (-4 *3 (-863 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-118 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-575))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-882 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-882 *2)) (-14 *2 (-575))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-575)) (-14 *3 *2) (-5 *1 (-883 *3 *4))
- (-4 *4 (-880 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-575)) (-5 *1 (-883 *2 *3)) (-4 *3 (-880 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-575)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1276 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1247 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-1276 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-283)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-859) (-373))) (-5 *2 (-112)) (-5 *1 (-1078 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-835)) (-5 *3 (-655 (-1194))) (-5 *1 (-836)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-655 *2))) (-5 *4 (-655 *5))
- (-4 *5 (-38 (-418 (-575)))) (-4 *2 (-1276 *5))
- (-5 *1 (-1278 *5 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))
- (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9))
- (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6))
- (-4 *8 (-383 *7)) (-4 *9 (-383 *7))))
+ (-12 (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-317))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1119))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2647 (-783)) (|:| -2307 (-783))))
+ (-5 *1 (-783))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))))
+(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))
((*1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2)) (-4 *2 (-316))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *2)
- (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2))
- (-4 *2 (-698 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1070 *2 *3 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-316)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197))))
- ((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))
+ ((*1 *1 *1) (-4 *1 (-860)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))
+ ((*1 *1 *1) (-4 *1 (-1079))) ((*1 *1 *1) (-4 *1 (-1158))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1158))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066))
- (-4 *2 (-463))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-1261 (-575))) (-5 *2 (-655 (-575)))
- (-5 *1 (-497 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *3 (-463)))))
+ (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-831 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *7)) (-4 *7 (-861))
- (-4 *8 (-964 *5 *6 *7)) (-4 *5 (-567)) (-4 *6 (-804))
+ (-12 (-5 *3 (-701 (-419 (-576))))
(-5 *2
- (-2 (|:| |particular| (-3 (-1285 (-418 *8)) "failed"))
- (|:| -2098 (-655 (-1285 (-418 *8))))))
- (-5 *1 (-680 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))))
+ (-656
+ (-2 (|:| |outval| *4) (|:| |outmult| (-576))
+ (|:| |outvect| (-656 (-701 *4))))))
+ (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-419 (-576))))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576))))
+ (-5 *2 (-1287 (-576))) (-5 *1 (-1315 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-392 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-575)) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3))
- (-4 *3 (-1066))))
+ (-12 (-5 *4 (-576)) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3))
+ (-4 *3 (-1068))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-830 *4)) (-4 *4 (-861)) (-4 *1 (-1302 *4 *3))
- (-4 *3 (-1066)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227)))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1304 *4 *3))
+ (-4 *3 (-1068)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *3 (-1263 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3))
+ (-4 *5 (-668 (-419 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-419 *5))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4))
+ (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568))
+ (-5 *2 (-783)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-821 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 (-418 *6))) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-2 (|:| -2098 (-655 (-418 *6))) (|:| -3415 (-700 *5))))
- (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *6 (-418 *6))) (-5 *4 (-418 *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-821 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-665 *6 (-418 *6))) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-2 (|:| -2098 (-655 (-418 *6))) (|:| -3415 (-700 *5))))
- (-5 *1 (-821 *5 *6)) (-5 *4 (-655 (-418 *6))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528))))
+ (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568))
+ (-4 *8 (-966 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *3) (|:| |radicand| *3)))
+ (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-783))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1117) (-34))) (-5 *1 (-1157 *3 *2))
- (-4 *3 (-13 (-1117) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1296)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *2))
+ (-4 *3 (-13 (-1119) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1298)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-768)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-112))))
+ (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1117) (-1055 *5)))
- (-4 *5 (-898 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-946 *4 *5 *6)))))
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557))
+ (-4 *3 (-568))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557))
+ (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557))
+ (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3))
+ (-4 *3 (-1057 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-1110 *3)) (-4 *3 (-1235)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-763)))))
-(((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-52)) (-5 *1 (-842)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1308 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-857)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-4 *2 (-1261 *5))
- (-5 *1 (-1279 *5 *2 *6 *3)) (-4 *6 (-667 *2)) (-4 *3 (-1276 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
+ (-12 (-5 *2 (-576)) (-4 *1 (-1112 *3)) (-4 *3 (-1237)))))
+(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-656 (-656 (-960 (-227)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-656 (-656 (-960 (-227))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
(-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-655 *5))) (-4 *5 (-1276 *4))
- (-4 *4 (-38 (-418 (-575))))
- (-5 *2 (-1 (-1174 *4) (-655 (-1174 *4)))) (-5 *1 (-1278 *4 *5)))))
+ (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5))
+ (-4 *3 (-1263 *4))
+ (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1300 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-767)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-461 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))
+ (-5 *2 (-1054)) (-5 *1 (-760)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1119))
+ (-4 *2 (-132)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576))))
+ (-4 *5 (-1263 *4))
+ (-5 *2 (-2 (|:| -4177 (-419 *5)) (|:| |coeff| (-419 *5))))
+ (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7)))
- (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804))
- (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8)))
- (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
+ (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-5 *2 (-2 (|:| -4169 *3) (|:| -3179 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (-4 *4 (-1066))
- (-5 *1 (-1045 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936)) (-4 *4 (-1066))
- (-5 *1 (-1045 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-655
- (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *3))
- (|:| |logand| (-1190 *3)))))
- (-5 *1 (-597 *3)) (-4 *3 (-373)))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-5 *2 (-2 (|:| -4147 *3) (|:| -3153 *4))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2))
- (-4 *3 (-567)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-862))
+ (-4 *3 (-1119)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3))
+ (-4 *3 (-13 (-1222) (-29 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-224 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-261 *3))))
+ ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3))
+ (-4 *3 (-660 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3))
+ (-4 *3 (-660 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068))))
+ ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066))
- (-14 *4 (-655 (-1194)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068))
+ (-14 *4 (-656 (-1196)))))
((*1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861)))
- (-14 *4 (-655 (-1194)))))
- ((*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862)))
+ (-14 *4 (-656 (-1196)))))
+ ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-345 *3 *4 *5 *2)) (-4 *3 (-373))
- (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))
- (-4 *2 (-352 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374))
+ (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))
+ (-4 *2 (-353 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-174))))
- ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-735 *2 *3)) (-4 *3 (-1261 *2)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 *3 (-655 *1)))
- (-4 *1 (-1088 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1174 (-988))) (-5 *1 (-988)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-547)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-99 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-227))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389))))
+ ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1263 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4))
+ (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-418 (-575))) (-5 *1 (-389)))))
-(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1113))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1238 *2))
+ (-4 *2 (-1119))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-862))
+ (-5 *1 (-1238 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235))))
- ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3)) (-4 *3 (-1117))
- (-4 *3 (-1235)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066))
- (-5 *2 (-655 (-655 (-958 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112)) (-4 *4 (-1066))
- (-4 *1 (-1151 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 (-958 *3)))) (-4 *3 (-1066))
- (-4 *1 (-1151 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-112))
- (-4 *1 (-1151 *4)) (-4 *4 (-1066))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-655 (-655 (-958 *4)))) (-5 *3 (-112))
- (-4 *1 (-1151 *4)) (-4 *4 (-1066))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-655 (-655 (-655 *5)))) (-5 *3 (-655 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-655 (-655 (-958 *5)))) (-5 *3 (-655 (-173)))
- (-5 *4 (-173)) (-4 *1 (-1151 *5)) (-4 *5 (-1066)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148)))
- (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4)))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2))
+ (-4 *2 (-699 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1066))
- (-5 *1 (-864 *5 *2)) (-4 *2 (-863 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-655 *2) *2 *2 *2)) (-4 *2 (-1117))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (-5 *1 (-103 *2)))))
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068))
+ (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575))))
- (-5 *1 (-1127)))))
+ (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374))
+ (-5 *2 (-1192 (-969 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 (-967 *6))) (-4 *6 (-567))
- (-4 *2 (-964 (-418 (-967 *6)) *5 *4)) (-5 *1 (-743 *5 *4 *6 *2))
- (-4 *5 (-804))
- (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3923 (-793 *3)) (|:| |coef1| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-2 (|:| -3923 *1) (|:| |coef1| *1)))
- (-4 *1 (-1082 *3 *4 *5)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-700 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4))
- (-4 *3 (-428 *4))))
- ((*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1285 (-418 (-967 *4))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *4)))))))
- (-5 *3 (-655 *7)) (-4 *4 (-13 (-316) (-148)))
- (-4 *7 (-964 *4 *6 *5)) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-263)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-700 (-418 (-967 (-575)))))
- (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *8)) (-5 *4 (-782)) (-4 *8 (-964 *5 *7 *6))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194))))
- (-4 *7 (-804))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576))))
(-5 *2
- (-655
- (-2 (|:| |det| *8) (|:| |rows| (-655 (-575)))
- (|:| |cols| (-655 (-575))))))
- (-5 *1 (-939 *5 *6 *7 *8)))))
+ (-3 (|:| |%expansion| (-323 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))))
+ (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))
+ (-14 *6 (-1196)) (-14 *7 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292))
+ (-5 *1 (-461 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-943)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568))
+ (-4 *3 (-1237)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-152 *2)) (-4 *2 (-1235))
- (-4 *2 (-1117))))
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237))
+ (-4 *2 (-1119))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *3))
- (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3))
+ (-4 *3 (-1237))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-685 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117))
- (-5 *1 (-748 *4))))
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119))
+ (-5 *1 (-749 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-958 (-227)) (-227) (-227)))
- (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-261)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
-(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-389))))
- ((*1 *1 *1 *1) (-4 *1 (-556)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
- ((*1 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-782)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-556))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))
+ (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237))
+ (-4 *3 (-1119)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4))
- (-14 *3 (-936)) (-4 *4 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-833)) (-5 *1 (-832)))))
-(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))
- (-5 *2 (-1052)) (-5 *1 (-759)))))
+ (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-112))
+ (-5 *1 (-921 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-938)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1237)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1176 (-656 (-938)))) (-5 *1 (-896)))))
+(((*1 *1) (-4 *1 (-360)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1192 *5)))
+ (|:| |prim| (-1192 *5))))
+ (-5 *1 (-444 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-568) (-148)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3))
+ (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3))))
+ (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-969 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-374) (-148)))
+ (-5 *2
+ (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576))
+ (|:| |prim| (-1192 *5))))
+ (-5 *1 (-977 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196)))
+ (-4 *5 (-13 (-374) (-148)))
+ (-5 *2
+ (-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 *5)))
+ (|:| |prim| (-1192 *5))))
+ (-5 *1 (-977 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-5 *5 (-1196))
+ (-4 *6 (-13 (-374) (-148)))
+ (-5 *2
+ (-2 (|:| -1788 (-656 (-576))) (|:| |poly| (-656 (-1192 *6)))
+ (|:| |prim| (-1192 *6))))
+ (-5 *1 (-977 *6)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-871)) (-5 *2 (-702 (-130))) (-5 *3 (-130)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-171 (-227))) (-5 *6 (-1176))
- (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132))
+ (-4 *2 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-1119)) (-5 *1 (-661 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390))))
+ ((*1 *1 *1 *1) (-4 *1 (-557)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *4 (-656 (-1196)))
+ (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5))
+ (-4 *5 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-325 (-389))) (-5 *2 (-325 (-227))) (-5 *1 (-314)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052))
- (-5 *1 (-767)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -4038 (-576)) (|:| -1603 (-656 *3))))
+ (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2))
+ (-4 *4 (-38 (-419 (-576)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *3 (-915 *6))
+ (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3))
+ (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462)))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-686 *2)) (-4 *2 (-1066)) (-4 *2 (-1117)))))
+ (-12 (-5 *1 (-687 *2)) (-4 *2 (-1068)) (-4 *2 (-1119)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-359)) (-4 *2 (-1066)) (-5 *1 (-723 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-762)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-1132)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782))
- (-14 *4 (-782)) (-4 *5 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-429 *3)) (-4 *3 (-567))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| -2347 *4) (|:| -1753 (-575)))))
- (-4 *4 (-1261 (-575))) (-5 *2 (-782)) (-5 *1 (-453 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-655 (-967 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-655 (-967 *4))) (-5 *1 (-427 *3 *4))
- (-4 *3 (-428 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-655 (-967 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-655 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-464 *4 *5 *6 *7))) (-5 *2 (-655 (-967 *4)))
- (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-567)) (-4 *4 (-174))
- (-14 *5 (-936)) (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-316)) (-5 *2 (-112)))))
+ (-12
+ (-5 *2
+ (-656
+ (-2
+ (|:| -4147
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3153
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1176 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3672
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-571))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237))
+ (-5 *2 (-656 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886))
+ (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-1288))
+ (-5 *1 (-1291))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270)))
+ (-5 *2 (-1288)) (-5 *1 (-1291)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))))
+(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1025)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1263 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-560))))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-122 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-492 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066))
- (-5 *2 (-252 *4 *5)) (-5 *1 (-959 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-317))
+ (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-782)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-783)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895))
- (-5 *3 (-655 (-575)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895))
- (-5 *3 (-655 (-575))))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317))
+ (-5 *1 (-181 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 *8))
+ (-5 *4
+ (-656
+ (-2 (|:| -4261 (-701 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-701 *7)))))
+ (-5 *5 (-783)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-360))
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1290)) (-5 *1 (-246)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023))))
- ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))))
-(((*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-227)) (-5 *1 (-314)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-1066)) (-5 *1 (-1257 *4 *2))
- (-4 *2 (-1261 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-575) (-227) (-517) (-1176) (-1199)))
- (-5 *1 (-1199)))))
+ (-2 (|:| -4261 (-701 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-701 *7))))
+ (-5 *1 (-510 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3))
+ (-4 *3 (-13 (-416) (-1222)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-1285 *5))) (-5 *4 (-575)) (-5 *2 (-1285 *5))
- (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192))))
- ((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1) (-4 *1 (-880 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-803))
- (-4 *4 (-861)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936))
- (-5 *2
- (-3 (-1190 *4)
- (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137)))))))
- (-5 *1 (-356 *4)) (-4 *4 (-359)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390))))
+ (-5 *1 (-815)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2))
- (-5 *2 (-389)) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066))
- (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567))
- (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5))))
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-246))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861))
- (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-861)) (-4 *5 (-625 *2)) (-5 *2 (-389))
- (-5 *1 (-796 *5)))))
+ (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1292)) (-5 *1 (-246)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-568))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054))
+ (-5 *1 (-760)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
+ (-4 *2 (-1237)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-1194)) (-4 *6 (-441 *5))
- (-4 *5 (-1117)) (-5 *2 (-655 (-623 *6))) (-5 *1 (-584 *5 *6)))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1068))
+ (-4 *7 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7))
+ (-4 *6 (-1263 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068))
+ (-4 *4 (-1263 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7))
+ (-4 *6 (-1263 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-655 (-2 (|:| |totdeg| (-782)) (|:| -4408 *3))))
- (-5 *4 (-782)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *6 (-804))
- (-4 *7 (-861)) (-5 *1 (-460 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))
- (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-1080))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-564)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3)) (-5 *6 (-1190 *3))
- (-4 *3 (-13 (-441 *7) (-27) (-1220)))
- (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3))
- (-5 *6 (-418 (-1190 *3))) (-4 *3 (-13 (-441 *7) (-27) (-1220)))
- (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-571 *7 *3 *8)) (-4 *8 (-1117)))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *2 (-1292))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6))))
(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-171 (-575))) (-5 *2 (-112)) (-5 *1 (-457))))
- ((*1 *2 *3)
(-12
- (-5 *3
- (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4)
- (-252 *4 (-418 (-575)))))
- (-14 *4 (-655 (-1194))) (-14 *5 (-782)) (-5 *2 (-112))
- (-5 *1 (-516 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-976 *3)) (-4 *3 (-556))))
- ((*1 *2 *1) (-12 (-4 *1 (-1239)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5))))
- (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861))
- (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-655 (-782)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 (-782))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7)))
- (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804))
- (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8)))
- (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-655 (-655 *7)))
- (-5 *1 (-459 *4 *5 *6 *7)) (-5 *3 (-655 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804))
- (-4 *7 (-861)) (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-655 (-655 *8)))
- (-5 *1 (-459 *5 *6 *7 *8)) (-5 *3 (-655 *8)))))
-(((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057))))
- ((*1 *1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-575))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-782)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-804)) (-4 *4 (-964 *5 *6 *7)) (-4 *5 (-463)) (-4 *7 (-861))
- (-5 *1 (-460 *5 *6 *7 *4)))))
+ (-5 *2
+ (-656
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862))
+ (-5 *1 (-461 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4))))
- (-5 *1 (-1293 *4)) (-4 *4 (-373)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-936)) (-4 *5 (-567)) (-5 *2 (-700 *5))
- (-5 *1 (-971 *5 *3)) (-4 *3 (-667 *5)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3880 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1) (-5 *1 (-644))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-861))
- (-4 *3 (-1117)))))
-(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1) (-5 *1 (-643))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))))
+ (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1176)) (|:| -1777 (-1176))))
- (-5 *1 (-833)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-547))) (-5 *2 (-1194)) (-5 *1 (-547)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463))
- (-14 *6 (-655 (-1194)))
- (-5 *2
- (-655 (-1163 *5 (-542 (-875 *6)) (-875 *6) (-791 *5 (-875 *6)))))
- (-5 *1 (-639 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-556))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-3 (-112) (-655 *1)))
- (-4 *1 (-1088 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066))
- (-5 *1 (-1178 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066))
- (-14 *4 (-1194)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *3 (-502)) (-5 *2 (-702 (-590))) (-5 *1 (-590)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
+ (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-1232 *3))
+ (-4 *3 (-993)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873)))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8))
+ (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *9 (-966 *8 *6 *7))
+ (-4 *6 (-805)) (-5 *2 (-1192 *8)) (-5 *1 (-331 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1052))
- (-5 *1 (-757)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-316))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862))
+ (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-5 *1 (-996 *6 *7 *8 *9)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2))
+ (-4 *3 (-568)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
+ (-5 *1 (-122 *3)) (-4 *3 (-862))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1222)))
+ (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-595 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-419 (-969 *3))))
+ (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -1519 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-4 *5 (-1068))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5))
+ (-5 *3 (-656 (-701 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-374)) (-4 *5 (-1068))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5))
+ (-5 *3 (-656 (-701 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1163))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3657 *1)))
- (-4 *1 (-316)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-980))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1176) (-785))) (-5 *1 (-115)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-418 (-967 (-575)))))
- (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4))
- (-4 *4 (-13 (-859) (-373)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-303 (-418 (-967 (-575))))))
- (-5 *2 (-655 (-655 (-303 (-967 *4))))) (-5 *1 (-390 *4))
- (-4 *4 (-13 (-859) (-373)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 (-575)))) (-5 *2 (-655 (-303 (-967 *4))))
- (-5 *1 (-390 *4)) (-4 *4 (-13 (-859) (-373)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-303 (-418 (-967 (-575)))))
- (-5 *2 (-655 (-303 (-967 *4)))) (-5 *1 (-390 *4))
- (-4 *4 (-13 (-859) (-373)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1194))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1220) (-974)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2098 (-655 *4))))
- (-5 *1 (-663 *6 *4 *3)) (-4 *3 (-667 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *2))
- (-4 *2 (-13 (-29 *6) (-1220) (-974)))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *1 (-663 *6 *2 *3)) (-4 *3 (-667 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *5)) (-4 *5 (-373))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1285 *5) "failed"))
- (|:| -2098 (-655 (-1285 *5)))))
- (-5 *1 (-678 *5)) (-5 *4 (-1285 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373))
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1230 *5 *6 *7 *3))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 (-1285 *5) "failed"))
- (|:| -2098 (-655 (-1285 *5)))))
- (-5 *1 (-678 *5)) (-5 *4 (-1285 *5))))
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *5)) (-4 *5 (-373))
+ (-12
(-5 *2
- (-655
- (-2 (|:| |particular| (-3 (-1285 *5) "failed"))
- (|:| -2098 (-655 (-1285 *5))))))
- (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5)))))
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576)))
+ (-5 *4 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-655 *5))) (-4 *5 (-373))
+ (-12
(-5 *2
- (-655
- (-2 (|:| |particular| (-3 (-1285 *5) "failed"))
- (|:| -2098 (-655 (-1285 *5))))))
- (-5 *1 (-678 *5)) (-5 *4 (-655 (-1285 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461))))
- (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461))))
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-419 (-576)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-419 (-576)))
+ (-5 *2 (-656 (-2 (|:| -2425 *5) (|:| -2442 *5)))) (-5 *1 (-1039 *3))
+ (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2425 *5) (|:| -2442 *5)))))
+ ((*1 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4))))
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576))))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461))))
- (-4 *7 (-13 (-383 *5) (-10 -7 (-6 -4461))))
+ (-12
(-5 *2
- (-655
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2098 (-655 *7)))))
- (-5 *1 (-679 *5 *6 *7 *3)) (-5 *4 (-655 *7))
- (-4 *3 (-698 *5 *6 *7))))
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576))))
+ (-5 *4 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *1 (-783 *5 *2)) (-4 *2 (-13 (-29 *5) (-1220) (-974)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-700 *7)) (-5 *5 (-1194))
- (-4 *7 (-13 (-29 *6) (-1220) (-974)))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1285 *7)) (|:| -2098 (-655 (-1285 *7)))))
- (-5 *1 (-813 *6 *7)) (-5 *4 (-1285 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-700 *6)) (-5 *4 (-1194))
- (-4 *6 (-13 (-29 *5) (-1220) (-974)))
- (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-655 (-1285 *6))) (-5 *1 (-813 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115)))
- (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974)))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1285 *7)) (|:| -2098 (-655 (-1285 *7)))))
- (-5 *1 (-813 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115)))
- (-5 *5 (-1194)) (-4 *7 (-13 (-29 *6) (-1220) (-974)))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2
- (-2 (|:| |particular| (-1285 *7)) (|:| -2098 (-655 (-1285 *7)))))
- (-5 *1 (-813 *6 *7))))
+ (-12 (-5 *4 (-419 (-576)))
+ (-5 *2 (-656 (-2 (|:| -2425 *4) (|:| -2442 *4)))) (-5 *1 (-1040 *3))
+ (-4 *3 (-1263 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-1194))
- (-4 *7 (-13 (-29 *6) (-1220) (-974)))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2098 (-655 *7))) *7 "failed"))
- (-5 *1 (-813 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-1194))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
+ (-12 (-5 *5 (-419 (-576)))
+ (-5 *2 (-656 (-2 (|:| -2425 *5) (|:| -2442 *5)))) (-5 *1 (-1040 *3))
+ (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -2425 *5) (|:| -2442 *5))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-910))
+ (-5 *3
+ (-2 (|:| |pde| (-656 (-326 (-227))))
+ (|:| |constraints|
+ (-656
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178))
+ (|:| |tol| (-227))))
+ (-5 *2 (-1054)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 *2)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4))
+ (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805))
+ (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $)))))
+ (-4 *6 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196)))
+ (-4 *5 (-464))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2098 (-655 *3))) *3 "failed"))
- (-5 *1 (-813 *6 *3)) (-4 *3 (-13 (-29 *6) (-1220) (-974)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-303 *2)) (-5 *4 (-115)) (-5 *5 (-655 *2))
- (-4 *2 (-13 (-29 *6) (-1220) (-974))) (-5 *1 (-813 *6 *2))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-303 *2)) (-5 *5 (-655 *2))
- (-4 *2 (-13 (-29 *6) (-1220) (-974)))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *1 (-813 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-819)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4))
- (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4))
- (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389)))
- (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1285 (-325 (-389)))) (-5 *4 (-389)) (-5 *5 (-655 *4))
- (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389)))
- (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1285 (-325 *4))) (-5 *5 (-655 (-389)))
- (-5 *6 (-325 (-389))) (-5 *4 (-389)) (-5 *2 (-1052)) (-5 *1 (-816))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2098 (-655 *6))) "failed")
- *7 *6))
- (-4 *6 (-373)) (-4 *7 (-667 *6))
- (-5 *2 (-2 (|:| |particular| (-1285 *6)) (|:| -2098 (-700 *6))))
- (-5 *1 (-824 *6 *7)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-912)) (-5 *2 (-1052)) (-5 *1 (-911))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-912)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-911))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176))
- (-5 *8 (-227)) (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389))
- (-5 *2 (-1052)) (-5 *1 (-911))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-782)) (-5 *6 (-655 (-655 (-325 *3)))) (-5 *7 (-1176))
- (-5 *5 (-655 (-325 (-389)))) (-5 *3 (-389)) (-5 *2 (-1052))
- (-5 *1 (-911))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 (-389)))
- (-5 *1 (-1040)) (-5 *4 (-389))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 (-389))) (-5 *1 (-1040))
- (-5 *4 (-389))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4))
- (-5 *3 (-325 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1148 *4))
- (-5 *3 (-303 (-325 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5))
- (-5 *3 (-303 (-325 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-655 (-303 (-325 *5)))) (-5 *1 (-1148 *5))
- (-5 *3 (-325 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-1194)))
- (-4 *5 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *2 (-655 (-655 (-303 (-325 *5))))) (-5 *1 (-1148 *5))
- (-5 *3 (-655 (-303 (-325 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194)))
- (-4 *5 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *5))))))
- (-5 *1 (-1203 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-1194))) (-4 *5 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-1203 *5))
- (-5 *3 (-655 (-303 (-418 (-967 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-1203 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 (-655 (-303 (-418 (-967 *4))))))
- (-5 *1 (-1203 *4)) (-5 *3 (-655 (-303 (-418 (-967 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-4 *5 (-567))
- (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5))
- (-5 *3 (-418 (-967 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-4 *5 (-567))
- (-5 *2 (-655 (-303 (-418 (-967 *5))))) (-5 *1 (-1203 *5))
- (-5 *3 (-303 (-418 (-967 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4)))))
- (-5 *1 (-1203 *4)) (-5 *3 (-418 (-967 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 (-303 (-418 (-967 *4)))))
- (-5 *1 (-1203 *4)) (-5 *3 (-303 (-418 (-967 *4)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-873))))
- ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-977)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3))
- (-4 *3 (-13 (-373) (-148) (-1055 (-575)))) (-5 *1 (-579 *3 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *1 *1 *1) (-4 *1 (-484)))
- ((*1 *1 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-895))))
- ((*1 *1 *1) (-5 *1 (-988)))
- ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-4 *4 (-1117))
- (-5 *1 (-584 *4 *2)) (-4 *2 (-441 *4)))))
+ (-2 (|:| |gblist| (-656 (-253 *4 *5)))
+ (|:| |gvlist| (-656 (-576)))))
+ (-5 *1 (-643 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-567)) (-4 *5 (-1066))
- (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3))
- (-4 *3 (-863 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))))
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-389)) (-5 *1 (-207)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))))
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *2 (-1054)) (-5 *1 (-315))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))
+ (-5 *2 (-1054)) (-5 *1 (-315)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222)))
+ (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222)))
+ (-5 *1 (-612 *4 *5 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1235)) (-5 *2 (-782)) (-5 *1 (-184 *4 *3))
- (-4 *3 (-685 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-556))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782))))
+ (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1196)) (-5 *1 (-548)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *1 *1) (-4 *1 (-557))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4261 (-656 *1))))
+ (-4 *1 (-378 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-465 *3 *4 *5 *6))
+ (|:| -4261 (-656 (-465 *3 *4 *5 *6)))))
+ (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1196)) (-5 *2 (-548)) (-5 *1 (-547 *4))
+ (-4 *4 (-1237)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-379))
+ (-5 *2 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))))
+(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-656 (-969 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-969 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-656 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-969 *4)))
+ (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174))
+ (-14 *5 (-938)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))
+ ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-982))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374))
+ (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-782)))))
-(((*1 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-399)) (-5 *1 (-447)))))
-(((*1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *1)
- (-12 (-4 *1 (-415)) (-3213 (|has| *1 (-6 -4451)))
- (-3213 (|has| *1 (-6 -4443)))))
- ((*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861))))
- ((*1 *1) (-4 *1 (-855))) ((*1 *1 *1 *1) (-4 *1 (-861)))
- ((*1 *2 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2))
+ (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174))
+ (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
+ (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-874))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-979)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-598 *3) *3 (-1196)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1196)))
+ (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1057 *4)) (-4 *3 (-442 *7))
+ (-5 *4 (-1196)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464))
+ (-4 *7 (-899 (-576))) (-4 *7 (-1119)) (-5 *2 (-598 *3))
+ (-5 *1 (-585 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1201))) (-5 *1 (-1201)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1117)))))
-(((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-859)) (-5 *1 (-312 *3)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-709)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360))
+ (-5 *1 (-540 *4)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))
+ ((*1 *1 *1) (-5 *1 (-390)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3))
+ (-4 *3 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1119)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139))))))
+ (-4 *4 (-360)) (-5 *2 (-1292)) (-5 *1 (-540 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1231 *6))
+ (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1295 *6))
+ (-5 *5 (-1176 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112))
- (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-833)))))
+ (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5))
+ (-4 *4 (-1119)) (-4 *5 (-1119)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237))
+ (-4 *5 (-384 *4)) (-4 *2 (-384 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068))
+ (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-594)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-303 (-844 *3)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-844 *3)) (-5 *1 (-647 *5 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *5)))))
+ (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (-855 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-855 *3) "failed")))
+ "failed"))
+ (-5 *1 (-648 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1178))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 (-844 (-967 *5)))) (-4 *5 (-463))
- (-5 *2 (-844 (-418 (-967 *5)))) (-5 *1 (-648 *5))
- (-5 *3 (-418 (-967 *5)))))
+ (-12 (-5 *4 (-304 (-855 (-969 *5)))) (-4 *5 (-464))
+ (-5 *2
+ (-3 (-855 (-419 (-969 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-855 (-419 (-969 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5)))
- (-4 *5 (-463)) (-5 *2 (-844 *3)) (-5 *1 (-648 *5)))))
+ (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5)))
+ (-4 *5 (-464))
+ (-5 *2
+ (-3 (-855 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-855 *3) "failed")))
+ "failed"))
+ (-5 *1 (-649 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-304 (-419 (-969 *6)))) (-5 *5 (-1178))
+ (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3))
+ (-5 *1 (-649 *6)))))
+(((*1 *1) (-5 *1 (-571))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-763)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-118 *4)) (-14 *4 *3)
- (-5 *3 (-575))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575))))
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3)
+ (-5 *3 (-576))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-882 *4)) (-14 *4 *3)
- (-5 *3 (-575))))
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3)
+ (-5 *3 (-576))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-418 (-575))) (-5 *1 (-883 *4 *5))
- (-5 *3 (-575)) (-4 *5 (-880 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1029)) (-5 *2 (-418 (-575)))))
+ (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5))
+ (-5 *3 (-576)) (-4 *5 (-881 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-576)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-13 (-859) (-373)))
- (-4 *3 (-1261 *2))))
+ (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374)))
+ (-4 *3 (-1263 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2882 (*2 (-1194))))
- (-4 *2 (-1066)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-655
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-782)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-804)) (-4 *6 (-964 *4 *3 *5)) (-4 *4 (-463)) (-4 *5 (-861))
- (-5 *1 (-460 *4 *3 *5 *6)))))
+ (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2858 (*2 (-1196))))
+ (-4 *2 (-1068)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-429 (-1190 (-575)))) (-5 *1 (-193)) (-5 *3 (-575)))))
-(((*1 *1) (-5 *1 (-1102))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-700 (-575))) (-5 *3 (-655 (-575))) (-5 *1 (-1127)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1285 (-1194))) (-5 *3 (-1285 (-464 *4 *5 *6 *7)))
- (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936))
- (-14 *6 (-655 (-1194))) (-14 *7 (-1285 (-700 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1285 (-464 *4 *5 *6 *7)))
- (-5 *1 (-464 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-936))
- (-14 *6 (-655 *2)) (-14 *7 (-1285 (-700 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-464 *3 *4 *5 *6))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194)))
- (-14 *6 (-1285 (-700 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-1194))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-174)) (-14 *4 (-936)) (-14 *5 (-655 (-1194)))
- (-14 *6 (-1285 (-700 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1194)) (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-936)) (-14 *5 (-655 *2)) (-14 *6 (-1285 (-700 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-464 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-936))
- (-14 *4 (-655 (-1194))) (-14 *5 (-1285 (-700 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1158))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-569 *6 *3)))))
+(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-5 *2 (-655 (-1194))) (-5 *1 (-212))
- (-5 *3 (-1194))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-212))
+ (-5 *3 (-1196))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 (-227))) (-5 *4 (-782)) (-5 *2 (-655 (-1194)))
- (-5 *1 (-275))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1196)))
+ (-5 *1 (-276))))
((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174))
- (-5 *2 (-655 *3))))
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-656 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 *3)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-830 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861))))
+ (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-655 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942))
- (-5 *1 (-940 *3)) (-4 *3 (-625 (-547)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-5 *2 (-942)) (-5 *1 (-940 *3))
- (-4 *3 (-625 (-547)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-942))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942)))))
-(((*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-457)) (-5 *3 (-575)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5))
- (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-1298 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1298 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066))))
- ((*1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-300)) (-5 *1 (-169)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-655
- (-2 (|:| -4422 (-782))
- (|:| |eqns|
- (-655
- (-2 (|:| |det| *7) (|:| |rows| (-655 (-575)))
- (|:| |cols| (-655 (-575))))))
- (|:| |fgb| (-655 *7)))))
- (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148)))
- (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782))
- (-5 *1 (-939 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1156))))
+ (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-656 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-1117)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068))
+ (-14 *4 (-656 (-1196)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862)))
+ (-14 *4 (-656 (-1196))))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-635 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -2442 *4) (|:| |sol?| (-112)))
+ (-576) *4))
+ (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-301)) (-5 *1 (-169)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-700 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861))))
- ((*1 *1) (-4 *1 (-1169))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-766))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-399))
- (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-463))
- (-5 *2 (-492 *4 *5)) (-5 *1 (-642 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *2 (-567)) (-5 *1 (-986 *2 *4))
- (-4 *4 (-1261 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-786)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-982)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-112))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112))
- (-5 *1 (-1224 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6))
+ (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *1) (-4 *1 (-1171))))
+(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119))))
+ ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068))
+ (-4 *2 (-1247 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-623 *1)) (-4 *1 (-441 *4)) (-4 *4 (-1117))
- (-4 *4 (-567)) (-5 *2 (-418 (-1190 *1)))))
+ (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119))
+ (-4 *4 (-568)) (-5 *2 (-419 (-1192 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-623 *3)) (-4 *3 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-1190 (-418 (-1190 *3)))) (-5 *1 (-571 *6 *3 *7))
- (-5 *5 (-1190 *3)) (-4 *7 (-1117))))
+ (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-572 *6 *3 *7))
+ (-5 *5 (-1192 *3)) (-4 *7 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1281 *5)) (-14 *5 (-1194)) (-4 *6 (-1066))
- (-5 *2 (-1258 *5 (-967 *6))) (-5 *1 (-962 *5 *6)) (-5 *3 (-967 *6))))
+ (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1068))
+ (-5 *2 (-1260 *5 (-969 *6))) (-5 *1 (-964 *5 *6)) (-5 *3 (-969 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-1190 *3))))
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-1192 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861)) (-5 *2 (-1190 *1))
- (-4 *1 (-964 *4 *5 *3))))
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1192 *1))
+ (-4 *1 (-966 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-1066))
- (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-418 (-1190 *3)))
- (-5 *1 (-965 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068))
+ (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-419 (-1192 *3)))
+ (-5 *1 (-967 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1190 *3))
+ (-12 (-5 *2 (-1192 *3))
(-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))
- (-4 *7 (-964 *6 *5 *4)) (-4 *5 (-804)) (-4 *4 (-861))
- (-4 *6 (-1066)) (-5 *1 (-965 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-4 *5 (-567))
- (-5 *2 (-418 (-1190 (-418 (-967 *5))))) (-5 *1 (-1060 *5))
- (-5 *3 (-418 (-967 *5))))))
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))
+ (-4 *7 (-966 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862))
+ (-4 *6 (-1068)) (-5 *1 (-967 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-4 *5 (-568))
+ (-5 *2 (-419 (-1192 (-419 (-969 *5))))) (-5 *1 (-1062 *5))
+ (-5 *3 (-419 (-969 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -1519 (-430 *3)) (|:| |special| (-430 *3))))
+ (-5 *1 (-739 *5 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| |minor| (-656 (-938))) (|:| -2568 *3)
+ (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *1) (-4 *1 (-293)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *1) (-4 *1 (-294)))
((*1 *2 *3)
- (-12 (-5 *3 (-429 *4)) (-4 *4 (-567))
- (-5 *2 (-655 (-2 (|:| -1754 (-782)) (|:| |logand| *4))))
- (-5 *1 (-329 *4))))
+ (-12 (-5 *3 (-430 *4)) (-4 *4 (-568))
+ (-5 *2 (-656 (-2 (|:| -1788 (-783)) (|:| |logand| *4))))
+ (-5 *1 (-330 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *2 *1)
- (-12 (-5 *2 (-675 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))
+ (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575)))))
- (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4))))
+ (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576)))))
+ (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4))
- (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174)))))
-(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4))
+ (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))))
+(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))
((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861))))
- ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-575)) (-5 *2 (-655 (-655 (-227)))) (-5 *1 (-1231)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-772))))
-(((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-655 (-173)))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-177))) (-5 *1 (-1102)))))
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1081))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1081)))))
+(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))))
(((*1 *2 *3 *2)
- (-12 (-4 *1 (-798)) (-5 *2 (-1052))
- (-5 *3
- (-2 (|:| |fn| (-325 (-227)))
- (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-798)) (-5 *2 (-1052))
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227)))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-120 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))))
-(((*1 *1 *1) (-4 *1 (-1077)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))
+ (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *3 (-656 (-270)))
+ (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *5 (-938))
+ (-5 *2 (-1292)) (-5 *1 (-480))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-886)) (-5 *5 (-938))
+ (-5 *2 (-1292)) (-5 *1 (-480)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1237)) (-5 *2 (-1292)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237))
+ (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068))
+ (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1287 (-1287 (-576)))) (-5 *3 (-938)) (-5 *1 (-478)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3))
+ (-4 *3 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068))
+ (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))
+ (-4 *2 (-464))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2))
+ (-4 *4 (-1263 (-419 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1127)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-782)) (-4 *5 (-373)) (-5 *2 (-176 *6))
- (-5 *1 (-878 *5 *4 *6)) (-4 *4 (-1276 *5)) (-4 *6 (-1261 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-710)) (-5 *1 (-314)))))
-(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(((*1 *1) (-5 *1 (-158))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-143 *3 *4 *2))
- (-4 *2 (-383 *4))))
+ (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-464))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2))
+ (-4 *2 (-1263 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174))
+ (-4 *5 (-243 (-2845 *3) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *5))
+ (-2 (|:| -4308 *2) (|:| -2273 *5))))
+ (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-966 *4 *5 (-876 *3))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-707 *3)) (-4 *3 (-1119))
+ (-5 *2 (-656 (-2 (|:| -3153 *3) (|:| -3902 (-783))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1104)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-442 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4)) (-4 *2 (-383 *4))
- (-5 *1 (-514 *4 *5 *2 *3)) (-4 *3 (-383 *5))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567))
- (-5 *2 (-700 *4)) (-5 *1 (-704 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-4 *4 (-1009 *3)) (-5 *1 (-1254 *3 *4 *2))
- (-4 *2 (-1261 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-575)))
- (-5 *2 (-700 (-575))) (-5 *1 (-1127)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1235))
- (-4 *5 (-1235)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-782))
- (-4 *7 (-1235)) (-4 *5 (-1235)) (-5 *2 (-245 *6 *5))
- (-5 *1 (-244 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1235)) (-4 *5 (-1235))
- (-4 *2 (-383 *5)) (-5 *1 (-381 *6 *4 *5 *2)) (-4 *4 (-383 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1117)) (-4 *5 (-1117))
- (-4 *2 (-436 *5)) (-5 *1 (-434 *6 *4 *5 *2)) (-4 *4 (-436 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-655 *6)) (-4 *6 (-1235))
- (-4 *5 (-1235)) (-5 *2 (-655 *5)) (-5 *1 (-653 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-973 *6)) (-4 *6 (-1235))
- (-4 *5 (-1235)) (-5 *2 (-973 *5)) (-5 *1 (-972 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1174 *6)) (-4 *6 (-1235))
- (-4 *3 (-1235)) (-5 *2 (-1174 *3)) (-5 *1 (-1172 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1285 *6)) (-4 *6 (-1235))
- (-4 *5 (-1235)) (-5 *2 (-1285 *5)) (-5 *1 (-1284 *6 *5)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-936)) (-5 *4 (-227)) (-5 *5 (-575)) (-5 *6 (-885))
- (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-567))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782))
- (-4 *4 (-174))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-441 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1109 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567))
- (-5 *1 (-159 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 *1)) (-4 *1 (-161))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-316)) (-4 *6 (-383 *5)) (-4 *4 (-383 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-1141 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-984))))
-(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))
+ ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *5 (-1119)) (-5 *2 (-112))
+ (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112))
+ (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-624 *3))
+ (-4 *3 (-13 (-442 *5) (-27) (-1222)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3)))
+ (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *5 (-1263 *4))
+ (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2568 *5))))
+ (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5))
+ (-4 *6 (-668 (-419 *5))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4))
- (-4 *4 (-1235))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4))
+ (-4 *4 (-1237))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235))))
- ((*1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237))))
+ ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235))))
+ (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4))
+ (-4 *4 (-1119))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-575)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3897 (-655 *3)) (|:| -2480 (-655 *3))))
- (-5 *1 (-1236 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-55)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1261 *4)) (-5 *1 (-820 *4 *2 *3 *5))
- (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2))
- (-4 *5 (-667 (-418 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-936))) (-5 *2 (-1196 (-418 (-575))))
- (-5 *1 (-192)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831))
- (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-1 *4 (-575))) (-4 *4 (-1066))
- (-5 *1 (-1178 *4)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))))
-(((*1 *1)
- (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117))
- (-4 *4 (-677 *3))))
- ((*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4))
- (-4 *4 (-1261 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1194))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-655 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2063 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1220) (-27) (-441 *8)))
- (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575))
- (-5 *2 (-655 *4)) (-5 *1 (-1031 *8 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-227))) (-5 *4 (-782)) (-5 *2 (-700 (-227)))
- (-5 *1 (-314)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-576)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-1263 *4)) (-4 *4 (-1068))
+ (-5 *2 (-1287 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-216 *4))
- (-4 *4
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 (*2 $))
- (-15 -3411 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3))
- (-4 *3
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 (*2 $))
- (-15 -3411 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513)))))
+ (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-317))
+ (-5 *2 (-419 (-430 (-969 *4)))) (-5 *1 (-1061 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1171))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |k| (-1194)) (|:| |c| (-1307 *3)))))
- (-5 *1 (-1307 *3)) (-4 *3 (-1066))))
+ (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1263 *3)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119))
+ (-4 *4 (-678 *3))))
+ ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390)))
+ (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292))
+ (-5 *1 (-800)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1287 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-1287 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1263 *4)) (-5 *2 (-701 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1263 *4)) (-5 *2 (-701 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |k| *3) (|:| |c| (-1309 *3 *4)))))
- (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066)))))
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3))
+ (-5 *2 (-1287 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374))
+ (-5 *2 (-1287 *5)) (-5 *1 (-1105 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1119))
+ (-4 *3 (-1119)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-4 *3 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1))
+ (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8))
+ (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1287 *5)) (-5 *3 (-783)) (-5 *4 (-1139)) (-4 *5 (-360))
+ (-5 *1 (-540 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-448)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066))
- (-5 *1 (-1178 *3)))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1280 *3 *2))
+ (-4 *2 (-1278 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-246)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3))
+ (-5 *2 (-419 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-938)) (-4 *5 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-316))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-458 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6))
- (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-458 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6))
- (-4 *4 (-316)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-458 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1230 *4 *5 *6 *7))
+ (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567))
- (-4 *3 (-964 *7 *5 *6))
+ (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5))
+ (-5 *1 (-819 *5 *2 *3 *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1263 *5))
+ (-5 *1 (-819 *5 *2 *3 *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2))
+ (-4 *6 (-668 (-419 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-360))
(-5 *2
- (-2 (|:| -1658 (-782)) (|:| -1754 *3) (|:| |radicand| (-655 *3))))
- (-5 *1 (-968 *5 *6 *7 *3 *8)) (-5 *4 (-782))
- (-4 *8
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *3)) (-15 -1595 (*3 $)) (-15 -1608 (*3 $))))))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1261 *4)) (-5 *2 (-700 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3))
- (-5 *2 (-700 *3)))))
+ (-2 (|:| |cont| *5)
+ (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576)))))))
+ (-5 *1 (-218 *5 *3)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2))
+ (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463)))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2495 *3) (|:| |coef1| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054))
+ (-5 *1 (-760)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))
- (-5 *2 (-389)) (-5 *1 (-275))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
+ (-4 *3 (-384 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4)))
+ (-5 *1 (-705 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *6 (-1263 *5))
+ (-5 *2 (-2 (|:| -2568 *7) (|:| |rh| (-656 (-419 *6)))))
+ (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6)))
+ (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-314)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1256 *4 *5 *3))
+ (-4 *3 (-1263 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1066))
- (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))
- (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-700 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-700 *4)) (-5 *1 (-427 *3 *4))
- (-4 *3 (-428 *4))))
- ((*1 *2) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))))
-(((*1 *2)
- (-12 (-4 *1 (-359))
- (-5 *2 (-655 (-2 (|:| -2347 (-575)) (|:| -1658 (-575))))))))
+ (-12
+ (-5 *3
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1039 *4))
+ (-4 *4 (-1263 (-576))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-374))
+ (-4 *4 (-1068)) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2801 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-575))
- (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575)))))))
- (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-575))
- (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575)))))))
- (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-438 *3 *2)) (-4 *3 (-13 (-174) (-38 (-418 (-575)))))
- (-4 *2 (-13 (-861) (-21))))))
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938))))
+ ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243)))
+ ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))))
+ (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 (-419 (-969 *6))))
+ (-5 *3 (-419 (-969 *6)))
+ (-4 *6 (-13 (-568) (-1057 (-576)) (-148)))
(-5 *2
(-2 (|:| |mainpart| *3)
(|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-418 (-575))) (-5 *1 (-314)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-655 (-623 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1190 (-48))) (-5 *3 (-623 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1261 (-171 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378))))
- ((*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3)) (-5 *1 (-424 *3 *2 *4 *5))
- (-4 *3 (-316)) (-4 *5 (-13 (-420 *2 *4) (-1055 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1009 *3))
- (-5 *1 (-425 *3 *2 *4 *5 *6)) (-4 *3 (-316)) (-4 *5 (-420 *2 *4))
- (-14 *6 (-1285 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-4 *5 (-1066))
- (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293)))
- (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-623 (-506)))) (-5 *1 (-506))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-623 (-506))) (-5 *1 (-506))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-655 (-623 (-506))))
- (-5 *1 (-506))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1190 (-506))) (-5 *3 (-623 (-506))) (-5 *1 (-506))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359))
- (-5 *1 (-539 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-735 *4 *2)) (-4 *2 (-1261 *4))
- (-5 *1 (-786 *4 *2 *5 *3)) (-4 *3 (-1261 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))
- ((*1 *1 *1) (-4 *1 (-1077))))
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-582 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378))
- (-5 *2 (-1190 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378))
- (-5 *2 (-1190 *3)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-112))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-332 *4 *2)) (-4 *4 (-1117))
- (-4 *2 (-132)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-269))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-269))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-269)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117))
- (-5 *2 (-2 (|:| -1754 (-575)) (|:| |var| (-623 *1))))
- (-4 *1 (-441 *3)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-967 *6)) (-5 *4 (-1194))
- (-5 *5 (-854 *7))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-4 *7 (-13 (-1220) (-29 *6))) (-5 *1 (-226 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1190 *6)) (-5 *4 (-854 *6))
- (-4 *6 (-13 (-1220) (-29 *5)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-226 *5 *6)))))
+ (-12 (-5 *3 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139))))))
+ (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-938))
+ (-14 *4 (-938))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360))
+ (-14 *4
+ (-3 (-1192 *3)
+ (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-938)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1196))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-656 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -4177 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1222) (-27) (-442 *8)))
+ (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576))
+ (-5 *2 (-656 *4)) (-5 *1 (-1033 *8 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-575))) (-5 *4 (-575)) (-5 *2 (-52))
- (-5 *1 (-1022)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936))))
- ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241)))
- ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066))
- (-5 *1 (-1178 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066))
- (-14 *4 (-1194)) (-14 *5 *3))))
+ (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3))
+ (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373))
- (-14 *4 (-1194)) (-14 *5 *3))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1029)) (-5 *2 (-873)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148)))
- (-5 *1 (-410 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-373))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-461 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-373))
- (-5 *2
- (-2 (|:| R (-700 *6)) (|:| A (-700 *6)) (|:| |Ainv| (-700 *6))))
- (-5 *1 (-995 *6)) (-5 *3 (-700 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197))))
- ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1197)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-1045 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-655 (-700 *3))) (-4 *3 (-1066)) (-5 *1 (-1045 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-1194)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-112)) (-5 *1 (-623 *4))
- (-4 *4 (-1117))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-623 *4)) (-4 *4 (-1117))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1117)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-5 *2 (-112)) (-5 *1 (-899 *5 *3 *4))
- (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6)) (-4 *6 (-898 *5)) (-4 *5 (-1117))
- (-5 *2 (-112)) (-5 *1 (-899 *5 *6 *4)) (-4 *4 (-625 (-904 *5))))))
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
(((*1 *1 *1) (-5 *1 (-227)))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1 *1) (-5 *1 (-389))) ((*1 *1) (-5 *1 (-389))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861))
- (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-936))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-378) (-373)))
- (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *7 (-352 *4 *5 *6))
- (-5 *2 (-782)) (-5 *1 (-403 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-413)) (-5 *2 (-844 (-936)))))
- ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-607 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4))
- (-4 *4 (-1261 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-751 *4 *3)) (-4 *4 (-1066))
- (-4 *3 (-861))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-751 *4 *3)) (-4 *4 (-1066)) (-4 *3 (-861))
- (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4))
- (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6)))
- (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575))))
- (-5 *2 (-782)) (-5 *1 (-926 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6))
- (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4)))
- (-4 *6 (-352 (-418 (-575)) *4 *5)) (-5 *2 (-782))
- (-5 *1 (-927 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-373))
- (-4 *7 (-1261 *6)) (-4 *4 (-1261 (-418 *7))) (-4 *8 (-352 *6 *7 *4))
- (-4 *9 (-13 (-378) (-373))) (-5 *2 (-782))
- (-5 *1 (-1035 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-4 *3 (-567))
- (-5 *2 (-782))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-1137)) (-4 *4 (-359))
- (-5 *1 (-539 *4)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-1066))
- (-5 *1 (-1178 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-575)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1066))
- (-14 *4 (-1194)) (-14 *5 *3))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-703 (-545)))
+ (-5 *1 (-545))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-971)) (-4 *3 (-1119)) (-5 *2 (-703 *1))
+ (-4 *1 (-779 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4))
+ (-14 *3 (-938)) (-4 *4 (-1068))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1)))
+ (-4 *1 (-1090 *4 *5 *6 *3)))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-938))) (-5 *4 (-112))
+ (-5 *1 (-1129)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359))
- (-5 *1 (-539 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-575)) (-5 *5 (-1176)) (-5 *6 (-700 (-227)))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066))
- (-5 *1 (-701 *4)))))
+ (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1572 *3) (|:| -2273 (-783)))) (-5 *1 (-599 *3))
+ (-4 *3 (-557)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-799)) (-5 *2 (-1054))
+ (-5 *3
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-799)) (-5 *2 (-1054))
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2))))
+ ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-112))
+ (-5 *1 (-270)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-5 *1 (-497 *2)) (-4 *2 (-1261 (-575))))))
+ (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4)))
+ (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6))
+ (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *2))
+ (-4 *2 (-660 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))))
+(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))
+ ((*1 *1 *1) (-4 *1 (-1079))))
+(((*1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3))
+ (-4 *2 (-1263 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1068)) (-5 *1 (-726 *2 *4))
+ (-4 *4 (-660 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1068)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-325 (-227))))
- (-5 *2
- (-2 (|:| |additions| (-575)) (|:| |multiplications| (-575))
- (|:| |exponentiations| (-575)) (|:| |functionCalls| (-575))))
- (-5 *1 (-314)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-878 *4 *5 *6 *7))
+ (-4 *4 (-1068)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-4 *5 (-862)) (-4 *6 (-805))
+ (-14 *8 (-656 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-966 *4 *6 *5))
+ (-14 *9 (-656 *3)) (-14 *10 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-541))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)) (-5 *3 (-1178)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1119))
+ (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174))
+ (-4 *5 (-1263 *4)) (-5 *2 (-701 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3))
+ (-5 *2 (-701 *3)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068))
+ (-5 *1 (-702 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1118 *3 *4)) (-14 *3 (-936))
- (-14 *4 (-936)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463))
- (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))
- ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-988)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-463))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *5 (-924)) (-5 *1 (-468 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-924)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-556))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1194)) (-5 *2 (-448)) (-5 *1 (-1198)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-418 *6)) (|:| |c| (-418 *6))
- (|:| -1888 *6)))
- (-5 *1 (-1032 *5 *6)) (-5 *3 (-418 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $))
- (-15 -1608 ((-1142 *3 (-623 $)) $))
- (-15 -2882 ($ (-1142 *3 (-623 $))))))))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-373)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2051 (-424 *4 (-418 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -1501 (-418 *6))
- (|:| |special| (-418 *6))))
- (-5 *1 (-738 *5 *6)) (-5 *3 (-418 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-910 *3 *4))
- (-4 *3 (-1261 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-782)) (-4 *5 (-373))
- (-5 *2 (-2 (|:| -2412 *3) (|:| -2429 *3))) (-5 *1 (-910 *3 *5))
- (-4 *3 (-1261 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112))
- (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112))
- (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1086 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112))
- (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-655 *9)) (-5 *3 (-655 *8)) (-5 *4 (-112))
- (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3))
- (-5 *2 (-418 (-575))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-575)) (-4 *6 (-373)) (-4 *6 (-378))
- (-4 *6 (-1066)) (-5 *2 (-655 (-655 (-700 *6)))) (-5 *1 (-1046 *6))
- (-5 *3 (-655 (-700 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-373)) (-4 *4 (-378)) (-4 *4 (-1066))
- (-5 *2 (-655 (-655 (-700 *4)))) (-5 *1 (-1046 *4))
- (-5 *3 (-655 (-700 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066))
- (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5))
- (-5 *3 (-655 (-700 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-4 *5 (-373)) (-4 *5 (-378)) (-4 *5 (-1066))
- (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5))
- (-5 *3 (-655 (-700 *5))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))
- (-5 *2 (-1052)) (-5 *1 (-759)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-4 *4 (-1235)) (-5 *2 (-112))
- (-5 *1 (-1174 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-1235)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-782))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1066))
- (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))
- (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-623 *3)) (-4 *3 (-1117))))
- ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1159 *4 *2)) (-14 *4 (-936))
- (-4 *2 (-13 (-1066) (-10 -7 (-6 (-4462 "*")))))
- (-5 *1 (-917 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-675 *4 *5)))
- (-5 *1 (-638 *4 *5 *6)) (-4 *5 (-13 (-174) (-728 (-418 (-575)))))
- (-14 *6 (-936)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3923 *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-655 (-227))) (-5 *1 (-206)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885))
- (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-1286))
- (-5 *1 (-1289))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269)))
- (-5 *2 (-1286)) (-5 *1 (-1289)))))
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -2442 *6) (|:| |sol?| (-112))) (-576)
+ *6))
+ (-4 *6 (-374)) (-4 *7 (-1263 *6))
+ (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6)))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1287 *4))) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568))
+ (-5 *2 (-656 (-1287 *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137))))))
- (-4 *4 (-359)) (-5 *2 (-1290)) (-5 *1 (-539 *4)))))
-(((*1 *1) (-5 *1 (-608))))
+ (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464))
+ (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7))
+ (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))))
+ (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886)))
+ (-5 *1 (-480)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-418 (-575)))
- (-5 *1 (-444 *4 *3)) (-4 *3 (-441 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-623 *3)) (-4 *3 (-441 *5))
- (-4 *5 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1190 (-418 (-575))))
- (-5 *1 (-444 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-339)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *5 (-1176))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1052))
- (-5 *1 (-761)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *9 (-1088 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804))
- (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1086 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 *9)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *9 (-1126 *5 *6 *7 *8)) (-4 *5 (-463)) (-4 *6 (-804))
- (-4 *7 (-861)) (-5 *2 (-782)) (-5 *1 (-1162 *5 *6 *7 *8 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-240 *3))))
- ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))))
+ (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1068)) (-5 *2 (-701 *4))
+ (-5 *1 (-1048 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -4160 *4) (|:| -2551 (-576)))))
+ (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1261 *3)) (-5 *1 (-410 *3 *2))
- (-4 *3 (-13 (-373) (-148))))))
+ (-12 (-4 *2 (-1119)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1119)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-1068))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1263 *4)))))
+(((*1 *1) (-5 *1 (-1082))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $))
- (-15 -1608 ((-1142 *3 (-623 $)) $))
- (-15 -2882 ($ (-1142 *3 (-623 $))))))))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1054)) (-5 *1 (-768)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227))))
+ (-5 *2 (-1054)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *7 (-915 *6))
+ (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7))
+ (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462)))))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194))))
- (-4 *7 (-804))
- (-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8))
- (|:| |wcond| (-655 (-967 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *5))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *5))))))))))
- (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-655 *8))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *4 (-1196))
+ (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379))
+ (-4 *6 (-1068)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1048 *6))
+ (-5 *3 (-656 (-701 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1068))
+ (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1048 *4))
+ (-5 *3 (-656 (-701 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5))
+ (-5 *3 (-656 (-701 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-938)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068))
+ (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5))
+ (-5 *3 (-656 (-701 *5))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6)))
+ (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1119))
+ (-4 *8 (-13 (-1068) (-626 (-905 *6)) (-1057 *7)))
+ (-5 *2 (-902 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227)))
+ (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112))
+ (-5 *2 (-1054)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-4 *2 (-1263 *5))
+ (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1278 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-931 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *8)) (-5 *4 (-655 (-1194))) (-4 *8 (-964 *5 *7 *6))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194))))
- (-4 *7 (-804))
- (-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8))
- (|:| |wcond| (-655 (-967 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *5))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *5))))))))))
- (-5 *1 (-939 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5))
- (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804))
- (-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7))
- (|:| |wcond| (-655 (-967 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *4))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *4))))))))))
- (-5 *1 (-939 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *9)) (-5 *5 (-936)) (-4 *9 (-964 *6 *8 *7))
- (-4 *6 (-13 (-316) (-148))) (-4 *7 (-13 (-861) (-625 (-1194))))
- (-4 *8 (-804))
- (-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9))
- (|:| |wcond| (-655 (-967 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *6))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *6))))))))))
- (-5 *1 (-939 *6 *7 *8 *9)) (-5 *4 (-655 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-936))
- (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148)))
- (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804))
- (-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *9)) (|:| |neqzro| (-655 *9))
- (|:| |wcond| (-655 (-967 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *6))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *6))))))))))
- (-5 *1 (-939 *6 *7 *8 *9))))
+ (-12 (-5 *4 (-430 (-969 *6))) (-5 *5 (-1196)) (-5 *3 (-969 *6))
+ (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1192 *4))) (-5 *3 (-1192 *4))
+ (-4 *4 (-926)) (-5 *1 (-675 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374))
+ (-4 *7 (-1263 (-419 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2432 *3)))
+ (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *8)) (-5 *4 (-936)) (-4 *8 (-964 *5 *7 *6))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194))))
- (-4 *7 (-804))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374))
(-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8))
- (|:| |wcond| (-655 (-967 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *5))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *5))))))))))
- (-5 *1 (-939 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 *9)) (-5 *5 (-1176))
- (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148)))
- (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575))
- (-5 *1 (-939 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *9)) (-5 *4 (-655 (-1194))) (-5 *5 (-1176))
- (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148)))
- (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575))
- (-5 *1 (-939 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *8)) (-5 *4 (-1176)) (-4 *8 (-964 *5 *7 *6))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194))))
- (-4 *7 (-804)) (-5 *2 (-575)) (-5 *1 (-939 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 *10)) (-5 *5 (-936))
- (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148)))
- (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575))
- (-5 *1 (-939 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-700 *10)) (-5 *4 (-655 (-1194))) (-5 *5 (-936))
- (-5 *6 (-1176)) (-4 *10 (-964 *7 *9 *8)) (-4 *7 (-13 (-316) (-148)))
- (-4 *8 (-13 (-861) (-625 (-1194)))) (-4 *9 (-804)) (-5 *2 (-575))
- (-5 *1 (-939 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *9)) (-5 *4 (-936)) (-5 *5 (-1176))
- (-4 *9 (-964 *6 *8 *7)) (-4 *6 (-13 (-316) (-148)))
- (-4 *7 (-13 (-861) (-625 (-1194)))) (-4 *8 (-804)) (-5 *2 (-575))
- (-5 *1 (-939 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-782)) (-4 *4 (-359))
- (-5 *1 (-539 *4)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *3 (-967 (-575)))
- (-5 *1 (-339))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1109 (-967 (-575)))) (-5 *1 (-339)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *1))))
- (-4 *1 (-1088 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1239)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-1264 *3 *2))
- (-4 *2 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3923 ($ $ $))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3))
- (-4 *3 (-1261 *4))))
+ (-2 (|:| |answer| (-419 *6)) (|:| -2432 (-419 *6))
+ (|:| |specpart| (-419 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1119)) (-4 *4 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-384 *3))
+ (-4 *3 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6))
+ (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576))))
+ (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3))
+ (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557))
+ (-4 *3 (-568))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557))
+ (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557))
+ (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557))
+ (-5 *2 (-419 (-576)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315))))
((*1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-105)))))
-(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-1196 (-418 (-575))))
- (-5 *1 (-192)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-782)) (-5 *1 (-228))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-171 (-227))) (-5 *3 (-782)) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-593)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2098 (-655 *1))))
- (-4 *1 (-377 *3))))
- ((*1 *2)
(|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-464 *3 *4 *5 *6))
- (|:| -2098 (-655 (-464 *3 *4 *5 *6)))))
- (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-173))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-316) (-148))) (-4 *4 (-13 (-861) (-625 (-1194))))
- (-4 *5 (-804)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-964 *3 *5 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-359))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+ (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-389)) (-5 *1 (-194)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1117)) (-5 *1 (-1212 *3 *2)) (-4 *3 (-1117)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-1117)))))
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-373)) (-5 *2 (-655 (-1174 *4))) (-5 *1 (-294 *4 *5))
- (-5 *3 (-1174 *4)) (-4 *5 (-1276 *4)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-314))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-904 *3)) (|:| |den| (-904 *3))))
- (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-763)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef2| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1190 *6)) (-4 *6 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-1190 *7)) (-5 *1 (-330 *4 *5 *6 *7))
- (-4 *7 (-964 *6 *4 *5)))))
+ (-12 (-5 *3 (-783)) (-5 *4 (-1287 *2)) (-4 *5 (-317))
+ (-4 *6 (-1011 *5)) (-4 *2 (-13 (-421 *6 *7) (-1057 *6)))
+ (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398)))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-246)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *4 (-1194))
- (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-885))))
- ((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-174)) (-4 *2 (-567))))
- ((*1 *1 *1) (|partial| -4 *1 (-733))))
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-862))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1066)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148)))
- (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5)))))
- (-5 *1 (-1146 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148)))
- (-5 *2 (-1183 (-655 (-325 *5)) (-655 (-303 (-325 *5)))))
- (-5 *1 (-1146 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-316)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *2 (-1285 (-325 (-389))))
- (-5 *1 (-314)))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227)))
+ (-5 *1 (-315)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-158)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-655
- (-2 (|:| -4422 (-782))
- (|:| |eqns|
- (-655
- (-2 (|:| |det| *7) (|:| |rows| (-655 (-575)))
- (|:| |cols| (-655 (-575))))))
- (|:| |fgb| (-655 *7)))))
- (-4 *7 (-964 *4 *6 *5)) (-4 *4 (-13 (-316) (-148)))
- (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)) (-5 *2 (-782))
- (-5 *1 (-939 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *6))))
- (-5 *4 (-1043 (-854 (-575)))) (-5 *5 (-1194)) (-5 *7 (-418 (-575)))
- (-4 *6 (-1066)) (-5 *2 (-873)) (-5 *1 (-606 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-418 (-575))))
- (-5 *2
- (-655
- (-2 (|:| |outval| *4) (|:| |outmult| (-575))
- (|:| |outvect| (-655 (-700 *4))))))
- (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859))))))
-(((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1043 (-854 (-575))))
- (-5 *3 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *4)))) (-4 *4 (-1066))
- (-5 *1 (-606 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34)))
- (-4 *5 (-13 (-1117) (-34))) (-5 *2 (-112)) (-5 *1 (-1158 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))))
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112))
+ (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-812))
(-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227))))
- (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-655 (-325 (-227))))
- (|:| -3472 (-655 (-227)))))))
- (-5 *2 (-655 (-1176))) (-5 *1 (-275)))))
-(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-316)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-763)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2))
- (-4 *2 (-1261 *4)))))
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-1054)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464))
+ (-5 *1 (-935 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-764)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4))
+ (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1) (-4 *1 (-1079))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1222))))
+ ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1194)) (-5 *6 (-655 (-623 *3)))
- (-5 *5 (-623 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *7)))
- (-4 *7 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3)))
- (-5 *1 (-568 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5))
- (-4 *3 (-1261 *4))
- (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))))
-(((*1 *1 *1) (-4 *1 (-175)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-701 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6))
+ (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054))
+ (-5 *1 (-766)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-567))
- (-5 *2 (-873)) (-5 *1 (-32 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-1176 (-990))) (-5 *1 (-990)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297)))))
(((*1 *1 *1 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861))
- (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-130)))
- ((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782))
- (-4 *4 (-174))))
- ((*1 *1) (-5 *1 (-557))) ((*1 *1) (-5 *1 (-558)))
- ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560)))
- ((*1 *1) (-4 *1 (-737))) ((*1 *1) (-5 *1 (-1194)))
- ((*1 *1) (-12 (-5 *1 (-1200 *2)) (-14 *2 (-936))))
- ((*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936))))
- ((*1 *1) (-5 *1 (-1240))) ((*1 *1) (-5 *1 (-1241)))
- ((*1 *1) (-5 *1 (-1242))) ((*1 *1) (-5 *1 (-1243))))
-(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-135)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290))
- (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1057)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862))
+ (-4 *5 (-805)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568))
+ (-5 *2 (-419 (-969 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568))
+ (-5 *2 (-419 (-969 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6))
- (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575))))
- (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3))
- (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1055 (-575)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576))
+ (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1121 (-1121 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-862)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237))
+ (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-325 (-227))) (-5 *2 (-418 (-575))) (-5 *1 (-314)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-906 *2 *3)) (-4 *2 (-1261 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804))
- (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8))
+ (-12 (-5 *3 (-701 (-419 (-969 (-576)))))
+ (-5 *2
+ (-656
+ (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576))
+ (|:| |radvect| (-656 (-701 (-326 (-576))))))))
+ (-5 *1 (-1050)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-446))
+ (-5 *2
+ (-656
+ (-3 (|:| -1811 (-1196))
+ (|:| -3008 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))))
+ (-5 *1 (-1200)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1192 *3))
+ (-4 *3 (-13 (-442 *7) (-27) (-1222)))
+ (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
(-5 *2
- (-2 (|:| -2566 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9))))
- (-5 *1 (-1005 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9))
- (-4 *4 (-1088 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804))
- (-4 *8 (-861)) (-4 *9 (-1082 *6 *7 *8))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3))
+ (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1222)))
+ (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
(-5 *2
- (-2 (|:| -2566 (-655 *9)) (|:| -4270 *4) (|:| |ineq| (-655 *9))))
- (-5 *1 (-1124 *6 *7 *8 *9 *4)) (-5 *3 (-655 *9))
- (-4 *4 (-1088 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-804))
- (-4 *3 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *5 (-567))
- (-5 *1 (-743 *4 *3 *5 *2)) (-4 *2 (-964 (-418 (-967 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *3
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-5 *1 (-1001 *4 *5 *3 *2)) (-4 *2 (-964 (-967 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *6))
- (-4 *6
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-4 *4 (-1066)) (-4 *5 (-804)) (-5 *1 (-1001 *4 *5 *6 *2))
- (-4 *2 (-964 (-967 *4) *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861))
- (-5 *2 (-59 (-655 (-683 *5)))) (-5 *1 (-683 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-5 *2 (-2 (|:| -2454 (-655 *6)) (|:| -2976 (-655 *6)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-655 (-1093 *4 *5 *2))) (-4 *4 (-1117))
- (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4))))
- (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-655 (-1093 *5 *6 *2))) (-5 *4 (-936)) (-4 *5 (-1117))
- (-4 *6 (-13 (-1066) (-898 *5) (-625 (-904 *5))))
- (-4 *2 (-13 (-441 *6) (-898 *5) (-625 (-904 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-429 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1252 (-575))) (-4 *1 (-662 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-873))))
+ (-12 (-4 *3 (-13 (-374) (-148)))
+ (-5 *2 (-656 (-2 (|:| -2273 (-783)) (|:| -1785 *4) (|:| |num| *4))))
+ (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-701 (-1192 *8))) (-4 *5 (-1068)) (-4 *8 (-1068))
+ (-4 *6 (-1263 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8))
+ (-4 *7 (-1263 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 (-575))))
- (-5 *2 (-1285 (-575))) (-5 *1 (-1313 *4)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *3 (-567)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-973 (-185 (-140)))) (-5 *1 (-342))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-112))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112))
- (-5 *1 (-367 *4)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-148))) (-5 *2 (-655 *3))
- (-5 *1 (-1255 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1 (-1174 (-967 *4)) (-1174 (-967 *4))))
- (-5 *1 (-1293 *4)) (-4 *4 (-373)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-655 *4)) (-5 *1 (-790 *4))
- (-4 *4 (-13 (-373) (-859))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-768)))))
+ (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *1) (-5 *1 (-518))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-2 (|:| -3735 (-1176 *4)) (|:| -3748 (-1176 *4))))
+ (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-624 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196)))
+ (-4 *2 (-13 (-442 *5) (-27) (-1222)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1119)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $))
- (-15 -1608 ((-1142 *3 (-623 $)) $))
- (-15 -2882 ($ (-1142 *3 (-623 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $))
- (-15 -1608 ((-1142 *3 (-623 $)) $))
- (-15 -2882 ($ (-1142 *3 (-623 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $))
- (-15 -1608 ((-1142 *4 (-623 $)) $))
- (-15 -2882 ($ (-1142 *4 (-623 $)))))))
- (-4 *4 (-567)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-623 *2)))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $))
- (-15 -1608 ((-1142 *4 (-623 $)) $))
- (-15 -2882 ($ (-1142 *4 (-623 $)))))))
- (-4 *4 (-567)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1117)) (-5 *2 (-112))
- (-5 *1 (-1236 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
+ (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-686 *3)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4461)) (-4 *4 (-373)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-532 *4 *5 *6 *3))
- (-4 *3 (-698 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4461)) (-4 *4 (-567)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-4 *7 (-1009 *4)) (-4 *8 (-383 *7))
- (-4 *9 (-383 *7)) (-5 *2 (-655 *6))
- (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-698 *4 *5 *6))
- (-4 *10 (-698 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-655 *5))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))
+ (-5 *2 (-390)) (-5 *1 (-276))))
((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-5 *2 (-655 *6)) (-5 *1 (-699 *4 *5 *6 *3))
- (-4 *3 (-698 *4 *5 *6))))
+ (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *1) (-12 (-5 *2 (-975 (-185 (-140)))) (-5 *1 (-343))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4))))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1119))
+ (-5 *1 (-690 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1119)) (-5 *1 (-694 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567))
- (-5 *2 (-655 *7)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-658 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1263 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194))))
+ (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309))))
+ (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *6)) (-5 *5 (-1 (-429 (-1190 *6)) (-1190 *6)))
- (-4 *6 (-373))
- (-5 *2
- (-655
- (-2 (|:| |outval| *7) (|:| |outmult| (-575))
- (|:| |outvect| (-655 (-700 *7))))))
- (-5 *1 (-543 *6 *7 *4)) (-4 *7 (-373)) (-4 *4 (-13 (-373) (-859))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4))
- (-5 *3 (-655 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1117)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-359)) (-4 *6 (-1261 *5))
+ (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1263 *4)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
(-5 *2
- (-655
- (-2 (|:| -2098 (-700 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-700 *6)))))
- (-5 *1 (-509 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2098 (-700 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-700 *6))))
- (-4 *7 (-1261 *6)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-463))
- (-5 *2
- (-655
- (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4))))
- (|:| |eigmult| (-782))
- (|:| |eigvec| (-655 (-700 (-418 (-967 *4))))))))
- (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-373)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))
- (-5 *2 (-782)) (-5 *1 (-532 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6))))
+ (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1054)) (-5 *1 (-761))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-400)) (-5 *2 (-1054)) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-4 *3 (-567)) (-5 *2 (-782))))
+ (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886))))
((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-5 *2 (-782)) (-5 *1 (-699 *4 *5 *6 *3))
- (-4 *3 (-698 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-567))
- (-5 *2 (-782)))))
-(((*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-1235)))))
-(((*1 *1) (-5 *1 (-608))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1) (-4 *1 (-311))))
-(((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))))
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1192 (-1192 *5))))
+ (-5 *1 (-1235 *5)) (-5 *3 (-1192 (-1192 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-702 (-289)))) (-5 *1 (-169)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-655 (-655 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-655 (-655 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-655 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-655 (-1190 *11))) (-5 *3 (-1190 *11))
- (-5 *4 (-655 *10)) (-5 *5 (-655 *8)) (-5 *6 (-655 (-782)))
- (-5 *7 (-1285 (-655 (-1190 *8)))) (-4 *10 (-861))
- (-4 *8 (-316)) (-4 *11 (-964 *8 *9 *10)) (-4 *9 (-804))
- (-5 *1 (-718 *9 *10 *8 *11)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-655 (-1194)))
- (-4 *2 (-13 (-441 (-171 *5)) (-1019) (-1220))) (-4 *5 (-567))
- (-5 *1 (-611 *5 *6 *2)) (-4 *6 (-13 (-441 *5) (-1019) (-1220))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-342)))))
-(((*1 *2)
- (-12 (-4 *3 (-1239)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))
- (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3))
- (-5 *2
- (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-700 *3))))
- (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1261 (-575)))
- (-5 *2
- (-2 (|:| -2098 (-700 (-575))) (|:| |basisDen| (-575))
- (|:| |basisInv| (-700 (-575)))))
- (-5 *1 (-779 *3 *4)) (-4 *4 (-420 (-575) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4))
- (-5 *2
- (-2 (|:| -2098 (-700 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-700 *4))))
- (-5 *1 (-1002 *3 *4 *5 *6)) (-4 *6 (-735 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-359)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 *4))
- (-5 *2
- (-2 (|:| -2098 (-700 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-700 *4))))
- (-5 *1 (-1294 *3 *4 *5 *6)) (-4 *6 (-420 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-269))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-575)) (-5 *4 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))
- ((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *2 (-1290)) (-5 *1 (-1287))))
- ((*1 *2 *1)
- (-12
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
(-5 *2
- (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -4283 (-227))
- (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
- (-5 *1 (-1287))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-112)))))
+ (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))))
+ (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1254 *3)) (-4 *3 (-1237)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8)))
- (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8)))
- (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5)))
- (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
+ (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2))
+ (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2))
+ (-4 *4 (-699 *2 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3))
+ (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-316) (-148)))
- (-4 *2 (-964 *4 *6 *5)) (-5 *1 (-939 *4 *5 *6 *2))
- (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804)))))
-(((*1 *1 *1) (-4 *1 (-640)))
+ (-12
+ (-5 *3
+ (-656 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576))))))
+ (-5 *2 (-656 (-227))) (-5 *1 (-315)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *1))))
+ (-4 *1 (-1090 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1241)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019) (-1220))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-269))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2))
+ (-4 *2 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3901 ($ $ $))))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1237)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066))
+ (-5 *3 (-576)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1121 *4)) (-4 *4 (-1119)) (-5 *2 (-1 *4))
+ (-5 *1 (-1036 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2))
+ (-4 *2 (-1263 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-4 *1 (-920 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))
+ (-5 *2 (-1054)) (-5 *1 (-760)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1192 *6)) (-1192 *6)))
+ (-4 *6 (-374))
+ (-5 *2
+ (-656
+ (-2 (|:| |outval| *7) (|:| |outmult| (-576))
+ (|:| |outvect| (-656 (-701 *7))))))
+ (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-975 (-1139)))
+ (-5 *1 (-357 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112))
+ (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1159 *3 *4)) (-14 *3 (-936)) (-4 *4 (-373))
- (-5 *1 (-1010 *3 *4)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557))))
+ ((*1 *1 *1) (-4 *1 (-1079))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(-5 *2
(-2
@@ -6978,3156 +6421,3527 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1174 (-227)))
+ (-3 (|:| |str| (-1176 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1974
+ (|:| -3672
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-570)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-967 (-575)))) (-5 *1 (-448))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-227))) (-5 *2 (-1121))
- (-5 *1 (-770))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-700 (-575))) (-5 *2 (-1121))
- (-5 *1 (-770)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-655 (-875 *4)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-482 *4 *5 *6))
- (-4 *6 (-463)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235))
- (-4 *2 (-861))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4461))
- (-4 *1 (-383 *3)) (-4 *3 (-1235)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
- (-5 *2 (-1052)) (-5 *1 (-760)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-1190 *6))
- (-5 *1 (-330 *4 *5 *6 *7)))))
+ (-5 *1 (-571)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2))
+ (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576))))
+ (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-194)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-171 (-325 *4)))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4))))))
+ (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6))
+ (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -2857 *1) (|:| -4449 *1) (|:| |associate| *1)))
+ (-4 *1 (-568)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-171 *3)) (-5 *1 (-1224 *4 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *4))))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1161)) (-5 *2 (-1252 (-575))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3415 (-700 (-418 (-967 *4))))
- (|:| |vec| (-655 (-418 (-967 *4)))) (|:| -4422 (-782))
- (|:| |rows| (-655 (-575))) (|:| |cols| (-655 (-575)))))
- (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804))
+ (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1057 (-576)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-656 *3))
+ (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148)))
(-5 *2
- (-2 (|:| |partsol| (-1285 (-418 (-967 *4))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *4)))))))
- (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1261 *4)) (-4 *4 (-1239))
- (-4 *1 (-352 *4 *3 *5)) (-4 *5 (-1261 (-418 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7))))
- (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-861))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-985 *2)) (-4 *2 (-861)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
-(((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885)))
- (-5 *4 (-655 (-936))) (-5 *5 (-655 (-269))) (-5 *1 (-479))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *3 (-655 (-885)))
- (-5 *4 (-655 (-936))) (-5 *1 (-479))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479))))
- ((*1 *1 *1) (-5 *1 (-479))))
+ (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5))))))
+ (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5)))
+ (-14 *6 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *4)) (|:| -3392 (-656 (-969 *4))))))
+ (-5 *1 (-1097 *4 *5)) (-5 *3 (-656 (-969 *4)))
+ (-14 *5 (-656 (-1196)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148)))
+ (-5 *2
+ (-656 (-2 (|:| -3073 (-1192 *5)) (|:| -3392 (-656 (-969 *5))))))
+ (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5)))
+ (-14 *6 (-656 (-1196))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237))
+ (-4 *5 (-384 *4)) (-4 *2 (-384 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068))
+ (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1054)) (-5 *1 (-765)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-284 *4 *3))
- (-4 *3 (-13 (-441 *4) (-1019))))))
+ (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068))
+ (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-378 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227)))
+ (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-567)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-1225 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-115)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373))
- (-5 *2 (-2 (|:| -1501 (-429 *3)) (|:| |special| (-429 *3))))
- (-5 *1 (-738 *5 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-655 (-418 (-967 *6))))
- (-5 *3 (-418 (-967 *6)))
- (-4 *6 (-13 (-567) (-1055 (-575)) (-148)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-581 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-1190 *4))) (-5 *3 (-1190 *4))
- (-4 *4 (-924)) (-5 *1 (-674 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464))
+ (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464))
+ (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4))
+ (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-301)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5)
+ (|:| |f4| (-656 *5))))
+ (-5 *1 (-1207 *6)) (-5 *4 (-656 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-429 (-1190 *1))) (-5 *1 (-325 *4)) (-5 *3 (-1190 *1))
- (-4 *4 (-463)) (-4 *4 (-567)) (-4 *4 (-1117))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-782)) (-4 *5 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782))
- (-4 *4 (-174))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *2 *4)) (-4 *2 (-383 *3))
- (-4 *4 (-383 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1159 *2 *3)) (-14 *2 (-782)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-275)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *2)) (-5 *4 (-1194)) (-4 *2 (-441 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-567))))
+ (-12 (-5 *3 (-1287 (-326 (-227))))
+ (-5 *2
+ (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576))
+ (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))))
+ (-5 *1 (-315)))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-109)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576))))
+ (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576))))
+ (-5 *4 (-326 (-390))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576))))
+ (-5 *4 (-326 (-576))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-171 (-390)))))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-390)))) (-5 *1 (-340))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-4 *1 (-1029))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-576)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-171 (-390)))))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-390))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-576))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576))))
+ (-5 *4 (-326 (-706))) (-5 *1 (-340))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1190 *1)) (-5 *3 (-936)) (-5 *4 (-873))
- (-4 *1 (-1029))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576))))
+ (-5 *4 (-326 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576))))
+ (-5 *4 (-326 (-713))) (-5 *1 (-340))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-936)) (-4 *4 (-13 (-859) (-373)))
- (-4 *1 (-1085 *4 *2)) (-4 *2 (-1261 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-112)) (-5 *1 (-832)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132))
- (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3692 *4))))
- (-5 *1 (-746 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-737))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-5 *2 (-1174 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-706)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-711)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-711))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-340))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-656 *7) *7 (-1192 *7))) (-5 *5 (-1 (-430 *7) *7))
+ (-4 *7 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -2568 *3))))
+ (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7))
+ (-4 *8 (-668 (-419 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
(-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
+ (-656 (-2 (|:| |frac| (-419 *6)) (|:| -2568 (-666 *6 (-419 *6))))))
+ (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1129)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1190 *7)) (-4 *5 (-1066))
- (-4 *7 (-1066)) (-4 *2 (-1261 *5)) (-5 *1 (-512 *5 *2 *6 *7))
- (-4 *6 (-1261 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066))
- (-4 *4 (-1261 *5)) (-5 *2 (-1190 *7)) (-5 *1 (-512 *5 *4 *6 *7))
- (-4 *6 (-1261 *4)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-973 (-782))) (-5 *1 (-342)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))
- ((*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *3 (-861)) (-5 *2 (-782)))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
-(((*1 *1) (-5 *1 (-300))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-655 *3)) (-5 *1 (-976 *3)) (-4 *3 (-556)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
+ (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5)))
+ (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1287 *5))
+ (-5 *1 (-650 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5)))
+ (-3189 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1287 (-419 *5)))
+ (-5 *1 (-650 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1066)) (-4 *7 (-1066))
- (-4 *6 (-1261 *5)) (-5 *2 (-1190 (-1190 *7)))
- (-5 *1 (-512 *5 *6 *4 *7)) (-4 *4 (-1261 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-606 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-634 *3 *4))
- (-4 *4 (-1261 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-737))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-112)))))
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4261 (-656 *6)))
+ *7 *6))
+ (-4 *6 (-374)) (-4 *7 (-668 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1287 *6) "failed"))
+ (|:| -4261 (-656 (-1287 *6)))))
+ (-5 *1 (-825 *6 *7)) (-5 *4 (-1287 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-782)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-887))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-887))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-575))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1176))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-603))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-489))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1184))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-637))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1113))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1107))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1090))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-987))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-182))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1053))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-320))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-682))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-155))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1168))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-536))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1296))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1083))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-528))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-692))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-134))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-617))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-139))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-1295))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-687))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-220))))
- ((*1 *2 *1) (-12 (-4 *1 (-1154)) (-5 *2 (-535))))
- ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199)))))
+ (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *1 (-930 *3 *2))
+ (-4 *2 (-1263 (-419 *3))))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-768)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7))))
- (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1005 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-655 (-2 (|:| |val| (-655 *6)) (|:| -4270 *7))))
- (-4 *6 (-1082 *3 *4 *5)) (-4 *7 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-1124 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))))
+ (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-888))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-604))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1186))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-638))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1109))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-182))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-321))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-683))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-155))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1170))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-537))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1298))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-693))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-134))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-618))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-688))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-220))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *3 *5))
- (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2))
- (-4 *5 (-667 (-418 *2)))))
+ (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-1287 *3))
+ (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-112))
+ (-5 *1 (-902 *4 *5)) (-4 *5 (-1119))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1261 *4)) (-5 *1 (-818 *4 *2 *5 *3))
- (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-667 *2))
- (-4 *3 (-667 (-418 *2))))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-762)))))
-(((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 (-1285 (-575)))) (-5 *3 (-936)) (-5 *1 (-477)))))
+ (-12 (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *2 (-112))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1237)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *1) (-5 *1 (-301))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-359))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575)))))))
- (-5 *1 (-218 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *1) (-5 *1 (-1080))))
-(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-314)))))
-(((*1 *1 *1 *1) (-4 *1 (-556))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4))))
+ (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576))))
+ (-4 *5 (-899 (-576)))
+ (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-579 *5 *3)) (-4 *3 (-641))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068))
+ (-14 *4 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1237))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862)))
+ (-14 *4 (-656 (-1196)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(((*1 *1 *1 *1) (-4 *1 (-557))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1261 (-171 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-942))
- (-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 (-227)))))
- (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))))
- (-5 *1 (-154))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-942)) (-5 *4 (-418 (-575)))
- (-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 (-227)))))
- (|:| |xValues| (-1111 (-227))) (|:| |yValues| (-1111 (-227)))))
- (-5 *1 (-154)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1300 (-1194) *3)) (-4 *3 (-1066)) (-5 *1 (-1307 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *1 (-1309 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1228 *5 *6 *7 *8)) (-4 *5 (-567))
- (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942))
- (-5 *1 (-940 *3)) (-4 *3 (-625 (-547)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1194)) (-5 *5 (-1111 (-227))) (-5 *2 (-942))
- (-5 *1 (-940 *3)) (-4 *3 (-625 (-547)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1 (-227) (-227)))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942)))))
-(((*1 *1) (-5 *1 (-145))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710))))
- ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-710)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227)))
- (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-766)))))
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1285
- (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
- (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2499 (-575))
- (|:| -4179 (-575)) (|:| |spline| (-575)) (|:| -3454 (-575))
- (|:| |axesColor| (-885)) (|:| -2490 (-575))
- (|:| |unitsColor| (-885)) (|:| |showing| (-575)))))
- (-5 *1 (-1286)))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3))
+ (-4 *3 (-1263 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1119)) (-5 *2 (-624 *5))
+ (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-655 *5) *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5))
- (-5 *2 (-655 (-2 (|:| -3736 *5) (|:| -2566 *3))))
- (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6))
- (-4 *7 (-667 (-418 *6))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-702 (-981 *3))) (-5 *1 (-981 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))))
+ (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374))
+ (-5 *2 (-112)) (-5 *1 (-679 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463))))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-112))
+ (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5)))
+ (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576))
+ (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-418 (-575))))
- (-5 *2 (-2 (|:| -3895 (-1174 *4)) (|:| -3907 (-1174 *4))))
- (-5 *1 (-1180 *4)) (-5 *3 (-1174 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1194))
- (-4 *6 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-4 *4 (-13 (-29 *6) (-1220) (-974)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2098 (-655 *4))))
- (-5 *1 (-812 *6 *4 *3)) (-4 *3 (-667 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1080))))
-(((*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-1190 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-445))
- (-5 *2
- (-655
- (-3 (|:| -1777 (-1194))
- (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575)))))))))
- (-5 *1 (-1198)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-655 *7) *7 (-1190 *7))) (-5 *5 (-1 (-429 *7) *7))
- (-4 *7 (-1261 *6)) (-4 *6 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-5 *2 (-655 (-2 (|:| |frac| (-418 *7)) (|:| -2566 *3))))
- (-5 *1 (-820 *6 *7 *3 *8)) (-4 *3 (-667 *7))
- (-4 *8 (-667 (-418 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2
- (-655 (-2 (|:| |frac| (-418 *6)) (|:| -2566 (-665 *6 (-418 *6))))))
- (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6))))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-655 *2)) (-5 *1 (-114 *2))
- (-4 *2 (-1117))))
+ (-12 (-5 *3 (-938)) (-5 *4 (-430 *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-1068)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))
+ ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
+ ((*1 *1 *1) (|partial| -4 *1 (-734))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1119)) (-4 *5 (-1119))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-655 *4))) (-4 *4 (-1117))
- (-5 *1 (-114 *4))))
+ (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1117))
- (-5 *1 (-114 *4))))
+ (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-655 *4)))
- (-5 *1 (-114 *4)) (-4 *4 (-1117))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066))
- (-5 *1 (-725 *3 *4))))
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1263 (-171 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3)))))
+ (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5))
+ (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1057 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3))
+ (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4))
+ (-14 *6 (-1287 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-938)) (-4 *5 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-656 (-624 (-507))))
+ (-5 *1 (-507))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360))
+ (-5 *1 (-540 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1263 *4))
+ (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1263 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1) (-4 *1 (-1079))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576))))))
+ (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-171 *5))))
+ (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *2 (-418 (-967 *4))) (-5 *1 (-939 *4 *5 *6 *3))
- (-4 *3 (-964 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-700 *7)) (-4 *7 (-964 *4 *6 *5))
- (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *2 (-700 (-418 (-967 *4))))
- (-5 *1 (-939 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5))
- (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *2 (-655 (-418 (-967 *4))))
- (-5 *1 (-939 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1055 (-575))) (-4 *1 (-311)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-767)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-575))))
+ (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3))
+ (-4 *3 (-1263 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-623 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *4 *2)))))
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1))
+ (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1068)) (-4 *1 (-1263 *3)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-325 (-575))) (|:| -3027 (-325 (-389)))
- (|:| CF (-325 (-171 (-389)))) (|:| |switch| (-1193))))
- (-5 *1 (-1193)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-763)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-129)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1190 *1)) (-5 *3 (-1194)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1190 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-967 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1194)) (-4 *1 (-29 *3)) (-4 *3 (-567))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-567)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-383 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-861)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305))))
+ (-3 (|:| I (-326 (-576))) (|:| -3003 (-326 (-390)))
+ (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195))))
+ (-5 *1 (-1195)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3901 (-794 *3)) (|:| |coef1| (-794 *3))
+ (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -3901 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-4 *4 (-1237)) (-5 *2 (-112))
+ (-5 *1 (-1176 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))))
+(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-321)) (-5 *1 (-305))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-305))))
+ (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-322)) (-5 *1 (-306))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-1176))) (-5 *3 (-1176)) (-5 *2 (-321))
- (-5 *1 (-305)))))
-(((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220)))))
- ((*1 *1 *1 *1) (-4 *1 (-804))))
-(((*1 *2 *2) (-12 (-5 *2 (-1111 (-854 (-227)))) (-5 *1 (-314)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-782)))))
+ (-12 (-5 *4 (-656 (-1178))) (-5 *3 (-1178)) (-5 *2 (-322))
+ (-5 *1 (-306)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4))
- (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)))))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317))
+ (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7))
+ (-4 *3 (-1263 *6)) (-4 *7 (-966 *6 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054))
+ (-5 *1 (-758)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4))
+ (-5 *3 (-656 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
- ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-556)))
- ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066))))
+ ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557)))
+ ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))
((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-783)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4))
+ (-4 *4 (-1068))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-960 (-227))) (-5 *2 (-1292))
+ (-5 *1 (-1289)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1245 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1228 *5 *6 *7 *3))
- (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *3 (-655 (-269)))
- (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-479)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405)))))
+ (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3))))
+ (-5 *1 (-607 *3)) (-4 *3 (-1068)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))))
-(((*1 *1 *1) (-4 *1 (-1077))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389))))
- ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-575)) (-14 *3 (-782))
- (-4 *4 (-174)))))
-(((*1 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290))
- (-5 *1 (-1005 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290))
- (-5 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-700 (-967 *4))) (-5 *1 (-1045 *4))
- (-4 *4 (-1066)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-1190 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *4 (-623 $)) $))
- (-15 -1608 ((-1142 *4 (-623 $)) $))
- (-15 -2882 ($ (-1142 *4 (-623 $))))))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-655 *7)) (-5 *5 (-655 (-655 *8))) (-4 *7 (-861))
- (-4 *8 (-316)) (-4 *6 (-804)) (-4 *9 (-964 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-655 (-2 (|:| -2347 (-1190 *9)) (|:| -1658 (-575)))))))
- (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227)))
- (-5 *2 (-1287)) (-5 *1 (-263)))))
-(((*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3))
- (-5 *2
- (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-700 *3))))
- (-5 *1 (-360 *3 *4 *5)) (-4 *5 (-420 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-1261 *3))
- (-5 *2
- (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-700 *3))))
- (-5 *1 (-779 *4 *5)) (-4 *5 (-420 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3))
- (-5 *2
- (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-700 *3))))
- (-5 *1 (-1002 *4 *3 *5 *6)) (-4 *6 (-735 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 *3))
- (-5 *2
- (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-700 *3))))
- (-5 *1 (-1294 *4 *3 *5 *6)) (-4 *6 (-420 *3 *5)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-857)))))
-(((*1 *1) (-5 *1 (-339))))
+ (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8))
+ (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148)))
+ (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-112))
+ (-5 *1 (-941 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1201) (-783)))) (-5 *1 (-343)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3633 *1)))
+ (-4 *1 (-864 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-1082))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-837)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1068)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-656 *6)))
+ (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1278 *4)))))
+(((*1 *1) (-5 *1 (-340))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1292)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237))
+ (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235))
- (-4 *4 (-383 *2)) (-4 *5 (-383 *2))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237))
+ (-4 *4 (-384 *2)) (-4 *5 (-384 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3))
- (-4 *3 (-1235))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3))
+ (-4 *3 (-1237))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4461)) (-4 *1 (-120 *3))
- (-4 *3 (-1235))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3))
+ (-4 *3 (-1237))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117))
- (-4 *2 (-1235))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1194)) (-5 *1 (-643))))
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119))
+ (-4 *2 (-1237))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1196)) (-5 *1 (-644))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1252 (-575))) (|has| *1 (-6 -4461)) (-4 *1 (-662 *2))
- (-4 *2 (-1235))))
+ (-12 (-5 *3 (-1254 (-576))) (|has| *1 (-6 -4463)) (-4 *1 (-663 *2))
+ (-4 *2 (-1237))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2))
- (-4 *2 (-1235))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2))
+ (-4 *2 (-1237))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1211 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))
+ (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2))
- (-4 *2 (-1235))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2))
+ (-4 *2 (-1237))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *3))
- (-4 *3 (-1235))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3))
+ (-4 *3 (-1237))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2))
- (-4 *2 (-1235)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
- (-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2))
+ (-4 *2 (-1237)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1080 *4 *3))
+ (-4 *3 (-1263 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
+ (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *6)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2))
- (-4 *2 (-685 *3)))))
+ (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1263 (-171 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-418 *5)) (-4 *4 (-1239)) (-4 *5 (-1261 *4))
- (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1261 *3))))
+ (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1263 *4))
+ (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1263 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575)))
+ (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576)))
(-5 *1 (-192))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-700 (-325 (-227)))) (-5 *3 (-655 (-1194)))
- (-5 *4 (-1285 (-325 (-227)))) (-5 *1 (-207))))
+ (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1196)))
+ (-5 *4 (-1287 (-326 (-227)))) (-5 *1 (-207))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-303 *3))) (-4 *3 (-318 *3)) (-4 *3 (-1117))
- (-4 *3 (-1235)) (-5 *1 (-303 *3))))
+ (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1237)) (-5 *1 (-304 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-318 *2)) (-4 *2 (-1117)) (-4 *2 (-1235))
- (-5 *1 (-303 *2))))
+ (-12 (-4 *2 (-319 *2)) (-4 *2 (-1119)) (-4 *2 (-1237))
+ (-5 *1 (-304 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 (-655 *1))))
- (-4 *1 (-311))))
+ (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1))))
+ (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311))))
+ (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 *1)) (-4 *1 (-311))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1 *1 (-655 *1))) (-4 *1 (-311))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 (-655 *1))))
- (-4 *1 (-311))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 (-656 *1))))
+ (-4 *1 (-312))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-1 *1 *1))) (-4 *1 (-311))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-303 *3))) (-4 *1 (-318 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-303 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-575))) (-5 *4 (-1196 (-418 (-575))))
- (-5 *1 (-319 *2)) (-4 *2 (-38 (-418 (-575))))))
+ (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1198 (-419 (-576))))
+ (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *1)) (-4 *1 (-384 *4 *5))
- (-4 *4 (-861)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5))
+ (-4 *4 (-862)) (-4 *5 (-174))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *4 (-1 *1 (-655 *1)))
- (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-1066))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1)))
+ (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782)))
- (-5 *4 (-655 (-1 *1 (-655 *1)))) (-4 *1 (-441 *5)) (-4 *5 (-1117))
- (-4 *5 (-1066))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783)))
+ (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1119))
+ (-4 *5 (-1068))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-655 (-782)))
- (-5 *4 (-655 (-1 *1 *1))) (-4 *1 (-441 *5)) (-4 *5 (-1117))
- (-4 *5 (-1066))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783)))
+ (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119))
+ (-4 *5 (-1068))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-655 (-115))) (-5 *3 (-655 *1)) (-5 *4 (-1194))
- (-4 *1 (-441 *5)) (-4 *5 (-1117)) (-4 *5 (-625 (-547)))))
+ (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1196))
+ (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-626 (-548)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1194)) (-4 *1 (-441 *4)) (-4 *4 (-1117))
- (-4 *4 (-625 (-547)))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-442 *4)) (-4 *4 (-1119))
+ (-4 *4 (-626 (-548)))))
((*1 *1 *1)
- (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-625 (-547)))))
+ (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-626 (-548)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-1194))) (-4 *1 (-441 *3)) (-4 *3 (-1117))
- (-4 *3 (-625 (-547)))))
+ (-12 (-5 *2 (-656 (-1196))) (-4 *1 (-442 *3)) (-4 *3 (-1119))
+ (-4 *3 (-626 (-548)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117))
- (-4 *3 (-625 (-547)))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119))
+ (-4 *3 (-626 (-548)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-525 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1235))))
+ (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1237))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 *5)) (-4 *1 (-525 *4 *5))
- (-4 *4 (-1117)) (-4 *5 (-1235))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5))
+ (-4 *4 (-1119)) (-4 *5 (-1237))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-844 *3)) (-4 *3 (-373)) (-5 *1 (-729 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-729 *2)) (-4 *2 (-373))))
+ (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194)) (-4 *4 (-567))
- (-5 *1 (-1060 *4))))
+ (-12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) (-4 *4 (-568))
+ (-5 *1 (-1062 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-655 (-1194))) (-5 *4 (-655 (-418 (-967 *5))))
- (-5 *2 (-418 (-967 *5))) (-4 *5 (-567)) (-5 *1 (-1060 *5))))
+ (-12 (-5 *3 (-656 (-1196))) (-5 *4 (-656 (-419 (-969 *5))))
+ (-5 *2 (-419 (-969 *5))) (-4 *5 (-568)) (-5 *1 (-1062 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-5 *2 (-418 (-967 *4)))
- (-4 *4 (-567)) (-5 *1 (-1060 *4))))
+ (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-5 *2 (-419 (-969 *4)))
+ (-4 *4 (-568)) (-5 *1 (-1062 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-303 (-418 (-967 *4))))) (-5 *2 (-418 (-967 *4)))
- (-4 *4 (-567)) (-5 *1 (-1060 *4))))
+ (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-5 *2 (-419 (-969 *4)))
+ (-4 *4 (-568)) (-5 *1 (-1062 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1174 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1194)) (-4 *5 (-625 (-904 (-575))))
- (-4 *5 (-898 (-575)))
- (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-578 *5 *3)) (-4 *3 (-640))
- (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(((*1 *1 *1) (-4 *1 (-556))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-252 *3 *4))
- (-14 *3 (-655 (-1194))) (-4 *4 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-575))) (-14 *3 (-655 (-1194)))
- (-5 *1 (-465 *3 *4 *5)) (-4 *4 (-1066))
- (-4 *5 (-243 (-2869 *3) (-782)))))
+ (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))))
+(((*1 *1 *1) (-4 *1 (-557))))
+(((*1 *1 *1) (-4 *1 (-1079)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-492 *3 *4))
- (-14 *3 (-655 (-1194))) (-4 *4 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-567)))))
+ (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1286))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1286))))
+ (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-1287))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1287)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-321)) (-5 *1 (-840)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4))
- (-5 *2 (-429 *3)) (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535)))))
+ (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1287
+ (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2512 (-576))
+ (|:| -2074 (-576)) (|:| |spline| (-576)) (|:| -3512 (-576))
+ (|:| |axesColor| (-886)) (|:| -2498 (-576))
+ (|:| |unitsColor| (-886)) (|:| |showing| (-576)))))
+ (-5 *1 (-1288)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-5 *2 (-1190 *3)) (-5 *1 (-1209 *3))
- (-4 *3 (-373)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
+ (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-317))
+ (-4 *5 (-1068)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 *4))))
+ (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-517 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-978 *3)) (-4 *3 (-557))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *2 (-655 (-171 *4)))
- (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))))
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1109)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3))
+ (-4 *3 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4462)) (-4 *1 (-240 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119))
+ (-5 *1 (-749 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1117)) (-5 *2 (-112)) (-5 *1 (-897 *3 *4 *5))
- (-4 *3 (-1117)) (-4 *5 (-677 *4))))
+ (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3))
+ (-4 *3 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-316))
- (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-964 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1190 *6)) (-4 *6 (-964 *5 *3 *4)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *5 (-316)) (-5 *1 (-931 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112))
+ (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2))
+ (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)) (-5 *3 (-1178))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2273 (-576))))
+ (-4 *1 (-442 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2273 (-576))))
+ (-4 *1 (-442 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119))
+ (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -2273 (-576))))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2273 (-783))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -2273 (-783))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068))
+ (-4 *7 (-966 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2273 (-576))))
+ (-5 *1 (-967 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $))
+ (-15 -1635 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1263 *4))
+ (-5 *1 (-822 *4 *2))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-317))
+ (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-421 *4 *5))
+ (-14 *7 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1287 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1011 *3))
+ (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1237)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3))
+ (-4 *3 (-686 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2))
+ (-4 *2 (-1119))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1119))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119))
+ (-5 *1 (-114 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *6 *4 *5))
- (-5 *1 (-931 *4 *5 *6 *2)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-316)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4)))
+ (-5 *1 (-114 *4)) (-4 *4 (-1119))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068))
+ (-5 *1 (-726 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-804)) (-4 *3 (-174)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-655 (-876))))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246)) (-5 *3 (-1176))))
- ((*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-246))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6))
+ (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148)))
+ (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1148 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148)))
+ (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1148 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
((*1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1240))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-840)) (-5 *3 (-1176)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-300))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
+ (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783))
+ (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4))
+ (-4 *3 (-442 *4))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))
+ ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4))
+ (-4 *3 (-809 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1010 *3 *4))
+ (-4 *3 (-1011 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1015 *3 *4))
+ (-4 *3 (-1016 *4))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1030 *3)) (-4 *3 (-1031))))
+ ((*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-783))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1078 *3)) (-4 *3 (-1079)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1196)))
+ (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068))
+ (-4 *5 (-243 (-2845 *3) (-783)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-1068)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-834)) (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-1055 (-418 *2)))) (-5 *2 (-575))
- (-5 *1 (-116 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-993 *4 *5 *6 *3)) (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021)))
+ (-5 *1 (-178 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -1785 *5) (|:| -2666 *5))))
+ (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5))
+ (-4 *6 (-668 (-419 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -1785 *4) (|:| -2666 *4))))
+ (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4))
+ (-4 *6 (-668 (-419 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -1785 *5) (|:| -2666 *5))))
+ (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5))
+ (-4 *3 (-668 (-419 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576)))))
+ (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -1785 *4) (|:| -2666 *4))))
+ (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4))
+ (-4 *3 (-668 (-419 *4))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9))
+ (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6))
+ (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068))
+ (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1068))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1207 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1263 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 *4) (-1019) (-1220)))
- (-5 *1 (-611 *4 *2 *3))
- (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220))))))
+ (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))
+ ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-5 *1 (-448)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1066)) (-5 *1 (-50 *2 *3)) (-14 *3 (-655 (-1194)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 (-936))) (-4 *2 (-373)) (-5 *1 (-153 *4 *2 *5))
- (-14 *4 (-936)) (-14 *5 (-1010 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-325 *3)) (-5 *1 (-225 *3 *4))
- (-4 *3 (-13 (-1066) (-861))) (-14 *4 (-655 (-1194)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-132))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-392 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4))
- (-4 *4 (-1261 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1066)) (-5 *1 (-746 *2 *3)) (-4 *3 (-737))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5))
- (-4 *4 (-1066)) (-4 *5 (-861))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066))
- (-4 *2 (-861))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6))
- (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *2 (-861))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *2 (-964 *4 (-542 *5) *5))
- (-5 *1 (-1143 *4 *5 *2)) (-4 *4 (-1066)) (-4 *5 (-861))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-967 *4)) (-5 *1 (-1229 *4))
- (-4 *4 (-1066)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 *1)) (|has| *1 (-6 -4461)) (-4 *1 (-1027 *3))
- (-4 *3 (-1235)))))
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4))))
- (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4))))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-967 (-575))) (-5 *3 (-1194))
- (-5 *4 (-1111 (-418 (-575)))) (-5 *1 (-30)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-174)) (-5 *1 (-298 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1261 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-872))))
- ((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-872)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-316)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-1141 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-768)))))
-(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287))))
- ((*1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-1287)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))))
(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *4 (-782))
- (-5 *2 (-700 (-227))) (-5 *1 (-275)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-463)) (-4 *4 (-831))
- (-14 *5 (-1194)) (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-655 (-575))) (-5 *3 (-700 (-575))) (-5 *1 (-1127)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1235)) (-4 *2 (-1066))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873))))
- ((*1 *1 *1) (-5 *1 (-873)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-958 (-227))) (-5 *2 (-227)) (-5 *1 (-1231))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1156))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-885))
- (-5 *5 (-936)) (-5 *6 (-655 (-269))) (-5 *2 (-479)) (-5 *1 (-1289))))
+ (-12 (-5 *3 (-922 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4))
+ (-5 *1 (-1047 *5)) (-4 *5 (-1068))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *2 (-479))
- (-5 *1 (-1289))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1047 *4))
+ (-4 *4 (-1068))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-655 (-269)))
- (-5 *2 (-479)) (-5 *1 (-1289)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-655
- (-2
- (|:| -4169
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227))))
- (|:| |yinit| (-655 (-227))) (|:| |intvals| (-655 (-227)))
- (|:| |g| (-325 (-227))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3179
- (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389))
- (|:| |expense| (-389)) (|:| |accuracy| (-389))
- (|:| |intermediateResults| (-389)))))))
- (-5 *1 (-814)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-655 *6))
- (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))))
+ (-12 (-5 *3 (-656 (-922 (-576)))) (-5 *4 (-576))
+ (-5 *2 (-656 (-701 *4))) (-5 *1 (-1047 *5)) (-4 *5 (-1068))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576))))
+ (-5 *1 (-1047 *4)) (-4 *4 (-1068)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-936))
- (-5 *2 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137))))))
- (-5 *1 (-356 *4)) (-4 *4 (-359)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1174 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1066))
- (-5 *3 (-418 (-575))) (-5 *1 (-1178 *4)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478))))
- ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478))))
- ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1176)) (-4 *1 (-374 *2 *4)) (-4 *2 (-1117))
- (-4 *4 (-1117))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1235)) (-5 *1 (-884 *3 *2)) (-4 *3 (-1235))))
- ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4))
+ (-4 *4 (-1263 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4))))
+ (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *5)) (-4 *5 (-13 (-1066) (-650 *4)))
- (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-649 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1295)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241))
+ (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5)))
+ (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2))
- (-4 *2 (-698 *3 *4 *5)))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4))
+ (-4 *4 (-1263 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275))))
- ((*1 *2 *3) (-12 (-5 *3 (-325 (-227))) (-5 *2 (-112)) (-5 *1 (-275))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1066))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-958 (-227)))) (-5 *1 (-1286)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5))
- (-4 *4 (-1117)) (-4 *5 (-1117)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-770)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-575)) (-4 *7 (-964 *4 *5 *6))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-460 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068))
+ (-5 *3 (-576)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1178)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1119))
+ (-4 *4 (-1119))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1237)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1237))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *1) (-12 (-4 *1 (-1062 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-373) (-148) (-1055 (-575))))
- (-4 *5 (-1261 *4)) (-5 *2 (-655 (-418 *5))) (-5 *1 (-1033 *4 *5))
- (-5 *3 (-418 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4))))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2674 *5))))
- (-5 *1 (-818 *4 *5 *3 *6)) (-4 *3 (-667 *5))
- (-4 *6 (-667 (-418 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2674 *4))))
- (-5 *1 (-818 *5 *4 *3 *6)) (-4 *3 (-667 *4))
- (-4 *6 (-667 (-418 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *5 (-1261 *4)) (-5 *2 (-655 (-2 (|:| -1751 *5) (|:| -2674 *5))))
- (-5 *1 (-818 *4 *5 *6 *3)) (-4 *6 (-667 *5))
- (-4 *3 (-667 (-418 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *4 (-1261 *5)) (-5 *2 (-655 (-2 (|:| -1751 *4) (|:| -2674 *4))))
- (-5 *1 (-818 *5 *4 *6 *3)) (-4 *6 (-667 *4))
- (-4 *3 (-667 (-418 *4))))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-783)) (-4 *5 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3))
+ (-4 *4 (-384 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196))
+ (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))
+ ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))))
+(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-4 *2 (-913 *5)) (-5 *1 (-703 *5 *2 *3 *4))
- (-4 *3 (-383 *2)) (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))))
+ (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-701 *3))
+ (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 *4))
- (-5 *2 (-2 (|:| |radicand| (-418 *5)) (|:| |deg| (-782))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-867 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))))
-(((*1 *2 *1) (-12 (-5 *2 (-300)) (-5 *1 (-289)))))
-(((*1 *2 *1) (-12 (-5 *2 (-702 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 *4))))
- (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-429 *4)) (-4 *4 (-567)))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861))
- (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -4041 *1)))
- (-4 *1 (-1082 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -4041 *1)))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-429 *4) *4)) (-4 *4 (-567)) (-5 *2 (-429 *4))
- (-5 *1 (-430 *4))))
- ((*1 *1 *1) (-5 *1 (-941)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941))))
- ((*1 *1 *1) (-5 *1 (-942)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))
- (-5 *4 (-418 (-575))) (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))
- (-5 *4 (-418 (-575))) (-5 *1 (-1038 *3)) (-4 *3 (-1261 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))
- (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3))
- (-4 *3 (-1117)))))
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
(((*1 *2)
- (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4))
- (-4 *4 (-1261 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-269))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-5 *1 (-429 *2)) (-4 *2 (-567)))))
-(((*1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1288)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1 *1) (-4 *1 (-984))))
-(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-692))))
- ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-987))))
- ((*1 *2 *1) (-12 (-5 *2 (-1234)) (-5 *1 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *5 (-378))
- (-5 *2 (-782)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *5 (-1261 *4))
- (-5 *2 (-655 (-2 (|:| |deg| (-782)) (|:| -2566 *5))))
- (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-667 *5))
- (-4 *6 (-667 (-418 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-936)) (-5 *1 (-797)))))
-(((*1 *1) (-5 *1 (-517))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3))
- (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2))
- (-4 *2 (-698 *3 *5 *6)))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3))
- (-4 *3 (-1261 (-418 *4))))))
+ (-12 (-5 *3 (-656 (-938))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-4 *3 (-1261 *4)) (-4 *2 (-1276 *4))
- (-5 *1 (-1279 *4 *3 *5 *2)) (-4 *5 (-667 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575))))
- (-4 *2 (-174)))))
+ (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-938))
+ (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4464 "*")))))
+ (-5 *1 (-919 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *1))
+ (-4 *1 (-393 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-738))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-966 *3 *4 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-960 *5)) (-5 *3 (-783)) (-4 *5 (-1068))
+ (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4462 "*"))) (-4 *5 (-383 *2)) (-4 *6 (-383 *2))
- (-4 *2 (-1066)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1261 *2))
- (-4 *4 (-698 *2 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-38 (-418 (-575))))
- (-4 *2 (-174)))))
-(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-5 *3 (-944))
(-5 *2
- (-655
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-804)) (-4 *3 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861))
- (-5 *1 (-460 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1198)))))
+ (-2 (|:| |brans| (-656 (-656 (-960 (-227)))))
+ (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576)))
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-960 (-227)))))
+ (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))))
+ (-5 *1 (-154)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-105)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 (-1 *6 (-655 *6))))
- (-4 *5 (-38 (-418 (-575)))) (-4 *6 (-1276 *5)) (-5 *2 (-655 *6))
- (-5 *1 (-1278 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
-(((*1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575))))
- ((*1 *1 *1) (-5 *1 (-1137))))
-(((*1 *1 *1 *1) (-4 *1 (-672))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-52))) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
+ (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-656 (-1231 *5)))
+ (-5 *1 (-1295 *5)) (-5 *4 (-1231 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-354 *3 *4)) (-14 *3 (-938))
+ (-14 *4 (-938))))
+ ((*1 *2)
+ (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-1192 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-938)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1261 *3)) (-4 *3 (-1066)) (-5 *2 (-1190 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-750 *3)))))
+ (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237))
+ (-5 *2 (-656 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2))
+ (-4 *2 (-1263 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3))
+ (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))))
+(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *9) (|:| |radicand| *9)))
+ (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-783))
+ (-4 *9
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $))))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-576)) (-5 *1 (-206)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -1355 (-783))))
+ (-5 *1 (-794 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1355 (-783))))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-693))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-989))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-1092))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1137)))))
+(((*1 *1) (-5 *1 (-1288))))
+(((*1 *1) (-5 *1 (-590))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1082)) (-5 *3 (-1178)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1119)) (-4 *2 (-1119))
+ (-5 *1 (-623 *2 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-576))
+ (-5 *6
+ (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))))
+ (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390)))
+ (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292))
+ (-5 *1 (-800))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-576))
+ (-5 *6
+ (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -2113 (-390))))
+ (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390)))
+ (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292))
+ (-5 *1 (-800)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5))
+ (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *1) (-5 *1 (-1080))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *2))
+ (|:| |logand| (-1192 *2)))))
+ (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-374)) (-5 *1 (-598 *2)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))))
+(((*1 *1 *1 *1) (-4 *1 (-673))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))
+ ((*1 *1 *1) (-5 *1 (-1139))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1154)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112))
+ (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-360)) (-4 *2 (-1068)) (-5 *1 (-724 *2 *3))
+ (-4 *3 (-1263 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-1276 *3)))))
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-966 *7 *5 *6))
+ (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-317)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5))
+ (-5 *2 (-656 (-2 (|:| -3712 *5) (|:| -2568 *3))))
+ (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6))
+ (-4 *7 (-668 (-419 *6))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *7 (-913 *6))
- (-5 *2 (-700 *7)) (-5 *1 (-703 *6 *7 *3 *4)) (-4 *3 (-383 *7))
- (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575))))
- ((*1 *1 *1 *1) (-5 *1 (-1137))))
-(((*1 *1 *1 *1) (-4 *1 (-672))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-107 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-655
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-782)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-804)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463)) (-4 *5 (-861))
- (-5 *1 (-460 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-655
- (-655
- (-3 (|:| -1777 (-1194))
- (|:| -4065 (-655 (-3 (|:| S (-1194)) (|:| P (-967 (-575))))))))))
- (-5 *1 (-1198)))))
+ (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))
+ ((*1 *1 *1 *1) (-5 *1 (-1139))))
+(((*1 *1 *1 *1) (-4 *1 (-673))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1119))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-397 *3)))))
(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389))))
- ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1066) (-861)))
- (-14 *3 (-655 (-1194))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-511 *2)) (-14 *2 (-575))))
- ((*1 *1 *1 *1) (-5 *1 (-1137))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1754 *3) (|:| |gap| (-782)) (|:| -3262 (-793 *3))
- (|:| -4041 (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861))
- (-5 *2
- (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -3262 *1)
- (|:| -4041 *1)))
- (-4 *1 (-1082 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2
- (-2 (|:| -1754 *1) (|:| |gap| (-782)) (|:| -3262 *1)
- (|:| -4041 *1)))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-558))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-655 (-623 *2))) (-5 *4 (-1194))
- (-4 *2 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *5 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-152 *3))))
+ (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *2))
+ (-2 (|:| -4308 *5) (|:| -2273 *2))))
+ (-4 *2 (-243 (-2845 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-862)) (-4 *7 (-966 *4 *2 (-876 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241))
+ (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174))
+ (-4 *1 (-378 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174))
+ (-4 *1 (-381 *4 *5)) (-4 *5 (-1263 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4))
+ (-4 *4 (-1263 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))
+ ((*1 *1 *1 *1) (-5 *1 (-1139))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-805))
+ (-4 *3 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *5 (-568))
+ (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *3
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *6))
+ (-4 *6
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2))
+ (-4 *2 (-966 (-969 *4) *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1057 *4)) (-4 *3 (-568)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-152 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-655 (-2 (|:| -1658 (-782)) (|:| -1751 *4) (|:| |num| *4))))
- (-4 *4 (-1261 *3)) (-4 *3 (-13 (-373) (-148))) (-5 *1 (-410 *3 *4))))
+ (-5 *2 (-656 (-2 (|:| -2273 (-783)) (|:| -1785 *4) (|:| |num| *4))))
+ (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-112)) (-5 *1 (-448))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-112)) (-5 *1 (-449))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-5 *3 (-655 (-1194))) (-5 *4 (-112)) (-5 *1 (-448))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-5 *3 (-656 (-1196))) (-5 *4 (-112)) (-5 *1 (-449))))
((*1 *2 *1)
- (-12 (-5 *2 (-1174 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-174))))
+ (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4))
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4))
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-5 *1 (-675 *3 *4))
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 (-655 *3)))) (-4 *3 (-1117))
- (-5 *1 (-686 *3))))
+ (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1119))
+ (-5 *1 (-687 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-724 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1117))
+ (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1119))
(-14 *4
- (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *3))
- (-2 (|:| -4317 *2) (|:| -1658 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-1135)) (-5 *1 (-849))))
+ (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *3))
+ (-2 (|:| -4308 *2) (|:| -2273 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-850))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-884 *2 *3)) (-4 *2 (-1235)) (-4 *3 (-1235))))
+ (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 *4))))
- (-4 *4 (-1117)) (-5 *1 (-901 *3 *4)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 *4))))
+ (-4 *4 (-1119)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *5)) (-4 *5 (-13 (-1117) (-34)))
- (-5 *2 (-655 (-1157 *3 *5))) (-5 *1 (-1157 *3 *5))
- (-4 *3 (-13 (-1117) (-34)))))
+ (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1119) (-34)))
+ (-5 *2 (-656 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5))
+ (-4 *3 (-13 (-1119) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| |val| *4) (|:| -4270 *5))))
- (-4 *4 (-13 (-1117) (-34))) (-4 *5 (-13 (-1117) (-34)))
- (-5 *2 (-655 (-1157 *4 *5))) (-5 *1 (-1157 *4 *5))))
+ (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4256 *5))))
+ (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34)))
+ (-5 *2 (-656 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4270 *4)))
- (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34)))
- (-5 *1 (-1157 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4256 *4)))
+ (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34)))
+ (-5 *1 (-1159 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34)))))
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-13 (-1117) (-34)))
- (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34)))))
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1119) (-34)))
+ (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-1157 *2 *3))) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34))) (-5 *1 (-1158 *2 *3))))
+ (-12 (-5 *4 (-656 (-1159 *2 *3))) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-1158 *2 *3))) (-5 *1 (-1158 *2 *3))
- (-4 *2 (-13 (-1117) (-34))) (-4 *3 (-13 (-1117) (-34)))))
+ (-12 (-5 *4 (-656 (-1160 *2 *3))) (-5 *1 (-1160 *2 *3))
+ (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4))))
+ (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1183 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1192 *4 *5 *6))
- (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1258 *5 *4)) (-5 *1 (-1277 *4 *5 *6))
- (-4 *4 (-1066)) (-14 *5 (-1194)) (-14 *6 *4))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-1217 *4))
- (-4 *4 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-692))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))))
-(((*1 *1 *1) (-5 *1 (-1080))))
+ (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *4 (-1117)))))
-(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-389)))
- ((*1 *1) (-5 *1 (-389))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1278 *4))
+ (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1280 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5)))
+ (-5 *1 (-1148 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196)))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5))))
+ (-5 *1 (-1148 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-337 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4))
+ (-14 *4 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-693))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1137)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1054)) (-5 *1 (-768)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-449)) (-5 *1 (-1200)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-766)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1285 *4)) (-5 *3 (-700 *4)) (-4 *4 (-373))
- (-5 *1 (-678 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-373))
- (-4 *5 (-13 (-383 *4) (-10 -7 (-6 -4461))))
- (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461))))
- (-5 *1 (-679 *4 *5 *2 *3)) (-4 *3 (-698 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-655 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-373))
- (-5 *1 (-825 *2 *3)) (-4 *3 (-667 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))))
+ (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-373)) (-14 *6 (-1285 (-700 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-936)) (-14 *5 (-655 (-1194)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-14 *6 (-1287 (-701 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1196)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1237))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'JINT 'X 'ELAM) (-2893) (-710))))
- (-5 *1 (-61 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'JINT 'X 'ELAM) (-2869) (-711))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 'XC) (-710))))
- (-5 *1 (-63 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 'XC) (-711))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 (-2893 'X) (-2893) (-710))) (-5 *1 (-64 *3))
- (-14 *3 (-1194))))
+ (-12 (-5 *2 (-350 (-2869 'X) (-2869) (-711))) (-5 *1 (-64 *3))
+ (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 (-2893) (-2893 'XC) (-710))) (-5 *1 (-66 *3))
- (-14 *3 (-1194))))
+ (-12 (-5 *2 (-350 (-2869) (-2869 'XC) (-711))) (-5 *1 (-66 *3))
+ (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'X) (-2893 '-2253) (-710))))
- (-5 *1 (-71 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'X) (-2869 '-2282) (-711))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 'X) (-710))))
- (-5 *1 (-74 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 'X) (-711))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'X 'EPS) (-2893 '-2253) (-710))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194))
- (-14 *5 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'X 'EPS) (-2869 '-2282) (-711))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196))
+ (-14 *5 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'EPS) (-2893 'YA 'YB) (-710))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1194)) (-14 *4 (-1194))
- (-14 *5 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'EPS) (-2869 'YA 'YB) (-711))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196))
+ (-14 *5 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 (-2893) (-2893 'X) (-710))) (-5 *1 (-77 *3))
- (-14 *3 (-1194))))
+ (-12 (-5 *2 (-350 (-2869) (-2869 'X) (-711))) (-5 *1 (-77 *3))
+ (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 (-2893) (-2893 'X) (-710))) (-5 *1 (-78 *3))
- (-14 *3 (-1194))))
+ (-12 (-5 *2 (-350 (-2869) (-2869 'X) (-711))) (-5 *1 (-78 *3))
+ (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 'XC) (-710))))
- (-5 *1 (-79 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 'XC) (-711))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893) (-2893 'X) (-710))))
- (-5 *1 (-80 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869) (-2869 'X) (-711))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'X '-2253) (-2893) (-710))))
- (-5 *1 (-82 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'X '-2282) (-2869) (-711))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-700 (-349 (-2893 'X '-2253) (-2893) (-710))))
- (-5 *1 (-83 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-701 (-350 (-2869 'X '-2282) (-2869) (-711))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-700 (-349 (-2893 'X) (-2893) (-710)))) (-5 *1 (-84 *3))
- (-14 *3 (-1194))))
+ (-12 (-5 *2 (-701 (-350 (-2869 'X) (-2869) (-711)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'X) (-2893) (-710))))
- (-5 *1 (-85 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'X) (-2869) (-711))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-349 (-2893 'X) (-2893 '-2253) (-710))))
- (-5 *1 (-86 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-1287 (-350 (-2869 'X) (-2869 '-2282) (-711))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-700 (-349 (-2893 'XL 'XR 'ELAM) (-2893) (-710))))
- (-5 *1 (-87 *3)) (-14 *3 (-1194))))
+ (-12 (-5 *2 (-701 (-350 (-2869 'XL 'XR 'ELAM) (-2869) (-711))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-349 (-2893 'X) (-2893 '-2253) (-710))) (-5 *1 (-89 *3))
- (-14 *3 (-1194))))
+ (-12 (-5 *2 (-350 (-2869 'X) (-2869 '-2282) (-711))) (-5 *1 (-89 *3))
+ (-14 *3 (-1196))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-575)) (-14 *4 (-782)) (-4 *5 (-174))))
+ (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-575)) (-14 *4 (-782))))
+ (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-576)) (-14 *4 (-783))))
((*1 *1 *2)
- (-12 (-5 *2 (-1159 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575))))
+ (-12 (-5 *2 (-1161 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))))
((*1 *1 *2)
- (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-782)) (-4 *5 (-174))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575))))
+ (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))))
((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-700 *4))) (-4 *4 (-174))
- (-5 *2 (-1285 (-700 (-418 (-967 *4))))) (-5 *1 (-191 *4))))
+ (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174))
+ (-5 *2 (-1287 (-701 (-419 (-969 *4))))) (-5 *1 (-191 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1109 (-325 *4)))
- (-4 *4 (-13 (-861) (-567) (-625 (-389)))) (-5 *2 (-1109 (-389)))
- (-5 *1 (-264 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-283))))
+ (-12 (-5 *3 (-1111 (-326 *4)))
+ (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1111 (-390)))
+ (-5 *1 (-265 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))
((*1 *2 *1)
- (-12 (-4 *2 (-1261 *3)) (-5 *1 (-298 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1263 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7))
(-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1270 *4 *5 *6)) (-4 *4 (-13 (-27) (-1220) (-441 *3)))
- (-14 *5 (-1194)) (-14 *6 *4)
- (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463)))
- (-5 *1 (-322 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1272 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3)))
+ (-14 *5 (-1196)) (-14 *6 *4)
+ (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464)))
+ (-5 *1 (-323 *3 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-5 *2 (-325 *5)) (-5 *1 (-349 *3 *4 *5))
- (-14 *3 (-655 (-1194))) (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5))
+ (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *3 *4 *2))
- (-4 *3 (-338 *4))))
+ (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2))
+ (-4 *3 (-339 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-4 *2 (-338 *4)) (-5 *1 (-357 *2 *4 *3))
- (-4 *3 (-338 *4))))
+ (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3))
+ (-4 *3 (-339 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174))
- (-5 *2 (-1309 *3 *4))))
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-1311 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174))
- (-5 *2 (-1300 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174))))
+ (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *2 (-1302 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))
- (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-393))))
- ((*1 *1 *2) (-12 (-5 *2 (-700 (-710))) (-4 *1 (-393))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))
+ (-4 *1 (-394))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394))))
+ ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))
- (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-394))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-394))))
- ((*1 *2 *3) (-12 (-5 *2 (-405)) (-5 *1 (-404 *3)) (-4 *3 (-1117))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))
+ (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395))))
+ ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1119))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))
- (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-407))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))
+ (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408))))
((*1 *1 *2)
- (-12 (-5 *2 (-303 (-325 (-171 (-389))))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-303 (-325 (-389)))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-303 (-325 (-575)))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-171 (-389)))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-389))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-575))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-303 (-325 (-705)))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-303 (-325 (-710)))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-303 (-325 (-712)))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-705))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-710))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-325 (-712))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))
- (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194))
- (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))
+ (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196))
+ (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-339))) (-5 *1 (-409 *3 *4 *5 *6))
- (-14 *3 (-1194)) (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6))
+ (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-339)) (-5 *1 (-409 *3 *4 *5 *6)) (-14 *3 (-1194))
- (-14 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1198))))
+ (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196))
+ (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))
((*1 *1 *2)
- (-12 (-5 *2 (-340 *4)) (-4 *4 (-13 (-861) (-21)))
- (-5 *1 (-438 *3 *4)) (-4 *3 (-13 (-174) (-38 (-418 (-575)))))))
+ (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21)))
+ (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-438 *2 *3)) (-4 *2 (-13 (-174) (-38 (-418 (-575)))))
- (-4 *3 (-13 (-861) (-21)))))
+ (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576)))))
+ (-4 *3 (-13 (-862) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-418 (-967 (-418 *3)))) (-4 *3 (-567)) (-4 *3 (-1117))
- (-4 *1 (-441 *3))))
+ (-12 (-5 *2 (-419 (-969 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1119))
+ (-4 *1 (-442 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 (-418 *3))) (-4 *3 (-567)) (-4 *3 (-1117))
- (-4 *1 (-441 *3))))
+ (-12 (-5 *2 (-969 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1119))
+ (-4 *1 (-442 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-418 *3)) (-4 *3 (-567)) (-4 *3 (-1117))
- (-4 *1 (-441 *3))))
+ (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1119))
+ (-4 *1 (-442 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1142 *3 (-623 *1))) (-4 *3 (-1066)) (-4 *3 (-1117))
- (-4 *1 (-441 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-445)) (-5 *1 (-448))))
+ (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-1068)) (-4 *3 (-1119))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446))))
+ ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))
- (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-451))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 (-710))) (-4 *1 (-451))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))
+ (-4 *1 (-452))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 (-711))) (-4 *1 (-452))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1198)) (|:| -2553 (-655 (-339)))))
- (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-339)) (-4 *1 (-452))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-339))) (-4 *1 (-452))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -2556 (-656 (-340)))))
+ (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 (-418 (-967 *3)))) (-4 *3 (-174))
- (-14 *6 (-1285 (-700 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-14 *4 (-936)) (-14 *5 (-655 (-1194)))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-479))))
- ((*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-479))))
+ (-12 (-5 *2 (-1287 (-419 (-969 *3)))) (-4 *3 (-174))
+ (-14 *6 (-1287 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-14 *4 (-938)) (-14 *5 (-656 (-1196)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480))))
((*1 *1 *2)
- (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-1066)) (-14 *4 (-1194))
- (-14 *5 *3) (-5 *1 (-485 *3 *4 *5))))
+ (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196))
+ (-14 *5 *3) (-5 *1 (-486 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-485 *3 *4 *5))
- (-4 *3 (-1066)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-513))))
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5))
+ (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-514))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-373))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-535))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-1234))) (-5 *1 (-617))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-618 *3 *2)) (-4 *2 (-755 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1066))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1068))))
((*1 *2 *1)
- (-12 (-5 *2 (-1305 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))
+ (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))
((*1 *2 *1)
- (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))
+ (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-5 *1 (-646 *3 *2)) (-4 *2 (-755 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-683 *3)) (-4 *3 (-861))))
+ (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
((*1 *2 *1)
- (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-5 *1 (-686 *3))
- (-4 *3 (-1117))))
+ (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-5 *1 (-687 *3))
+ (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-973 (-973 (-973 *3)))) (-4 *3 (-1117))
- (-5 *1 (-686 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-688 *3)) (-4 *3 (-861))))
- ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-692))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-4 *3 (-1119))
+ (-5 *1 (-687 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-693))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *2)) (-4 *4 (-383 *3))
- (-4 *2 (-383 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-705))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-710))) (-5 *1 (-705))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-575))) (-5 *1 (-705))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-389))) (-5 *1 (-705))))
- ((*1 *1 *2) (-12 (-5 *2 (-712)) (-5 *1 (-710))))
- ((*1 *2 *1) (-12 (-5 *2 (-389)) (-5 *1 (-710))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-325 (-575))) (-5 *2 (-325 (-712))) (-5 *1 (-712))))
- ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721))))
+ (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3))
+ (-4 *2 (-384 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))
+ ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-2 (|:| -1754 *3) (|:| -3692 *4))))
- (-4 *3 (-1066)) (-4 *4 (-737)) (-5 *1 (-746 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-774))))
+ (-12 (-5 *2 (-656 (-2 (|:| -1788 *3) (|:| -3667 *4))))
+ (-4 *3 (-1068)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(|:| |mdnia|
- (-2 (|:| |fn| (-325 (-227)))
- (|:| -1974 (-655 (-1111 (-854 (-227)))))
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-656 (-1113 (-855 (-227)))))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))))
- (-5 *1 (-780))))
+ (-5 *1 (-781))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-325 (-227)))
- (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227))
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-780))))
+ (-5 *1 (-781))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
- (-5 *1 (-780))))
- ((*1 *2 *3) (-12 (-5 *2 (-785)) (-5 *1 (-784 *3)) (-4 *3 (-1235))))
+ (-5 *1 (-781))))
+ ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1237))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *1 (-819))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-835))))
+ (-5 *1 (-820))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-836))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227))))
- (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227))))
+ (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-655 (-325 (-227))))
- (|:| -3472 (-655 (-227)))))))
- (-5 *1 (-852))))
+ (-2 (|:| |lfn| (-656 (-326 (-227))))
+ (|:| -3448 (-656 (-227)))))))
+ (-5 *1 (-853))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))
- (-5 *1 (-852))))
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))
+ (-5 *1 (-853))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
- (-5 *1 (-852))))
- ((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-869))))
- ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-967 (-48))) (-5 *2 (-325 (-575))) (-5 *1 (-886))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 (-48)))) (-5 *2 (-325 (-575)))
- (-5 *1 (-886))))
- ((*1 *1 *2) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-830 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861))))
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *1 (-853))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870))))
+ ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-969 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-419 (-969 (-48)))) (-5 *2 (-326 (-576)))
+ (-5 *1 (-887))))
+ ((*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-655 (-325 (-227))))
+ (-2 (|:| |pde| (-656 (-326 (-227))))
(|:| |constraints|
- (-655
+ (-656
(-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-782)) (|:| |boundaryType| (-575))
- (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227))))))
- (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178))
(|:| |tol| (-227))))
- (-5 *1 (-912))))
+ (-5 *1 (-913))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-920 *3))) (-4 *3 (-1117)) (-5 *1 (-919 *3))))
+ (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3))))
+ (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3))))
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-418 (-429 *3))) (-4 *3 (-316)) (-5 *1 (-929 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316))))
+ (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-931 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317))))
((*1 *2 *3)
- (-12 (-5 *3 (-488)) (-5 *2 (-325 *4)) (-5 *1 (-934 *4))
- (-4 *4 (-567))))
- ((*1 *2 *3) (-12 (-5 *2 (-1290)) (-5 *1 (-1050 *3)) (-4 *3 (-1235))))
- ((*1 *2 *3) (-12 (-5 *3 (-321)) (-5 *1 (-1050 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-936 *4))
+ (-4 *4 (-568))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1052 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1052 *2)) (-4 *2 (-1237))))
((*1 *1 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5))
- (-14 *6 (-655 *2))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5))
+ (-14 *6 (-656 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-567))))
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-1062 *3)) (-4 *3 (-568))))
((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-4 *4 (-861)) (-5 *1 (-1143 *3 *4 *2))
- (-4 *2 (-964 *3 (-542 *4) *4))))
+ (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2))
+ (-4 *2 (-966 *3 (-543 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-4 *2 (-861)) (-5 *1 (-1143 *3 *2 *4))
- (-4 *4 (-964 *3 (-542 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-873))))
- ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1161))))
+ (-12 (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4))
+ (-4 *4 (-966 *3 (-543 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1163))))
((*1 *2 *3)
- (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068))))
((*1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1185 *3 *4 *5))
- (-4 *3 (-1066)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5))
+ (-4 *3 (-1068)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1192 *3 *4 *5))
- (-4 *3 (-1066)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5))
+ (-4 *3 (-1068)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194))
- (-14 *5 *3) (-5 *1 (-1192 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1193))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207 (-1194) (-448))) (-5 *1 (-1198))))
- ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1206 *3)) (-4 *3 (-1117))))
- ((*1 *2 *3) (-12 (-5 *2 (-1215)) (-5 *1 (-1214 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196))
+ (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1209 (-1196) (-449))) (-5 *1 (-1200))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1208 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1216 *3)) (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-5 *1 (-1229 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1229 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-5 *1 (-1231 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-1068))))
((*1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1249 *3 *4 *5))
- (-4 *3 (-1066)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5))
+ (-4 *3 (-1068)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1111 *3)) (-4 *3 (-1235)) (-5 *1 (-1252 *3))))
+ (-12 (-5 *2 (-1113 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1281 *4)) (-14 *4 (-1194)) (-5 *1 (-1277 *3 *4 *5))
- (-4 *3 (-1066)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5))
+ (-4 *3 (-1068)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1258 *4 *3)) (-4 *3 (-1066)) (-14 *4 (-1194))
- (-14 *5 *3) (-5 *1 (-1277 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-873)) (-5 *1 (-1286))))
- ((*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1286)) (-5 *1 (-1289))))
+ (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196))
+ (-14 *5 *3) (-5 *1 (-1279 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1288))))
+ ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1288)) (-5 *1 (-1291))))
((*1 *1 *2)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))
((*1 *2 *1)
- (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861))
+ (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862))
(-4 *4 (-174))))
((*1 *2 *1)
- (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1305 *3 *4)) (-4 *3 (-861))
+ (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862))
(-4 *4 (-174))))
((*1 *1 *2)
- (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174))
- (-5 *1 (-1305 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-655 *1)) (-4 *1 (-935)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389)))
- (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290))
- (-5 *1 (-799)))))
+ (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *1 (-1307 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *1 *1) (-4 *1 (-673))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4)))
+ (-4 *4 (-568)) (-5 *2 (-1287 *4)) (-5 *1 (-650 *4 *5)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1283 *3)) (-4 *3 (-23)) (-4 *3 (-1235)))))
-(((*1 *1 *1) (-4 *1 (-672))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-655 (-1285 *4))) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567))
- (-5 *2 (-655 (-1285 *3))))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568))
+ (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1119)) (-4 *6 (-1119))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1119)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1119)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896))
+ (-5 *3 (-656 (-576))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194))
+ (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196))
(-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-429 *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-1066)) (-5 *2 (-655 *6)) (-5 *1 (-455 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-336 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-527 *3 *4))
- (-14 *4 (-575)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *2 (-1082 *4 *5 *6)) (-5 *1 (-787 *4 *5 *6 *2 *3))
- (-4 *3 (-1088 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4460)) (-4 *1 (-34)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-255))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-988))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-34)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-990))))
((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-575))))
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-576))))
((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-857)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-830 *3)) (-4 *3 (-861)) (-5 *1 (-683 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -4210 (-575)) (|:| -1366 (-655 *3))))
- (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1174 *3))) (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3))
- (-4 *3 (-38 (-418 (-575)))) (-4 *3 (-1066)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-858)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4)))
+ (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567))
- (-5 *2 (-1190 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *1)) (-5 *4 (-1285 *1)) (-4 *1 (-650 *5))
- (-4 *5 (-1066))
- (-5 *2 (-2 (|:| -3415 (-700 *5)) (|:| |vec| (-1285 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-700 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066))
- (-5 *2 (-700 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-650 *4)) (-4 *4 (-1066))
- (-5 *2 (-700 *4)))))
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-656 *4))) (-5 *1 (-921 *4))
+ (-5 *3 (-656 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-1121 *4))) (-5 *1 (-921 *4))
+ (-5 *3 (-1121 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1018 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-766)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-575))))
- (-4 *4 (-13 (-1261 *3) (-567) (-10 -8 (-15 -3923 ($ $ $)))))
- (-4 *3 (-567)) (-5 *1 (-1264 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-575) (-575))) (-5 *1 (-371 *3)) (-4 *3 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-782) (-782))) (-4 *1 (-396 *3)) (-4 *3 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292))
+ (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235))
- (-4 *4 (-383 *2)) (-4 *5 (-383 *2))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237))
+ (-4 *4 (-384 *2)) (-4 *5 (-384 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-297 *3 *2)) (-4 *3 (-1117))
- (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-185 (-140)))) (-5 *1 (-141)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-765)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194))
- (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-325 (-227))) (-5 *4 (-1194))
- (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-655 (-227))) (-5 *1 (-309)))))
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119))
+ (-4 *2 (-1237)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886)))
+ (-5 *4 (-656 (-938))) (-5 *5 (-656 (-270))) (-5 *1 (-480))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886)))
+ (-5 *4 (-656 (-938))) (-5 *1 (-480))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480))))
+ ((*1 *1 *1) (-5 *1 (-480))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1241)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5)))
+ (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-958 *4)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-700 *7)) (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *6 *5))
- (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-5 *1 (-939 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-633 *4 *2)) (-4 *2 (-13 (-1220) (-974) (-29 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 *6)) (-4 *5 (-1239)) (-4 *6 (-1261 *5))
- (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *3) (|:| |radicand| *6)))
- (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-782)) (-4 *7 (-1261 *3)))))
+ (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-656 *1))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068))
+ (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3))
+ (-5 *1 (-967 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $))
+ (-15 -1635 (*7 $))))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-567))))
+ (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))
- (-4 *2 (-567))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-567)))
+ (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))
+ (-4 *2 (-568))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-568)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066))
- (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-567))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-782)))
+ (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068))
+ (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-783)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-567))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
+ (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-567))
- (-5 *1 (-986 *3 *4))))
+ (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568))
+ (-5 *1 (-988 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1070 *3 *4 *2 *5 *6)) (-4 *2 (-1066))
- (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-567))))
+ (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068))
+ (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-517)) (-5 *3 (-655 (-1199))) (-5 *1 (-1199)))))
+ (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-316))
- (-5 *2 (-418 (-429 (-967 *4)))) (-5 *1 (-1059 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-778 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-623 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194)))
- (-4 *2 (-13 (-441 *5) (-27) (-1220)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *1 (-577 *5 *2 *6)) (-4 *6 (-1117)))))
+ (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7)))
+ (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5)))
+ (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4461)) (-4 *1 (-500 *3))
- (-4 *3 (-1235)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194))) (-4 *5 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *5)))))) (-5 *1 (-781 *5))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *3))
+ (-4 *3 (-1237)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-763)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-576)))))
+ (-4 *2 (-568)) (-5 *1 (-430 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-567))
- (-5 *2 (-655 (-655 (-303 (-418 (-967 *4)))))) (-5 *1 (-781 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-700 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2098 (-655 *6)))
- *7 *6))
- (-4 *6 (-373)) (-4 *7 (-667 *6))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-576))
+ (|:| -1603 (-656 (-2 (|:| |irr| *4) (|:| -2972 (-576)))))))
+ (-4 *4 (-1263 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4))
(-5 *2
- (-2 (|:| |particular| (-3 (-1285 *6) "failed"))
- (|:| -2098 (-655 (-1285 *6)))))
- (-5 *1 (-824 *6 *7)) (-5 *4 (-1285 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-424 *3 *4 *5 *6)) (-4 *6 (-1055 *4)) (-4 *3 (-316))
- (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4)) (-4 *6 (-420 *4 *5))
- (-14 *7 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1285 *6)) (-4 *6 (-420 *4 *5)) (-4 *4 (-1009 *3))
- (-4 *5 (-1261 *4)) (-4 *3 (-316)) (-5 *1 (-425 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-655 (-936))) (-5 *2 (-782)) (-5 *1 (-601)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-339)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-316)) (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3))
- (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3))))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5))
+ (|:| |c2| (-419 *5)) (|:| |deg| (-783))))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-941 *4 *5 *6 *3))
+ (-4 *3 (-966 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-655 (-303 *4))) (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))))
-(((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-830 *3)) (|:| |rm| (-830 *3))))
- (-5 *1 (-830 *3)) (-4 *3 (-861))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-762)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-332 *2 *4)) (-4 *4 (-132))
- (-4 *2 (-1117))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-4 *1 (-396 *2)) (-4 *2 (-1117))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-1117)) (-5 *1 (-660 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1) (-4 *1 (-640)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019) (-1220))))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3))))
+ (-5 *1 (-831 *3)) (-4 *3 (-862))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2779 (-656 *3)) (|:| -3540 (-656 *3))))
+ (-5 *1 (-1238 *3)) (-4 *3 (-1119)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-575)) (-5 *1 (-580 *3)) (-4 *3 (-1055 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-873) (-873) (-873))) (-5 *4 (-575)) (-5 *2 (-873))
- (-5 *1 (-660 *5 *6 *7)) (-4 *5 (-1117)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-873)) (-5 *1 (-865 *3 *4 *5)) (-4 *3 (-1066))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-873))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-873))))
- ((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-873)) (-5 *1 (-1190 *3)) (-4 *3 (-1066)))))
+ (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2))
+ (-5 *2 (-390)) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568))
+ (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390))
+ (-5 *1 (-797 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2))
+ (-4 *3 (-13 (-374) (-148))))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1119)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-782)) (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 (-1194))) (-5 *2 (-1290)) (-5 *1 (-1237)))))
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (-4 *4 (-1068))
+ (-5 *1 (-1047 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (-4 *4 (-1068))
+ (-5 *1 (-1047 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4))
+ (-4 *4 (-174)))))
+(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1119)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4)))
- (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4))))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
(-5 *2
- (-2 (|:| -2098 (-700 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-700 *3))))
- (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-538)) (-5 *3 (-129)) (-5 *2 (-782)))))
-(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804))
- (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2006 (-655 *9))))
- (-5 *3 (-655 *9)) (-4 *1 (-1228 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2006 (-655 *8))))
- (-5 *3 (-655 *8)) (-4 *1 (-1228 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-5 *2 (-1206 (-655 *4))) (-5 *1 (-1205 *4))
- (-5 *3 (-655 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1174 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-655 (-782)))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378))
- (-5 *2 (-1190 *3)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-2 (|:| -4261 (-656 (-419 *6))) (|:| -3260 (-701 *5))))
+ (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-822 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-2 (|:| -4261 (-656 (-419 *6))) (|:| -3260 (-701 *5))))
+ (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))))
+(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| -4422 (-783))
+ (|:| |eqns|
+ (-656
+ (-2 (|:| |det| *8) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (|:| |fgb| (-656 *8)))))
+ (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-783)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862))
+ (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-259 *2 *3 *4 *5)) (-4 *2 (-1066)) (-4 *3 (-861))
- (-4 *4 (-274 *3)) (-4 *5 (-804)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1111 (-227)))))
- ((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-1111 (-227))))))
-(((*1 *1 *1 *1) (-4 *1 (-316))) ((*1 *1 *1 *1) (-5 *1 (-782)))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *1 *2) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478))))
- ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478))))
- ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1169))))
-(((*1 *1 *1) (-5 *1 (-1080))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1052)) (-5 *1 (-760))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-399)) (-5 *2 (-1052)) (-5 *1 (-760)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1 *1) (-4 *1 (-556))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3))
- (-4 *3 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3)))
- (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3)))
- (-4 *3 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3)))
- (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))))
-(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2))))
+ (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862))
+ (-4 *4 (-275 *3)) (-4 *5 (-805)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))
+ ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))))
+(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))))
+(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783)))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1192 (-419 (-576))))
+ (|:| |overan| (-1192 (-48))) (|:| -3395 (-112))))
+ (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *2 *4)) (-4 *4 (-1261 *2))
- (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *4 (-1261 *2)) (-4 *2 (-174)) (-5 *1 (-419 *3 *2 *4))
- (-4 *3 (-420 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-420 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174))))
- ((*1 *2)
- (-12 (-4 *3 (-1261 *2)) (-5 *2 (-575)) (-5 *1 (-779 *3 *4))
- (-4 *4 (-420 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *3 (-174))))
+ (-12 (-5 *3 (-576)) (-4 *4 (-1263 *3))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *2 (-567)) (-5 *1 (-986 *2 *3)) (-4 *3 (-1261 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-174)))))
-(((*1 *1 *1 *1) (-4 *1 (-316))) ((*1 *1 *1 *1) (-5 *1 (-782)))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-567)) (-5 *1 (-634 *2 *3)) (-4 *3 (-1261 *2)))))
+ (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-664 *4)) (-4 *4 (-352 *5 *6 *7))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6)))
+ (-12 (-5 *3 (-656 (-419 (-969 (-576)))))
+ (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-304 (-419 (-969 (-576))))))
+ (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 (-304 (-969 *4))))
+ (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-304 (-419 (-969 (-576)))))
+ (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4))
+ (-4 *4 (-13 (-860) (-374)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1196))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1222) (-976)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4261 (-656 *4))))
+ (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *2))
+ (-4 *2 (-13 (-29 *6) (-1222) (-976)))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-374))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-817 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2 *3) (-12 (-5 *3 (-988)) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1220)))
- (-5 *1 (-594 *4 *2))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575))))))
+ (-2 (|:| |particular| (-3 (-1287 *5) "failed"))
+ (|:| -4261 (-656 (-1287 *5)))))
+ (-5 *1 (-679 *5)) (-5 *4 (-1287 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1287 *5) "failed"))
+ (|:| -4261 (-656 (-1287 *5)))))
+ (-5 *1 (-679 *5)) (-5 *4 (-1287 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-374))
+ (-5 *2
+ (-656
+ (-2 (|:| |particular| (-3 (-1287 *5) "failed"))
+ (|:| -4261 (-656 (-1287 *5))))))
+ (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374))
+ (-5 *2
+ (-656
+ (-2 (|:| |particular| (-3 (-1287 *5) "failed"))
+ (|:| -4261 (-656 (-1287 *5))))))
+ (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463))))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463))))
+ (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4463))))
+ (-5 *2
+ (-656
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4261 (-656 *7)))))
+ (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7))
+ (-4 *3 (-699 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-418 (-967 *4))))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *4))
- (-5 *1 (-600 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -2429 *6) (|:| |sol?| (-112))) (-575)
- *6))
- (-4 *6 (-373)) (-4 *7 (-1261 *6))
- (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6)))
- (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-288)))))
+ (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-976)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1196))
+ (-4 *7 (-13 (-29 *6) (-1222) (-976)))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1287 *7)) (|:| -4261 (-656 (-1287 *7)))))
+ (-5 *1 (-814 *6 *7)) (-5 *4 (-1287 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1196))
+ (-4 *6 (-13 (-29 *5) (-1222) (-976)))
+ (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-1287 *6))) (-5 *1 (-814 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115)))
+ (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976)))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1287 *7)) (|:| -4261 (-656 (-1287 *7)))))
+ (-5 *1 (-814 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115)))
+ (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976)))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| |particular| (-1287 *7)) (|:| -4261 (-656 (-1287 *7)))))
+ (-5 *1 (-814 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1196))
+ (-4 *7 (-13 (-29 *6) (-1222) (-976)))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -4261 (-656 *7))) *7 "failed"))
+ (-5 *1 (-814 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-1196))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -4261 (-656 *3))) *3 "failed"))
+ (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-976)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2))
+ (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-5 *1 (-814 *6 *2))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2))
+ (-4 *2 (-13 (-29 *6) (-1222) (-976)))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-814 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4))
+ (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4))
+ (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390)))
+ (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4))
+ (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390)))
+ (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390)))
+ (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -4261 (-656 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-374)) (-4 *7 (-668 *6))
+ (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -4261 (-701 *6))))
+ (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178))
+ (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390))
+ (-5 *2 (-1054)) (-5 *1 (-912))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178))
+ (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054))
+ (-5 *1 (-912))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 (-390)))
+ (-5 *1 (-1042)) (-5 *4 (-390))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1042))
+ (-5 *4 (-390))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4))
+ (-5 *3 (-326 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4))
+ (-5 *3 (-304 (-326 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5))
+ (-5 *3 (-304 (-326 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5))
+ (-5 *3 (-326 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-1196)))
+ (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5))
+ (-5 *3 (-656 (-304 (-326 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196)))
+ (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5))))))
+ (-5 *1 (-1205 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1205 *5))
+ (-5 *3 (-656 (-304 (-419 (-969 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1205 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4))))))
+ (-5 *1 (-1205 *4)) (-5 *3 (-656 (-304 (-419 (-969 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-4 *5 (-568))
+ (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5))
+ (-5 *3 (-419 (-969 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196)) (-4 *5 (-568))
+ (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5))
+ (-5 *3 (-304 (-419 (-969 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4)))))
+ (-5 *1 (-1205 *4)) (-5 *3 (-419 (-969 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4)))))
+ (-5 *1 (-1205 *4)) (-5 *3 (-304 (-419 (-969 *4)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))))
+(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))))
+(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783)))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-701 (-419 (-969 (-576)))))
+ (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-782)) (-5 *1 (-215 *4 *2)) (-14 *4 (-936))
- (-4 *2 (-1117)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-373) (-148)))
- (-5 *2 (-655 (-2 (|:| -1658 (-782)) (|:| -1751 *4) (|:| |num| *4))))
- (-5 *1 (-410 *3 *4)) (-4 *4 (-1261 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2))
- (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3))))
- (-5 *1 (-606 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-748 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117))))
- ((*1 *1) (-12 (-5 *1 (-748 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938))
+ (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-289)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2))
+ (-4 *2 (-1278 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3))
+ (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2))
+ (-4 *2 (-1278 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148)))
+ (-5 *1 (-1172 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227))
+ (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-763)))))
+(((*1 *2)
+ (-12 (-5 *2 (-701 (-927 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938))
+ (-14 *4 (-938))))
+ ((*1 *2)
+ (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360))
+ (-14 *4
+ (-3 (-1192 *3)
+ (-1287 (-656 (-2 (|:| -4160 *3) (|:| -4308 (-1139)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360))
+ (-14 *4 (-938)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -4177 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2))
- (-4 *5 (-383 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2))
+ (-4 *5 (-384 *2)) (-4 *2 (-1237))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *2 (-1117)) (-5 *1 (-215 *4 *2))
- (-14 *4 (-936))))
+ (-12 (-5 *3 (-783)) (-4 *2 (-1119)) (-5 *1 (-215 *4 *2))
+ (-14 *4 (-938))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235))))
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7))
- (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7))
+ (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-966 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-766)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-782)) (-4 *6 (-1117)) (-4 *3 (-913 *6))
- (-5 *2 (-700 *3)) (-5 *1 (-703 *6 *3 *7 *4)) (-4 *7 (-383 *3))
- (-4 *4 (-13 (-383 *6) (-10 -7 (-6 -4460)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-590)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))
+ (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6))
+ (-4 *6 (-353 *3 *4 *5)))))
+(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-568))
+ (-5 *1 (-1149 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-700 (-418 (-967 (-575)))))
- (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048))
- (-5 *3 (-325 (-575))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-418 (-967 *4))) (-5 *3 (-1194))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-148))) (-5 *1 (-581 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4)))
- (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 (-958 *4))) (-4 *1 (-1151 *4)) (-4 *4 (-1066))
- (-5 *2 (-782)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374))
+ (-5 *2
+ (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-719 *3)) (-5 *1 (-838 *2 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))))
-(((*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373))))
+ (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-5 *2 (-1192 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576)))))
+ (-5 *2
+ (-656
+ (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576))
+ (|:| |outvect| (-656 (-701 (-171 *4)))))))
+ (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6))
+ (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4))
+ (-4 *4 (-1068)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-212)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317))
+ (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4))
- (-4 *4 (-359)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1190 *2)) (-4 *2 (-441 *4)) (-4 *4 (-567))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5))
+ (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *6 (-317)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196))
+ (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196))
+ (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1212 *4 *5))
- (-4 *4 (-1117)) (-4 *5 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895))
- (-5 *3 (-655 (-575))))))
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-227)))
+ (-5 *1 (-480)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139))))))
+ (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1176 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6))
+ (|:| -1922 *6)))
+ (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *1)) (-5 *4 (-1194)) (-4 *1 (-27))
- (-5 *2 (-655 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1190 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-27)) (-5 *2 (-655 *1))))
+ (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27))
+ (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *2 (-655 *1))
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1))
(-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-567)) (-5 *2 (-655 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194)))
- (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-700 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
+ (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196)))
+ (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1451 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054))
+ (-5 *1 (-760)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *6 (-626 (-1196)))
+ (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *2 (-1185 (-656 (-969 *4)) (-656 (-304 (-969 *4)))))
+ (-5 *1 (-516 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4463)) (-4 *4 (-374)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-174)) (-4 *2 (-1261 *4)) (-5 *1 (-179 *4 *2 *3))
- (-4 *3 (-735 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-418 (-967 *5)))) (-5 *4 (-1194))
- (-5 *2 (-967 *5)) (-5 *1 (-301 *5)) (-4 *5 (-463))))
+ (-12 (|has| *9 (-6 -4463)) (-4 *4 (-568)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-384 *7))
+ (-4 *9 (-384 *7)) (-5 *2 (-656 *6))
+ (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6))
+ (-4 *10 (-699 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-5 *2 (-967 *4))
- (-5 *1 (-301 *4)) (-4 *4 (-463))))
+ (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3))
+ (-4 *3 (-699 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-380 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3))))
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568))
+ (-5 *2 (-656 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5))))
+ (-5 *1 (-1148 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-700 (-171 (-418 (-575)))))
- (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *4))
- (-4 *4 (-13 (-373) (-859)))))
+ (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-13 (-317) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-171 (-418 (-575))))) (-5 *4 (-1194))
- (-5 *2 (-967 (-171 (-418 (-575))))) (-5 *1 (-775 *5))
- (-4 *5 (-13 (-373) (-859)))))
+ (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5))))
+ (-5 *1 (-1148 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *2 (-967 (-418 (-575))))
- (-5 *1 (-790 *4)) (-4 *4 (-13 (-373) (-859)))))
+ (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148)))
+ (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-418 (-575)))) (-5 *4 (-1194))
- (-5 *2 (-967 (-418 (-575)))) (-5 *1 (-790 *5))
- (-4 *5 (-13 (-373) (-859))))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-4 *3 (-567)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-478)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1119 *4)) (-4 *4 (-1117)) (-5 *2 (-1 *4))
- (-5 *1 (-1034 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389))))
+ (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196)))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1148 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-575))) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1117)) (-4 *5 (-1117))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-694 *4 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 (-227))) (-5 *4 (-575)) (-5 *2 (-1052))
- (-5 *1 (-769)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1174 *2)) (-4 *2 (-316)) (-5 *1 (-176 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-655 (-288))) (-5 *1 (-288))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1199))) (-5 *1 (-1199)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-623 *3)) (-5 *5 (-655 *3))
- (-4 *3 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-577 *6 *3 *7)) (-4 *7 (-1117)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *2 (-1290))
- (-5 *1 (-444 *3 *4)) (-4 *4 (-441 *3)))))
-(((*1 *1) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194)))))
- (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121))
- (-5 *1 (-408))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-655 (-655 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-655 (-3 (|:| |array| (-655 *3)) (|:| |scalar| (-1194)))))
- (-5 *6 (-655 (-1194))) (-5 *3 (-1194)) (-5 *2 (-1121))
- (-5 *1 (-408))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-655 (-1194))) (-5 *5 (-1197)) (-5 *3 (-1194))
- (-5 *2 (-1121)) (-5 *1 (-408)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 (-655 (-655 *4)))) (-5 *3 (-655 *4)) (-4 *4 (-861))
- (-5 *1 (-1205 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 (-700 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-655 (-171 *4))) (-5 *1 (-156 *3 *4))
- (-4 *3 (-1261 (-171 (-575)))) (-4 *4 (-13 (-373) (-859)))))
+ (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148)))
+ (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-304 (-419 (-969 *5))))) (-5 *4 (-656 (-1196)))
+ (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5)))))
+ (-5 *1 (-1148 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))
+ (-12 (-5 *3 (-656 (-304 (-419 (-969 *4)))))
+ (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4)))))
+ (-5 *1 (-1148 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1196)) (-5 *2 (-112)) (-5 *1 (-624 *4))
+ (-4 *4 (-1119))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-655 (-171 *4)))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-174))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-1066)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-112))
- (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1052)) (-5 *1 (-767)))))
-(((*1 *1) (-5 *1 (-479))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-861)) (-5 *4 (-655 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-655 *4))))
- (-5 *1 (-1205 *6)) (-5 *5 (-655 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-567)))))
+ (-12 (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4))
+ (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1119))
+ (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))))
+(((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-55)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-700 (-418 (-967 (-575)))))
- (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1190 *1)) (-4 *1 (-1029)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1119)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-171 *5)) (-5 *1 (-611 *4 *5 *3))
- (-4 *5 (-13 (-441 *4) (-1019) (-1220)))
- (-4 *3 (-13 (-441 (-171 *4)) (-1019) (-1220))))))
-(((*1 *1 *1) (-4 *1 (-640)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019) (-1220))))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-655 (-492 *4 *5))) (-5 *3 (-875 *4))
- (-14 *4 (-655 (-1194))) (-4 *5 (-463)) (-5 *1 (-642 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-723 *3 *4))
- (-4 *4 (-1261 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7))))
- (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3))
+ (-4 *3 (-13 (-442 *4) (-1021))))))
+(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-216 *4))
+ (-4 *4
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 (*2 $))
+ (-15 -2720 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3))
+ (-4 *3
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 (*2 $))
+ (-15 -2720 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))))
(((*1 *2)
- (-12 (-5 *2 (-1285 (-1118 *3 *4))) (-5 *1 (-1118 *3 *4))
- (-14 *3 (-936)) (-14 *4 (-936)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-316)) (-5 *1 (-181 *3)))))
-(((*1 *1) (-5 *1 (-158)))
- ((*1 *2 *1) (-12 (-4 *1 (-1061 *2)) (-4 *2 (-23)))))
+ (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5)))
+ (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
+ (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))
+ (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *5))
+ (-4 *5 (-1263 (-419 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194))
- (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-575)) (-5 *1 (-1127))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1285 (-575))) (-5 *3 (-655 (-575))) (-5 *4 (-575))
- (-5 *1 (-1127)))))
-(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1043 (-854 (-575)))) (-5 *1 (-606 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9))))
- (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1088 *5 *6 *7 *8))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290))
- (-5 *1 (-1086 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9))))
- (-5 *4 (-782)) (-4 *8 (-1082 *5 *6 *7)) (-4 *9 (-1126 *5 *6 *7 *8))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861)) (-5 *2 (-1290))
- (-5 *1 (-1162 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-193)) (-5 *3 (-576))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4460)) (-4 *1 (-500 *4))
- (-4 *4 (-1235)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4))
+ (-4 *4 (-1237)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
+ (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576)))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-1196)) (-4 *6 (-442 *5))
+ (-4 *5 (-1119)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *5 (-1239)) (-4 *6 (-1261 *5))
- (-4 *7 (-1261 (-418 *6))) (-5 *2 (-655 (-967 *5)))
- (-5 *1 (-351 *4 *5 *6 *7)) (-4 *4 (-352 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *1 (-352 *4 *5 *6)) (-4 *4 (-1239))
- (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5))) (-4 *4 (-373))
- (-5 *2 (-655 (-967 *4))))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1016 *3)) (-4 *3 (-174)) (-5 *1 (-810 *3)))))
+ (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-873)))))
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9))))
+ (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292))
+ (-5 *1 (-1088 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9))))
+ (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292))
+ (-5 *1 (-1164 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $))
+ (-15 -1635 ((-1144 *3 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *3 (-624 $))))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220)))
- (-5 *1 (-611 *4 *3 *2)) (-4 *3 (-13 (-441 *4) (-1019) (-1220))))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1233)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576)))
+ (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-769)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066))
- (-5 *2 (-655 (-655 (-655 (-958 *3))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068))
+ (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1068)) (-4 *4 (-174))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))
+ (-4 *3 (-174)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-962 *2 *3))
+ (-4 *3 (-1263 *2)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873)))
- (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873)))
- (|:| |args| (-655 (-873)))))
- (-5 *1 (-1194))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-655 (-873)))) (-5 *1 (-1194)))))
+ (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874)))
+ (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874)))
+ (|:| |args| (-656 (-874)))))
+ (-5 *1 (-1196))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1196)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 (-854 *3))) (-4 *3 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2
- (-3 (-854 *3)
- (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-854 *3) "failed")))
- "failed"))
- (-5 *1 (-647 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-303 *3)) (-5 *5 (-1176))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-854 *3)) (-5 *1 (-647 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 (-854 (-967 *5)))) (-4 *5 (-463))
- (-5 *2
- (-3 (-854 (-418 (-967 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-854 (-418 (-967 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-854 (-418 (-967 *5))) "failed")))
- "failed"))
- (-5 *1 (-648 *5)) (-5 *3 (-418 (-967 *5)))))
+ (-12 (-5 *3 (-656 (-938))) (-5 *4 (-922 (-576)))
+ (-5 *2 (-701 (-576))) (-5 *1 (-602))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576))))
+ (-5 *1 (-602))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 (-418 (-967 *5)))) (-5 *3 (-418 (-967 *5)))
- (-4 *5 (-463))
- (-5 *2
- (-3 (-854 *3)
- (-2 (|:| |leftHandLimit| (-3 (-854 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-854 *3) "failed")))
- "failed"))
- (-5 *1 (-648 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-303 (-418 (-967 *6)))) (-5 *5 (-1176))
- (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-854 *3))
- (-5 *1 (-648 *6)))))
+ (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-922 (-576))))
+ (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-763)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-309))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-227))) (-5 *2 (-655 (-1176))) (-5 *1 (-314)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-623 *5))) (-4 *4 (-1117)) (-5 *2 (-623 *5))
- (-5 *1 (-584 *4 *5)) (-4 *5 (-441 *4)))))
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $))
+ (-15 -1635 ((-1144 *3 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *3 (-624 $))))))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5)))
+ (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6))
+ (-4 *3 (-353 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3))))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-575)) (-5 *1 (-497 *4))
- (-4 *4 (-1261 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1190 *7)) (-5 *3 (-575)) (-4 *7 (-964 *6 *4 *5))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066))
- (-5 *1 (-330 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-861)) (-4 *5 (-924)) (-4 *6 (-804))
- (-4 *8 (-964 *5 *6 *7)) (-5 *2 (-429 (-1190 *8)))
- (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-1190 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5)))
- (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-1137)) (-5 *2 (-112)) (-5 *1 (-832)))))
+ (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-656 *5))
+ (-5 *1 (-903 *4 *5)) (-4 *5 (-1237)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3)))
+ (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-712 *3))
+ (-4 *3 (-317)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-656 (-1196))) (-4 *2 (-174))
+ (-4 *4 (-243 (-2845 *5) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -4308 *3) (|:| -2273 *4))
+ (-2 (|:| -4308 *3) (|:| -2273 *4))))
+ (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862))
+ (-4 *7 (-966 *2 *4 (-876 *5))))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-767)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-655
- (-2
- (|:| -4169
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3179
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1174 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1974
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-570))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235))
- (-5 *2 (-655 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4))))
+ (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239))
- (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-857)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-143 *2 *4 *3))
- (-4 *3 (-383 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-514 *2 *4 *5 *3))
- (-4 *5 (-383 *2)) (-4 *3 (-383 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-700 *4)) (-4 *4 (-1009 *2)) (-4 *2 (-567))
- (-5 *1 (-704 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1009 *2)) (-4 *2 (-567)) (-5 *1 (-1254 *2 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-575))) (-4 *3 (-1066)) (-5 *1 (-606 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1245 *3)) (-4 *3 (-1066))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-575))) (-4 *1 (-1276 *3)) (-4 *3 (-1066)))))
+ (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4256 *7))))
+ (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1007 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4256 *7))))
+ (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1263 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567))
- (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8))))
- (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-557))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080)))))
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-966 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |det| *8) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (-5 *1 (-941 *5 *6 *7 *8)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-515 (-418 (-575)) (-245 *4 (-782)) (-875 *3)
- (-252 *3 (-418 (-575)))))
- (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-516 *3 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-389)) (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219)))))
+ (-516 (-419 (-576)) (-245 *4 (-783)) (-876 *3)
+ (-253 *3 (-419 (-576)))))
+ (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-960 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068))
+ (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-325 *5)))
- (-5 *1 (-1146 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194)))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-325 *5))))
- (-5 *1 (-1146 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-4 *7 (-861))
- (-4 *9 (-964 *8 *6 *7)) (-4 *6 (-804)) (-4 *8 (-316))
- (-5 *2 (-655 (-782))) (-5 *1 (-753 *6 *7 *8 *9)) (-5 *5 (-782)))))
-(((*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-796 *3)) (-4 *3 (-625 *2))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1119)) (-4 *5 (-1119))
+ (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *1))))
+ (-4 *1 (-1090 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-5 *2 (-389)) (-5 *1 (-796 *3))
- (-4 *3 (-625 *2))))
+ (-12 (-5 *4 (-938)) (-5 *2 (-390)) (-5 *1 (-797 *3))
+ (-4 *3 (-626 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 *2))
- (-5 *2 (-389)) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2))
+ (-5 *2 (-390)) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066))
- (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 *2))
- (-5 *2 (-389)) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2))
+ (-5 *2 (-390)) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861))
- (-4 *4 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861))
- (-4 *5 (-625 *2)) (-5 *2 (-389)) (-5 *1 (-796 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-700 *5))) (-4 *5 (-316)) (-4 *5 (-1066))
- (-5 *2 (-1285 (-1285 *5))) (-5 *1 (-1046 *5)) (-5 *4 (-1285 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-634 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -2429 *4) (|:| |sol?| (-112)))
- (-575) *4))
- (-4 *4 (-373)) (-4 *5 (-1261 *4)) (-5 *1 (-585 *4 *5)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-1176)) (-5 *1 (-1006))))
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862))
+ (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1008))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-4 *4 (-1235)) (-5 *1 (-1074 *3 *4))
- (-4 *3 (-1110 *4))))
+ (-12 (-5 *2 (-1196)) (-4 *4 (-1237)) (-5 *1 (-1076 *3 *4))
+ (-4 *3 (-1112 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-1111 *4)) (-4 *4 (-1235))
- (-5 *1 (-1109 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1230 *2)) (-4 *2 (-991)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-655 *1)) (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-567))
- (-5 *2 (-2 (|:| -3415 (-700 *5)) (|:| |vec| (-1285 (-655 (-936))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-936)) (-4 *3 (-667 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-112)) (-5 *1 (-115)))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1113 *4)) (-4 *4 (-1237))
+ (-5 *1 (-1111 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-5 *1 (-1007 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-5 *1 (-1126 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 (-575)))) (-5 *1 (-477)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-766)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
- (-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
+ (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -4253 *5))))
+ (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5))
+ (-5 *1 (-218 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-2 (|:| -2367 *5) (|:| -4436 (-576)))))
+ (-5 *4 (-576)) (-4 *5 (-1263 *4)) (-5 *2 (-656 *5))
+ (-5 *1 (-708 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112))
+ (-5 *1 (-517 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4))
+ (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1119) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1057 (-576)))
+ (-4 *4 (-568)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-624 *1)) (-4 *1 (-1068)) (-4 *1 (-312))
+ (-5 *2 (-1192 *1)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068))
+ (-5 *1 (-726 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066))
- (-14 *4 (-655 (-1194)))))
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068))
+ (-14 *4 (-656 (-1196)))))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *1) (-4 *1 (-293)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *1) (-4 *1 (-294)))
((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-675 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-5 *1 (-638 *3 *4 *5))
- (-14 *5 (-936))))
+ (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5))
+ (-14 *5 (-938))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575)))))
- (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4))))
+ (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576)))))
+ (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-1305 *3 *4))
- (-4 *4 (-728 (-418 (-575)))) (-4 *3 (-861)) (-4 *4 (-174)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-655
- (-2
- (|:| -4169
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (|:| -3179
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1174 (-227)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1974
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-570)))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-130))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1117)) (-4 *4 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-695 *5 *4 *6)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4))
+ (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805))
+ (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6))
+ (-4 *6 (-966 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-973 (-1137)))
- (-5 *1 (-356 *4)))))
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1300 *4 *5 *6 *7)))
+ (-5 *1 (-1300 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568))
+ (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1300 *6 *7 *8 *9)))
+ (-5 *1 (-1300 *6 *7 *8 *9)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 (-547))) (-5 *1 (-547)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1235))
- (-4 *3 (-383 *4)) (-4 *5 (-383 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-655
- (-2 (|:| |scalar| (-418 (-575))) (|:| |coeff| (-1190 *2))
- (|:| |logand| (-1190 *2)))))
- (-5 *4 (-655 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-373)) (-5 *1 (-597 *2)))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-548))) (-5 *1 (-548)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-780))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))
- (-5 *1 (-576))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-780)) (-5 *4 (-1080))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))
- (-5 *1 (-576))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-798)) (-5 *3 (-1080))
- (-5 *4
- (-2 (|:| |fn| (-325 (-227)))
- (|:| -1974 (-655 (-1111 (-854 (-227))))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))
- (|:| |extra| (-1052))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-798)) (-5 *3 (-1080))
- (-5 *4
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))
- (|:| |extra| (-1052))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-811)) (-5 *3 (-1080))
- (-5 *4
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-819))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *1 (-816))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-819)) (-5 *4 (-1080))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *1 (-816))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-850)) (-5 *3 (-1080))
- (-5 *4
- (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))
- (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-850)) (-5 *3 (-1080))
- (-5 *4
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
- (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-852))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *1 (-851))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-852)) (-5 *4 (-1080))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *1 (-851))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-909)) (-5 *3 (-1080))
- (-5 *4
- (-2 (|:| |pde| (-655 (-325 (-227))))
- (|:| |constraints|
- (-655
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-782)) (|:| |boundaryType| (-575))
- (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227))))))
- (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176))
- (|:| |tol| (-227))))
- (-5 *2 (-2 (|:| -2655 (-389)) (|:| |explanations| (-1176))))))
+ (|partial| -12 (-5 *3 (-938))
+ (-5 *2 (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139))))))
+ (-5 *1 (-357 *4)) (-4 *4 (-360)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-576)) (-5 *1 (-959)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862))
+ (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-1263 *3)) (-5 *1 (-165 *3 *4 *2))
+ (-4 *2 (-1263 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1176 *4))) (-5 *1 (-295 *4 *5))
+ (-5 *3 (-1176 *4)) (-4 *5 (-1278 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))
+ ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1119))
+ (-5 *1 (-114 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119))
+ (-5 *1 (-114 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-912))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *1 (-911))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-912)) (-5 *4 (-1080))
- (-5 *2
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *1 (-911)))))
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4))))
+ (-5 *1 (-114 *4)) (-4 *4 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |k| (-1196)) (|:| |c| (-1309 *3)))))
+ (-5 *1 (-1309 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4)))))
+ (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *5 (-1261 *4)) (-5 *2 (-1190 (-418 *5))) (-5 *1 (-626 *4 *5))
- (-5 *3 (-418 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5))
- (-4 *5 (-13 (-148) (-27) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-5 *2 (-1190 (-418 *6))) (-5 *1 (-626 *5 *6)) (-5 *3 (-418 *6)))))
+ (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196)))
+ (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568))
+ (-5 *2 (-656 (-656 (-304 (-419 (-969 *6)))))) (-5 *1 (-1058 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4))
- (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-491)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1102))) (-5 *1 (-300)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174)))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4))))
+ (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-112))
- (-5 *1 (-683 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))))
+ (-12 (-4 *2 (-1263 *4)) (-5 *1 (-821 *4 *2 *3 *5))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2))
+ (-4 *5 (-668 (-419 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374))
+ (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)))))
+ (-5 *1 (-997 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862))
+ (-4 *4 (-275 *3)) (-4 *5 (-805)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 *4))))
- (-4 *3 (-1117)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-660 *3 *4 *5)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1245))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1241))
+ (-4 *6 (-1263 (-419 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-353 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576))
+ (-5 *2 (-701 *6)) (-5 *1 (-1048 *6)) (-4 *6 (-374)) (-4 *6 (-1068))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4))
+ (-4 *4 (-374)) (-4 *4 (-1068))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5))
+ (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-1068)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-791 *5 (-875 *6)))) (-5 *4 (-112)) (-4 *5 (-463))
- (-14 *6 (-655 (-1194))) (-5 *2 (-655 (-1063 *5 *6)))
- (-5 *1 (-639 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-964 *5 *6 *7)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-460 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-782))
- (-4 *3 (-13 (-737) (-378) (-10 -7 (-15 ** (*3 *3 (-575))))))
- (-5 *1 (-251 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-585 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-608))) (-5 *1 (-608)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-91 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-1213)))))
-(((*1 *2)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-227)) (-5 *1 (-1288))))
- ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1288)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-1066)) (-5 *2 (-1285 *4))
- (-5 *1 (-1195 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-5 *2 (-1285 *3)) (-5 *1 (-1195 *3))
- (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-782))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196))
+ (-14 *4 *2))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390)))
+ ((*1 *1) (-5 *1 (-390))))
+(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-383 *3)) (-4 *3 (-1235))
- (-4 *3 (-1117))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1237))
+ (-4 *3 (-1119))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-1117))
- (-5 *2 (-575))))
+ (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1119))
+ (-5 *2 (-576))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235))
- (-5 *2 (-575))))
- ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-540))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)) (-5 *3 (-142))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-575)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-623 *3)) (-5 *5 (-1 (-1190 *3) (-1190 *3)))
- (-4 *3 (-13 (-27) (-441 *6))) (-4 *6 (-567)) (-5 *2 (-597 *3))
- (-5 *1 (-562 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873)))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1290)) (-5 *1 (-389))))
- ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-389)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-320))))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237))
+ (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-541))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)) (-5 *3 (-142))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805))
+ (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))
((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |k| (-683 *3)) (|:| |c| *4))))
- (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1197)) (-5 *3 (-1194)))))
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-938))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374)))
+ (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-353 *4 *5 *6))
+ (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-1263 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1068))
+ (-4 *3 (-862))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862))
+ (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4))
+ (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6)))
+ (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576))))
+ (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6))
+ (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4)))
+ (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783))
+ (-5 *1 (-929 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374))
+ (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-353 *6 *7 *4))
+ (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783))
+ (-5 *1 (-1037 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568))
+ (-5 *2 (-783))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3))
+ (-4 *3 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7))
+ (|:| |wcond| (-656 (-969 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *4))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *4))))))))))
+ (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-969 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *5))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *5))))))))))
+ (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-656 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1196))) (-4 *8 (-966 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-969 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *5))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *5))))))))))
+ (-5 *1 (-941 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7))
+ (|:| |wcond| (-656 (-969 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *4))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *4))))))))))
+ (-5 *1 (-941 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7))
+ (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196))))
+ (-4 *8 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9))
+ (|:| |wcond| (-656 (-969 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *6))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *6))))))))))
+ (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-656 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-938))
+ (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9))
+ (|:| |wcond| (-656 (-969 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *6))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *6))))))))))
+ (-5 *1 (-941 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-938)) (-4 *8 (-966 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196))))
+ (-4 *7 (-805))
+ (-5 *2
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-969 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *5))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *5))))))))))
+ (-5 *1 (-941 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1178))
+ (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576))
+ (-5 *1 (-941 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-1178))
+ (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576))
+ (-5 *1 (-941 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 *8)) (-5 *4 (-1178)) (-4 *8 (-966 *5 *7 *6))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196))))
+ (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-938))
+ (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148)))
+ (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576))
+ (-5 *1 (-941 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1196))) (-5 *5 (-938))
+ (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148)))
+ (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576))
+ (-5 *1 (-941 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-701 *9)) (-5 *4 (-938)) (-5 *5 (-1178))
+ (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576))
+ (-5 *1 (-941 *6 *7 *8 *9)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227))))
(-5 *2
(-2
@@ -10142,6391 +9956,6501 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1174 (-227)))
+ (-3 (|:| |str| (-1176 (-227)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1974
+ (|:| -3672
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-570)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-1182 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287))))
- ((*1 *2 *1) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1287)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861))
- (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-782))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-413)) (-5 *2 (-782)))))
-(((*1 *2 *3)
+ (-5 *1 (-571)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-1134)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568))
+ (-4 *3 (-1068)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-783)) (-4 *5 (-174))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-783)) (-4 *5 (-174))))
+ ((*1 *2 *2 *3)
(-12
- (-5 *3
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *2 (-655 (-418 (-575)))) (-5 *1 (-1037 *4))
- (-4 *4 (-1261 (-575))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (|has| *1 (-6 -4461)) (-4 *1 (-383 *3))
- (-4 *3 (-1235)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-1285 *3))
- (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3))
- (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339))
- (-5 *1 (-341)))))
+ (-5 *2
+ (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4)
+ (-253 *4 (-419 (-576)))))
+ (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1196))) (-14 *5 (-783))
+ (-5 *1 (-517 *4 *5)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-625 *2) (-174))) (-5 *2 (-904 *4))
- (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1117)) (-4 *3 (-167 *5))))
+ (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4))
+ (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1119)) (-4 *3 (-167 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1111 (-854 (-389)))))
- (-5 *2 (-655 (-1111 (-854 (-227))))) (-5 *1 (-314))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-405))))
+ (-12 (-5 *3 (-656 (-1113 (-855 (-390)))))
+ (-5 *2 (-656 (-1113 (-855 (-227))))) (-5 *1 (-315))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406))))
((*1 *1 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-420 *3 *4))
- (-4 *4 (-1261 *3))))
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4))
+ (-4 *4 (-1263 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3))
- (-5 *2 (-1285 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1285 *3)) (-4 *3 (-174)) (-4 *1 (-428 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3))))
+ (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3))
+ (-5 *2 (-1287 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-429 *1)) (-4 *1 (-441 *3)) (-4 *3 (-567))
- (-4 *3 (-1117))))
+ (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568))
+ (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-474 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-547))))
- ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-548))))
+ ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 *3)) (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5))
- (-4 *5 (-625 (-1194))) (-4 *4 (-804)) (-4 *5 (-861))))
+ (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5))
+ (-4 *5 (-626 (-1196))) (-4 *4 (-805)) (-4 *5 (-862))))
((*1 *1 *2)
- (-3763
- (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5))
- (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575)))
- (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))
- (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5))
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))))
+ (-3739
+ (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5))
+ (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576)))
+ (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))))
((*1 *1 *2)
- (-12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8)))
- (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1088 *4 *5 *6 *7)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176))
- (-5 *1 (-1086 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-655 *7)) (|:| -4270 *8)))
- (-4 *7 (-1082 *4 *5 *6)) (-4 *8 (-1126 *4 *5 *6 *7)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1176))
- (-5 *1 (-1162 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1121)) (-5 *1 (-1199))))
- ((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1199))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-873)) (-5 *3 (-575)) (-5 *1 (-1215))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-791 *4 (-875 *5)))
- (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *5 (-655 (-1194)))
- (-5 *2 (-791 *4 (-875 *6))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *6 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-967 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-791 *4 (-875 *6)))
- (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194)))
- (-5 *2 (-967 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1190 *4)) (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-1190 (-1041 (-418 *4)))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194)))))
+ (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8)))
+ (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178))
+ (-5 *1 (-1088 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8)))
+ (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178))
+ (-5 *1 (-1164 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1201))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-792 *4 (-876 *5)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196)))
+ (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *6 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-792 *4 (-876 *6)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196)))
+ (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-1192 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1163 *4 (-542 (-875 *6)) (-875 *6) (-791 *4 (-875 *6))))
- (-4 *4 (-13 (-859) (-316) (-148) (-1039))) (-14 *6 (-655 (-1194)))
- (-5 *2 (-655 (-791 *4 (-875 *6)))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194))))))
+ (-5 *3 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196)))
+ (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196))))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-656 (-1196))) (-4 *2 (-174))
+ (-4 *3 (-243 (-2845 *4) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *3))
+ (-2 (|:| -4308 *5) (|:| -2273 *3))))
+ (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862))
+ (-4 *7 (-966 *2 *3 (-876 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862))
+ (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317))
+ (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-463))
+ (-12 (-5 *3 (-781))
(-5 *2
- (-655
- (-2 (|:| |eigval| (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4))))
- (|:| |geneigvec| (-655 (-700 (-418 (-967 *4))))))))
- (-5 *1 (-301 *4)) (-5 *3 (-700 (-418 (-967 *4)))))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
-(((*1 *1) (-5 *1 (-1287))))
-(((*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269))))
- ((*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1) (-4 *1 (-1156))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-115))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-517)) (-4 *4 (-1117)) (-5 *1 (-944 *4 *2))
- (-4 *2 (-441 *4))))
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))
+ (-5 *1 (-577))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-517)) (-5 *2 (-325 (-575)))
- (-5 *1 (-945)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-936)) (-4 *5 (-861))
- (-5 *2 (-655 (-683 *5))) (-5 *1 (-683 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
+ (-12 (-5 *3 (-781)) (-5 *4 (-1082))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))
+ (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-799)) (-5 *3 (-1082))
+ (-5 *4
+ (-2 (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))
+ (|:| |extra| (-1054))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-799)) (-5 *3 (-1082))
+ (-5 *4
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))
+ (|:| |extra| (-1054))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-812)) (-5 *3 (-1082))
+ (-5 *4
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-820))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-820)) (-5 *4 (-1082))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *1 (-817))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-851)) (-5 *3 (-1082))
+ (-5 *4
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))
+ (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-851)) (-5 *3 (-1082))
+ (-5 *4
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-853))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *1 (-852))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-853)) (-5 *4 (-1082))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *1 (-852))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-910)) (-5 *3 (-1082))
+ (-5 *4
+ (-2 (|:| |pde| (-656 (-326 (-227))))
+ (|:| |constraints|
+ (-656
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178))
+ (|:| |tol| (-227))))
+ (-5 *2 (-2 (|:| -2605 (-390)) (|:| |explanations| (-1178))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-913))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *1 (-912))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-913)) (-5 *4 (-1082))
+ (-5 *2
+ (-2 (|:| -2605 (-390)) (|:| -1811 (-1178))
+ (|:| |explanations| (-656 (-1178)))))
+ (-5 *1 (-912)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-112))
- (-5 *1 (-269)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1119 (-1119 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-1285 *5)) (-4 *5 (-316))
- (-4 *5 (-1066)) (-5 *2 (-700 *5)) (-5 *1 (-1046 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1176)) (-5 *1 (-721)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-463) (-148))) (-5 *2 (-429 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1261 *4))))
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-518)) (-4 *4 (-1119)) (-5 *1 (-946 *4 *2))
+ (-4 *2 (-442 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-13 (-463) (-148)))
- (-5 *2 (-429 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-832)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-418 (-575))) (-5 *2 (-227)) (-5 *1 (-314)))))
+ (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-576)))
+ (-5 *1 (-947)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
+ (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576))))
+ (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2)))
+ (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5))
+ (-4 *3 (-353 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241))
+ (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1119)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-537)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-419 (-576)))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-773))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3))
+ (-4 *3 (-13 (-374) (-148) (-1057 (-576)))) (-5 *1 (-580 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1196))
+ (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-4 *4 (-13 (-29 *6) (-1222) (-976)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -4261 (-656 *4))))
+ (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -4177 (-419 *6)) (|:| |coeff| (-419 *6))))
+ (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-852)) (-5 *4 (-1080)) (-5 *2 (-1052)) (-5 *1 (-851))))
- ((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851))))
+ (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-852))))
+ ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-655 (-389))) (-5 *5 (-655 (-854 (-389))))
- (-5 *6 (-655 (-325 (-389)))) (-5 *3 (-325 (-389))) (-5 *2 (-1052))
- (-5 *1 (-851))))
+ (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390))))
+ (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1054))
+ (-5 *1 (-852))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389)))
- (-5 *5 (-655 (-854 (-389)))) (-5 *2 (-1052)) (-5 *1 (-851))))
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390)))
+ (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-852))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 (-389))) (-5 *4 (-655 (-389))) (-5 *2 (-1052))
- (-5 *1 (-851))))
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1054))
+ (-5 *1 (-852))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389)))
- (-5 *2 (-1052)) (-5 *1 (-851)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227)))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1052)) (-5 *1 (-764)))))
+ (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390)))
+ (-5 *2 (-1054)) (-5 *1 (-852)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $))
+ (-15 -1635 ((-1144 *3 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *3 (-624 $))))))))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-782)) (-4 *2 (-1117))
- (-5 *1 (-689 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-216 (-513))) (-5 *1 (-848)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1119))
+ (-5 *1 (-690 *2)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066)))))
-(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-700 (-418 (-967 (-575))))) (-5 *2 (-655 (-325 (-575))))
- (-5 *1 (-1048)))))
-(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-373)) (-5 *2 (-655 *3)) (-5 *1 (-960 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804))
- (-5 *1 (-515 *4 *5 *6 *2)) (-4 *2 (-964 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-515 *3 *4 *5 *2)) (-4 *2 (-964 *3 *4 *5)))))
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1066)) (-4 *4 (-1261 *3)) (-5 *1 (-165 *3 *4 *2))
- (-4 *2 (-1261 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-1235)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-988 *4 *3))
+ (-4 *3 (-1263 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1230 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-130)))
+ ((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174))))
+ ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559)))
+ ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561)))
+ ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1196)))
+ ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938))))
+ ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938))))
+ ((*1 *1) (-5 *1 (-1242))) ((*1 *1) (-5 *1 (-1243)))
+ ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1194)) (-5 *3 (-445)) (-4 *5 (-1117))
- (-5 *1 (-1123 *5 *4)) (-4 *4 (-441 *5)))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1119))
+ (-5 *1 (-1125 *5 *4)) (-4 *4 (-442 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3))
- (-4 *3 (-1117)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117))
- (-4 *2 (-861)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-253)))))
+ (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-254)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-441 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-55)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1194)) (-5 *3 (-782)) (-5 *1 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-442 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *1 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-159 *3 *4))
- (-4 *4 (-441 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-115)) (-5 *1 (-164))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4))
+ (-4 *4 (-442 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-164))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-284 *3 *4))
- (-4 *4 (-13 (-441 *3) (-1019)))))
- ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-310 *3)) (-4 *3 (-311))))
- ((*1 *2 *2) (-12 (-4 *1 (-311)) (-5 *2 (-115))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4))
+ (-4 *4 (-13 (-442 *3) (-1021)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312))))
+ ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *4 (-1117)) (-5 *1 (-440 *3 *4))
- (-4 *3 (-441 *4))))
+ (-12 (-5 *2 (-115)) (-4 *4 (-1119)) (-5 *1 (-441 *3 *4))
+ (-4 *3 (-442 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-442 *3 *4))
- (-4 *4 (-441 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-623 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4))
+ (-4 *4 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))
((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-567)) (-5 *1 (-641 *3 *4))
- (-4 *4 (-13 (-441 *3) (-1019) (-1220)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1208 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1091))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4))
+ (-4 *4 (-13 (-442 *3) (-1021) (-1222)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1093))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-655 (-700 (-325 (-575))))) (-5 *1 (-1048)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-782)) (-5 *1 (-598 *2)) (-4 *2 (-556))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1548 *3) (|:| -1658 (-782)))) (-5 *1 (-598 *3))
- (-4 *3 (-556)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-132)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-623 *4)) (-4 *4 (-1117)) (-4 *2 (-1117))
- (-5 *1 (-622 *2 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-643)))))
+ (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-858)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-316))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-458 *4 *5 *6 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-760)))))
+ (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7))
+ (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-926)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-5 *1 (-923 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5))
+ (-4 *5 (-1263 *4)) (-4 *4 (-926)) (-5 *1 (-924 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-624 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-1192 *2))
+ (-4 *2 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-624 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196)))
+ (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-317))
+ (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1194))
- (|:| |arrayIndex| (-655 (-967 (-575))))
+ (-2 (|:| |var| (-1196))
+ (|:| |arrayIndex| (-656 (-969 (-576))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873))))))
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1194)) (|:| |rand| (-873))
+ (-2 (|:| |var| (-1196)) (|:| |rand| (-874))
(|:| |ints2Floats?| (-112))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1193)) (|:| |thenClause| (-339))
- (|:| |elseClause| (-339))))
+ (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-340))
+ (|:| |elseClause| (-340))))
(|:| |returnBranch|
- (-2 (|:| -2017 (-112))
- (|:| -4181
- (-2 (|:| |ints2Floats?| (-112)) (|:| -1401 (-873))))))
- (|:| |blockBranch| (-655 (-339)))
- (|:| |commentBranch| (-655 (-1176))) (|:| |callBranch| (-1176))
+ (-2 (|:| -3001 (-112))
+ (|:| -4160
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -1411 (-874))))))
+ (|:| |blockBranch| (-656 (-340)))
+ (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178))
(|:| |forBranch|
- (-2 (|:| -1974 (-1109 (-967 (-575))))
- (|:| |span| (-967 (-575))) (|:| -1788 (-339))))
- (|:| |labelBranch| (-1137))
- (|:| |loopBranch| (-2 (|:| |switch| (-1193)) (|:| -1788 (-339))))
+ (-2 (|:| -3672 (-1111 (-969 (-576))))
+ (|:| |span| (-969 (-576))) (|:| -1822 (-340))))
+ (|:| |labelBranch| (-1139))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -1822 (-340))))
(|:| |commonBranch|
- (-2 (|:| -1777 (-1194)) (|:| |contents| (-655 (-1194)))))
- (|:| |printBranch| (-655 (-873)))))
- (-5 *1 (-339)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-224 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-4 *1 (-260 *3))))
- ((*1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-623 *1))) (-4 *1 (-311)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
- ((*1 *1 *1) (-5 *1 (-873)))
+ (-2 (|:| -1811 (-1196)) (|:| |contents| (-656 (-1196)))))
+ (|:| |printBranch| (-656 (-874)))))
+ (-5 *1 (-340)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874)))
((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3))))
- ((*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))))
-(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *2 (-112)) (-5 *1 (-491)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2))
- (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-576))))
+ (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *1 (-1145 *4 *3 *5))
+ (-4 *5 (-966 *4 (-543 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1196)) (-5 *1 (-1231 *4))
+ (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)))))
+(((*1 *1) (-5 *1 (-1199))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862))
+ (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119))
+ (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-803))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-804))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-655 (-1194)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-656 (-1196)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575))
- (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576))
+ (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174))
(-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-325 *3) (-325 *3))) (-4 *3 (-13 (-1066) (-861)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194)))))
+ (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-862)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782))
- (-4 *6 (-1235)) (-4 *7 (-1235)) (-5 *2 (-245 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783))
+ (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-245 *5 *7))
(-5 *1 (-244 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-303 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-303 *6)) (-5 *1 (-302 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-303 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-304 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1176)) (-5 *5 (-623 *6))
- (-4 *6 (-311)) (-4 *2 (-1235)) (-5 *1 (-306 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-624 *6))
+ (-4 *6 (-312)) (-4 *2 (-1237)) (-5 *1 (-307 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-623 *5)) (-4 *5 (-311))
- (-4 *2 (-311)) (-5 *1 (-307 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312))
+ (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-623 *1)) (-4 *1 (-311))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-700 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-700 *6)) (-5 *1 (-313 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-325 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-325 *6)) (-5 *1 (-323 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-373))
- (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *8 (-352 *5 *6 *7))
- (-4 *9 (-373)) (-4 *10 (-1261 *9)) (-4 *11 (-1261 (-418 *10)))
- (-5 *2 (-346 *9 *10 *11 *12))
- (-5 *1 (-343 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-352 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374))
+ (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7))
+ (-4 *9 (-374)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10)))
+ (-5 *2 (-347 *9 *10 *11 *12))
+ (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-353 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1239)) (-4 *8 (-1239))
- (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6))) (-4 *9 (-1261 *8))
- (-4 *2 (-352 *8 *9 *10)) (-5 *1 (-350 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-352 *5 *6 *7)) (-4 *10 (-1261 (-418 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241))
+ (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8))
+ (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1263 (-419 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1235)) (-4 *6 (-1235))
- (-4 *2 (-383 *6)) (-5 *1 (-381 *5 *4 *6 *2)) (-4 *4 (-383 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237))
+ (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-392 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-429 *5)) (-4 *5 (-567))
- (-4 *6 (-567)) (-5 *2 (-429 *6)) (-5 *1 (-416 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568))
+ (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-567))
- (-4 *6 (-567)) (-5 *2 (-418 *6)) (-5 *1 (-417 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568))
+ (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-424 *5 *6 *7 *8)) (-4 *5 (-316))
- (-4 *6 (-1009 *5)) (-4 *7 (-1261 *6))
- (-4 *8 (-13 (-420 *6 *7) (-1055 *6))) (-4 *9 (-316))
- (-4 *10 (-1009 *9)) (-4 *11 (-1261 *10))
- (-5 *2 (-424 *9 *10 *11 *12))
- (-5 *1 (-423 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-420 *10 *11) (-1055 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317))
+ (-4 *6 (-1011 *5)) (-4 *7 (-1263 *6))
+ (-4 *8 (-13 (-421 *6 *7) (-1057 *6))) (-4 *9 (-317))
+ (-4 *10 (-1011 *9)) (-4 *11 (-1263 *10))
+ (-5 *2 (-425 *9 *10 *11 *12))
+ (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-421 *10 *11) (-1057 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-428 *6)) (-5 *1 (-426 *4 *5 *2 *6)) (-4 *4 (-428 *5))))
+ (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-567)) (-5 *1 (-429 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-4 *2 (-441 *6)) (-5 *1 (-432 *5 *4 *6 *2)) (-4 *4 (-441 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068))
+ (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117))
- (-4 *2 (-436 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-436 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119))
+ (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-520 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-861))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-862))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-373))
- (-4 *6 (-373)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374))
+ (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2063 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-373)) (-4 *6 (-373))
- (-5 *2 (-2 (|:| -2063 *6) (|:| |coeff| *6)))
- (-5 *1 (-595 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -4177 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-374)) (-4 *6 (-374))
+ (-5 *2 (-2 (|:| -4177 *6) (|:| |coeff| *6)))
+ (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-373)) (-4 *2 (-373)) (-5 *1 (-595 *5 *2))))
+ (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-373)) (-4 *6 (-373))
+ (-4 *5 (-374)) (-4 *6 (-374))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-595 *5 *6))))
+ (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-612 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-612 *6)) (-5 *1 (-609 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-612 *7))
- (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-612 *8))
- (-5 *1 (-610 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7))
+ (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-613 *8))
+ (-5 *1 (-611 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-612 *7))
- (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8))
- (-5 *1 (-610 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7))
+ (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8))
+ (-5 *1 (-611 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-1174 *7))
- (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8))
- (-5 *1 (-610 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7))
+ (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8))
+ (-5 *1 (-611 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1235)) (-5 *1 (-612 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-655 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-655 *6)) (-5 *1 (-653 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-655 *6)) (-5 *5 (-655 *7))
- (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-655 *8))
- (-5 *1 (-654 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7))
+ (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-656 *8))
+ (-5 *1 (-655 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-662 *3)) (-4 *3 (-1235))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1066)) (-4 *8 (-1066))
- (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *2 (-698 *8 *9 *10))
- (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-698 *5 *6 *7))
- (-4 *9 (-383 *8)) (-4 *10 (-383 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1066))
- (-4 *8 (-1066)) (-4 *6 (-383 *5)) (-4 *7 (-383 *5))
- (-4 *2 (-698 *8 *9 *10)) (-5 *1 (-696 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-698 *5 *6 *7)) (-4 *9 (-383 *8)) (-4 *10 (-383 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-567)) (-4 *7 (-567))
- (-4 *6 (-1261 *5)) (-4 *2 (-1261 (-418 *8)))
- (-5 *1 (-720 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1261 (-418 *6)))
- (-4 *8 (-1261 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1066)) (-4 *9 (-1066))
- (-4 *5 (-861)) (-4 *6 (-804)) (-4 *2 (-964 *9 *7 *5))
- (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804))
- (-4 *4 (-964 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-804))
- (-4 *9 (-1066)) (-4 *2 (-964 *9 *8 *6))
- (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-804))
- (-4 *4 (-964 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-746 *5 *7)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-4 *7 (-737)) (-5 *2 (-746 *6 *7))
- (-5 *1 (-745 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068))
+ (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10))
+ (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7))
+ (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1068))
+ (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5))
+ (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568))
+ (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8)))
+ (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6)))
+ (-4 *8 (-1263 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068))
+ (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-966 *9 *7 *5))
+ (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805))
+ (-4 *4 (-966 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805))
+ (-4 *9 (-1068)) (-4 *2 (-966 *9 *8 *6))
+ (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805))
+ (-4 *4 (-966 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7))
+ (-5 *1 (-746 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-746 *3 *4))
- (-4 *4 (-737))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-747 *3 *4))
+ (-4 *4 (-738))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-808 *6)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *4 (-808 *5))))
+ (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-843 *5 *6))))
+ (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-844 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *1 (-853 *5 *6))))
+ (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-854 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-901 *5 *6)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-901 *5 *7))
- (-5 *1 (-900 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-902 *5 *7))
+ (-5 *1 (-901 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-967 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-967 *6)) (-5 *1 (-961 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-5 *2 (-969 *6)) (-5 *1 (-963 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861))
- (-4 *8 (-1066)) (-4 *6 (-804))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862))
+ (-4 *8 (-1068)) (-4 *6 (-805))
(-4 *2
- (-13 (-1117)
- (-10 -8 (-15 -4015 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-782))))))
- (-5 *1 (-966 *6 *7 *8 *5 *2)) (-4 *5 (-964 *8 *6 *7))))
+ (-13 (-1119)
+ (-10 -8 (-15 -3990 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))))))
+ (-5 *1 (-968 *6 *7 *8 *5 *2)) (-4 *5 (-966 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-973 *6)) (-5 *1 (-972 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-975 *6)) (-5 *1 (-974 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-5 *2 (-981 *6)) (-5 *1 (-983 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-958 *6)) (-5 *1 (-998 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-5 *2 (-960 *6)) (-5 *1 (-1000 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-967 *4))) (-4 *4 (-1066))
- (-4 *2 (-964 (-967 *4) *5 *6)) (-4 *5 (-804))
+ (-12 (-5 *3 (-1 *2 (-969 *4))) (-4 *4 (-1068))
+ (-4 *2 (-966 (-969 *4) *5 *6)) (-4 *5 (-805))
(-4 *6
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-5 *1 (-1001 *4 *5 *6 *2))))
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-5 *1 (-1003 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-567)) (-4 *6 (-567))
- (-4 *2 (-1009 *6)) (-5 *1 (-1007 *5 *6 *4 *2)) (-4 *4 (-1009 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568))
+ (-4 *2 (-1011 *6)) (-5 *1 (-1009 *5 *6 *4 *2)) (-4 *4 (-1011 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174))
- (-4 *2 (-1014 *6)) (-5 *1 (-1015 *4 *5 *2 *6)) (-4 *4 (-1014 *5))))
+ (-4 *2 (-1016 *6)) (-5 *1 (-1017 *4 *5 *2 *6)) (-4 *4 (-1016 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7))
- (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7))
+ (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1070 *3 *4 *5 *6 *7))
- (-4 *5 (-1066)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1066)) (-4 *10 (-1066))
- (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7))
- (-4 *9 (-243 *5 *7)) (-4 *2 (-1070 *5 *6 *10 *11 *12))
- (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7))
+ (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1068)) (-4 *10 (-1068))
+ (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7))
+ (-4 *9 (-243 *5 *7)) (-4 *2 (-1072 *5 *6 *10 *11 *12))
+ (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10))
(-4 *12 (-243 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-1111 *6)) (-5 *1 (-1106 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-1113 *6)) (-5 *1 (-1108 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-859))
- (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-655 *6))
- (-5 *1 (-1106 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-860))
+ (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6))
+ (-5 *1 (-1108 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-1109 *6)) (-5 *1 (-1108 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-1111 *6)) (-5 *1 (-1110 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1112 *4 *2)) (-4 *4 (-859))
- (-4 *2 (-1166 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860))
+ (-4 *2 (-1168 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-1174 *6)) (-5 *1 (-1172 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1174 *6)) (-5 *5 (-1174 *7))
- (-4 *6 (-1235)) (-4 *7 (-1235)) (-4 *8 (-1235)) (-5 *2 (-1174 *8))
- (-5 *1 (-1173 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7))
+ (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8))
+ (-5 *1 (-1175 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1190 *5)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-5 *2 (-1190 *6)) (-5 *1 (-1188 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-5 *2 (-1192 *6)) (-5 *1 (-1190 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1211 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1249 *5 *7 *9)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1249 *6 *8 *10)) (-5 *1 (-1244 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1194))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1196))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-1252 *6)) (-5 *1 (-1251 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1252 *5)) (-4 *5 (-859))
- (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1174 *6))
- (-5 *1 (-1251 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-860))
+ (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1176 *6))
+ (-5 *1 (-1253 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1258 *5 *6)) (-14 *5 (-1194))
- (-4 *6 (-1066)) (-4 *8 (-1066)) (-5 *2 (-1258 *7 *8))
- (-5 *1 (-1253 *5 *6 *7 *8)) (-14 *7 (-1194))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1260 *5 *6)) (-14 *5 (-1196))
+ (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1260 *7 *8))
+ (-5 *1 (-1255 *5 *6 *7 *8)) (-14 *7 (-1196))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-4 *2 (-1261 *6)) (-5 *1 (-1259 *5 *4 *6 *2)) (-4 *4 (-1261 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068))
+ (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *4 *6 *2)) (-4 *4 (-1263 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1270 *5 *7 *9)) (-4 *5 (-1066))
- (-4 *6 (-1066)) (-14 *7 (-1194)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1270 *6 *8 *10)) (-5 *1 (-1265 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1194))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5 *7 *9)) (-4 *5 (-1068))
+ (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1272 *6 *8 *10)) (-5 *1 (-1267 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1196))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1066)) (-4 *6 (-1066))
- (-4 *2 (-1276 *6)) (-5 *1 (-1274 *5 *6 *4 *2)) (-4 *4 (-1276 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068))
+ (-4 *2 (-1278 *6)) (-5 *1 (-1276 *5 *6 *4 *2)) (-4 *4 (-1278 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-1235))
- (-4 *6 (-1235)) (-5 *2 (-1285 *6)) (-5 *1 (-1284 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237))
+ (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1285 *5))
- (-4 *5 (-1235)) (-4 *6 (-1235)) (-5 *2 (-1285 *6))
- (-5 *1 (-1284 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5))
+ (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6))
+ (-5 *1 (-1286 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-1066))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1068))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-1308 *3 *4))
- (-4 *4 (-857)))))
-(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-655 (-547)))) (-5 *1 (-115))))
- ((*1 *1) (-5 *1 (-589))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-655 *6)) (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))
- (-4 *3 (-567)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-655 (-623 *6))) (-5 *4 (-1194)) (-5 *2 (-623 *6))
- (-4 *6 (-441 *5)) (-4 *5 (-1117)) (-5 *1 (-584 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1182 3 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3))))
- ((*1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575)))
- (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-768)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *2)) (-4 *2 (-964 (-418 (-967 *6)) *5 *4))
- (-5 *1 (-743 *5 *4 *6 *2)) (-4 *5 (-804))
- (-4 *4 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $)))))
- (-4 *6 (-567)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1310 *3 *4))
+ (-4 *4 (-858)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
+(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862))
+ (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1138))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1268 *3 *2)) (-4 *3 (-1066))
- (-4 *2 (-1245 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *2)) (-4 *2 (-174))))
- ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-427 *3 *2)) (-4 *3 (-428 *2))))
- ((*1 *2) (-12 (-4 *1 (-428 *2)) (-4 *2 (-174)))))
+ (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115))))
+ ((*1 *1) (-5 *1 (-590))))
+(((*1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1220)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-811))
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2 (-1052)))))
+ (-12 (-5 *3 (-656 (-938))) (-5 *2 (-1198 (-419 (-576))))
+ (-5 *1 (-192)))))
+(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-764)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4))
- (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-129)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-700 *4)) (-4 *4 (-1066)) (-5 *1 (-1159 *3 *4))
- (-14 *3 (-782)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-762)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416))
+ (-5 *2 (-938)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))
+ (-5 *2 (-1192 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222)))
+ (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1021) (-1222))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *3 (-655 (-269)))
- (-5 *1 (-267))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-174)) (-4 *2 (-1263 *4)) (-5 *1 (-179 *4 *2 *3))
+ (-4 *3 (-736 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-492 *5 *6))) (-5 *3 (-492 *5 *6))
- (-14 *5 (-655 (-1194))) (-4 *6 (-463)) (-5 *2 (-1285 *6))
- (-5 *1 (-642 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
+ (-12 (-5 *3 (-701 (-419 (-969 *5)))) (-5 *4 (-1196))
+ (-5 *2 (-969 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-5 *2 (-969 *4))
+ (-5 *1 (-302 *4)) (-4 *4 (-464))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576)))))
+ (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1196))
+ (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *5))
+ (-4 *5 (-13 (-374) (-860)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-969 (-419 (-576))))
+ (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1196))
+ (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *5))
+ (-4 *5 (-13 (-374) (-860))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068))
+ (-5 *1 (-1180 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-936)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-373)) (-14 *5 (-1010 *3 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12 (-5 *2 (-938)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-374)) (-14 *5 (-1012 *3 *4)))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-373)) (-4 *3 (-1066))
- (-5 *1 (-1178 *3)))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1) (-5 *1 (-873)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1174 *3)) (-5 *1 (-1178 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-112)) (-5 *6 (-227))
- (-5 *7 (-700 (-575)))
- (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-575)) (-4 *3 (-174)) (-4 *5 (-383 *3))
- (-4 *6 (-383 *3)) (-5 *1 (-699 *3 *5 *6 *2))
- (-4 *2 (-698 *3 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-4 *3 (-1117))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-373)) (-5 *1 (-294 *3 *2)) (-4 *2 (-1276 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-1310)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-517))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-887))) (-5 *1 (-494)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374))
+ (-5 *1 (-679 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-374))
+ (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4463))))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463))))
+ (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374))
+ (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1104))) (-5 *1 (-301)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-575)) (-5 *1 (-456 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1152)) (-5 *2 (-702 (-289))) (-5 *1 (-169)))))
-(((*1 *2)
- (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575)))))
- (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *5))
- (-4 *5 (-1261 (-418 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-316) (-148)))
- (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *1 *2)
+ (-12
(-5 *2
- (-655
- (-2 (|:| |eqzro| (-655 *7)) (|:| |neqzro| (-655 *7))
- (|:| |wcond| (-655 (-967 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *4))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *4))))))))))
- (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-964 *4 *6 *5)))))
+ (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3))
+ (|:| |genIdeal| (-516 *3 *4 *5 *6))))
+ (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-589))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-938)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1192 *1))
+ (-4 *1 (-339 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374))
+ (-4 *2 (-1263 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4))
+ (-5 *1 (-540 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-575))
- (-14 *6 (-782)) (-4 *7 (-174)) (-4 *8 (-174))
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576))
+ (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174))
(-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *9)) (-4 *9 (-1066)) (-4 *5 (-861)) (-4 *6 (-804))
- (-4 *8 (-1066)) (-4 *2 (-964 *9 *7 *5))
- (-5 *1 (-739 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-804))
- (-4 *4 (-964 *8 *6 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-804))
- (-4 *6 (-567)) (-4 *7 (-964 *6 *5 *3))
- (-5 *1 (-473 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1055 (-418 (-575))) (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $))
- (-15 -1608 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-316)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1141 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-540))))
- ((*1 *1 *2) (-12 (-5 *2 (-399)) (-5 *1 (-540)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567))
- (-5 *2 (-418 (-967 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-1245 *4)) (-4 *4 (-1066)) (-4 *4 (-567))
- (-5 *2 (-418 (-967 *4))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1127)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2))
- (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2))
- (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461)))))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *3 (-656 *9)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805))
+ (-4 *8 (-1068)) (-4 *2 (-966 *9 *7 *5))
+ (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805))
+ (-4 *4 (-966 *8 *6 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-374)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
(-5 *2
- (-2 (|:| |polnum| (-793 *3)) (|:| |polden| *3) (|:| -2515 (-782))))
- (-5 *1 (-793 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2515 (-782))))
- (-4 *1 (-1082 *3 *4 *5)))))
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-783)) (-4 *4 (-360))
+ (-5 *1 (-540 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 (-389))) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-389))) (-5 *1 (-479))))
+ (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-885)) (-5 *2 (-1290)) (-5 *1 (-1286))))
+ (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4)))
- (-4 *4 (-861)) (-5 *1 (-1205 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-832)) (-5 *4 (-52)) (-5 *2 (-1290)) (-5 *1 (-842)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-373)) (-4 *4 (-567)) (-4 *5 (-1261 *4))
- (-5 *2 (-2 (|:| -3320 (-634 *4 *5)) (|:| -2792 (-418 *5))))
- (-5 *1 (-634 *4 *5)) (-5 *3 (-418 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-1182 *3 *4))) (-5 *1 (-1182 *3 *4))
- (-14 *3 (-936)) (-4 *4 (-1066))))
+ (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))))
+(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862)) (-4 *3 (-174))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-463)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1261 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-700 (-418 (-967 *4)))) (-4 *4 (-463))
- (-5 *2 (-655 (-3 (-418 (-967 *4)) (-1183 (-1194) (-967 *4)))))
- (-5 *1 (-301 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-269))))
- ((*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))))
+ (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-575))
- (-14 *4 (-782)) (-4 *5 (-174)))))
+ (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6))
+ (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374))
+ (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5)))
+ (-5 *1 (-880 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374))
+ (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5)))
+ (-5 *1 (-880 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $))
+ (-15 -1635 ((-1144 *3 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *3 (-624 $))))))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1176)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-269))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
+ (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174))))
- ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-174))))
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))))
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1139)) (-4 *4 (-360))
+ (-5 *1 (-540 *4)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066))
- (-4 *5 (-861)) (-5 *2 (-967 *4))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068))
+ (-4 *5 (-862)) (-5 *2 (-969 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *5)) (-4 *4 (-1066))
- (-4 *5 (-861)) (-5 *2 (-967 *4))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068))
+ (-4 *5 (-862)) (-5 *2 (-969 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066))
- (-5 *2 (-967 *4))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068))
+ (-5 *2 (-969 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-1276 *4)) (-4 *4 (-1066))
- (-5 *2 (-967 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-873))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068))
+ (-5 *2 (-969 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *3 *5))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2))
+ (-4 *5 (-668 (-419 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *5 *3))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-668 *2))
+ (-4 *3 (-668 (-419 *2))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-873) (-655 (-873)))) (-5 *1 (-115))))
+ (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115))))
((*1 *2 *1)
- (-12 (-5 *2 (-1290)) (-5 *1 (-216 *3))
+ (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3))
(-4 *3
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 (*2 $))
- (-15 -3411 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-405))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-513))))
- ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-721))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1215))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1215)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-316) (-148))) (-4 *5 (-13 (-861) (-625 (-1194))))
- (-4 *6 (-804)) (-4 *7 (-964 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-655 *7)) (|:| |n0| (-655 *7))))
- (-5 *1 (-939 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 (*2 $))
+ (-15 -2720 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-406))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-406))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-722))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1217))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1217)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-655 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *2 (-1052)) (-5 *1 (-762)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-336 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235)) (-14 *4 *2))))
-(((*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463))
- (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4171 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1216)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-97)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-655 (-958 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 (-958 *3))) (-4 *3 (-1066)) (-4 *1 (-1151 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 (-958 *3))) (-4 *1 (-1151 *3)) (-4 *3 (-1066)))))
+ (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2279 *3))))
+ (-5 *4 (-783)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
+ ((*1 *1 *1 *1) (-4 *1 (-485)))
+ ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-896))))
+ ((*1 *1 *1) (-5 *1 (-990)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-304 (-969 (-576))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-656 (-1196)))
+ (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed"))
+ (|:| |hom| (-656 (-1287 (-783))))))
+ (-5 *1 (-241)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575))))
- ((*1 *1 *1) (-4 *1 (-1019)))
- ((*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1029))))
- ((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1029))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-936))))
- ((*1 *1 *1) (-4 *1 (-1029))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-901 *4 *3))
- (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1190 *9)) (-5 *4 (-655 *7)) (-5 *5 (-655 *8))
- (-4 *7 (-861)) (-4 *8 (-1066)) (-4 *9 (-964 *8 *6 *7))
- (-4 *6 (-804)) (-5 *2 (-1190 *8)) (-5 *1 (-330 *6 *7 *8 *9)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-437 *4 *2)) (-4 *2 (-13 (-1220) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194)) (-4 *5 (-148))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-325 *5))
- (-5 *1 (-600 *5)))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))
+ ((*1 *1 *1) (-4 *1 (-1021)))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1031))))
+ ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1031))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-938))))
+ ((*1 *1 *1) (-4 *1 (-1031))))
(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-655
- (-2 (|:| |eqzro| (-655 *8)) (|:| |neqzro| (-655 *8))
- (|:| |wcond| (-655 (-967 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *5))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *5))))))))))
- (-5 *4 (-1176)) (-4 *5 (-13 (-316) (-148))) (-4 *8 (-964 *5 *7 *6))
- (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-575))
- (-5 *1 (-939 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1285 (-655 (-2 (|:| -4181 (-925 *3)) (|:| -4317 (-1137))))))
- (-5 *1 (-361 *3 *4)) (-14 *3 (-936)) (-14 *4 (-936))))
- ((*1 *2)
- (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137))))))
- (-5 *1 (-362 *3 *4)) (-4 *3 (-359)) (-14 *4 (-3 (-1190 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137))))))
- (-5 *1 (-363 *3 *4)) (-4 *3 (-359)) (-14 *4 (-936)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-596)) (-5 *1 (-289)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-782))))
- ((*1 *1 *1) (-4 *1 (-413))))
-(((*1 *1 *1) (-4 *1 (-567))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196)))
+ (-4 *5 (-568)) (-5 *2 (-656 (-656 (-969 *5)))) (-5 *1 (-1205 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1222) (-976) (-29 *4))))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227))
+ (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7))
+ (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1263 *5))
+ (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132))
+ (-4 *3 (-804)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))))
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832))
+ (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3))
+ (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317))
+ (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 *7)))
+ (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1192 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-430 *1)) (-4 *1 (-966 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3))
+ (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464))
+ (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7))))
+ (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1266 *4 *3))
+ (-4 *3 (-13 (-1263 *4) (-568) (-10 -8 (-15 -3901 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-14 *5 (-656 (-1196)))
+ (-5 *2
+ (-656 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))))
+ (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1078 (-1041 *4) (-1190 (-1041 *4)))) (-5 *3 (-873))
- (-5 *1 (-1041 *4)) (-4 *4 (-13 (-859) (-373) (-1039))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-854 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1176)) (-5 *1 (-314)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -2480 (-655 (-1194))) (|:| -3897 (-655 (-1194)))))
- (-5 *1 (-1237)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-738))))
+ ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-656 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-5 *2 (-1176 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068))
+ (-5 *2 (-656 (-656 (-656 (-960 *3))))))))
+(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))))
(((*1 *2)
- (-12 (-5 *2 (-700 (-925 *3))) (-5 *1 (-361 *3 *4)) (-14 *3 (-936))
- (-14 *4 (-936))))
- ((*1 *2)
- (-12 (-5 *2 (-700 *3)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359))
- (-14 *4
- (-3 (-1190 *3)
- (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-700 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359))
- (-14 *4 (-936)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-655 (-1194))) (-4 *2 (-174))
- (-4 *4 (-243 (-2869 *5) (-782)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4317 *3) (|:| -1658 *4))
- (-2 (|:| -4317 *3) (|:| -1658 *4))))
- (-5 *1 (-472 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861))
- (-4 *7 (-964 *2 *4 (-875 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227))
- (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-918 *3)))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1230 *5 *6 *7 *8)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1184 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1235))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-967 (-389))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-325 (-389))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-389))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-967 (-575))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-325 (-575))) (-5 *1 (-349 *3 *4 *5))
- (-4 *5 (-1055 (-575))) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194))) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5))
+ (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-349 *3 *4 *5))
- (-14 *3 (-655 *2)) (-14 *4 (-655 *2)) (-4 *5 (-398))))
+ (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5))
+ (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-325 *5)) (-4 *5 (-398))
- (-5 *1 (-349 *3 *4 *5)) (-14 *3 (-655 (-1194)))
- (-14 *4 (-655 (-1194)))))
+ (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399))
+ (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196)))
+ (-14 *4 (-656 (-1196)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-700 (-418 (-967 (-575))))) (-4 *1 (-394))))
+ (|partial| -12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-700 (-418 (-967 (-389))))) (-4 *1 (-394))))
+ (|partial| -12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-700 (-967 (-575)))) (-4 *1 (-394))))
+ (|partial| -12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-700 (-967 (-389)))) (-4 *1 (-394))))
+ (|partial| -12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-700 (-325 (-575)))) (-4 *1 (-394))))
+ (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-700 (-325 (-389)))) (-4 *1 (-394))))
+ (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-418 (-967 (-575)))) (-4 *1 (-407))))
+ (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-418 (-967 (-389)))) (-4 *1 (-407))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-575))) (-4 *1 (-407))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-967 (-389))) (-4 *1 (-407))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-575))) (-4 *1 (-407))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-325 (-389))) (-4 *1 (-407))))
+ (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-575))))) (-4 *1 (-452))))
+ (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1285 (-418 (-967 (-389))))) (-4 *1 (-452))))
+ (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1285 (-967 (-575)))) (-4 *1 (-452))))
+ (|partial| -12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1285 (-967 (-389)))) (-4 *1 (-452))))
+ (|partial| -12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1285 (-325 (-575)))) (-4 *1 (-452))))
+ (|partial| -12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1285 (-325 (-389)))) (-4 *1 (-452))))
+ (|partial| -12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5))
- (-5 *2 (-1190 (-1190 *4))) (-5 *1 (-788 *4 *5 *6 *3 *7))
- (-4 *3 (-1261 *6)) (-14 *7 (-936))))
+ (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5))
+ (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7))
+ (-4 *3 (-1263 *6)) (-14 *7 (-938))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *1 (-993 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1055 *2)) (-4 *2 (-1235))))
+ (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-4 *1 (-995 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1237))))
((*1 *1 *2)
- (|partial| -3763
- (-12 (-5 *2 (-967 *3))
- (-12 (-3213 (-4 *3 (-38 (-418 (-575)))))
- (-3213 (-4 *3 (-38 (-575)))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)))
- (-12 (-5 *2 (-967 *3))
- (-12 (-3213 (-4 *3 (-556))) (-3213 (-4 *3 (-38 (-418 (-575)))))
- (-4 *3 (-38 (-575))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)))
- (-12 (-5 *2 (-967 *3))
- (-12 (-3213 (-4 *3 (-1009 (-575)))) (-4 *3 (-38 (-418 (-575))))
- (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *1 (-1082 *3 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)))))
+ (|partial| -3739
+ (-12 (-5 *2 (-969 *3))
+ (-12 (-3189 (-4 *3 (-38 (-419 (-576)))))
+ (-3189 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 *3))
+ (-12 (-3189 (-4 *3 (-557))) (-3189 (-4 *3 (-38 (-419 (-576)))))
+ (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 *3))
+ (-12 (-3189 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576))))
+ (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)))))
((*1 *1 *2)
- (|partial| -3763
- (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5))
- (-12 (-3213 (-4 *3 (-38 (-418 (-575))))) (-4 *3 (-38 (-575)))
- (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))
- (-12 (-5 *2 (-967 (-575))) (-4 *1 (-1082 *3 *4 *5))
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194))))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))))
+ (|partial| -3739
+ (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5))
+ (-12 (-3189 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576)))
+ (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))
+ (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-967 (-418 (-575)))) (-4 *1 (-1082 *3 *4 *5))
- (-4 *3 (-38 (-418 (-575)))) (-4 *5 (-625 (-1194)))
- (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174))
- (-4 *5 (-243 (-2869 *3) (-782)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4317 *2) (|:| -1658 *5))
- (-2 (|:| -4317 *2) (|:| -1658 *5))))
- (-4 *2 (-861)) (-5 *1 (-472 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-964 *4 *5 (-875 *3))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-371 (-115))) (-4 *2 (-1066)) (-5 *1 (-725 *2 *4))
- (-4 *4 (-659 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-371 (-115))) (-5 *1 (-847 *2)) (-4 *2 (-1066)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1261 (-418 (-575)))) (-5 *1 (-928 *3 *2))
- (-4 *2 (-1261 (-418 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))))
+ (|partial| -12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))
+ (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2495 *3) (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-1066)) (-5 *2 (-575))
- (-5 *1 (-454 *5 *3 *6)) (-4 *3 (-1261 *5))
- (-4 *6 (-13 (-415) (-1055 *5) (-373) (-1220) (-293)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5))
- (-4 *3 (-1261 *4))
- (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6))
+ (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576))))
+ (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3))
+ (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1119) (-1057 *5)))
+ (-4 *5 (-899 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-948 *4 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4))
+ (-4 *4 (-881 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-576)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-1278 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1278 *2)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-303 *3))) (-5 *1 (-303 *3)) (-4 *3 (-567))
- (-4 *3 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3))))
- (-5 *1 (-122 *3)) (-4 *3 (-861))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1220)))
- (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-594 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-418 (-967 *3))))
- (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *1 (-600 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-373))
- (-5 *2 (-2 (|:| -1501 *3) (|:| |special| *3))) (-5 *1 (-738 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1285 *5)) (-4 *5 (-373)) (-4 *5 (-1066))
- (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5))
- (-5 *3 (-655 (-700 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1285 (-1285 *5))) (-4 *5 (-373)) (-4 *5 (-1066))
- (-5 *2 (-655 (-655 (-700 *5)))) (-5 *1 (-1046 *5))
- (-5 *3 (-655 (-700 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-655 *1)) (-4 *1 (-1161))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-655 *1)) (-4 *1 (-1161)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3))
+ (-4 *3 (-1263 *2)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1190 (-418 (-1190 *2)))) (-5 *4 (-623 *2))
- (-4 *2 (-13 (-441 *5) (-27) (-1220)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1117))))
+ (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-624 *2))
+ (-4 *2 (-13 (-442 *5) (-27) (-1222)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1119))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1190 *1)) (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *3 (-861))))
+ (-12 (-5 *2 (-1192 *1)) (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *3 (-862))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1190 *4)) (-4 *4 (-1066)) (-4 *1 (-964 *4 *5 *3))
- (-4 *5 (-804)) (-4 *3 (-861))))
+ (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1068)) (-4 *1 (-966 *4 *5 *3))
+ (-4 *5 (-805)) (-4 *3 (-862))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-1190 *2))) (-4 *5 (-804)) (-4 *4 (-861))
- (-4 *6 (-1066))
+ (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-805)) (-4 *4 (-862))
+ (-4 *6 (-1068))
(-4 *2
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))
- (-5 *1 (-965 *5 *4 *6 *7 *2)) (-4 *7 (-964 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-1190 (-418 (-967 *5))))) (-5 *4 (-1194))
- (-5 *2 (-418 (-967 *5))) (-5 *1 (-1060 *5)) (-4 *5 (-567)))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -4171 *3) (|:| |coef1| (-793 *3)) (|:| |coef2| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6))
- (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859)))))
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))
+ (-5 *1 (-967 *5 *4 *6 *7 *2)) (-4 *7 (-966 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-967 *5)) (-4 *5 (-463)) (-5 *2 (-655 *6))
- (-5 *1 (-549 *5 *6 *4)) (-4 *6 (-373)) (-4 *4 (-13 (-373) (-859))))))
+ (-12 (-5 *3 (-419 (-1192 (-419 (-969 *5))))) (-5 *4 (-1196))
+ (-5 *2 (-419 (-969 *5))) (-5 *1 (-1062 *5)) (-4 *5 (-568)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4)))
- (-5 *2 (-2 (|:| |num| (-1285 *4)) (|:| |den| *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-655 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-130)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-782)) (-4 *5 (-567))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-986 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-920 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-575)) (-4 *5 (-859)) (-4 *5 (-373))
- (-5 *2 (-782)) (-5 *1 (-960 *5 *6)) (-4 *6 (-1261 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
+ (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119))
+ (-4 *2 (-862)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2))
+ (-4 *2 (-668 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068))
+ (-5 *3 (-419 (-576))) (-5 *1 (-1180 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))))
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *3))
+ (|:| |logand| (-1192 *3)))))
+ (-5 *1 (-598 *3)) (-4 *3 (-374)))))
(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-52)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2))
- (-4 *2 (-1276 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3))
- (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2))
- (-4 *2 (-1276 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148)))
- (-5 *1 (-1170 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-52)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-655 (-936))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-936))
- (-4 *2 (-373)) (-14 *5 (-1010 *4 *2))))
+ (-12 (-5 *3 (-656 (-938))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938))
+ (-4 *2 (-374)) (-14 *5 (-1012 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-724 *5 *6 *7)) (-4 *5 (-861))
- (-4 *6 (-243 (-2869 *4) (-782)))
+ (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862))
+ (-4 *6 (-243 (-2845 *4) (-783)))
(-14 *7
- (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *6))
- (-2 (|:| -4317 *5) (|:| -1658 *6))))
- (-14 *4 (-655 (-1194))) (-4 *2 (-174))
- (-5 *1 (-472 *4 *2 *5 *6 *7 *8)) (-4 *8 (-964 *2 *6 (-875 *4)))))
+ (-1 (-112) (-2 (|:| -4308 *5) (|:| -2273 *6))
+ (-2 (|:| -4308 *5) (|:| -2273 *6))))
+ (-14 *4 (-656 (-1196))) (-4 *2 (-174))
+ (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-966 *2 *6 (-876 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-861))))
+ (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-567)) (-5 *1 (-634 *2 *4))
- (-4 *4 (-1261 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-719 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4))
+ (-4 *4 (-1263 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-746 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-737))))
+ (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-738))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *5)) (-5 *3 (-655 (-782))) (-4 *1 (-751 *4 *5))
- (-4 *4 (-1066)) (-4 *5 (-861))))
+ (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5))
+ (-4 *4 (-1068)) (-4 *5 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-751 *4 *2)) (-4 *4 (-1066))
- (-4 *2 (-861))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-863 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068))
+ (-4 *2 (-862))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 (-782))) (-4 *1 (-964 *4 *5 *6))
- (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *6 (-861))))
+ (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6))
+ (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-964 *4 *5 *2)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *2 (-861))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *2 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *6)) (-5 *3 (-655 *5)) (-4 *1 (-990 *4 *5 *6))
- (-4 *4 (-1066)) (-4 *5 (-803)) (-4 *6 (-861))))
+ (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-992 *4 *5 *6))
+ (-4 *4 (-1068)) (-4 *5 (-804)) (-4 *6 (-862))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-990 *4 *3 *2)) (-4 *4 (-1066)) (-4 *3 (-803))
- (-4 *2 (-861)))))
+ (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-804))
+ (-4 *2 (-862)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112))
+ (-5 *1 (-684 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-418 (-575))) (-4 *4 (-1055 (-575))) (-4 *4 (-567))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-441 *4))))
+ (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1057 (-576))) (-4 *4 (-568))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4))))
((*1 *1 *1 *1) (-5 *1 (-135)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
((*1 *1 *1 *1) (-5 *1 (-227)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-575))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3))
- (-4 *5 (-1276 *4)) (-5 *1 (-286 *4 *5 *2)) (-4 *2 (-1247 *4 *5))))
+ (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3))
+ (-4 *5 (-1278 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1249 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-418 (-575))) (-4 *4 (-373)) (-4 *4 (-38 *3))
- (-4 *5 (-1245 *4)) (-5 *1 (-287 *4 *5 *2 *6)) (-4 *2 (-1268 *4 *5))
- (-4 *6 (-1000 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-293)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-371 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *1) (-5 *1 (-389)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-396 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3))
+ (-4 *5 (-1247 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1270 *4 *5))
+ (-4 *6 (-1002 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-294)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1) (-5 *1 (-390)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-441 *3)) (-4 *3 (-1117))
- (-4 *3 (-1129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-484)) (-5 *2 (-575))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1131))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-575)) (-4 *4 (-359))
- (-5 *1 (-539 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-547))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-547))))
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360))
+ (-5 *1 (-540 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *4 (-1117))
- (-5 *1 (-693 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1119))
+ (-5 *1 (-694 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3)) (-4 *3 (-373))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-700 *4)) (-5 *3 (-782)) (-4 *4 (-1066))
- (-5 *1 (-701 *4))))
+ (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068))
+ (-5 *1 (-702 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *3 (-1066)) (-5 *1 (-725 *3 *4))
- (-4 *4 (-659 *3))))
+ (-12 (-5 *2 (-576)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4))
+ (-4 *4 (-660 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-4 *4 (-1066))
- (-5 *1 (-725 *4 *5)) (-4 *5 (-659 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-737)) (-5 *2 (-782))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-847 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1068))
+ (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1068))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-575)) (-5 *1 (-847 *4)) (-4 *4 (-1066))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-904 *3)) (-4 *3 (-1117))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-418 (-575)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1129)) (-5 *2 (-936))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1068))))
+ ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-576)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-938))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-373))))
+ (-12 (-5 *2 (-576)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))
+ (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1119 (-782))) (-5 *6 (-782))
- (-5 *2
- (-2 (|:| |contp| (-575))
- (|:| -1366 (-655 (-2 (|:| |irr| *3) (|:| -2205 (-575)))))))
- (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3))
+ (-4 *3 (-1263 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
+ (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))
+ ((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1235)) (-5 *2 (-782))
+ (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783))
(-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-132))
- (-5 *2 (-782))))
+ (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132))
+ (-5 *2 (-783))))
((*1 *2)
- (-12 (-4 *4 (-373)) (-5 *2 (-782)) (-5 *1 (-337 *3 *4))
- (-4 *3 (-338 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-371 *3)) (-4 *3 (-1117))))
- ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117)) (-5 *2 (-782))))
+ (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1119))))
+ ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-783))))
((*1 *2)
- (-12 (-4 *4 (-1117)) (-5 *2 (-782)) (-5 *1 (-435 *3 *4))
- (-4 *3 (-436 *4))))
+ (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4))
+ (-4 *3 (-437 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-1117))
+ (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-174)) (-4 *5 (-1261 *4)) (-5 *2 (-782))
- (-5 *1 (-734 *3 *4 *5)) (-4 *3 (-735 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1023))))
+ (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-783))
+ (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1164 (-1176))) (-5 *1 (-402)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-575)) (-5 *1 (-456 *3)) (-4 *3 (-415)) (-4 *3 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019))
- (-4 *2 (-1066)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1125 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9))))
- (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8))
- (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861))
- (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9))))
- (-5 *1 (-1125 *6 *7 *4 *8 *9)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-97)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3))
- (-4 *3 (-1082 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-655 *6)) (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1088 *3 *4 *5 *2)) (-4 *3 (-463)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1163 *5 *6 *7 *3))) (-5 *1 (-1163 *5 *6 *7 *3))
- (-4 *3 (-1082 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-1290))
- (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *4)) (-4 *4 (-1066)) (-4 *2 (-1261 *4))
- (-5 *1 (-455 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-418 (-1190 (-325 *5)))) (-5 *3 (-1285 (-325 *5)))
- (-5 *4 (-575)) (-4 *5 (-567)) (-5 *1 (-1147 *5)))))
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3))
+ (-4 *3 (-1263 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112))
- (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-5 *2 (-1285 *3)) (-5 *1 (-723 *3 *4))
- (-4 *4 (-1261 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5))))
- (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5)))))
- (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311))))
- ((*1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1) (-5 *1 (-873))))
+ (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196))
+ (-5 *2 (-656 *4)) (-5 *1 (-1133 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4))
- (-5 *2 (-429 (-1190 (-418 (-575))))) (-5 *1 (-446 *4 *5 *3))
- (-4 *3 (-1261 *5)))))
+ (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -2039 (-656 *7))))
+ (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *1 *1) (-4 *1 (-1163))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-763)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1158))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
+ (-5 *2
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-700 *4))
- (-5 *1 (-825 *4 *5)) (-4 *5 (-667 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-373))
- (-5 *2 (-700 *5)) (-5 *1 (-825 *5 *6)) (-4 *6 (-667 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-773))))
(((*1 *2 *3)
- (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-902 *4 *5)) (-4 *5 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1184)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-373)) (-4 *3 (-1261 *4)) (-4 *5 (-1261 (-418 *3)))
- (-4 *1 (-345 *4 *3 *5 *2)) (-4 *2 (-352 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-373)) (-4 *4 (-1261 *2))
- (-4 *5 (-1261 (-418 *4))) (-4 *1 (-345 *2 *4 *5 *6))
- (-4 *6 (-352 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-373)) (-4 *3 (-1261 *2)) (-4 *4 (-1261 (-418 *3)))
- (-4 *1 (-345 *2 *3 *4 *5)) (-4 *5 (-352 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))
- (-4 *1 (-345 *3 *4 *5 *2)) (-4 *2 (-352 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-424 *4 (-418 *4) *5 *6)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-4 *6 (-352 *3 *4 *5)) (-4 *3 (-373))
- (-4 *1 (-345 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1117))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-396 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-903 *4 *5)) (-4 *5 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1186)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -2442 *7) (|:| |sol?| (-112)))
+ (-576) *7))
+ (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7))
+ (-5 *3 (-419 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-586 *7 *8)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-782))))
+ (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-5 *2 (-1178)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-2 (|:| -2367 *4) (|:| -4436 (-576)))))
+ (-4 *4 (-1263 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-782)) (-4 *1 (-271 *4))
- (-4 *4 (-1235))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4))
+ (-4 *4 (-1237))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-271 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239))
- (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241))
+ (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-373)) (-4 *2 (-913 *3)) (-5 *1 (-597 *2))
- (-5 *3 (-1194))))
+ (-12 (-4 *2 (-374)) (-4 *2 (-915 *3)) (-5 *1 (-598 *2))
+ (-5 *3 (-1196))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-373))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-873))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-908 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1235))))
+ (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 *4)) (-5 *3 (-655 (-782))) (-4 *1 (-915 *4))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4))
+ (-4 *4 (-1119))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-915 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *1 (-915 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1261 *3)) (-4 *3 (-1066)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1066)) (-4 *3 (-803))
- (-4 *2 (-463))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2))
- (-4 *4 (-1261 (-418 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-463))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *3 (-463))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-964 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-316)) (-4 *3 (-567)) (-5 *1 (-1181 *3 *2))
- (-4 *2 (-1261 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *5 (-700 (-227))) (-5 *4 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *1)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1285 *3)) (-4 *3 (-1066)) (-5 *1 (-700 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-655 *4)) (-4 *4 (-1066)) (-4 *1 (-1140 *3 *4 *5 *6))
- (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3))
- (-4 *3 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-240 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-575)) (-4 *4 (-1117))
- (-5 *1 (-748 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-5 *1 (-748 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))) (-5 *1 (-1158 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-4 *3 (-174)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2))
- (-4 *2 (-698 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1285 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389)))
- (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290))
- (-5 *1 (-799))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389)))
- (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290))
- (-5 *1 (-799)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-1066)) (-5 *1 (-701 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1190 (-967 *4))) (-5 *1 (-427 *3 *4))
- (-4 *3 (-428 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-4 *3 (-373))
- (-5 *2 (-1190 (-967 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1190 (-418 (-967 *3)))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3))
- (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-317))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-655 *7) (-655 *7))) (-5 *2 (-655 *7))
- (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567)) (-4 *5 (-804))
- (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-901 *4 *5)) (-5 *3 (-901 *4 *6)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-677 *5)) (-5 *1 (-897 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6))
+ (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-459 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6))
+ (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-459 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119))
+ (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-655 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1082 *5 *6 *7)) (-4 *5 (-567))
- (-4 *6 (-804)) (-4 *7 (-861)) (-5 *1 (-994 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-373))
- (-5 *2
- (-2 (|:| A (-700 *5))
- (|:| |eqs|
- (-655
- (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5)) (|:| -2566 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5))
- (-4 *6 (-667 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *6 (-667 *5))
- (-5 *2 (-2 (|:| -3415 (-700 *6)) (|:| |vec| (-1285 *5))))
- (-5 *1 (-824 *5 *6)) (-5 *3 (-700 *6)) (-5 *4 (-1285 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805))
+ (-4 *6 (-568)) (-4 *7 (-966 *6 *5 *3))
+ (-5 *1 (-474 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1057 (-419 (-576))) (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $))
+ (-15 -1635 (*7 $))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373)))
- (-4 *3 (-1261 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| -2347 *4) (|:| -1753 (-575)))))
- (-4 *4 (-1261 (-575))) (-5 *2 (-748 (-782))) (-5 *1 (-453 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-429 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1066))
- (-5 *2 (-748 (-782))) (-5 *1 (-455 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5))
- (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6))
- (-4 *6 (-463))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-492 *5 *6))) (-5 *4 (-875 *5))
- (-14 *5 (-655 (-1194))) (-5 *2 (-492 *5 *6)) (-5 *1 (-642 *5 *6))
- (-4 *6 (-463)))))
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-173)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-834)) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-547)))))
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1263 (-171 *2))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174))
+ (-5 *1 (-676 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1307 *3 *4))
+ (-4 *3 (-862)) (-4 *4 (-174)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068))
+ (-5 *1 (-1180 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068))
+ (-14 *4 (-1196)) (-14 *5 *3))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1068))
+ (-5 *1 (-1180 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))
+ (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-575)) (-5 *1 (-957)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *5)) (-4 *5 (-1261 *3)) (-4 *3 (-316))
- (-5 *2 (-112)) (-5 *1 (-466 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194)))
- (-4 *5 (-567)) (-5 *2 (-655 (-655 (-967 *5)))) (-5 *1 (-1203 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2))
+ (-4 *2 (-1278 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3)))
+ (-4 *5 (-1263 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2))
+ (-4 *2 (-1278 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3)))
+ (-5 *1 (-554 *4 *2)) (-4 *2 (-1278 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *1 (-1172 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-854 (-389))) (-5 *2 (-854 (-227))) (-5 *1 (-314)))))
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068))
+ (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-862)))
+ (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))))
+(((*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *3 (-969 (-576)))
+ (-5 *1 (-340))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *1 (-340)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-831 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 *3)) (-4 *3 (-1128 *5 *6 *7 *8))
+ (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-603 *5 *6 *7 *8 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-48))) (-5 *2 (-429 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1261 (-48)))))
+ (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1263 (-48)))))
((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48)))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804))
- (-5 *2 (-429 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-964 (-48) *6 *5))))
+ (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-966 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-48))) (-4 *5 (-861)) (-4 *6 (-804))
- (-4 *7 (-964 (-48) *6 *5)) (-5 *2 (-429 (-1190 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1190 *7))))
+ (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-4 *7 (-966 (-48) *6 *5)) (-5 *2 (-430 (-1192 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-168 *4 *3))
- (-4 *3 (-1261 (-171 *4)))))
+ (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3))
+ (-4 *3 (-1263 (-171 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-859))) (-5 *2 (-429 *3))
- (-5 *1 (-183 *4 *3)) (-4 *3 (-1261 (-171 *4)))))
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1261 *4))))
+ (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3))
+ (-4 *3 (-1263 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3))
- (-4 *3 (-1261 (-575)))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3))
- (-4 *3 (-1261 (-575)))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3))
- (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
+ (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3))
+ (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3))
- (-4 *3 (-1261 (-575)))))
+ (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3))
+ (-4 *3 (-1263 (-576)))))
((*1 *2 *3)
- (-12 (-5 *2 (-429 (-171 (-575)))) (-5 *1 (-457))
- (-5 *3 (-171 (-575)))))
+ (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458))
+ (-5 *3 (-171 (-576)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-4 *5 (-804)) (-4 *7 (-567)) (-5 *2 (-429 *3))
- (-5 *1 (-467 *4 *5 *6 *7 *3)) (-4 *6 (-567))
- (-4 *3 (-964 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-316)) (-5 *2 (-429 (-1190 *4))) (-5 *1 (-469 *4))
- (-5 *3 (-1190 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-429 *6) *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373))
- (-4 *7 (-13 (-373) (-148) (-735 *5 *6))) (-5 *2 (-429 *3))
- (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-1261 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7)))
- (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804))
- (-5 *2 (-429 *3)) (-5 *1 (-551 *5 *6 *7 *3))
- (-4 *3 (-964 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-429 (-1190 *7)) (-1190 *7)))
- (-4 *7 (-13 (-316) (-148))) (-4 *5 (-861)) (-4 *6 (-804))
- (-4 *8 (-964 *7 *6 *5)) (-5 *2 (-429 (-1190 *8)))
- (-5 *1 (-551 *5 *6 *7 *8)) (-5 *3 (-1190 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-655 *5) *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *6 (-1261 *5)) (-5 *2 (-655 (-664 (-418 *6))))
- (-5 *1 (-668 *5 *6)) (-5 *3 (-664 (-418 *6)))))
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3))
+ (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568))
+ (-4 *3 (-966 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1192 *4))) (-5 *1 (-470 *4))
+ (-5 *3 (-1192 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374))
+ (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3))
+ (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7)))
+ (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3))
+ (-4 *3 (-966 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7)))
+ (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805))
+ (-4 *8 (-966 *7 *6 *5)) (-5 *2 (-430 (-1192 *8)))
+ (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *6 (-1263 *5)) (-5 *2 (-656 (-665 (-419 *6))))
+ (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *5 (-1261 *4)) (-5 *2 (-655 (-664 (-418 *5))))
- (-5 *1 (-668 *4 *5)) (-5 *3 (-664 (-418 *5)))))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5))))
+ (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-830 *4)) (-4 *4 (-861)) (-5 *2 (-655 (-683 *4)))
- (-5 *1 (-683 *4))))
+ (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4)))
+ (-5 *1 (-684 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-575)) (-5 *2 (-655 *3)) (-5 *1 (-707 *3))
- (-4 *3 (-1261 *4))))
+ (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3))
+ (-4 *3 (-1263 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359)) (-5 *2 (-429 *3))
- (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-964 *6 *5 *4))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3))
+ (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-359))
- (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7)))
- (-5 *1 (-709 *4 *5 *6 *7)) (-5 *3 (-1190 *7))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360))
+ (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7)))
+ (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1192 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-804))
+ (-12 (-4 *4 (-805))
(-4 *5
- (-13 (-861)
- (-10 -8 (-15 -2613 ((-1194) $))
- (-15 -1441 ((-3 $ "failed") (-1194))))))
- (-4 *6 (-316)) (-5 *2 (-429 *3)) (-5 *1 (-741 *4 *5 *6 *3))
- (-4 *3 (-964 (-967 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-804))
- (-4 *5 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *6 (-567))
- (-5 *2 (-429 *3)) (-5 *1 (-743 *4 *5 *6 *3))
- (-4 *3 (-964 (-418 (-967 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-13 (-316) (-148)))
- (-5 *2 (-429 *3)) (-5 *1 (-744 *4 *5 *6 *3))
- (-4 *3 (-964 (-418 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148)))
- (-5 *2 (-429 *3)) (-5 *1 (-752 *4 *5 *6 *3))
- (-4 *3 (-964 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-861)) (-4 *5 (-804)) (-4 *6 (-13 (-316) (-148)))
- (-4 *7 (-964 *6 *5 *4)) (-5 *2 (-429 (-1190 *7)))
- (-5 *1 (-752 *4 *5 *6 *7)) (-5 *3 (-1190 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3))
- (-4 *3 (-1261 (-418 (-575))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-1058 *3))
- (-4 *3 (-1261 (-418 (-967 (-575)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1261 (-418 (-575))))
- (-4 *5 (-13 (-373) (-148) (-735 (-418 (-575)) *4)))
- (-5 *2 (-429 *3)) (-5 *1 (-1096 *4 *5 *3)) (-4 *3 (-1261 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1261 (-418 (-967 (-575)))))
- (-4 *5 (-13 (-373) (-148) (-735 (-418 (-967 (-575))) *4)))
- (-5 *2 (-429 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1261 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-463))
- (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-429 (-1190 (-418 *7))))
- (-5 *1 (-1189 *4 *5 *6 *7)) (-5 *3 (-1190 (-418 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-429 *1)) (-4 *1 (-1239))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-700 *3))
- (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-700 *3))
- (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-964 *4 *6 *5)) (-4 *4 (-463))
- (-4 *5 (-861)) (-4 *6 (-804)) (-5 *1 (-1004 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-655 *11)) (-5 *5 (-655 (-1190 *9)))
- (-5 *6 (-655 *9)) (-5 *7 (-655 *12)) (-5 *8 (-655 (-782)))
- (-4 *11 (-861)) (-4 *9 (-316)) (-4 *12 (-964 *9 *10 *11))
- (-4 *10 (-804)) (-5 *2 (-655 (-1190 *12)))
- (-5 *1 (-718 *10 *11 *9 *12)) (-5 *3 (-1190 *12)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5))))
- (-5 *1 (-1146 *5))))
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3))
+ (-4 *3 (-966 (-969 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-13 (-316) (-148)))
- (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-303 (-418 (-967 *5)))) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-303 (-325 *5))))
- (-5 *1 (-1146 *5))))
+ (-12 (-4 *4 (-805))
+ (-4 *5 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *6 (-568))
+ (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3))
+ (-4 *3 (-966 (-419 (-969 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-303 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148)))
- (-5 *2 (-655 (-303 (-325 *4)))) (-5 *1 (-1146 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-418 (-967 *5)))) (-5 *4 (-655 (-1194)))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5)))))
- (-5 *1 (-1146 *5))))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148)))
+ (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3))
+ (-4 *3 (-966 (-419 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-418 (-967 *4)))) (-4 *4 (-13 (-316) (-148)))
- (-5 *2 (-655 (-655 (-303 (-325 *4))))) (-5 *1 (-1146 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-303 (-418 (-967 *5))))) (-5 *4 (-655 (-1194)))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *5)))))
- (-5 *1 (-1146 *5))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148)))
+ (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3))
+ (-4 *3 (-966 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-303 (-418 (-967 *4)))))
- (-4 *4 (-13 (-316) (-148))) (-5 *2 (-655 (-655 (-303 (-325 *4)))))
- (-5 *1 (-1146 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1261 *4)) (-4 *4 (-1239))
- (-4 *6 (-1261 (-418 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-352 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-556)) (-5 *1 (-160 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-772))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1168)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-1290)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-4 *5 (-861)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066))
- (-14 *4 (-655 (-1194)))))
+ (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148)))
+ (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7)))
+ (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1192 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1235))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861)))
- (-14 *4 (-655 (-1194)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-861)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194))
- (-14 *4 *2))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1194)) (-4 *4 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -1658 (-575))))
- (-4 *1 (-441 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -1658 (-575))))
- (-4 *1 (-441 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117))
- (-5 *2 (-2 (|:| |var| (-623 *1)) (|:| -1658 (-575))))
- (-4 *1 (-441 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -1658 (-782))))
- (-5 *1 (-904 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -1658 (-782))))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3))
+ (-4 *3 (-1263 (-419 (-576))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066))
- (-4 *7 (-964 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -1658 (-575))))
- (-5 *1 (-965 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $))
- (-15 -1608 (*7 $))))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1027 *2)) (-4 *2 (-1235)))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-575))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373)))
- (-4 *3 (-1261 *4)) (-5 *2 (-575))))
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1060 *3))
+ (-4 *3 (-1263 (-419 (-969 (-576)))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-567) (-1055 *2) (-650 *2) (-463)))
- (-5 *2 (-575)) (-5 *1 (-1133 *4 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575))
- (-5 *1 (-1133 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-1176))
- (-4 *6 (-13 (-567) (-1055 *2) (-650 *2) (-463))) (-5 *2 (-575))
- (-5 *1 (-1133 *6 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *6)))))
+ (-12 (-4 *4 (-1263 (-419 (-576))))
+ (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4)))
+ (-5 *2 (-430 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1263 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-575))
- (-5 *1 (-1134 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1194)) (-5 *5 (-854 (-418 (-967 *6))))
- (-5 *3 (-418 (-967 *6))) (-4 *6 (-463)) (-5 *2 (-575))
- (-5 *1 (-1134 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-418 (-967 *6))) (-5 *4 (-1194))
- (-5 *5 (-1176)) (-4 *6 (-463)) (-5 *2 (-575)) (-5 *1 (-1134 *6))))
+ (-12 (-4 *4 (-1263 (-419 (-969 (-576)))))
+ (-4 *5 (-13 (-374) (-148) (-736 (-419 (-969 (-576))) *4)))
+ (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1263 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066)))))
-(((*1 *1 *1) (-12 (-4 *1 (-441 *2)) (-4 *2 (-1117)) (-4 *2 (-567))))
- ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1235))
- (-4 *5 (-383 *4)) (-4 *2 (-383 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *7 *2)) (-4 *6 (-1066))
- (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415))))
- ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-414 *3)) (-4 *3 (-415))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415))))
- ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936))))
- ((*1 *2 *1) (-12 (-4 *1 (-880 *3)) (-5 *2 (-1174 (-575))))))
-(((*1 *1 *1) (-4 *1 (-640)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-641 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019) (-1220))))))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464))
+ (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7))))
+ (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-655 (-655 *4)))) (-5 *2 (-655 (-655 *4)))
- (-5 *1 (-1205 *4)) (-4 *4 (-861)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1235))
- (-4 *5 (-383 *4)) (-4 *2 (-383 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *6 *2 *7)) (-4 *6 (-1066))
- (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *3))
- (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-655 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-133)))))
-(((*1 *1 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-624 (-873))))))
-(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-389))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782)))
- (-5 *1 (-919 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *3 (-383 *2)) (-4 *4 (-383 *2))
- (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066))))
+ (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031))))
((*1 *2 *3)
- (-12 (-4 *4 (-383 *2)) (-4 *5 (-383 *2)) (-4 *2 (-174))
- (-5 *1 (-699 *2 *4 *5 *3)) (-4 *3 (-698 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
- (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4462 "*"))) (-4 *2 (-1066)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031))))
+ ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1192 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031))))
((*1 *2 *3)
- (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359)) (-5 *2 (-112))
- (-5 *1 (-367 *4))))
+ (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-112))
- (-5 *1 (-539 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))))
+ (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-656 *1))
+ (-4 *1 (-1087 *4 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-973 *3)) (-5 *1 (-1181 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-359)) (-5 *3 (-575)) (-5 *2 (-1207 (-936) (-782))))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-785)) (-5 *1 (-52)))))
+ (-12 (-5 *3 (-656 (-2 (|:| -2367 (-1192 *6)) (|:| -2273 (-576)))))
+ (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-1192 *7)) (-5 *1 (-331 *4 *5 *6 *7))
+ (-4 *7 (-966 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390)))
+ (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292))
+ (-5 *1 (-800)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34))))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374))
+ (-5 *2 (-1192 (-969 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194)))
- (-5 *2 (-700 (-325 (-227)))) (-5 *1 (-207))))
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862))
+ (-4 *8 (-966 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed"))
+ (|:| -4261 (-656 (-1287 (-419 *8))))))
+ (-5 *1 (-681 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292))
+ (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292))
+ (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-759)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2))
+ (-4 *2 (-1263 (-576)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-938)) (-5 *4 (-783)) (-5 *1 (-454 *2))
+ (-4 *2 (-1263 (-576)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2))
+ (-4 *2 (-1263 (-576)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783))
+ (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783))
+ (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-4 *6 (-913 *5)) (-5 *2 (-700 *6))
- (-5 *1 (-703 *5 *6 *3 *4)) (-4 *3 (-383 *6))
- (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))))
+ (-12 (-5 *3 (-938)) (-5 *4 (-430 *2)) (-4 *2 (-1263 *5))
+ (-5 *1 (-456 *5 *2)) (-4 *5 (-1068)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1263 *5))
+ (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *3) (|:| |radicand| *6)))
+ (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1263 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *1 (-1051 *2))
+ (-4 *2 (-13 (-1119) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-920 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944))
+ (-5 *1 (-942 *3)) (-4 *3 (-626 (-548)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944))
+ (-5 *1 (-942 *3)) (-4 *3 (-626 (-548)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-943))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227)))
+ (-5 *1 (-944)))))
(((*1 *2)
- (-12 (-4 *3 (-567)) (-5 *2 (-655 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-428 *3)))))
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1068))
+ (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1048 *5)) (-5 *4 (-1287 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021) (-1222))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-133)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1119))
+ (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1287 (-656 *3))) (-4 *4 (-317))
+ (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1196)) (-5 *1 (-598 *2)) (-4 *2 (-1057 *3))
+ (-4 *2 (-374))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2))
+ (-4 *2 (-13 (-442 *4) (-1021) (-1222)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1222)))
+ (-4 *4 (-568)) (-5 *1 (-642 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-1196))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-976)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-855 (-390)))) (-5 *2 (-1113 (-855 (-227))))
+ (-5 *1 (-315)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-960 (-227)) (-227) (-227)))
+ (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2))
+ (-4 *3 (-568)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8))))
+ (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -4147
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3153
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1176 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3672
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-571))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -4147
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (|:| -3153
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390))))))
+ (-5 *1 (-815))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *1 *1) (-4 *1 (-1163))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-782)) (-4 *3 (-1235)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
+ (-12 (-5 *2 (-783)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
((*1 *1) (-5 *1 (-173)))
- ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1117))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-400))))
- ((*1 *1) (-5 *1 (-405)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-4 *1 (-662 *3)) (-4 *3 (-1235))))
+ ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401))))
+ ((*1 *1) (-5 *1 (-406)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1237))))
((*1 *1)
- (-12 (-4 *3 (-1117)) (-5 *1 (-897 *2 *3 *4)) (-4 *2 (-1117))
- (-4 *4 (-677 *3))))
- ((*1 *1) (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))
+ (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119))
+ (-4 *4 (-678 *3))))
+ ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *1 (-1159 *3 *2)) (-14 *3 (-782)) (-4 *2 (-1066))))
- ((*1 *1) (-12 (-5 *1 (-1182 *2 *3)) (-14 *2 (-936)) (-4 *3 (-1066))))
- ((*1 *1 *1) (-5 *1 (-1194))) ((*1 *1) (-5 *1 (-1194)))
- ((*1 *1) (-5 *1 (-1215))))
+ (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1068))))
+ ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))
+ ((*1 *1 *1) (-5 *1 (-1196))) ((*1 *1) (-5 *1 (-1196)))
+ ((*1 *1) (-5 *1 (-1217))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1235))
- (-4 *2 (-1235)) (-5 *1 (-58 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1237))
+ (-4 *2 (-1237)) (-5 *1 (-58 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1117)) (|has| *1 (-6 -4460))
- (-4 *1 (-152 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (|has| *1 (-6 -4462))
+ (-4 *1 (-152 *2)) (-4 *2 (-1237))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2))
- (-4 *2 (-1235))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2))
+ (-4 *2 (-1237))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4460)) (-4 *1 (-152 *2))
- (-4 *2 (-1235))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2))
+ (-4 *2 (-1237))))
((*1 *2 *3)
- (-12 (-4 *4 (-1066))
- (-5 *2 (-2 (|:| -4408 (-1190 *4)) (|:| |deg| (-936))))
- (-5 *1 (-223 *4 *5)) (-5 *3 (-1190 *4)) (-4 *5 (-567))))
+ (-12 (-4 *4 (-1068))
+ (-5 *2 (-2 (|:| -2279 (-1192 *4)) (|:| |deg| (-938))))
+ (-5 *1 (-223 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-568))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-782))
- (-4 *6 (-1235)) (-4 *2 (-1235)) (-5 *1 (-244 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783))
+ (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-244 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-174)) (-5 *1 (-298 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1261 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-567)) (-4 *2 (-1117))))
+ ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1119))))
((*1 *1 *1)
- (-12 (-4 *1 (-345 *2 *3 *4 *5)) (-4 *2 (-373)) (-4 *3 (-1261 *2))
- (-4 *4 (-1261 (-418 *3))) (-4 *5 (-352 *2 *3 *4))))
+ (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1263 *2))
+ (-4 *4 (-1263 (-419 *3))) (-4 *5 (-353 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1235)) (-4 *2 (-1235))
- (-5 *1 (-381 *5 *4 *2 *6)) (-4 *4 (-383 *5)) (-4 *6 (-383 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237))
+ (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1117)) (-4 *2 (-1117))
- (-5 *1 (-434 *5 *4 *2 *6)) (-4 *4 (-436 *5)) (-4 *6 (-436 *2))))
- ((*1 *1 *1) (-5 *1 (-506)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119))
+ (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2))))
+ ((*1 *1 *1) (-5 *1 (-507)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-655 *5)) (-4 *5 (-1235))
- (-4 *2 (-1235)) (-5 *1 (-653 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1237))
+ (-4 *2 (-1237)) (-5 *1 (-654 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1066)) (-4 *2 (-1066))
- (-4 *6 (-383 *5)) (-4 *7 (-383 *5)) (-4 *8 (-383 *2))
- (-4 *9 (-383 *2)) (-5 *1 (-696 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-698 *5 *6 *7)) (-4 *10 (-698 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068))
+ (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2))
+ (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-722 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3))))
+ (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-726 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
+ (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-418 *4)) (-4 *4 (-1261 *3)) (-4 *3 (-373))
- (-4 *3 (-174)) (-4 *1 (-735 *3 *4))))
+ (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-374))
+ (-4 *3 (-174)) (-4 *1 (-736 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-174)) (-4 *1 (-735 *3 *2)) (-4 *2 (-1261 *3))))
+ (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-973 *5)) (-4 *5 (-1235))
- (-4 *2 (-1235)) (-5 *1 (-972 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1237))
+ (-4 *2 (-1237)) (-5 *1 (-974 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-1051 *3 *4 *5 *2 *6)) (-4 *2 (-964 *3 *4 *5))
- (-14 *6 (-655 *2))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5))
+ (-14 *6 (-656 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1066)) (-4 *2 (-1066))
- (-14 *5 (-782)) (-14 *6 (-782)) (-4 *8 (-243 *6 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068))
+ (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7))
(-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2))
- (-5 *1 (-1072 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1070 *5 *6 *7 *8 *9)) (-4 *12 (-1070 *5 *6 *2 *10 *11))))
+ (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1174 *5)) (-4 *5 (-1235))
- (-4 *2 (-1235)) (-5 *1 (-1172 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1237))
+ (-4 *2 (-1237)) (-5 *1 (-1174 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1228 *5 *6 *7 *2)) (-4 *5 (-567)) (-4 *6 (-804))
- (-4 *7 (-861)) (-4 *2 (-1082 *5 *6 *7))))
+ (-4 *1 (-1230 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *2 (-1084 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1285 *5)) (-4 *5 (-1235))
- (-4 *2 (-1235)) (-5 *1 (-1284 *5 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-929 *3)) (-4 *3 (-316)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-303 *2)) (-4 *2 (-737)) (-4 *2 (-1235)))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1204)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-325 (-227))) (-5 *1 (-275)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2)))
- (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5))
- (-4 *3 (-352 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239))
- (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-325 *3)) (-4 *3 (-13 (-1066) (-861)))
- (-5 *1 (-225 *3 *4)) (-14 *4 (-655 (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237))
+ (-4 *2 (-1237)) (-5 *1 (-1286 *5 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112))
+ (-5 *2 (-1054)) (-5 *1 (-765)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576))
+ (-14 *4 (-783)) (-4 *5 (-174)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1119))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2273 (-576)))) (-4 *1 (-442 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2273 (-905 *3))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068))
+ (-4 *7 (-966 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2273 (-576))))
+ (-5 *1 (-967 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $))
+ (-15 -1635 (*7 $))))))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
+(((*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-2 (|:| -4169 *3) (|:| -3179 *4))))
- (-4 *3 (-1117)) (-4 *4 (-1117)) (-4 *1 (-1211 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1211 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
+ (-12 (-5 *2 (-656 (-2 (|:| -4147 *3) (|:| -3153 *4))))
+ (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *1 (-1213 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-623 *6)) (-4 *6 (-13 (-441 *5) (-27) (-1220)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-1190 (-418 (-1190 *6)))) (-5 *1 (-571 *5 *6 *7))
- (-5 *3 (-1190 *6)) (-4 *7 (-1117))))
+ (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1222)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-572 *5 *6 *7))
+ (-5 *3 (-1192 *6)) (-4 *7 (-1119))))
((*1 *2 *1)
- (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066))))
+ (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068))))
((*1 *2 *1)
- (-12 (-4 *1 (-735 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1261 *3))))
+ (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1190 *11)) (-5 *6 (-655 *10))
- (-5 *7 (-655 (-782))) (-5 *8 (-655 *11)) (-4 *10 (-861))
- (-4 *11 (-316)) (-4 *9 (-804)) (-4 *5 (-964 *11 *9 *10))
- (-5 *2 (-655 (-1190 *5))) (-5 *1 (-753 *9 *10 *11 *5))
- (-5 *3 (-1190 *5))))
+ (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-656 *10))
+ (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862))
+ (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-966 *11 *9 *10))
+ (-5 *2 (-656 (-1192 *5))) (-5 *1 (-754 *9 *10 *11 *5))
+ (-5 *3 (-1192 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-964 *3 *4 *5)) (-5 *1 (-1051 *3 *4 *5 *2 *6))
- (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-14 *6 (-655 *2)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1285 *5)) (-5 *3 (-782)) (-5 *4 (-1137)) (-4 *5 (-359))
- (-5 *1 (-539 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-700 (-418 (-967 (-575)))))
- (-5 *2
- (-655
- (-2 (|:| |radval| (-325 (-575))) (|:| |radmult| (-575))
- (|:| |radvect| (-655 (-700 (-325 (-575))))))))
- (-5 *1 (-1048)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463))
- (-5 *1 (-370 *3 *4)) (-14 *4 (-655 (-1194)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463))
- (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1101 *3)) (-4 *3 (-133)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-623 *4)) (-5 *6 (-1190 *4))
- (-4 *4 (-13 (-441 *7) (-27) (-1220)))
- (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-623 *4)) (-5 *6 (-418 (-1190 *4)))
- (-4 *4 (-13 (-441 *7) (-27) (-1220)))
- (-4 *7 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
+ (-12 (-4 *2 (-966 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6))
+ (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))))
+ (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1103 *3)) (-4 *3 (-133)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054))
+ (-5 *1 (-760)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1260 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1196))
+ (-4 *5 (-374)) (-5 *1 (-940 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1192 *5))
+ (-5 *1 (-940 *4 *5)) (-14 *4 (-1196))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374))
+ (-5 *2 (-419 (-969 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1196)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-767))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400))
+ (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568))
+ (-4 *3 (-966 *7 *5 *6))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2098 (-655 *4))))
- (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-667 *4)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1190 *3)) (-4 *3 (-378)) (-4 *1 (-338 *3))
- (-4 *3 (-373)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064)))))
+ (-2 (|:| -2273 (-783)) (|:| -1788 *3) (|:| |radicand| (-656 *3))))
+ (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-783))
+ (-4 *8
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *3)) (-15 -1621 (*3 $)) (-15 -1635 (*3 $))))))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3923 *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1276 *4))
- (-4 *4 (-38 (-418 (-575)))) (-5 *2 (-1 (-1174 *4) (-1174 *4)))
- (-5 *1 (-1278 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1285 *1)) (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239))
- (-4 *4 (-1261 *3)) (-4 *5 (-1261 (-418 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-575))
- (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-655 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-567))
- (-4 *3 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1290)) (-5 *1 (-1197)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148))) (-5 *1 (-548 *4 *2))
- (-4 *2 (-1276 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3)))
- (-4 *5 (-1261 *4)) (-4 *6 (-735 *4 *5)) (-5 *1 (-552 *4 *5 *6 *2))
- (-4 *2 (-1276 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-13 (-373) (-378) (-625 *3)))
- (-5 *1 (-553 *4 *2)) (-4 *2 (-1276 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1174 *4)) (-5 *3 (-575)) (-4 *4 (-13 (-567) (-148)))
- (-5 *1 (-1170 *4)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-655 *4)) (-4 *4 (-373)) (-5 *2 (-1285 *4))
- (-5 *1 (-825 *4 *3)) (-4 *3 (-667 *4)))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-937)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-418 *2)) (-4 *2 (-1261 *5))
- (-5 *1 (-818 *5 *2 *3 *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *3 (-667 *2)) (-4 *6 (-667 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-418 *2))) (-4 *2 (-1261 *5))
- (-5 *1 (-818 *5 *2 *3 *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *3 (-667 *2))
- (-4 *6 (-667 (-418 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-447)))))
-(((*1 *1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556))))
- ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-575))) (-5 *1 (-1064))
- (-5 *3 (-575)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1066))
- (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))
- (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1258 *5 *4)) (-4 *4 (-831)) (-14 *5 (-1194))
- (-5 *2 (-575)) (-5 *1 (-1131 *4 *5)))))
+ (-12 (-5 *3 (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5))))
+ (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5)))))
+ (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1235)) (-4 *2 (-1117))
- (-4 *2 (-861)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1270 *3 *4 *5)) (-4 *3 (-373)) (-14 *4 (-1194))
- (-14 *5 *3) (-5 *1 (-328 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-1221 *3))) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227))
- (-5 *2 (-1052)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-708)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-177))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-517)) (-5 *2 (-702 (-109))) (-5 *1 (-1102)))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1174 *4) (-1174 *4))) (-5 *2 (-1174 *4))
- (-5 *1 (-1311 *4)) (-4 *4 (-1235))))
+ (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2087 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-655 (-1174 *5)) (-655 (-1174 *5)))) (-5 *4 (-575))
- (-5 *2 (-655 (-1174 *5))) (-5 *1 (-1311 *5)) (-4 *5 (-1235)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-325 *3)) (-4 *3 (-567)) (-4 *3 (-1117)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4)))))
- (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -1519 (-419 *6))
+ (|:| |special| (-419 *6))))
+ (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4))
+ (-4 *3 (-1263 *4))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4)))
- (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-941))))
- ((*1 *2 *1) (-12 (-5 *2 (-1111 (-227))) (-5 *1 (-942)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-958 (-227))) (-5 *2 (-1290)) (-5 *1 (-479)))))
+ (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| -2425 *3) (|:| -2442 *3))) (-5 *1 (-911 *3 *5))
+ (-4 *3 (-1263 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112))
+ (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-193)) (-5 *3 (-575))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-782)) (-5 *1 (-794 *2)) (-4 *2 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-575))) (-5 *1 (-957)) (-5 *3 (-575)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-62 *3)) (-14 *3 (-1194))))
- ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-69 *3)) (-14 *3 (-1194))))
- ((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-72 *3)) (-14 *3 (-1194))))
- ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-1290))))
- ((*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-408))))
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196)))
+ (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155))))
- ((*1 *2 *3) (-12 (-5 *3 (-873)) (-5 *2 (-1290)) (-5 *1 (-1155))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-873))) (-5 *2 (-1290)) (-5 *1 (-1155)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-418 (-575)))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))))
+ (-12 (-4 *5 (-1119)) (-4 *6 (-915 *5)) (-5 *2 (-701 *6))
+ (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6))
+ (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-966 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1)))
+ (-4 *1 (-1263 *3)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1235)) (-5 *1 (-184 *3 *2)) (-4 *2 (-685 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-958 *2)) (-5 *1 (-999 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-4 *1 (-918 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220)))))
- ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
-(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1235)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-402)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1117)) (-4 *6 (-1117))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-695 *4 *5 *6)) (-4 *5 (-1117)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-173)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-814)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3) (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1023)))))
+ (-12
+ (-5 *2
+ (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4)))))
- ((*1 *1 *1) (-5 *1 (-389)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-787 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-874)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-938) (-938)))) (-5 *1 (-990)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1287 *4))
+ (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-325 *4)) (-4 *4 (-13 (-839) (-1066))) (-5 *2 (-1176))
- (-5 *1 (-837 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-839) (-1066)))
- (-5 *2 (-1176)) (-5 *1 (-837 *5))))
+ (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4))
+ (-5 *1 (-1313 *4)) (-4 *4 (-1237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-833)) (-5 *4 (-325 *5)) (-4 *5 (-13 (-839) (-1066)))
- (-5 *2 (-1290)) (-5 *1 (-837 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-833)) (-5 *4 (-325 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-839) (-1066))) (-5 *2 (-1290)) (-5 *1 (-837 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-839)) (-5 *2 (-1176))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-839)) (-5 *3 (-112)) (-5 *2 (-1176))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *2 (-1290))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-839)) (-5 *3 (-833)) (-5 *4 (-112)) (-5 *2 (-1290)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-655 *2)) (-4 *2 (-1117)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-540))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-872)))))
-(((*1 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-97)))))
-(((*1 *2 *3) (-12 (-5 *3 (-399)) (-5 *2 (-1290)) (-5 *1 (-402))))
- ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-402)))))
-(((*1 *1) (-5 *1 (-834))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1261 *2)) (-4 *2 (-1239)) (-5 *1 (-149 *2 *4 *3))
- (-4 *3 (-1261 (-418 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-655 *4))) (-5 *1 (-919 *4))
- (-5 *3 (-655 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1117)) (-5 *2 (-1119 (-1119 *4))) (-5 *1 (-919 *4))
- (-5 *3 (-1119 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
+ (-12 (-5 *3 (-1 (-656 (-1176 *5)) (-656 (-1176 *5)))) (-5 *4 (-576))
+ (-5 *2 (-656 (-1176 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1237)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374))
+ (-14 *4 (-1196)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-964 *4 *5 *6)) (-4 *6 (-625 (-1194)))
- (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *2 (-1183 (-655 (-967 *4)) (-655 (-303 (-967 *4)))))
- (-5 *1 (-515 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4))
+ (-5 *1 (-540 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292))
+ (-5 *1 (-1199))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292))
+ (-5 *1 (-1199)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804))
- (-5 *2 (-112)) (-5 *1 (-1004 *3 *4 *5 *6))
- (-4 *6 (-964 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-115))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861))
- (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-259 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *5 (-274 *4)) (-4 *6 (-804)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-274 *3)) (-4 *3 (-861)) (-5 *2 (-782)))))
+ (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568))
+ (-5 *2 (-1192 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-62 *3)) (-14 *3 (-1196))))
+ ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196))))
+ ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1292))))
+ ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-409))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227)))
+ (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1054))
+ (-5 *1 (-766)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-5 *2 (-655 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-655 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1174 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-1272 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374))
+ (-14 *4 (-1196)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 *3)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-737))))
- ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-655 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1066)) (-5 *2 (-1174 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-1126 *5 *6 *7 *8))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-602 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1117)) (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-958 (-227)) (-958 (-227)))) (-5 *1 (-269))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-338 *4)) (-4 *4 (-373))
- (-5 *2 (-700 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-1285 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-700 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-1285 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1261 *4)) (-5 *2 (-700 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-380 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1261 *4)) (-5 *2 (-1285 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-420 *4 *5)) (-4 *4 (-174))
- (-4 *5 (-1261 *4)) (-5 *2 (-700 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-420 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1261 *3))
- (-5 *2 (-1285 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-428 *4)) (-4 *4 (-174))
- (-5 *2 (-700 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-700 *5))) (-5 *3 (-700 *5)) (-4 *5 (-373))
- (-5 *2 (-1285 *5)) (-5 *1 (-1103 *5)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575))
- (-5 *2 (-1052)) (-5 *1 (-767)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-859) (-373))) (-5 *1 (-1078 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-1066)) (-5 *2 (-973 (-723 *3 *4))) (-5 *1 (-723 *3 *4))
- (-4 *4 (-1261 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-303 *6)) (-5 *4 (-115)) (-4 *6 (-441 *5))
- (-4 *5 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-303 *7)) (-5 *4 (-115)) (-5 *5 (-655 *7))
- (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-655 (-303 *7))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7))
- (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-655 (-303 *8))) (-5 *4 (-655 (-115))) (-5 *5 (-303 *8))
- (-5 *6 (-655 *8)) (-4 *8 (-441 *7))
- (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-655 *7)) (-5 *4 (-655 (-115))) (-5 *5 (-303 *7))
- (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-655 (-115))) (-5 *6 (-655 (-303 *8)))
- (-4 *8 (-441 *7)) (-5 *5 (-303 *8))
- (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-303 *5)) (-5 *4 (-115)) (-4 *5 (-441 *6))
- (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6))
- (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-4 *3 (-441 *6))
- (-4 *6 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-115)) (-5 *5 (-303 *3)) (-5 *6 (-655 *3))
- (-4 *3 (-441 *7)) (-4 *7 (-13 (-567) (-625 (-547)))) (-5 *2 (-52))
- (-5 *1 (-326 *7 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-762)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3)))))
+ (-12 (-4 *2 (-1119)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -4308 *3) (|:| -2273 *2))
+ (-2 (|:| -4308 *3) (|:| -2273 *2)))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-2 (|:| -4169 (-1194)) (|:| -3179 (-448)))))
- (-5 *1 (-1198)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-1285 (-700 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-427 *3 *4))
- (-4 *3 (-428 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-1285 (-700 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373))
- (-5 *2 (-1285 (-700 (-418 (-967 *5))))) (-5 *1 (-1103 *5))
- (-5 *4 (-700 (-418 (-967 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-1194))) (-4 *5 (-373))
- (-5 *2 (-1285 (-700 (-967 *5)))) (-5 *1 (-1103 *5))
- (-5 *4 (-700 (-967 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-700 *4))) (-4 *4 (-373))
- (-5 *2 (-1285 (-700 *4))) (-5 *1 (-1103 *4)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1176)) (-5 *5 (-700 (-227))) (-5 *6 (-227))
- (-5 *7 (-700 (-575))) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-5 *2 (-185 (-254))) (-5 *1 (-253)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 (-967 (-575)))) (-5 *4 (-655 (-1194)))
- (-5 *2 (-655 (-655 (-389)))) (-5 *1 (-1040)) (-5 *5 (-389))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1063 *4 *5)) (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-14 *5 (-655 (-1194))) (-5 *2 (-655 (-655 (-1041 (-418 *4)))))
- (-5 *1 (-1312 *4 *5 *6)) (-14 *6 (-655 (-1194)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *5))))) (-5 *1 (-1312 *5 *6 *7))
- (-14 *6 (-655 (-1194))) (-14 *7 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4)))
- (-4 *4 (-13 (-859) (-316) (-148) (-1039)))
- (-5 *2 (-655 (-655 (-1041 (-418 *4))))) (-5 *1 (-1312 *4 *5 *6))
- (-14 *5 (-655 (-1194))) (-14 *6 (-655 (-1194))))))
-(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))))
+ (-12
+ (-5 *2
+ (-656
+ (-2
+ (|:| -4147
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3153
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1176 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3672
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-571)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-693 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290))
- (-5 *1 (-1236 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-1117)) (-5 *2 (-1290))
- (-5 *1 (-1236 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-655 (-269))) (-5 *1 (-1287))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1176)) (-5 *1 (-1287))))
- ((*1 *1 *1) (-5 *1 (-1287))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-429 *3)) (-4 *3 (-556)) (-4 *3 (-567))))
- ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-556)) (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-556)) (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1025 *3)) (-4 *3 (-1055 (-418 (-575)))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-964 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-804)) (-4 *5 (-1066)) (-4 *6 (-964 *5 *4 *2))
- (-4 *2 (-861)) (-5 *1 (-965 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *6)) (-15 -1595 (*6 $))
- (-15 -1608 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567))
- (-5 *2 (-1194)) (-5 *1 (-1060 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1276 *4))
- (-4 *4 (-38 (-418 (-575))))
- (-5 *2 (-1 (-1174 *4) (-1174 *4) (-1174 *4))) (-5 *1 (-1278 *4 *5)))))
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8))))
+ (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1178 *4))
- (-4 *4 (-1066)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1117) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1157 *4 *5)) (-4 *4 (-13 (-1117) (-34))))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-623 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194))) (-5 *5 (-1190 *2))
- (-4 *2 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-623 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1194)))
- (-5 *5 (-418 (-1190 *2))) (-4 *2 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *1 (-571 *6 *2 *7)) (-4 *7 (-1117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-127 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))))
+ (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360))
+ (-4 *2
+ (-13 (-414)
+ (-10 -7 (-15 -2858 (*2 *4)) (-15 -1654 ((-938) *2))
+ (-15 -4261 ((-1287 *2) (-938))) (-15 -2086 (*2 *2)))))
+ (-5 *1 (-367 *2 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4171 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-429 *2)) (-4 *2 (-316)) (-5 *1 (-929 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-429 (-967 *6))) (-5 *5 (-1194)) (-5 *3 (-967 *6))
- (-4 *6 (-13 (-316) (-148))) (-5 *2 (-52)) (-5 *1 (-930 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1198)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-567)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066))
- (-5 *3 (-575)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))))
+(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))
+ ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-403)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805))
+ (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3923 *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| -1788 *4) (|:| -2647 *3) (|:| -2307 *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-1084 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| -1788 *3) (|:| -2647 *1) (|:| -2307 *1)))
+ (-4 *1 (-1263 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1263 *4))
+ (-5 *2 (-1287 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *3 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-460 *4 *3 *5 *6)) (-4 *6 (-964 *4 *3 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-575) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1101 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
+ (|partial| -12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-1258 *4 *3))
+ (-4 *3 (-1263 *4)))))
(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
- ((*1 *1 *1) (-4 *1 (-1161))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-441 *4))
- (-4 *6 (-1261 *5)) (-4 *7 (-1261 (-418 *6)))
- (-4 *8 (-352 *5 *6 *7)) (-4 *4 (-13 (-567) (-1055 (-575))))
- (-5 *2 (-2 (|:| -3369 (-782)) (|:| -3760 *8)))
- (-5 *1 (-926 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-346 (-418 (-575)) *4 *5 *6))
- (-4 *4 (-1261 (-418 (-575)))) (-4 *5 (-1261 (-418 *4)))
- (-4 *6 (-352 (-418 (-575)) *4 *5))
- (-5 *2 (-2 (|:| -3369 (-782)) (|:| -3760 *6)))
- (-5 *1 (-927 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1288)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-655 *11))
- (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11))))))
- (-5 *6 (-782))
- (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11))))
- (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9))
- (-4 *11 (-1088 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804))
- (-4 *9 (-861)) (-5 *1 (-1086 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-655 *11))
- (|:| |todo| (-655 (-2 (|:| |val| *3) (|:| -4270 *11))))))
- (-5 *6 (-782))
- (-5 *2 (-655 (-2 (|:| |val| (-655 *10)) (|:| -4270 *11))))
- (-5 *3 (-655 *10)) (-5 *4 (-655 *11)) (-4 *10 (-1082 *7 *8 *9))
- (-4 *11 (-1126 *7 *8 *9 *10)) (-4 *7 (-463)) (-4 *8 (-804))
- (-4 *9 (-861)) (-5 *1 (-1162 *7 *8 *9 *10 *11)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1190 *6)) (-5 *3 (-575)) (-4 *6 (-316)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-112)) (-5 *5 (-700 (-171 (-227))))
- (-5 *2 (-1052)) (-5 *1 (-766)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556))
- (-4 *3 (-567))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-556)) (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556))
- (-4 *3 (-1117))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556))
- (-4 *3 (-1117))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3))
- (-4 *3 (-1055 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-1261 *5)) (-4 *5 (-316))
- (-5 *2 (-782)) (-5 *1 (-466 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-325 (-389))) (-5 *1 (-314)))))
+ ((*1 *1 *1) (-4 *1 (-1163))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021) (-1222))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068))
+ (-5 *1 (-1180 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068))
+ (-14 *4 (-1196)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-403))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-403)))))
+(((*1 *1) (-5 *1 (-145))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1290))))
+ ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1290)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))))
+(((*1 *1) (-5 *1 (-449))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-782)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-804)) (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-463)) (-4 *6 (-861))
- (-5 *2 (-112)) (-5 *1 (-460 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2063 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-373)) (-4 *7 (-1261 *6))
- (-5 *2 (-2 (|:| |answer| (-597 (-418 *7))) (|:| |a0| *6)))
- (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1261 (-171 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1261 (-171 *2))))))
-(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-873))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194))
- (-14 *4 *2))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4))
+ (-2 (|:| -3260 (-701 (-419 (-969 *4))))
+ (|:| |vec| (-656 (-419 (-969 *4)))) (|:| -4422 (-783))
+ (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))
+ (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-418 *5))
- (|:| |c2| (-418 *5)) (|:| |deg| (-782))))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-259 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *5 (-804)) (-4 *2 (-274 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1243))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3)))))
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *4))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *4)))))))
+ (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))
+ ((*1 *1 *1) (-4 *1 (-414))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-936) (-936)))) (-5 *1 (-988)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1005 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *3)) (-4 *3 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 *3)) (-4 *3 (-1088 *5 *6 *7 *8)) (-4 *5 (-463))
- (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1124 *5 *6 *7 *8 *3)))))
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-1287 *5))) (-5 *4 (-576)) (-5 *2 (-1287 *5))
+ (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-1285 *2)) (-4 *5 (-316))
- (-4 *6 (-1009 *5)) (-4 *2 (-13 (-420 *6 *7) (-1055 *6)))
- (-5 *1 (-424 *5 *6 *7 *2)) (-4 *7 (-1261 *6)))))
-(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-377 *3)))))
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576))))
+ (-5 *2 (-2 (|:| -3391 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-969 *8))))
+ (-5 *5 (-783)) (-5 *6 (-1178)) (-4 *8 (-13 (-317) (-148)))
+ (-4 *11 (-966 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1196))))
+ (-4 *10 (-805))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-656
+ (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11))
+ (|:| |wcond| (-656 (-969 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *8))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *8))))))))))
+ (|:| |rgsz| (-576))))
+ (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-576)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2))
+ (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576))))
+ (-4 *2 (-174)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1190 *3)) (-4 *3 (-1066)) (-4 *1 (-1261 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-936))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-936))) (-5 *1 (-1310)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-662 *3)) (-4 *3 (-1235))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-662 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-958 *4)) (-4 *4 (-1066)) (-5 *1 (-1182 *3 *4))
- (-14 *3 (-936)))))
-(((*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-378)))))
+ (-12 (-5 *2 (-656 (-2 (|:| -4147 (-1196)) (|:| -3153 (-449)))))
+ (-5 *1 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-860)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1603 (-430 *3))))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021))
+ (-4 *2 (-1068)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3))))
+ (-5 *2 (-656 (-1196))) (-5 *1 (-1095 *3 *4 *5))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576))))
+ (-4 *7 (-1263 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2))
+ (-4 *2 (-353 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-938)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886))
+ (-5 *2 (-1292)) (-5 *1 (-1288)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-327)) (-5 *3 (-227)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1194))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-655 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2063 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1220) (-27) (-441 *8)))
- (-4 *8 (-13 (-463) (-148) (-1055 *3) (-650 *3))) (-5 *3 (-575))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -2429 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1030 *8 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))))
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-464)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-4 *7 (-1263 *5)) (-4 *4 (-736 *5 *7))
+ (-5 *2 (-2 (|:| -3260 (-701 *6)) (|:| |vec| (-1287 *5))))
+ (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))))
(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-967 *4)) (-4 *4 (-1066))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936))
- (-4 *5 (-567)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389)))
- (-5 *1 (-796 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389)))
- (-5 *1 (-796 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389)))
- (-5 *1 (-796 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-145)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-700 *4)) (-4 *4 (-373)) (-5 *2 (-1190 *4))
- (-5 *1 (-543 *4 *5 *6)) (-4 *5 (-373)) (-4 *6 (-13 (-373) (-859))))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1192 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227)))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-567)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2)
- (-12 (-4 *4 (-373)) (-5 *2 (-936)) (-5 *1 (-337 *3 *4))
- (-4 *3 (-338 *4))))
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
((*1 *2)
- (-12 (-4 *4 (-373)) (-5 *2 (-844 (-936))) (-5 *1 (-337 *3 *4))
- (-4 *3 (-338 *4))))
- ((*1 *2) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936))))
- ((*1 *2)
- (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-429 *5)) (-4 *5 (-567))
- (-5 *2
- (-2 (|:| -1658 (-782)) (|:| -1754 *5) (|:| |radicand| (-655 *5))))
- (-5 *1 (-329 *5)) (-5 *4 (-782))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1019)) (-5 *2 (-575)))))
-(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-833)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1194)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-713 *3 *5 *6 *7))
- (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235))
- (-4 *7 (-1235))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-5 *2 (-1 *6 *5)) (-5 *1 (-717 *3 *5 *6))
- (-4 *3 (-625 (-547))) (-4 *5 (-1235)) (-4 *6 (-1235)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-782)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-142))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1161)) (-5 *2 (-145)))))
-(((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-336 *3)) (-4 *3 (-1235))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-527 *3 *4)) (-4 *3 (-1235))
- (-14 *4 (-575)))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-935)) (-5 *2 (-2 (|:| -1754 (-655 *1)) (|:| -3657 *1)))
- (-5 *3 (-655 *1)))))
+ (-12 (-5 *3 (-656 (-656 (-960 (-227)))))
+ (-5 *2 (-656 (-1113 (-227)))) (-5 *1 (-945)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-418 (-967 (-171 (-575))))))
- (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4))
- (-4 *4 (-13 (-373) (-859)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-303 (-418 (-967 (-171 (-575)))))))
- (-5 *2 (-655 (-655 (-303 (-967 (-171 *4)))))) (-5 *1 (-388 *4))
- (-4 *4 (-13 (-373) (-859)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 (-171 (-575)))))
- (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4))
- (-4 *4 (-13 (-373) (-859)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-303 (-418 (-967 (-171 (-575))))))
- (-5 *2 (-655 (-303 (-967 (-171 *4))))) (-5 *1 (-388 *4))
- (-4 *4 (-13 (-373) (-859))))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-700 (-325 (-227)))) (-5 *2 (-389)) (-5 *1 (-207)))))
-(((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-782))
- (-4 *3 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *4 (-1261 *3)) (-5 *1 (-510 *3 *4 *5)) (-4 *5 (-420 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2 (-430 (-1192 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3))
+ (-4 *3 (-1263 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4))))
+ (-5 *1 (-1295 *4)) (-4 *4 (-374)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-5 *1 (-711))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-374)) (-5 *1 (-997 *5)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-5 *2 (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2307 *1)))
+ (-4 *1 (-1084 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2307 *1)))
+ (-4 *1 (-1084 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1285 *4)) (-4 *4 (-428 *3)) (-4 *3 (-316))
- (-4 *3 (-567)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-4 *4 (-373)) (-5 *2 (-1285 *1))
- (-4 *1 (-338 *4))))
- ((*1 *2) (-12 (-4 *3 (-373)) (-5 *2 (-1285 *1)) (-4 *1 (-338 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-174)) (-4 *4 (-1261 *3)) (-5 *2 (-1285 *1))
- (-4 *1 (-420 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4))
- (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6))
- (-4 *6 (-13 (-420 *4 *5) (-1055 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4))
- (-5 *2 (-1285 *6)) (-5 *1 (-425 *3 *4 *5 *6 *7))
- (-4 *6 (-420 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1285 *1)) (-4 *1 (-428 *3))))
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))
+ (-14 *4 (-1196)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-4 *2 (-13 (-27) (-1222) (-442 *3) (-10 -8 (-15 -2858 ($ *4)))))
+ (-4 *4 (-860))
+ (-4 *5
+ (-13 (-1265 *2 *4) (-374) (-1222)
+ (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $)))))
+ (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5))
+ (-14 *7 (-1196)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4))
+ (-5 *2 (-2 (|:| -1788 (-419 *5)) (|:| |poly| *3)))
+ (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1263 (-171 *2)))))
((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1285 (-1285 *4))) (-5 *1 (-539 *4))
- (-4 *4 (-359)))))
+ (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3))
+ (-4 *3 (-1263 (-171 *2))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-656 (-1095 *4 *5 *2))) (-4 *4 (-1119))
+ (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4))))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-656 (-1095 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1119))
+ (-4 *6 (-13 (-1068) (-899 *5) (-626 (-905 *5))))
+ (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5))
+ (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-492 *4 *5))) (-14 *4 (-655 (-1194)))
- (-4 *5 (-463)) (-5 *2 (-655 (-252 *4 *5))) (-5 *1 (-642 *4 *5)))))
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292))
+ (-5 *1 (-1238 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292))
+ (-5 *1 (-1238 *4)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-2 (|:| -3871 (-1176 *4)) (|:| -3883 (-1176 *4))))
+ (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -2858 ($ *7)))))
+ (-4 *7 (-860))
+ (-4 *8
+ (-13 (-1265 *3 *7) (-374) (-1222)
+ (-10 -8 (-15 -2399 ($ $)) (-15 -1850 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))))
+ (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8))
+ (-14 *10 (-1196)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317))
+ (-4 *9 (-966 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2279 (-1192 *9)) (|:| |polval| (-1192 *8))))
+ (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-385 *4 *2))
- (-4 *2 (-13 (-383 *4) (-10 -7 (-6 -4461)))))))
+ (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-993)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-771)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-874)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2))
+ (-4 *2 (-1263 *4)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1261 (-418 (-575))))
- (-5 *2 (-2 (|:| |den| (-575)) (|:| |gcdnum| (-575))))
- (-5 *1 (-928 *3 *4)) (-4 *4 (-1261 (-418 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1261 (-418 *2))) (-5 *2 (-575)) (-5 *1 (-928 *4 *3))
- (-4 *3 (-1261 (-418 *4))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-782)) (-5 *3 (-958 *5)) (-4 *5 (-1066))
- (-5 *1 (-1182 *4 *5)) (-14 *4 (-936))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-782))) (-5 *3 (-782)) (-5 *1 (-1182 *4 *5))
- (-14 *4 (-936)) (-4 *5 (-1066))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-782))) (-5 *3 (-958 *5)) (-4 *5 (-1066))
- (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))))
+ (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4)))))
+ (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-969 *4)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))))
+(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *5 (-805)) (-4 *2 (-275 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4))
+ (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237))
+ (-14 *4 (-576)))))
+(((*1 *1) (-5 *1 (-1289))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3)))
+ (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *3 (-1068))
+ (-5 *2 (-2 (|:| -2647 *1) (|:| -2307 *1))) (-4 *1 (-864 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068))
+ (-5 *2 (-2 (|:| -2647 *3) (|:| -2307 *3))) (-5 *1 (-865 *5 *3))
+ (-4 *3 (-864 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-655 *5) *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *6 (-1261 *5))
- (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2566 *3))))
- (-5 *1 (-820 *5 *6 *3 *7)) (-4 *3 (-667 *6))
- (-4 *7 (-667 (-418 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-655 *5) *6))
- (-4 *5 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))
- (-4 *6 (-1261 *5))
- (-5 *2 (-655 (-2 (|:| |poly| *6) (|:| -2566 (-665 *6 (-418 *6))))))
- (-5 *1 (-823 *5 *6)) (-5 *3 (-665 *6 (-418 *6))))))
+ (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4))
+ (-4 *3 (-1263 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-765)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1237)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1206)))))
+(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-655 (-1229 *5)))
- (-5 *1 (-1293 *5)) (-5 *4 (-1229 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-575)) (-5 *1 (-1174 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2))
+ (-4 *4 (-38 (-419 (-576)))))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-656 (-1192 *11))) (-5 *3 (-1192 *11))
+ (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783)))
+ (-5 *7 (-1287 (-656 (-1192 *8)))) (-4 *10 (-862))
+ (-4 *8 (-317)) (-4 *11 (-966 *8 *9 *10)) (-4 *9 (-805))
+ (-5 *1 (-719 *9 *10 *8 *11)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1263 (-419 (-576))))
+ (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))
+ (-5 *1 (-930 *3 *4)) (-4 *4 (-1263 (-419 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3))
+ (-4 *3 (-1263 (-419 *4))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-701 *2)) (-5 *4 (-783))
+ (-4 *2 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1) (-4 *1 (-568))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1216)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1143 *4 *3 *5))) (-4 *4 (-38 (-418 (-575))))
- (-4 *4 (-1066)) (-4 *3 (-861)) (-5 *1 (-1143 *4 *3 *5))
- (-4 *5 (-964 *4 (-542 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1229 *4))) (-5 *3 (-1194)) (-5 *1 (-1229 *4))
- (-4 *4 (-38 (-418 (-575)))) (-4 *4 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *4))))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 (-2 (|:| -2347 (-1190 *6)) (|:| -1658 (-575)))))
- (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
+ (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1207 *5)))))
+(((*1 *1) (-5 *1 (-301))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576))
+ (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1178)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -4171 *3) (|:| |coef1| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066)))))
+ (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1068))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-960 (-227))) (-5 *2 (-227)) (-5 *1 (-1233))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))))
+(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))
+ ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1) (-4 *1 (-881 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804))
+ (-4 *4 (-862)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-624 *4)) (-5 *6 (-1196))
+ (-4 *4 (-13 (-442 *7) (-27) (-1222)))
+ (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))))
+(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241))
+ (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054)))))
+(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068))
+ (-5 *2 (-656 (-656 (-656 (-783))))))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-768)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1263 *4)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 (-969 *6))) (-4 *6 (-568))
+ (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2))
+ (-4 *5 (-805))
+ (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-372 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-661 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-316))
- (-5 *2 (-655 (-782))) (-5 *1 (-789 *3 *4 *5 *6 *7))
- (-4 *3 (-1261 *6)) (-4 *7 (-964 *6 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-993 *3 *4 *2 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861)) (-4 *5 (-1082 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1137)) (-5 *2 (-1290)) (-5 *1 (-842)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1119 *3)) (-5 *1 (-920 *3)) (-4 *3 (-378))
- (-4 *3 (-1117)))))
+ (-12 (-5 *3 (-701 *2)) (-4 *4 (-1263 *2))
+ (-4 *2 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
+ (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862))
+ (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4256 *9))))
+ (-5 *1 (-1127 *6 *7 *4 *8 *9)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-194))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-310))))
+ ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-315)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-246))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-576)) (-5 *1 (-246)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))))
+(((*1 *2)
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4))
+ (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374))
+ (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-194)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082)))))
+(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-874))))
+(((*1 *2)
+ (-12 (-4 *1 (-360))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359))))
- ((*1 *1) (-4 *1 (-378)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1285 *4)) (-5 *1 (-539 *4))
- (-4 *4 (-359))))
- ((*1 *1 *1) (-4 *1 (-556))) ((*1 *1) (-4 *1 (-556)))
- ((*1 *1 *1) (-5 *1 (-782)))
- ((*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360))))
+ ((*1 *1) (-4 *1 (-379)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360))))
+ ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557)))
+ ((*1 *1 *1) (-5 *1 (-783)))
+ ((*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4))
- (-4 *4 (-1117))))
- ((*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-556)) (-4 *2 (-567)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *3 (-1261 *4)) (-5 *1 (-820 *4 *3 *2 *5)) (-4 *2 (-667 *3))
- (-4 *5 (-667 (-418 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-418 *5))
- (-4 *4 (-13 (-373) (-148) (-1055 (-418 (-575))))) (-4 *5 (-1261 *4))
- (-5 *1 (-820 *4 *5 *2 *6)) (-4 *2 (-667 *5)) (-4 *6 (-667 *3)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1261 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-575)) (-5 *1 (-707 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-575)) (-5 *2 (-655 (-2 (|:| -2347 *3) (|:| -1753 *4))))
- (-5 *1 (-707 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *4)) (-5 *1 (-897 *3 *4 *5))
- (-4 *3 (-1117)) (-4 *5 (-677 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-981 *4)) (-4 *4 (-1117)) (-5 *2 (-1119 *4))
- (-5 *1 (-982 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1) (-4 *1 (-880 *2))))
+ (-12 (-5 *3 (-576)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4))
+ (-4 *4 (-1119))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-568)))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805))
+ (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2039 (-656 *9))))
+ (-5 *3 (-656 *9)) (-4 *1 (-1230 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2039 (-656 *8))))
+ (-5 *3 (-656 *8)) (-4 *1 (-1230 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568))))
+ ((*1 *1 *1) (|partial| -4 *1 (-734))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1235))
- (-4 *4 (-383 *2)) (-4 *5 (-383 *2))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237))
+ (-4 *4 (-384 *2)) (-4 *5 (-384 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-383 *2))
- (-4 *5 (-383 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2))
+ (-4 *5 (-384 *2)) (-4 *2 (-1237))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1237))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 (-575))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 (-575)) (-14 *5 (-782))))
+ (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 (-576)) (-14 *5 (-783))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-782))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-783))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-782))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-783))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-782))))
+ (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-783))))
((*1 *2 *1)
- (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-575))
- (-14 *4 (-782))))
+ (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576))
+ (-14 *4 (-783))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-250 (-1176))) (-5 *1 (-216 *4))
+ (-12 (-5 *3 (-1196)) (-5 *2 (-250 (-1178))) (-5 *1 (-216 *4))
(-4 *4
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ *3)) (-15 -2478 ((-1290) $))
- (-15 -3411 ((-1290) $)))))))
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ *3)) (-15 -2486 ((-1292) $))
+ (-15 -2720 ((-1292) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1006)) (-5 *1 (-216 *3))
+ (-12 (-5 *2 (-1008)) (-5 *1 (-216 *3))
(-4 *3
- (-13 (-861)
- (-10 -8 (-15 -2065 ((-1176) $ (-1194))) (-15 -2478 ((-1290) $))
- (-15 -3411 ((-1290) $)))))))
+ (-13 (-862)
+ (-10 -8 (-15 -2099 ((-1178) $ (-1196))) (-15 -2486 ((-1292) $))
+ (-15 -2720 ((-1292) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-782)) (-5 *1 (-250 *4)) (-4 *4 (-861))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-861))))
+ (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-862))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-861))))
+ (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1235)) (-4 *2 (-1235))))
+ (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1235))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115))))
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-352 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-1261 *2))
- (-4 *4 (-1261 (-418 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-1176)) (-5 *1 (-513))))
+ (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2))
+ (-4 *4 (-1263 (-419 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-782)) (-5 *1 (-686 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-655 (-575))) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
+ (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-655 (-904 *4))) (-5 *1 (-904 *4))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4))
+ (-4 *4 (-1119))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-920 *4)) (-5 *1 (-919 *4))
- (-4 *4 (-1117))))
+ (-12 (-5 *3 (-783)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4))
+ (-4 *4 (-1119))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1027 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *1 (-1043 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7)) (-4 *2 (-1066))
+ (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068))
(-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-1070 *4 *5 *2 *6 *7))
- (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7))
+ (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-936)) (-4 *4 (-1117))
- (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4))))
- (-5 *1 (-1093 *4 *5 *2))
- (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4))))))
+ (-12 (-5 *3 (-938)) (-4 *4 (-1119))
+ (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1095 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-936)) (-4 *4 (-1117))
- (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4))))
- (-5 *1 (-1094 *4 *5 *2))
- (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1161)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194))))
+ (-12 (-5 *3 (-938)) (-4 *4 (-1119))
+ (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1096 *4 *5 *2))
+ (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1163)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-418 *1)) (-4 *1 (-1261 *2)) (-4 *2 (-1066))
- (-4 *2 (-373))))
+ (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1068))
+ (-4 *2 (-374))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-418 *1)) (-4 *1 (-1261 *3)) (-4 *3 (-1066))
- (-4 *3 (-567))))
+ (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))
+ (-4 *3 (-568))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1273 *2)) (-4 *2 (-1235))))
+ (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1237))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1273 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1237))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-373)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-1055 (-575)) (-463) (-650 (-575))))
- (-5 *2 (-2 (|:| -4426 *3) (|:| |nconst| *3))) (-5 *1 (-578 *5 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(((*1 *2 *3) (-12 (-5 *2 (-429 *3)) (-5 *1 (-569 *3)) (-4 *3 (-556)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-325 (-227))) (|:| -3472 (-655 (-227)))
- (|:| |lb| (-655 (-854 (-227)))) (|:| |cf| (-655 (-325 (-227))))
- (|:| |ub| (-655 (-854 (-227))))))
- (-5 *1 (-275)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-502)))))
+ (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4))
+ (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464))
+ (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-859))) (-5 *1 (-183 *3 *2))
- (-4 *2 (-1261 (-171 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290))
- (-5 *1 (-1089 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-463)) (-4 *4 (-804)) (-4 *5 (-861))
- (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-1290))
- (-5 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *7 (-1088 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-655 (-325 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-212)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6))
- (-5 *2 (-655 (-2 (|:| |val| (-112)) (|:| -4270 *1))))
- (-4 *1 (-1088 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1117)) (-5 *1 (-979 *2 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3) (-12 (-5 *3 (-655 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-373)))))
-(((*1 *2 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-1117)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4))
+ (-5 *1 (-431 *4))))
+ ((*1 *1 *1) (-5 *1 (-943)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943))))
+ ((*1 *1 *1) (-5 *1 (-944)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))
+ (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))
+ (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))
+ (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2425 (-419 (-576))) (|:| -2442 (-419 (-576)))))
+ (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3))
+ (-4 *3 (-1263 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1119)) (-4 *2 (-915 *4)) (-5 *1 (-704 *4 *2 *5 *3))
+ (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4462)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-5 *2 (-1176)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-389)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-389)) (-5 *1 (-269)))))
-(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1079))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1079)))))
+ (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))
+ (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6))
+ (-4 *6 (-353 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112))
+ (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *2 (-1232 (-943)))
+ (-5 *1 (-328))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *7 (-1178))
+ (-5 *2 (-1232 (-943))) (-5 *1 (-328))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576))
+ (-5 *2 (-1232 (-943))) (-5 *1 (-328))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1178))
+ (-5 *2 (-1232 (-943))) (-5 *1 (-328)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862)))
+ (-14 *3 (-656 (-1196))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-1129)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1068 *3)) (-4 *3 (-1129)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373)))
- (-4 *3 (-1261 *4)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1192 (-1043 *3))))
+ (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041))))))
+(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1263 *4))
+ (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-938))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-4 *3 (-379))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-374)) (-4 *2 (-379)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-4 *3 (-913 *5)) (-5 *2 (-700 *3))
- (-5 *1 (-703 *5 *3 *6 *4)) (-4 *6 (-383 *3))
- (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4460)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1176))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-112))
- (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1220) (-29 *4))))))
+ (-12 (-5 *3 (-701 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-651 *5))
+ (-4 *5 (-1068))
+ (-5 *2 (-2 (|:| -3260 (-701 *5)) (|:| |vec| (-1287 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068))
+ (-5 *2 (-701 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068))
+ (-5 *2 (-701 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3))))
+ (-5 *1 (-922 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1289))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1178)) (-5 *1 (-1289))))
+ ((*1 *1 *1) (-5 *1 (-1289))))
+(((*1 *1) (-5 *1 (-1101))))
+(((*1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1158))) ((*1 *1 *1 *1) (-4 *1 (-1158))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1194 *4 *5 *6))
+ (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1279 *4 *5 *6))
+ (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 (-782))) (-5 *1 (-986 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1261 *6))
- (-4 *6 (-13 (-27) (-441 *5))) (-4 *5 (-13 (-567) (-1055 (-575))))
- (-4 *8 (-1261 (-418 *7))) (-5 *2 (-597 *3))
- (-5 *1 (-563 *5 *6 *7 *8 *3)) (-4 *3 (-352 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1285 (-655 *3))) (-4 *4 (-316))
- (-5 *2 (-655 *3)) (-5 *1 (-466 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545))))
- ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804))
- (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3)))))
+ (-12 (-5 *2 (-1192 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374))
+ (-5 *1 (-1012 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019))))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546))))
+ ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112))
+ (-5 *2 (-1054)) (-5 *1 (-757)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-1055 (-575)))) (-5 *1 (-190 *3 *2))
- (-4 *2 (-13 (-27) (-1220) (-441 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-13 (-567) (-1055 (-575))))
- (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-373)))))
-(((*1 *1 *1) (-4 *1 (-144)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-556)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-567)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-373)) (-5 *1 (-777 *2 *3)) (-4 *2 (-719 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *1) (-5 *1 (-448))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-463)) (-4 *4 (-861))
- (-4 *5 (-804)) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4)))))
-(((*1 *2) (-12 (-5 *2 (-854 (-575))) (-5 *1 (-545))))
- ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *1) (-12 (-4 *1 (-383 *2)) (-4 *2 (-1235)) (-4 *2 (-861))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1068)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1184 *4 *5))
+ (-14 *4 (-938)) (-4 *5 (-1068)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-937)) (-5 *2 (-2 (|:| -1788 (-656 *1)) (|:| -3633 *1)))
+ (-5 *3 (-656 *1)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1080 (-1043 *4) (-1192 (-1043 *4)))) (-5 *3 (-874))
+ (-5 *1 (-1043 *4)) (-4 *4 (-13 (-860) (-374) (-1041))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576)))))
+ (-4 *2 (-13 (-862) (-21))))))
+(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546))))
+ ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-383 *3)) (-4 *3 (-1235))))
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237))))
((*1 *2 *2)
- (-12 (-5 *2 (-655 (-920 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1119))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861))
- (-4 *6 (-1082 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3920 *1) (|:| |upper| *1)))
- (-4 *1 (-993 *4 *5 *3 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-852)) (-5 *2 (-1052)) (-5 *1 (-851))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-325 (-389)))) (-5 *4 (-655 (-389)))
- (-5 *2 (-1052)) (-5 *1 (-851)))))
-(((*1 *1 *1) (-5 *1 (-227)))
- ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1) (-4 *1 (-1156))) ((*1 *1 *1 *1) (-4 *1 (-1156))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-396 *2)) (-4 *2 (-1117)))))
-(((*1 *1) (-5 *1 (-814))))
-(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-700 (-418 *4))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-340 *3)) (-4 *3 (-861)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-463)) (-4 *4 (-861)) (-4 *5 (-804)) (-5 *2 (-112))
- (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-964 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-4 *3 (-13 (-1117) (-34)))
- (-4 *4 (-13 (-1117) (-34))))))
-(((*1 *1 *2) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-547))) (-5 *1 (-547)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-339)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-373)) (-5 *1 (-910 *2 *4))
- (-4 *2 (-1261 *4)))))
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862))
+ (-4 *6 (-1084 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3807 *1) (|:| |upper| *1)))
+ (-4 *1 (-995 *4 *5 *3 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1196 (-418 (-575)))) (-5 *2 (-418 (-575)))
- (-5 *1 (-192)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-227))
+ (-12 (-5 *2 (-656 *3)) (-5 *1 (-978 *3)) (-4 *3 (-557)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1054)) (-5 *1 (-766)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5))
+ (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390))
(-5 *2
- (-2 (|:| |brans| (-655 (-655 (-958 *4))))
- (|:| |xValues| (-1111 *4)) (|:| |yValues| (-1111 *4))))
- (-5 *1 (-154)) (-5 *3 (-655 (-655 (-958 *4)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-889 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-891 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-782)) (-5 *1 (-894 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *2 (-1052))
- (-5 *1 (-767)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
+ (-2 (|:| -4160 *4) (|:| -3058 *4) (|:| |totalpts| (-576))
+ (|:| |success| (-112))))
+ (-5 *1 (-801)) (-5 *5 (-576)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-656
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-805)) (-4 *3 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862))
+ (-5 *1 (-461 *4 *5 *6 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-419 (-969 *6)) (-1185 (-1196) (-969 *6))))
+ (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *6)))))
+ (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-969 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5))))
+ (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4))))
+ (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5)))))
+ (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148)))
+ (-5 *1 (-411 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))))
-(((*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-4 *1 (-733)))
- ((*1 *1) (-4 *1 (-737)))
- ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
- ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-456 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1066)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-575)) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-575)) (-5 *1 (-246)))))
-(((*1 *1) (-5 *1 (-1290))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-785)) (-5 *1 (-115))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-785)) (-5 *1 (-115)))))
-(((*1 *1) (-4 *1 (-984))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1117))
- (-4 *6 (-1117)) (-4 *2 (-1117)) (-5 *1 (-691 *5 *6 *2)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *1 (-276)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1196)))
+ (-4 *2 (-13 (-442 (-171 *5)) (-1021) (-1222))) (-4 *5 (-568))
+ (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1021) (-1222))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-783)) (-5 *3 (-960 *5)) (-4 *5 (-1068))
+ (-5 *1 (-1184 *4 *5)) (-14 *4 (-938))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5))
+ (-14 *4 (-938)) (-4 *5 (-1068))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068))
+ (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-112)) (-5 *1 (-905 *4))
+ (-4 *4 (-1119)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))))
+(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734)))
+ ((*1 *1) (-4 *1 (-738)))
+ ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
+ ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34)))
+ (-4 *3 (-13 (-1119) (-34))))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112))
+ (-5 *2 (-1054)) (-5 *1 (-757)))))
+(((*1 *1) (-5 *1 (-1292))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1176 (-227)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3672
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1054)) (-5 *1 (-315)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))
+ (-4 *3 (-568))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-988 *4 *3))
+ (-4 *3 (-1263 *4)))))
+(((*1 *1) (-4 *1 (-986))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *1)
(-12
(-5 *2
- (-655
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
+ (-656
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
(|:| |relerr| (-227)))))
- (-5 *1 (-570))))
+ (-5 *1 (-571))))
((*1 *2 *1)
- (-12 (-4 *1 (-621 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-5 *2 (-655 *3))))
+ (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-5 *2 (-656 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-655
+ (-656
(-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
(|:| |abserr| (-227)) (|:| |relerr| (-227)))))
- (-5 *1 (-814)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-655 (-1194))) (-4 *4 (-174))
- (-14 *6
- (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *2))
- (-2 (|:| -4317 *5) (|:| -1658 *2))))
- (-4 *2 (-243 (-2869 *3) (-782))) (-5 *1 (-472 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-861)) (-4 *7 (-964 *4 *2 (-875 *3))))))
-(((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *1)) (-4 *1 (-1082 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1228 *4 *5 *6 *3)) (-4 *4 (-567)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-763)))))
-(((*1 *1 *1) (-4 *1 (-1161))))
+ (-5 *1 (-815)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-692 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1192 *4))
+ (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7))))
+ (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
+ (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1263 *2)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6))
+ (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-996 *4 *5 *6 *7)))))
(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-547)))
- ((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1129))))
- ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1117))))
- ((*1 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1129)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220)))
- (-4 *4 (-567)) (-4 *2 (-13 (-441 (-171 *4)) (-1019) (-1220)))
- (-5 *1 (-611 *4 *5 *2)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-377 *2)) (-4 *2 (-567)) (-4 *2 (-174)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-176 *3)) (-4 *3 (-316))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-685 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-751 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-861))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *1 (-997 *3)) (-4 *3 (-1066))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1263 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803)))))
+ ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-548)))
+ ((*1 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1131))))
+ ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))
+ ((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131)))))
+(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-1287 *4))
+ (-5 *1 (-1197 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-938)) (-5 *2 (-1287 *3)) (-5 *1 (-1197 *3))
+ (-4 *3 (-1068)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2942 *1) (|:| -4447 *1) (|:| |associate| *1)))
- (-4 *1 (-567)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-803)) (-4 *3 (-174)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924))
- (-5 *1 (-468 *3 *4 *2 *5)) (-4 *5 (-964 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-804)) (-4 *4 (-861)) (-4 *2 (-924))
- (-5 *1 (-921 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-924)) (-5 *1 (-922 *2 *3)) (-4 *3 (-1261 *2)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-13 (-1066) (-728 (-418 (-575)))))
- (-4 *5 (-861)) (-5 *1 (-1301 *4 *5 *2)) (-4 *2 (-1306 *5 *4)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-936)) (-5 *1 (-1118 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
+ (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-576))))
+ (-4 *4 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3901 ($ $ $)))))
+ (-4 *3 (-568)) (-5 *1 (-1266 *3 *4)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1997)) (-5 *2 (-112)) (-5 *1 (-628))))
+ (-12 (-5 *3 (|[\|\|]| -2031)) (-5 *2 (-112)) (-5 *1 (-629))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1942)) (-5 *2 (-112)) (-5 *1 (-628))))
+ (-12 (-5 *3 (|[\|\|]| -1976)) (-5 *2 (-112)) (-5 *1 (-629))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3937)) (-5 *2 (-112)) (-5 *1 (-628))))
+ (-12 (-5 *3 (|[\|\|]| -3914)) (-5 *2 (-112)) (-5 *1 (-629))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2750)) (-5 *2 (-112)) (-5 *1 (-702 *4))
- (-4 *4 (-624 (-873)))))
+ (-12 (-5 *3 (|[\|\|]| -2735)) (-5 *2 (-112)) (-5 *1 (-703 *4))
+ (-4 *4 (-625 (-874)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-624 (-873))) (-5 *2 (-112))
- (-5 *1 (-702 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112))
+ (-5 *1 (-703 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-887))))
+ (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-888))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-887))))
+ (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-603))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-489))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1184))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-637))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1113))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1107))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-987))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-320))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1132))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-1295))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1154)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-112))))
+ (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)) (-5 *1 (-1199))))
+ (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-1201))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)) (-5 *1 (-1199))))
+ (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1201))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1199))))
+ (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1201))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)) (-5 *1 (-1199)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-700 *4)) (-5 *3 (-936)) (|has| *4 (-6 (-4462 "*")))
- (-4 *4 (-1066)) (-5 *1 (-1045 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 (-700 *4))) (-5 *3 (-936))
- (|has| *4 (-6 (-4462 "*"))) (-4 *4 (-1066)) (-5 *1 (-1045 *4)))))
+ (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1201)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1158))))
+(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-360)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1285 *4)) (-4 *4 (-1235)) (-4 *1 (-243 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-418 (-575))))) (-5 *1 (-269))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-1111 (-389)))) (-5 *1 (-269)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2))
- (-4 *4 (-38 (-418 (-575)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-373)) (-5 *1 (-1042 *3 *2)) (-4 *2 (-667 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-5 *2 (-2 (|:| -2566 *3) (|:| -1575 (-655 *5))))
- (-5 *1 (-1042 *5 *3)) (-5 *4 (-655 *5)) (-4 *3 (-667 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))))
-(((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-861))))
+ (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-243 *3 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-944)))))
+(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1228 *2 *3 *4 *5)) (-4 *2 (-567))
- (-4 *3 (-804)) (-4 *4 (-861)) (-4 *5 (-1082 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568))
+ (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| |deg| (-782)) (|:| -3989 *5))))
- (-4 *5 (-1261 *4)) (-4 *4 (-359)) (-5 *2 (-655 *5))
- (-5 *1 (-218 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-2 (|:| -2347 *5) (|:| -1753 (-575)))))
- (-5 *4 (-575)) (-4 *5 (-1261 *4)) (-5 *2 (-655 *5))
- (-5 *1 (-707 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-1117))
- (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-938)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1068))
+ (-4 *4 (-1237))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174))
+ (-4 *5 (-243 (-2845 *3) (-783)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -4308 *2) (|:| -2273 *5))
+ (-2 (|:| -4308 *2) (|:| -2273 *5))))
+ (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862))
+ (-4 *7 (-966 *4 *5 (-876 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6))
+ (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-5 *2 (-325 *4))
- (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 (-171 *4))))))
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4))
+ (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-1224 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3))))))
+ (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))))
(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))
- ((*1 *1 *1 *1) (-5 *1 (-1137))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1066)) (-4 *3 (-1117))
- (-5 *2 (-2 (|:| |val| *1) (|:| -1658 (-575)))) (-4 *1 (-441 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -1658 (-904 *3))))
- (-5 *1 (-904 *3)) (-4 *3 (-1117))))
+ ((*1 *1 *1 *1) (-5 *1 (-1139))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1292))
+ (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-769)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066))
- (-4 *7 (-964 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -1658 (-575))))
- (-5 *1 (-965 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $))
- (-15 -1608 (*7 $))))))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-623 *3))
- (-4 *3 (-13 (-441 *5) (-27) (-1220)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3)))
- (-5 *1 (-577 *5 *3 *6)) (-4 *6 (-1117)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-373)) (-5 *1 (-910 *2 *3))
- (-4 *2 (-1261 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-700 (-1190 *8))) (-4 *5 (-1066)) (-4 *8 (-1066))
- (-4 *6 (-1261 *5)) (-5 *2 (-700 *6)) (-5 *1 (-512 *5 *6 *7 *8))
- (-4 *7 (-1261 *6)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-767)))))
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-700 *3)) (-4 *3 (-316)) (-5 *1 (-711 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-575)) (-5 *4 (-429 *2)) (-4 *2 (-964 *7 *5 *6))
- (-5 *1 (-753 *5 *6 *7 *2)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-316)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 (-967 *3))) (-4 *3 (-463)) (-5 *1 (-370 *3 *4))
- (-14 *4 (-655 (-1194)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-964 *3 *4 *5)) (-4 *3 (-463))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-461 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-461 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-655 *7)) (-5 *3 (-1176)) (-4 *7 (-964 *4 *5 *6))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *1 (-461 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861))
- (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-655 (-791 *3 (-875 *4)))) (-4 *3 (-463))
- (-14 *4 (-655 (-1194))) (-5 *1 (-639 *3 *4)))))
+ (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3901 (-794 *3)) (|:| |coef1| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-2 (|:| -3901 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1054)) (-5 *1 (-760)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1117)) (-4 *3 (-861))
- (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861))))
- ((*1 *2 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861))))
+ (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *3 (-862))
+ (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
((*1 *2 *1)
- (-12 (-4 *2 (-1235)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-905 *3)) (-4 *3 (-861))))
+ (-12 (-4 *2 (-1237)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1273 *3)) (-4 *3 (-1235))))
- ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-288)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-655 *8)) (-5 *4 (-112)) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-655 (-1163 *5 *6 *7 *8))) (-5 *1 (-1163 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1278 *4))
+ (-4 *4 (-38 (-419 (-576))))
+ (-5 *2 (-1 (-1176 *4) (-656 (-1176 *4)))) (-5 *1 (-1280 *4 *5)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176)))))
- (-5 *2 (-1052)) (-5 *1 (-314))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2655 (-389)) (|:| -1777 (-1176))
- (|:| |explanations| (-655 (-1176))) (|:| |extra| (-1052))))
- (-5 *2 (-1052)) (-5 *1 (-314)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-479)) (-5 *3 (-655 (-269))) (-5 *1 (-1286))))
- ((*1 *1 *1) (-5 *1 (-1286))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-418 (-575)))) (-4 *2 (-1066)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-700 *2)) (-5 *4 (-575))
- (-4 *2 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-803)))))
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-194)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *7 (-1261 *5)) (-4 *4 (-735 *5 *7))
- (-5 *2 (-2 (|:| -3415 (-700 *6)) (|:| |vec| (-1285 *5))))
- (-5 *1 (-822 *5 *6 *7 *4 *3)) (-4 *6 (-667 *5)) (-4 *3 (-667 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *2 (-1230 (-941)))
- (-5 *1 (-327))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1111 (-227))) (-5 *6 (-575)) (-5 *7 (-1176))
- (-5 *2 (-1230 (-941))) (-5 *1 (-327))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575))
- (-5 *2 (-1230 (-941))) (-5 *1 (-327))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1111 (-227))) (-5 *6 (-227)) (-5 *7 (-575)) (-5 *8 (-1176))
- (-5 *2 (-1230 (-941))) (-5 *1 (-327)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))))
+(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-326 (-576))))
+ (-5 *1 (-1050)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374))
+ (-5 *2 (-783)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1263 *5)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-659 *5)) (-4 *5 (-1066))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-863 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1068))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-700 *3)) (-4 *1 (-428 *3)) (-4 *3 (-174))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066))))
+ (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1066))
- (-5 *1 (-864 *2 *3)) (-4 *3 (-863 *2)))))
-(((*1 *1) (-5 *1 (-628))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-782)) (-4 *4 (-13 (-567) (-148)))
- (-5 *1 (-1255 *4 *2)) (-4 *2 (-1261 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290))
- (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068))
+ (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))))
+(((*1 *1) (-5 *1 (-629))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-969 (-576)))) (-5 *1 (-449))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-227))) (-5 *2 (-1123))
+ (-5 *1 (-771))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-576))) (-5 *2 (-1123))
+ (-5 *1 (-771)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-112))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-656 *1))
+ (-4 *1 (-442 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-429 *3)) (-4 *3 (-567)) (-5 *1 (-430 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-659 *3)) (-4 *3 (-1066))
- (-5 *1 (-725 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1066)) (-5 *1 (-847 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1150 (-227))) (-5 *1 (-1218)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-623 *1)) (-4 *1 (-311)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-904 *4)) (-4 *4 (-1117)) (-5 *1 (-902 *4 *3))
- (-4 *3 (-1235))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4460)) (-4 *1 (-240 *3))
- (-4 *3 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-291 *3)) (-4 *3 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-219))))
- ((*1 *2 *1) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-498))))
- ((*1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)) (-4 *2 (-316))))
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1119))))
((*1 *2 *1)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1021 *3)) (-14 *3 (-575))))
- ((*1 *1 *1) (-4 *1 (-1077))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-920 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5)))
- (-4 *5 (-373)) (-4 *5 (-567)) (-5 *2 (-1285 *5))
- (-5 *1 (-649 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1285 *4)) (-4 *4 (-13 (-1066) (-650 *5)))
- (-3213 (-4 *5 (-373))) (-4 *5 (-567)) (-5 *2 (-1285 (-418 *5)))
- (-5 *1 (-649 *5 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-429 *2)) (-4 *2 (-567)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-575)) (-4 *1 (-698 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-909))
- (-5 *3
- (-2 (|:| |pde| (-655 (-325 (-227))))
- (|:| |constraints|
- (-655
- (-2 (|:| |start| (-227)) (|:| |finish| (-227))
- (|:| |grid| (-782)) (|:| |boundaryType| (-575))
- (|:| |dStart| (-700 (-227))) (|:| |dFinish| (-700 (-227))))))
- (|:| |f| (-655 (-655 (-325 (-227))))) (|:| |st| (-1176))
- (|:| |tol| (-227))))
- (-5 *2 (-1052)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1194))
- (-4 *4 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-586 *4 *2))
- (-4 *2 (-13 (-1220) (-974) (-1156) (-29 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-988)) (-5 *1 (-920 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))))
+ (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068))
+ (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3))
+ (-5 *1 (-967 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $))
+ (-15 -1635 (*7 $))))))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3))
+ (-4 *3 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3)))
+ (-4 *3 (-13 (-442 *6) (-27) (-1222)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463)))
- (-5 *2 (-854 *4)) (-5 *1 (-322 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1055 (-575)) (-650 (-575)) (-463)))
- (-5 *2 (-854 *4)) (-5 *1 (-1271 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1220) (-441 *3))) (-14 *5 (-1194))
- (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1174 *3))) (-5 *1 (-1174 *3)) (-4 *3 (-1235)))))
-(((*1 *1)
- (-12 (-4 *1 (-415)) (-3213 (|has| *1 (-6 -4451)))
- (-3213 (|has| *1 (-6 -4443)))))
- ((*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1117)) (-4 *2 (-861))))
- ((*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-861))))
- ((*1 *1) (-4 *1 (-855))) ((*1 *1 *1 *1) (-4 *1 (-861))))
-(((*1 *2 *3) (-12 (-5 *2 (-418 (-575))) (-5 *1 (-572)) (-5 *3 (-575))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1190 (-418 (-575)))) (-5 *1 (-957)) (-5 *3 (-575)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-768)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1052))
- (-5 *1 (-760)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-430 *2)) (-4 *2 (-568)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2063 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-373)) (-5 *1 (-585 *4 *2)) (-4 *2 (-1261 *4)))))
-(((*1 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-378)) (-4 *2 (-373)))))
+ (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148)))
+ (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
+ (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-373) (-859))) (-5 *1 (-183 *2 *3))
- (-4 *3 (-1261 (-171 *2))))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-567)) (-4 *3 (-174))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2098 (-655 *1))))
- (-4 *1 (-377 *3))))
+ (-12
+ (-5 *2
+ (-1006 (-419 (-576)) (-876 *3) (-245 *4 (-783))
+ (-253 *3 (-419 (-576)))))
+ (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-1005 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-944))
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-960 (-227)))))
+ (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576)))
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-960 (-227)))))
+ (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))))
+ (-5 *1 (-154))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-960 (-227)))))
+ (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-656 (-960 (-227))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-656 (-656 (-960 (-227)))))
+ (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))))
+ (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 (-227)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))))
+(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390)))
+ (-5 *2 (-1054)) (-5 *1 (-852)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054))
+ (-5 *1 (-767)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1043 *3))
+ (-4 *3 (-13 (-860) (-374) (-1041)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3))
+ (-4 *3 (-1263 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374)))
+ (-4 *3 (-1263 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1222) (-976))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1160 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1057 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-442 *3))))
((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-464 *3 *4 *5 *6))
- (|:| -2098 (-655 (-464 *3 *4 *5 *6)))))
- (-5 *1 (-464 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-383 *3)) (-4 *3 (-1235)) (-4 *3 (-861)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-383 *4)) (-4 *4 (-1235))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-389)) (-5 *3 (-1176)) (-5 *1 (-97)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-700 (-227))) (-5 *6 (-700 (-575))) (-5 *3 (-575))
- (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-112))))
+ (-12 (-4 *4 (-174)) (-5 *2 (-1192 *4)) (-5 *1 (-166 *3 *4))
+ (-4 *3 (-167 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-312))))
+ ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3))))
+ ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
+ (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374)))
+ (-4 *2 (-1263 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10))
+ (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8))
+ (-4 *10 (-1128 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6)))
+ (-5 *1 (-640 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1196)))
(-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
+ (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6)))))
+ (-5 *1 (-640 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6)))
+ (-5 *1 (-1065 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1))
+ (-4 *1 (-1230 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))))
+(((*1 *1)
+ (-12 (-4 *1 (-416)) (-3189 (|has| *1 (-6 -4453)))
+ (-3189 (|has| *1 (-6 -4445)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862))))
+ ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862))))
+ ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1176)) (-4 *1 (-374 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-227)) (-5 *5 (-575)) (-5 *2 (-1230 *3))
- (-5 *1 (-801 *3)) (-4 *3 (-991))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-655 (-958 (-227))))) (-5 *4 (-112))
- (-5 *1 (-1230 *2)) (-4 *2 (-991)))))
+ (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-964 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1290)) (-5 *1 (-1194)))))
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-374))
+ (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-5 *1 (-462 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374))
+ (-5 *2
+ (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6))))
+ (-5 *1 (-997 *6)) (-5 *3 (-701 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))
+ ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-576)))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-655 (-575)))) (-5 *1 (-895)) (-5 *3 (-575)))))
-(((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-936))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119))
+ (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-656 (-624 *3)))
+ (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *7)))
+ (-4 *7 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-2 (|:| -4177 *3) (|:| |coeff| *3)))
+ (-5 *1 (-569 *7 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *3 (-656 (-576)))
+ (-5 *1 (-896)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360))
+ (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -4253 *3))))
+ (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-862))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054))
+ (-5 *1 (-768)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-980 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568))
+ (-4 *3 (-1068)) (-4 *2 (-804))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1192 *3)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-990)) (-4 *2 (-132)) (-5 *1 (-1198 *3)) (-4 *3 (-568))
+ (-4 *3 (-1068))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1260 *4 *3)) (-14 *4 (-1196))
+ (-4 *3 (-1068)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3901 *3)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-340)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7)))
+ (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1285 *4)) (-4 *4 (-359)) (-5 *2 (-936))
- (-5 *1 (-539 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1235)) (-5 *2 (-655 *1)) (-4 *1 (-1027 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-1 (-227) (-227) (-227) (-227)))
- (-5 *2 (-1 (-958 (-227)) (-227) (-227))) (-5 *1 (-708)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-598 *2)) (-4 *2 (-556)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-782)) (-4 *3 (-1066)) (-4 *1 (-698 *3 *4 *5))
- (-4 *4 (-383 *3)) (-4 *5 (-383 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1066)) (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
- (-4 *5 (-243 *3 *2)))))
+ (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5)))
+ (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-1208 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112))
+ (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1054)) (-5 *1 (-768)))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6)))
+ (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4))
+ (-4 *3 (-1057 (-1196))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 (-969 *3))))
+ (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068))
+ (-3189 (-4 *3 (-1057 (-1196)))) (-4 *3 (-899 *5))
+ (-4 *4 (-626 (-905 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1119)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4))
+ (-3189 (-4 *3 (-1057 (-1196)))) (-3189 (-4 *3 (-1068)))
+ (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-597 *3)) (-5 *1 (-437 *5 *3))
- (-4 *3 (-13 (-1220) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194)) (-4 *5 (-13 (-567) (-1055 (-575)) (-148)))
- (-5 *2 (-597 (-418 (-967 *5)))) (-5 *1 (-581 *5))
- (-5 *3 (-418 (-967 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1 (-389))) (-5 *1 (-1057)))))
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5))
+ (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2568 *3))))
+ (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6))
+ (-4 *7 (-668 (-419 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *6 (-1263 *5))
+ (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -2568 (-666 *6 (-419 *6))))))
+ (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *5 (-926)) (-5 *1 (-469 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-926)))))
+(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1241)) (-5 *1 (-149 *2 *4 *3))
+ (-4 *3 (-1263 (-419 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196))
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-625 (-904 *3))) (-4 *3 (-898 *3)) (-4 *3 (-463))
- (-5 *1 (-1226 *3 *2)) (-4 *2 (-625 (-904 *3))) (-4 *2 (-898 *3))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148))
+ (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-996 *3 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-463)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-840)))))
-(((*1 *2 *3) (-12 (-5 *2 (-655 (-575))) (-5 *1 (-572)) (-5 *3 (-575)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-145))) (-5 *1 (-142))))
- ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-142)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-556)))))
-(((*1 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-655 (-782))) (-5 *1 (-1288)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *8)) (-4 *8 (-964 *5 *7 *6))
- (-4 *5 (-13 (-316) (-148))) (-4 *6 (-13 (-861) (-625 (-1194))))
- (-4 *7 (-804))
- (-5 *2
- (-655
- (-2 (|:| -4422 (-782))
- (|:| |eqns|
- (-655
- (-2 (|:| |det| *8) (|:| |rows| (-655 (-575)))
- (|:| |cols| (-655 (-575))))))
- (|:| |fgb| (-655 *8)))))
- (-5 *1 (-939 *5 *6 *7 *8)) (-5 *4 (-782)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-373)) (-4 *2 (-859)) (-5 *1 (-960 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
- (-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -2429 *7) (|:| |sol?| (-112)))
- (-575) *7))
- (-5 *6 (-655 (-418 *8))) (-4 *7 (-373)) (-4 *8 (-1261 *7))
- (-5 *3 (-418 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-585 *7 *8)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-941)))))
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4))
+ (-4 *4 (-1237)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1192 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568))
+ (-5 *1 (-32 *4 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *5)) (-4 *5 (-13 (-27) (-1220) (-441 *4)))))
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *4 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *4)))))
+ (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-418 (-575)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *5 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))))
+ (-12 (-5 *4 (-419 (-576)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-303 *3)) (-4 *3 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *5 *3))))
+ (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-303 *3)) (-5 *5 (-418 (-575)))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-324 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-575))) (-5 *4 (-303 *6))
- (-4 *6 (-13 (-27) (-1220) (-441 *5)))
- (-4 *5 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *5 *6))))
+ (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576)))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-325 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6))
+ (-4 *6 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *6 *3))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-575))) (-5 *4 (-303 *7)) (-5 *5 (-1252 (-575)))
- (-4 *7 (-13 (-27) (-1220) (-441 *6)))
- (-4 *6 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576)))
+ (-4 *7 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-575)))
- (-4 *3 (-13 (-27) (-1220) (-441 *7)))
- (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *7 *3))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576)))
+ (-4 *3 (-13 (-27) (-1222) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-418 (-575)))) (-5 *4 (-303 *8))
- (-5 *5 (-1252 (-418 (-575)))) (-5 *6 (-418 (-575)))
- (-4 *8 (-13 (-27) (-1220) (-441 *7)))
- (-4 *7 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8))
+ (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576)))
+ (-4 *8 (-13 (-27) (-1222) (-442 *7)))
+ (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1194)) (-5 *5 (-303 *3)) (-5 *6 (-1252 (-418 (-575))))
- (-5 *7 (-418 (-575))) (-4 *3 (-13 (-27) (-1220) (-441 *8)))
- (-4 *8 (-13 (-567) (-1055 (-575)) (-650 (-575)))) (-5 *2 (-52))
- (-5 *1 (-470 *8 *3))))
+ (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576))))
+ (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8)))
+ (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52))
+ (-5 *1 (-471 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3))))
- (-4 *3 (-1066)) (-5 *1 (-606 *3))))
+ (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3))))
+ (-4 *3 (-1068)) (-5 *1 (-607 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-607 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-608 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-2 (|:| |k| (-575)) (|:| |c| *3))))
- (-4 *3 (-1066)) (-4 *1 (-1245 *3))))
+ (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3))))
+ (-4 *3 (-1068)) (-4 *1 (-1247 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-782))
- (-5 *3 (-1174 (-2 (|:| |k| (-418 (-575))) (|:| |c| *4))))
- (-4 *4 (-1066)) (-4 *1 (-1266 *4))))
+ (-12 (-5 *2 (-783))
+ (-5 *3 (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4))))
+ (-4 *4 (-1068)) (-4 *1 (-1268 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-4 *1 (-1276 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-4 *1 (-1278 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 (-2 (|:| |k| (-782)) (|:| |c| *3))))
- (-4 *3 (-1066)) (-4 *1 (-1276 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-515 *3 *4 *5 *6))) (-4 *3 (-373)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
+ (-12 (-5 *2 (-1176 (-2 (|:| |k| (-783)) (|:| |c| *3))))
+ (-4 *3 (-1068)) (-4 *1 (-1278 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-873))))
+ ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783))
+ (-4 *4 (-174))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-442 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568))
+ (-5 *1 (-159 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861))
- (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *1)) (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-655 *1)) (-5 *3 (-655 *7)) (-4 *1 (-1088 *4 *5 *6 *7))
- (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-655 *1))
- (-4 *1 (-1088 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-288)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-112))
- (-5 *1 (-901 *4 *5)) (-4 *5 (-1117))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-904 *5)) (-4 *5 (-1117)) (-5 *2 (-112))
- (-5 *1 (-902 *5 *3)) (-4 *3 (-1235))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117))
- (-4 *6 (-1235)) (-5 *2 (-112)) (-5 *1 (-902 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6))
- (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782))))))
+ (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174)))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-723 *3 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1194)) (-5 *6 (-112))
- (-4 *7 (-13 (-316) (-148) (-1055 (-575)) (-650 (-575))))
- (-4 *3 (-13 (-1220) (-974) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-655 (-854 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-221 *7 *3)) (-5 *5 (-854 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-969)))))
-(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-373)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3657 *1)))
- (-4 *1 (-863 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2))
- (-4 *3 (-567)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))))
-(((*1 *1 *1) (-5 *1 (-873))) ((*1 *1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2) (-12 (-5 *1 (-1252 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804))
- (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1086 *7 *8 *9 *3 *4)) (-4 *4 (-1088 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1086 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1086 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-782)) (-5 *6 (-112)) (-4 *7 (-463)) (-4 *8 (-804))
- (-4 *9 (-861)) (-4 *3 (-1082 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1162 *7 *8 *9 *3 *4)) (-4 *4 (-1126 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-782)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1162 *6 *7 *8 *3 *4)) (-4 *4 (-1126 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-655 *4))
- (|:| |todo| (-655 (-2 (|:| |val| (-655 *3)) (|:| -4270 *4))))))
- (-5 *1 (-1162 *5 *6 *7 *3 *4)) (-4 *4 (-1126 *5 *6 *7 *3)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-1080)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-597 *3)) (-4 *3 (-373)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *1 (-1145 *3 *2)) (-4 *3 (-1261 *2)))))
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-5 *2 (-975 (-1192 *4))) (-5 *1 (-368 *4))
+ (-5 *3 (-1192 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-769)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1312)))))
+(((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464))
+ (-5 *1 (-935 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-783))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-738)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4))
+ (-4 *4 (-1263 *2)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4)))
+ (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6))
+ (-4 *6 (-464)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -3966 (-655 (-873))) (|:| -3081 (-655 (-873)))
- (|:| |presup| (-655 (-873))) (|:| -1405 (-655 (-873)))
- (|:| |args| (-655 (-873)))))
- (-5 *1 (-1194)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-623 *4)) (-5 *1 (-622 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
+ (-2 (|:| -2964 (-656 (-874))) (|:| -1869 (-656 (-874)))
+ (|:| |presup| (-656 (-874))) (|:| -2030 (-656 (-874)))
+ (|:| |args| (-656 (-874)))))
+ (-5 *1 (-1196)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1196)))
+ (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194))
- (-5 *1 (-268 *2)) (-4 *2 (-1235))))
+ (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196))
+ (-5 *1 (-269 *2)) (-4 *2 (-1237))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-655 (-269))) (-5 *4 (-1194)) (-5 *2 (-52))
- (-5 *1 (-269)))))
-(((*1 *1) (-4 *1 (-359))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-655 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567)) (-4 *7 (-804))
- (-4 *8 (-861)) (-5 *1 (-994 *6 *7 *8 *9)))))
+ (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-52))
+ (-5 *1 (-270)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783)))
+ (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1194))
+ (-12 (-5 *3 (-938))
(-5 *2
- (-2 (|:| |zeros| (-1174 (-227))) (|:| |ones| (-1174 (-227)))
- (|:| |singularities| (-1174 (-227)))))
- (-5 *1 (-105)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1194))
- (-4 *5 (-13 (-567) (-1055 (-575)) (-148)))
- (-5 *2
- (-2 (|:| -2063 (-418 (-967 *5))) (|:| |coeff| (-418 (-967 *5)))))
- (-5 *1 (-581 *5)) (-5 *3 (-418 (-967 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-538)) (-5 *2 (-702 (-1241))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-389)) (-5 *1 (-1080)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1066))
- (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))
- (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4))))
- ((*1 *1 *1) (-4 *1 (-556)))
- ((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-683 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-936)) (-5 *1 (-688 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-830 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-905 *3)) (-4 *3 (-861))))
- ((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1235)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-1232 *3)) (-4 *3 (-1235))))
+ (-3 (-1192 *4)
+ (-1287 (-656 (-2 (|:| -4160 *4) (|:| -4308 (-1139)))))))
+ (-5 *1 (-357 *4)) (-4 *4 (-360)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-783)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174))
+ (-5 *2 (-701 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4))
+ (-4 *3 (-429 *4))))
+ ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576))))))
+ (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-304 (-419 (-969 (-171 (-576)))))))
+ (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 (-171 (-576)))))
+ (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-304 (-419 (-969 (-171 (-576))))))
+ (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4))
+ (-4 *4 (-13 (-374) (-860))))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-374)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3)))
+ (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1263 *2))
+ (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6))
+ (-4 *6 (-353 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3)))
+ (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))
+ (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374))
+ (-4 *1 (-346 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1287 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-926))
+ (-5 *2 (-1287 *1)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1068))
+ (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))
+ (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))
+ ((*1 *1 *1) (-4 *1 (-557)))
+ ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-684 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-689 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))
+ ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1234 *3)) (-4 *3 (-1237))))
((*1 *2 *1)
- (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1235)) (-4 *2 (-1019))
- (-4 *2 (-1066)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-655 *3)) (-5 *5 (-936)) (-4 *3 (-1261 *4))
- (-4 *4 (-316)) (-5 *1 (-471 *4 *3)))))
+ (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021))
+ (-4 *2 (-1068)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-958 (-227))) (-5 *4 (-885)) (-5 *2 (-1290))
- (-5 *1 (-479))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1066)) (-4 *1 (-997 *3))))
+ (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *2 (-1292))
+ (-5 *1 (-480))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-958 *3))))
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-960 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-1066)) (-4 *1 (-1151 *3))))
+ (-12 (-5 *2 (-960 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-783)) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-656 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *1 (-1151 *3)) (-4 *3 (-1066))))
+ (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-958 (-227))) (-5 *1 (-1231)) (-5 *3 (-227)))))
-(((*1 *2 *2) (-12 (-5 *2 (-700 (-325 (-575)))) (-5 *1 (-1048)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-700 (-227))) (-5 *4 (-575)) (-5 *5 (-112))
- (-5 *2 (-1052)) (-5 *1 (-756)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-793 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-978 *3 *2)) (-4 *2 (-132)) (-4 *3 (-567))
- (-4 *3 (-1066)) (-4 *2 (-803))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-1190 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-988)) (-4 *2 (-132)) (-5 *1 (-1196 *3)) (-4 *3 (-567))
- (-4 *3 (-1066))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-1258 *4 *3)) (-14 *4 (-1194))
- (-4 *3 (-1066)))))
-(((*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1117)) (-5 *2 (-782)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-885)) (-5 *3 (-655 (-269))) (-5 *1 (-267)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 (-171 (-418 (-575)))))
- (-5 *2
- (-655
- (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-575))
- (|:| |outvect| (-655 (-700 (-171 *4)))))))
- (-5 *1 (-775 *4)) (-4 *4 (-13 (-373) (-859))))))
+ (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)) (-5 *3 (-227)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-1190 *7))) (-5 *3 (-1190 *7))
- (-4 *7 (-964 *4 *5 *6)) (-4 *4 (-924)) (-4 *5 (-804))
- (-4 *6 (-861)) (-5 *1 (-921 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-655 (-1190 *5))) (-5 *3 (-1190 *5))
- (-4 *5 (-1261 *4)) (-4 *4 (-924)) (-5 *1 (-922 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-21)) (-4 *2 (-1235)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-148))
- (-4 *3 (-316)) (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7)))
+ (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8)))
+ (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))
+ ((*1 *1 *1 *1) (-4 *1 (-805))))
(((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-441 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112))
- (-5 *1 (-159 *4 *5)) (-4 *5 (-441 *4))))
+ (-12 (-5 *3 (-656 (-2 (|:| -2367 *4) (|:| -4436 (-576)))))
+ (-4 *4 (-1263 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112))
- (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-310 *4)) (-4 *4 (-311))))
- ((*1 *2 *3) (-12 (-4 *1 (-311)) (-5 *3 (-115)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *5 (-1117)) (-5 *2 (-112))
- (-5 *1 (-440 *4 *5)) (-4 *4 (-441 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112))
- (-5 *1 (-442 *4 *5)) (-4 *5 (-441 *4))))
+ (-12 (-5 *3 (-430 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1068))
+ (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-142)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783)))
+ (-5 *1 (-921 *4)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003)))) (-5 *3 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-760)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))
((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-567)) (-5 *2 (-112))
- (-5 *1 (-641 *4 *5)) (-4 *5 (-13 (-441 *4) (-1019) (-1220))))))
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
+(((*1 *1) (-4 *1 (-360))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-1285 *4))) (-4 *4 (-1066)) (-5 *2 (-700 *4))
- (-5 *1 (-1046 *4)))))
+ (-12 (-4 *4 (-862)) (-5 *2 (-1208 (-656 *4))) (-5 *1 (-1207 *4))
+ (-5 *3 (-656 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-936)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)) (-4 *5 (-373))
- (-5 *2 (-112)) (-5 *1 (-678 *5))))
+ (|partial| -12 (-5 *4 (-304 (-845 *3)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-373)) (-4 *6 (-13 (-383 *5) (-10 -7 (-6 -4461))))
- (-4 *4 (-13 (-383 *5) (-10 -7 (-6 -4461)))) (-5 *2 (-112))
- (-5 *1 (-679 *5 *6 *4 *3)) (-4 *3 (-698 *5 *6 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-564)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-13 (-415) (-1220))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1194)) (-5 *2 (-389)) (-5 *1 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1176)) (-5 *2 (-655 (-1199))) (-5 *1 (-892)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1027 *3)) (-4 *3 (-1235)) (-5 *2 (-575)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
+ (-12 (-5 *4 (-304 (-845 (-969 *5)))) (-4 *5 (-464))
+ (-5 *2 (-845 (-419 (-969 *5)))) (-5 *1 (-649 *5))
+ (-5 *3 (-419 (-969 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5)))
+ (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-805)) (-4 *2 (-966 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2))
+ (-4 *4 (-464)) (-4 *6 (-862)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6))))
+ (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1278 *5)) (-5 *2 (-656 *6))
+ (-5 *1 (-1280 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1111 (-855 *3))) (-4 *3 (-13 (-1222) (-976) (-29 *5)))
+ (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1111 (-855 *3))) (-5 *5 (-1178))
+ (-4 *3 (-13 (-1222) (-976) (-29 *6)))
+ (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-221 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1111 (-855 (-326 *5))))
+ (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1111 (-855 (-326 *6))))
+ (-5 *5 (-1178))
+ (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1111 (-855 (-419 (-969 *5))))) (-5 *3 (-419 (-969 *5)))
+ (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1111 (-855 (-419 (-969 *6))))) (-5 *5 (-1178))
+ (-5 *3 (-419 (-969 *6)))
+ (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-222 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3))
+ (-4 *3 (-13 (-1222) (-976) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390))))
+ (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390))))
+ (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390))))
+ (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390))))
+ (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390)))))
+ (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390)))))
+ (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390)))))
+ (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390)))))
+ (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390))))
+ (-5 *5 (-1178)) (-5 *2 (-1054)) (-5 *1 (-577))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390))))
+ (-5 *5 (-1196)) (-5 *2 (-1054)) (-5 *1 (-577))))
((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309))))
+ (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4))
+ (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862))
+ (-4 *3 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1196)) (-5 *1 (-969 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-4 *3 (-1068))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-4 *2 (-862))
+ (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068))
+ (-5 *1 (-1180 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-3739
+ (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068))
+ (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222))
+ (-4 *3 (-38 (-419 (-576))))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068))
+ (-12 (|has| *3 (-15 -1634 ((-656 *2) *3)))
+ (|has| *3 (-15 -1850 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-3739
+ (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068))
+ (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222))
+ (-4 *3 (-38 (-419 (-576))))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068))
+ (-12 (|has| *3 (-15 -1634 ((-656 *2) *3)))
+ (|has| *3 (-15 -1850 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1272 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3739
+ (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068))
+ (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222))
+ (-4 *3 (-38 (-419 (-576))))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068))
+ (-12 (|has| *3 (-15 -1634 ((-656 *2) *3)))
+ (|has| *3 (-15 -1850 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5))
+ (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *2 (-862))))
((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
+ (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1068)) (-4 *6 (-966 *5 *4 *2))
+ (-4 *2 (-862)) (-5 *1 (-967 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *6)) (-15 -1621 (*6 $))
+ (-15 -1635 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568))
+ (-5 *2 (-1196)) (-5 *1 (-1062 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4)))
+ (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1272 *4 *5 *6))
+ (|:| |%expon| (-329 *4 *5 *6))
+ (|:| |%expTerms|
+ (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4))))))
+ (|:| |%type| (-1178))))
+ (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3)))
+ (-14 *5 (-1196)) (-14 *6 *4))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054))
(-5 *1 (-758)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-936))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-782)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117))))
- ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1190 *3)) (-5 *1 (-929 *3)) (-4 *3 (-316)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-782))
- (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-144)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))))
+(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117))
- (-4 *3 (-167 *6)) (-4 (-967 *6) (-898 *5))
- (-4 *6 (-13 (-898 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
+ (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119))
+ (-4 *3 (-167 *6)) (-4 (-969 *6) (-899 *5))
+ (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-901 *4 *1)) (-5 *3 (-904 *4)) (-4 *1 (-898 *4))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4))
+ (-4 *4 (-1119))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1117))
- (-4 *6 (-13 (-1117) (-1055 *3))) (-4 *3 (-898 *5))
- (-5 *1 (-946 *5 *3 *6))))
+ (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119))
+ (-4 *6 (-13 (-1119) (-1057 *3))) (-4 *3 (-899 *5))
+ (-5 *1 (-948 *5 *3 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117))
- (-4 *3 (-13 (-441 *6) (-625 *4) (-898 *5) (-1055 (-623 $))))
- (-5 *4 (-904 *5)) (-4 *6 (-13 (-567) (-898 *5)))
- (-5 *1 (-947 *5 *6 *3))))
+ (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119))
+ (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1057 (-624 $))))
+ (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5)))
+ (-5 *1 (-949 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 (-575) *3)) (-5 *4 (-904 (-575))) (-4 *3 (-556))
- (-5 *1 (-948 *3))))
+ (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557))
+ (-5 *1 (-950 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 *6)) (-5 *3 (-623 *6)) (-4 *5 (-1117))
- (-4 *6 (-13 (-1117) (-1055 (-623 $)) (-625 *4) (-898 *5)))
- (-5 *4 (-904 *5)) (-5 *1 (-949 *5 *6))))
+ (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1119))
+ (-4 *6 (-13 (-1119) (-1057 (-624 $)) (-626 *4) (-899 *5)))
+ (-5 *4 (-905 *5)) (-5 *1 (-951 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-897 *5 *6 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1117))
- (-4 *6 (-898 *5)) (-4 *3 (-677 *6)) (-5 *1 (-950 *5 *6 *3))))
+ (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119))
+ (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-952 *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-901 *6 *3) *8 (-904 *6) (-901 *6 *3)))
- (-4 *8 (-861)) (-5 *2 (-901 *6 *3)) (-5 *4 (-904 *6))
- (-4 *6 (-1117)) (-4 *3 (-13 (-964 *9 *7 *8) (-625 *4)))
- (-4 *7 (-804)) (-4 *9 (-13 (-1066) (-898 *6)))
- (-5 *1 (-951 *6 *7 *8 *9 *3))))
+ (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3)))
+ (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6))
+ (-4 *6 (-1119)) (-4 *3 (-13 (-966 *9 *7 *8) (-626 *4)))
+ (-4 *7 (-805)) (-4 *9 (-13 (-1068) (-899 *6)))
+ (-5 *1 (-953 *6 *7 *8 *9 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117))
- (-4 *3 (-13 (-964 *8 *6 *7) (-625 *4))) (-5 *4 (-904 *5))
- (-4 *7 (-898 *5)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *8 (-13 (-1066) (-898 *5))) (-5 *1 (-951 *5 *6 *7 *8 *3))))
+ (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119))
+ (-4 *3 (-13 (-966 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5))
+ (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 *3)) (-4 *5 (-1117)) (-4 *3 (-1009 *6))
- (-4 *6 (-13 (-567) (-898 *5) (-625 *4))) (-5 *4 (-904 *5))
- (-5 *1 (-954 *5 *6 *3))))
+ (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-1011 *6))
+ (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5))
+ (-5 *1 (-956 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-901 *5 (-1194))) (-5 *3 (-1194)) (-5 *4 (-904 *5))
- (-4 *5 (-1117)) (-5 *1 (-955 *5))))
+ (-12 (-5 *2 (-902 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-905 *5))
+ (-4 *5 (-1119)) (-5 *1 (-957 *5))))
((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-655 (-904 *7))) (-5 *5 (-1 *9 (-655 *9)))
- (-5 *6 (-1 (-901 *7 *9) *9 (-904 *7) (-901 *7 *9))) (-4 *7 (-1117))
- (-4 *9 (-13 (-1066) (-625 (-904 *7)) (-1055 *8)))
- (-5 *2 (-901 *7 *9)) (-5 *3 (-655 *9)) (-4 *8 (-1066))
- (-5 *1 (-956 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575))
- (-5 *2 (-1052)) (-5 *1 (-767)))))
-(((*1 *1 *1) (-5 *1 (-1080))))
-(((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-546 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-547)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-373) (-148) (-1055 (-575)))) (-4 *5 (-1261 *4))
- (-5 *2 (-2 (|:| |ans| (-418 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1032 *4 *5)) (-5 *3 (-418 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235))
- (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-702 (-189))) (-5 *1 (-189)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-1174 (-227))) (-5 *1 (-194))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-325 (-227))) (-5 *4 (-655 (-1194)))
- (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1285 (-325 (-227)))) (-5 *4 (-655 (-1194)))
- (-5 *5 (-1111 (-854 (-227)))) (-5 *2 (-1174 (-227))) (-5 *1 (-309)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *2 (-1290)) (-5 *1 (-1287))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-389)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-608)) (-5 *1 (-289)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567)))))
+ (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9)))
+ (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1119))
+ (-4 *9 (-13 (-1068) (-626 (-905 *7)) (-1057 *8)))
+ (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1068))
+ (-5 *1 (-958 *7 *8 *9)))))
+(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))
+ (-4 *3 (-568)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1278 *4))
+ (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4)))
+ (-5 *1 (-1280 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))))
+(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-568))
+ (-5 *2 (-2 (|:| -3260 (-701 *5)) (|:| |vec| (-1287 (-656 (-938))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068))
+ (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *7)))
+ (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-194)))))
+ (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5))
+ (-4 *3 (-1263 *4))
+ (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3))
- (-4 *4 (-13 (-373) (-859))) (-4 *3 (-1261 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-4 *6 (-898 *5)) (-5 *2 (-897 *5 *6 (-655 *6)))
- (-5 *1 (-899 *5 *6 *4)) (-5 *3 (-655 *6)) (-4 *4 (-625 (-904 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 *3))) (-5 *1 (-899 *5 *3 *4))
- (-4 *3 (-1055 (-1194))) (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-5 *2 (-655 (-303 (-967 *3))))
- (-5 *1 (-899 *5 *3 *4)) (-4 *3 (-1066))
- (-3213 (-4 *3 (-1055 (-1194)))) (-4 *3 (-898 *5))
- (-4 *4 (-625 (-904 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1117)) (-5 *2 (-901 *5 *3)) (-5 *1 (-899 *5 *3 *4))
- (-3213 (-4 *3 (-1055 (-1194)))) (-3213 (-4 *3 (-1066)))
- (-4 *3 (-898 *5)) (-4 *4 (-625 (-904 *5))))))
+ (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-1219 *4))
+ (-4 *4 (-1068)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-709))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1 (-960 (-227)) (-227) (-227)))
+ (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-162))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-688))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1115)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068)))))
(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-325 (-575))) (-5 *4 (-1 (-227) (-227)))
- (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-708)))))
-(((*1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1288)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-993 *4 *5 *3 *6)) (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *3 (-861)) (-4 *6 (-1082 *4 *5 *3)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1199)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-162))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-687))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1036))))
- ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1083))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1113)))))
+ (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227)))
+ (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3))
+ (-4 *3 (-660 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))))
+(((*1 *1) (-5 *1 (-449))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2))
+ (-4 *2 (-1263 (-171 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-148))) (-5 *1 (-548 *3 *2))
- (-4 *2 (-1276 *3))))
+ (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2))
+ (-4 *2 (-1278 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-4 *4 (-1261 *3))
- (-4 *5 (-735 *3 *4)) (-5 *1 (-552 *3 *4 *5 *2)) (-4 *2 (-1276 *5))))
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3))
+ (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-373) (-378) (-625 (-575)))) (-5 *1 (-553 *3 *2))
- (-4 *2 (-1276 *3))))
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2))
+ (-4 *2 (-1278 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-567) (-148)))
- (-5 *1 (-1170 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-5 *2 (-655 *5))
- (-5 *1 (-902 *4 *5)) (-4 *5 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-536))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1168)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-873)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4))
- (-5 *2 (-2 (|:| -1754 (-418 *5)) (|:| |poly| *3)))
- (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1261 (-418 *5))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1078 (-1041 *3) (-1190 (-1041 *3))))
- (-5 *1 (-1041 *3)) (-4 *3 (-13 (-859) (-373) (-1039))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027)))) (-5 *3 (-227))
- (-5 *2 (-1052)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-517)) (-5 *2 (-702 (-1121))) (-5 *1 (-300)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148)))
+ (-5 *1 (-1172 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-575)) (-4 *2 (-441 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1055 *4)) (-4 *3 (-567)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-109))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1117))))
- ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-449 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-494))))
- ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-876))))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-980))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1092 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1132))))
- ((*1 *1 *1) (-5 *1 (-1194))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *6 (-227))
- (-5 *3 (-575)) (-5 *2 (-1052)) (-5 *1 (-762)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-316)) (-4 *3 (-174)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3)))
- (-5 *1 (-699 *3 *4 *5 *6)) (-4 *6 (-698 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-711 *3))
- (-4 *3 (-316)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))))
-(((*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1197)))))
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119))))
+ ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495))))
+ ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1094 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1134))))
+ ((*1 *1 *1) (-5 *1 (-1196))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1222))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-428 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-782)) (-4 *1 (-1261 *4)) (-4 *4 (-1066))
- (-5 *2 (-1285 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-463)) (-4 *4 (-1117))
- (-5 *1 (-584 *4 *2)) (-4 *2 (-293)) (-4 *2 (-441 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4))
- (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-664 (-418 *2))) (-4 *2 (-1261 *4)) (-5 *1 (-821 *4 *2))
- (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-665 *2 (-418 *2))) (-4 *2 (-1261 *4))
- (-5 *1 (-821 *4 *2))
- (-4 *4 (-13 (-373) (-148) (-1055 (-575)) (-1055 (-418 (-575))))))))
+ (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805))
+ (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7))
+ (-4 *7 (-966 *4 *6 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1054))
+ (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-656 (-326 (-227))))
+ (|:| |constraints|
+ (-656
+ (-2 (|:| |start| (-227)) (|:| |finish| (-227))
+ (|:| |grid| (-783)) (|:| |boundaryType| (-576))
+ (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227))))))
+ (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178))
+ (|:| |tol| (-227))))
+ (-5 *2 (-112)) (-5 *1 (-212)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *1) (-5 *1 (-480))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-240 *3))))
+ ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 (-1174 *7))) (-4 *6 (-861))
- (-4 *7 (-964 *5 (-542 *6) *6)) (-4 *5 (-1066))
- (-5 *2 (-1 (-1174 *7) *7)) (-5 *1 (-1143 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-655 (-418 *7)))
- (-4 *7 (-1261 *6)) (-5 *3 (-418 *7)) (-4 *6 (-373))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-655 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-585 *6 *7)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-941))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-958 (-227)) (-227))) (-5 *3 (-1111 (-227)))
- (-5 *1 (-942)))))
-(((*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-408)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-1164 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-5 *2 (-112)))))
-(((*1 *1) (-4 *1 (-359)))
+ (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576))))
+ (-4 *5 (-899 (-576)))
+ (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-579 *5 *3)) (-4 *3 (-641))
+ (-4 *3 (-13 (-27) (-1222) (-442 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-855 *2)) (-4 *2 (-1158))
+ (-4 *2 (-13 (-27) (-1222) (-442 *5)))
+ (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576)))
+ (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576))))
+ (-5 *1 (-579 *5 *2)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886))
+ (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 *5)) (-4 *5 (-441 *4)) (-4 *4 (-13 (-567) (-148)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-655 (-1190 *5)))
- (|:| |prim| (-1190 *5))))
- (-5 *1 (-443 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-567) (-148)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1190 *3))
- (|:| |pol2| (-1190 *3)) (|:| |prim| (-1190 *3))))
- (-5 *1 (-443 *4 *3)) (-4 *3 (-27)) (-4 *3 (-441 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-967 *5)) (-5 *4 (-1194)) (-4 *5 (-13 (-373) (-148)))
- (-5 *2
- (-2 (|:| |coef1| (-575)) (|:| |coef2| (-575))
- (|:| |prim| (-1190 *5))))
- (-5 *1 (-975 *5))))
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-480))
+ (-5 *1 (-1291))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-967 *5))) (-5 *4 (-655 (-1194)))
- (-4 *5 (-13 (-373) (-148)))
- (-5 *2
- (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *5)))
- (|:| |prim| (-1190 *5))))
- (-5 *1 (-975 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-5 *5 (-1194))
- (-4 *6 (-13 (-373) (-148)))
- (-5 *2
- (-2 (|:| -1754 (-655 (-575))) (|:| |poly| (-655 (-1190 *6)))
- (|:| |prim| (-1190 *6))))
- (-5 *1 (-975 *6)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-655 (-967 *6))) (-5 *4 (-655 (-1194))) (-4 *6 (-463))
- (-5 *2 (-655 (-655 *7))) (-5 *1 (-549 *6 *7 *5)) (-4 *7 (-373))
- (-4 *5 (-13 (-373) (-859))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270)))
+ (-5 *2 (-480)) (-5 *1 (-1291)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-429 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1166 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227)))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3880 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576))))
+ (-5 *1 (-315)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1309 *4 *2)) (-4 *1 (-384 *4 *2)) (-4 *4 (-861))
+ (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862))
(-4 *2 (-174))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1302 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-830 *4)) (-4 *1 (-1302 *4 *2)) (-4 *4 (-861))
- (-4 *2 (-1066))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1066)) (-5 *1 (-1308 *2 *3)) (-4 *3 (-857)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1066)) (-4 *2 (-803))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1066))
- (-14 *4 (-655 (-1194)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-575)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1066) (-861)))
- (-14 *4 (-655 (-1194)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-259 *4 *3 *5 *6)) (-4 *4 (-1066)) (-4 *3 (-861))
- (-4 *5 (-274 *3)) (-4 *6 (-804)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-283))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1190 *8)) (-5 *4 (-655 *6)) (-4 *6 (-861))
- (-4 *8 (-964 *7 *5 *6)) (-4 *5 (-804)) (-4 *7 (-1066))
- (-5 *2 (-655 (-782))) (-5 *1 (-330 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-338 *3)) (-4 *3 (-373)) (-5 *2 (-936))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174))
- (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-567)) (-5 *2 (-575)) (-5 *1 (-634 *3 *4))
- (-4 *4 (-1261 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-719 *3)) (-4 *3 (-1066)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-863 *3)) (-4 *3 (-1066)) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-919 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1) (-12 (-5 *2 (-782)) (-5 *1 (-920 *3)) (-4 *3 (-1117))))
+ (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *1 (-964 *4 *5 *6)) (-4 *4 (-1066))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-782)))))
+ (-12 (-5 *3 (-831 *4)) (-4 *1 (-1304 *4 *2)) (-4 *4 (-862))
+ (-4 *2 (-1068))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-964 *4 *5 *3)) (-4 *4 (-1066)) (-4 *5 (-804))
- (-4 *3 (-861)) (-5 *2 (-782))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *2 *4)) (-4 *3 (-1066)) (-4 *4 (-861))
- (-4 *2 (-803))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *6)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-782))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1276 *3))
- (-5 *2 (-575))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1268 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1245 *3))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-5 *2 (-844 (-936)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-782)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1261 *3)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-936)) (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-803))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-418 (-575))) (-4 *1 (-1266 *3)) (-4 *3 (-1066)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *3 (-575)) (-5 *1 (-246))))
+ (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1196))
+ (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *1 (-1199)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-655 (-1176))) (-5 *3 (-575)) (-5 *4 (-1176))
+ (-12 (-5 *2 (-656 (-1178))) (-5 *3 (-576)) (-5 *4 (-1178))
(-5 *1 (-246))))
- ((*1 *1 *1) (-5 *1 (-873)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-873))))
+ ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
((*1 *2 *1)
- (-12 (-4 *1 (-1263 *2 *3)) (-4 *3 (-803)) (-4 *2 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-832)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1066)) (-4 *5 (-804)) (-4 *3 (-861))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-964 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1066)) (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1)))
- (-4 *1 (-1261 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))))
-(((*1 *1 *1) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-316)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1261 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-316)) (-5 *1 (-471 *3 *2)) (-4 *2 (-1261 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-316)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-782)))
- (-5 *1 (-550 *3 *2 *4 *5)) (-4 *2 (-1261 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1176)) (-5 *2 (-389)) (-5 *1 (-797)))))
-(((*1 *2 *3) (-12 (-5 *3 (-967 (-227))) (-5 *2 (-227)) (-5 *1 (-314)))))
+ (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1) (-4 *1 (-1158))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227)))
+ (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227)))
+ (|:| |abserr| (-227)) (|:| |relerr| (-227))))
+ (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3)))
+ (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3))
+ (-5 *1 (-563 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4261 (-656 *4))))
+ (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4))
+ (-4 *6 (-384 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1150 (-227))) (-5 *1 (-261))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1152 (-227))) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269)))
- (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-265 *6))))
+ (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389)))
- (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-265 *5))))
+ (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269)))
- (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3))
- (-4 *3 (-13 (-625 (-547)) (-1117)))))
+ (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270)))
+ (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1119)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1150 (-227))) (-5 *1 (-265 *3))
- (-4 *3 (-13 (-625 (-547)) (-1117)))))
+ (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1119)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269)))
- (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-265 *6))))
+ (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389)))
- (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-265 *5)))))
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227)))
+ (-5 *1 (-266 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-5 *2 (-1290)) (-5 *1 (-460 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1190 *3)) (-4 *3 (-359)) (-5 *1 (-367 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-316) (-1055 (-575)) (-650 (-575)) (-148)))
- (-5 *1 (-815 *4 *2)) (-4 *2 (-13 (-29 *4) (-1220) (-974))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-540)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-658 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1309 *3 *4)) (-4 *1 (-384 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-174))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-396 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-830 *2)) (-4 *2 (-861))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-830 *3)) (-4 *1 (-1302 *3 *4)) (-4 *3 (-861))
- (-4 *4 (-1066))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-115)) (-4 *4 (-1066)) (-5 *1 (-725 *4 *2))
- (-4 *2 (-659 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-847 *2)) (-4 *2 (-1066)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-517)) (-5 *3 (-655 (-887))) (-5 *1 (-494)))))
-(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-373)) (-4 *4 (-383 *3)) (-4 *5 (-383 *3))
- (-5 *1 (-532 *3 *4 *5 *2)) (-4 *2 (-698 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-567)) (-4 *5 (-383 *4)) (-4 *6 (-383 *4))
- (-4 *7 (-1009 *4)) (-4 *2 (-698 *7 *8 *9))
- (-5 *1 (-533 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-698 *4 *5 *6))
- (-4 *8 (-383 *7)) (-4 *9 (-383 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066))
- (-4 *3 (-383 *2)) (-4 *4 (-383 *2)) (-4 *2 (-373))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-373)) (-4 *3 (-174)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *1 (-699 *3 *4 *5 *2))
- (-4 *2 (-698 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-700 *2)) (-4 *2 (-373)) (-4 *2 (-1066))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1140 *2 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-373))))
- ((*1 *2 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-1205 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-373)) (-4 *2 (-1261 *4))
- (-5 *1 (-937 *4 *2)))))
+ (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $))
+ (-15 -1635 ((-1144 *3 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *3 (-624 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *3 (-624 $)) $))
+ (-15 -1635 ((-1144 *3 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *3 (-624 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *2))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *4 (-624 $)) $))
+ (-15 -1635 ((-1144 *4 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *4 (-624 $)))))))
+ (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194))
- (-4 *4 (-13 (-567) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-285 *4 *2)) (-4 *2 (-13 (-27) (-1220) (-441 *4))))))
+ (-12 (-5 *3 (-656 (-624 *2)))
+ (-4 *2
+ (-13 (-374) (-312)
+ (-10 -8 (-15 -1621 ((-1144 *4 (-624 $)) $))
+ (-15 -1635 ((-1144 *4 (-624 $)) $))
+ (-15 -2858 ($ (-1144 *4 (-624 $)))))))
+ (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-966 *4 *6 *5)) (-4 *4 (-464))
+ (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1006 *4 *5 *6 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5))
+ (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6))
+ (-4 *6 (-464))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5))
+ (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6))
+ (-4 *6 (-464)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1068)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-325 (-227)))) (-5 *2 (-112)) (-5 *1 (-275)))))
+ (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3))
+ (-4 *3 (-1263 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5))
+ (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6))
+ (-14 *7 (-938)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5))
+ (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862))
+ (-5 *1 (-1300 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568))
+ (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1184 *4 *5))
+ (-14 *4 (-938)) (-4 *5 (-1068)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-786)) (-5 *1 (-115)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *2 *3)
(-12
- (-5 *3
- (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389))
- (|:| |expense| (-389)) (|:| |accuracy| (-389))
- (|:| |intermediateResults| (-389))))
- (-5 *2 (-1052)) (-5 *1 (-314)))))
-(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-359)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-924)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-5 *1 (-710))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-700 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-373)) (-5 *1 (-995 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1117)) (-5 *1 (-979 *3 *2)) (-4 *3 (-1117)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-565 *3)) (-4 *3 (-13 (-415) (-1220))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1085 *4 *3)) (-4 *4 (-13 (-859) (-373)))
- (-4 *3 (-1261 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-316)) (-5 *2 (-782)))))
+ (-5 *2
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *4))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *4)))))))
+ (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *7 (-966 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-1117)) (-5 *2 (-655 *1))
- (-4 *1 (-392 *3 *4))))
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 (-746 *3 *4))) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-737))))
+ (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4))))
+ (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862))
+ (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))
((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-964 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-389) (-389))) (-5 *4 (-389))
+ (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2279 *4))) (-5 *5 (-783))
+ (-4 *4 (-966 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
(-5 *2
- (-2 (|:| -4181 *4) (|:| -3082 *4) (|:| |totalpts| (-575))
- (|:| |success| (-112))))
- (-5 *1 (-800)) (-5 *5 (-575)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-431 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1220) (-441 *3)))
- (-14 *4 (-1194)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-4 *2 (-13 (-27) (-1220) (-441 *3) (-10 -8 (-15 -2882 ($ *4)))))
- (-4 *4 (-859))
- (-4 *5
- (-13 (-1263 *2 *4) (-373) (-1220)
- (-10 -8 (-15 -2382 ($ $)) (-15 -4388 ($ $)))))
- (-5 *1 (-433 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1000 *5))
- (-14 *7 (-1194)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-655 (-112))) (-5 *7 (-700 (-227)))
- (-5 *8 (-700 (-575))) (-5 *3 (-575)) (-5 *4 (-227)) (-5 *5 (-112))
- (-5 *2 (-1052)) (-5 *1 (-765)))))
-(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1174 (-575))) (-5 *1 (-1178 *4)) (-4 *4 (-1066))
- (-5 *3 (-575)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-942)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 -3027))))
- (-5 *2 (-1052)) (-5 *1 (-759)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-782)) (-5 *1 (-572)))))
-(((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-367 *3)) (-4 *3 (-359)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-132))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-782)) (-5 *3 (-958 *4)) (-4 *1 (-1151 *4))
- (-4 *4 (-1066))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-958 (-227))) (-5 *2 (-1290))
- (-5 *1 (-1287)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-958 *3)) (-4 *3 (-13 (-373) (-1220) (-1019)))
- (-5 *1 (-178 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-461 *6 *7 *8 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2))
+ (-4 *2 (-668 *4)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1123))) (-5 *1 (-301)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-317))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3633 *1)))
+ (-4 *1 (-317)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))))
(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-655 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-441 *4) (-1019))) (-4 *4 (-567))
- (-5 *1 (-284 *4 *2)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-782)) (-4 *4 (-359)) (-5 *1 (-218 *4 *2))
- (-4 *2 (-1261 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1066))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *4 (-174)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-698 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3))
- (-4 *3 (-659 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3))
- (-4 *3 (-659 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066))))
- ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))))
+ (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1196)) (-4 *5 (-442 *4))
+ (-4 *4 (-1119)) (-5 *1 (-585 *4 *5)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292))
+ (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -3003))))
+ (-5 *2 (-1054)) (-5 *1 (-758)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *1) (-4 *1 (-312)))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1) (-5 *1 (-874))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1261 *9)) (-4 *7 (-804)) (-4 *8 (-861)) (-4 *9 (-316))
- (-4 *10 (-964 *9 *7 *8))
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3))
+ (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-557))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5))
+ (-4 *3 (-1119)) (-4 *5 (-678 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119))
+ (-4 *4 (-1119)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-2 (|:| |deter| (-655 (-1190 *10)))
- (|:| |dterm|
- (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-655 *6)) (|:| |nlead| (-655 *10))))
- (-5 *1 (-789 *6 *7 *8 *9 *10)) (-5 *3 (-1190 *10)) (-5 *4 (-655 *6))
- (-5 *5 (-655 *10)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-575)) (-14 *4 (-782)))))
+ (-656
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-805)) (-4 *6 (-966 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862))
+ (-5 *1 (-461 *4 *3 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1286)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1286)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-889 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1286)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1288)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 (-1 (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-894 (-1 (-227) (-227) (-227)))) (-5 *4 (-1111 (-389)))
- (-5 *2 (-1287)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390)))
+ (-5 *2 (-1289)) (-5 *1 (-262))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-303 *7)) (-5 *4 (-1194)) (-5 *5 (-655 (-269)))
- (-4 *7 (-441 *6)) (-4 *6 (-13 (-567) (-861) (-1055 (-575))))
- (-5 *2 (-1286)) (-5 *1 (-262 *6 *7))))
+ (-12 (-5 *3 (-304 *7)) (-5 *4 (-1196)) (-5 *5 (-656 (-270)))
+ (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1057 (-576))))
+ (-5 *2 (-1288)) (-5 *1 (-263 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1286))
- (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117)))))
+ (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288))
+ (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1286)) (-5 *1 (-265 *3))
- (-4 *3 (-13 (-625 (-547)) (-1117)))))
+ (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1119)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-889 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269)))
- (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286))
- (-5 *1 (-265 *6))))
+ (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-889 *5)) (-5 *4 (-1109 (-389)))
- (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1286))
- (-5 *1 (-265 *5))))
+ (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-891 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269)))
- (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287))
- (-5 *1 (-265 *6))))
+ (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-891 *5)) (-5 *4 (-1109 (-389)))
- (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287))
- (-5 *1 (-265 *5))))
+ (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269))) (-5 *2 (-1287))
- (-5 *1 (-265 *3)) (-4 *3 (-13 (-625 (-547)) (-1117)))))
+ (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289))
+ (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1109 (-389))) (-5 *2 (-1287)) (-5 *1 (-265 *3))
- (-4 *3 (-13 (-625 (-547)) (-1117)))))
+ (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3))
+ (-4 *3 (-13 (-626 (-548)) (-1119)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-894 *6)) (-5 *4 (-1109 (-389))) (-5 *5 (-655 (-269)))
- (-4 *6 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287))
- (-5 *1 (-265 *6))))
+ (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270)))
+ (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289))
+ (-5 *1 (-266 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-894 *5)) (-5 *4 (-1109 (-389)))
- (-4 *5 (-13 (-625 (-547)) (-1117))) (-5 *2 (-1287))
- (-5 *1 (-265 *5))))
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390)))
+ (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289))
+ (-5 *1 (-266 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1286)) (-5 *1 (-266))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1286))
- (-5 *1 (-266))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288))
+ (-5 *1 (-267))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *2 (-1286)) (-5 *1 (-266))))
+ (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *2 (-1288)) (-5 *1 (-267))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-958 (-227)))) (-5 *4 (-655 (-269)))
- (-5 *2 (-1286)) (-5 *1 (-266))))
+ (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-656 (-270)))
+ (-5 *2 (-1288)) (-5 *1 (-267))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1287)) (-5 *1 (-266))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-655 (-227))) (-5 *4 (-655 (-269))) (-5 *2 (-1287))
- (-5 *1 (-266)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-2 (|:| -2347 (-1190 *6)) (|:| -1658 (-575)))))
- (-4 *6 (-316)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575))
- (-5 *1 (-753 *4 *5 *6 *7)) (-4 *7 (-964 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-528)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1230 *3)) (-4 *3 (-991)))))
-(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1204)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-479)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
+ (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289))
+ (-5 *1 (-267)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1196)) (-5 *2 (-624 *6))
+ (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *1 (-585 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241))
+ (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576))))
+ ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374)))
+ (-4 *3 (-1263 *4)) (-5 *2 (-576))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-651 *2) (-464)))
+ (-5 *2 (-576)) (-5 *1 (-1135 *4 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 *3))
+ (-4 *3 (-13 (-27) (-1222) (-442 *6)))
+ (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576))
+ (-5 *1 (-1135 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178))
+ (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576))
+ (-5 *1 (-1135 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-576))
+ (-5 *1 (-1136 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 (-419 (-969 *6))))
+ (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-576))
+ (-5 *1 (-1136 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1196))
+ (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-904 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1117))
- (-4 *5 (-1235)) (-5 *1 (-902 *4 *5))))
+ (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1119))
+ (-4 *5 (-1237)) (-5 *1 (-903 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-904 *4)) (-5 *3 (-655 (-1 (-112) *5))) (-4 *4 (-1117))
- (-4 *5 (-1235)) (-5 *1 (-902 *4 *5))))
+ (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1119))
+ (-4 *5 (-1237)) (-5 *1 (-903 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-904 *5)) (-5 *3 (-655 (-1194)))
- (-5 *4 (-1 (-112) (-655 *6))) (-4 *5 (-1117)) (-4 *6 (-1235))
- (-5 *1 (-902 *5 *6))))
+ (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1196)))
+ (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1119)) (-4 *6 (-1237))
+ (-5 *1 (-903 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1235)) (-4 *4 (-1117))
- (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4))))
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1237)) (-4 *4 (-1119))
+ (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-1 (-112) *5))) (-4 *5 (-1235)) (-4 *4 (-1117))
- (-5 *1 (-952 *4 *2 *5)) (-4 *2 (-441 *4))))
+ (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-4 *4 (-1119))
+ (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1235))
- (-5 *2 (-325 (-575))) (-5 *1 (-953 *5))))
+ (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1237))
+ (-5 *2 (-326 (-576))) (-5 *1 (-955 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-655 (-1 (-112) *5))) (-4 *5 (-1235))
- (-5 *2 (-325 (-575))) (-5 *1 (-953 *5))))
+ (-12 (-5 *3 (-1196)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1237))
+ (-5 *2 (-326 (-576))) (-5 *1 (-955 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-1 (-112) (-655 *6)))
- (-4 *6 (-13 (-441 *5) (-898 *4) (-625 (-904 *4)))) (-4 *4 (-1117))
- (-4 *5 (-13 (-1066) (-898 *4) (-625 (-904 *4))))
- (-5 *1 (-1093 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-924)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-964 *4 *5 *6)) (-5 *2 (-429 (-1190 *7)))
- (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-1190 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-924)) (-4 *5 (-1261 *4)) (-5 *2 (-429 (-1190 *5)))
- (-5 *1 (-922 *4 *5)) (-5 *3 (-1190 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-174)) (-4 *2 (-1066)) (-5 *1 (-725 *2 *3))
- (-4 *3 (-659 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-847 *2)) (-4 *2 (-174)) (-4 *2 (-1066)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-885)))))
-(((*1 *2)
- (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5)))
- (-5 *2 (-782)) (-5 *1 (-351 *3 *4 *5 *6)) (-4 *3 (-352 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-782))))
- ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-655 (-1194))) (-4 *2 (-174))
- (-4 *3 (-243 (-2869 *4) (-782)))
- (-14 *6
- (-1 (-112) (-2 (|:| -4317 *5) (|:| -1658 *3))
- (-2 (|:| -4317 *5) (|:| -1658 *3))))
- (-5 *1 (-472 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861))
- (-4 *7 (-964 *2 *3 (-875 *4))))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1 (-112) (-656 *6)))
+ (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1119))
+ (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4))))
+ (-5 *1 (-1095 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227)))
+ (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1054)) (-5 *1 (-765)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-586 *5 *3)))))
+(((*1 *1 *1) (-4 *1 (-175)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 (-389))) (-5 *1 (-796 *3)) (-4 *3 (-625 (-389)))))
+ (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-5 *2 (-171 (-389))) (-5 *1 (-796 *3))
- (-4 *3 (-625 (-389)))))
+ (-12 (-5 *4 (-938)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3))
+ (-4 *3 (-626 (-390)))))
((*1 *2 *3)
- (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-625 (-389)))
- (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 *5)) (-5 *4 (-936)) (-4 *5 (-174))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-174))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-967 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-625 (-389)))
- (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-967 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-174))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-967 *4)) (-4 *4 (-1066)) (-4 *4 (-625 (-389)))
- (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-967 *5)) (-5 *4 (-936)) (-4 *5 (-1066))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-4 *4 (-625 (-389)))
- (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390)))
+ (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 *5))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 (-171 *4)))) (-4 *4 (-567))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-418 (-967 (-171 *5)))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-325 *4)) (-4 *4 (-567)) (-4 *4 (-861))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 *5)) (-5 *4 (-936)) (-4 *5 (-567)) (-4 *5 (-861))
- (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *5))))
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862))
+ (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-325 (-171 *4))) (-4 *4 (-567)) (-4 *4 (-861))
- (-4 *4 (-625 (-389))) (-5 *2 (-171 (-389))) (-5 *1 (-796 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-325 (-171 *5))) (-5 *4 (-936)) (-4 *5 (-567))
- (-4 *5 (-861)) (-4 *5 (-625 (-389))) (-5 *2 (-171 (-389)))
- (-5 *1 (-796 *5)))))
-(((*1 *1 *2) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-1194)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-463)) (-4 *6 (-804)) (-4 *7 (-861))
- (-4 *3 (-1082 *5 *6 *7)) (-5 *2 (-655 *4))
- (-5 *1 (-1125 *5 *6 *7 *3 *4)) (-4 *4 (-1088 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-782)) (-4 *6 (-373)) (-5 *4 (-1229 *6))
- (-5 *2 (-1 (-1174 *4) (-1174 *4))) (-5 *1 (-1293 *6))
- (-5 *5 (-1174 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1066))
- (-4 *2 (-13 (-415) (-1055 *4) (-373) (-1220) (-293)))
- (-5 *1 (-454 *4 *3 *2)) (-4 *3 (-1261 *4))))
+ (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862))
+ (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-936)) (-4 *5 (-1066))
- (-4 *2 (-13 (-415) (-1055 *5) (-373) (-1220) (-293)))
- (-5 *1 (-454 *5 *3 *2)) (-4 *3 (-1261 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-782) *2)) (-5 *4 (-782)) (-4 *2 (-1117))
- (-5 *1 (-689 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-782) *3)) (-4 *3 (-1117)) (-5 *1 (-693 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
+ (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568))
+ (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390)))
+ (-5 *1 (-797 *5)))))
+(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1196)))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-309))))
+ (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1263 *5))
+ (-4 *7 (-1263 (-419 *6))) (-5 *2 (-656 (-969 *5)))
+ (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-227)))) (-5 *2 (-227)) (-5 *1 (-314)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-373)) (-4 *3 (-804)) (-4 *4 (-861))
- (-5 *1 (-515 *2 *3 *4 *5)) (-4 *5 (-964 *2 *3 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-655 *1)) (-4 *1 (-311))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-623 *3)) (-4 *3 (-1117))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-115)) (-5 *3 (-655 *5)) (-5 *4 (-782)) (-4 *5 (-1117))
- (-5 *1 (-623 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-575)) (-5 *1 (-1209 *2)) (-4 *2 (-373)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1575 (-115)) (|:| |arg| (-655 (-904 *3)))))
- (-5 *1 (-904 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-655 (-904 *4)))
- (-5 *1 (-904 *4)) (-4 *4 (-1117)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2063 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-373)) (-4 *7 (-1261 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-418 *7)) (|:| |a0| *6))
- (-2 (|:| -2063 (-418 *7)) (|:| |coeff| (-418 *7))) "failed"))
- (-5 *1 (-585 *6 *7)) (-5 *3 (-418 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-495 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-174)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)) (-5 *1 (-699 *4 *5 *6 *2))
- (-4 *2 (-698 *4 *5 *6)))))
+ (-12 (-5 *3 (-1196)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241))
+ (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-374))
+ (-5 *2 (-656 (-969 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-700 (-325 (-227))))
+ (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5))
+ (-4 *4 (-1119)) (-4 *5 (-1119)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576)))))
+ (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-969 *9))))
+ (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576))
+ (-4 *9 (-13 (-317) (-148))) (-4 *12 (-966 *9 *11 *10))
+ (-4 *10 (-13 (-862) (-626 (-1196)))) (-4 *11 (-805))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-389)) (|:| |stabilityFactor| (-389))))
- (-5 *1 (-207)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-986 *3 *2)) (-4 *2 (-1261 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)) (-4 *2 (-567))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1261 *2)) (-4 *2 (-1066)) (-4 *2 (-567)))))
-(((*1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))))
+ (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12))
+ (|:| |wcond| (-656 (-969 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *9))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *9)))))))))
+ (-5 *1 (-941 *9 *10 *11 *12)))))
+(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-286 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4))
+ (-4 *4 (-1263 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-738))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-112)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-301)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576))
+ (-5 *2 (-1054)) (-5 *1 (-768)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1287 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1119))
+ (-5 *1 (-624 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-700 *5)) (-4 *5 (-1066)) (-5 *1 (-1071 *3 *4 *5))
- (-14 *3 (-782)) (-14 *4 (-782)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-303 (-967 (-575))))
+ (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568))
+ (-4 *7 (-966 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2273 (-783)) (|:| -1788 *8) (|:| |radicand| *8)))
+ (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-783))
+ (-4 *8
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576))))
+ (-4 *2 (-174)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-227))
(-5 *2
- (-2 (|:| |varOrder| (-655 (-1194)))
- (|:| |inhom| (-3 (-655 (-1285 (-782))) "failed"))
- (|:| |hom| (-655 (-1285 (-782))))))
- (-5 *1 (-241)))))
+ (-2 (|:| |brans| (-656 (-656 (-960 *4))))
+ (|:| |xValues| (-1113 *4)) (|:| |yValues| (-1113 *4))))
+ (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 *4)))))))
+(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1068))
+ (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068))
+ (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068))
+ (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196))
+ (-14 *4 *2))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119))
+ (-5 *2 (-112)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-1093 *3 *4 *5))) (-4 *3 (-1117))
- (-4 *4 (-13 (-1066) (-898 *3) (-625 (-904 *3))))
- (-4 *5 (-13 (-441 *4) (-898 *3) (-625 (-904 *3))))
- (-5 *1 (-1094 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-575)) (-5 *6 (-1 (-1290) (-1285 *5) (-1285 *5) (-389)))
- (-5 *3 (-1285 (-389))) (-5 *5 (-389)) (-5 *2 (-1290))
- (-5 *1 (-799)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1270 *3 *4 *5)) (-5 *1 (-328 *3 *4 *5)) (-4 *3 (-373))
- (-14 *4 (-1194)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-575))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-429 *3)) (-4 *3 (-567))))
- ((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-710))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1117)) (-5 *1 (-724 *3 *2 *4)) (-4 *3 (-861))
- (-14 *4
- (-1 (-112) (-2 (|:| -4317 *3) (|:| -1658 *2))
- (-2 (|:| -4317 *3) (|:| -1658 *2)))))))
+ (-12 (-5 *2 (-656 (-1095 *3 *4 *5))) (-4 *3 (-1119))
+ (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3))))
+ (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))
+ (-5 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3))
- (-4 *3 (-383 *5))))
+ (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-112))
+ (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1196)))))
((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-514 *4 *5 *6 *3)) (-4 *6 (-383 *4)) (-4 *3 (-383 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-700 *5)) (-4 *5 (-1009 *4)) (-4 *4 (-567))
- (-5 *2 (-2 (|:| |num| (-700 *4)) (|:| |den| *4)))
- (-5 *1 (-704 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-373) (-148) (-1055 (-418 (-575)))))
- (-4 *6 (-1261 *5))
- (-5 *2 (-2 (|:| -2566 *7) (|:| |rh| (-655 (-418 *6)))))
- (-5 *1 (-818 *5 *6 *7 *3)) (-5 *4 (-655 (-418 *6)))
- (-4 *7 (-667 *6)) (-4 *3 (-667 (-418 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-1009 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1254 *4 *5 *3))
- (-4 *3 (-1261 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1121)) (-5 *1 (-1198)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1052)) (-5 *3 (-1194)) (-5 *1 (-194)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1235))
- (-5 *2 (-655 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1235)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-615 *3 *2)) (-4 *3 (-1117))
- (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-227))) (-5 *2 (-1285 (-710))) (-5 *1 (-314)))))
-(((*1 *1 *1) (-5 *1 (-873)))
+ (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464))
+ (-14 *5 (-656 (-1196))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117))))
- ((*1 *1 *2) (-12 (-5 *2 (-575)) (-4 *1 (-1175))))
- ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1194)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-103 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-463)) (-4 *5 (-804)) (-4 *6 (-861)) (-4 *7 (-567))
- (-4 *8 (-964 *7 *5 *6))
- (-5 *2 (-2 (|:| -1658 (-782)) (|:| -1754 *3) (|:| |radicand| *3)))
- (-5 *1 (-968 *5 *6 *7 *8 *3)) (-5 *4 (-782))
- (-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *8)) (-15 -1595 (*8 $)) (-15 -1608 (*8 $))))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1121)) (-5 *3 (-785)) (-5 *1 (-52)))))
+ (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
- (|:| |fn| (-1285 (-325 (-227)))) (|:| |yinit| (-655 (-227)))
- (|:| |intvals| (-655 (-227))) (|:| |g| (-325 (-227)))
- (|:| |abserr| (-227)) (|:| |relerr| (-227))))
- (-5 *2
- (-2 (|:| |stiffness| (-389)) (|:| |stability| (-389))
- (|:| |expense| (-389)) (|:| |accuracy| (-389))
- (|:| |intermediateResults| (-389))))
- (-5 *1 (-814)))))
-(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-158)))))
+ (|partial| -12 (-4 *4 (-13 (-568) (-148)))
+ (-5 *2 (-2 (|:| -2425 *3) (|:| -2442 *3))) (-5 *1 (-1257 *4 *3))
+ (-4 *3 (-1263 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 (-623 *4))) (-4 *4 (-441 *3)) (-4 *3 (-1117))
- (-5 *1 (-584 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-901 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-567)) (-4 *2 (-463)) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1261 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-441 *4)) (-5 *1 (-159 *4 *2))
- (-4 *4 (-567)))))
-(((*1 *2) (-12 (-5 *2 (-844 (-575))) (-5 *1 (-545))))
- ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-1176)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-575)) (-5 *1 (-873)))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1176)) (-5 *4 (-171 (-227))) (-5 *5 (-575))
- (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))))
+(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))
+ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1222) (-29 *6)))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-226 *6 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1119)) (-5 *2 (-112))
+ (-5 *1 (-1238 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1174 (-418 *3))) (-5 *1 (-176 *3)) (-4 *3 (-316)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-556))))
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1177))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-786)) (-5 *1 (-52)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))))
+(((*1 *1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4))))
+ (-5 *1 (-1207 *6)) (-5 *5 (-656 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1119))
+ (-5 *1 (-585 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2))
+ (-4 *2 (-442 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196))))
+ ((*1 *1 *1) (-4 *1 (-161))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7))
+ (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805))
+ (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))
+ ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-374)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-668 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -2568 *3) (|:| -1600 (-656 *5))))
+ (-5 *1 (-1044 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-325 (-227))) (-5 *2 (-325 (-418 (-575))))
- (-5 *1 (-314)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-1117))))
+ (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783))
+ (-5 *1 (-962 *4 *5)) (-4 *5 (-1263 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5))
+ (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1263 *5))
+ (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1192 (-576)))) (-5 *3 (-1192 (-576)))
+ (-5 *1 (-584))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-656 (-1192 *1))) (-5 *3 (-1192 *1))
+ (-4 *1 (-926)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))
+ (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-701 *3))))
+ (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1263 (-576)))
+ (-5 *2
+ (-2 (|:| -4261 (-701 (-576))) (|:| |basisDen| (-576))
+ (|:| |basisInv| (-701 (-576)))))
+ (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-701 *4))))
+ (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4))
+ (-5 *2
+ (-2 (|:| -4261 (-701 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-701 *4))))
+ (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27))
+ (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1221 *3))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1223 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-655 (-1221 *2))) (-5 *1 (-1221 *2)) (-4 *2 (-1117)))))
+ (-12 (-5 *3 (-656 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1119)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-441 *3) (-1019))) (-5 *1 (-284 *3 *2))
- (-4 *3 (-567))))
+ (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2))
+ (-4 *3 (-568))))
((*1 *1)
- (-12 (-5 *1 (-349 *2 *3 *4)) (-14 *2 (-655 (-1194)))
- (-14 *3 (-655 (-1194))) (-4 *4 (-398))))
- ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-1220))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-159 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1194)) (-4 *4 (-567)) (-5 *1 (-159 *4 *2))
- (-4 *2 (-441 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1194))))
- ((*1 *1 *1) (-4 *1 (-161))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196)))
+ (-14 *3 (-656 (-1196))) (-4 *4 (-399))))
+ ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1222))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-701 (-326 (-227))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))))
+ (-5 *1 (-207)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-936))) (-5 *4 (-920 (-575)))
- (-5 *2 (-700 (-575))) (-5 *1 (-601))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-936))) (-5 *2 (-655 (-700 (-575))))
- (-5 *1 (-601))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-936))) (-5 *4 (-655 (-920 (-575))))
- (-5 *2 (-655 (-700 (-575)))) (-5 *1 (-601)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174))))
+ ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2))))
+ ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))))
+(((*1 *1 *1) (-5 *1 (-1082))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1194)) (-5 *3 (-655 *1)) (-4 *1 (-441 *4))
- (-4 *4 (-1117))))
+ (-12 (-5 *2 (-1196)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4))
+ (-4 *4 (-1119))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1194)) (-4 *1 (-441 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-575)) (-5 *5 (-112)) (-5 *6 (-700 (-227)))
- (-5 *7 (-3 (|:| |fn| (-399)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-967 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-967 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029))))
- ((*1 *2 *3) (-12 (-5 *3 (-967 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1190 (-575))) (-5 *2 (-655 *1)) (-4 *1 (-1029))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1190 (-418 (-575)))) (-5 *2 (-655 *1)) (-4 *1 (-1029))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1190 *1)) (-4 *1 (-1029)) (-5 *2 (-655 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-859) (-373))) (-4 *3 (-1261 *4)) (-5 *2 (-655 *1))
- (-4 *1 (-1085 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1190 *4)) (-4 *4 (-359))
- (-4 *2
- (-13 (-413)
- (-10 -7 (-15 -2882 (*2 *4)) (-15 -1894 ((-936) *2))
- (-15 -2098 ((-1285 *2) (-936))) (-15 -1514 (*2 *2)))))
- (-5 *1 (-366 *2 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1235)) (-5 *1 (-1149 *4 *2))
- (-4 *2 (-13 (-615 (-575) *4) (-10 -7 (-6 -4460) (-6 -4461))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-861)) (-4 *3 (-1235)) (-5 *1 (-1149 *3 *2))
- (-4 *2 (-13 (-615 (-575) *3) (-10 -7 (-6 -4460) (-6 -4461)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-556))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-429 *3)) (-4 *3 (-556))
- (-4 *3 (-567))))
- ((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-808 *3)) (-4 *3 (-174)) (-4 *3 (-556))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-844 *3)) (-4 *3 (-556))
- (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-854 *3)) (-4 *3 (-556))
- (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1014 *3)) (-4 *3 (-174)) (-4 *3 (-556))
- (-5 *2 (-418 (-575)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-1025 *3)) (-4 *3 (-1055 *2)))))
+ (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-686 *3)) (-4 *3 (-1066))
- (-4 *3 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-655 *8))) (-5 *3 (-655 *8))
- (-4 *8 (-964 *5 *7 *6)) (-4 *5 (-13 (-316) (-148)))
- (-4 *6 (-13 (-861) (-625 (-1194)))) (-4 *7 (-804)) (-5 *2 (-112))
- (-5 *1 (-939 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-938))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-938))
+ (-5 *1 (-540 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-938)) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-374)) (-5 *2 (-845 (-938))) (-5 *1 (-338 *3 *4))
+ (-4 *3 (-339 *4))))
+ ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))))
+(((*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
(((*1 *2)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
+ (-12
+ (-5 *2 (-2 (|:| -3540 (-656 (-1196))) (|:| -2779 (-656 (-1196)))))
+ (-5 *1 (-1239)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1117)) (-5 *1 (-944 *3 *2)) (-4 *2 (-441 *3))))
+ (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-325 (-575))) (-5 *1 (-945)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1176))) (-5 *2 (-1176)) (-5 *1 (-194))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1286))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-269))) (-5 *1 (-1287)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-656
+ (-2
+ (|:| -4147
+ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227))
+ (|:| |fn| (-1287 (-326 (-227))))
+ (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227)))
+ (|:| |g| (-326 (-227))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
+ (|:| -3153
+ (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390))
+ (|:| |expense| (-390)) (|:| |accuracy| (-390))
+ (|:| |intermediateResults| (-390)))))))
+ (-5 *1 (-815)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4)))
+ (-5 *1 (-1207 *4)) (-4 *4 (-862)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *6)) (-4 *5 (-1117))
- (-4 *6 (-1235)) (-5 *2 (-1 *6 *5)) (-5 *1 (-652 *5 *6))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119))
+ (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117))
- (-4 *2 (-1235)) (-5 *1 (-652 *5 *2))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119))
+ (-4 *2 (-1237)) (-5 *1 (-653 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 *6)) (-5 *4 (-655 *5)) (-4 *6 (-1117))
- (-4 *5 (-1235)) (-5 *2 (-1 *5 *6)) (-5 *1 (-652 *6 *5))))
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1119))
+ (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-4 *5 (-1117))
- (-4 *2 (-1235)) (-5 *1 (-652 *5 *2))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119))
+ (-4 *2 (-1237)) (-5 *1 (-653 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-655 *5)) (-5 *4 (-655 *6))
- (-4 *5 (-1117)) (-4 *6 (-1235)) (-5 *1 (-652 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6))
+ (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *1 (-653 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-655 *5)) (-5 *4 (-655 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1117)) (-4 *2 (-1235)) (-5 *1 (-652 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1161)) (-5 *3 (-145)) (-5 *2 (-782)))))
-(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-655 (-655 (-958 (-227)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-991)) (-5 *2 (-655 (-655 (-958 (-227))))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-227)) (-5 *4 (-575))
- (-5 *5 (-3 (|:| |fn| (-399)) (|:| |fp| (-64 G)))) (-5 *2 (-1052))
- (-5 *1 (-759)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-442 *3 *2)) (-4 *2 (-441 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1156))))
-(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-402)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-783)))))
+(((*1 *1 *1) (-4 *1 (-641)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021) (-1222))))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
+ (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4256 *4))))
+ (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4256 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8))
+ (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862))
+ (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4256 *9))))
+ (-5 *1 (-1091 *6 *7 *4 *8 *9)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-576))))
((*1 *2 *1)
- (-12 (-4 *3 (-1009 *2)) (-4 *4 (-1261 *3)) (-4 *2 (-316))
- (-5 *1 (-424 *2 *3 *4 *5)) (-4 *5 (-13 (-420 *3 *4) (-1055 *3)))))
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))))
+(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1)))
- (-4 *1 (-441 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506))))
+ (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-317))
+ (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3)))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4))
- (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *3 (-568)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1)))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507))))
((*1 *2 *1)
- (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-737) *4))
- (-5 *1 (-673 *3 *4 *2)) (-4 *3 (-728 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-418 (-575))) (-5 *1 (-606 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1066)))))
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4))
+ (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4))
+ (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-655 (-325 (-227)))) (|:| -3472 (-655 (-227)))))
- (-5 *2 (-655 (-1194))) (-5 *1 (-275))))
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))
+ (-5 *2 (-656 (-1196))) (-5 *1 (-276))))
((*1 *2 *3)
- (-12 (-5 *3 (-1190 *7)) (-4 *7 (-964 *6 *4 *5)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1066)) (-5 *2 (-655 *5))
- (-5 *1 (-330 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-656 *5))
+ (-5 *1 (-331 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 (-1194))) (-5 *1 (-349 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-398))))
+ (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-399))))
((*1 *2 *1)
- (-12 (-4 *1 (-441 *3)) (-4 *3 (-1117)) (-5 *2 (-655 (-1194)))))
+ (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-1196)))))
((*1 *2 *1)
- (-12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1117))))
+ (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))
((*1 *2 *1)
- (-12 (-4 *1 (-964 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-655 *5))))
+ (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-5 *2 (-656 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066))
- (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *5))
- (-5 *1 (-965 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068))
+ (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *5))
+ (-5 *1 (-967 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $)) (-15 -1608 (*7 $)))))))
+ (-13 (-374)
+ (-10 -8 (-15 -2858 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-4 *5 (-861)) (-5 *2 (-655 *5))))
+ (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-4 *5 (-862)) (-5 *2 (-656 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-655 *5))))
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-418 (-967 *4))) (-4 *4 (-567)) (-5 *2 (-655 (-1194)))
- (-5 *1 (-1060 *4)))))
-(((*1 *2)
- (-12 (-14 *4 (-782)) (-4 *5 (-1235)) (-5 *2 (-135))
- (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-373)) (-5 *2 (-135)) (-5 *1 (-337 *3 *4))
- (-4 *3 (-338 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-174))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-575))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804))
- (-5 *2 (-575)) (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1066)) (-5 *2 (-936))))
- ((*1 *2) (-12 (-4 *1 (-1292 *3)) (-4 *3 (-373)) (-5 *2 (-135)))))
+ (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1196)))
+ (-5 *1 (-1062 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-4 *5 (-373)) (-5 *2 (-1174 (-1174 (-967 *5))))
- (-5 *1 (-1293 *5)) (-5 *4 (-1174 (-967 *5))))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4256 *4))))
+ (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-655 *1))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1194))) (-5 *3 (-52)) (-5 *1 (-904 *4))
- (-4 *4 (-1117)))))
+ (-12 (-5 *2 (-656 *4)) (-5 *1 (-1160 *3 *4))
+ (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1263 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317))
+ (-4 *10 (-966 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-656 (-1192 *10)))
+ (|:| |dterm|
+ (-656 (-656 (-2 (|:| -2352 (-783)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10))))
+ (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-656 *6))
+ (-5 *5 (-656 *10)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227)))
+ (-5 *2 (-1054)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-464))
+ (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374))
+ (-4 *5 (-13 (-374) (-860))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576)))))
+ (-4 *2 (-13 (-862) (-21))))))
+(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340))))
+ ((*1 *1) (-5 *1 (-340))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 *4)) (-5 *1 (-1158 *3 *4))
- (-4 *3 (-13 (-1117) (-34))) (-4 *4 (-13 (-1117) (-34))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-993 *3 *4 *5 *6)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-623 *3)) (-5 *5 (-1190 *3))
- (-4 *3 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-623 *3)) (-5 *5 (-418 (-1190 *3)))
- (-4 *3 (-13 (-441 *6) (-27) (-1220)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-148) (-650 (-575))))
- (-5 *2 (-597 *3)) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1117)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-556))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-871)) (-5 *3 (-129)) (-5 *2 (-782)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3))
+ (-4 *3 (-13 (-374) (-1222) (-1021)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2)))
+ (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5))
+ (-4 *3 (-353 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241))
+ (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *3 (-656 (-270))) (-5 *1 (-268))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-270))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *2 (-1292)) (-5 *1 (-1289))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2687 (-227))
+ (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227))
+ (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))
+ (-5 *1 (-1289))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2495 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-316)) (-4 *4 (-1009 *3)) (-4 *5 (-1261 *4))
- (-5 *2 (-1285 *6)) (-5 *1 (-424 *3 *4 *5 *6))
- (-4 *6 (-13 (-420 *4 *5) (-1055 *4)))))
+ (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4))
+ (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6))
+ (-4 *6 (-13 (-421 *4 *5) (-1057 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-4 *3 (-1117)) (-5 *2 (-1142 *3 (-623 *1)))
- (-4 *1 (-441 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1142 (-575) (-623 (-506)))) (-5 *1 (-506))))
+ (-12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1)))
+ (-4 *1 (-442 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507))))
((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-632 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-737) *3))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-738) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-728 *3)) (-5 *1 (-673 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-737) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-567)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-700 (-227))) (-5 *6 (-112)) (-5 *7 (-700 (-575)))
- (-5 *8 (-3 (|:| |fn| (-399)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-575)) (-5 *4 (-227)) (-5 *2 (-1052)) (-5 *1 (-764)))))
+ (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-738) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-936)) (-5 *2 (-1176)) (-5 *1 (-797)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-871)) (-5 *2 (-702 (-560))) (-5 *3 (-560)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1300 *3 *4)) (-4 *3 (-861)) (-4 *4 (-174))
- (-5 *1 (-675 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-675 *3 *4)) (-5 *1 (-1305 *3 *4))
- (-4 *3 (-861)) (-4 *4 (-174)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-655 *7))) (-4 *1 (-1228 *4 *5 *6 *7))
- (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373))
- (-4 *7 (-1261 (-418 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3660 *3)))
- (-5 *1 (-573 *5 *6 *7 *3)) (-4 *3 (-352 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1261 *5)) (-4 *5 (-373))
- (-5 *2
- (-2 (|:| |answer| (-418 *6)) (|:| -3660 (-418 *6))
- (|:| |specpart| (-418 *6)) (|:| |polypart| *6)))
- (-5 *1 (-574 *5 *6)) (-5 *3 (-418 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-849))) (-5 *1 (-141)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1192 *9)))
+ (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783)))
+ (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-966 *9 *10 *11))
+ (-4 *10 (-805)) (-5 *2 (-656 (-1192 *12)))
+ (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1192 *12)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-920 (-575))) (-5 *4 (-575)) (-5 *2 (-700 *4))
- (-5 *1 (-1045 *5)) (-4 *5 (-1066))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-700 (-575))) (-5 *1 (-1045 *4))
- (-4 *4 (-1066))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-920 (-575)))) (-5 *4 (-575))
- (-5 *2 (-655 (-700 *4))) (-5 *1 (-1045 *5)) (-4 *5 (-1066))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1263 (-419 *2)))
+ (-4 *2 (-1263 *5)) (-5 *1 (-217 *5 *2 *6 *3))
+ (-4 *3 (-353 *5 *2 *6)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227))
+ (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-591)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1))
+ (-4 *1 (-1090 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1222)))
+ (-5 *1 (-595 *4 *2))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576))))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-655 (-575)))) (-5 *2 (-655 (-700 (-575))))
- (-5 *1 (-1045 *4)) (-4 *4 (-1066)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873)))))
+ (-12 (-5 *3 (-598 (-419 (-969 *4))))
+ (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *4))
+ (-5 *1 (-601 *4)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))
+ (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))
+ (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9))
+ (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6))
+ (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)) (-4 *2 (-317))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2))
+ (-4 *2 (-699 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068))
+ (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-690 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1005 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-463))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-1124 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-572)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-936)) (-5 *2 (-479)) (-5 *1 (-1286)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1066)) (-5 *1 (-838 *2 *3)) (-4 *2 (-719 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-371 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *1 (-396 *4)) (-4 *4 (-1117)) (-5 *2 (-782))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-575)) (-4 *2 (-23)) (-5 *1 (-660 *4 *2 *5))
- (-4 *4 (-1117)) (-14 *5 *2))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-171 (-227))))
- (-5 *2 (-1052)) (-5 *1 (-765)))))
+ (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1045 (-855 (-576))))
+ (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1068))
+ (-5 *1 (-607 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-873)) (-5 *1 (-401 *3 *4 *5)) (-14 *3 (-782))
- (-14 *4 (-782)) (-4 *5 (-174)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1117)) (-4 *2 (-1117))
- (-5 *1 (-901 *4 *2)))))
+ (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 (-576)))))
+ (-5 *1 (-372 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119))
+ (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 (-783)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| -2367 *3) (|:| -2273 (-576)))))
+ (-5 *1 (-430 *3)) (-4 *3 (-568)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1158))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1068)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1066)) (-4 *2 (-698 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1261 *4)) (-4 *5 (-383 *4))
- (-4 *6 (-383 *4)))))
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145)))
+ ((*1 *1 *1) (-4 *1 (-1163))))
+(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1113 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
+ (-5 *1 (-315))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-960 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567))
- (-5 *2 (-2 (|:| -1754 *4) (|:| -3262 *3) (|:| -4041 *3)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-1082 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| -1754 *3) (|:| -3262 *1) (|:| -4041 *1)))
- (-4 *1 (-1261 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-373)) (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3)))
- (-5 *1 (-777 *3 *4)) (-4 *3 (-719 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-373)) (-4 *3 (-1066))
- (-5 *2 (-2 (|:| -3262 *1) (|:| -4041 *1))) (-4 *1 (-863 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-373)) (-4 *5 (-1066))
- (-5 *2 (-2 (|:| -3262 *3) (|:| -4041 *3))) (-5 *1 (-864 *5 *3))
- (-4 *3 (-863 *5)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-700 (-227))) (-5 *5 (-700 (-575))) (-5 *3 (-575))
- (-5 *2 (-1052)) (-5 *1 (-765)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 (-655 *3))) (-4 *3 (-1117)) (-5 *1 (-1206 *3)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *2 (-13 (-1119) (-34))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068))
+ (-5 *3 (-576)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1288)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-921 *4))
+ (-4 *4 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-690 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))))
-(((*1 *1) (-5 *1 (-448))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-517)) (-5 *3 (-1121)) (-5 *1 (-300)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-831)) (-14 *5 (-1194)) (-5 *2 (-655 (-1258 *5 *4)))
- (-5 *1 (-1131 *4 *5)) (-5 *3 (-1258 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
+ (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))))
+(((*1 *1 *1) (-5 *1 (-1082))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-430 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))))
(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139))))
((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-5 *2 (-429 (-1190 (-1190 *4))))
- (-5 *1 (-1233 *4)) (-5 *3 (-1190 (-1190 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1117)) (-5 *1 (-982 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-148)) (-4 *2 (-316)) (-4 *2 (-463)) (-4 *3 (-861))
- (-4 *4 (-804)) (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-325 (-575))) (-5 *1 (-1136))))
+(((*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2))
+ (-4 *2 (-1278 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1194))
- (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-597 *3)) (-5 *1 (-568 *5 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1111 (-854 (-389)))) (-5 *2 (-1111 (-854 (-227))))
- (-5 *1 (-314)))))
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3))
+ (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2))
+ (-4 *2 (-1278 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148)))
+ (-5 *1 (-1172 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068))
+ (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *5 (-1263 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-627 *4 *5))
+ (-5 *3 (-419 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5))
+ (-4 *5 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-1192 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4461)) (-4 *1 (-249 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *4)) (-5 *1 (-1145 *3 *4)) (-4 *3 (-1261 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-373) (-10 -8 (-15 ** ($ $ (-418 (-575)))))))
- (-5 *2 (-655 *3)) (-5 *1 (-1145 *4 *3)) (-4 *4 (-1261 *3)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-1064)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2))
+ (-4 *2 (-1263 *3)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576))))
+ (-4 *5 (-1263 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1035 *4 *5))
+ (-5 *3 (-419 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -2367 *3) (|:| -4436 *4))))
+ (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6))
+ (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-580 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) ((*1 *1) (-4 *1 (-557)))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *1) (-5 *1 (-1104))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1285 *5)) (-4 *5 (-803)) (-5 *2 (-112))
- (-5 *1 (-856 *4 *5)) (-14 *4 (-782)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936)))) ((*1 *1) (-4 *1 (-556)))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-958 *5)) (-5 *3 (-782)) (-4 *5 (-1066))
- (-5 *1 (-1182 *4 *5)) (-14 *4 (-936)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1286))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-782)) (-5 *4 (-936)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1261 (-575))) (-5 *1 (-497 *3)))))
+ (-12 (-4 *4 (-568))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2495 *4)))
+ (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))))
+(((*1 *1) (-5 *1 (-590))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-941)))))
-(((*1 *2 *2) (-12 (-5 *2 (-325 (-227))) (-5 *1 (-212)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-596)) (-5 *3 (-608)) (-5 *4 (-300)) (-5 *1 (-289)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2))
- (-4 *2 (-1235)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-575)) (-5 *3 (-936)) (-4 *1 (-415))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-575)) (-4 *1 (-415))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 (-576)))) (-5 *1 (-478)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-764)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-4 *1 (-416))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416))))
((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2 *6)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))))
+ (-12 (-4 *1 (-1122 *3 *4 *5 *2 *6)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1196))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-656 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -4177 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1222) (-27) (-442 *8)))
+ (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -2442 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1032 *8 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066))
+ (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068))
(-5 *2
- (-2 (|:| -2499 (-782)) (|:| |curves| (-782))
- (|:| |polygons| (-782)) (|:| |constructs| (-782)))))))
-(((*1 *1) (-5 *1 (-589))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-373)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *4 *5 *6 *3)) (-4 *3 (-964 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1082 *3 *4 *2)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *2 (-861))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
+ (-2 (|:| -2512 (-783)) (|:| |curves| (-783))
+ (|:| |polygons| (-783)) (|:| |constructs| (-783)))))))
+(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-158)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4))
+ (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-656
+ (-2 (|:| -4422 (-783))
+ (|:| |eqns|
+ (-656
+ (-2 (|:| |det| *7) (|:| |rows| (-656 (-576)))
+ (|:| |cols| (-656 (-576))))))
+ (|:| |fgb| (-656 *7)))))
+ (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148)))
+ (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783))
+ (-5 *1 (-941 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-783)) (-4 *5 (-568))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -16538,1747 +16462,1832 @@
(|:| |Continue| "continue")
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-339)))))
+ (-5 *1 (-340)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *1) (-4 *1 (-504)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-660 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-59 *3)) (-4 *3 (-1235))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-1235)) (-5 *1 (-59 *3)))))
-(((*1 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1288)))))
-(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-194))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-309))))
- ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1176)) (-5 *1 (-314)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
- ((*1 *1 *1) (-5 *1 (-873))))
-(((*1 *1) (-5 *1 (-142))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-429 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340))
+ (-5 *1 (-342))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1196)) (-5 *4 (-1111 (-969 (-576)))) (-5 *2 (-340))
+ (-5 *1 (-342))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068))
+ (-4 *3 (-1119)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1194))) (-4 *4 (-13 (-316) (-148)))
- (-4 *5 (-13 (-861) (-625 (-1194)))) (-4 *6 (-804))
- (-5 *2 (-655 (-418 (-967 *4)))) (-5 *1 (-939 *4 *5 *6 *7))
- (-4 *7 (-964 *4 *6 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-655 (-575)))
- (|:| |cols| (-655 (-575)))))
- (-5 *4 (-700 *12)) (-5 *5 (-655 (-418 (-967 *9))))
- (-5 *6 (-655 (-655 *12))) (-5 *7 (-782)) (-5 *8 (-575))
- (-4 *9 (-13 (-316) (-148))) (-4 *12 (-964 *9 *11 *10))
- (-4 *10 (-13 (-861) (-625 (-1194)))) (-4 *11 (-804))
+ (-12 (-5 *3 (-701 (-419 (-969 (-576)))))
+ (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196))))
+ (-4 *6 (-805)) (-4 *7 (-966 *4 *6 *5))
(-5 *2
- (-2 (|:| |eqzro| (-655 *12)) (|:| |neqzro| (-655 *12))
- (|:| |wcond| (-655 (-967 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1285 (-418 (-967 *9))))
- (|:| -2098 (-655 (-1285 (-418 (-967 *9)))))))))
- (-5 *1 (-939 *9 *10 *11 *12)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7))))
+ (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-656 *7)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019)))))
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1276 *3))
- (-5 *1 (-286 *3 *4 *2)) (-4 *2 (-1247 *3 *4))))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3))
+ (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-418 (-575)))) (-4 *4 (-1245 *3))
- (-5 *1 (-287 *3 *4 *2 *5)) (-4 *2 (-1268 *3 *4)) (-4 *5 (-1000 *4))))
- ((*1 *1 *1) (-4 *1 (-504)))
+ (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3))
+ (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))
+ ((*1 *1 *1) (-4 *1 (-505)))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1179 *3))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1181 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-38 (-418 (-575))))
- (-5 *1 (-1180 *3)))))
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576))))
+ (-5 *1 (-1182 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-163)))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-115)) (-5 *4 (-782))
- (-4 *5 (-13 (-463) (-1055 (-575)))) (-4 *5 (-567))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-441 *5))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *5 (-623 $)) $))
- (-15 -1608 ((-1142 *5 (-623 $)) $))
- (-15 -2882 ($ (-1142 *5 (-623 $))))))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-655 (-575))) (-5 *1 (-1127)) (-5 *3 (-575)))))
-(((*1 *1) (-5 *1 (-1102))))
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3))
+ (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7))
+ (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805))
+ (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1287 (-1120 *3 *4))) (-5 *1 (-1120 *3 *4))
+ (-14 *3 (-938)) (-14 *4 (-938)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *1) (-5 *1 (-1082)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1173 *4))
+ (-4 *4 (-1237))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7)))
+ (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8)))
+ (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7)))
+ (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805))
+ (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8)))
+ (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1206 (-655 *4))) (-4 *4 (-861))
- (-5 *2 (-655 (-655 *4))) (-5 *1 (-1205 *4)))))
+ (-12 (-5 *3 (-1196))
+ (-5 *2
+ (-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227)))
+ (|:| |singularities| (-1176 (-227)))))
+ (-5 *1 (-105)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-575)) (-4 *6 (-804)) (-4 *7 (-861)) (-4 *8 (-316))
- (-4 *9 (-964 *8 *6 *7))
- (-5 *2 (-2 (|:| -4408 (-1190 *9)) (|:| |polval| (-1190 *8))))
- (-5 *1 (-753 *6 *7 *8 *9)) (-5 *3 (-1190 *9)) (-5 *4 (-1190 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-359)) (-4 *4 (-338 *3)) (-4 *5 (-1261 *4))
- (-5 *1 (-788 *3 *4 *5 *2 *6)) (-4 *2 (-1261 *5)) (-14 *6 (-936))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-4 *1 (-1304 *3)) (-4 *3 (-373)) (-4 *3 (-378))))
- ((*1 *1 *1) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-373)) (-4 *2 (-378)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1052)) (-5 *1 (-314))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-655 (-1052))) (-5 *2 (-1052)) (-5 *1 (-314))))
- ((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-662 *3)) (-4 *3 (-1235))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *1) (-5 *1 (-1080)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1174 (-1174 *4))) (-5 *2 (-1174 *4)) (-5 *1 (-1171 *4))
- (-4 *4 (-1235))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1117)) (-5 *2 (-655 *1))
- (-4 *1 (-441 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-1117))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066))
- (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3))
- (-5 *1 (-965 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $))
- (-15 -1608 (*7 $))))))))
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374))
+ (-4 *7 (-1263 *6))
+ (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6)))
+ (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-359)) (-5 *2 (-1285 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-700 *1)) (-4 *1 (-146)) (-4 *1 (-924))
- (-5 *2 (-1285 *1)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1193)) (-5 *1 (-339)))))
-(((*1 *2)
- (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-376 *3 *4))
- (-4 *3 (-377 *4))))
- ((*1 *2) (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+ (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))))
+(((*1 *1) (-5 *1 (-158))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *4)) (-4 *4 (-859)) (-4 *4 (-373)) (-5 *2 (-782))
- (-5 *1 (-960 *4 *5)) (-4 *5 (-1261 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-683 *3)) (-4 *3 (-861)) (-4 *1 (-384 *3 *4))
- (-4 *4 (-174)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-1119 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1119 *3)) (-5 *1 (-919 *3)) (-4 *3 (-1117)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-782)) (-4 *5 (-174))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-575)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-782)) (-4 *5 (-174))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-515 (-418 (-575)) (-245 *5 (-782)) (-875 *4)
- (-252 *4 (-418 (-575)))))
- (-5 *3 (-655 (-875 *4))) (-14 *4 (-655 (-1194))) (-14 *5 (-782))
- (-5 *1 (-516 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-227))) (-5 *5 (-575)) (-5 *6 (-1176))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-769)))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-5 *2 (-1292)) (-5 *1 (-1199))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1196))
+ (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *2 (-1292))
+ (-5 *1 (-1199))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1196))
+ (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2035 "void"))) (-5 *2 (-1292))
+ (-5 *1 (-1199)))))
+(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *7)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-655 (-112))) (-5 *5 (-700 (-227)))
- (-5 *6 (-700 (-575))) (-5 *7 (-227)) (-5 *3 (-575)) (-5 *2 (-1052))
- (-5 *1 (-765)))))
+ (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3))
+ (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-701 (-419 (-969 (-576)))))
+ (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050))
+ (-5 *3 (-326 (-576))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))))
+(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-389))) (-5 *1 (-1057)) (-5 *3 (-389)))))
-(((*1 *2 *2) (-12 (-5 *2 (-936)) (|has| *1 (-6 -4451)) (-4 *1 (-415))))
- ((*1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-936))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710))))
- ((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-710)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1285 (-655 (-2 (|:| -4181 *4) (|:| -4317 (-1137))))))
- (-4 *4 (-359)) (-5 *2 (-782)) (-5 *1 (-356 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-361 *3 *4)) (-14 *3 (-936))
- (-14 *4 (-936))))
- ((*1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-362 *3 *4)) (-4 *3 (-359))
- (-14 *4
- (-3 (-1190 *3)
- (-1285 (-655 (-2 (|:| -4181 *3) (|:| -4317 (-1137)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-363 *3 *4)) (-4 *3 (-359))
- (-14 *4 (-936)))))
+ (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))))
+(((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416))))
+ ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938))))
+ ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711))))
+ ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1183 *4 *3))
+ (-4 *3 (-1263 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568))
+ (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1288))))
+ ((*1 *1 *1) (-5 *1 (-1288))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-568)) (-4 *2 (-966 *3 *5 *4))
+ (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-969 *6))) (-4 *5 (-805))
+ (-4 *4 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))))
+ (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862))
+ (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-655 (-967 *4))) (-5 *3 (-655 (-1194))) (-4 *4 (-463))
- (-5 *1 (-933 *4)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-884 (-1199) (-782)))) (-5 *1 (-342)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-861)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-840)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1194)) (-5 *2 (-1 (-1190 (-967 *4)) (-967 *4)))
- (-5 *1 (-1293 *4)) (-4 *4 (-373)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-5 *2 (-575)) (-5 *1 (-454 *4 *3 *5))
- (-4 *3 (-1261 *4))
- (-4 *5 (-13 (-415) (-1055 *4) (-373) (-1220) (-293))))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-569 *2)) (-4 *2 (-556)))))
-(((*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-861)) (-4 *3 (-174))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-638 *2 *3 *4)) (-4 *2 (-861))
- (-4 *3 (-13 (-174) (-728 (-418 (-575))))) (-14 *4 (-936))))
- ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-861))))
- ((*1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-861))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1302 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1066)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-655 (-1190 *13))) (-5 *3 (-1190 *13))
- (-5 *4 (-655 *12)) (-5 *5 (-655 *10)) (-5 *6 (-655 *13))
- (-5 *7 (-655 (-655 (-2 (|:| -4310 (-782)) (|:| |pcoef| *13)))))
- (-5 *8 (-655 (-782))) (-5 *9 (-1285 (-655 (-1190 *10))))
- (-4 *12 (-861)) (-4 *10 (-316)) (-4 *13 (-964 *10 *11 *12))
- (-4 *11 (-804)) (-5 *1 (-718 *11 *12 *10 *13)))))
+ (-12 (-4 *4 (-805))
+ (-4 *3 (-13 (-862) (-10 -8 (-15 -2610 ((-1196) $))))) (-4 *5 (-568))
+ (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805))
+ (-4 *3
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-656 *6))
+ (-4 *6
+ (-13 (-862)
+ (-10 -8 (-15 -2610 ((-1196) $))
+ (-15 -1455 ((-3 $ "failed") (-1196))))))
+ (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2))
+ (-4 *2 (-966 (-969 *4) *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1057 (-48)))
+ (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2 (-430 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3))
+ (-4 *3 (-1263 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1088 *3 *4 *5 *6)) (-4 *3 (-463)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *6 (-1082 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1088 *4 *5 *6 *3)) (-4 *4 (-463)) (-4 *5 (-804))
- (-4 *6 (-861)) (-4 *3 (-1082 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-655 *6)) (-4 *6 (-861)) (-4 *4 (-373)) (-4 *5 (-804))
- (-5 *2
- (-2 (|:| |mval| (-700 *4)) (|:| |invmval| (-700 *4))
- (|:| |genIdeal| (-515 *4 *5 *6 *7))))
- (-5 *1 (-515 *4 *5 *6 *7)) (-4 *7 (-964 *4 *5 *6)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119))
+ (-5 *2 (-2 (|:| -1788 (-576)) (|:| |var| (-624 *1))))
+ (-4 *1 (-442 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-174))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862))
+ (-4 *4 (-1068))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))))
(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-936))))
- ((*1 *1 *1 *1) (-5 *1 (-1240))) ((*1 *1 *1 *1) (-5 *1 (-1241)))
- ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1290)) (-5 *1 (-833)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938))))
+ ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243)))
+ ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3))
+ (-4 *3 (-1084 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-656 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464))
+ (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805))
+ (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-5 *2 (-656 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3))
+ (-4 *3 (-1084 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))
+ ((*1 *1 *1 *1) (-5 *1 (-874))))
+(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2))
+ (-4 *4 (-384 *2)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-1194)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1228 *3 *4 *5 *2)) (-4 *3 (-567)) (-4 *4 (-804))
- (-4 *5 (-861)) (-4 *2 (-1082 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-463)) (-4 *7 (-804)) (-4 *8 (-861))
- (-4 *3 (-1082 *6 *7 *8))
- (-5 *2 (-655 (-2 (|:| |val| *3) (|:| -4270 *4))))
- (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1088 *6 *7 *8 *3))))
+ (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1021) (-1222)))
+ (-5 *1 (-612 *4 *2 *3))
+ (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222))))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 (-2 (|:| |val| (-655 *8)) (|:| -4270 *9))))
- (-5 *5 (-112)) (-4 *8 (-1082 *6 *7 *4)) (-4 *9 (-1088 *6 *7 *4 *8))
- (-4 *6 (-463)) (-4 *7 (-804)) (-4 *4 (-861))
- (-5 *2 (-655 (-2 (|:| |val| *8) (|:| -4270 *9))))
- (-5 *1 (-1089 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1235)) (-4 *4 (-383 *3))
- (-4 *5 (-383 *3)) (-5 *2 (-575))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6 *7)) (-4 *5 (-1066))
- (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-575)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
- ((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-311)) (-4 *2 (-1235))))
+ (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7))
+ (-5 *5 (-1 (-430 *7) *7))
+ (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7))
+ (-5 *5 (-1 (-430 *7) *7))
+ (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6))
+ (-4 *6 (-1263 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6))
+ (-4 *6 (-1263 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))
+ (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)) (-4 *2 (-568)))))
+(((*1 *1)
+ (-12 (-4 *1 (-416)) (-3189 (|has| *1 (-6 -4453)))
+ (-3189 (|has| *1 (-6 -4445)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862))))
+ ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862)))
+ ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1237))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-623 *1))) (-5 *3 (-655 *1)) (-4 *1 (-311))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-655 (-303 *1))) (-4 *1 (-311))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-303 *1)) (-4 *1 (-311)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-770)))))
+ (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))))
+(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-145))))
+ ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1158))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-194)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-145))))
- ((*1 *1 *2) (-12 (-5 *2 (-782)) (-5 *1 (-145)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-575)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1235))
- (-4 *5 (-383 *4)) (-4 *3 (-383 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-238)) (-4 *3 (-1066)) (-4 *4 (-861)) (-4 *5 (-274 *4))
- (-4 *6 (-804)) (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1066)) (-4 *3 (-861)) (-4 *5 (-274 *3)) (-4 *6 (-804))
- (-5 *2 (-1 *1 (-782))) (-4 *1 (-259 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-782)) (-4 *1 (-274 *2)) (-4 *2 (-861)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *2 (-1052)) (-5 *1 (-763)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-782)) (-5 *1 (-103 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-749)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-700 *2)) (-5 *4 (-782))
- (-4 *2 (-13 (-316) (-10 -8 (-15 -4281 ((-429 $) $)))))
- (-4 *5 (-1261 *2)) (-5 *1 (-510 *2 *5 *6)) (-4 *6 (-420 *2 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-174)))))
+ (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1068))
+ (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-966 *2 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-750)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-587 *4 *2))
+ (-4 *2 (-13 (-1222) (-976) (-1158) (-29 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-360))
+ (-5 *2 (-656 (-2 (|:| -2367 (-576)) (|:| -2273 (-576))))))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1119)) (-5 *2 (-783))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5))
+ (-4 *4 (-1119)) (-14 *5 *2))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241))
+ (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862)))
+ (-14 *3 (-656 (-1196))))))
+(((*1 *1) (-5 *1 (-835))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1129)))))
+(((*1 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-683))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938))
+ (-14 *4 (-938)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-1004 (-418 (-575)) (-875 *3) (-245 *4 (-782))
- (-252 *3 (-418 (-575)))))
- (-14 *3 (-655 (-1194))) (-14 *4 (-782)) (-5 *1 (-1003 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-4 *3 (-861)) (-5 *1 (-250 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-655 (-782)))
- (-5 *1 (-919 *4)))))
+ (-656
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-576)))))
+ (-5 *1 (-430 *3)) (-4 *3 (-568))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1263 *3))
+ (-5 *2 (-656 (-1192 *3))) (-5 *1 (-510 *3 *5 *6))
+ (-4 *6 (-1263 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1) (-5 *1 (-874)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1192 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-4 *5 (-338 *4)) (-4 *6 (-1261 *5))
- (-5 *2 (-655 *3)) (-5 *1 (-788 *4 *5 *6 *3 *7)) (-4 *3 (-1261 *6))
- (-14 *7 (-936)))))
-(((*1 *1) (-5 *1 (-1286))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-762)))))
+ (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416))
+ (-5 *2 (-938)))))
+(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))))
+(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-155))))
+ ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1085)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-112))
- (-5 *1 (-994 *4 *5 *6 *3)) (-4 *3 (-1082 *4 *5 *6)))))
+ (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-373))
- (-5 *2 (-655 (-2 (|:| C (-700 *5)) (|:| |g| (-1285 *5)))))
- (-5 *1 (-995 *5)) (-5 *3 (-700 *5)) (-5 *4 (-1285 *5)))))
-(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-1288)))))
-(((*1 *2 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-174)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1285 *1)) (-4 *1 (-377 *4)) (-4 *4 (-174))
- (-5 *2 (-700 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-174)) (-5 *2 (-700 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-655 (-958 (-227)))))
- (-5 *2 (-655 (-1111 (-227)))) (-5 *1 (-943)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-155))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1152))) (-5 *1 (-1083)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1120 *2 *3 *4 *5 *6)) (-4 *2 (-1117)) (-4 *3 (-1117))
- (-4 *4 (-1117)) (-4 *5 (-1117)) (-4 *6 (-1117)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-227) (-227) (-227)))
- (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined"))
- (-5 *5 (-1111 (-227))) (-5 *6 (-655 (-269))) (-5 *2 (-1150 (-227)))
- (-5 *1 (-708))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-958 (-227)) (-227) (-227))) (-5 *4 (-1111 (-227)))
- (-5 *5 (-655 (-269))) (-5 *2 (-1150 (-227))) (-5 *1 (-708))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1150 (-227))) (-5 *3 (-1 (-958 (-227)) (-227) (-227)))
- (-5 *4 (-1111 (-227))) (-5 *5 (-655 (-269))) (-5 *1 (-708)))))
+ (-12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3)))
+ (|:| |vals| (-656 *3))))
+ (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))))
+(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))
+ ((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-576)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-936)) (-4 *1 (-338 *3)) (-4 *3 (-373)) (-4 *3 (-378))))
- ((*1 *2 *1) (-12 (-4 *1 (-338 *2)) (-4 *2 (-373))))
+ (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374))))
((*1 *2 *1)
- (-12 (-4 *1 (-380 *2 *3)) (-4 *3 (-1261 *2)) (-4 *2 (-174))))
+ (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1285 *4)) (-5 *3 (-936)) (-4 *4 (-359))
- (-5 *1 (-539 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
- (-4 *5 (-243 *3 *2)) (-4 *2 (-1066)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-227)) (-5 *4 (-575)) (-5 *2 (-1052)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-854 *4)) (-5 *3 (-623 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1220) (-29 *6)))
- (-4 *6 (-13 (-463) (-1055 (-575)) (-650 (-575))))
- (-5 *1 (-226 *6 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1129)) (-4 *3 (-1117)) (-5 *2 (-655 *1))
- (-4 *1 (-441 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-655 (-904 *3))) (-5 *1 (-904 *3))
- (-4 *3 (-1117))))
+ (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360))
+ (-5 *1 (-540 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-655 *1)) (-4 *1 (-964 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-804)) (-4 *5 (-861)) (-4 *6 (-1066))
- (-4 *7 (-964 *6 *4 *5)) (-5 *2 (-655 *3))
- (-5 *1 (-965 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-373)
- (-10 -8 (-15 -2882 ($ *7)) (-15 -1595 (*7 $))
- (-15 -1608 (*7 $))))))))
+ (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2))
+ (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))))
+(((*1 *1) (-5 *1 (-609))))
+(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1059)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1121 (-783))) (-5 *6 (-783))
+ (-5 *2
+ (-2 (|:| |contp| (-576))
+ (|:| -1603 (-656 (-2 (|:| |irr| *3) (|:| -2972 (-576)))))))
+ (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *1 *1 *1) (-5 *1 (-227)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))
+ ((*1 *1 *1 *1) (-4 *1 (-1158))))
(((*1 *2 *1)
- (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-298 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1261 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-722 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1261 *3)) (-5 *1 (-723 *3 *2)) (-4 *3 (-1066))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-726 *3 *2 *4 *5 *6)) (-4 *3 (-174))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-880 *3)) (-5 *2 (-575)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1111 (-227)))
- (-5 *5 (-112)) (-5 *2 (-1287)) (-5 *1 (-263)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *1 (-994 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-274 *2)) (-4 *2 (-861))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1178)) (|:| -1811 (-1178))))
+ (-5 *1 (-834)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1194)) (-5 *1 (-875 *3)) (-14 *3 (-655 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1006))))
+ (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1008))))
((*1 *2 *1)
- (-12 (-4 *4 (-1235)) (-5 *2 (-1194)) (-5 *1 (-1074 *3 *4))
- (-4 *3 (-1110 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-1109 *3)) (-4 *3 (-1235))))
+ (-12 (-4 *4 (-1237)) (-5 *2 (-1196)) (-5 *1 (-1076 *3 *4))
+ (-4 *3 (-1112 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1111 *3)) (-4 *3 (-1237))))
((*1 *2 *1)
- (-12 (-4 *1 (-1263 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-5 *2 (-1194))))
- ((*1 *2) (-12 (-5 *2 (-1194)) (-5 *1 (-1281 *3)) (-14 *3 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-575))) (-5 *2 (-919 (-575))) (-5 *1 (-932))))
- ((*1 *2) (-12 (-5 *2 (-919 (-575))) (-5 *1 (-932)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 (-967 *4))) (-4 *4 (-463)) (-5 *2 (-112))
- (-5 *1 (-370 *4 *5)) (-14 *5 (-655 (-1194)))))
+ (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804))
+ (-5 *2 (-1196))))
+ ((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054))
+ (-5 *1 (-768)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938))
+ (-4 *4 (-1068)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5))
+ (-4 *3 (-1119)) (-4 *5 (-678 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-655 (-791 *4 (-875 *5)))) (-4 *4 (-463))
- (-14 *5 (-655 (-1194))) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-339)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-575)) (-5 *1 (-1217 *3)) (-4 *3 (-1066)))))
-(((*1 *1) (-5 *1 (-589))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-567))
- (-4 *4 (-804)) (-4 *5 (-861)) (-5 *1 (-994 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-655 (-655 (-227)))) (-5 *4 (-227))
- (-5 *2 (-655 (-958 *4))) (-5 *1 (-1231)) (-5 *3 (-958 *4)))))
-(((*1 *1) (-5 *1 (-608))))
+ (-12 (-5 *3 (-983 *4)) (-4 *4 (-1119)) (-5 *2 (-1121 *4))
+ (-5 *1 (-984 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3))
+ (-4 *3 (-1263 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1292))
+ (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237))
+ (-5 *2 (-112)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-936)) (-5 *3 (-655 (-269))) (-5 *1 (-267))))
- ((*1 *1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-269)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1235)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-655 *7)) (|:| |badPols| (-655 *7))))
- (-5 *1 (-994 *4 *5 *6 *7)) (-5 *3 (-655 *7)))))
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-763)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1196))
+ (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *5))
+ (-5 *1 (-601 *5)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1194)) (|:| |fn| (-325 (-227)))
- (|:| -1974 (-1111 (-854 (-227)))) (|:| |abserr| (-227))
- (|:| |relerr| (-227))))
- (-5 *2 (-2 (|:| -1575 (-115)) (|:| |w| (-227)))) (-5 *1 (-206)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-830 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-857)) (-5 *1 (-1308 *3 *2)) (-4 *3 (-1066)))))
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1068))) (-5 *2 (-1178))
+ (-5 *1 (-838 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1068)))
+ (-5 *2 (-1178)) (-5 *1 (-838 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1068)))
+ (-5 *2 (-1292)) (-5 *1 (-838 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-840) (-1068))) (-5 *2 (-1292)) (-5 *1 (-838 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1178))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1178))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1292))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1292)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-936)) (-5 *4 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1286)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1066)))))
+ (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))))
+(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1159 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34)))
+ (-5 *1 (-1160 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-656 (-1159 *3 *4))) (-4 *3 (-13 (-1119) (-34)))
+ (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1196))
+ (-4 *5 (-13 (-568) (-1057 (-576)) (-148)))
+ (-5 *2
+ (-2 (|:| -4177 (-419 (-969 *5))) (|:| |coeff| (-419 (-969 *5)))))
+ (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5))))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-1117)))))
+ (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -4261 (-656 *1))))
+ (-4 *1 (-378 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-465 *3 *4 *5 *6))
+ (|:| -4261 (-656 (-465 *3 *4 *5 *6)))))
+ (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-143 *3 *4 *2))
+ (-4 *2 (-384 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-4 *2 (-384 *4))
+ (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568))
+ (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-1256 *3 *4 *2))
+ (-4 *2 (-1263 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-227) (-227) (-227)))
+ (-5 *4 (-1 (-227) (-227) (-227) (-227)))
+ (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *1 (-709)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1292)) (-5 *1 (-875)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237))
+ (-4 *2 (-862))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4463))
+ (-4 *1 (-384 *3)) (-4 *3 (-1237)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-367 *4))
- (-4 *4 (-359)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-861)) (-5 *3 (-655 *6)) (-5 *5 (-655 *3))
+ (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576))))
+ (-5 *2 (-112)) (-5 *1 (-1315 *4)))))
+(((*1 *2 *3 *1)
+ (-12
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-655 *5)) (|:| |f3| *5)
- (|:| |f4| (-655 *5))))
- (-5 *1 (-1205 *6)) (-5 *4 (-655 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1196 (-418 (-575)))) (-5 *1 (-192)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1290)) (-5 *1 (-1287)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-252 *4 *5)) (-14 *4 (-655 (-1194))) (-4 *5 (-1066))
- (-5 *2 (-492 *4 *5)) (-5 *1 (-959 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478))))
- ((*1 *2 *2) (-12 (-5 *2 (-575)) (-5 *1 (-478))))
- ((*1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-942)))))
+ (-2 (|:| |cycle?| (-112)) (|:| -2501 (-783)) (|:| |period| (-783))))
+ (-5 *1 (-1176 *4)) (-4 *4 (-1237)) (-5 *3 (-783)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-403)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874))
+ (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1119)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-874))))
+ ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-874)) (-5 *1 (-1192 *3)) (-4 *3 (-1068)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862))
+ (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-938))))
+ ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862))
+ (-4 *7 (-1084 *4 *5 *6))
+ (-5 *2 (-656 (-2 (|:| -2463 *1) (|:| -2952 (-656 *7)))))
+ (-5 *3 (-656 *7)) (-4 *1 (-1230 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8)))
+ (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1007 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4256 *8)))
+ (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-1126 *4 *5 *6 *7 *8)))))
+(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3))
+ (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2))
+ (-4 *2 (-699 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-851))
+ (-5 *3
+ (-2 (|:| |fn| (-326 (-227))) (|:| -3448 (-656 (-227)))
+ (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227))))
+ (|:| |ub| (-656 (-855 (-227))))))
+ (-5 *2 (-1054))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-851))
+ (-5 *3
+ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3448 (-656 (-227)))))
+ (-5 *2 (-1054)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1122 *3 *4 *5 *6 *2)) (-4 *3 (-1119)) (-4 *4 (-1119))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -2656 *4))))
+ (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178))
+ (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464))
+ (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1196))) (-5 *1 (-643 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-804)) (-4 *4 (-861)) (-4 *6 (-316)) (-5 *2 (-429 *3))
- (-5 *1 (-753 *5 *4 *6 *3)) (-4 *3 (-964 *6 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-655 (-52))) (-5 *2 (-1290)) (-5 *1 (-874)))))
+ (-12 (-5 *3 (-430 *5)) (-4 *5 (-568))
+ (-5 *2
+ (-2 (|:| -2273 (-783)) (|:| -1788 *5) (|:| |radicand| (-656 *5))))
+ (-5 *1 (-330 *5)) (-5 *4 (-783))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-576)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1190 *7))
- (-4 *5 (-1066)) (-4 *7 (-1066)) (-4 *2 (-1261 *5))
- (-5 *1 (-512 *5 *2 *6 *7)) (-4 *6 (-1261 *2)))))
+ (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464))
+ (-5 *2
+ (-2 (|:| |dpolys| (-656 (-253 *5 *6)))
+ (|:| |coords| (-656 (-576)))))
+ (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3))
+ (-4 *5 (-384 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068))
+ (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4))
+ (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6)))
+ (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576))))
+ (-5 *2 (-2 (|:| -2620 (-783)) (|:| -3736 *8)))
+ (-5 *1 (-928 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6))
+ (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4)))
+ (-4 *6 (-353 (-419 (-576)) *4 *5))
+ (-5 *2 (-2 (|:| -2620 (-783)) (|:| -3736 *6)))
+ (-5 *1 (-929 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-783))
+ (-5 *1 (-1184 *4 *5)) (-14 *4 (-938))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5))
+ (-14 *4 (-938)) (-4 *5 (-1068))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068))
+ (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1209 (-938) (-783))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-656 (-1196)))
+ (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1042)) (-5 *5 (-390))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4)))))
+ (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-656 (-969 *4)))
+ (-4 *4 (-13 (-860) (-317) (-148) (-1041)))
+ (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6))
+ (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1292)) (-5 *1 (-834)))))
(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-766)))))
-(((*1 *1 *1) (-12 (-4 *1 (-291 *2)) (-4 *2 (-1235)) (-4 *2 (-1117))))
- ((*1 *1 *1) (-12 (-4 *1 (-706 *2)) (-4 *2 (-1117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-655 *1)) (-4 *1 (-311))))
- ((*1 *1 *1) (-4 *1 (-311)))
- ((*1 *1 *2) (-12 (-5 *2 (-655 (-873))) (-5 *1 (-873))))
- ((*1 *1 *1) (-5 *1 (-873))))
+ (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054))
+ (-5 *1 (-759)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-958 *4))) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227)))
+ (|:| -3672 (-1113 (-855 (-227)))) (|:| |abserr| (-227))
+ (|:| |relerr| (-227))))
(-5 *2
- (-2 (|:| -3923 (-793 *3)) (|:| |coef1| (-793 *3))
- (|:| |coef2| (-793 *3))))
- (-5 *1 (-793 *3)) (-4 *3 (-567)) (-4 *3 (-1066))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-567)) (-4 *3 (-1066)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *2 (-2 (|:| -3923 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1082 *3 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-782)) (-4 *4 (-567)) (-5 *1 (-986 *4 *2))
- (-4 *2 (-1261 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-655 *7)) (-4 *7 (-1082 *4 *5 *6)) (-4 *4 (-567))
- (-4 *5 (-804)) (-4 *6 (-861)) (-5 *2 (-655 (-1298 *4 *5 *6 *7)))
- (-5 *1 (-1298 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-655 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1082 *6 *7 *8)) (-4 *6 (-567))
- (-4 *7 (-804)) (-4 *8 (-861)) (-5 *2 (-655 (-1298 *6 *7 *8 *9)))
- (-5 *1 (-1298 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575))))))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-194)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1276 *4)) (-5 *1 (-1278 *4 *2))
- (-4 *4 (-38 (-418 (-575)))))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712))))
- ((*1 *2 *2) (-12 (-5 *2 (-936)) (-5 *1 (-712)))))
+ (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862))
+ (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196))
+ (-4 *4 (-13 (-568) (-1057 (-576)) (-148))) (-5 *1 (-582 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-220))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-451))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-850))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1134))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-656 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1137)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-969 *6)) (-5 *4 (-1196))
+ (-5 *5 (-855 *7))
+ (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-226 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6))
+ (-4 *6 (-13 (-1222) (-29 *5)))
+ (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576))))
+ (-5 *1 (-226 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-803))
- (-5 *2 (-782))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-782))))
+ (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-782)) (-5 *1 (-746 *3 *4)) (-4 *3 (-1066))
- (-4 *4 (-737)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-1285 (-700 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-700 *4)) (-4 *5 (-667 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6 *2)) (-4 *3 (-1117)) (-4 *4 (-1117))
- (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194)) (-5 *4 (-967 (-575))) (-5 *2 (-339))
- (-5 *1 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-502)) (-5 *4 (-969)) (-5 *2 (-702 (-544)))
- (-5 *1 (-544))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-969)) (-4 *3 (-1117)) (-5 *2 (-702 *1))
- (-4 *1 (-778 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068))
+ (-4 *4 (-858)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-621 *3 *2)) (-4 *3 (-1117)) (-4 *2 (-1117)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-171 (-227)))) (-5 *2 (-1052))
- (-5 *1 (-765)))))
+ (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34)))
+ (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-567) (-1055 (-575)))) (-4 *5 (-441 *4))
- (-5 *2
- (-3 (|:| |overq| (-1190 (-418 (-575))))
- (|:| |overan| (-1190 (-48))) (|:| -3419 (-112))))
- (-5 *1 (-446 *4 *5 *3)) (-4 *3 (-1261 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-1239)) (-4 *5 (-1261 *4)) (-4 *6 (-1261 (-418 *5)))
- (-5 *2 (-655 (-655 *4))) (-5 *1 (-351 *3 *4 *5 *6))
- (-4 *3 (-352 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-4 *3 (-378)) (-5 *2 (-655 (-655 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-840)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-300)))
- ((*1 *1) (-5 *1 (-873)))
- ((*1 *1)
- (-12 (-4 *2 (-463)) (-4 *3 (-861)) (-4 *4 (-804))
- (-5 *1 (-1004 *2 *3 *4 *5)) (-4 *5 (-964 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1102)))
- ((*1 *1)
- (-12 (-5 *1 (-1157 *2 *3)) (-4 *2 (-13 (-1117) (-34)))
- (-4 *3 (-13 (-1117) (-34)))))
- ((*1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1198))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-655 *3)) (-5 *1 (-986 *4 *3))
- (-4 *3 (-1261 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1066)) (-5 *1 (-1178 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1066)) (-14 *3 (-1194))
- (-14 *4 *2))))
+ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568))
+ (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112))
+ (-5 *1 (-996 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-967 (-227))) (-5 *2 (-325 (-389))) (-5 *1 (-314)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-655 (-1 (-112) *8))) (-4 *8 (-1082 *5 *6 *7))
- (-4 *5 (-567)) (-4 *6 (-804)) (-4 *7 (-861))
- (-5 *2 (-2 (|:| |goodPols| (-655 *8)) (|:| |badPols| (-655 *8))))
- (-5 *1 (-994 *5 *6 *7 *8)) (-5 *4 (-655 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1220))))
- ((*1 *2 *1) (-12 (-5 *1 (-340 *2)) (-4 *2 (-861))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1117)))))
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4))
+ (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148))) (-4 *6 (-804))
- (-4 *7 (-861)) (-4 *8 (-1082 *5 *6 *7)) (-5 *2 (-655 *3))
- (-5 *1 (-602 *5 *6 *7 *8 *3)) (-4 *3 (-1126 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5))))))
- (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5)))
- (-14 *6 (-655 (-1194)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-316) (-148)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *4)) (|:| -2209 (-655 (-967 *4))))))
- (-5 *1 (-1095 *4 *5)) (-5 *3 (-655 (-967 *4)))
- (-14 *5 (-655 (-1194)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-316) (-148)))
- (-5 *2
- (-655 (-2 (|:| -3885 (-1190 *5)) (|:| -2209 (-655 (-967 *5))))))
- (-5 *1 (-1095 *5 *6)) (-5 *3 (-655 (-967 *5)))
- (-14 *6 (-655 (-1194))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-567)) (-5 *1 (-284 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1019))))))
-(((*1 *2 *3)
- (-12
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576)))))))
(-5 *2
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3 *4)
+ (-2 (|:| |solns| (-656 *5))
+ (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1147 *3 *5)) (-4 *3 (-1263 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292))
+ (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))))
+(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-576)) (-14 *4 (-783)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227))))
+ (-5 *2 (-1054)) (-5 *1 (-766)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575)))
- (-5 *4 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))))
- ((*1 *2 *3 *4)
- (-12
+ (-2 (|:| -1788 *3) (|:| |gap| (-783)) (|:| -2647 (-794 *3))
+ (|:| -2307 (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-1068))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862))
(-5 *2
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *1 (-1037 *3)) (-4 *3 (-1261 (-575))) (-5 *4 (-418 (-575)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-418 (-575)))
- (-5 *2 (-655 (-2 (|:| -2412 *5) (|:| -2429 *5)))) (-5 *1 (-1037 *3))
- (-4 *3 (-1261 (-575))) (-5 *4 (-2 (|:| -2412 *5) (|:| -2429 *5)))))
- ((*1 *2 *3)
- (-12
+ (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2647 *1)
+ (|:| -2307 *1)))
+ (-4 *1 (-1084 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))
(-5 *2
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575))))))
- ((*1 *2 *3 *4)
+ (-2 (|:| -1788 *1) (|:| |gap| (-783)) (|:| -2647 *1)
+ (|:| -2307 *1)))
+ (-4 *1 (-1084 *3 *4 *5)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-655 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575))))))
- (-5 *1 (-1038 *3)) (-4 *3 (-1261 (-418 (-575))))
- (-5 *4 (-2 (|:| -2412 (-418 (-575))) (|:| -2429 (-418 (-575)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-418 (-575)))
- (-5 *2 (-655 (-2 (|:| -2412 *4) (|:| -2429 *4)))) (-5 *1 (-1038 *3))
- (-4 *3 (-1261 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-418 (-575)))
- (-5 *2 (-655 (-2 (|:| -2412 *5) (|:| -2429 *5)))) (-5 *1 (-1038 *3))
- (-4 *3 (-1261 *5)) (-5 *4 (-2 (|:| -2412 *5) (|:| -2429 *5))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1176)) (-5 *4 (-575)) (-5 *5 (-700 (-227)))
- (-5 *2 (-1052)) (-5 *1 (-765)))))
-(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-342)))))
-(((*1 *2 *2) (-12 (-5 *1 (-976 *2)) (-4 *2 (-556)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-220))))
- ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-450))))
- ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-849))))
- ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1132))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-655 (-1199))) (-5 *3 (-1199)) (-5 *1 (-1135)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-575)) (-5 *5 (-700 (-227))) (-5 *6 (-686 (-227)))
- (-5 *3 (-227)) (-5 *2 (-1052)) (-5 *1 (-761)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-608)) (-5 *1 (-596)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-567)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6))
- (-5 *2 (-655 (-2 (|:| -2454 *1) (|:| -2976 (-655 *7)))))
- (-5 *3 (-655 *7)) (-4 *1 (-1228 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-506)))))
-(((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1176)))))
-(((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-655 (-1176))) (-5 *1 (-1215)))))
+ (-2 (|:| -2495 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3))))
+ (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-418 (-967 *3))) (-5 *1 (-464 *3 *4 *5 *6))
- (-4 *3 (-567)) (-4 *3 (-174)) (-14 *4 (-936))
- (-14 *5 (-655 (-1194))) (-14 *6 (-1285 (-700 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-873))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-698 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-383 *2))
- (-4 *4 (-383 *2)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1194))
- (-4 *5 (-13 (-463) (-148) (-1055 (-575)) (-650 (-575))))
- (-5 *2 (-2 (|:| -2063 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3))
- (-4 *3 (-13 (-27) (-1220) (-441 *5))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-418 (-967 *6)) (-1183 (-1194) (-967 *6))))
- (-5 *5 (-782)) (-4 *6 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *6)))))
- (-5 *1 (-301 *6)) (-5 *4 (-700 (-418 (-967 *6))))))
- ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5))
+ (-4 *3 (-1119)) (-4 *5 (-678 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220))))
+ ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))
+ ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805))
+ (-4 *4 (-862)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-418 (-967 *5)) (-1183 (-1194) (-967 *5))))
- (|:| |eigmult| (-782)) (|:| |eigvec| (-655 *4))))
- (-4 *5 (-463)) (-5 *2 (-655 (-700 (-418 (-967 *5)))))
- (-5 *1 (-301 *5)) (-5 *4 (-700 (-418 (-967 *5)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-445)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 (-575)))))
- (-5 *1 (-371 *3)) (-4 *3 (-1117))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-396 *3)) (-4 *3 (-1117))
- (-5 *2 (-655 (-2 (|:| |gen| *3) (|:| -2663 (-782)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| -2347 *3) (|:| -1658 (-575)))))
- (-5 *1 (-429 *3)) (-4 *3 (-567)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1117)) (-5 *2 (-901 *3 *5)) (-5 *1 (-897 *3 *4 *5))
- (-4 *3 (-1117)) (-4 *5 (-677 *4)))))
-(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-373) (-1220))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1029)) (-5 *2 (-873)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290))
- (-5 *1 (-1089 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1176)) (-4 *4 (-463)) (-4 *5 (-804)) (-4 *6 (-861))
- (-4 *7 (-1082 *4 *5 *6)) (-5 *2 (-1290))
- (-5 *1 (-1125 *4 *5 *6 *7 *8)) (-4 *8 (-1088 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-377 *3)) (-4 *3 (-174)) (-4 *3 (-567))
- (-5 *2 (-1190 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-163)))
- ((*1 *1 *2) (-12 (-5 *2 (-575)) (-5 *1 (-163)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-463) (-1055 (-575)))) (-4 *3 (-567))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-441 *3))
- (-4 *2
- (-13 (-373) (-311)
- (-10 -8 (-15 -1595 ((-1142 *3 (-623 $)) $))
- (-15 -1608 ((-1142 *3 (-623 $)) $))
- (-15 -2882 ($ (-1142 *3 (-623 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-463)) (-5 *1 (-1226 *3 *2))
- (-4 *2 (-13 (-441 *3) (-1220))))))
+ (-656
+ (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8))
+ (|:| |wcond| (-656 (-969 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1287 (-419 (-969 *5))))
+ (|:| -4261 (-656 (-1287 (-419 (-969 *5))))))))))
+ (-5 *4 (-1178)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-966 *5 *7 *6))
+ (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576))
+ (-5 *1 (-941 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-352 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-1261 *4))
- (-4 *5 (-1261 (-418 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-352 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-1261 *3))
- (-4 *5 (-1261 (-418 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-656 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1302 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1066))
- (-5 *2 (-2 (|:| |k| (-830 *3)) (|:| |c| *4))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-655 (-700 *6))) (-5 *4 (-112)) (-5 *5 (-575))
- (-5 *2 (-700 *6)) (-5 *1 (-1046 *6)) (-4 *6 (-373)) (-4 *6 (-1066))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-655 (-700 *4))) (-5 *2 (-700 *4)) (-5 *1 (-1046 *4))
- (-4 *4 (-373)) (-4 *4 (-1066))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-655 (-700 *5))) (-5 *4 (-575)) (-5 *2 (-700 *5))
- (-5 *1 (-1046 *5)) (-4 *5 (-373)) (-4 *5 (-1066)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-655 *6)) (-4 *6 (-1082 *3 *4 *5)) (-4 *3 (-463))
- (-4 *3 (-567)) (-4 *4 (-804)) (-4 *5 (-861))
- (-5 *1 (-994 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2035 "void")))
+ (-5 *1 (-449)))))
+(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))
+ ((*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8)))
+ (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805))
+ (-5 *2
+ (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-656 *8))
+ (|:| |Lfact|
+ (-656 (-2 (|:| -2367 (-1192 *8)) (|:| -2273 (-576)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-754 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-655 *2)) (-4 *2 (-1261 *4)) (-5 *1 (-550 *4 *2 *5 *6))
- (-4 *4 (-316)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-782))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-389)) (-5 *1 (-207))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-655 (-389))) (-5 *2 (-389)) (-5 *1 (-207)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1066)) (-5 *2 (-655 *1)) (-4 *1 (-1151 *3)))))
+ (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068))
+ (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2))
+ (-4 *2 (-13 (-442 *3) (-1021))))))
+(((*1 *1) (-5 *1 (-158)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-517)) (-5 *3 (-655 (-980))) (-5 *1 (-109)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-702 (-884 (-981 *3) (-981 *3)))) (-5 *1 (-981 *3))
- (-4 *3 (-1117)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-863 *2)) (-4 *2 (-1066)) (-4 *2 (-373)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-782)) (-5 *2 (-1190 *4)) (-5 *1 (-539 *4))
- (-4 *4 (-359)))))
+ (-12 (-5 *2 (-1287 (-1196))) (-5 *3 (-1287 (-465 *4 *5 *6 *7)))
+ (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938))
+ (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-465 *4 *5 *6 *7)))
+ (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938))
+ (-14 *6 (-656 *2)) (-14 *7 (-1287 (-701 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196)))
+ (-14 *6 (-1287 (-701 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1287 (-1196))) (-5 *1 (-465 *3 *4 *5 *6))
+ (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196)))
+ (-14 *6 (-1287 (-701 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174))
+ (-14 *4 (-938)) (-14 *5 (-656 *2)) (-14 *6 (-1287 (-701 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-938))
+ (-14 *4 (-656 (-1196))) (-14 *5 (-1287 (-701 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464))
+ (-14 *6 (-656 (-1196)))
+ (-5 *2
+ (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6)))))
+ (-5 *1 (-640 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068))
+ (-5 *1 (-1180 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-975 (-783))) (-5 *1 (-343)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-517)) (-5 *2 (-655 (-980))) (-5 *1 (-300)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1261 (-48))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-924)) (-5 *2 (-429 (-1190 *1))) (-5 *3 (-1190 *1)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-655 (-655 (-958 (-227))))) (-5 *1 (-1230 *3))
- (-4 *3 (-991)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-445)) (|:| -2001 "void")))
- (-5 *2 (-1290)) (-5 *1 (-1197))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1194))
- (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *2 (-1290))
- (-5 *1 (-1197))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1194))
- (-5 *4 (-3 (|:| |fst| (-445)) (|:| -2001 "void"))) (-5 *2 (-1290))
- (-5 *1 (-1197)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *2 (-1052))
- (-5 *1 (-758)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-5 *1 (-1017 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-804))
- (-4 *5 (-13 (-861) (-10 -8 (-15 -2613 ((-1194) $))))) (-4 *6 (-567))
- (-5 *2 (-2 (|:| -3081 (-967 *6)) (|:| -3196 (-967 *6))))
- (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-964 (-418 (-967 *6)) *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1000 *2)) (-4 *2 (-1220)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1066)) (-5 *2 (-782)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-1117))
- (-4 *4 (-132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-371 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-396 *3)) (-4 *3 (-1117))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-660 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-575)) (-5 *4 (-700 (-227))) (-5 *5 (-227))
- (-5 *6 (-3 (|:| |fn| (-399)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1052)) (-5 *1 (-759)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1082 *3 *4 *5)) (-4 *3 (-1066)) (-4 *4 (-804))
- (-4 *5 (-861)) (-5 *2 (-782)))))
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1104)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))))
+(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1237))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1196)) (-5 *1 (-687 *3)) (-4 *3 (-1119)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-392 *3 *4)) (-4 *3 (-1066)) (-4 *4 (-1117))
- (-5 *2 (-655 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-2 (|:| |k| (-905 *3)) (|:| |c| *4))))
- (-5 *1 (-638 *3 *4 *5)) (-4 *3 (-861))
- (-4 *4 (-13 (-174) (-728 (-418 (-575))))) (-14 *5 (-936))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-655 (-683 *3))) (-5 *1 (-905 *3)) (-4 *3 (-861)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-958 *3) (-958 *3))) (-5 *1 (-178 *3))
- (-4 *3 (-13 (-373) (-1220) (-1019)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1239)) (-4 *5 (-1261 (-418 *2)))
- (-4 *2 (-1261 *4)) (-5 *1 (-351 *3 *4 *2 *5))
- (-4 *3 (-352 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-352 *3 *2 *4)) (-4 *3 (-1239))
- (-4 *4 (-1261 (-418 *2))) (-4 *2 (-1261 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-655 *3)) (-4 *3 (-1117)) (-4 *1 (-1115 *3))))
- ((*1 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1117)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-308 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1111 (-854 (-227)))) (-5 *3 (-227)) (-5 *2 (-112))
- (-5 *1 (-314))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-373)) (-4 *4 (-804)) (-4 *5 (-861)) (-5 *2 (-112))
- (-5 *1 (-515 *3 *4 *5 *6)) (-4 *6 (-964 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-804)) (-4 *5 (-861)) (-4 *2 (-1066))
- (-5 *1 (-330 *4 *5 *2 *6)) (-4 *6 (-964 *2 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-220))))
- ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1235))))
- ((*1 *2 *1) (-12 (-5 *2 (-494)) (-5 *1 (-687))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1082 *2 *3 *4)) (-4 *2 (-1066)) (-4 *3 (-804))
- (-4 *4 (-861)))))
+ (-12 (-5 *2 (-874)) (-5 *1 (-1176 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1237)))))
+(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-359)) (-5 *2 (-429 *3)) (-5 *1 (-218 *4 *3))
- (-4 *3 (-1261 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
+ (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-576)))
+ (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3))
- (-4 *3 (-1261 (-575)))))
+ (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5))
+ (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1192 (-419 (-576))))
+ (-5 *1 (-445 *5 *3)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227)))
+ (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227))
+ (-5 *2 (-1054)) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-655 (-782))) (-5 *2 (-429 *3)) (-5 *1 (-453 *3))
- (-4 *3 (-1261 (-575)))))
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805))
+ (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-655 (-782))) (-5 *5 (-782)) (-5 *2 (-429 *3))
- (-5 *1 (-453 *3)) (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-782)) (-5 *2 (-429 *3)) (-5 *1 (-453 *3))
- (-4 *3 (-1261 (-575)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-1024 *3))
- (-4 *3 (-1261 (-418 (-575))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-429 *3)) (-5 *1 (-1250 *3)) (-4 *3 (-1261 (-575))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-936)) (-5 *2 (-1190 *4)) (-5 *1 (-599 *4))
- (-4 *4 (-359)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1194)) (-5 *1 (-686 *3)) (-4 *3 (-1117)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-575)) (-4 *4 (-1261 (-418 *3))) (-5 *2 (-936))
- (-5 *1 (-928 *4 *5)) (-4 *5 (-1261 (-418 *4))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4460)) (-4 *1 (-500 *3)) (-4 *3 (-1235))
- (-4 *3 (-1117)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-920 *4)) (-4 *4 (-1117)) (-5 *2 (-112))
- (-5 *1 (-919 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-936)) (-5 *2 (-112)) (-5 *1 (-1118 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862))
+ (-4 *3 (-1084 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862))
+ (-4 *3 (-1084 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-656 *4))
+ (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4256 *4))))))
+ (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-567)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4171 *4)))
- (-5 *1 (-986 *4 *3)) (-4 *3 (-1261 *4)))))
+ (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4)))
+ (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-782)) (-5 *1 (-1182 *3 *4)) (-14 *3 (-936))
- (-4 *4 (-1066)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1117)))))
-((-1319 . 731229) (-1320 . 731130) (-1321 . 731000) (-1322 . 730684)
- (-1323 . 730554) (-1324 . 730474) (-1325 . 730380) (-1326 . 729582)
- (-1327 . 729330) (-1328 . 729191) (-1329 . 728847) (-1330 . 728718)
- (-1331 . 728330) (-1332 . 727946) (-1333 . 727833) (-1334 . 727641)
- (-1335 . 727271) (-1336 . 727199) (-1337 . 727132) (-1338 . 726893)
- (-1339 . 726816) (-1340 . 726712) (-1341 . 726339) (-1342 . 726242)
- (-1343 . 726158) (-1344 . 726080) (-1345 . 726001) (-1346 . 725907)
- (-1347 . 725833) (-1348 . 725730) (-1349 . 725651) (-1350 . 725574)
- (-1351 . 725442) (-1352 . 725297) (-1353 . 725134) (-1354 . 724715)
- (-1355 . 724589) (-1356 . 724337) (-1357 . 724241) (-1358 . 723956)
- (-1359 . 723872) (-1360 . 723778) (-1361 . 723386) (-1362 . 723256)
- (-1363 . 723200) (-1364 . 723134) (-1365 . 723012) (-1366 . 722672)
- (-1367 . 722620) (-1368 . 722135) (-1369 . 721900) (-1370 . 721797)
- (-1371 . 721763) (-1372 . 721584) (-1373 . 721465) (-1374 . 721412)
- (-1375 . 721357) (-1376 . 721151) (-1377 . 720990) (-1378 . 720920)
- (-1379 . 720713) (-1380 . 720426) (-1381 . 720371) (-1382 . 720319)
- (-1383 . 720178) (-1384 . 718746) (-1385 . 718651) (-1386 . 717787)
- (-1387 . 717591) (-1388 . 717475) (-1389 . 717228) (-1390 . 717145)
- (-1391 . 716972) (-1392 . 716869) (-1393 . 716492) (-1394 . 716426)
- (-1395 . 716115) (-1396 . 715882) (-1397 . 715768) (-1398 . 715678)
- (-1399 . 715486) (-1400 . 715388) (-1401 . 715250) (-1402 . 715126)
- (-1403 . 714847) (-1404 . 714748) (-1405 . 714714) (-1406 . 714596)
- (-1407 . 714516) (-1408 . 714099) (-1409 . 713996) (-1410 . 713643)
- (-1411 . 713537) (-1412 . 713367) (-1413 . 713241) (-1414 . 713137)
- (-1415 . 712939) (-1416 . 712865) (-1417 . 712721) (-1418 . 712575)
- (-1419 . 712445) (-1420 . 712372) (-1421 . 712288) (-1422 . 712063)
- (-1423 . 711969) (-1424 . 711876) (-1425 . 711817) (-1426 . 711747)
- (-1427 . 711654) (-1428 . 711481) (-1429 . 711212) (-1430 . 710998)
- (-1431 . 710941) (-1432 . 710812) (-1433 . 710784) (-1434 . 710642)
- (-1435 . 710500) (-1436 . 710472) (-1437 . 710388) (-1438 . 710329)
- (-1439 . 710067) (-1440 . 709930) (-1441 . 709411) (-1442 . 709266)
- (-1443 . 709120) (-1444 . 708407) (-1445 . 707797) (-1446 . 707580)
- (-1447 . 707492) (-1448 . 707066) (-1449 . 706521) (-1450 . 706383)
- (-1451 . 706254) (-1452 . 706135) (-1453 . 706027) (-1454 . 705856)
- (-1455 . 705801) (-1456 . 705700) (-1457 . 705538) (-1458 . 705399)
- (-1459 . 705289) (-1460 . 705260) (-1461 . 705095) (-1462 . 704991)
- (-1463 . 704918) (-1464 . 704736) (-1465 . 704681) (-1466 . 704493)
- (-1467 . 704424) (-1468 . 704350) (-1469 . 704225) (-1470 . 703859)
- (-1471 . 703736) (-1472 . 703633) (-1473 . 703060) (-1474 . 703011)
- (-1475 . 702732) (-1476 . 702641) (-1477 . 702395) (-1478 . 701865)
- (-1479 . 701737) (-1480 . 701674) (-1481 . 701594) (-1482 . 701541)
- (-1483 . 701412) (-1484 . 701190) (-1485 . 700936) (-1486 . 700655)
- (-1487 . 700234) (-1488 . 699858) (-1489 . 699793) (-1490 . 699759)
- (-1491 . 699601) (-1492 . 699483) (-1493 . 699416) (-1494 . 699358)
- (-1495 . 699176) (-1496 . 699102) (-1497 . 699016) (-1498 . 698905)
- (-1499 . 698426) (-1500 . 698208) (-1501 . 698130) (-1502 . 697943)
- (-1503 . 697790) (-1504 . 697652) (-1505 . 697212) (-1506 . 697060)
- (-1507 . 696964) (-1508 . 696834) (-1509 . 696676) (-1510 . 696563)
- (-1511 . 696372) (-1512 . 695764) (-1513 . 695134) (-1514 . 694832)
- (-1515 . 694582) (-1516 . 694470) (-1517 . 694441) (-1518 . 694358)
- (-1519 . 694034) (-1520 . 693939) (-1521 . 693375) (-1522 . 693280)
- (-1523 . 692646) (-1524 . 692428) (-1525 . 692400) (-1526 . 692312)
- (-1527 . 692112) (-1528 . 691995) (-1529 . 691851) (-1530 . 691755)
- (-1531 . 691191) (-1532 . 690676) (-1533 . 690473) (-1534 . 690377)
- (-1535 . 690324) (-1536 . 690183) (-1537 . 690155) (-1538 . 689980)
- (-1539 . 689718) (-1540 . 689618) (-1541 . 689528) (-1542 . 689469)
- (-1543 . 689420) (-1544 . 688857) (-1545 . 688774) (-1546 . 688580)
- (-1547 . 688457) (-1548 . 688211) (-1549 . 688134) (-1550 . 688018)
- (-1551 . 687956) (-1552 . 687659) (-1553 . 687576) (-1554 . 687013)
- (-1555 . 686911) (-1556 . 686725) (-1557 . 686333) (-1558 . 686211)
- (-1559 . 686109) (-1560 . 686018) (-1561 . 685883) (-1562 . 685804)
- (-1563 . 685776) (-1564 . 685696) (-1565 . 685612) (-1566 . 685483)
- (-1567 . 685072) (-1568 . 684645) (-1569 . 684082) (-1570 . 683924)
- (-1571 . 683810) (-1572 . 683697) (-1573 . 683558) (-1574 . 683286)
- (-1575 . 683207) (-1576 . 683136) (-1577 . 683062) (-1578 . 683007)
- (-1579 . 682619) (-1580 . 682539) (-1581 . 682472) (-1582 . 682359)
- (-1583 . 681796) (-1584 . 681737) (-1585 . 681263) (-1586 . 681200)
- (-1587 . 681141) (-1588 . 680690) (-1589 . 680511) (-1590 . 680287)
- (-1591 . 680208) (-1592 . 680140) (-1593 . 679577) (-1594 . 679297)
- (-1595 . 678593) (-1596 . 678523) (-1597 . 678466) (-1598 . 678429)
- (-1599 . 677951) (-1600 . 677790) (-1601 . 677667) (-1602 . 677563)
- (-1603 . 677447) (-1604 . 677307) (-1605 . 676572) (-1606 . 675276)
- (-1607 . 675173) (-1608 . 674492) (-1609 . 674442) (-1610 . 674215)
- (-1611 . 674050) (-1612 . 673906) (-1613 . 673033) (-1614 . 672937)
- (-1615 . 672697) (-1616 . 672562) (-1617 . 672408) (-1618 . 672255)
- (-1619 . 672079) (-1620 . 671855) (-1621 . 671763) (-1622 . 671049)
- (-1623 . 670753) (-1624 . 670527) (-1625 . 669938) (-1626 . 669713)
- (-1627 . 669297) (-1628 . 669230) (-1629 . 668905) (-1630 . 668838)
- (-1631 . 668579) (-1632 . 668326) (-1633 . 668108) (-1634 . 668015)
- (-1635 . 667978) (-1636 . 667895) (-1637 . 667775) (-1638 . 667747)
- (-1639 . 667695) (-1640 . 667569) (-1641 . 667462) (-1642 . 667363)
- (-1643 . 667263) (-1644 . 666901) (-1645 . 666852) (-1646 . 666373)
- (-1647 . 666303) (-1648 . 665972) (-1649 . 665893) (-1650 . 665623)
- (-1651 . 665539) (-1652 . 665331) (-1653 . 665233) (-1654 . 665205)
- (-1655 . 665128) (-1656 . 665074) (-1657 . 664200) (-1658 . 663732)
- (-1659 . 663547) (-1660 . 663341) (-1661 . 663124) (-1662 . 663006)
- (-1663 . 662918) (-1664 . 662763) (-1665 . 662492) (-1666 . 662339)
- (-1667 . 662186) (-1668 . 662113) (-1669 . 661783) (-1670 . 661527)
- (-1671 . 661453) (-1672 . 661144) (-1673 . 661070) (-1674 . 661014)
- (-1675 . 660891) (-1676 . 660643) (-1677 . 660584) (-1678 . 660394)
- (-1679 . 660306) (-1680 . 660004) (-1681 . 659846) (-1682 . 659730)
- (-1683 . 659550) (-1684 . 659435) (-1685 . 657303) (-1686 . 657010)
- (-1687 . 656667) (-1688 . 656615) (-1689 . 656519) (-1690 . 656353)
- (-1691 . 656057) (-1692 . 654905) (-1693 . 654813) (-1694 . 654763)
- (-1695 . 654692) (-1696 . 654639) (-1697 . 654436) (-1698 . 650373)
- (-1699 . 650257) (-1700 . 650169) (-1701 . 649760) (-1702 . 649176)
- (-1703 . 649073) (-1704 . 648894) (-1705 . 648841) (-1706 . 648741)
- (-1707 . 648540) (-1708 . 648496) (-1709 . 648426) (-1710 . 648356)
- (-1711 . 648190) (-1712 . 648141) (-1713 . 648045) (-1714 . 647945)
- (-1715 . 647889) (-1716 . 647684) (-1717 . 647176) (-1718 . 646954)
- (-1719 . 646638) (-1720 . 646586) (-1721 . 646338) (-1722 . 646261)
- (-1723 . 646067) (-1724 . 645938) (-1725 . 645718) (-1726 . 645635)
- (-1727 . 645343) (-1728 . 645240) (-1729 . 644273) (-1730 . 644193)
- (-1731 . 644138) (-1732 . 644059) (-1733 . 643887) (-1734 . 643684)
- (-1735 . 643193) (-1736 . 643122) (-1737 . 643066) (-1738 . 642901)
- (-1739 . 642815) (-1740 . 642661) (-1741 . 640316) (-1742 . 640232)
- (-1743 . 640158) (-1744 . 640078) (-1745 . 639788) (-1746 . 639633)
- (-1747 . 639577) (-1748 . 639525) (-1749 . 639273) (-1750 . 639220)
- (-1751 . 638889) (-1752 . 638634) (-1753 . 636520) (-1754 . 636162)
- (-1755 . 636024) (-1756 . 635866) (-1757 . 635672) (-1758 . 634524)
- (-1759 . 634366) (-1760 . 634289) (-1761 . 634229) (-1762 . 633812)
- (-1763 . 633509) (-1764 . 633318) (-1765 . 633000) (-1766 . 632966)
- (-1767 . 632913) (-1768 . 632733) (-1769 . 632602) (-1770 . 632503)
- (-1771 . 632405) (-1772 . 632354) (-1773 . 632271) (-1774 . 632190)
- (-1775 . 631893) (-1776 . 631737) (-1777 . 631091) (-1778 . 630974)
- (-1779 . 630891) (-1780 . 630697) (-1781 . 630403) (-1782 . 630262)
- (-1783 . 630096) (-1784 . 630027) (-1785 . 629924) (-1786 . 629808)
- (-1787 . 629362) (-1788 . 628770) (-1789 . 628627) (-1790 . 628526)
- (-1791 . 628349) (-1792 . 627639) (-1793 . 627526) (-1794 . 627035)
- (-1795 . 626913) (-1796 . 626861) (-1797 . 626709) (-1798 . 626195)
- (-1799 . 626076) (-1800 . 626002) (-1801 . 625904) (-1802 . 625713)
- (-1803 . 625593) (-1804 . 625561) (-1805 . 625405) (-1806 . 623177)
- (-1807 . 623039) (-1808 . 622960) (-1809 . 622844) (-1810 . 622736)
- (-1811 . 622629) (-1812 . 622577) (-1813 . 622482) (-1814 . 622234)
- (-1815 . 622139) (-1816 . 622062) (-1817 . 621984) (-1818 . 621912)
- (-1819 . 621828) (-1820 . 621756) (-1821 . 621704) (-1822 . 621389)
- (-1823 . 621234) (-1824 . 621127) (-1825 . 620285) (-1826 . 620107)
- (-1827 . 620037) (-1828 . 619706) (-1829 . 619612) (-1830 . 619374)
- (-1831 . 619295) (-1832 . 619242) (-1833 . 619171) (-1834 . 618674)
- (-1835 . 618555) (-1836 . 618460) (-1837 . 618393) (-1838 . 617755)
- (-1839 . 617631) (-1840 . 616955) (-1841 . 616896) (-1842 . 616819)
- (-1843 . 616759) (-1844 . 616519) (-1845 . 616342) (-1846 . 616114)
- (-1847 . 616086) (-1848 . 615863) (-1849 . 615765) (-1850 . 615498)
- (-1851 . 615110) (-1852 . 615033) (-1853 . 614945) (-1854 . 614806)
- (-1855 . 614687) (-1856 . 614600) (-1857 . 612870) (-1858 . 612817)
- (-1859 . 612642) (-1860 . 612572) (-1861 . 612480) (-1862 . 612428)
- (-1863 . 612284) (-1864 . 612231) (-1865 . 612130) (-1866 . 612077)
- (-1867 . 611742) (-1868 . 611662) (-1869 . 611517) (-1870 . 611142)
- (-1871 . 611090) (-1872 . 610130) (-1873 . 607289) (-1874 . 607240)
- (-1875 . 607173) (-1876 . 606687) (-1877 . 606465) (-1878 . 606412)
- (-1879 . 606315) (-1880 . 605901) (-1881 . 605786) (-1882 . 605716)
- (-1883 . 605606) (-1884 . 605532) (-1885 . 605461) (-1886 . 605348)
- (-1887 . 605163) (-1888 . 605090) (-1889 . 604746) (-1890 . 604514)
- (-1891 . 604449) (-1892 . 604279) (-1893 . 604202) (-1894 . 604058)
- (-1895 . 603974) (-1896 . 603923) (-1897 . 603779) (-1898 . 603548)
- (-1899 . 603449) (-1900 . 603294) (-1901 . 603075) (-1902 . 602909)
- (-1903 . 602732) (-1904 . 602591) (-1905 . 602400) (-1906 . 601992)
- (-1907 . 601890) (-1908 . 601823) (-1909 . 601642) (-1910 . 601554)
- (-1911 . 601353) (-1912 . 601249) (-1913 . 601093) (-1914 . 600815)
- (-1915 . 600732) (-1916 . 600514) (-1917 . 600457) (-1918 . 600030)
- (-1919 . 599978) (-1920 . 599907) (-1921 . 599709) (-1922 . 599280)
- (-1923 . 599180) (-1924 . 599042) (-1925 . 598975) (-1926 . 598851)
- (-1927 . 598741) (-1928 . 598668) (-1929 . 598315) (-1930 . 598232)
- (-1931 . 597881) (-1932 . 597690) (-1933 . 597518) (-1934 . 597453)
- (-1935 . 597395) (-1936 . 597213) (-1937 . 597135) (-1938 . 596888)
- (-1939 . 596496) (-1940 . 596249) (-1941 . 596119) (-1942 . 596091)
- (-1943 . 595700) (-1944 . 594946) (-1945 . 594734) (-1946 . 594633)
- (-1947 . 594561) (-1948 . 594370) (-1949 . 594284) (-1950 . 594174)
- (-1951 . 593838) (-1952 . 593430) (-1953 . 593368) (-1954 . 593238)
- (-1955 . 592625) (-1956 . 591808) (-1957 . 591646) (-1958 . 591568)
- (-1959 . 591461) (-1960 . 591232) (-1961 . 591134) (-1962 . 590869)
- (-1963 . 590283) (-1964 . 590185) (-1965 . 589850) (-1966 . 589716)
- (-1967 . 589518) (-1968 . 589206) (-1969 . 588779) (-1970 . 588727)
- (-1971 . 588494) (-1972 . 588331) (-1973 . 588207) (-1974 . 588068)
- (-1975 . 587988) (-1976 . 587731) (-1977 . 584068) (-1978 . 583964)
- (-1979 . 583811) (-1980 . 583501) (-1981 . 583417) (-1982 . 583302)
- (-1983 . 583225) (-1984 . 583119) (-1985 . 581921) (-1986 . 581694)
- (-1987 . 581615) (-1988 . 581441) (-1989 . 581167) (-1990 . 581135)
- (-1991 . 581031) (-1992 . 580504) (-1993 . 580380) (-1994 . 580096)
- (-1995 . 579501) (-1996 . 579358) (-1997 . 579330) (-1998 . 579185)
- (-1999 . 579118) (-2000 . 579041) (-2001 . 579012) (-2002 . 578869)
- (-2003 . 578786) (-2004 . 578717) (-2005 . 578470) (-2006 . 578413)
- (-2007 . 578318) (-2008 . 578266) (-2009 . 578156) (-2010 . 577938)
- (-2011 . 577720) (-2012 . 577623) (-2013 . 577523) (-2014 . 577470)
- (-2015 . 577382) (-2016 . 577263) (-2017 . 576957) (-2018 . 576887)
- (-2019 . 576774) (-2020 . 576640) (-2021 . 576612) (-2022 . 576553)
- (-2023 . 576198) (-2024 . 576020) (-2025 . 575589) (-2026 . 575482)
- (-2027 . 575326) (-2028 . 575298) (-2029 . 575145) (-2030 . 575046)
- (-2031 . 574886) (-2032 . 574816) (-2033 . 574249) (-2034 . 574134)
- (-2035 . 574039) (-2036 . 573915) (-2037 . 573808) (-2038 . 573663)
- (-2039 . 573425) (-2040 . 573318) (-2041 . 573155) (-2042 . 572981)
- (-2043 . 572823) (-2044 . 572713) (-2045 . 572226) (-2046 . 572097)
- (-2047 . 571918) (-2048 . 571813) (-2049 . 571684) (-2050 . 571588)
- (-2051 . 571532) (-2052 . 571458) (-2053 . 571381) (-2054 . 571052)
- (-2055 . 570945) (-2056 . 570603) (-2057 . 569960) (-2058 . 569858)
- (-2059 . 569805) (-2060 . 569586) (-2061 . 569513) (-2062 . 569306)
- (-2063 . 569251) (-2064 . 569198) (-2065 . 565198) (-2066 . 565164)
- (-2067 . 565107) (-2068 . 565019) (-2069 . 564801) (-2070 . 564669)
- (-2071 . 564483) (-2072 . 564130) (-2073 . 563507) (-2074 . 563412)
- (-2075 . 563302) (-2076 . 563230) (-2077 . 563159) (-2078 . 563031)
- (-2079 . 562975) (-2080 . 562805) (-2081 . 562745) (-2082 . 562645)
- (-2083 . 562514) (-2084 . 562459) (-2085 . 562198) (-2086 . 561979)
- (-2087 . 561664) (-2088 . 561611) (-2089 . 561449) (-2090 . 561390)
- (-2091 . 561265) (-2092 . 561179) (-2093 . 560660) (-2094 . 560293)
- (-2095 . 560019) (-2096 . 559882) (-2097 . 559739) (-2098 . 558871)
- (-2099 . 558818) (-2100 . 558651) (-2101 . 558595) (-2102 . 558512)
- (-2103 . 557860) (-2104 . 557466) (-2105 . 557356) (-2106 . 557192)
- (-2107 . 557082) (-2108 . 556987) (-2109 . 556675) (-2110 . 556623)
- (-2111 . 556392) (-2112 . 556265) (-2113 . 555934) (-2114 . 555755)
- (-2115 . 555703) (-2116 . 555604) (-2117 . 555458) (-2118 . 555406)
- (-2119 . 555334) (-2120 . 553478) (-2121 . 553394) (-2122 . 553236)
- (-2123 . 553163) (-2124 . 552652) (-2125 . 552571) (-2126 . 552458)
- (-2127 . 552387) (-2128 . 552285) (-2129 . 552129) (-2130 . 552069)
- (-2131 . 551986) (-2132 . 551908) (-2133 . 551837) (-2134 . 551652)
- (-2135 . 550914) (-2136 . 550841) (-2137 . 550743) (-2138 . 550665)
- (-2139 . 550605) (-2140 . 550534) (-2141 . 550416) (-2142 . 550183)
- (-2143 . 550010) (-2144 . 549955) (-2145 . 549883) (-2146 . 549804)
- (-2147 . 549748) (-2148 . 549543) (-2149 . 549283) (-2150 . 549179)
- (-2151 . 548938) (-2152 . 548885) (-2153 . 548827) (-2154 . 548732)
- (-2155 . 548658) (-2156 . 548540) (-2157 . 547722) (-2158 . 547572)
- (-2159 . 547514) (-2160 . 547354) (-2161 . 546552) (-2162 . 546501)
- (-2163 . 546415) (-2164 . 546362) (-2165 . 545821) (-2166 . 545772)
- (-2167 . 545686) (-2168 . 545634) (-2169 . 545465) (-2170 . 545360)
- (-2171 . 545219) (-2172 . 545061) (-2173 . 544911) (-2174 . 544811)
- (-2175 . 544712) (-2176 . 544651) (-2177 . 544294) (-2178 . 544144)
- (-2179 . 544049) (-2180 . 543997) (-2181 . 543924) (-2182 . 543332)
- (-2183 . 543180) (-2184 . 543072) (-2185 . 542905) (-2186 . 542853)
- (-2187 . 542375) (-2188 . 541724) (-2189 . 541526) (-2190 . 541333)
- (-2191 . 541276) (-2192 . 541204) (-2193 . 541116) (-2194 . 540982)
- (-2195 . 539720) (-2196 . 539661) (-2197 . 539477) (-2198 . 539350)
- (-2199 . 538649) (-2200 . 538547) (-2201 . 538464) (-2202 . 538357)
- (-2203 . 536576) (-2204 . 536520) (-2205 . 536412) (-2206 . 536316)
- (-2207 . 536213) (-2208 . 536066) (-2209 . 534874) (-2210 . 534797)
- (-2211 . 534587) (-2212 . 534076) (-2213 . 533638) (-2214 . 533362)
- (-2215 . 533135) (-2216 . 532763) (-2217 . 532648) (-2218 . 532614)
- (-2219 . 532526) (-2220 . 532498) (-2221 . 532363) (-2222 . 532312)
- (-2223 . 532160) (-2224 . 532083) (-2225 . 531307) (-2226 . 530774)
- (-2227 . 530705) (-2228 . 530619) (-2229 . 530569) (-2230 . 530473)
- (-2231 . 530333) (-2232 . 530283) (-2233 . 530210) (-2234 . 530139)
- (-2235 . 529973) (-2236 . 529890) (-2237 . 529687) (-2238 . 529592)
- (-2239 . 529558) (-2240 . 529491) (-2241 . 529417) (-2242 . 529335)
- (-2243 . 529171) (-2244 . 528620) (-2245 . 528397) (-2246 . 528317)
- (-2247 . 528164) (-2248 . 528076) (-2249 . 527901) (-2250 . 527783)
- (-2251 . 526900) (-2252 . 526812) (-2253 . 526543) (-2254 . 526486)
- (-2255 . 526458) (-2256 . 526301) (-2257 . 526246) (-2258 . 526026)
- (-2259 . 525781) (-2260 . 525696) (-2261 . 525641) (-2262 . 525450)
- (-2263 . 525355) (-2264 . 525234) (-2265 . 525091) (-2266 . 524786)
- (-2267 . 524717) (-2268 . 524314) (-2269 . 524177) (-2270 . 523652)
- (-2271 . 523582) (-2272 . 523478) (-2273 . 523340) (-2274 . 522988)
- (-2275 . 522857) (-2276 . 522704) (-2277 . 522574) (-2278 . 522190)
- (-2279 . 522032) (-2280 . 521947) (-2281 . 521850) (-2282 . 521797)
- (-2283 . 521157) (-2284 . 521080) (-2285 . 521011) (-2286 . 520753)
- (-2287 . 520540) (-2288 . 520396) (-2289 . 520280) (-2290 . 519438)
- (-2291 . 519236) (-2292 . 519162) (-2293 . 519043) (-2294 . 518957)
- (-2295 . 518682) (-2296 . 518613) (-2297 . 518562) (-2298 . 518479)
- (-2299 . 518405) (-2300 . 518377) (-2301 . 518304) (-2302 . 514695)
- (-2303 . 513925) (-2304 . 513830) (-2305 . 513531) (-2306 . 513426)
- (-2307 . 513375) (-2308 . 513320) (-2309 . 513236) (-2310 . 513132)
- (-2311 . 513063) (-2312 . 512992) (-2313 . 512721) (-2314 . 512324)
- (-2315 . 512220) (-2316 . 512167) (-2317 . 512105) (-2318 . 512034)
- (-2319 . 511889) (-2320 . 511637) (-2321 . 511519) (-2322 . 511387)
- (-2323 . 511072) (-2324 . 510820) (-2325 . 510695) (-2326 . 509352)
- (-2327 . 509324) (-2328 . 509240) (-2329 . 508162) (-2330 . 507989)
- (-2331 . 507848) (-2332 . 507344) (-2333 . 507163) (-2334 . 507069)
- (-2335 . 506997) (-2336 . 506943) (-2337 . 506909) (-2338 . 506831)
- (-2339 . 506605) (-2340 . 505382) (-2341 . 505051) (-2342 . 504906)
- (-2343 . 504823) (-2344 . 504482) (-2345 . 504393) (-2346 . 504319)
- (-2347 . 498805) (-2348 . 498722) (-2349 . 498670) (-2350 . 498519)
- (-2351 . 498401) (-2352 . 498324) (-2353 . 498271) (-2354 . 498197)
- (-2355 . 498102) (-2356 . 497781) (-2357 . 497516) (-2358 . 497446)
- (-2359 . 497198) (-2360 . 497055) (-2361 . 496583) (-2362 . 496384)
- (-2363 . 496289) (-2364 . 496195) (-2365 . 496049) (-2366 . 495296)
- (-2367 . 495229) (-2368 . 494847) (-2369 . 494765) (-2370 . 494403)
- (-2371 . 494326) (-2372 . 494144) (-2373 . 494093) (-2374 . 493946)
- (-2375 . 493203) (-2376 . 493154) (-2377 . 492710) (-2378 . 492582)
- (-2379 . 491987) (-2380 . 491934) (-2381 . 491865) (-2382 . 490803)
- (-2383 . 490719) (-2384 . 490666) (-2385 . 490613) (-2386 . 490438)
- (-2387 . 490316) (-2388 . 490164) (-2389 . 489406) (-2390 . 489233)
- (-2391 . 489179) (-2392 . 488929) (-2393 . 488749) (-2394 . 488637)
- (-2395 . 488444) (-2396 . 488342) (-2397 . 488226) (-2398 . 487985)
- (-2399 . 487846) (-2400 . 487186) (-2401 . 487036) (-2402 . 486966)
- (-2403 . 486873) (-2404 . 486343) (-2405 . 486249) (-2406 . 486134)
- (-2407 . 486046) (-2408 . 485988) (-2409 . 485052) (-2410 . 484972)
- (-2411 . 484738) (-2412 . 484400) (** . 481405) (-2414 . 479775)
- (-2415 . 479329) (-2416 . 479102) (-2417 . 479050) (-2418 . 479019)
- (-2419 . 478942) (-2420 . 478890) (-2421 . 478739) (-2422 . 478665)
- (-2423 . 478505) (-2424 . 478453) (-2425 . 478317) (-2426 . 478151)
- (-2427 . 477856) (-2428 . 477694) (-2429 . 477356) (-2430 . 476497)
- (-2431 . 476006) (-2432 . 474914) (-2433 . 474813) (-2434 . 474727)
- (-2435 . 474395) (-2436 . 474343) (-2437 . 474190) (-2438 . 474090)
- (-2439 . 473986) (-2440 . 473958) (-2441 . 473770) (-2442 . 473483)
- (-2443 . 468940) (-2444 . 468866) (-2445 . 468692) (-2446 . 468597)
- (-2447 . 468304) (-2448 . 467945) (-2449 . 467835) (-2450 . 467767)
- (-2451 . 467679) (-2452 . 467607) (-2453 . 467461) (-2454 . 467302)
- (-2455 . 467011) (-2456 . 466980) (-2457 . 466896) (-2458 . 466844)
- (-2459 . 466748) (-2460 . 466308) (-2461 . 465860) (-2462 . 465529)
- (-2463 . 465444) (-2464 . 465237) (-2465 . 465133) (-2466 . 465037)
- (-2467 . 464644) (-2468 . 464308) (-2469 . 464259) (-2470 . 464205)
- (-2471 . 464075) (-2472 . 463912) (-2473 . 463854) (-2474 . 463691)
- (-2475 . 463557) (-2476 . 463480) (-2477 . 463216) (-2478 . 462462)
- (-2479 . 462036) (-2480 . 461979) (-2481 . 461537) (-2482 . 461264)
- (-2483 . 461148) (-2484 . 461046) (-2485 . 460888) (-2486 . 460465)
- (-2487 . 460378) (-2488 . 460257) (-2489 . 460195) (-2490 . 459811)
- (-2491 . 459495) (-2492 . 459199) (-2493 . 459143) (-2494 . 458902)
- (-2495 . 458799) (-2496 . 458704) (-2497 . 458522) (-2498 . 458216)
- (-2499 . 458123) (-2500 . 457722) (-2501 . 457295) (-2502 . 457116)
- (-2503 . 457022) (-2504 . 456945) (-2505 . 456854) (-2506 . 456739)
- (-2507 . 456686) (-2508 . 456604) (-2509 . 456509) (-2510 . 456413)
- (-2511 . 456257) (-2512 . 455853) (-2513 . 455783) (-2514 . 455447)
- (-2515 . 455348) (-2516 . 455252) (-2517 . 455166) (-2518 . 455070)
- (-2519 . 454999) (-2520 . 454883) (-2521 . 454797) (-2522 . 454452)
- (-2523 . 454318) (-2524 . 454205) (-2525 . 454106) (-2526 . 454044)
- (-2527 . 453992) (-2528 . 453740) (-2529 . 453447) (-2530 . 453252)
- (-2531 . 453155) (-2532 . 452951) (-2533 . 452819) (-2534 . 452731)
- (-2535 . 452663) (-2536 . 452509) (-2537 . 452377) (-2538 . 452282)
- (-2539 . 452135) (-2540 . 451971) (-2541 . 451790) (-2542 . 451737)
- (-2543 . 451636) (-2544 . 437404) (-2545 . 437267) (-2546 . 437124)
- (-2547 . 437046) (-2548 . 436945) (-2549 . 436874) (-2550 . 436659)
- (-2551 . 436597) (-2552 . 436400) (-2553 . 435219) (-2554 . 434969)
- (-2555 . 434902) (-2556 . 434758) (-2557 . 434706) (-2558 . 434595)
- (-2559 . 434477) (-2560 . 434376) (-2561 . 434280) (-2562 . 434090)
- (-2563 . 434016) (-2564 . 433910) (-2565 . 433818) (-2566 . 433608)
- (-2567 . 432441) (-2568 . 432388) (-2569 . 432293) (-2570 . 432190)
- (-2571 . 432070) (-2572 . 431911) (-2573 . 431640) (-2574 . 431521)
- (-2575 . 431421) (-2576 . 431312) (-2577 . 431204) (-2578 . 431070)
- (-2579 . 430992) (-2580 . 430915) (-2581 . 430833) (-2582 . 430732)
- (-2583 . 430555) (-2584 . 429876) (-2585 . 429793) (-2586 . 429719)
- (-2587 . 429638) (-2588 . 429531) (-2589 . 429478) (-2590 . 429230)
- (-2591 . 429157) (-2592 . 429089) (-2593 . 428947) (-2594 . 428895)
- (-2595 . 428810) (-2596 . 428712) (-2597 . 428657) (-2598 . 428439)
- (-2599 . 428321) (-2600 . 428247) (-2601 . 428178) (-2602 . 428057)
- (-2603 . 427961) (-2604 . 427712) (-2605 . 427497) (-2606 . 427416)
- (-2607 . 427343) (-2608 . 427241) (-2609 . 427212) (-2610 . 427138)
- (-2611 . 426685) (-2612 . 426443) (-2613 . 422776) (-2614 . 422678)
- (-2615 . 422503) (-2616 . 422451) (-2617 . 422347) (-2618 . 422167)
- (-2619 . 422052) (-2620 . 421814) (-2621 . 421542) (-2622 . 420246)
- (-2623 . 420164) (-2624 . 419984) (-2625 . 419838) (-2626 . 419722)
- (-2627 . 419666) (-2628 . 419490) (-2629 . 419423) (-2630 . 418902)
- (-2631 . 418706) (-2632 . 418503) (-2633 . 418387) (-2634 . 418211)
- (-2635 . 418143) (-2636 . 418070) (-2637 . 418008) (-2638 . 417939)
- (-2639 . 417781) (-2640 . 417635) (-2641 . 417440) (-2642 . 417268)
- (-2643 . 417172) (-2644 . 417029) (-2645 . 416950) (-2646 . 416895)
- (-2647 . 416802) (-2648 . 416709) (-2649 . 416644) (-2650 . 416584)
- (-2651 . 416529) (-2652 . 416277) (-2653 . 415844) (-2654 . 415756)
- (-2655 . 412457) (-2656 . 412211) (-2657 . 412088) (-2658 . 412008)
- (-2659 . 411906) (-2660 . 411763) (-2661 . 411704) (-2662 . 410258)
- (-2663 . 409057) (-2664 . 408971) (-2665 . 408752) (-2666 . 408678)
- (-2667 . 408535) (-2668 . 408450) (-2669 . 408380) (-2670 . 408210)
- (-2671 . 408076) (-2672 . 408024) (-2673 . 407968) (-2674 . 407639)
- (-2675 . 407421) (-2676 . 407270) (-2677 . 407174) (-2678 . 407088)
- (-2679 . 406167) (-2680 . 405961) (-2681 . 405884) (-2682 . 405775)
- (-2683 . 405464) (-2684 . 405405) (-2685 . 405352) (-2686 . 405060)
- (-2687 . 404880) (-2688 . 404803) (-2689 . 404744) (-2690 . 404504)
- (-2691 . 404254) (-2692 . 404202) (-2693 . 403776) (-2694 . 403588)
- (-2695 . 403457) (-2696 . 403390) (-2697 . 401848) (-2698 . 401756)
- (-2699 . 401703) (-2700 . 401386) (-2701 . 401222) (-2702 . 401103)
- (-2703 . 401002) (-2704 . 400877) (-2705 . 400626) (-2706 . 400569)
- (-2707 . 400469) (-2708 . 399171) (-2709 . 398893) (-2710 . 398841)
- (-2711 . 398740) (-2712 . 398587) (-2713 . 398534) (-2714 . 398446)
- (-2715 . 398291) (-2716 . 397939) (-2717 . 397843) (-2718 . 397719)
- (-2719 . 397215) (-2720 . 397128) (-2721 . 397040) (-2722 . 396954)
- (-2723 . 396763) (-2724 . 396645) (-2725 . 396508) (-2726 . 396427)
- (-2727 . 396349) (-2728 . 396241) (-2729 . 396086) (-2730 . 395872)
- (-2731 . 395813) (-2732 . 395711) (-2733 . 395572) (-2734 . 395440)
- (-2735 . 395266) (-2736 . 395199) (-2737 . 395113) (-2738 . 394998)
- (-2739 . 394899) (-2740 . 394701) (-2741 . 394640) (-2742 . 394612)
- (-2743 . 394339) (-2744 . 394147) (-2745 . 393760) (-2746 . 393658)
- (-2747 . 393544) (-2748 . 392941) (-2749 . 392889) (-2750 . 392830)
- (-2751 . 392715) (-2752 . 392349) (-2753 . 392275) (-2754 . 392147)
- (-2755 . 392068) (-2756 . 391970) (-2757 . 391893) (-2758 . 391811)
- (-2759 . 391690) (-2760 . 391436) (-2761 . 391337) (-2762 . 391173)
- (-2763 . 391076) (-2764 . 391002) (-2765 . 389917) (-2766 . 389787)
- (-2767 . 389241) (-2768 . 389144) (-2769 . 389031) (-2770 . 388960)
- (-2771 . 388858) (-2772 . 388699) (-2773 . 388626) (-2774 . 388284)
- (-2775 . 388205) (-2776 . 388100) (-2777 . 388032) (-2778 . 387897)
- (-2779 . 387752) (-2780 . 387609) (-2781 . 387548) (-2782 . 387356)
- (-2783 . 387225) (-2784 . 387112) (-2785 . 387016) (-2786 . 386584)
- (-2787 . 386517) (-2788 . 386338) (-2789 . 386285) (-2790 . 386173)
- (-2791 . 386036) (-2792 . 385869) (-2793 . 385768) (-2794 . 385715)
- (-2795 . 385435) (-2796 . 385139) (-2797 . 384984) (-2798 . 384691)
- (-2799 . 384612) (-2800 . 384515) (-2801 . 383812) (-2802 . 383224)
- (-2803 . 383190) (-2804 . 383130) (-2805 . 383042) (-2806 . 382499)
- (-2807 . 382467) (-2808 . 382425) (-2809 . 382279) (-2810 . 382222)
- (-2811 . 382125) (-2812 . 382007) (-2813 . 381954) (-2814 . 381836)
- (-2815 . 381742) (-2816 . 381639) (-2817 . 381611) (-2818 . 381524)
- (-2819 . 381407) (-2820 . 381321) (-2821 . 381216) (-2822 . 381135)
- (-2823 . 380617) (-2824 . 380499) (-2825 . 380429) (-2826 . 380183)
- (-2827 . 380017) (-2828 . 379858) (-2829 . 379771) (-2830 . 379207)
- (-2831 . 379155) (-2832 . 379069) (-2833 . 378937) (-2834 . 378516)
- (-2835 . 378412) (-2836 . 378249) (-2837 . 378189) (-2838 . 378037)
- (-2839 . 377892) (-2840 . 377839) (-2841 . 377765) (-2842 . 377402)
- (-2843 . 376798) (-2844 . 376571) (-2845 . 376301) (-2846 . 376230)
- (-2847 . 376112) (-2848 . 375969) (-2849 . 375108) (-2850 . 374897)
- (-2851 . 374729) (-2852 . 374530) (-2853 . 374431) (-2854 . 374157)
- (-2855 . 374050) (-2856 . 373984) (-2857 . 373752) (-2858 . 373656)
- (-2859 . 373569) (-2860 . 373282) (-2861 . 373047) (-2862 . 372694)
- (-2863 . 372627) (-2864 . 372533) (-2865 . 372447) (-2866 . 372311)
- (-2867 . 372189) (-2868 . 372104) (-2869 . 371687) (-2870 . 371526)
- (-2871 . 371371) (-2872 . 371201) (-2873 . 371059) (-2874 . 370922)
- (-2875 . 370749) (-2876 . 370549) (-2877 . 370518) (-2878 . 370311)
- (-2879 . 370132) (-2880 . 370064) (-2881 . 369969) (-2882 . 351394)
- (-2883 . 350811) (-2884 . 350726) (-2885 . 350586) (-2886 . 350554)
- (-2887 . 350433) (-2888 . 350314) (-2889 . 350221) (-2890 . 350154)
- (-2891 . 349882) (-2892 . 349830) (-2893 . 347009) (-2894 . 346958)
- (-2895 . 346750) (-2896 . 346691) (-2897 . 346145) (-2898 . 346053)
- (-2899 . 345952) (-2900 . 345836) (-2901 . 345747) (-2902 . 345631)
- (-2903 . 345507) (-2904 . 345330) (-2905 . 345091) (-2906 . 345029)
- (-2907 . 344934) (-2908 . 344860) (-2909 . 344826) (-2910 . 344734)
- (-2911 . 344539) (-2912 . 343976) (-2913 . 343895) (-2914 . 343863)
- (-2915 . 343690) (-2916 . 343607) (-2917 . 343529) (-2918 . 343451)
- (-2919 . 343372) (-2920 . 343338) (-2921 . 343252) (-2922 . 343200)
- (-2923 . 343029) (-2924 . 342907) (-2925 . 342668) (-2926 . 342598)
- (-2927 . 342492) (-2928 . 342309) (-2929 . 342203) (-2930 . 342076)
- (-2931 . 341961) (-2932 . 341805) (-2933 . 341777) (-2934 . 341709)
- (-2935 . 341480) (-2936 . 341322) (-2937 . 341063) (-2938 . 340995)
- (-2939 . 340961) (-2940 . 340877) (-2941 . 340762) (-2942 . 340573)
- (-2943 . 340465) (-2944 . 340362) (-2945 . 340246) (-2946 . 339176)
- (-2947 . 338843) (-2948 . 338685) (-2949 . 338565) (-2950 . 338494)
- (-2951 . 338351) (-2952 . 338257) (-2953 . 338183) (-2954 . 338131)
- (-2955 . 337983) (-2956 . 337793) (-2957 . 337640) (-2958 . 336752)
- (-2959 . 336615) (-2960 . 336221) (-2961 . 336042) (-2962 . 335941)
- (-2963 . 335889) (-2964 . 335783) (-2965 . 335618) (-2966 . 335568)
- (-2967 . 335452) (-2968 . 335385) (-2969 . 335189) (-2970 . 335111)
- (-2971 . 334819) (-2972 . 334656) (-2973 . 334602) (-2974 . 334473)
- (-2975 . 334341) (-2976 . 334167) (-2977 . 333867) (-2978 . 333721)
- (-2979 . 333598) (-2980 . 333549) (-2981 . 333392) (-2982 . 333250)
- (-2983 . 332704) (-2984 . 332337) (-2985 . 332251) (-2986 . 332024)
- (-2987 . 331967) (-2988 . 331651) (-2989 . 331561) (-2990 . 331428)
- (-2991 . 331317) (-2992 . 331215) (-2993 . 331114) (-2994 . 330985)
- (-2995 . 330780) (-2996 . 330677) (-2997 . 330569) (-2998 . 329909)
- (-2999 . 329788) (-3000 . 329666) (-3001 . 329561) (-3002 . 327972)
- (-3003 . 327879) (-3004 . 327723) (-3005 . 327599) (-3006 . 327503)
- (-3007 . 327314) (-3008 . 327193) (-3009 . 327122) (-3010 . 327036)
- (-3011 . 326950) (-3012 . 326922) (-3013 . 326704) (-3014 . 326626)
- (-3015 . 326520) (-3016 . 326385) (-3017 . 326325) (-3018 . 326154)
- (-3019 . 325968) (-3020 . 325909) (-3021 . 325756) (-3022 . 325682)
- (-3023 . 325271) (-3024 . 325175) (-3025 . 324966) (-3026 . 324829)
- (-3027 . 324751) (-3028 . 324598) (-3029 . 324489) (-3030 . 324395)
- (-3031 . 324297) (-3032 . 324237) (-3033 . 324007) (-3034 . 323865)
- (-3035 . 323815) (-3036 . 323759) (-3037 . 323681) (-3038 . 323580)
- (-3039 . 322957) (-3040 . 322886) (-3041 . 322492) (-3042 . 322393)
- (-3043 . 322019) (-3044 . 321988) (-3045 . 321677) (-3046 . 317727)
- (-3047 . 317632) (-3048 . 317579) (-3049 . 317426) (-3050 . 317311)
- (-3051 . 317092) (-3052 . 315788) (-3053 . 315760) (-3054 . 315453)
- (-3055 . 315369) (-3056 . 314489) (-3057 . 314401) (-3058 . 314334)
- (-3059 . 314239) (-3060 . 314165) (-3061 . 314037) (-3062 . 313719)
- (-3063 . 313472) (-3064 . 313370) (-3065 . 313028) (-3066 . 312933)
- (-3067 . 312817) (-3068 . 312758) (-3069 . 312726) (-3070 . 312644)
- (-3071 . 312581) (-3072 . 312286) (-3073 . 311865) (-3074 . 311784)
- (-3075 . 311659) (-3076 . 311332) (-3077 . 311196) (-3078 . 311125)
- (-3079 . 311032) (-3080 . 310965) (-3081 . 310864) (-3082 . 310555)
- (-3083 . 310469) (-3084 . 310441) (-3085 . 310226) (-3086 . 310001)
- (-3087 . 309897) (-3088 . 309595) (-3089 . 309540) (-3090 . 309421)
- (-3091 . 309249) (-3092 . 309089) (-3093 . 308843) (-3094 . 308712)
- (-3095 . 308516) (-3096 . 307909) (-3097 . 307307) (-3098 . 306733)
- (-3099 . 306552) (-3100 . 306478) (-3101 . 306446) (-3102 . 306374)
- (-3103 . 306122) (-3104 . 305967) (-3105 . 305830) (-3106 . 305729)
- (-3107 . 305669) (-3108 . 305586) (-3109 . 305332) (-3110 . 304972)
- (-3111 . 304823) (-3112 . 304771) (-3113 . 304672) (-3114 . 304644)
- (-3115 . 303464) (-3116 . 303261) (-3117 . 303208) (-3118 . 303022)
- (-3119 . 302624) (-3120 . 302522) (-3121 . 302488) (-3122 . 302421)
- (-3123 . 302392) (-3124 . 302193) (-3125 . 302105) (-3126 . 302031)
- (-3127 . 301999) (-3128 . 301889) (-3129 . 301547) (-3130 . 301479)
- (-3131 . 301049) (-3132 . 298988) (-3133 . 298919) (-3134 . 298789)
- (-3135 . 298254) (-3136 . 298078) (-3137 . 298044) (-3138 . 297966)
- (-3139 . 297938) (-3140 . 297874) (-3141 . 297727) (-3142 . 297676)
- (-3143 . 297213) (-3144 . 297154) (-3145 . 297080) (-3146 . 297052)
- (-3147 . 296718) (-3148 . 296499) (-3149 . 296118) (-3150 . 296047)
- (-3151 . 295310) (-3152 . 295238) (-3153 . 294749) (-3154 . 294531)
- (-3155 . 294373) (-3156 . 294252) (-3157 . 293926) (-3158 . 293758)
- (-3159 . 293649) (-3160 . 293597) (-3161 . 293464) (-3162 . 293369)
- (-3163 . 293259) (-3164 . 292874) (-3165 . 292818) (-3166 . 292717)
- (-3167 . 292499) (-3168 . 292285) (-3169 . 292151) (-3170 . 291703)
- (-3171 . 291636) (-3172 . 291326) (-3173 . 291161) (-3174 . 290897)
- (-3175 . 290689) (-3176 . 290603) (-3177 . 290423) (-3178 . 290163)
- (-3179 . 288961) (-3180 . 288859) (-3181 . 288633) (-3182 . 288501)
- (-3183 . 288323) (-3184 . 288042) (-3185 . 287769) (-3186 . 287311)
- (-3187 . 287178) (-3188 . 285838) (-3189 . 284839) (-3190 . 284787)
- (-3191 . 284701) (-3192 . 284491) (-3193 . 284146) (-3194 . 283797)
- (-3195 . 283713) (-3196 . 283644) (-3197 . 283582) (-3198 . 283424)
- (-3199 . 283396) (-3200 . 283325) (-3201 . 283268) (-3202 . 282686)
- (-3203 . 282418) (-3204 . 282089) (-3205 . 281946) (-3206 . 281879)
- (-3207 . 281775) (-3208 . 281485) (-3209 . 281342) (-3210 . 281254)
- (-3211 . 281051) (-3212 . 280998) (-3213 . 280939) (-3214 . 280843)
- (-3215 . 280595) (-3216 . 279707) (-3217 . 279606) (-3218 . 279345)
- (-3219 . 278381) (-3220 . 278223) (-3221 . 278103) (-3222 . 277980)
- (-3223 . 277855) (-3224 . 277790) (-3225 . 277676) (-3226 . 277608)
- (-3227 . 277559) (-3228 . 277415) (-3229 . 277168) (-3230 . 277044)
- (-3231 . 276938) (-3232 . 276789) (-3233 . 276652) (-3234 . 276515)
- (-3235 . 276335) (-3236 . 276270) (-3237 . 276114) (-3238 . 276041)
- (-3239 . 275611) (-3240 . 275426) (-3241 . 275295) (-3242 . 275115)
- (-3243 . 275052) (-3244 . 274925) (-3245 . 274266) (-3246 . 274142)
- (-3247 . 274085) (-3248 . 273962) (-3249 . 273322) (-3250 . 273058)
- (-3251 . 273005) (-3252 . 272843) (-3253 . 272760) (-3254 . 272693)
- (-3255 . 272412) (-3256 . 272174) (-3257 . 272107) (-3258 . 272057)
- (-3259 . 271665) (-3260 . 271613) (-3261 . 271079) (-3262 . 270829)
- (-3263 . 270762) (-3264 . 270649) (-3265 . 270543) (-3266 . 270385)
- (-3267 . 270098) (-3268 . 270003) (-3269 . 269900) (-3270 . 269787)
- (-3271 . 269732) (-3272 . 269333) (-3273 . 269205) (-3274 . 269060)
- (-3275 . 268989) (-3276 . 268841) (-3277 . 268782) (-3278 . 268565)
- (-3279 . 268355) (-3280 . 267962) (-3281 . 267860) (-3282 . 267805)
- (-3283 . 267438) (-3284 . 267317) (-3285 . 267193) (-3286 . 267048)
- (-3287 . 266998) (-3288 . 266745) (-3289 . 266580) (-3290 . 266449)
- (-3291 . 266336) (-3292 . 266132) (-3293 . 266002) (-3294 . 265903)
- (-3295 . 265815) (-3296 . 265605) (-3297 . 265514) (-3298 . 265357)
- (-3299 . 265276) (-3300 . 265190) (-3301 . 265116) (-3302 . 265038)
- (-3303 . 264630) (-3304 . 264561) (-3305 . 264433) (-3306 . 264174)
- (-3307 . 264102) (-3308 . 264005) (-3309 . 263950) (-3310 . 263893)
- (-3311 . 263684) (-3312 . 263237) (-3313 . 263136) (-3314 . 262946)
- (-3315 . 262850) (-3316 . 262682) (-3317 . 262585) (-3318 . 258425)
- (-3319 . 258197) (-3320 . 258102) (-3321 . 257961) (-3322 . 257888)
- (-3323 . 257763) (-3324 . 257339) (-3325 . 257269) (-3326 . 257186)
- (-3327 . 256940) (-3328 . 256858) (-3329 . 256805) (-3330 . 256527)
- (-3331 . 256445) (-3332 . 256417) (-3333 . 256275) (-3334 . 255995)
- (-3335 . 255907) (-3336 . 255665) (-3337 . 255535) (-3338 . 255362)
- (-3339 . 255225) (-3340 . 254797) (-3341 . 254683) (-3342 . 254517)
- (-3343 . 253840) (-3344 . 253734) (-3345 . 252157) (-3346 . 252093)
- (-3347 . 251808) (-3348 . 251666) (-3349 . 251391) (-3350 . 251319)
- (-3351 . 251288) (-3352 . 250936) (-3353 . 250850) (-3354 . 250591)
- (-3355 . 250463) (-3356 . 250411) (-3357 . 250050) (-3358 . 249949)
- (-3359 . 249786) (-3360 . 249683) (-3361 . 249631) (-3362 . 249418)
- (-3363 . 249335) (-3364 . 249229) (-3365 . 248907) (-3366 . 248810)
- (-3367 . 248592) (-3368 . 248491) (-3369 . 246235) (-3370 . 246038)
- (-3371 . 245375) (-3372 . 245053) (-3373 . 244934) (-3374 . 244882)
- (-3375 . 244523) (-3376 . 244410) (-3377 . 244347) (-3378 . 244230)
- (-3379 . 244012) (-3380 . 243790) (-3381 . 243693) (-3382 . 243247)
- (-3383 . 243099) (-3384 . 242888) (-3385 . 242791) (-3386 . 242732)
- (-3387 . 242625) (-3388 . 242423) (-3389 . 242284) (-3390 . 240498)
- (-3391 . 240424) (-3392 . 240082) (-3393 . 239963) (-3394 . 239584)
- (-3395 . 239397) (-3396 . 239270) (-3397 . 239173) (-3398 . 238879)
- (-3399 . 238806) (-3400 . 238547) (-3401 . 238461) (-3402 . 238318)
- (-3403 . 238230) (-3404 . 238012) (-3405 . 237792) (-3406 . 237743)
- (-3407 . 237416) (-3408 . 236950) (-3409 . 236851) (-3410 . 236595)
- (-3411 . 236173) (-3412 . 236079) (-3413 . 235942) (-3414 . 235784)
- (-3415 . 235680) (-3416 . 235165) (-3417 . 235113) (-3418 . 235011)
- (-3419 . 234843) (-3420 . 234783) (-3421 . 234676) (-3422 . 234540)
- (-3423 . 234446) (-3424 . 234277) (-3425 . 234207) (-3426 . 234091)
- (-3427 . 234017) (-3428 . 233343) (-3429 . 233309) (-3430 . 233098)
- (-3431 . 232514) (-3432 . 232333) (-3433 . 232224) (-3434 . 232066)
- (-3435 . 231950) (-3436 . 230769) (-3437 . 230657) (-3438 . 230584)
- (-3439 . 230140) (-3440 . 230112) (-3441 . 230056) (-3442 . 229989)
- (-3443 . 229830) (-3444 . 229740) (-3445 . 229684) (-3446 . 229605)
- (-3447 . 229555) (-3448 . 229330) (-3449 . 229139) (-3450 . 229084)
- (-3451 . 229001) (-3452 . 228594) (-3453 . 228534) (-3454 . 228280)
- (-3455 . 228192) (-3456 . 228136) (-3457 . 228083) (-3458 . 228046)
- (-3459 . 227962) (-3460 . 227755) (-3461 . 226528) (-3462 . 225126)
- (-3463 . 225070) (-3464 . 224845) (-3465 . 224501) (-3466 . 224352)
- (-3467 . 224249) (-3468 . 224197) (-3469 . 224068) (-3470 . 223934)
- (-3471 . 223396) (-3472 . 223271) (-3473 . 223136) (-3474 . 222800)
- (-3475 . 222629) (-3476 . 222530) (-3477 . 222303) (-3478 . 221910)
- (-3479 . 221839) (-3480 . 221702) (-3481 . 221326) (-3482 . 221184)
- (-3483 . 221089) (-3484 . 221015) (-3485 . 220634) (-3486 . 219818)
- (-3487 . 219765) (-3488 . 218769) (-3489 . 218679) (-3490 . 218650)
- (-3491 . 218566) (-3492 . 218327) (-3493 . 217651) (-3494 . 217155)
- (-3495 . 217102) (-3496 . 216986) (-3497 . 216771) (-3498 . 216698)
- (-3499 . 216630) (-3500 . 216547) (-3501 . 216489) (-3502 . 216329)
- (-3503 . 216051) (-3504 . 215977) (-3505 . 215909) (-3506 . 215854)
- (-3507 . 215749) (-3508 . 215506) (-3509 . 215472) (-3510 . 215375)
- (-3511 . 215302) (-3512 . 215010) (-3513 . 214941) (-3514 . 214655)
- (-3515 . 214539) (-3516 . 214259) (-3517 . 214118) (-3518 . 213999)
- (-3519 . 213904) (-3520 . 204454) (-3521 . 204235) (-3522 . 204112)
- (-3523 . 203899) (-3524 . 203719) (-3525 . 203604) (-3526 . 203552)
- (-3527 . 203333) (-3528 . 203259) (-3529 . 203128) (-3530 . 202910)
- (-3531 . 202665) (-3532 . 202581) (-3533 . 202420) (-3534 . 202262)
- (-3535 . 202231) (-3536 . 202008) (-3537 . 201931) (-3538 . 201837)
- (-3539 . 201760) (-3540 . 201675) (-3541 . 201513) (-3542 . 201430)
- (-3543 . 201300) (-3544 . 201175) (-3545 . 200919) (-3546 . 200852)
- (-3547 . 200785) (-3548 . 200728) (-3549 . 200676) (-3550 . 200341)
- (-3551 . 199577) (-3552 . 199296) (-3553 . 199229) (-3554 . 199020)
- (-3555 . 198953) (-3556 . 198601) (-3557 . 198527) (-3558 . 198474)
- (-3559 . 198085) (-3560 . 197985) (-3561 . 197195) (-3562 . 197125)
- (-3563 . 197044) (-3564 . 197012) (-3565 . 196884) (-3566 . 196680)
- (-3567 . 196609) (-3568 . 196437) (-3569 . 196293) (-3570 . 195453)
- (-3571 . 195401) (-3572 . 195349) (-3573 . 195183) (-3574 . 195130)
- (-3575 . 194812) (-3576 . 194657) (-3577 . 194485) (-3578 . 194332)
- (-3579 . 194117) (-3580 . 194009) (-3581 . 193935) (-3582 . 193882)
- (-3583 . 193798) (-3584 . 193697) (-3585 . 193606) (-3586 . 193461)
- (-3587 . 193389) (-3588 . 193312) (-3589 . 193140) (-3590 . 192951)
- (-3591 . 192870) (-3592 . 192761) (-3593 . 192706) (-3594 . 192548)
- (-3595 . 192418) (-3596 . 192345) (-3597 . 192286) (-3598 . 192114)
- (-3599 . 192059) (-3600 . 191391) (-3601 . 191186) (-3602 . 191073)
- (-3603 . 191001) (-3604 . 190888) (-3605 . 190860) (-3606 . 190762)
- (-3607 . 190685) (-3608 . 190589) (-3609 . 190321) (-3610 . 190198)
- (-3611 . 190146) (-3612 . 190063) (-3613 . 189922) (-3614 . 189843)
- (-3615 . 189792) (-3616 . 189692) (-3617 . 189526) (-3618 . 189381)
- (-3619 . 189329) (-3620 . 189144) (-3621 . 188617) (-3622 . 188430)
- (-3623 . 188393) (-3624 . 188144) (-3625 . 188010) (-3626 . 187929)
- (-3627 . 187833) (-3628 . 187706) (-3629 . 187565) (-3630 . 187512)
- (-3631 . 186913) (-3632 . 186607) (-3633 . 186486) (-3634 . 186434)
- (-3635 . 186140) (-3636 . 185881) (-3637 . 185581) (-3638 . 185370)
- (-3639 . 185274) (-3640 . 185180) (-3641 . 184997) (-3642 . 184963)
- (-3643 . 184855) (-3644 . 184803) (-3645 . 184676) (-3646 . 184549)
- (-3647 . 184490) (-3648 . 184407) (-3649 . 183600) (-3650 . 183510)
- (-3651 . 183136) (-3652 . 182820) (-3653 . 182588) (-3654 . 182535)
- (-3655 . 182458) (-3656 . 182298) (-3657 . 181687) (-3658 . 181554)
- (-3659 . 181462) (-3660 . 181284) (-3661 . 181182) (-3662 . 180622)
- (-3663 . 180497) (-3664 . 180296) (-3665 . 180158) (-3666 . 179979)
- (-3667 . 179891) (-3668 . 179511) (-3669 . 179344) (-3670 . 179249)
- (-3671 . 179169) (-3672 . 178051) (-3673 . 177870) (-3674 . 177800)
- (-3675 . 177715) (-3676 . 177557) (-3677 . 177505) (-3678 . 177360)
- (-3679 . 177208) (-3680 . 177142) (-3681 . 177020) (-3682 . 176943)
- (-3683 . 176776) (-3684 . 176529) (-3685 . 176473) (-3686 . 176265)
- (-3687 . 175237) (-3688 . 175160) (-3689 . 174772) (-3690 . 174684)
- (-3691 . 174602) (-3692 . 174326) (-3693 . 174276) (-3694 . 174224)
- (-3695 . 173946) (-3696 . 173564) (-3697 . 173511) (-3698 . 173321)
- (-3699 . 172502) (-3700 . 172404) (-3701 . 172258) (-3702 . 172125)
- (-3703 . 172045) (-3704 . 171823) (-3705 . 171709) (-3706 . 171657)
- (-3707 . 171590) (-3708 . 171502) (-3709 . 170906) (-3710 . 170620)
- (-3711 . 170437) (-3712 . 170384) (-3713 . 170182) (-3714 . 170154)
- (-3715 . 170022) (-3716 . 169732) (-3717 . 169589) (-3718 . 169507)
- (-3719 . 169403) (-3720 . 169045) (-3721 . 168964) (-3722 . 168911)
- (-3723 . 168647) (-3724 . 168574) (-3725 . 168493) (-3726 . 168111)
- (-3727 . 168016) (-3728 . 167942) (-3729 . 167824) (-3730 . 167718)
- (-3731 . 167547) (-3732 . 167378) (-3733 . 167325) (-3734 . 167206)
- (-3735 . 167120) (-3736 . 166703) (-3737 . 166574) (-3738 . 166066)
- (-3739 . 165993) (-3740 . 165890) (-3741 . 165735) (-3742 . 165633)
- (-3743 . 165424) (-3744 . 165264) (-3745 . 165118) (-3746 . 164943)
- (-3747 . 164811) (-3748 . 164744) (-3749 . 164437) (-3750 . 164238)
- (-3751 . 164209) (-3752 . 164113) (-3753 . 163953) (-3754 . 163881)
- (-3755 . 163847) (-3756 . 163709) (-3757 . 163488) (-3758 . 163416)
- (-3759 . 162686) (-3760 . 162240) (-3761 . 160462) (-3762 . 160294)
- (-3763 . 160122) (-3764 . 159889) (-3765 . 159674) (-3766 . 159576)
- (-3767 . 159519) (-3768 . 159454) (-3769 . 159289) (-3770 . 159039)
- (-3771 . 158887) (-3772 . 158157) (-3773 . 158101) (-3774 . 157742)
- (-3775 . 157642) (-12 . 157470) (-3777 . 157360) (-3778 . 157261)
- (-3779 . 157045) (-3780 . 156294) (-3781 . 156208) (-3782 . 156135)
- (-3783 . 156017) (-3784 . 155340) (-3785 . 155169) (-3786 . 155029)
- (-3787 . 154962) (-3788 . 154817) (-3789 . 154707) (-3790 . 154609)
- (-3791 . 154481) (-3792 . 154352) (-3793 . 154256) (-3794 . 154133)
- (-3795 . 153568) (-3796 . 153117) (-3797 . 152958) (-3798 . 152851)
- (-3799 . 152783) (-3800 . 152717) (-3801 . 152665) (-3802 . 152378)
- (-3803 . 152204) (-3804 . 152081) (-3805 . 151516) (-3806 . 151318)
- (-3807 . 151222) (-3808 . 151086) (-3809 . 151003) (-3810 . 150693)
- (-3811 . 150603) (-3812 . 150179) (-3813 . 150021) (-3814 . 149575)
- (-3815 . 149010) (-3816 . 148872) (-3817 . 148775) (-3818 . 148648)
- (-3819 . 148574) (-3820 . 148375) (-3821 . 148227) (-3822 . 147774)
- (-3823 . 147637) (-3824 . 147409) (-3825 . 147332) (-3826 . 146657)
- (-3827 . 146346) (-3828 . 146294) (-3829 . 146198) (-3830 . 146067)
- (-3831 . 145734) (-3832 . 145657) (-3833 . 145539) (-3834 . 145468)
- (-3835 . 145328) (-3836 . 145180) (-3837 . 144505) (-3838 . 144453)
- (-3839 . 144243) (-3840 . 144190) (-3841 . 143901) (-3842 . 143723)
- (-3843 . 143694) (-3844 . 143366) (-3845 . 143270) (-3846 . 143138)
- (-3847 . 143032) (-3848 . 142937) (-3849 . 142878) (-3850 . 142140)
- (-3851 . 141831) (-3852 . 141778) (-3853 . 141695) (-3854 . 141594)
- (-3855 . 141534) (-3856 . 141387) (-3857 . 141304) (-3858 . 141141)
- (-3859 . 140941) (-3860 . 140887) (-3861 . 140324) (-3862 . 140236)
- (-3863 . 139750) (-3864 . 139682) (-3865 . 139611) (-3866 . 139525)
- (-3867 . 139469) (-3868 . 139405) (-3869 . 139309) (-3870 . 139235)
- (-3871 . 138672) (-3872 . 138514) (-3873 . 138134) (* . 134021)
- (-3875 . 133832) (-3876 . 133780) (-3877 . 133621) (-3878 . 133062)
- (-3879 . 132917) (-3880 . 132834) (-3881 . 132190) (-3882 . 132095)
- (-3883 . 131532) (-3884 . 131374) (-3885 . 131059) (-3886 . 130972)
- (-3887 . 130829) (-3888 . 130706) (-3889 . 130656) (-3890 . 130097)
- (-3891 . 130032) (-3892 . 129977) (-3893 . 129867) (-3894 . 129781)
- (-3895 . 129105) (-3896 . 129046) (-3897 . 128989) (-3898 . 128392)
- (-3899 . 128355) (-3900 . 128068) (-3901 . 127753) (-3902 . 127569)
- (-3903 . 127416) (-3904 . 127336) (-3905 . 127263) (-3906 . 127110)
- (-3907 . 126434) (-3908 . 126340) (-3909 . 126170) (-3910 . 126010)
- (-3911 . 125951) (-3912 . 125897) (-3913 . 125625) (-3914 . 125597)
- (-3915 . 125547) (-3916 . 125170) (-3917 . 125104) (-3918 . 125001)
- (-3919 . 124826) (-3920 . 124725) (-3921 . 124049) (-3922 . 123810)
- (-3923 . 122708) (-3924 . 122635) (-3925 . 122068) (-3926 . 121982)
- (-3927 . 121871) (-3928 . 121783) (-3929 . 121565) (-3930 . 121510)
- (-3931 . 121311) (-3932 . 121217) (-3933 . 121189) (-3934 . 121123)
- (-3935 . 120559) (-3936 . 120422) (-3937 . 120394) (-3938 . 120310)
- (-3939 . 120088) (-3940 . 119857) (-3941 . 119505) (-3942 . 119405)
- (-3943 . 118438) (-9 . 118410) (-3945 . 118125) (-3946 . 117827)
- (-3947 . 117241) (-3948 . 117128) (-3949 . 117032) (-3950 . 116883)
- (-3951 . 116852) (-3952 . 116731) (-3953 . 116660) (-3954 . 116608)
- (-3955 . 116521) (-3956 . 116378) (-3957 . 116211) (-8 . 116183)
- (-3959 . 115805) (-3960 . 115738) (-3961 . 115625) (-3962 . 115555)
- (-3963 . 115470) (-3964 . 115355) (-3965 . 114696) (-3966 . 114662)
- (-3967 . 114503) (-3968 . 114425) (-3969 . 114203) (-3970 . 114036)
- (-7 . 114008) (-3972 . 113913) (-3973 . 113846) (-3974 . 113456)
- (-3975 . 113403) (-3976 . 113307) (-3977 . 112932) (-3978 . 112880)
- (-3979 . 112849) (-3980 . 112762) (-3981 . 112701) (-3982 . 112620)
- (-3983 . 112133) (-3984 . 112061) (-3985 . 111922) (-3986 . 111798)
- (-3987 . 111745) (-3988 . 111565) (-3989 . 111468) (-3990 . 111116)
- (-3991 . 110989) (-3992 . 110759) (-3993 . 110667) (-3994 . 110552)
- (-3995 . 110479) (-3996 . 110311) (-3997 . 110155) (-3998 . 110022)
- (-3999 . 109746) (-4000 . 109687) (-4001 . 109503) (-4002 . 109230)
- (-4003 . 109044) (-4004 . 108912) (-4005 . 108694) (-4006 . 108667)
- (-4007 . 108615) (-4008 . 108544) (-4009 . 108443) (-4010 . 108343)
- (-4011 . 108217) (-4012 . 107841) (-4013 . 107378) (-4014 . 105410)
- (-4015 . 104224) (-4016 . 104144) (-4017 . 104092) (-4018 . 103853)
- (-4019 . 103772) (-4020 . 103460) (-4021 . 103394) (-4022 . 103300)
- (-4023 . 103266) (-4024 . 103150) (-4025 . 103096) (-4026 . 102760)
- (-4027 . 101578) (-4028 . 101434) (-4029 . 100910) (-4030 . 100854)
- (-4031 . 100773) (-4032 . 100577) (-4033 . 100436) (-4034 . 100337)
- (-4035 . 100258) (-4036 . 100048) (-4037 . 99941) (-4038 . 97733)
- (-4039 . 97614) (-4040 . 97487) (-4041 . 97279) (-4042 . 96904)
- (-4043 . 96651) (-4044 . 96592) (-4045 . 96514) (-4046 . 96271)
- (-4047 . 95783) (-4048 . 95653) (-4049 . 95525) (-4050 . 95407)
- (-4051 . 94105) (-4052 . 93997) (-4053 . 93854) (-4054 . 93734)
- (-4055 . 93571) (-4056 . 93472) (-4057 . 93364) (-4058 . 93145)
- (-4059 . 92935) (-4060 . 92723) (-4061 . 92544) (-4062 . 92282)
- (-4063 . 92148) (-4064 . 92096) (-4065 . 92035) (-4066 . 91549)
- (-4067 . 91497) (-4068 . 91270) (-4069 . 88489) (-4070 . 88390)
- (-4071 . 88358) (-4072 . 88201) (-4073 . 87954) (-4074 . 87721)
- (-4075 . 87662) (-4076 . 87464) (-4077 . 87299) (-4078 . 87267)
- (-4079 . 86975) (-4080 . 86860) (-4081 . 86661) (-4082 . 86563)
- (-4083 . 86483) (-4084 . 86364) (-4085 . 86171) (-4086 . 86074)
- (-4087 . 85977) (-4088 . 85744) (-4089 . 85689) (-4090 . 85393)
- (-4091 . 84866) (-4092 . 84663) (-4093 . 84516) (-4094 . 84373)
- (-4095 . 84102) (-4096 . 83792) (-4097 . 83740) (-4098 . 83599)
- (-4099 . 83425) (-4100 . 83125) (-4101 . 83032) (-4102 . 82946)
- (-4103 . 82851) (-4104 . 82726) (-4105 . 82631) (-4106 . 82507)
- (-4107 . 82453) (-4108 . 82356) (-4109 . 82266) (-4110 . 82159)
- (-4111 . 81525) (-4112 . 81465) (-4113 . 81379) (-4114 . 80988)
- (-4115 . 80930) (-4116 . 80806) (-4117 . 80599) (-4118 . 80384)
- (-4119 . 80148) (-4120 . 79853) (-4121 . 79729) (-4122 . 79658)
- (-4123 . 79443) (-4124 . 79330) (-4125 . 79234) (-4126 . 78796)
- (-4127 . 78526) (-4128 . 78248) (-4129 . 78054) (-4130 . 77934)
- (-4131 . 77836) (-4132 . 77681) (-4133 . 77629) (-4134 . 77379)
- (-4135 . 77172) (-4136 . 77115) (-4137 . 76654) (-4138 . 76544)
- (-4139 . 76448) (-4140 . 76375) (-4141 . 76177) (-4142 . 76018)
- (-4143 . 75668) (-4144 . 75609) (-4145 . 75557) (-4146 . 75504)
- (-4147 . 75445) (-4148 . 75285) (-4149 . 75197) (-4150 . 75145)
- (-4151 . 75050) (-4152 . 74985) (-4153 . 74913) (-4154 . 74760)
- (-4155 . 74679) (-4156 . 74626) (-4157 . 74433) (-4158 . 74381)
- (-4159 . 73998) (-4160 . 73909) (-4161 . 73442) (-4162 . 72225)
- (-4163 . 72103) (-4164 . 72047) (-4165 . 71965) (-4166 . 71891)
- (-4167 . 71353) (-4168 . 71114) (-4169 . 70960) (-4170 . 70874)
- (-4171 . 70487) (-4172 . 70416) (-4173 . 70364) (-4174 . 70312)
- (-4175 . 70117) (-4176 . 69993) (-4177 . 69869) (-4178 . 68953)
- (-4179 . 68860) (-4180 . 68614) (-4181 . 68301) (-4182 . 68240)
- (-4183 . 67894) (-4184 . 67795) (-4185 . 67716) (-4186 . 67657)
- (-4187 . 67605) (-4188 . 67270) (-4189 . 67081) (-4190 . 67009)
- (-4191 . 66690) (-4192 . 66508) (-4193 . 66452) (-4194 . 66298)
- (-4195 . 65954) (-4196 . 65892) (-4197 . 65783) (-4198 . 65710)
- (-4199 . 65573) (-4200 . 65491) (-4201 . 65417) (-4202 . 65268)
- (-4203 . 65153) (-4204 . 65093) (-4205 . 65014) (-4206 . 64849)
- (-4207 . 64711) (-4208 . 64526) (-4209 . 64319) (-4210 . 64235)
- (-4211 . 64094) (-4212 . 63951) (-4213 . 63879) (-4214 . 63851)
- (-4215 . 63789) (-4216 . 63681) (-4217 . 63354) (-4218 . 60939)
- (-4219 . 60870) (-4220 . 60782) (-4221 . 60609) (-4222 . 60372)
- (-4223 . 60292) (-4224 . 60236) (-4225 . 60179) (-4226 . 60078)
- (-4227 . 59983) (-4228 . 59933) (-4229 . 59805) (-4230 . 59662)
- (-4231 . 59634) (-4232 . 59575) (-4233 . 59520) (-4234 . 59457)
- (-4235 . 59091) (-4236 . 58839) (-4237 . 58530) (-4238 . 57944)
- (-4239 . 57889) (-4240 . 57811) (-4241 . 57627) (-4242 . 57432)
- (-4243 . 57186) (-4244 . 57028) (-4245 . 56640) (-4246 . 56563)
- (-4247 . 56380) (-4248 . 56279) (-4249 . 55987) (-4250 . 55819)
- (-4251 . 55601) (-4252 . 55371) (-4253 . 55247) (-4254 . 55051)
- (-4255 . 54805) (-4256 . 54664) (-4257 . 54611) (-4258 . 54543)
- (-4259 . 54000) (-4260 . 53822) (-4261 . 53599) (-4262 . 53422)
- (-4263 . 53321) (-4264 . 53267) (-4265 . 52647) (-4266 . 52495)
- (-4267 . 52443) (-4268 . 52279) (-4269 . 52023) (-4270 . 51961)
- (-4271 . 51890) (-4272 . 51380) (-4273 . 51170) (-4274 . 50924)
- (-4275 . 50895) (-4276 . 50724) (-4277 . 50647) (-4278 . 50552)
- (-4279 . 50404) (-4280 . 50275) (-4281 . 49002) (-4282 . 48717)
- (-4283 . 48438) (-4284 . 48314) (-4285 . 47912) (-4286 . 47754)
- (-4287 . 47643) (-4288 . 47462) (-4289 . 47407) (-4290 . 45641)
- (-4291 . 45530) (-4292 . 45471) (-4293 . 45418) (-4294 . 45336)
- (-4295 . 45283) (-4296 . 45255) (-4297 . 44951) (-4298 . 44795)
- (-4299 . 44697) (-4300 . 44571) (-4301 . 43116) (-4302 . 42968)
- (-4303 . 42884) (-4304 . 42546) (-4305 . 42393) (-4306 . 42264)
- (-4307 . 42136) (-4308 . 41997) (-4309 . 41768) (-4310 . 41657)
- (-4311 . 40167) (-4312 . 40072) (-4313 . 39563) (-4314 . 39349)
- (-4315 . 38978) (-4316 . 38544) (-4317 . 38217) (-4318 . 37901)
- (-4319 . 37834) (-4320 . 37729) (-4321 . 37656) (-4322 . 37599)
- (-4323 . 37520) (-4324 . 37207) (-4325 . 37044) (-4326 . 37016)
- (-4327 . 36860) (-4328 . 36776) (-4329 . 36615) (-4330 . 36455)
- (-4331 . 36405) (-4332 . 35669) (-4333 . 35533) (-4334 . 35470)
- (-4335 . 35234) (-4336 . 35137) (-4337 . 34934) (-4338 . 34807)
- (-4339 . 34752) (-4340 . 34542) (-4341 . 34114) (-4342 . 34026)
- (-4343 . 32961) (-4344 . 32808) (-4345 . 32756) (-4346 . 32593)
- (-4347 . 32410) (-4348 . 31927) (-4349 . 31815) (-4350 . 31657)
- (-4351 . 31577) (-4352 . 31414) (-4353 . 31286) (-4354 . 31126)
- (-4355 . 31053) (-4356 . 30975) (-4357 . 30690) (-4358 . 30485)
- (-4359 . 30341) (-4360 . 30201) (-4361 . 30129) (-4362 . 29765)
- (-4363 . 29605) (-4364 . 29552) (-4365 . 29454) (-4366 . 29360)
- (-4367 . 29266) (-4368 . 29238) (-4369 . 29125) (-4370 . 28481)
- (-4371 . 28368) (-4372 . 28190) (-4373 . 28075) (-4374 . 27974)
- (-4375 . 27902) (-4376 . 26474) (-4377 . 26372) (-4378 . 26184)
- (-4379 . 26110) (-4380 . 25885) (-4381 . 25832) (-4382 . 25296)
- (-4383 . 24124) (-4384 . 24039) (-4385 . 23908) (-4386 . 23825)
- (-4387 . 23773) (-4388 . 16830) (-4389 . 16739) (-4390 . 16614)
- (-4391 . 16135) (-4392 . 15973) (-4393 . 15858) (-4394 . 15746)
- (-4395 . 15642) (-4396 . 15454) (-4397 . 15084) (-4398 . 15002)
- (-4399 . 14880) (-4400 . 9541) (-4401 . 9426) (-4402 . 9300)
- (-4403 . 9205) (-4404 . 9082) (-4405 . 8922) (-4406 . 7785)
- (-4407 . 7681) (-4408 . 7583) (-4409 . 7498) (-4410 . 7446)
- (-4411 . 7212) (-4412 . 7141) (-4413 . 7073) (-4414 . 6935)
- (-4415 . 6774) (-4416 . 6353) (-4417 . 5926) (-4418 . 5858)
- (-4419 . 5718) (-4420 . 5577) (-4421 . 4711) (-4422 . 3461)
- (-4423 . 3319) (-4424 . 3164) (-4425 . 3061) (-4426 . 2962)
- (-4427 . 2620) (-4428 . 2447) (-4429 . 2310) (-4430 . 2197)
- (-4431 . 1911) (-4432 . 1689) (-4433 . 1551) (-4434 . 1495)
- (-4435 . 1424) (-4436 . 940) (-4437 . 845) (-4438 . 362) (-4439 . 82)
- (-4440 . 30)) \ No newline at end of file
+ (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1068)))))
+(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *2)
+ (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4))
+ (-4 *3 (-378 *4))))
+ ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2))
+ (-4 *4 (-568)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-783))
+ (-4 *3 (-13 (-317) (-10 -8 (-15 -2464 ((-430 $) $)))))
+ (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3))
+ (-4 *3 (-1263 (-419 *4))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1196))) (-4 *6 (-374))
+ (-5 *2 (-656 (-304 (-969 *6)))) (-5 *1 (-550 *5 *6 *7))
+ (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))))
+(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-91 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1002 *2)) (-4 *2 (-1222)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4))
+ (-4 *4 (-360)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))))
+(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312))))
+((-1321 . 731266) (-1322 . 731213) (-1323 . 731119) (-1324 . 731032)
+ (-1325 . 730959) (-1326 . 730771) (-1327 . 730688) (-1328 . 730573)
+ (-1329 . 730406) (-1330 . 730339) (-1331 . 730240) (-1332 . 730082)
+ (-1333 . 729953) (-1334 . 729888) (-1335 . 729815) (-1336 . 729763)
+ (-1337 . 729660) (-1338 . 729525) (-1339 . 727795) (-1340 . 727721)
+ (-1341 . 727457) (-1342 . 727179) (-1343 . 727042) (-1344 . 726968)
+ (-1345 . 726875) (-1346 . 726795) (-1347 . 726718) (-1348 . 726555)
+ (-1349 . 726495) (-1350 . 726415) (-1351 . 726308) (-1352 . 726256)
+ (-1353 . 726099) (-1354 . 726040) (-1355 . 725941) (-1356 . 725888)
+ (-1357 . 725810) (-1358 . 725758) (-1359 . 725535) (-1360 . 724539)
+ (-1361 . 724458) (-1362 . 724363) (-1363 . 724236) (-1364 . 723870)
+ (-1365 . 723782) (-1366 . 723670) (-1367 . 723577) (-1368 . 723493)
+ (-1369 . 723045) (-1370 . 722957) (-1371 . 722705) (-1372 . 722583)
+ (-1373 . 722421) (-1374 . 721875) (-1375 . 721736) (-1376 . 721664)
+ (-1377 . 721548) (-1378 . 721477) (-1379 . 721425) (-1380 . 721372)
+ (-1381 . 721233) (-1382 . 720977) (-1383 . 720835) (-1384 . 720675)
+ (-1385 . 720530) (-1386 . 720342) (-1387 . 719896) (-1388 . 719818)
+ (-1389 . 719531) (-1390 . 719386) (-1391 . 719259) (-1392 . 718686)
+ (-1393 . 718587) (-1394 . 718501) (-1395 . 718397) (-1396 . 718326)
+ (-1397 . 717064) (-1398 . 716980) (-1399 . 716616) (-1400 . 716537)
+ (-1401 . 715996) (-1402 . 715749) (-1403 . 715499) (-1404 . 715268)
+ (-1405 . 715178) (-1406 . 715070) (-1407 . 715017) (-1408 . 714857)
+ (-1409 . 714719) (-1410 . 714576) (-1411 . 714438) (-1412 . 714368)
+ (-1413 . 713998) (-1414 . 713842) (-1415 . 713784) (-1416 . 713326)
+ (-1417 . 713120) (-1418 . 713037) (-1419 . 712661) (-1420 . 712515)
+ (-1421 . 711951) (-1422 . 711873) (-1423 . 711823) (-1424 . 711660)
+ (-1425 . 711544) (-1426 . 711336) (-1427 . 711250) (-1428 . 711176)
+ (-1429 . 711148) (-1430 . 710990) (-1431 . 710820) (-1432 . 710376)
+ (-1433 . 710321) (-1434 . 709913) (-1435 . 709673) (-1436 . 709620)
+ (-1437 . 709564) (-1438 . 709254) (-1439 . 709199) (-1440 . 709126)
+ (-1441 . 709033) (-1442 . 708980) (-1443 . 708894) (-1444 . 708832)
+ (-1445 . 708056) (-1446 . 707725) (-1447 . 707591) (-1448 . 707513)
+ (-1449 . 707415) (-1450 . 707300) (-1451 . 707200) (-1452 . 706982)
+ (-1453 . 706886) (-1454 . 706776) (-1455 . 706257) (-1456 . 706171)
+ (-1457 . 706077) (-1458 . 705742) (-1459 . 705508) (-1460 . 705440)
+ (-1461 . 705412) (-1462 . 704986) (-1463 . 704758) (-1464 . 704506)
+ (-1465 . 704429) (-1466 . 704310) (-1467 . 704120) (-1468 . 704026)
+ (-1469 . 703883) (-1470 . 703548) (-1471 . 703387) (-1472 . 703232)
+ (-1473 . 703142) (-1474 . 703114) (-1475 . 703013) (-1476 . 702765)
+ (-1477 . 702634) (-1478 . 702362) (-1479 . 702289) (-1480 . 702131)
+ (-1481 . 702034) (-1482 . 701836) (-1483 . 701767) (-1484 . 701672)
+ (-1485 . 701531) (-1486 . 701392) (-1487 . 701165) (-1488 . 701062)
+ (-1489 . 701006) (-1490 . 700727) (-1491 . 700678) (-1492 . 700400)
+ (-1493 . 700170) (-1494 . 700111) (-1495 . 698333) (-1496 . 698245)
+ (-1497 . 698089) (-1498 . 697983) (-1499 . 697934) (-1500 . 697843)
+ (-1501 . 697183) (-1502 . 696961) (-1503 . 696911) (-1504 . 696420)
+ (-1505 . 696349) (-1506 . 696281) (-1507 . 696133) (-1508 . 696082)
+ (-1509 . 695882) (-1510 . 695223) (-1511 . 695090) (-1512 . 694883)
+ (-1513 . 694690) (-1514 . 694580) (-1515 . 694530) (-1516 . 694372)
+ (-1517 . 694268) (-1518 . 694050) (-1519 . 693972) (-1520 . 693871)
+ (-1521 . 693801) (-1522 . 693658) (-1523 . 693592) (-1524 . 693465)
+ (-1525 . 693391) (-1526 . 693018) (-1527 . 692990) (-1528 . 692904)
+ (-1529 . 692661) (-1530 . 692484) (-1531 . 692371) (-1532 . 691607)
+ (-1533 . 691517) (-1534 . 690887) (-1535 . 690779) (-1536 . 690714)
+ (-1537 . 690662) (-1538 . 690576) (-1539 . 689823) (-1540 . 689729)
+ (-1541 . 689645) (-1542 . 689081) (-1543 . 688996) (-1544 . 688732)
+ (-1545 . 688617) (-1546 . 688346) (-1547 . 688318) (-1548 . 688014)
+ (-1549 . 687919) (-1550 . 687842) (-1551 . 687783) (-1552 . 687700)
+ (-1553 . 687136) (-1554 . 686621) (-1555 . 686544) (-1556 . 686384)
+ (-1557 . 685991) (-1558 . 685800) (-1559 . 685751) (-1560 . 685576)
+ (-1561 . 685065) (-1562 . 684803) (-1563 . 684775) (-1564 . 684691)
+ (-1565 . 684572) (-1566 . 684487) (-1567 . 683924) (-1568 . 683735)
+ (-1569 . 683707) (-1570 . 683557) (-1571 . 683528) (-1572 . 683282)
+ (-1573 . 682973) (-1574 . 682841) (-1575 . 682623) (-1576 . 682444)
+ (-1577 . 682338) (-1578 . 681775) (-1579 . 681701) (-1580 . 681268)
+ (-1581 . 681144) (-1582 . 680698) (-1583 . 680641) (-1584 . 680539)
+ (-1585 . 680455) (-1586 . 680423) (-1587 . 680354) (-1588 . 680274)
+ (-1589 . 680106) (-1590 . 680035) (-1591 . 679935) (-1592 . 679827)
+ (-1593 . 679264) (-1594 . 679158) (-1595 . 678814) (-1596 . 678753)
+ (-1597 . 678667) (-1598 . 678639) (-1599 . 678476) (-1600 . 678397)
+ (-1601 . 678170) (-1602 . 678109) (-1603 . 677769) (-1604 . 677621)
+ (-1605 . 677554) (-1606 . 677474) (-1607 . 676655) (-1608 . 676585)
+ (-1609 . 676022) (-1610 . 675726) (-1611 . 675577) (-1612 . 675524)
+ (-1613 . 675457) (-1614 . 675398) (-1615 . 675302) (-1616 . 675118)
+ (-1617 . 674980) (-1618 . 674817) (-1619 . 674486) (-1620 . 673923)
+ (-1621 . 673219) (-1622 . 673089) (-1623 . 671749) (-1624 . 671361)
+ (-1625 . 671114) (-1626 . 670737) (-1627 . 670618) (-1628 . 670424)
+ (-1629 . 670298) (-1630 . 669889) (-1631 . 669795) (-1632 . 669672)
+ (-1633 . 669453) (-1634 . 668157) (-1635 . 667476) (-1636 . 667321)
+ (-1637 . 667075) (-1638 . 667023) (-1639 . 666493) (-1640 . 666424)
+ (-1641 . 666368) (-1642 . 666236) (-1643 . 665363) (-1644 . 665245)
+ (-1645 . 665005) (-1646 . 664459) (-1647 . 664305) (-1648 . 664226)
+ (-1649 . 664116) (-1650 . 664064) (-1651 . 663733) (-1652 . 663614)
+ (-1653 . 663435) (-1654 . 663291) (-1655 . 663224) (-1656 . 663013)
+ (-1657 . 662597) (-1658 . 662565) (-1659 . 662370) (-1660 . 662282)
+ (-1661 . 662183) (-1662 . 662030) (-1663 . 661777) (-1664 . 661559)
+ (-1665 . 661157) (-1666 . 660158) (-1667 . 659670) (-1668 . 659613)
+ (-1669 . 659483) (-1670 . 659250) (-1671 . 659180) (-1672 . 659073)
+ (-1673 . 658649) (-1674 . 658390) (-1675 . 658028) (-1676 . 657830)
+ (-1677 . 657796) (-1678 . 657681) (-1679 . 657611) (-1680 . 657537)
+ (-1681 . 657408) (-1682 . 657138) (-1683 . 656959) (-1684 . 656698)
+ (-1685 . 656481) (-1686 . 656344) (-1687 . 656191) (-1688 . 656033)
+ (-1689 . 655981) (-1690 . 655454) (-1691 . 655192) (-1692 . 655104)
+ (-1693 . 654898) (-1694 . 654802) (-1695 . 654629) (-1696 . 654168)
+ (-1697 . 654136) (-1698 . 654048) (-1699 . 653975) (-1700 . 653332)
+ (-1701 . 653231) (-1702 . 653013) (-1703 . 652943) (-1704 . 652837)
+ (-1705 . 652521) (-1706 . 652212) (-1707 . 652156) (-1708 . 652075)
+ (-1709 . 651919) (-1710 . 651840) (-1711 . 651305) (-1712 . 651145)
+ (-1713 . 651093) (-1714 . 650459) (-1715 . 650346) (-1716 . 649994)
+ (-1717 . 649893) (-1718 . 649778) (-1719 . 647646) (-1720 . 647569)
+ (-1721 . 647448) (-1722 . 647389) (-1723 . 647283) (-1724 . 647125)
+ (-1725 . 646954) (-1726 . 645802) (-1727 . 644459) (-1728 . 644328)
+ (-1729 . 644275) (-1730 . 644128) (-1731 . 644061) (-1732 . 639998)
+ (-1733 . 639759) (-1734 . 639550) (-1735 . 639513) (-1736 . 639338)
+ (-1737 . 639240) (-1738 . 638978) (-1739 . 638808) (-1740 . 638740)
+ (-1741 . 638388) (-1742 . 638332) (-1743 . 638255) (-1744 . 638095)
+ (-1745 . 637703) (-1746 . 637577) (-1747 . 637525) (-1748 . 637468)
+ (-1749 . 637255) (-1750 . 637203) (-1751 . 637120) (-1752 . 636942)
+ (-1753 . 636652) (-1754 . 636268) (-1755 . 635974) (-1756 . 635888)
+ (-1757 . 635808) (-1758 . 635663) (-1759 . 635526) (-1760 . 635402)
+ (-1761 . 635026) (-1762 . 634861) (-1763 . 634712) (-1764 . 634660)
+ (-1765 . 634601) (-1766 . 634501) (-1767 . 634410) (-1768 . 634089)
+ (-1769 . 634022) (-1770 . 633877) (-1771 . 632913) (-1772 . 632825)
+ (-1773 . 632742) (-1774 . 632590) (-1775 . 630245) (-1776 . 630087)
+ (-1777 . 630017) (-1778 . 629889) (-1779 . 629678) (-1780 . 629606)
+ (-1781 . 629430) (-1782 . 629138) (-1783 . 628980) (-1784 . 628765)
+ (-1785 . 628434) (-1786 . 628348) (-1787 . 628235) (-1788 . 627877)
+ (-1789 . 627784) (-1790 . 627732) (-1791 . 627680) (-1792 . 627533)
+ (-1793 . 627145) (-1794 . 627068) (-1795 . 626973) (-1796 . 626606)
+ (-1797 . 626520) (-1798 . 626453) (-1799 . 625867) (-1800 . 625833)
+ (-1801 . 625708) (-1802 . 625680) (-1803 . 625585) (-1804 . 625512)
+ (-1805 . 625084) (-1806 . 624883) (-1807 . 624828) (-1808 . 624610)
+ (-1809 . 624509) (-1810 . 624413) (-1811 . 623767) (-1812 . 623679)
+ (-1813 . 623233) (-1814 . 623131) (-1815 . 623103) (-1816 . 622937)
+ (-1817 . 622732) (-1818 . 622646) (-1819 . 622575) (-1820 . 622398)
+ (-1821 . 622314) (-1822 . 621722) (-1823 . 621177) (-1824 . 621084)
+ (-1825 . 620926) (-1826 . 620750) (-1827 . 620698) (-1828 . 620528)
+ (-1829 . 620476) (-1830 . 620405) (-1831 . 620252) (-1832 . 620088)
+ (-1833 . 619943) (-1834 . 619876) (-1835 . 617648) (-1836 . 617576)
+ (-1837 . 617456) (-1838 . 617169) (-1839 . 617095) (-1840 . 616926)
+ (-1841 . 616746) (-1842 . 616283) (-1843 . 616187) (-1844 . 616091)
+ (-1845 . 616039) (-1846 . 615902) (-1847 . 615849) (-1848 . 615371)
+ (-1849 . 615268) (-1850 . 608325) (-1851 . 608237) (-1852 . 608066)
+ (-1853 . 607843) (-1854 . 607772) (-1855 . 607276) (-1856 . 607029)
+ (-1857 . 606934) (-1858 . 606829) (-1859 . 606619) (-1860 . 606582)
+ (-1861 . 606554) (-1862 . 606427) (-1863 . 606233) (-1864 . 606129)
+ (-1865 . 606020) (-1866 . 605932) (-1867 . 605822) (-1868 . 605557)
+ (-1869 . 605456) (-1870 . 605076) (-1871 . 604990) (-1872 . 604352)
+ (-1873 . 603676) (-1874 . 603485) (-1875 . 602727) (-1876 . 602075)
+ (-1877 . 601816) (-1878 . 601703) (-1879 . 601537) (-1880 . 601247)
+ (-1881 . 601180) (-1882 . 600957) (-1883 . 600799) (-1884 . 600684)
+ (-1885 . 600417) (-1886 . 600336) (-1887 . 600156) (-1888 . 600053)
+ (-1889 . 599954) (-1890 . 599675) (-1891 . 599564) (-1892 . 599389)
+ (-1893 . 599336) (-1894 . 599248) (-1895 . 599144) (-1896 . 599039)
+ (-1897 . 598967) (-1898 . 598680) (-1899 . 598584) (-1900 . 598531)
+ (-1901 . 598494) (-1902 . 598431) (-1903 . 598381) (-1904 . 597797)
+ (-1905 . 597730) (-1906 . 597627) (-1907 . 594786) (-1908 . 594684)
+ (-1909 . 594656) (-1910 . 594532) (-1911 . 594436) (-1912 . 594350)
+ (-1913 . 594175) (-1914 . 594032) (-1915 . 593859) (-1916 . 593771)
+ (-1917 . 593656) (-1918 . 593597) (-1919 . 593338) (-1920 . 592819)
+ (-1921 . 592109) (-1922 . 592036) (-1923 . 591763) (-1924 . 591339)
+ (-1925 . 591286) (-1926 . 591202) (-1927 . 590906) (-1928 . 590853)
+ (-1929 . 590723) (-1930 . 590226) (-1931 . 590103) (-1932 . 589885)
+ (-1933 . 589746) (-1934 . 589649) (-1935 . 589362) (-1936 . 589328)
+ (-1937 . 589300) (-1938 . 589166) (-1939 . 589051) (-1940 . 588929)
+ (-1941 . 588876) (-1942 . 588778) (-1943 . 588711) (-1944 . 588573)
+ (-1945 . 588281) (-1946 . 587630) (-1947 . 587271) (-1948 . 587180)
+ (-1949 . 587125) (-1950 . 586847) (-1951 . 586775) (-1952 . 584807)
+ (-1953 . 584323) (-1954 . 584146) (-1955 . 584008) (-1956 . 583855)
+ (-1957 . 583671) (-1958 . 583364) (-1959 . 583257) (-1960 . 583205)
+ (-1961 . 583027) (-1962 . 582111) (-1963 . 582013) (-1964 . 581831)
+ (-1965 . 581537) (-1966 . 581484) (-1967 . 581354) (-1968 . 581231)
+ (-1969 . 581150) (-1970 . 581034) (-1971 . 580556) (-1972 . 579948)
+ (-1973 . 579875) (-1974 . 579821) (-1975 . 579561) (-1976 . 579533)
+ (-1977 . 579142) (-1978 . 578991) (-1979 . 578883) (-1980 . 578813)
+ (-1981 . 578739) (-1982 . 578662) (-1983 . 578574) (-1984 . 578364)
+ (-1985 . 578285) (-1986 . 578118) (-1987 . 578066) (-1988 . 577672)
+ (-1989 . 577059) (-1990 . 576867) (-1991 . 576567) (-1992 . 576485)
+ (-1993 . 576330) (-1994 . 576244) (-1995 . 576131) (-1996 . 576011)
+ (-1997 . 575812) (-1998 . 575714) (-1999 . 575379) (-2000 . 575306)
+ (-2001 . 575157) (-2002 . 574719) (-2003 . 574292) (-2004 . 574240)
+ (-2005 . 574059) (-2006 . 573960) (-2007 . 573907) (-2008 . 573825)
+ (-2009 . 573745) (-2010 . 573586) (-2011 . 573359) (-2012 . 569696)
+ (-2013 . 569608) (-2014 . 569480) (-2015 . 569245) (-2016 . 569162)
+ (-2017 . 569082) (-2018 . 568901) (-2019 . 568773) (-2020 . 568577)
+ (-2021 . 568421) (-2022 . 568147) (-2023 . 567838) (-2024 . 567454)
+ (-2025 . 567341) (-2026 . 567127) (-2027 . 566981) (-2028 . 566838)
+ (-2029 . 566243) (-2030 . 566209) (-2031 . 566181) (-2032 . 566078)
+ (-2033 . 565807) (-2034 . 564742) (-2035 . 564713) (-2036 . 564594)
+ (-2037 . 564486) (-2038 . 564239) (-2039 . 564182) (-2040 . 564054)
+ (-2041 . 563953) (-2042 . 563586) (-2043 . 563516) (-2044 . 563306)
+ (-2045 . 563177) (-2046 . 562958) (-2047 . 562845) (-2048 . 562360)
+ (-2049 . 562307) (-2050 . 562068) (-2051 . 561849) (-2052 . 561794)
+ (-2053 . 561723) (-2054 . 561605) (-2055 . 561478) (-2056 . 561349)
+ (-2057 . 561271) (-2058 . 561179) (-2059 . 560748) (-2060 . 560641)
+ (-2061 . 560522) (-2062 . 560442) (-2063 . 560296) (-2064 . 560186)
+ (-2065 . 560099) (-2066 . 559975) (-2067 . 559783) (-2068 . 559688)
+ (-2069 . 559611) (-2070 . 559492) (-2071 . 559385) (-2072 . 559333)
+ (-2073 . 558945) (-2074 . 558852) (-2075 . 558757) (-2076 . 558655)
+ (-2077 . 558576) (-2078 . 558304) (-2079 . 557949) (-2080 . 557920)
+ (-2081 . 557722) (-2082 . 557649) (-2083 . 557547) (-2084 . 557422)
+ (-2085 . 557069) (-2086 . 556767) (-2087 . 556711) (-2088 . 556570)
+ (-2089 . 556387) (-2090 . 555633) (-2091 . 555517) (-2092 . 555357)
+ (-2093 . 555204) (-2094 . 554134) (-2095 . 554039) (-2096 . 553910)
+ (-2097 . 553749) (-2098 . 553626) (-2099 . 549626) (-2100 . 549505)
+ (-2101 . 549448) (-2102 . 549374) (-2103 . 549265) (-2104 . 549209)
+ (-2105 . 548691) (-2106 . 548663) (-2107 . 548040) (-2108 . 547949)
+ (-2109 . 547893) (-2110 . 547836) (-2111 . 547345) (-2112 . 547095)
+ (-2113 . 547039) (-2114 . 546944) (-2115 . 546810) (-2116 . 546739)
+ (-2117 . 546630) (-2118 . 546487) (-2119 . 546453) (-2120 . 546253)
+ (-2121 . 546180) (-2122 . 545650) (-2123 . 545372) (-2124 . 545002)
+ (-2125 . 544791) (-2126 . 544696) (-2127 . 544448) (-2128 . 544245)
+ (-2129 . 544147) (-2130 . 544077) (-2131 . 544024) (-2132 . 543890)
+ (-2133 . 543748) (-2134 . 543695) (-2135 . 543640) (-2136 . 543330)
+ (-2137 . 543012) (-2138 . 542962) (-2139 . 542646) (-2140 . 542551)
+ (-2141 . 542499) (-2142 . 542411) (-2143 . 542357) (-2144 . 542305)
+ (-2145 . 542185) (-2146 . 542157) (-2147 . 542014) (-2148 . 541861)
+ (-2149 . 541201) (-2150 . 541170) (-2151 . 541093) (-2152 . 540905)
+ (-2153 . 540631) (-2154 . 540286) (-2155 . 540168) (-2156 . 540098)
+ (-2157 . 540025) (-2158 . 539975) (-2159 . 539895) (-2160 . 539812)
+ (-2161 . 539586) (-2162 . 539455) (-2163 . 539299) (-2164 . 539200)
+ (-2165 . 538813) (-2166 . 538730) (-2167 . 538671) (-2168 . 538260)
+ (-2169 . 538165) (-2170 . 538079) (-2171 . 537833) (-2172 . 537804)
+ (-2173 . 537640) (-2174 . 537511) (-2175 . 537393) (-2176 . 537319)
+ (-2177 . 536436) (-2178 . 536333) (-2179 . 536237) (-2180 . 536174)
+ (-2181 . 536124) (-2182 . 536068) (-2183 . 535989) (-2184 . 535739)
+ (-2185 . 535256) (-2186 . 535189) (-2187 . 535034) (-2188 . 534918)
+ (-2189 . 534866) (-2190 . 534762) (-2191 . 534569) (-2192 . 534442)
+ (-2193 . 534012) (-2194 . 533807) (-2195 . 533641) (-2196 . 533570)
+ (-2197 . 533517) (-2198 . 533464) (-2199 . 533304) (-2200 . 533252)
+ (-2201 . 533172) (-2202 . 532664) (-2203 . 532331) (-2204 . 532137)
+ (-2205 . 532020) (-2206 . 531895) (-2207 . 531715) (-2208 . 531593)
+ (-2209 . 531499) (-2210 . 531284) (-2211 . 531176) (-2212 . 531033)
+ (-2213 . 530774) (-2214 . 530567) (-2215 . 530518) (-2216 . 530435)
+ (-2217 . 530275) (-2218 . 530180) (-2219 . 530046) (-2220 . 529981)
+ (-2221 . 529769) (-2222 . 529656) (-2223 . 529498) (-2224 . 529415)
+ (-2225 . 529343) (-2226 . 529104) (-2227 . 528762) (-2228 . 528568)
+ (-2229 . 528474) (-2230 . 528422) (-2231 . 528326) (-2232 . 528111)
+ (-2233 . 527954) (-2234 . 527852) (-2235 . 527746) (-2236 . 527679)
+ (-2237 . 527542) (-2238 . 526922) (-2239 . 526848) (-2240 . 526641)
+ (-2241 . 526486) (-2242 . 526434) (-2243 . 526134) (-2244 . 526050)
+ (-2245 . 525962) (-2246 . 525888) (-2247 . 525440) (-2248 . 525344)
+ (-2249 . 525316) (-2250 . 525252) (-2251 . 525136) (-2252 . 525108)
+ (-2253 . 524973) (-2254 . 524899) (-2255 . 524681) (-2256 . 524549)
+ (-2257 . 524463) (-2258 . 524315) (-2259 . 524155) (-2260 . 523728)
+ (-2261 . 523676) (-2262 . 523552) (-2263 . 523502) (-2264 . 523336)
+ (-2265 . 523226) (-2266 . 523130) (-2267 . 522904) (-2268 . 522791)
+ (-2269 . 522757) (-2270 . 522517) (-2271 . 522446) (-2272 . 521000)
+ (-2273 . 520532) (-2274 . 520345) (-2275 . 519794) (-2276 . 519700)
+ (-2277 . 519420) (-2278 . 519353) (-2279 . 519255) (-2280 . 519198)
+ (-2281 . 519081) (-2282 . 518812) (-2283 . 518731) (-2284 . 518594)
+ (-2285 . 518521) (-2286 . 518469) (-2287 . 518400) (-2288 . 518304)
+ (-2289 . 518058) (-2290 . 517806) (-2291 . 517507) (-2292 . 517430)
+ (-2293 . 517227) (-2294 . 515650) (-2295 . 515457) (-2296 . 515305)
+ (-2297 . 515237) (-2298 . 515079) (-2299 . 514752) (-2300 . 514655)
+ (-2301 . 514623) (-2302 . 514508) (-2303 . 513970) (-2304 . 513580)
+ (-2305 . 513415) (-2306 . 513383) (-2307 . 513175) (-2308 . 513121)
+ (-2309 . 513006) (-2310 . 512953) (-2311 . 512884) (-2312 . 512810)
+ (-2313 . 512690) (-2314 . 512630) (-2315 . 511788) (-2316 . 511586)
+ (-2317 . 511457) (-2318 . 511275) (-2319 . 511220) (-2320 . 511074)
+ (-2321 . 510488) (-2322 . 510432) (-2323 . 510309) (-2324 . 510157)
+ (-2325 . 509985) (-2326 . 506376) (-2327 . 505606) (-2328 . 505574)
+ (-2329 . 503159) (-2330 . 503090) (-2331 . 503039) (-2332 . 502792)
+ (-2333 . 502700) (-2334 . 502522) (-2335 . 502395) (-2336 . 502293)
+ (-2337 . 501785) (-2338 . 501560) (-2339 . 501415) (-2340 . 501299)
+ (-2341 . 501228) (-2342 . 501010) (-2343 . 500839) (-2344 . 500787)
+ (-2345 . 500655) (-2346 . 500549) (-2347 . 500497) (-2348 . 500346)
+ (-2349 . 500170) (-2350 . 498990) (-2351 . 498916) (-2352 . 498805)
+ (-2353 . 498594) (-2354 . 497843) (-2355 . 497714) (-2356 . 497590)
+ (-2357 . 497198) (-2358 . 496920) (-2359 . 496538) (-2360 . 496452)
+ (-2361 . 496267) (-2362 . 496102) (-2363 . 495841) (-2364 . 495252)
+ (-2365 . 495197) (-2366 . 495126) (-2367 . 489612) (-2368 . 489526)
+ (-2369 . 489462) (-2370 . 489299) (-2371 . 489089) (-2372 . 488916)
+ (-2373 . 488748) (-2374 . 488696) (-2375 . 488639) (-2376 . 488520)
+ (-2377 . 488467) (-2378 . 488337) (-2379 . 487812) (-2380 . 487746)
+ (-2381 . 487695) (-2382 . 487618) (-2383 . 487490) (-2384 . 487383)
+ (-2385 . 487165) (-2386 . 486992) (-2387 . 486768) (-2388 . 486639)
+ (-2389 . 486562) (-2390 . 486460) (-2391 . 486372) (-2392 . 486277)
+ (-2393 . 485971) (-2394 . 485833) (-2395 . 485777) (-2396 . 485725)
+ (-2397 . 485259) (-2398 . 485106) (-2399 . 484044) (-2400 . 483839)
+ (-2401 . 483770) (-2402 . 483674) (-2403 . 483578) (-2404 . 483092)
+ (-2405 . 483024) (-2406 . 482851) (-2407 . 482817) (-2408 . 482719)
+ (-2409 . 482500) (-2410 . 482368) (-2411 . 482153) (-2412 . 482088)
+ (-2413 . 482019) (-2414 . 481909) (-2415 . 481877) (-2416 . 481644)
+ (-2417 . 481591) (-2418 . 481457) (-2419 . 481405) (-2420 . 481281)
+ (-2421 . 481208) (-2422 . 480272) (-2423 . 480199) (-2424 . 480028)
+ (-2425 . 479690) (** . 476695) (-2427 . 476602) (-2428 . 474972)
+ (-2429 . 474891) (-2430 . 474839) (-2431 . 474808) (-2432 . 474630)
+ (-2433 . 474507) (-2434 . 474329) (-2435 . 474217) (-2436 . 474162)
+ (-2437 . 473943) (-2438 . 473891) (-2439 . 473705) (-2440 . 473610)
+ (-2441 . 472751) (-2442 . 472413) (-2443 . 472317) (-2444 . 471721)
+ (-2445 . 471554) (-2446 . 471316) (-2447 . 471239) (-2448 . 471121)
+ (-2449 . 471035) (-2450 . 470904) (-2451 . 470763) (-2452 . 470711)
+ (-2453 . 470655) (-2454 . 466112) (-2455 . 465840) (-2456 . 465703)
+ (-2457 . 465500) (-2458 . 465405) (-2459 . 465335) (-2460 . 465234)
+ (-2461 . 464723) (-2462 . 464613) (-2463 . 464454) (-2464 . 463181)
+ (-2465 . 463045) (-2466 . 462754) (-2467 . 462657) (-2468 . 462562)
+ (-2469 . 462364) (-2470 . 462190) (-2471 . 462022) (-2472 . 461885)
+ (-2473 . 461803) (-2474 . 461750) (-2475 . 461599) (-2476 . 461419)
+ (-2477 . 461026) (-2478 . 460807) (-2479 . 460590) (-2480 . 460310)
+ (-2481 . 460227) (-2482 . 460090) (-2483 . 459886) (-2484 . 459661)
+ (-2485 . 459584) (-2486 . 458830) (-2487 . 458488) (-2488 . 458062)
+ (-2489 . 457961) (-2490 . 457519) (-2491 . 457246) (-2492 . 456961)
+ (-2493 . 456425) (-2494 . 456309) (-2495 . 455922) (-2496 . 455855)
+ (-2497 . 455799) (-2498 . 455415) (-2499 . 455318) (-2500 . 455096)
+ (-2501 . 455034) (-2502 . 454960) (-2503 . 454874) (-2504 . 454761)
+ (-2505 . 454682) (-2506 . 454604) (-2507 . 454534) (-2508 . 454450)
+ (-2509 . 454049) (-2510 . 453674) (-2511 . 453571) (-2512 . 453478)
+ (-2513 . 453363) (-2514 . 453329) (-2515 . 453251) (-2516 . 453168)
+ (-2517 . 453030) (-2518 . 452794) (-2519 . 452706) (-2520 . 452646)
+ (-2521 . 452063) (-2522 . 451727) (-2523 . 451641) (-2524 . 451553)
+ (-2525 . 451472) (-2526 . 451356) (-2527 . 451257) (-2528 . 450172)
+ (-2529 . 450101) (-2530 . 449948) (-2531 . 449752) (-2532 . 449690)
+ (-2533 . 449596) (-2534 . 449443) (-2535 . 449349) (-2536 . 449184)
+ (-2537 . 449080) (-2538 . 449021) (-2539 . 448941) (-2540 . 448845)
+ (-2541 . 448712) (-2542 . 448611) (-2543 . 448517) (-2544 . 448459)
+ (-2545 . 448278) (-2546 . 447886) (-2547 . 447761) (-2548 . 433528)
+ (-2549 . 433330) (-2550 . 433281) (-2551 . 432843) (-2552 . 432814)
+ (-2553 . 432499) (-2554 . 432284) (-2555 . 432222) (-2556 . 431041)
+ (-2557 . 430923) (-2558 . 430870) (-2559 . 430278) (-2560 . 430226)
+ (-2561 . 429979) (-2562 . 429906) (-2563 . 429853) (-2564 . 429522)
+ (-2565 . 429215) (-2566 . 429102) (-2567 . 429010) (-2568 . 428800)
+ (-2569 . 427633) (-2570 . 427580) (-2571 . 427477) (-2572 . 427357)
+ (-2573 . 427260) (-2574 . 426726) (-2575 . 426644) (-2576 . 426432)
+ (-2577 . 426325) (-2578 . 426251) (-2579 . 426156) (-2580 . 425934)
+ (-2581 . 425821) (-2582 . 425720) (-2583 . 425435) (-2584 . 424756)
+ (-2585 . 424670) (-2586 . 424602) (-2587 . 424399) (-2588 . 424147)
+ (-2589 . 424073) (-2590 . 423932) (-2591 . 423895) (-2592 . 423335)
+ (-2593 . 423136) (-2594 . 423053) (-2595 . 422889) (-2596 . 422836)
+ (-2597 . 422759) (-2598 . 422484) (-2599 . 422410) (-2600 . 422342)
+ (-2601 . 421833) (-2602 . 421762) (-2603 . 421513) (-2604 . 421432)
+ (-2605 . 418133) (-2606 . 418066) (-2607 . 417860) (-2608 . 417789)
+ (-2609 . 417496) (-2610 . 413829) (-2611 . 413744) (-2612 . 413304)
+ (-2613 . 413200) (-2614 . 413147) (-2615 . 413075) (-2616 . 411779)
+ (-2617 . 407619) (-2618 . 407192) (-2619 . 407090) (-2620 . 404834)
+ (-2621 . 404688) (-2622 . 404440) (-2623 . 404372) (-2624 . 404231)
+ (-2625 . 404089) (-2626 . 403794) (-2627 . 403273) (-2628 . 403188)
+ (-2629 . 403102) (-2630 . 402929) (-2631 . 402510) (-2632 . 402284)
+ (-2633 . 402224) (-2634 . 402146) (-2635 . 402028) (-2636 . 401866)
+ (-2637 . 401814) (-2638 . 401645) (-2639 . 401523) (-2640 . 401327)
+ (-2641 . 401071) (-2642 . 400743) (-2643 . 400642) (-2644 . 400547)
+ (-2645 . 400417) (-2646 . 400258) (-2647 . 400008) (-2648 . 399931)
+ (-2649 . 399847) (-2650 . 399690) (-2651 . 399610) (-2652 . 399480)
+ (-2653 . 399063) (-2654 . 398787) (-2655 . 398734) (-2656 . 397533)
+ (-2657 . 397351) (-2658 . 397118) (-2659 . 396966) (-2660 . 396830)
+ (-2661 . 396632) (-2662 . 396538) (-2663 . 396226) (-2664 . 396173)
+ (-2665 . 395821) (-2666 . 395492) (-2667 . 395433) (-2668 . 395359)
+ (-2669 . 394438) (-2670 . 394109) (-2671 . 393582) (-2672 . 393464)
+ (-2673 . 393369) (-2674 . 393285) (-2675 . 392999) (-2676 . 392900)
+ (-2677 . 392720) (-2678 . 392414) (-2679 . 392311) (-2680 . 391881)
+ (-2681 . 391701) (-2682 . 391558) (-2683 . 391489) (-2684 . 391196)
+ (-2685 . 390899) (-2686 . 390783) (-2687 . 390504) (-2688 . 390193)
+ (-2689 . 390116) (-2690 . 390060) (-2691 . 389775) (-2692 . 389723)
+ (-2693 . 389598) (-2694 . 389485) (-2695 . 389432) (-2696 . 389107)
+ (-2697 . 388829) (-2698 . 388732) (-2699 . 388523) (-2700 . 388396)
+ (-2701 . 388265) (-2702 . 388237) (-2703 . 387524) (-2704 . 387370)
+ (-2705 . 387286) (-2706 . 387058) (-2707 . 386554) (-2708 . 386400)
+ (-2709 . 386256) (-2710 . 386187) (-2711 . 385907) (-2712 . 385755)
+ (-2713 . 385541) (-2714 . 385417) (-2715 . 385364) (-2716 . 385141)
+ (-2717 . 385088) (-2718 . 384909) (-2719 . 384566) (-2720 . 384144)
+ (-2721 . 384049) (-2722 . 383978) (-2723 . 383868) (-2724 . 383729)
+ (-2725 . 383589) (-2726 . 383528) (-2727 . 383458) (-2728 . 383402)
+ (-2729 . 382739) (-2730 . 381516) (-2731 . 381378) (-2732 . 380490)
+ (-2733 . 380263) (-2734 . 380092) (-2735 . 380033) (-2736 . 380002)
+ (-2737 . 379947) (-2738 . 379856) (-2739 . 379730) (-2740 . 379565)
+ (-2741 . 379019) (-2742 . 378744) (-2743 . 378645) (-2744 . 378483)
+ (-2745 . 378405) (-2746 . 378336) (-2747 . 378269) (-2748 . 378128)
+ (-2749 . 377914) (-2750 . 377814) (-2751 . 377718) (-2752 . 377444)
+ (-2753 . 377356) (-2754 . 376945) (-2755 . 376838) (-2756 . 376730)
+ (-2757 . 376615) (-2758 . 376473) (-2759 . 376235) (-2760 . 376157)
+ (-2761 . 375935) (-2762 . 375835) (-2763 . 375769) (-2764 . 375609)
+ (-2765 . 375338) (-2766 . 375310) (-2767 . 374878) (-2768 . 374754)
+ (-2769 . 374573) (-2770 . 374521) (-2771 . 374162) (-2772 . 374006)
+ (-2773 . 373560) (-2774 . 373507) (-2775 . 373406) (-2776 . 373297)
+ (-2777 . 373201) (-2778 . 373080) (-2779 . 373023) (-2780 . 372926)
+ (-2781 . 372855) (-2782 . 372754) (-2783 . 363304) (-2784 . 362424)
+ (-2785 . 362396) (-2786 . 362221) (-2787 . 362137) (-2788 . 362013)
+ (-2789 . 361780) (-2790 . 361683) (-2791 . 361565) (-2792 . 361449)
+ (-2793 . 361331) (-2794 . 361210) (-2795 . 361158) (-2796 . 360933)
+ (-2797 . 360801) (-2798 . 360684) (-2799 . 360610) (-2800 . 360543)
+ (-2801 . 360129) (-2802 . 360011) (-2803 . 358983) (-2804 . 358840)
+ (-2805 . 358769) (-2806 . 358673) (-2807 . 358472) (-2808 . 358404)
+ (-2809 . 358352) (-2810 . 358257) (-2811 . 357417) (-2812 . 357301)
+ (-2813 . 357138) (-2814 . 357078) (-2815 . 357023) (-2816 . 356845)
+ (-2817 . 356612) (-2818 . 356241) (-2819 . 356182) (-2820 . 356072)
+ (-2821 . 355992) (-2822 . 355765) (-2823 . 355469) (-2824 . 355375)
+ (-2825 . 354514) (-2826 . 354462) (-2827 . 354240) (-2828 . 354139)
+ (-2829 . 353529) (-2830 . 353244) (-2831 . 352859) (-2832 . 352627)
+ (-2833 . 352570) (-2834 . 352228) (-2835 . 352141) (-2836 . 351819)
+ (-2837 . 351733) (-2838 . 351638) (-2839 . 351506) (-2840 . 351351)
+ (-2841 . 350979) (-2842 . 350826) (-2843 . 350691) (-2844 . 350561)
+ (-2845 . 350144) (-2846 . 350093) (-2847 . 349920) (-2848 . 349823)
+ (-2849 . 349471) (-2850 . 349331) (-2851 . 349243) (-2852 . 349103)
+ (-2853 . 348990) (-2854 . 348783) (-2855 . 348637) (-2856 . 348606)
+ (-2857 . 348417) (-2858 . 329842) (-2859 . 329764) (-2860 . 329685)
+ (-2861 . 329578) (-2862 . 329506) (-2863 . 329368) (-2864 . 329249)
+ (-2865 . 329079) (-2866 . 328768) (-2867 . 328601) (-2868 . 328502)
+ (-2869 . 325681) (-2870 . 325629) (-2871 . 325512) (-2872 . 325369)
+ (-2873 . 324710) (-2874 . 324618) (-2875 . 324503) (-2876 . 323906)
+ (-2877 . 323622) (-2878 . 323462) (-2879 . 323363) (-2880 . 323329)
+ (-2881 . 323234) (-2882 . 323112) (-2883 . 323038) (-2884 . 322952)
+ (-2885 . 322918) (-2886 . 322826) (-2887 . 322739) (-2888 . 322176)
+ (-2889 . 322083) (-2890 . 321829) (-2891 . 321667) (-2892 . 321514)
+ (-2893 . 321416) (-2894 . 321072) (-2895 . 320962) (-2896 . 320885)
+ (-2897 . 320799) (-2898 . 320704) (-2899 . 320670) (-2900 . 320614)
+ (-2901 . 320368) (-2902 . 320052) (-2903 . 319930) (-2904 . 319387)
+ (-2905 . 319172) (-2906 . 319061) (-2907 . 318984) (-2908 . 318902)
+ (-2909 . 318834) (-2910 . 318760) (-2911 . 318732) (-2912 . 318703)
+ (-2913 . 318444) (-2914 . 317917) (-2915 . 317850) (-2916 . 317534)
+ (-2917 . 317324) (-2918 . 317209) (-2919 . 317027) (-2920 . 316689)
+ (-2921 . 316623) (-2922 . 316567) (-2923 . 316321) (-2924 . 316180)
+ (-2925 . 316071) (-2926 . 315975) (-2927 . 315872) (-2928 . 315774)
+ (-2929 . 315692) (-2930 . 315394) (-2931 . 315269) (-2932 . 315212)
+ (-2933 . 314814) (-2934 . 314691) (-2935 . 314608) (-2936 . 314292)
+ (-2937 . 314155) (-2938 . 314072) (-2939 . 313938) (-2940 . 313762)
+ (-2941 . 313679) (-2942 . 313505) (-2943 . 313452) (-2944 . 313333)
+ (-2945 . 313190) (-2946 . 313123) (-2947 . 313002) (-2948 . 312513)
+ (-2949 . 312436) (-2950 . 312362) (-2951 . 312230) (-2952 . 312056)
+ (-2953 . 311983) (-2954 . 311930) (-2955 . 311830) (-2956 . 311691)
+ (-2957 . 311583) (-2958 . 311442) (-2959 . 311258) (-2960 . 311140)
+ (-2961 . 311039) (-2962 . 310565) (-2963 . 310508) (-2964 . 310474)
+ (-2965 . 310316) (-2966 . 310252) (-2967 . 310109) (-2968 . 310030)
+ (-2969 . 309738) (-2970 . 309686) (-2971 . 309624) (-2972 . 309516)
+ (-2973 . 309364) (-2974 . 309222) (-2975 . 308255) (-2976 . 308195)
+ (-2977 . 307307) (-2978 . 307080) (-2979 . 306980) (-2980 . 306606)
+ (-2981 . 305740) (-2982 . 305373) (-2983 . 305300) (-2984 . 305155)
+ (-2985 . 304992) (-2986 . 304877) (-2987 . 304275) (-2988 . 304178)
+ (-2989 . 304094) (-2990 . 304016) (-2991 . 303910) (-2992 . 303547)
+ (-2993 . 303229) (-2994 . 302151) (-2995 . 301965) (-2996 . 301906)
+ (-2997 . 301820) (-2998 . 301753) (-2999 . 301457) (-3000 . 301359)
+ (-3001 . 301053) (-3002 . 300983) (-3003 . 300905) (-3004 . 300673)
+ (-3005 . 300570) (-3006 . 300459) (-3007 . 299716) (-3008 . 299655)
+ (-3009 . 299537) (-3010 . 299464) (-3011 . 299075) (-3012 . 298932)
+ (-3013 . 298847) (-3014 . 298705) (-3015 . 298345) (-3016 . 298289)
+ (-3017 . 297895) (-3018 . 297676) (-3019 . 297485) (-3020 . 297454)
+ (-3021 . 297258) (-3022 . 293308) (-3023 . 293121) (-3024 . 293019)
+ (-3025 . 292876) (-3026 . 292628) (-3027 . 292514) (-3028 . 291210)
+ (-3029 . 291087) (-3030 . 291016) (-3031 . 290988) (-3032 . 290835)
+ (-3033 . 290783) (-3034 . 290723) (-3035 . 290624) (-3036 . 290595)
+ (-3037 . 290437) (-3038 . 290360) (-3039 . 290216) (-3040 . 290164)
+ (-3041 . 290060) (-3042 . 290032) (-3043 . 289958) (-3044 . 289800)
+ (-3045 . 289766) (-3046 . 289667) (-3047 . 289443) (-3048 . 289361)
+ (-3049 . 289249) (-3050 . 289048) (-3051 . 288971) (-3052 . 288644)
+ (-3053 . 288543) (-3054 . 288400) (-3055 . 288296) (-3056 . 288113)
+ (-3057 . 287943) (-3058 . 287634) (-3059 . 287563) (-3060 . 287496)
+ (-3061 . 287400) (-3062 . 287338) (-3063 . 287286) (-3064 . 287172)
+ (-3065 . 286819) (-3066 . 286647) (-3067 . 286569) (-3068 . 286351)
+ (-3069 . 286288) (-3070 . 286208) (-3071 . 285999) (-3072 . 285841)
+ (-3073 . 285526) (-3074 . 285498) (-3075 . 283712) (-3076 . 283660)
+ (-3077 . 283565) (-3078 . 283444) (-3079 . 283388) (-3080 . 283267)
+ (-3081 . 283151) (-3082 . 283014) (-3083 . 282926) (-3084 . 282789)
+ (-3085 . 282495) (-3086 . 282375) (-3087 . 282287) (-3088 . 282014)
+ (-3089 . 281699) (-3090 . 281574) (-3091 . 281478) (-3092 . 281400)
+ (-3093 . 281300) (-3094 . 281266) (-3095 . 281129) (-3096 . 281052)
+ (-3097 . 280548) (-3098 . 280475) (-3099 . 280164) (-3100 . 279946)
+ (-3101 . 279804) (-3102 . 279730) (-3103 . 279702) (-3104 . 279592)
+ (-3105 . 279217) (-3106 . 279147) (-3107 . 278972) (-3108 . 276911)
+ (-3109 . 276748) (-3110 . 276641) (-3111 . 276537) (-3112 . 275933)
+ (-3113 . 275880) (-3114 . 275527) (-3115 . 275390) (-3116 . 275334)
+ (-3117 . 274760) (-3118 . 274701) (-3119 . 271920) (-3120 . 271841)
+ (-3121 . 271789) (-3122 . 271740) (-3123 . 271574) (-3124 . 271473)
+ (-3125 . 271286) (-3126 . 271212) (-3127 . 271093) (-3128 . 271041)
+ (-3129 . 270828) (-3130 . 270603) (-3131 . 270521) (-3132 . 270468)
+ (-3133 . 270216) (-3134 . 270161) (-3135 . 270124) (-3136 . 270069)
+ (-3137 . 269997) (-3138 . 269739) (-3139 . 269660) (-3140 . 269511)
+ (-3141 . 269382) (-3142 . 269311) (-3143 . 269132) (-3144 . 269002)
+ (-3145 . 268831) (-3146 . 268579) (-3147 . 267715) (-3148 . 267434)
+ (-3149 . 267328) (-3150 . 267188) (-3151 . 267111) (-3152 . 266544)
+ (-3153 . 265342) (-3154 . 265256) (-3155 . 265170) (-3156 . 265069)
+ (-3157 . 264986) (-3158 . 264894) (-3159 . 264778) (-3160 . 264672)
+ (-3161 . 264628) (-3162 . 264569) (-3163 . 264467) (-3164 . 264177)
+ (-3165 . 264011) (-3166 . 263952) (-3167 . 263794) (-3168 . 263711)
+ (-3169 . 263553) (-3170 . 263492) (-3171 . 263418) (-3172 . 263366)
+ (-3173 . 263263) (-3174 . 263210) (-3175 . 262956) (-3176 . 262651)
+ (-3177 . 262580) (-3178 . 262520) (-3179 . 262073) (-3180 . 261930)
+ (-3181 . 261848) (-3182 . 261703) (-3183 . 261651) (-3184 . 261465)
+ (-3185 . 261393) (-3186 . 261034) (-3187 . 260894) (-3188 . 260767)
+ (-3189 . 260708) (-3190 . 260486) (-3191 . 260419) (-3192 . 259876)
+ (-3193 . 259793) (-3194 . 259630) (-3195 . 259556) (-3196 . 259308)
+ (-3197 . 259057) (-3198 . 258902) (-3199 . 258847) (-3200 . 258782)
+ (-3201 . 258609) (-3202 . 258557) (-3203 . 258070) (-3204 . 257880)
+ (-3205 . 257486) (-3206 . 257362) (-3207 . 257334) (-3208 . 257116)
+ (-3209 . 257021) (-3210 . 256751) (-3211 . 256596) (-3212 . 256531)
+ (-3213 . 256375) (-3214 . 256292) (-3215 . 256134) (-3216 . 256081)
+ (-3217 . 256053) (-3218 . 255940) (-3219 . 255759) (-3220 . 255467)
+ (-3221 . 255238) (-3222 . 255165) (-3223 . 254985) (-3224 . 254767)
+ (-3225 . 254600) (-3226 . 253810) (-3227 . 253629) (-3228 . 253416)
+ (-3229 . 253317) (-3230 . 253243) (-3231 . 253158) (-3232 . 253075)
+ (-3233 . 252898) (-3234 . 252810) (-3235 . 252676) (-3236 . 252597)
+ (-3237 . 252356) (-3238 . 252301) (-3239 . 252247) (-3240 . 252091)
+ (-3241 . 252037) (-3242 . 251960) (-3243 . 251883) (-3244 . 251769)
+ (-3245 . 251325) (-3246 . 251232) (-3247 . 251136) (-3248 . 250940)
+ (-3249 . 250878) (-3250 . 250811) (-3251 . 250779) (-3252 . 250527)
+ (-3253 . 250412) (-3254 . 250299) (-3255 . 250171) (-3256 . 250060)
+ (-3257 . 249767) (-3258 . 249376) (-3259 . 249299) (-3260 . 249195)
+ (-3261 . 249133) (-3262 . 247935) (-3263 . 247835) (-3264 . 247783)
+ (-3265 . 247598) (-3266 . 247544) (-3267 . 247252) (-3268 . 247048)
+ (-3269 . 246334) (-3270 . 245993) (-3271 . 245755) (-3272 . 245651)
+ (-3273 . 245508) (-3274 . 245439) (-3275 . 245296) (-3276 . 244845)
+ (-3277 . 244724) (-3278 . 244623) (-3279 . 244549) (-3280 . 244192)
+ (-3281 . 244047) (-3282 . 243842) (-3283 . 243578) (-3284 . 243479)
+ (-3285 . 242802) (-3286 . 242657) (-3287 . 242557) (-3288 . 242354)
+ (-3289 . 242225) (-3290 . 242193) (-3291 . 242105) (-3292 . 242003)
+ (-3293 . 241808) (-3294 . 241660) (-3295 . 241513) (-3296 . 241456)
+ (-3297 . 241315) (-3298 . 241220) (-3299 . 241191) (-3300 . 241068)
+ (-3301 . 240924) (-3302 . 240847) (-3303 . 240715) (-3304 . 240608)
+ (-3305 . 240505) (-3306 . 240306) (-3307 . 240224) (-3308 . 240024)
+ (-3309 . 239744) (-3310 . 238784) (-3311 . 238678) (-3312 . 238609)
+ (-3313 . 238389) (-3314 . 238258) (-3315 . 238205) (-3316 . 238134)
+ (-3317 . 237706) (-3318 . 237628) (-3319 . 237525) (-3320 . 237145)
+ (-3321 . 237077) (-3322 . 236983) (-3323 . 236795) (-3324 . 236697)
+ (-3325 . 236556) (-3326 . 236428) (-3327 . 236397) (-3328 . 236046)
+ (-3329 . 235976) (-3330 . 235804) (-3331 . 235468) (-3332 . 235339)
+ (-3333 . 235207) (-3334 . 235109) (-3335 . 234914) (-3336 . 234507)
+ (-3337 . 234317) (-3338 . 234228) (-3339 . 234120) (-3340 . 234057)
+ (-3341 . 234025) (-3342 . 233865) (-3343 . 233327) (-3344 . 233269)
+ (-3345 . 233077) (-3346 . 232880) (-3347 . 232799) (-3348 . 232655)
+ (-3349 . 232140) (-3350 . 231913) (-3351 . 231818) (-3352 . 231339)
+ (-3353 . 231200) (-3354 . 231141) (-3355 . 230815) (-3356 . 230593)
+ (-3357 . 230498) (-3358 . 230201) (-3359 . 230052) (-3360 . 229872)
+ (-3361 . 229773) (-3362 . 229685) (-3363 . 228811) (-3364 . 228643)
+ (-3365 . 228512) (-3366 . 228216) (-3367 . 228017) (-3368 . 227867)
+ (-3369 . 227715) (-3370 . 227642) (-3371 . 227239) (-3372 . 226501)
+ (-3373 . 226401) (-3374 . 226222) (-3375 . 226127) (-3376 . 225948)
+ (-3377 . 225881) (-3378 . 225579) (-3379 . 225520) (-3380 . 225468)
+ (-3381 . 225362) (-3382 . 225312) (-3383 . 225213) (-3384 . 225023)
+ (-3385 . 224973) (-3386 . 224770) (-3387 . 224654) (-3388 . 224466)
+ (-3389 . 224248) (-3390 . 224084) (-3391 . 223985) (-3392 . 222793)
+ (-3393 . 222741) (-3394 . 222562) (-3395 . 222394) (-3396 . 222292)
+ (-3397 . 222250) (-3398 . 221928) (-3399 . 221810) (-3400 . 221680)
+ (-3401 . 221599) (-3402 . 221500) (-3403 . 221426) (-3404 . 220752)
+ (-3405 . 220685) (-3406 . 220590) (-3407 . 220516) (-3408 . 220287)
+ (-3409 . 220022) (-3410 . 219180) (-3411 . 219120) (-3412 . 219026)
+ (-3413 . 218891) (-3414 . 218776) (-3415 . 218727) (-3416 . 218583)
+ (-3417 . 218528) (-3418 . 218241) (-3419 . 218088) (-3420 . 217493)
+ (-3421 . 217437) (-3422 . 217151) (-3423 . 216960) (-3424 . 216872)
+ (-3425 . 216791) (-3426 . 216712) (-3427 . 216426) (-3428 . 216371)
+ (-3429 . 216180) (-3430 . 216056) (-3431 . 215991) (-3432 . 215664)
+ (-3433 . 215369) (-3434 . 215316) (-3435 . 215211) (-3436 . 215004)
+ (-3437 . 213777) (-3438 . 213538) (-3439 . 213370) (-3440 . 211968)
+ (-3441 . 211835) (-3442 . 211779) (-3443 . 211682) (-3444 . 211556)
+ (-3445 . 211473) (-3446 . 211344) (-3447 . 211229) (-3448 . 211104)
+ (-3449 . 210959) (-3450 . 210730) (-3451 . 210675) (-3452 . 210457)
+ (-3453 . 210238) (-3454 . 210156) (-3455 . 210085) (-3456 . 209990)
+ (-3457 . 209772) (-3458 . 209706) (-3459 . 209679) (-3460 . 209463)
+ (-3461 . 209317) (-3462 . 209064) (-3463 . 208248) (-3464 . 208147)
+ (-3465 . 207805) (-3466 . 207578) (-3467 . 207495) (-3468 . 206819)
+ (-3469 . 206769) (-3470 . 206695) (-3471 . 206561) (-3472 . 206533)
+ (-3473 . 205235) (-3474 . 205166) (-3475 . 204914) (-3476 . 204849)
+ (-3477 . 204791) (-3478 . 204300) (-3479 . 204184) (-3480 . 204026)
+ (-3481 . 203884) (-3482 . 203518) (-3483 . 203441) (-3484 . 203099)
+ (-3485 . 202566) (-3486 . 202468) (-3487 . 202322) (-3488 . 202225)
+ (-3489 . 202148) (-3490 . 201928) (-3491 . 201830) (-3492 . 201687)
+ (-3493 . 201309) (-3494 . 201190) (-3495 . 201123) (-3496 . 201063)
+ (-3497 . 200539) (-3498 . 200416) (-3499 . 200321) (-3500 . 200205)
+ (-3501 . 199537) (-3502 . 199485) (-3503 . 199432) (-3504 . 199358)
+ (-3505 . 199222) (-3506 . 199064) (-3507 . 198819) (-3508 . 198727)
+ (-3509 . 198650) (-3510 . 198242) (-3511 . 198211) (-3512 . 197957)
+ (-3513 . 197880) (-3514 . 197782) (-3515 . 197658) (-3516 . 197469)
+ (-3517 . 197415) (-3518 . 197241) (-3519 . 196905) (-3520 . 196789)
+ (-3521 . 196582) (-3522 . 196378) (-3523 . 195949) (-3524 . 195900)
+ (-3525 . 195619) (-3526 . 194187) (-3527 . 193766) (-3528 . 193710)
+ (-3529 . 192618) (-3530 . 192509) (-3531 . 192279) (-3532 . 192179)
+ (-3533 . 192087) (-3534 . 191859) (-3535 . 191621) (-3536 . 191569)
+ (-3537 . 191488) (-3538 . 191417) (-3539 . 191210) (-3540 . 191153)
+ (-3541 . 191031) (-3542 . 190859) (-3543 . 190762) (-3544 . 190635)
+ (-3545 . 190534) (-3546 . 190409) (-3547 . 190324) (-3548 . 190202)
+ (-3549 . 190152) (-3550 . 190025) (-3551 . 189789) (-3552 . 189633)
+ (-3553 . 189599) (-3554 . 189427) (-3555 . 189093) (-3556 . 188997)
+ (-3557 . 188897) (-3558 . 188732) (-3559 . 188660) (-3560 . 188535)
+ (-3561 . 188419) (-3562 . 188274) (-3563 . 188193) (-3564 . 187714)
+ (-3565 . 187542) (-3566 . 187309) (-3567 . 186723) (-3568 . 186614)
+ (-3569 . 186510) (-3570 . 186458) (-3571 . 186340) (-3572 . 186095)
+ (-3573 . 186038) (-3574 . 185866) (-3575 . 185792) (-3576 . 185606)
+ (-3577 . 185537) (-3578 . 185400) (-3579 . 185343) (-3580 . 185248)
+ (-3581 . 185174) (-3582 . 184894) (-3583 . 184835) (-3584 . 183293)
+ (-3585 . 183025) (-3586 . 182897) (-3587 . 182705) (-3588 . 182653)
+ (-3589 . 182529) (-3590 . 182440) (-3591 . 182388) (-3592 . 182261)
+ (-3593 . 182100) (-3594 . 181978) (-3595 . 181890) (-3596 . 181735)
+ (-3597 . 181448) (-3598 . 181199) (-3599 . 181122) (-3600 . 181049)
+ (-3601 . 180628) (-3602 . 179480) (-3603 . 179413) (-3604 . 179318)
+ (-3605 . 179266) (-3606 . 178950) (-3607 . 178351) (-3608 . 178250)
+ (-3609 . 177842) (-3610 . 177775) (-3611 . 177709) (-3612 . 177549)
+ (-3613 . 177449) (-3614 . 177347) (-3615 . 177028) (-3616 . 176814)
+ (-3617 . 176746) (-3618 . 176668) (-3619 . 176286) (-3620 . 176202)
+ (-3621 . 176150) (-3622 . 176023) (-3623 . 175927) (-3624 . 175823)
+ (-3625 . 175756) (-3626 . 175603) (-3627 . 175229) (-3628 . 175027)
+ (-3629 . 174968) (-3630 . 174585) (-3631 . 174514) (-3632 . 174419)
+ (-3633 . 173808) (-3634 . 173224) (-3635 . 173027) (-3636 . 172848)
+ (-3637 . 172746) (-3638 . 172610) (-3639 . 172448) (-3640 . 172355)
+ (-3641 . 172217) (-3642 . 172133) (-3643 . 172026) (-3644 . 171811)
+ (-3645 . 171720) (-3646 . 171623) (-3647 . 171533) (-3648 . 171367)
+ (-3649 . 171202) (-3650 . 171071) (-3651 . 170695) (-3652 . 170537)
+ (-3653 . 170439) (-3654 . 170220) (-3655 . 170165) (-3656 . 170094)
+ (-3657 . 169950) (-3658 . 169873) (-3659 . 169750) (-3660 . 168932)
+ (-3661 . 168822) (-3662 . 168614) (-3663 . 168283) (-3664 . 167701)
+ (-3665 . 167646) (-3666 . 167293) (-3667 . 167017) (-3668 . 166889)
+ (-3669 . 166803) (-3670 . 166634) (-3671 . 166497) (-3672 . 166358)
+ (-3673 . 166270) (-3674 . 166157) (-3675 . 165940) (-3676 . 165848)
+ (-3677 . 165675) (-3678 . 165416) (-3679 . 165257) (-3680 . 164771)
+ (-3681 . 164697) (-3682 . 164569) (-3683 . 164484) (-3684 . 164063)
+ (-3685 . 163362) (-3686 . 163265) (-3687 . 163180) (-3688 . 162887)
+ (-3689 . 162758) (-3690 . 162699) (-3691 . 162567) (-3692 . 162399)
+ (-3693 . 162295) (-3694 . 162199) (-3695 . 162041) (-3696 . 161683)
+ (-3697 . 161602) (-3698 . 161356) (-3699 . 161243) (-3700 . 161160)
+ (-3701 . 161016) (-3702 . 160839) (-3703 . 160753) (-3704 . 160637)
+ (-3705 . 160555) (-3706 . 160452) (-3707 . 160306) (-3708 . 160169)
+ (-3709 . 160011) (-3710 . 159915) (-3711 . 159842) (-3712 . 159425)
+ (-3713 . 159363) (-3714 . 159285) (-3715 . 159126) (-3716 . 159075)
+ (-3717 . 158920) (-3718 . 158774) (-3719 . 158636) (-3720 . 158454)
+ (-3721 . 158245) (-3722 . 158084) (-3723 . 157952) (-3724 . 157851)
+ (-3725 . 157796) (-3726 . 157597) (-3727 . 157511) (-3728 . 157387)
+ (-3729 . 157315) (-3730 . 157242) (-3731 . 157053) (-3732 . 156994)
+ (-3733 . 156844) (-3734 . 156748) (-3735 . 156018) (-3736 . 155572)
+ (-3737 . 155519) (-3738 . 155272) (-3739 . 155100) (-3740 . 155028)
+ (-3741 . 154933) (-3742 . 154874) (-3743 . 154817) (-3744 . 154567)
+ (-3745 . 153927) (-3746 . 153747) (-3747 . 153619) (-3748 . 152889)
+ (-3749 . 152811) (-3750 . 152733) (-3751 . 152650) (-12 . 152478)
+ (-3753 . 152368) (-3754 . 151987) (-3755 . 151884) (-3756 . 151739)
+ (-3757 . 151671) (-3758 . 151566) (-3759 . 151309) (-3760 . 150632)
+ (-3761 . 150543) (-3762 . 150445) (-3763 . 150319) (-3764 . 149931)
+ (-3765 . 149821) (-3766 . 149552) (-3767 . 149481) (-3768 . 149336)
+ (-3769 . 149223) (-3770 . 149121) (-3771 . 148556) (-3772 . 148477)
+ (-3773 . 148398) (-3774 . 148315) (-3775 . 148262) (-3776 . 147991)
+ (-3777 . 147895) (-3778 . 147660) (-3779 . 147581) (-3780 . 147458)
+ (-3781 . 146893) (-3782 . 146838) (-3783 . 146720) (-3784 . 146510)
+ (-3785 . 146083) (-3786 . 145935) (-3787 . 145885) (-3788 . 145665)
+ (-3789 . 145612) (-3790 . 145282) (-3791 . 144717) (-3792 . 144579)
+ (-3793 . 144337) (-3794 . 144069) (-3795 . 144009) (-3796 . 143857)
+ (-3797 . 143739) (-3798 . 143667) (-3799 . 143537) (-3800 . 143470)
+ (-3801 . 143312) (-3802 . 142637) (-3803 . 142326) (-3804 . 142170)
+ (-3805 . 142099) (-3806 . 141737) (-3807 . 141636) (-3808 . 141505)
+ (-3809 . 141344) (-3810 . 141008) (-3811 . 140585) (-3812 . 140533)
+ (-3813 . 139858) (-3814 . 139727) (-3815 . 139517) (-3816 . 139393)
+ (-3817 . 139104) (-3818 . 138960) (-3819 . 138870) (-3820 . 138770)
+ (-3821 . 138685) (-3822 . 138629) (-3823 . 138444) (-3824 . 138374)
+ (-3825 . 138346) (-3826 . 137608) (-3827 . 137525) (-3828 . 136902)
+ (-3829 . 136557) (-3830 . 136460) (-3831 . 136265) (-3832 . 136144)
+ (-3833 . 136086) (-3834 . 136037) (-3835 . 136005) (-3836 . 135932)
+ (-3837 . 135369) (-3838 . 135297) (-3839 . 135167) (-3840 . 135057)
+ (-3841 . 134980) (-3842 . 134847) (-3843 . 134795) (-3844 . 134654)
+ (-3845 . 134581) (-3846 . 134263) (-3847 . 133700) (-3848 . 133595)
+ (-3849 . 133218) (* . 129105) (-3851 . 129034) (-3852 . 128850)
+ (-3853 . 128772) (-3854 . 128213) (-3855 . 128146) (-3856 . 128075)
+ (-3857 . 127811) (-3858 . 127707) (-3859 . 127144) (-3860 . 126896)
+ (-3861 . 126564) (-3862 . 126477) (-3863 . 126412) (-3864 . 126345)
+ (-3865 . 126166) (-3866 . 125607) (-3867 . 125555) (-3868 . 125472)
+ (-3869 . 125376) (-3870 . 125178) (-3871 . 124502) (-3872 . 124423)
+ (-3873 . 123616) (-3874 . 123509) (-3875 . 123192) (-3876 . 123085)
+ (-3877 . 122770) (-3878 . 122703) (-3879 . 122600) (-3880 . 121897)
+ (-3881 . 121758) (-3882 . 121690) (-3883 . 121014) (-3884 . 120547)
+ (-3885 . 120488) (-3886 . 120340) (-3887 . 120286) (-3888 . 119893)
+ (-3889 . 119621) (-3890 . 119593) (-3891 . 119196) (-3892 . 119113)
+ (-3893 . 118603) (-3894 . 118502) (-3895 . 118327) (-3896 . 118071)
+ (-3897 . 117395) (-3898 . 117262) (-3899 . 117117) (-3900 . 117050)
+ (-3901 . 115948) (-3902 . 115709) (-3903 . 115292) (-3904 . 115102)
+ (-3905 . 115014) (-3906 . 114879) (-3907 . 114627) (-3908 . 114540)
+ (-3909 . 114455) (-3910 . 114376) (-3911 . 113812) (-3912 . 113728)
+ (-3913 . 113399) (-3914 . 113371) (-3915 . 113287) (-3916 . 113056)
+ (-3917 . 112983) (-3918 . 112016) (-3919 . 110714) (-3920 . 110665)
+ (-9 . 110637) (-3922 . 110540) (-3923 . 110188) (-3924 . 110075)
+ (-3925 . 109714) (-3926 . 109532) (-3927 . 109501) (-3928 . 109371)
+ (-3929 . 109269) (-3930 . 109182) (-3931 . 108951) (-3932 . 108863)
+ (-3933 . 108696) (-8 . 108668) (-3935 . 108572) (-3936 . 108365)
+ (-3937 . 108240) (-3938 . 108170) (-3939 . 107972) (-3940 . 107639)
+ (-3941 . 107549) (-3942 . 107358) (-3943 . 107224) (-3944 . 107065)
+ (-3945 . 106869) (-3946 . 106702) (-3947 . 106587) (-7 . 106559)
+ (-3949 . 106476) (-3950 . 106417) (-3951 . 106364) (-3952 . 106117)
+ (-3953 . 106019) (-3954 . 105842) (-3955 . 105770) (-3956 . 105683)
+ (-3957 . 105494) (-3958 . 105322) (-3959 . 104835) (-3960 . 104680)
+ (-3961 . 104627) (-3962 . 104283) (-3963 . 104130) (-3964 . 104078)
+ (-3965 . 103994) (-3966 . 103177) (-3967 . 102982) (-3968 . 102245)
+ (-3969 . 102165) (-3970 . 102050) (-3971 . 101906) (-3972 . 101820)
+ (-3973 . 101662) (-3974 . 101530) (-3975 . 101254) (-3976 . 101202)
+ (-3977 . 101131) (-3978 . 101064) (-3979 . 100900) (-3980 . 100787)
+ (-3981 . 100502) (-3982 . 100378) (-3983 . 99790) (-3984 . 99723)
+ (-3985 . 99627) (-3986 . 99525) (-3987 . 99459) (-3988 . 99216)
+ (-3989 . 99051) (-3990 . 97865) (-3991 . 97812) (-3992 . 97741)
+ (-3993 . 97449) (-3994 . 96805) (-3995 . 96731) (-3996 . 96665)
+ (-3997 . 94884) (-3998 . 94811) (-3999 . 94717) (-4000 . 94598)
+ (-4001 . 94458) (-4002 . 93276) (-4003 . 93074) (-4004 . 92933)
+ (-4005 . 92598) (-4006 . 92502) (-4007 . 92405) (-4008 . 92352)
+ (-4009 . 92049) (-4010 . 91959) (-4011 . 90742) (-4012 . 90135)
+ (-4013 . 87927) (-4014 . 87823) (-4015 . 87749) (-4016 . 87564)
+ (-4017 . 87308) (-4018 . 86933) (-4019 . 86832) (-4020 . 86774)
+ (-4021 . 86690) (-4022 . 86640) (-4023 . 86073) (-4024 . 85920)
+ (-4025 . 85790) (-4026 . 85580) (-4027 . 85459) (-4028 . 85405)
+ (-4029 . 85246) (-4030 . 85187) (-4031 . 85088) (-4032 . 85011)
+ (-4033 . 84912) (-4034 . 84861) (-4035 . 84753) (-4036 . 84698)
+ (-4037 . 84628) (-4038 . 84544) (-4039 . 84234) (-4040 . 84026)
+ (-4041 . 83883) (-4042 . 83776) (-4043 . 83663) (-4044 . 83177)
+ (-4045 . 83115) (-4046 . 82965) (-4047 . 82863) (-4048 . 82768)
+ (-4049 . 82708) (-4050 . 82636) (-4051 . 82555) (-4052 . 82076)
+ (-4053 . 81913) (-4054 . 81719) (-4055 . 81645) (-4056 . 81485)
+ (-4057 . 81312) (-4058 . 81235) (-4059 . 81164) (-4060 . 80776)
+ (-4061 . 80672) (-4062 . 80510) (-4063 . 80324) (-4064 . 80158)
+ (-4065 . 80105) (-4066 . 79866) (-4067 . 79794) (-4068 . 79735)
+ (-4069 . 79485) (-4070 . 79282) (-4071 . 79194) (-4072 . 79099)
+ (-4073 . 79043) (-4074 . 78880) (-4075 . 78824) (-4076 . 78705)
+ (-4077 . 78548) (-4078 . 78514) (-4079 . 78335) (-4080 . 77985)
+ (-4081 . 77913) (-4082 . 77835) (-4083 . 77694) (-4084 . 77472)
+ (-4085 . 77418) (-4086 . 77363) (-4087 . 77283) (-4088 . 77203)
+ (-4089 . 77100) (-4090 . 76758) (-4091 . 76629) (-4092 . 76533)
+ (-4093 . 76459) (-4094 . 76363) (-4095 . 76172) (-4096 . 76082)
+ (-4097 . 76029) (-4098 . 75899) (-4099 . 75815) (-4100 . 75756)
+ (-4101 . 75407) (-4102 . 75321) (-4103 . 75174) (-4104 . 75053)
+ (-4105 . 74783) (-4106 . 74541) (-4107 . 74226) (-4108 . 74198)
+ (-4109 . 74126) (-4110 . 73971) (-4111 . 73746) (-4112 . 73528)
+ (-4113 . 72410) (-4114 . 72349) (-4115 . 71970) (-4116 . 71900)
+ (-4117 . 71798) (-4118 . 71710) (-4119 . 71655) (-4120 . 71021)
+ (-4121 . 70859) (-4122 . 70546) (-4123 . 70434) (-4124 . 70311)
+ (-4125 . 70065) (-4126 . 69866) (-4127 . 69738) (-4128 . 69639)
+ (-4129 . 69523) (-4130 . 69379) (-4131 . 69119) (-4132 . 68479)
+ (-4133 . 68343) (-4134 . 68163) (-4135 . 68135) (-4136 . 67333)
+ (-4137 . 67219) (-4138 . 67116) (-4139 . 67008) (-4140 . 66957)
+ (-4141 . 66884) (-4142 . 66768) (-4143 . 66687) (-4144 . 66608)
+ (-4145 . 66423) (-4146 . 66364) (-4147 . 66210) (-4148 . 66137)
+ (-4149 . 66036) (-4150 . 65564) (-4151 . 65379) (-4152 . 65260)
+ (-4153 . 65077) (-4154 . 64976) (-4155 . 64881) (-4156 . 64787)
+ (-4157 . 64631) (-4158 . 64533) (-4159 . 64392) (-4160 . 64079)
+ (-4161 . 63946) (-4162 . 63822) (-4163 . 63741) (-4164 . 63682)
+ (-4165 . 63605) (-4166 . 63538) (-4167 . 63391) (-4168 . 63238)
+ (-4169 . 63154) (-4170 . 63097) (-4171 . 62954) (-4172 . 62815)
+ (-4173 . 62690) (-4174 . 62536) (-4175 . 62464) (-4176 . 62370)
+ (-4177 . 62315) (-4178 . 62256) (-4179 . 62134) (-4180 . 62082)
+ (-4181 . 61901) (-4182 . 61806) (-4183 . 61739) (-4184 . 61679)
+ (-4185 . 61600) (-4186 . 61346) (-4187 . 61293) (-4188 . 61135)
+ (-4189 . 61101) (-4190 . 61049) (-4191 . 60703) (-4192 . 60250)
+ (-4193 . 60072) (-4194 . 59881) (-4195 . 59797) (-4196 . 59742)
+ (-4197 . 59597) (-4198 . 59569) (-4199 . 59319) (-4200 . 59239)
+ (-4201 . 59210) (-4202 . 59109) (-4203 . 58946) (-4204 . 58709)
+ (-4205 . 58615) (-4206 . 58563) (-4207 . 56707) (-4208 . 56655)
+ (-4209 . 56502) (-4210 . 56417) (-4211 . 56234) (-4212 . 56122)
+ (-4213 . 56026) (-4214 . 55922) (-4215 . 55408) (-4216 . 55305)
+ (-4217 . 55223) (-4218 . 55075) (-4219 . 55003) (-4220 . 54950)
+ (-4221 . 54808) (-4222 . 54668) (-4223 . 54537) (-4224 . 54469)
+ (-4225 . 54334) (-4226 . 54246) (-4227 . 54000) (-4228 . 53842)
+ (-4229 . 53785) (-4230 . 53671) (-4231 . 53505) (-4232 . 53306)
+ (-4233 . 53253) (-4234 . 53202) (-4235 . 53142) (-4236 . 53091)
+ (-4237 . 53019) (-4238 . 52917) (-4239 . 52536) (-4240 . 52290)
+ (-4241 . 52082) (-4242 . 51916) (-4243 . 51572) (-4244 . 50391)
+ (-4245 . 50286) (-4246 . 49974) (-4247 . 49888) (-4248 . 49818)
+ (-4249 . 49713) (-4250 . 49619) (-4251 . 49521) (-4252 . 49414)
+ (-4253 . 49317) (-4254 . 49143) (-4255 . 48739) (-4256 . 48677)
+ (-4257 . 48459) (-4258 . 48348) (-4259 . 48289) (-4260 . 48183)
+ (-4261 . 47315) (-4262 . 47263) (-4263 . 47195) (-4264 . 47135)
+ (-4265 . 46997) (-4266 . 46782) (-4267 . 46662) (-4268 . 46469)
+ (-4269 . 46350) (-4270 . 46189) (-4271 . 45823) (-4272 . 45513)
+ (-4273 . 45274) (-4274 . 45202) (-4275 . 45147) (-4276 . 45094)
+ (-4277 . 44841) (-4278 . 43075) (-4279 . 42964) (-4280 . 42859)
+ (-4281 . 42831) (-4282 . 42735) (-4283 . 42284) (-4284 . 41972)
+ (-4285 . 41789) (-4286 . 41636) (-4287 . 41522) (-4288 . 41471)
+ (-4289 . 41376) (-4290 . 39921) (-4291 . 39494) (-4292 . 39395)
+ (-4293 . 39192) (-4294 . 39074) (-4295 . 38793) (-4296 . 38711)
+ (-4297 . 38618) (-4298 . 38219) (-4299 . 38167) (-4300 . 37684)
+ (-4301 . 36194) (-4302 . 36111) (-4303 . 36025) (-4304 . 35851)
+ (-4305 . 35768) (-4306 . 35652) (-4307 . 35218) (-4308 . 34891)
+ (-4309 . 34745) (-4310 . 34464) (-4311 . 34412) (-4312 . 34324)
+ (-4313 . 34220) (-4314 . 34083) (-4315 . 33842) (-4316 . 33662)
+ (-4317 . 33526) (-4318 . 33190) (-4319 . 32980) (-4320 . 32911)
+ (-4321 . 32829) (-4322 . 32735) (-4323 . 32480) (-4324 . 31744)
+ (-4325 . 31362) (-4326 . 31299) (-4327 . 31195) (-4328 . 31101)
+ (-4329 . 31052) (-4330 . 30897) (-4331 . 30505) (-4332 . 30453)
+ (-4333 . 30358) (-4334 . 30305) (-4335 . 30221) (-4336 . 30058)
+ (-4337 . 29899) (-4338 . 29815) (-4339 . 29747) (-4340 . 29012)
+ (-4341 . 28944) (-4342 . 28817) (-4343 . 28652) (-4344 . 28533)
+ (-4345 . 28453) (-4346 . 27850) (-4347 . 27722) (-4348 . 27694)
+ (-4349 . 27489) (-4350 . 27377) (-4351 . 27145) (-4352 . 27003)
+ (-4353 . 26930) (-4354 . 26778) (-4355 . 26691) (-4356 . 26544)
+ (-4357 . 26486) (-4358 . 26433) (-4359 . 26380) (-4360 . 26280)
+ (-4361 . 26154) (-4362 . 25701) (-4363 . 25631) (-4364 . 25331)
+ (-4365 . 25201) (-4366 . 24557) (-4367 . 24480) (-4368 . 24422)
+ (-4369 . 24345) (-4370 . 24186) (-4371 . 24133) (-4372 . 22705)
+ (-4373 . 22646) (-4374 . 22421) (-4375 . 22369) (-4376 . 22335)
+ (-4377 . 22227) (-4378 . 22024) (-4379 . 20852) (-4380 . 20750)
+ (-4381 . 20310) (-4382 . 20253) (-4383 . 20116) (-4384 . 19318)
+ (-4385 . 19165) (-4386 . 19082) (-4387 . 18730) (-4388 . 18667)
+ (-4389 . 18204) (-4390 . 18149) (-4391 . 18034) (-4392 . 17937)
+ (-4393 . 17779) (-4394 . 17623) (-4395 . 17459) (-4396 . 17341)
+ (-4397 . 12002) (-4398 . 11942) (-4399 . 11751) (-4400 . 11456)
+ (-4401 . 11343) (-4402 . 11122) (-4403 . 11025) (-4404 . 9888)
+ (-4405 . 9765) (-4406 . 9713) (-4407 . 9634) (-4408 . 9538)
+ (-4409 . 9367) (-4410 . 9339) (-4411 . 9262) (-4412 . 9032)
+ (-4413 . 8898) (-4414 . 8472) (-4415 . 8413) (-4416 . 8089)
+ (-4417 . 6500) (-4418 . 6227) (-4419 . 6174) (-4420 . 5933)
+ (-4421 . 5832) (-4422 . 4582) (-4423 . 4405) (-4424 . 4324)
+ (-4425 . 4090) (-4426 . 3962) (-4427 . 3891) (-4428 . 3750)
+ (-4429 . 3606) (-4430 . 3543) (-4431 . 3488) (-4432 . 3436)
+ (-4433 . 3015) (-4434 . 2981) (-4435 . 2811) (-4436 . 697)
+ (-4437 . 395) (-4438 . 252) (-4439 . 199) (-4440 . 165) (-4441 . 113)
+ (-4442 . 30)) \ No newline at end of file